WorldWideScience

Sample records for insecticide lindane identification

  1. The insecticide lindane. Identification of possible risks for human reproduction; L'insetticida lindano. Identificazione dei rischi possibili per la riproduzione umana

    Energy Technology Data Exchange (ETDEWEB)

    Traina, M E; Urbani, E [Istituto Superiore di Sanita' , Lab. di Igiene Ambientale, Rome (Italy); Rescia, M; Mantovani, A [Istituto Superiore di Sanita' , Lab. di Tossicologia Comparata e Ecotossicologia, Rome (Italy)

    2001-07-01

    A growing international concern exists about the potential harm to human reproduction caused by pollutants able to interfere with the endocrine system. Particular interest is addressed to organochlorine pesticides persisting in the environment and organisms; such compounds are extensively studied for their adverse effects on reproductive functions and development of laboratory animals. The insecticide lindane (the {gamma}-isomer of hexachlorocyclohexane), widely used before the 80s, has yet to be adequately evaluated as regards the possible reproductive risk. The present report contains a critical revision of the available scientific literature about lindane effects on the male and female reproductive system, pregnancy and development. Besides, the possible higher exposure periods to this pesticide (years 60s-70s) have been determined through the analysis of the lindane products consumed and the evaluation of the active ingredient levels in the environment and in the tissues and biological fluids, with particular regard to Italy. The present review aims at supporting further toxicological and epidemiological studies to assess the possible reproductive risk posed by environmental and professional exposure to chlorinated insecticides. [Italian] L'ipotesi che l'esposizione a sostanze inquinanti in grado di alterare l'equilibrio del sistema endocrino possa avere effetti sulla riproduzione umana e sullo sviluppo e' attualmente oggetto d'interesse nella comunita' scientifica. Particoalre attenzione e' stata indirizzata ai pesticidi organoclorurati a lunga persistenza nell'ambiente e negli organismi, per i quali esistono numerose evidenze di effetti nocivi per la riproduzione, negli studi di tossicologia sperimentale. L'insetticida lindano (l'isomero-{gamma} dell'esaclorocicloesano), largamente utilizzato prima degli anni '80, non e' stato fino ad oggi adeguatamente valutato per un possibile rischio riproduttivo a lungo termine. In questa rassegna e' stata pertanto

  2. The insecticide lindane. Identification of possible risks for human reproduction; L'insetticida lindano. Identificazione dei rischi possibili per la riproduzione umana

    Energy Technology Data Exchange (ETDEWEB)

    Traina, M.E.; Urbani, E. [Istituto Superiore di Sanita' , Lab. di Igiene Ambientale, Rome (Italy); Rescia, M.; Mantovani, A. [Istituto Superiore di Sanita' , Lab. di Tossicologia Comparata e Ecotossicologia, Rome (Italy)

    2001-07-01

    A growing international concern exists about the potential harm to human reproduction caused by pollutants able to interfere with the endocrine system. Particular interest is addressed to organochlorine pesticides persisting in the environment and organisms; such compounds are extensively studied for their adverse effects on reproductive functions and development of laboratory animals. The insecticide lindane (the {gamma}-isomer of hexachlorocyclohexane), widely used before the 80s, has yet to be adequately evaluated as regards the possible reproductive risk. The present report contains a critical revision of the available scientific literature about lindane effects on the male and female reproductive system, pregnancy and development. Besides, the possible higher exposure periods to this pesticide (years 60s-70s) have been determined through the analysis of the lindane products consumed and the evaluation of the active ingredient levels in the environment and in the tissues and biological fluids, with particular regard to Italy. The present review aims at supporting further toxicological and epidemiological studies to assess the possible reproductive risk posed by environmental and professional exposure to chlorinated insecticides. [Italian] L'ipotesi che l'esposizione a sostanze inquinanti in grado di alterare l'equilibrio del sistema endocrino possa avere effetti sulla riproduzione umana e sullo sviluppo e' attualmente oggetto d'interesse nella comunita' scientifica. Particoalre attenzione e' stata indirizzata ai pesticidi organoclorurati a lunga persistenza nell'ambiente e negli organismi, per i quali esistono numerose evidenze di effetti nocivi per la riproduzione, negli studi di tossicologia sperimentale. L'insetticida lindano (l'isomero-{gamma} dell'esaclorocicloesano), largamente utilizzato prima degli anni '80, non e' stato fino ad oggi adeguatamente valutato per un possibile rischio

  3. Lindane

    Science.gov (United States)

    ... from getting scabies or lice. You should only use lindane if you already have these conditions, not ... acid (NegGram), norfloxacin (Noroxin), ofloxacin (Floxin), and penicillin; chloroquine sulfate; isoniazid (INH, Laniazid, Nydrazid); medications for mental ...

  4. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    Science.gov (United States)

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Distribution of sup 14 C-lindane (γ-BHC) insecticide in a simulative mudflat microecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Burhanuddin Ahmad; Abdul Khalik Wood; Zaleha Hashim; Sabri Junoh; Zaharudin Ahmad

    1997-01-01

    Organochlorinated pesticide such as Lindane is very persistent in the marine environment. The distribution of sup 14 C-lindane in a simulative mudflat micro-ecosystem; in sea water, sediment and cockle (Anadara granosa) compartments was studied for a period of 10 weeks under aeration. Cockle bioconcentrated 2808.4 Bq/g tissue one day after exposure, which was gradually reduced to 1754.5 Bq/g tissue six days later. Lindane was probably slowly depurated by cockle following its migration to deeper-sediment layer within one week of exposure. Sediment absorption of sup 14 C-lindane was observed in the first and second weeks, reaching 595.4 Bq/g sediment at 15 days after exposure. A steady decline of its concentration was shown between 2-10 weeks of exposure to 216.7 Bq/g sediment possibly due to sediment desorption. The sup 14 C-lindane level in sea water was shown to steeply drop from 53.3 Bq/ml to 24.8 Bq/ml within 2 weeks exposure, followed by a steady decline to 0.47 Bq/ml between 2-10 weeks of exposure. The unaccounted radioactivity could have been lost in the form of volatilized lindane

  6. Effect and fate of lindane in maize plant

    International Nuclear Information System (INIS)

    Bennaceur, M.; Ghezal, F.; Klaa, K.

    1992-10-01

    The fate and effect of lindane in maize plant, soil and predators were studied following insecticide application under field conditions. Respectively 84,2% and 93,3% of lindane residues were lost after 2 and 4 months in soil after treatment. About 90% of the insecticide was lost after one month in maize plant. Lindane residues were present in maize grains (0,205ppm). Lindane decreases the density of many predators in soils such as species of collembola, coccinellidae, formicidae, coleoptera

  7. Dermal absorption of the insecticide lindane (1 delta, 2 delta, 3 beta, 4 delta, 5 delta, 6 beta-hexachlorocyclohexane) in rats and rhesus monkeys: Effect of anatomical site

    International Nuclear Information System (INIS)

    Moody, R.P.; Ritter, L.

    1989-01-01

    Dermal absorption of the insecticide lindane (1 delta, 2 delta, 3 beta, 4 delta, 5 delta, 6 beta-hexachlorocyclohexane) was determined in rats and rhesus monkeys. Lindane is in widespread use as a 1% cream or lotion scabicide formulation and as a 1% miticide shampoo for body lice control in humans. Results obtained following our in vivo dermal absorption procedure demonstrated that 18 +/- 4.1%, 34 +/- 5.2%, and 54 +/- 26.3% of the applied dose was absorbed following topical applications at a rate of 1.5 micrograms/cm2 (6.2 micrograms/100 microliters of acetone) of the 14C-labeled pesticide to 4.2-cm2 regions of the forearm (n = 8), forehead (n = 7), and palm (n = 4) of rhesus monkeys, respectively. Dose sites were washed with soapy water 24 h posttreatment. Comparative studies in rats (n = 5) dosed middorsally demonstrated 31 +/- 9.5% absorption. Statistical analysis of the 14C excretion kinetics demonstrated slower clearance of lindane from rats than monkey forearm, forehead, or palm. Intramuscular (im) injections of 14C-lindane gave 52 +/- 7.1% recovery in monkey (n = 8) and 64 +/- 5.9% in rats (n = 5), suggesting body storage of this lipophilic chemical

  8. Lindane Suppresses the Lipid-bilayer Permeability in Main Transition Region

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Jørgensen, Kent; Mouritsen, Ole G.

    1996-01-01

    The effects of a small molecule, the insecticide lindane, on unilamellar DMPC bilayers in the phase transition region, have been studied by means of differential scanning calorimetry and fluorescence spectroscopy. The calorimetric data show that increasing concentrations of lindane broaden the tr...

  9. Lindane contaminated soil bio stimulation with vegetable organic nitrogenated extracts: effects on soil biochemistry

    International Nuclear Information System (INIS)

    Garcia-Martinez, A. M.; Tejada, M.; Diaz, A. I.; Rodriguez-Morgado, B.; Bautista, J.; Parrado, J.

    2009-01-01

    1,2,3,4,5,6-Hexachlorocyclohexane (HCH) was one of the most extensively used organo chloride insecticides. Technical mixture of HCH consists of eight steric isomers but only the y-isomer, known as lindane, is insecticides and it is commercial. Despite the fact that most countries have prohibited the production and use of the toxic lindane (Voldner, et al, 1995), many contaminated soils remain because of the long persistence of lindane (MacRae et al, 1948) and, as a result, it cause environmental disease. (Author)

  10. Identification of insecticide residues with a conducting-polymer electronic nose

    Science.gov (United States)

    A.D. Wilson

    2014-01-01

    The identification of insecticide residues on crop foliage is needed to make periodic pest management decisions. Electronic-nose (e-nose) methods were developed and tested as a means of acquiring rapid identifications of insecticide residue types at relatively low cost by detection of headspace volatiles released from inert surfaces in vitro. Detection methods were...

  11. Residues of Lindane and Chlorpyrifos in firewood and woodsmoke

    Science.gov (United States)

    P.B. Bush; J.W. Taylor; Charles K. McMahon; D.G. Neary

    1987-01-01

    Abstract.Pine bark beetle insecticide treatment plots were established on the Ocala National Forest, in central Florida. Each plot consisted of five sand pine, pinus clausa (Chapm. Ex. Engelm) Vassey ex. Sarg., trees treated with either 0.5% lindane (benzene hexachloride) or 2% chlorpyrifos (O,O-diethyl O-(3,5,6-trichloro-2-pgridyl) phosphorothioate...

  12. Uptake and movement of 14C-lindane in coffee plants

    International Nuclear Information System (INIS)

    Ruegg, E.F.; Lord, K.A.; Mesquita, T.B.

    1977-01-01

    Several types of experiments were performed to investigate the uptake and distribution of lindane in coffee plants using 14 C-labelled insecticide. The investigations showed that the insecticide taken from nutrient solution is concentrated in the roots and then moves to other parts of the plant. Experiments using macerated plant tissue showed that concentration of lindane in the roots occurs probably by a passive physical process. In another series of tests, leaf tretments of coffee plants grown in pots or in solution indicated that in a few hours about 90% of lindane may be lost from treated leaf as vapor. Some lindane, however, has been detected in other parts of the plant indicating leaf transllocation or migration of the insecticide through the air. The latter hypothesis has been proved by closed and open system comparative experiments using gas chromatographic techniques. This does not exclude a slower and possibly smaller translocation within the plant, suggested by the experiments using radioactivity,. (author) [pt

  13. Identification and cloning of two insecticidal protein genes from ...

    African Journals Online (AJOL)

    Bacillus thuringiensis (Bt) is the most widely applied type of microbial pesticide due to its high specificity and environmental safety. The activity of Bt is largely attributed to the insecticidal crystal protein encoded by the cry genes. Different insecticidal crystal proteins of Bt have different bioactivity against distinct agricultural ...

  14. Elimination, distribution and metabolism of lindane (gamma Hexachloro cyclohexane) in male goat

    International Nuclear Information System (INIS)

    Elozargani, Gaafar A.; Elfahal, Rihab Ali

    2001-01-01

    Elimination, distribution in tissues and metabolic degradation of lindane insecticide (gamma hexachlorocyclohexane) were studied in male Nubian goat (Cappara aegagrus Hircus). The goat was dosed orally with 262.76 mg 14 C-lindane equivalent to one fourth of its lethal dose (LD50). Urine and faeces were collected for two weeks following the application date and the radioactivity was measured in order to determine the rate of the insecticide elimination from the animal body. Lindane elimination was found to be initially fairly rapid, principally via urine (19.6% of the applied dose was detected in urine and 3.1% in faeces). However, it was observed that total recovery of the insecticide via faeces and urine is low. After two weeks, the animal was sacrificed and samples of the brain, liver, kidneys, heart, lungs, legs muscles, and abdominal fat were collected. The percentage of the total radioactivity detected in all tissue sample was 0.29% of the applied radioactive Lindane. The fat contained 48.25% of this percentage, 29.78% was detected in the liver, 9.05% in the lungs and 8.72% in the heart. Smaller percentages were detected in the other tissues. Urine and faeces extracted, analysed and their contents of lindane metabolites were Identified using autoradiography. It was found that 23% of the labeled lindane detected in urine was extracted unchanged. A nonpolar compound possibly a trichlorophenol represented 26% of the radioactivity detected in urine, while 51% was represented in highly polar compound and conjugates

  15. [Cardiotoxicity of lindane, a gamma isomer of hexachlorocyclohexane].

    Science.gov (United States)

    Sauviat, Martin-Pierre; Pages, Nicole

    2002-01-01

    The goal of the present review is to collect information concerning membrane effects induced by lindane intoxication, a y isomer of hexachiorocyclohexane (gamma-HCH) that has been largely used as an insecticide and disinfectant in agriculture and entered also in the composition of some lotions, creams and shampoos used against parasites (lice and scabies). Absorbed through respiratory, digestive or transcutaneous pathways, lindane accumulates within lipid rich tissues. Lindane accumulation depends on the duration of the exposure and affects tissues in the following order: adipose tissues > brain > kidney > muscle > lungs > heart > liver > blood. Whatever the mode of lindane absorption, it accumulates in blood and is distributed throughout the body. It may affect human health by exerting systemic, immunologic, teratogenic, and/or cancerogenic effects. The symptoms of lindane intoxication are different according to the mode of intoxication, acute or chronic. The absorption of high doses of gamma-HCH is particularly toxic for the central nervous system and for the female and male reproduction apparatus in mammals where lindane is considered as an endocrine disruptor. Lindane is highly lipophilic and incorporates into biological membranes according to the following sequence: mitochondria > sarcoplasmic reticulum > myelin > brain microsomes > erythrocytes. Lindane exerts a stimulating action on synaptic transmission and inhibits the chloride current activated by gamma-amino butyric acid (GABA) of many muscular and nervous preparations by interacting with the receptors GABA-chloride channel complex. It seems to affect calcium homeostasis of many tissues. The similarity between lindane and inositol (1, 4, 5) phosphate (IP3) suggested that lindane releases Ca2+ from IP3-sensitive intracellular stores in macrophages and myometrial cells. Ca2+ release from reticulum endoplasmic, mitochondria and other Ca2+ stores has been reported in cat kidney cells. Lindane altered

  16. Effect of commercial processing procedures on 14C-LINDANE residues in corn oil

    International Nuclear Information System (INIS)

    Soliman, S.M.

    2006-01-01

    At blooming, maize plants were sprayed twice, 23 days apart, at a dose of 22 mg equivalent to 5 μCi/ plant. At post harvest, maize seeds had a radioactivity corresponding to 0.36% of the applied dose. The insecticide residues in crude oil, cake and methanolic extract were amounted to 8 % and 60 % 5 % , respectively, of original residues inside the seeds.The 14 C-activity in the crude oil could be reduced by commercial processes locally used for refining. The refined oil had a residue level of about 0.7 ppm mainly in the form of unchanged lindane in addition to a number of chloro phenols as main metabolites. Refining of corn oil fortified with 14 C-lindane led to a high reduction of 14 C-lindane (88%). The refined oil contained a residue consisting lindane and its chloro phenols

  17. Lindane residues in fish inhabiting Nigerian rivers

    International Nuclear Information System (INIS)

    Okereke, G.U.; Dje, Y.

    1997-01-01

    Analysis for residues of lindane in fish collected from various rivers close to rice agroecosystems showed that the concentrations of lindane ranged from none detectable to 3.4 mg kg -1 . Fish from rivers where strict regulations prohibits its use had no detectable lindane residues while appreciable amounts of lindane were found in fish were such restriction was not enforced with the variation attributed to the extent of use of lindane in the area of contamination. The investigation confirms that the use of lindane in rice production in Nigeria can cause the contamination of fish in nearby rivers. (author). 16 refs, 2 tab

  18. Effects of pH on the toxicity and uptake of [14C]lindane in the midge, Chironomus riparius

    International Nuclear Information System (INIS)

    Fisher, S.W.

    1985-01-01

    The toxicity of the insecticide, lindane, was measured in the midge, Chironomus riparius, at pH 4, 6, and 8 with the finding that lindane is significantly more toxic at pH 6 than at pH 4 and 8. The higher toxicity of lindane at pH 6 is a product of two factors. First the penetration of the compound into the midge is lower at pH 4 than at pH 6 and 8. Second, a greater percentage of total radioactivity is contributed by parent compound at pH 6

  19. Detection of 14C - lindane metabolites in coffee plants by thin-layer chromatography and autoradiography

    International Nuclear Information System (INIS)

    Mesquita, T.B.; Hirata, R.; Ruegg, E.F.

    1986-01-01

    Immersion of seedling from coffee plants in aquous solution of 14 C - lindane was done for 60 days. The insecticide was taken up the roots and translocated to the stems and leaves. However, chromatographic assays indicated that several metabolites were detected only in the roots. Two of them probably are chlorobenzenes and were visualized in chromatograms of extracts from non-acidic fractions. Seven other radioactive spots which are suspected to be chlorophenols, were found in the acidic fractions. (Author) [pt

  20. Adaptation of microalgae to lindane: a new approach for bioremediation.

    Science.gov (United States)

    González, Raquel; García-Balboa, Camino; Rouco, Mónica; Lopez-Rodas, Victoria; Costas, Eduardo

    2012-03-01

    Lindane is especially worrisome because its persistence in aquatic ecosystems, tendency to bioaccumulation and toxicity. We studied the adaptation of freshwater cyanobacteria and microalgae to resist lindane using an experimental model to distinguish if lindane-resistant cells had their origin in random spontaneous pre-selective mutations (which occur prior to the lindane exposure), or if lindane-resistant cells arose by a mechanism of physiological acclimation during the exposure to the selective agent. Although further research is needed to determine the different mechanisms contributing to the bio-elimination of lindane, this study, however, provides an approach to the bioremediation abilities of the lindane-resistant cells. Wild type strains of the experimental organisms were exposed to increasing lindane levels to estimate lethal concentrations. Growth of wild-type cells was completely inhibited at 5mg/L concentration of lindane. However, after further incubation in lindane for several weeks, occasionally the growth of rare lindane-resistant cells was found. A fluctuation analysis demonstrated that lindane-resistant cells arise only by rare spontaneous mutations that occur randomly prior to exposure to lindane (lindane-resistance did not occur as a result of physiological mechanisms). The rate of mutation from lindane sensitivity to resistance was between 1.48 × 10(-5) and 2.35 × 10(-7) mutations per cell per generation. Lindane-resistant mutants exhibited a diminished fitness in the absence of lindane, but only these variants were able to grow at lindane concentrations higher than 5mg/L (until concentrations as high as 40 mg/L). Lindane-resistant mutants may be maintained in uncontaminated waters as the result of a balance between new resistant mutants arising from spontaneous mutation and resistant cells eliminated by natural selection waters via clone selection. The lindane-resistant cells were also used to test the potential of microalgae to remove

  1. Persistence and distribution of [14C]-lindane residues in coffee plants

    International Nuclear Information System (INIS)

    Flores-Rueegg, E.; Mesquita, T.B.

    1976-01-01

    Studies on weathering, volatilization, absorption, translocation and accumulation of [ 14 C]-lindane (γ-1,2,3,4,5,6-hexachlorocyclohexane) in coffee (Coffeea arabica L. var. Bourbon) plants are reported. Ten days after topical application to the leaf surface the insecticide can be absorbed and translocated to different parts of the plant. It accumulates mainly in the roots and appears in other leaves. In these experiments, when plants are cultivated in nutrient solution, release of radiocarbon through roots could be detected, indicating exchange of labelled material between plant and surrounding media. When the insecticide is supplied to coffee plants through the roots immersed in nutrient solution containing [ 14 C]-lindane, the labelled material is absorbed and, after 24 hours, radioactive material can be detected in young leaves of the upper parts of the plant. Loss of [ 14 C]-lindane by volatilization, evaporation and co-distillation with water is apparently continuous and represents a significant proportion of that applied. (author)

  2. A study of the stability of coumaphos, 14C-labelled lindane and 14C-labelled chlorpyrifos in model cattle dip

    International Nuclear Information System (INIS)

    Malek, M.A.; Rahman, M.M.; Amin, M.R.; Rahman, M.S.; Khatoon, J.

    1997-01-01

    The study was undertaken to evaluate the stability of coumaphos, 14 C-labelled lindane and chlorpyrifos insecticides/acaricides in a simulated cattle dipping vat. During the period of the study the pH of the suspension in vat increased due to addition of soil from the vacinity of cattle barn as well as due to standing in cement-concrete of the vat. The residual amounts of lindane and chiorpyrifos were estimated by counting the corresponding radioactivity in the suspension. Lindane dissipated rapidly and its half-life during the first phase was 4 d only. After standing for 3 weeks lindane residues were equivalent to 3.5% of the original amount in the suspension and 9.6% in the supernatent. Similarly, 97% of the original amount of lindane bad dissipated in the soil sediment at the end of 3 weeks, indicating that dissipation of lindane was primarily due to volatilization. Chlorpyrifos was more stable under the experimental conditions and its half life was calculated to be 22 d during the first phase of dissipation. After 3 weeks the concentration of chlorpyriphos in the suspension remained almost unchanged. However, in the supernatant its concentration increased to 115% of the initial amount. The concentration of soil-bound residues of chlopyrofos remained less than 5% of the total amount applied through out the period of study

  3. Bioconcentration of 14 C-Carbofuran and 14 C- Lindane in fresh water Tilapia Nilitica and the bioavailability of their residues to rats

    International Nuclear Information System (INIS)

    Aly, M.A.S.; Afifi, L.M.

    1997-01-01

    Tilapia Nilotica were exposed to 14 C- carbofuran (125 MUg/1) and 14 C - lindane (80 MUg/1) for 96 h. Uptake period followed by 8 days depuration period. The bioconcentration factor (BCF) for carbofuran reached 32.4 at 12 h and 82 for lindane at 48 h. The amount of 14 C-activity found in fish treated with 14 C - carbofuran after the uptake period showed the following descending order: viscera > remaining parts > gills > muscles. In case of 14 C - lindane treated fish the recovered amount followed the order; remaining parts> viscera > gills muscles. During the depuration period, carbofuran residues taken up by fish were eliminated in 2 phases, an initial rapid phase followed by a slower gradual one. However, the rate of elimination in case of lindane was much slower especially during the first 2 days. At the end of the depuration period (8 days), the muscles (edible portion) contained 10% and 58% of 14 C -activity in case of carbofuran and lindane treated groups, respectively. Both insecticides proved to be bioavailable when rats were fed treated fish. Of the administered dose, 44.1% and 53.0% were excreted in urine and feces case of 14 C-carbofuran while in case of 14 C - lindane it was 30.9% and 41.7% for urine and feces, respectively. 2 figs., 2 tabs

  4. Exposure levels, environmental fate modelling and human health risk assessment of lindane in Ghana

    International Nuclear Information System (INIS)

    Adu-Kumi, S.

    2011-01-01

    This thesis discusses an innovative approach of combining chemical trace analysis including the use of 13 C-labelled isotopes as internal and recovery standards) with multi-media modelling for assessing health risks of Lindane which is a persistent organic pollutant (POP) and a commercial formulated insecticide also known as Gamma-hexachlorocyclohexane (γ-HCH). Samples studied were background air, human breast milk, and edible fish (tilapia and catfish). The investigations focused on the exposure of the general population. For the first time levels and seasonal variation of Lindane, α-HCH and β-HCH in background air of Lake Bosumtwi, Kwabenya and East Legon in Ghana were studied with polyurethane foam based passive air samplers. Lindane (average concentration 53 pg m -3 ) was measured in all samples with (i) gas chromatography-mass spectrometer (GC-MS) and (ii) gas chromatography-mass spectrometer operated in electron ionization mode (GC-EI-MS). Agricultural application and revolatilisation from soils were main primary and secondary sources of HCH releases. Levels and variation of Lindane, α-HCH and β-HCH in pooled and individual human breast milk samples collected from lactating mothers countrywide were determined using a high-resolution gas chromatography interfaced with a high-resolution gas chromatography interfaced with a high-resolution mass spectrometer (HRGC-HRMS). This constitutes the first comprehensive nationwide human breast milk study of assessing risks of HCHs for the general population of Ghana. Mothers were selected from three major cities (Accra, Kumasi and Tamale) and three rural communities (Ada, Jachie/Pramso and Tolon) representing the Southern, Middle and Northern sectors respectively. The results of the study showed that the general population of Ghana is widely exposed to HCHs although the current levels are generally low; and also suggest that the usage pattern and exposure levels of Lindane vary among the various regions in Ghana.

  5. The effect of water content on the persistence of 14C- lindane in Brazilian soils

    International Nuclear Information System (INIS)

    Hirata, R.; Mesquita, T.B.; Ruegg, E.F.

    1985-01-01

    The effect to the water content on the behaviour of 14 C-lindane was determined under laboratory conditions in two soil samples from the state of Parana, differing in organic matter and clay content. In Brunizem soil, richer in organic matter, the rate of degradation of 14 C-lindane, as measured by 14 CO 2 evolution, was twice under 3/3 field capacity and flooded condition as compared with 2/3 field capacity. The percentage of 14 CO 2 envolved from the Dark Red Latosol soil practically the same for the three levels of moisture content and about equal to the Brunizem soil at 2/3 field capacity. Although after 240 days of incubation with 14 C-lindane about 5% of the applied activity could be extracted from both soils, between 20 to 36% of the parent radiocarbon was yet bound to the soils. The degradation of 14 C-lindage into 14 CO 2 , the volatization of 14 C-lindage, and the radiocarbon probably lost as volatile metabolites were the main routes of dissipation of the insecticide from both soils. (Author) [pt

  6. The sea urchin Paracentrotus lividus immunological response to chemical pollution exposure: The case of lindane.

    Science.gov (United States)

    Stabili, Loredana; Pagliara, Patrizia

    2015-09-01

    In the marine environment organochlorine insecticides can be broadly detected in water, sediments, and biota. These pollutants may have major ecological consequences since they may affect marine organisms and endanger organismal growth, reproduction or survival. In this study we investigated the modification of some sea urchin immunological parameters in response to subchronic lindane (γ-HCH) exposure. Adult specimens of the sea urchin Paracentrotus lividus were exposed to two different concentrations (0.1 and 0.5 mg L(-1)) of lindane. After 24 and 48h of treatment, we examined the lindane influence on coelomocytes vitality and enumeration as well on some humoral parameters. Our results showed that the presence of the pesticide affected both cellular and humoral components of the immune system. In particular, P. lividus coelomocytes vitality did not change but a decrease of the total cell number and an increase of the red cells was recorded. Haemolytic and lysozyme-like activities as well as antibacterial activity on Vibrio alginolyticus of treated animals decreased. Sea urchin immunological competence modifications might represent a tool for monitoring disease susceptibility thus providing biological criteria for the implementation of water quality standards to protect marine organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    International Nuclear Information System (INIS)

    Rama Krishna, K.; Philip, Ligy

    2008-01-01

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K f values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils

  8. Effects of lindane on a maize ecosystem at TPRI, Arusha, Tanzania

    International Nuclear Information System (INIS)

    Minja, E.M.; Makusi, R.; Tesha, F.

    1997-01-01

    The effects of the organochlorine insecticide, lindane, on target and non-target organisms was studied in field plots of maize at Arusha, Tanzania for 4 growing seasons. A single application of 1 kg.ha -1 caused leaf scorch to the crop but two applications of 0.5 kg.ha -1 at an interval of 2 weeks were tolerated. The insecticide reduced damage by the stem borers Busseola fusca and Sesamia calamistis in all seasons and maize yields were higher on the treated plots although the differences were not always significant (P>0.05). Collembola and sometimes ant and spider numbers were lower in treated plots early in the season but the differences did not persist. Differences in rates of decomposition of buried leaf litter were not significant. (author). 7 refs, 4 figs, 6 tabs

  9. Dehalogenation of lindane by a variety of porphyrins and corrins.

    OpenAIRE

    Marks, T S; Allpress, J D; Maule, A

    1989-01-01

    The dehalogenation of lindane by a range of hemoproteins, porphyrins, and corrins has been tested under reducing conditions in the presence of dithiothreitol. In addition, a series of porphyrin-metal ion complexes have been prepared and have also been screened for the capacity to dehalogenate lindane. Hemoglobin, hemin, hematin, and chlorophyll alpha all catalyzed the dehalogenation of lindane, as did all of the corrins tested. The porphyrins which did not contain metal centers--coproporphyri...

  10. Identification of insecticidal principals from cucumber seed oil against the yellow fever mosquito, Aedes aegypti

    Science.gov (United States)

    The yellow fever mosquito, Aedes aegypti, is one of the most medically important mosquito species due to its ability to spread viruses of yellow fever, dengue fever and Zika in humans. In this study, the insecticidal activity of seventeen plant essential oils were evaluated to toxicity by topical a...

  11. Anaerobic Degradation of Lindane and Other HCH Isomers

    NARCIS (Netherlands)

    Mehboob, F.; Langenhoff, A.A.M.; Schraa, G.; Stams, A.J.M.

    2013-01-01

    Lindane (¿-HCH) is a pesticide that has mainly been used in agriculture. Lindane and the other HCH isomers are highly chlorinated hydrocarbons. The presence of a large number of electron withdrawing chlorine groups makes some of the HCH isomers rather recalcitrant in oxic environments. Especially

  12. Persistence of lindane in rice and maize ecosystems in Nigeria

    International Nuclear Information System (INIS)

    Okereke, G.U.; Onochie, C.C.; Dje, Y.

    1997-01-01

    A three year field study was undertaken to examine the fate of residues of lindane in soil and crops after repeated seasonal applications of lindane to soil in which maize and rice crops were grown. In the 1993 rice study, the lindane residues in the treated soil were 0.6 mgkg -1 (1day) and 0.04 mgkg -1 (2 months) after application respectively. In the soil from the maize plots, lindane residues were 0.19 mg kg -1 (1 day) and 0.16 mg kg -1 (1 month) after application and not detectable after 6 months. In the 1994 maize study, the lindane residues in the soil were 0.12 (1 day), 0.10 (1 month) and 0.033 mg kg -1 (2 months) after application respectively while in the crop they were 0.19 (1 day), 0.105 (2 weeks) and 0.05 (4 weeks) mg kg -1 , respectively. In general, lindane residues were not detected in the soil one year after application indicating that there was no accumulation of lindane in the soil during the period 1992-1994 and therefore unlikely to be any long term effects on soil fauna. Lindane residues in rice and maize crops continued to decrease during the period up to harvest. (author). 6 refs, 2 tabs

  13. Identification of Insecticidal Constituents from the Essential Oil of Valeriana jatamansi Jones against Liposcelis bostrychophila Badonnel

    Directory of Open Access Journals (Sweden)

    Xin Chao Liu

    2013-01-01

    Full Text Available The aim of this research was to determine chemical composition and insecticidal activities of the essential oil of Valeriana jatamansi Jones roots against booklice, Liposcelis bostrychophila Badonnel, and to isolate insecticidal constituents from the oil. Essential oil of V. jatamansi was obtained by hydrodistillation and analyzed by GC-MS. A total of 27 components in the essential oil were identified. The major compounds were patchoulol (24.3%, α-bulnesene (13.8%, isovaleric acid (12.9%, α-guaiene (8.7%, and 3-methylvaleric acid (8.4%. Based on bioactivity-guided fractionation, isovaleric acid, 3-methylvaleric acid, and patchoulol were isolated and identified as the active constituents. The essential oil exhibited contact toxicity against L. bostrychophila with an LC50 value of 236.4 μg/cm2. Patchoulol (LC50 = 61.35 μg/cm2 exhibited stronger acute toxicity than 3-methylvaleric acid (LC50 = 210.69 μg/cm2 against the booklice. The essential oil also possessed fumigant toxicity against L. bostrychophila with an LC50 value of 6.0 mg/L, while 3-methylvaleric acid and isovaleric acid had LC50 values of 5.53 mg/L and 5.67 mg/L against the booklice, respectively. The results indicated that the essential oil and its constituent compounds have potential to develop into natural insecticides or fumigants for control of insects in stored grains.

  14. Fate and effects of lindane in a chickpea field

    International Nuclear Information System (INIS)

    Meguenni, H.; Bennaceur, M.; Sennaqui, Z.; Ghezal, F.

    1997-01-01

    The effect of lindane on non-target organisms and the concentrations of its residues in soil and the chickpea crop were investigated over three years. Lindane had adverse effects on some elements of the ecosystem. Ants (Formicidae), spiders (Aranae) and beetles (Carabidae), to a lesser extent, were more affected than Collembola. Organic matter, buried in non-degradable open-mesh bags in the plots, was slightly more degraded in the control plots than in the sprayed plots suggesting that the soil microflora and microfauna had been inhibited by the lindane. However, it was shown by chemical analyses that lindane was degraded in both soils and plants to one tenth of the original concentrations after application in 2 months and 1 month, respectively. Some concentrations (0.2-1.2 mg kg -1 ) of lindane were found in the harvested grain of the chickpea plants. (author). 1 ref., 6 tabs

  15. Metabolism of 14C-lindane in flooded alluvial soil

    International Nuclear Information System (INIS)

    Siddaramappa, R.; Sethunathan, N.

    1975-01-01

    The effect of rice straw on the persistence of uniformly ring labelled 14 C-lindane in an alluvial soil was investigated under flooded conditions. The residues in the soil were extracted with chloroform-diethyl ether and the radioactivity was measured by liquid scintillation. The radioactivity in the solvent phase decreased more rapidly in amended soil than in unamended soil. Radioautograph of thin layer chromatograms of solvent phase indicated that lindane was readily converted to a breakdown product in both amended and unamended soils. This breakdown product was also formed in both autoclaved and nonautoclaved soils. Rice straw amendment enhanced further decomposition of lindane and its breakdown product. Heat treatment retarded further decomposition of lindane and its breakdown product whereas they were rapidly decomposed in nonautoclaved soil. These studies indicated that in flooded alluvial soil tested, lindane was initially decomposed by a chemical reaction and soil microorganisms appeared to attack the products of the chemical reaction. (author)

  16. Identification of two acetylcholinesterases in Pardosa pseudoannulata and the sensitivity to insecticides.

    Science.gov (United States)

    Zhang, Yixi; Shao, Ying; Jiang, Feng; Li, Jian; Liu, Zewen

    2014-03-01

    Pardosa pseudoannulata is an important predatory enemy against insect pests, such as rice planthoppers and leafhoppers. In order to understand the insecticide selectivity between P. pseudoannulata and insect pests, two acetylcholinesterase genes, Pp-ace1 and Pp-ace2, were cloned from this natural enemy. The putative proteins encoded by Pp-ace1 and Pp-ace2 showed high similarities to insect AChE1 (63% to Liposcelis entomophila AChE1) and AChE2 (36% to Culex quinquefasciatus AChE2) with specific functional motifs, which indicated that two genes might encode AChE1 and AChE2 proteins respectively. The recombinant proteins by expressing Pp-ace1 and Pp-ace2 genes in insect sf9 cells showed high AChE activities. The kinetic parameters, Vmax and Km, of two recombinant AChE proteins were significantly different. The sensitivities to six insecticides were determined in two recombinant AChEs. Pp-AChE1 was more sensitive to all tested insecticides than Pp-AChE2, such as fenobucarb (54 times in Ki ratios), isoprocarb (31 times), carbaryl (13 times) and omethoate (6 times). These results indicated that Pp-AChE1 might be the major synaptic enzyme in the spider. By sequence comparison of P. pseudoannulata and insect AChEs, the key amino acid differences at or close to the functional sites were found. The locations of some key amino acid differences were consistent with the point mutation sites in insect AChEs that were associated with insecticide resistance, such as Phe331 in Pp-AChE2 corresponding to Ser331Phe mutation in Myzus persicae and Aphis gossypii AChE2, which might play important roles in insecticide selectivity between P. pseudoannulata and insect pests. Of course, the direct evidences are needed through further studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Protective role of vitamin C against lindane toxicity on the histo ...

    African Journals Online (AJOL)

    We studied the protective effects of vitamin C against the toxic effects of lindane on the epididymis and vas deferens of male mice. There were four treatments: controls (untreated), lindane (20 mg/kg), lindane plus vitamin C (10 mg/kg) and vitamin C only. Lindane induced histopathological alterations in the epididymis and ...

  18. Identification of Insecticidal Constituents of the Essential Oil of Acorus calamus Rhizomes against Liposcelis bostrychophila Badonnel

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2013-05-01

    Full Text Available The aim of this research was to determine the chemical composition of the essential oil of Acorus calamus rhizomes, its insecticidal activity against the booklouse, (Liposcelis bostrychophila and to isolate any insecticidal constituents from the essential oil. The essential oil of A. calamus rhizomes was obtained by hydrodistillation and analyzed by GC-FID and GC-MS. A total of 32 components of the essential oil of A. calamus rhizomes was identified and the principal compounds in the essential oil were determined to be α-asarone (50.09%, (E-methylisoeugenol (14.01%, and methyleugenol (8.59%, followed by β-asarone (3.51%, α-cedrene (3.09% and camphor (2.42%. Based on bioactivity-guided fractionation, the three active constituents were isolated from the essential oil and identified as methyleugenol, (E-methylisoeugenol and α-asarone. The essential oil exhibited contact toxicity against L. bostrychophila with an LD50 value of 100.21 µg/cm2 while three constituent compounds, α-asarone, methyleugenol, and (E-methylisoeugenol had LD50 values of 125.73 µg/cm2, 103.22 µg/cm2 and 55.32 µg/cm2, respectively. Methyleugenol and (E-methylisoeugenol possessed fumigant toxicity against L. bostrychophila adults with LC50 values of 92.21 μg/L air and 143.43 μg/L air, respectively, while the crude essential oil showed an LC50 value of 392.13 μg/L air. The results indicate that the essential oil of A. calamus rhizomes and its constituent compounds have potential for development into natural fumigants/insecticides for control of the booklice.

  19. Identification of Repellent and Insecticidal Constituents from Artemisia mongolica Essential Oil against Lasioderma serricorne

    OpenAIRE

    You, Chunxue; Guo, Shanshan; Zhang, Wenjuan; Yang, Kai; Geng, Zhufeng; Du, Shushan; Wang, Chengfang; Deng, Zhiwei

    2015-01-01

    The aims of this research were to determine the chemical composition and insecticidal and repellent activities of the Artemisia mongolica essential oil against Lasioderma serricorne and to isolate active constituents from the essential oil. The essential oil of A. mongolica was obtained by hydrodistillation and 36 components were identified with GC-MS. Eucalyptol (39.88%), (S)-cis-verbenol (14.93%), 4-terpineol (7.20%), (−)-camphor (6.02%), and α-terpineol (4.20%) were found to be major compo...

  20. Identification of Repellent and Insecticidal Constituents from Artemisia mongolica Essential Oil against Lasioderma serricorne

    Directory of Open Access Journals (Sweden)

    Chunxue You

    2015-01-01

    Full Text Available The aims of this research were to determine the chemical composition and insecticidal and repellent activities of the Artemisia mongolica essential oil against Lasioderma serricorne and to isolate active constituents from the essential oil. The essential oil of A. mongolica was obtained by hydrodistillation and 36 components were identified with GC-MS. Eucalyptol (39.88%, (S-cis-verbenol (14.93%, 4-terpineol (7.20%, (−-camphor (6.02%, and α-terpineol (4.20% were found to be major components. With a further isolation process, five constituents obtained from the essential oil were identified as eucalyptol, verbenol, 4-terpineol, camphor, and α-terpineol. In the progress of assay, it showed that L. serricorne adults had different sensitivities to the crude essential oil and isolated constituents. 4-Terpineol exhibited strongest contact activity against L. serricorne, showing the LD50 value of 8.62 μg/adult. Moreover, camphor and α-terpineol showed stronger fumigant activity (LC50=2.91 and 3.27 mg/L air, resp. against L. serricorne than crude essential oil and other constituents. In addition, the essential oil, eucalyptol, verbenol, and α-terpineol showed comparable repellency against L. serricorne adults. The results indicate that the essential oil and isolated compounds have potential to provide more efficient and safer natural insecticides or repellents for control of insects in food and Chinese medicinal materials preservation.

  1. Isolation and identification of some Bacillus thuringiensis strains with insecticidal activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Majdoub, Nihed

    2010-01-01

    The aims of the present work is to study the effect of toxins (delta-endotoxins), extracted from different strains of Bacillus thuringiensis on Ceratitis capitata, a devastating of citrus and fruit trees. Strains of B. thuringiensis were isolated from the mud of Sebket Sejoumi. Among 70 isolates tested, 15 showed a significant identicalness activity in which 5 isolates led to mortality rates ≥ 90 pour cent . These mortality rates are caused by endotoxins of B. thuringiensis. Analysis of proteins profiles of different isolates of B. thuringiensis revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by B. thuringiensis strains for large scale application.

  2. Behaviour of lindane (gamma HCH) in soil under laboratory conditions

    International Nuclear Information System (INIS)

    Bennaceur, M.; Ghezal, F.; Coste, C.M.

    1997-01-01

    The degradation of lindane in solid after multiple application was studied. The rate of disappearance of lindane increased at long periods after application. The dissipation of lindane was more rapid in soil collected from treated a plot than an untreated plot, owing to the degradation by micro-organisms suggesting that microorganisms had become adapted to degrade it. The rates of mineralization, mobility and degradation of lindane were also investigated under laboratory conditions using 14 C-labelled lindane. The results showed that most of the applied dose remained on the upper 6cm in the soil columns. Over a periods of three months, extractable residues, bound residues and evolution of 14 CO 2 were recorded. After 12 weeks, the soil contained about 50% of the initially applied 14 C and 20% was bound to the soil. The evolution of 14 CO 2 increased with time, amounting to 3.1% in non-sterile soil and less than 1% in sterile soil. The hexane 14 C-extractable residues were shown, by TLC, to contain lindane as the main product. (author). 5 refs, 4 tabs

  3. Sorption and desorption of insecticides in Brazilian soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Lord, K.A.; Ruegg, E.F.

    1980-01-01

    The sorption from aqueous solution of ten Brazilian soil types of four organochlorine, two organophosphorus and one carbamate insecticide was determined in the laboratory using gas chromatographic and radiometric techniques. Measurements showed that soils richest in organic matter, sorbed all substances except aldrin more strongly than the other soils. DDT was the most and aldrin the least sorbed organochlorine pesticide, being dieldrin sorbed two to four times more strongly than aldrin. Sorption of lindane varied in different soils. The organophosphate insecticides malathion and parathion were strongly sorbed in the soils richest in organic matter and weakly sorbed in the poorest soils heing moderately sorbed by the other soils. Sorption of carbaryl by all soils is small. Lindane was desorbed from the soil richest in organic matter and the extent of desorption was dependent on the sorption time. (Author) [pt

  4. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade

    Science.gov (United States)

    Oginawati, K.; Pratama, M. A.

    2016-03-01

    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin.

  5. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade

    International Nuclear Information System (INIS)

    Oginawati, K; Pratama, M A

    2016-01-01

    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin. (paper)

  6. Degradation of 14C-lindane in soils of planting ginseng

    International Nuclear Information System (INIS)

    Wang Zhengguo; Zhao Jing; Yao Jianren

    1992-01-01

    14 C-Lindane was used to study degradation of Lindane (γ-BHC) in different types of soil of planting ginseng. Results indicated that Lindane was very slowly mineralized after a 228 day's incubation period in closed system. It took about 9 years to completely mineralize Lindane in the chernozem, and 11 years in the brown calcareous at 20 ppm in the soils. In addition, the rate of Lindane mineralized depended on population and number of microorganism. In this test the fungi played more important role than the bacteria in the Lindane mineralization. 14 C-Lindane residues extracted from the soils were 77.43%-80.54%, and Lindane residues associated with the soils were 13.11%-20.77%

  7. The release of lindane from contaminated building materials.

    Science.gov (United States)

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F Handan; Brown, Carl E

    2014-10-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the surrounding air. Vapor concentrations depended upon initial surface concentration, temperature, and type of building material. A time-weighted average (TWA) concentration in the air was used to quantify the health risk associated with the inhalation of lindane vapors. Transformation products of lindane, namely α-hexachlorocyclohexane and pentachlorocyclohexene, were detected in the vapour phase at both temperatures and for all of the test materials. Their formation was greater on glass and ceramic tiles, compared to other building materials. An empiric Sips isotherm model was employed to approximate experimental results and to estimate the release of lindane and its transformation products. This helped determine the extent of decontamination required to reduce the surface concentrations of lindane to the levels corresponding to vapor concentrations below TWA.

  8. Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP+ reductase.

    Science.gov (United States)

    Bueno, Marta; Fillat, Maria F; Strasser, Reto J; Maldonado-Rodriguez, Ronald; Marina, Nerea; Smienk, Henry; Gómez-Moreno, Carlos; Barja, Francisco

    2004-01-01

    integrity. Cultures of Anabaena sp. treated with moderate amounts of lindane showed a decrease in growth rate followed by a recovery after 72 hours of pesticide treatment. Concentrations of lindane below 5 ppm increased the photosynthetic performance and activity of the cells. Higher amounts of pesticide caused a decrease in these activities which seems to be due to a non-competitive inhibition of PS II. Active PS II units are converted into non-QA reducing, so called heat sink centers. Specific activity and amount of FNR in lindane-treated cells were similar to the values measured in control cultures. Release of FNR from the thylakoid after 48 hours of exposure to 5 ppm of lindane towards the cytoplasm was detected by immunogold labeling and electron microscopy. From these results, we conclude that the photosynthetic performance and activity of the cells are slightly increased in the presence of lindane up to 5 ppm. Moreover, in those conditions, lindane did not produce significant changes in the synthesis, degradation or activity of FNR. The high capability of Anabaena to tolerate lindane makes this cyanobacterium a good candidate for phytoremediation of polluted areas. The results of this study show that cultures of Anabaena PCC 7119 tolerate lindane up to 5 ppm, without significant changes in the photosynthetic vitality index of the cells. However, a slight increase in phycobiliprotein synthesis is observed, which is related to total protein content. This change might be due to degradation of proteins less stable than phycobiliproteins. An identification of the proteins with altered expression pattern in the presence of the pesticide remains the subject of further work and will provide valuable information for the preparation of strains which are highly tolerant to lindane.

  9. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    Energy Technology Data Exchange (ETDEWEB)

    Rama Krishna, K. [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ramakrishnaiitm@gmail.com; Philip, Ligy [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ligy@iitm.ac.in

    2008-12-30

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K{sub f} values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils.

  10. Identification of Repellent and Insecticidal Constituents of the Essential Oil of Artemisia rupestris L. Aerial Parts against Liposcelis bostrychophila Badonnel

    OpenAIRE

    Liu, Xin; Li, Yin; Li, He; Deng, Zhi; Zhou, Ligang; Liu, Zhi; Du, Shu

    2013-01-01

    The aim of this research was to determine the chemical composition and insecticidal and repellent activity of the essential oil of Artemisia rupestris L. aerial parts against the booklice Liposcelis bostrychophila Badonnel and isolation of insecticidal and repellent constituents from the essential oil. The essential oil of A. rupestris was obtained by hydrodistillation and analyzed by GC-MS. A total of 30 components of the essential oil of A. rupestris was identified and the principal compoun...

  11. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana.

    Science.gov (United States)

    Mitchell, Sara N; Stevenson, Bradley J; Müller, Pie; Wilding, Craig S; Egyir-Yawson, Alexander; Field, Stuart G; Hemingway, Janet; Paine, Mark J I; Ranson, Hilary; Donnelly, Martin James

    2012-04-17

    In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.

  12. Transcriptome-based identification and characterization of genes commonly responding to five different insecticides in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Gao, Yue; Kim, Kyungmun; Kwon, Deok Ho; Jeong, In Hong; Clark, J Marshall; Lee, Si Hyeock

    2018-01-01

    When the 3rd instar larvae of the diamondback moth (DBM), Plutella xylostella, were pretreated with sublethal doses (LC 10 ) and then subsequently exposed to lethal doses (LC 50 ) of chlorantraniliprole, cypermethrin, dinotefuran, indoxacarb and spinosad via leaf dipping, their tolerance to insecticides was significantly enhanced. To identify genes that commonly respond to the treatment of different insecticides and are responsible for the tolerance enhancement, transcriptomic profiles of larvae treated with sublethal doses of the five insecticides were compared with that of untreated control. A total of 117,181 transcripts with a mean length of 662bp were generated by de novo assembly, of which 35,329 transcripts were annotated. Among them, 125, 143, 182, 215 and 149 transcripts were determined to be up-regulated whereas 67, 45, 60, 60 and 38 genes were down-regulated following treatments with chlorantraniliprole, cypermethrin, dinotefuran, indoxacarb and spinosad, respectively. Gene ontology (GO) analysis of differentially expressed genes (DEGs) revealed little differences in their GO profiles between treatments with different insecticides except for spinosad. Finally, the DEGs commonly responding to all insecticides were selected for further characterization, and some of their over-transcription levels were confirmed by quantitative PCR. The most notable examples of commonly responding over-transcribed genes were two cytochrome P450 genes (Cyp301a1 and Cyp9e2) and nine cuticular protein genes. In contrast, several genes composing the mitochondrial energy generation system were significantly down-regulated in all treated larvae. Considering the distinct structure and mode of action of the five insecticides tested, the differentially expressed genes identified in this study appear to be involved in general chemical defense at the initial stage of intoxication. Their possible roles in the tolerance/resistance development were discussed. Copyright © 2017 Elsevier

  13. Soil persistence, plant and non-target insect uptake of endosulfan and lindane applied to soya bean and maize in field trials in Zimbabwe

    International Nuclear Information System (INIS)

    Zaranyika, M.F.; Mugari, P.

    1997-01-01

    The persistence of lindane and endosulfan in the soil, uptake by, and distribution in plants, and effects on and absorption by non-target insects, following application of the insecticides for the control of maize pests and soya bean respectively were determined under Zimbabwean weather conditions. No large scale effects on the non-target insects were observed though some small effects on the populations of semiloopers and orthoptera in the endosulfan treated soya bean plot were noted. Concentrations of the insecticides in spiders declined during the trial though those in grasshoppers and crickets appeared to increase. Concentrations of both insecticides in soil fell rapidly during the first 7 weeks after application but, after that, the rates of loss were much slower possibly owing to the drier conditions prevailing during this later period, reducing both physicochemical and microbial loss processes. Initial concentrations of both insecticides in all the vegetative parts of plants examined after spray application declined systematically to low levels during the 10 weeks of observations, probably owing to both metabolism within the plants and to crop volume dilution effects and will have declined to even lower levels by harvest time. Surprisingly, low concentrations of lindane and endosulfan were found in the harvested maize and soya bean seeds. At early stages after application, there were also traces of both insecticides in the vegetative parts of the plants from the untreated, control plots probably arising from uptake of soil residues from the previous year and/or spray drift but these became undetectable at later stages of growth. (author). 31 refs, 7 tabs

  14. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance

    DEFF Research Database (Denmark)

    Walsh, Sinead B.; Dolden, Tracey A.; Moores, Graham D.

    2001-01-01

    Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in confe...... of the AChE protein from Torpedo californica and D. melanogaster....

  15. The release of lindane from contaminated building materials

    OpenAIRE

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F. Handan; Brown, Carl E.

    2014-01-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the s...

  16. Persistence of lindane and endosulfan under field conditions in Zambia

    International Nuclear Information System (INIS)

    Mwangala, F.S.; Mundia, P.M.; Nondo, J.C.; Banda, R.; Mangoye, C.

    1997-01-01

    The persistence of lindane and endosulfan was studied under field conditions in Zambia in 1992 to 1994. Both pesticides dissipated rapidly under field conditions. About 29% and 73% of initial concentration was lost during the first 30 and 60 days after treatment, respectively in 1992. After 180 days, about 11% of the initial concentration was recovered from the soil. In 1993, 40% of initial residues were lost during the first 30 days. At 180 days after spraying, slightly more residues (25% of the initial values) were recovered at this time than in 1992. This indicated a change in the longer term behaviour of lindane in the soil since the calculated half-lives of lindane, covering the shorter term behaviour, were 55-80 days in 1992 and ∼ 17 days in 1993. In 1994, losses of α-Endosulfan and β-Endosulfan were 40% and 37% respectively during the initial 30 days after treatment. A further 25% of α-Endosulfan and 33% of β-Endosulfan were lost during the following 30 days. These data allow estimates of the half-lives of α- and β-Endosulfan (40 and 38 days) under the field conditions pertaining in Zambia at the time of the trials showing that this compound has only moderate persistence and unlikely to cause long term environmental problems. (author). 7 refs, 8 tabs

  17. Phototransformation of the insecticide fipronil: identification of novel photoproducts and evidence for an alternative pathway of photodegradation.

    Science.gov (United States)

    Raveton, Muriel; Aajoud, Asmae; Willison, John C; Aouadi, Heddia; Tissut, Michel; Ravanel, Patrick

    2006-07-01

    Fipronil is a recently discovered insecticide of the phenylpyrazole series. It has a highly selective biochemical mode of action, which has led to its use in a large number of important agronomical, household, and veterinary applications. Previous studies have shown that, during exposure to light, fipronil is converted into a desulfurated derivative (desulfinyl-fipronil), which has slightly reduced insecticidal activity. In this study, the photodegradation of fipronil was studied in solution at low light intensities (sunlight or UV lamp). In addition to desulfinyl-fipronil, a large number of minor photoproducts were observed, including diversely substituted phenylpyrazole derivatives and aniline derivatives that had lost the pyrazole ring. Desulfinylfipronil itself was shown to be relatively stable under both UV light and sunlight, with only limited changes occurring in the substitution of the aromatic ring. Since this compound accumulated to levels corresponding to only 30-55% of the amount of fipronil degraded, it was concluded that one or more alternative pathways of photodegradation must be operating. On the basis of the structurally identified photoproducts, it is proposed that fipronil photodegradation occurs via at least two distinct pathways, one of which involves desulfuration at the 4-position of the pyrazole ring giving the desulfinyl derivative and the other of which involves a different modification of the 4-substituent, leading to cleavage of the pyrazole ring and the formation of aniline derivatives. The latter compounds do not accumulate to high levels and may, therefore, be degraded further. The ecological significance of these results is discussed, particularly with regard to the insecticidal activity of the photoproducts.

  18. Identification of Insecticidal Constituents of the Essential Oil of Curcuma wenyujin Rhizomes Active against Liposcelis bostrychophila Badonnel

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-10-01

    Full Text Available The aim of this research was to determine the chemical composition and insecticidal activity of the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling rhizomes against the booklouse Liposcelis bostrychophila Badonnel and to isolate any insecticidal constituents from the essential oil. The essential oil of C. wenyujin rhizomes was obtained by hydrodistillation and analyzed by GC-MS. A total of 43 components of the essential oil were identified and the principal compounds in the essential oil were 1,8-cineole (15.26%, camphor (10.12%, germacrone (6.86%, β-elemene (6.33%, curzerene (6.70%, and β-elemenone (5.23%. followed by curzerenone (4.52%, curdione (4.45% and linalool (4.43%. Based on bioactivity-guided fractionation, the two main active constituents were isolated from the essential oil and identified as 1,8-cineole and camphor. The essential oil of C. wenyujin rhizomes exhibited contact toxicity against L. bostrychophila with an LD50 value of 208.85 µg/cm2. Camphor (LD50 = 207.26 µg/cm2 exhibited stronger contact toxicity than 1,8-cineole (LD50 = 1048.75 µg/cm2 against booklouse. The essential oil of C. wenyujin (LC50 = 2.76 mg/L air also possessed fumigant toxicity against L. bostrychophila, while the two constituents, camphor and 1,8-cineole had LC50 values of 1.03 mg/L air and 1.13 mg/L air, respectively. The results indicate that the essential oil of C. wenyujin rhizomes and its constituent compounds have potential for development as natural insecticides or fumigants for control of insects in stored grains.

  19. Sustained inhibition of rat myometrial gap junctions and contractions by lindane

    Directory of Open Access Journals (Sweden)

    Grindatti Carmen M

    2003-10-01

    Full Text Available Abstract Background Gap junctions increase in size and abundance coincident with parturition, forming an intercellular communication network that permits the uterus to develop the forceful, coordinated contractions necessary for delivery of the fetus. Lindane, a pesticide used in the human and veterinary treatment of scabies and lice as well as in agricultural applications, inhibits uterine contractions in vitro, inhibits myometrial gap junctions, and has been associated with prolonged gestation length in rats. The aim of the present study was to investigate whether brief exposures to lindane would elicit sustained inhibition of rat uterine contractile activity and myometrial gap junction intercellular communication. Methods To examine effects on uterine contraction, longitudinal uterine strips isolated from late gestation (day 20 rats were exposed to lindane in muscle baths and monitored for changes in spontaneous phasic contractions during and after exposure to lindane. Lucifer yellow dye transfer between myometrial cells in culture was used to monitor gap junction intercellular communication. Results During a 1-h exposure, 10 micro M and 100 micro M lindane decreased peak force and frequency of uterine contraction but 1 micro M lindane did not. After removal of the exposure buffer, contraction force remained significantly depressed in uterine strips exposed to 100 micro M lindane, returning to less than 50% basal levels 5 h after cessation of lindane exposure. In cultured myometrial myocytes, significant sustained inhibition of Lucifer yellow dye transfer was observed 24 h after lindane exposures as brief as 10 min and as low as 0.1 micro M lindane. Conclusion Brief in vitro exposures to lindane have long-term effects on myometrial functions that are necessary for parturition, inhibiting spontaneous phasic contractions in late gestation rat uterus and gap junction intercellular communication in myometrial cell cultures.

  20. Effects of a herbicide-insecticide mixture in freshwater microcosms: Risk assessment and ecological effect chain

    International Nuclear Information System (INIS)

    Brink, Paul J. van den; Crum, Steven J.H.; Gylstra, Ronald; Bransen, Fred; Cuppen, Jan G.M.; Brock, Theo C.M.

    2009-01-01

    Effects of chronic application of a mixture of the herbicide atrazine and the insecticide lindane were studied in indoor freshwater plankton-dominated microcosms. The macroinvertebrate community was seriously affected at all but the lowest treatment levels, the zooplankton community at the three highest treatment levels, with crustaceans, caddisflies and dipterans being the most sensitive groups. Increased abundance of the phytoplankton taxa Cyclotella sp. was found at the highest treatment level. Threshold levels for lindane, both at population and community level, corresponded well with those reported in the literature. Atrazine produced fewer effects than expected, probably due to decreased grazer stress on the algae as a result of the lindane application. The safety factors set by the Uniform Principles for individual compounds were also found to ensure protection against chronic exposure to a mixture of a herbicide and insecticide at community level, though not always at the population level. - Effects of chronic application of a herbicide-insecticide mixture were studied in indoor freshwater plankton-dominated microcosms. Effects could well be explained by the effects of the individual chemicals alone, no synergetic effects were reported

  1. Lindane Bioremediation Capability of Bacteria Associated with the Demosponge Hymeniacidon perlevis

    Directory of Open Access Journals (Sweden)

    Stabili Loredana

    2017-04-01

    Full Text Available Lindane is an organochlorine pesticide belonging to persistent organic pollutants (POPs that has been widely used to treat agricultural pests. It is of particular concern because of its toxicity, persistence and tendency to bioaccumulate in terrestrial and aquatic ecosystems. In this context, we assessed the role of bacteria associated with the sponge Hymeniacidon perlevis in lindane degradation. Seven bacteria isolates were characterized and identified. These isolates showed a remarkable capacity to utilize lindane as a sole carbon source leading to a percentage of residual lindane ranging from 3% to 13% after 12 days of incubation with the pesticide. The lindane metabolite, 1,3–6-pentachloro-cyclohexene, was identified as result of lindane degradation and determined by gas chromatography–mass spectrometry (GC–MS. The bacteria capable of lindane degradation were identified on the basis of the phenotypic characterization by morphological, biochemical and cultural tests, completed with 16S rDNA sequence analysis, and assigned to Mameliella phaeodactyli, Pseudovibrio ascidiaceicola, Oceanicaulis stylophorae, Ruegeria atlantica and to three new uncharacterized species. The results obtained are a prelude to the development of future strategies for the in situ bioremediation of lindane.

  2. Identification of Repellent and Insecticidal Constituents of the Essential Oil of Artemisia rupestris L. Aerial Parts against Liposcelis bostrychophila Badonnel

    Directory of Open Access Journals (Sweden)

    Zhi Long Liu

    2013-09-01

    Full Text Available The aim of this research was to determine the chemical composition and insecticidal and repellent activity of the essential oil of Artemisia rupestris L. aerial parts against the booklice Liposcelis bostrychophila Badonnel and isolation of insecticidal and repellent constituents from the essential oil. The essential oil of A. rupestris was obtained by hydrodistillation and analyzed by GC-MS. A total of 30 components of the essential oil of A. rupestris was identified and the principal compounds in the essential oil were α-terpinyl acetate (37.18%, spathulenol (10.65%, α-terpineol (10.09%, and linalool (7.56%, followed by 4-terpineol (3.92% and patchoulol (3.05%. Based on bioactivity-guided fractionation, the four active constituents were isolated from the essential oil and identified as α-terpineol, α-terpinyl acetate, 4-terpineol and linalool. The essential oil of A. rupestris exhibited contact toxicity against L. bostrychophila with LD50 value of 414.48 µg/cm2. α-Terpinyl acetate (LD50 = 92.59 µg/cm2 exhibited stronger contact toxicity against booklice than α-terpineol (LD50 = 140.30 µg/cm2, 4-terpineol (LD50 = 211.35 µg/cm2, and linalool (LD50 = 393.16 µg/cm2. The essential oil of A. rupestris (LC50 = 6.67 mg/L air also possessed fumigant toxicity against L. bostrychophila while the four constituents, 4-terpineol, α-terpineol, α-terpinyl acetate and linalool had LC50 values of 0.34, 1.12, 1.26 and 1.96 mg/L air, respectively. α-Terpinol and α-terpinyl acetate showed strong repellency against L. bostrychophila, while linalool and 4-terpinol exhibited weak repellency. The results indicate that the essential oil of A. rupestris aerial parts and its constituent compounds have potential for development into natural insecticides or fumigants as well as repellents for control of insects in stored grains.

  3. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment.

    Science.gov (United States)

    Salam, Jaseetha Abdul; Das, Nilanjana

    2015-03-01

    The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.

  4. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane.

    Science.gov (United States)

    Kaur, Harsimran; Kapoor, Shammi; Kaur, Gaganjyot

    2016-10-01

    Lindane, a broad-spectrum organochlorine pesticide, has caused a widespread environmental contamination along with other pesticides due to wrong agricultural practices. The high efficiency, sustainability and eco-friendly nature of the bioremediation process provide an edge over traditional physico-chemical remediation for managing pesticide pollution. In the present study, lindane degradation was studied by using a white-rot fungus, Ganoderma lucidum GL-2 strain, grown on rice bran substrate for ligninolytic enzyme induction at 30 °C and pH 5.6 after incorporation of 4 and 40 ppm lindane in liquid as well as solid-state fermentation. The estimation of lindane residue was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring mode. In liquid-state fermentation, 100.13 U/ml laccase, 50.96 U/ml manganese peroxidase and 17.43 U/ml lignin peroxidase enzymes were obtained with a maximum of 75.50 % lindane degradation on the 28th day of incubation period, whereas under the solid-state fermentation system, 156.82 U/g laccase, 80.11 U/g manganese peroxidase and 18.61 U/g lignin peroxidase enzyme activities with 37.50 % lindane degradation were obtained. The lindane incorporation was inhibitory to the production of ligninolytic enzymes and its own degradation but was stimulatory for extracellular protein production. The dialysed crude enzyme extracts of ligninolytic enzymes were though efficient in lindane degradation during in vitro studies, but their efficiencies tend to decrease with an increase in the incubation period. Hence, lindane-degrading capabilities of G. lucidum GL-2 strain make it a potential candidate for managing lindane bioremediation at contaminated sites.

  5. U.S. EPA, Pesticide Product Label, PCO LINDANE E-1 INSECTICIDE, 09/21/1983

    Science.gov (United States)

    2011-04-13

    ... lid '",1. Uu (e, .~~ • I"I. ~ii.r in ... ,,1".1'~ ... In "'"uh' .... h._H ... l .... CI • .!!. I .. ,.oCll'. '1. II ,11_ •• , 1.1 ..... 1"".1 "1~~lIh" .., hl"'''5 It hrM'. ...

  6. Persistence and fate of chlorinated hydrocarbon insecticides used for crop protection in Brazil. Part of a coordinated programme of isotope tracer aided studies on the fate and significance of foreign substances in the agricultural environment

    International Nuclear Information System (INIS)

    Ruegg, E.F.

    1977-02-01

    The fate of 14 C-labelled lindane (gamma isomer of hexachlorocyclohexane) in coffee plant seedlings following exposure to the insecticide via the roots in nutrient solution or by foliar application has been compared. The insecticide was reversibly and rapidly sorbed by the exposed roots within 24 hours. There was evidence of a much slower translocation to stem and leaves. After foliar application 90% of the radioactive insecticide was lost by volatilization from the leaf surfaces. In a closed system the volatile insecticide was reabsorbed to some extent by untreated plant surfaces

  7. Biodegradation of14 C-lindane by some soil fungi

    International Nuclear Information System (INIS)

    Attaby, H.S.H.; Adam, Y.M.

    1991-01-01

    In a culture medium incorporated with 14 C-labelled lindane, the 3 soil fungi helminthosporium sp., alternaria brassicola, and verticillium agaricinum were incubated for 10 days. Most of the recovered radioactivity was found to be maintained mainly in the medium of helminthosporium and alternaria but in case of verticillium the majority was associated with the mat. The 3 fungal species showed degradation capacity of 6.1, 5.1 and 3.2% of the total recovered radioactivity radioactivity as hydrolytic products. TLC chromatographic analysis of chloroform fractions revealed the presence of only unchanged lindane either in medium of mat. The aqueous fractions of the 3 fungal species, demonstrated three degraded products (unknown ι,π and tri) having Rf values of 0.40 - 0.47, 0.66 - 0.73, and 0.87 in addition to a polar compound (Rf = 0.07) with the major radioactivity. A certain percentage of radiocarbon 6.7, 5.7 and 30.3% of the mats of helminthosporium, alternria and verticillium, respectively.2 tab

  8. Actions of insecticides on the insect GABA receptor complex

    International Nuclear Information System (INIS)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding and voltage-clamp techniques. Specific binding of [35S]TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 ± 2.9 nM and a Bmax value of 1770 ± 40 fmol/mg protein. [35S]TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of [35S]TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on [35S]TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current

  9. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    International Nuclear Information System (INIS)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2008-01-01

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD 50 ; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increase in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics

  10. Effect of fertilizer and irradiation sterilization on the degradation of lindane in soil

    International Nuclear Information System (INIS)

    Bennaceur, M.; Ghezal, F.

    1992-10-01

    The effect of fertilizer and sterelization using irradiation were studied on the fate of lindane degradation in two soils under laboratory conditions. Degradation of lindane is higher in organic matter rich soil. Half life of product is respectively about one week and one month for both rich soil and poor soil. Fertilizer used decreases PH of soils and irradiation dose of 1 mrad seems to be insufficient to sterilize completely the soils. Ammonium nitrate stimulates slightly the degradations of lindane in soil (not sterilized) after two months

  11. Persistence and effect of lindane (gamma HCH) in a maize field

    International Nuclear Information System (INIS)

    Bennaceur, M.; Ghezal, F.; Meguenni, H.; Hamadache, A.; Coste, C.M.

    1997-01-01

    The effects of lindane on the arthropod fauna and its persistence in soil and maize plants under field conditions were studied. Lindane significantly reduced the densities of collembola and spiders but had less significant effects on carabidae and formicidae. It decreased the damage caused by pest insects in maize plants but had no effect on the yield. Lindane dissipated rapidly from both plants and soil. The residues in harvested grains were 0.2 mg.kg -1 (year 1), 0.23 mg.kg -1 (year 2) and 0.05 mg.kg -1 (year 3) and below the recommended acceptable limit for grains. (author). 7 refs, 6 tabs

  12. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps.

    Directory of Open Access Journals (Sweden)

    Ola Lundin

    Full Text Available It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%, involved the neonicotinoid imidacloprid (78%, and concerned the western honey bee Apis mellifera (75%. Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.

  13. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps.

    Science.gov (United States)

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.

  14. In vivo plasma concentration for lindane after 6 hour exposure in human skin

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset is a time course description of lindane disappearance in blood plasma after dermal exposure in human volunteers. This dataset is associated with the...

  15. Studies on fact of 14C-lindane in soil and chickpea plants under laboratory conditions

    International Nuclear Information System (INIS)

    Meguenni, H.

    1997-01-01

    The degradation of 14 C-lindane (γ-1,2,3,4,5,6 - hexachlorocyclohexane) was investigated under laboratory conditions. Chickpea plants and soil were treated with 14 C-lindane. The results indicated a decrease of lindane on the plant surface from 36.6% to 6.5% and a corresponding increase in extractable residues from within the plant from 12.5% to 34.5% during the 60 days of the trial. In the soil, extractable residues decreased from 47.4% to 31.2%. Bound residues in both plant and soil remained low throughout the trial. After 60 days, the chickpea plants took up 16.4% of the lindane applied to the soil. (author). 2 refs, 7 figs

  16. Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation.

    Science.gov (United States)

    Muñoz-Morales, M; Braojos, M; Sáez, C; Cañizares, P; Rodrigo, M A

    2017-10-05

    In this work the complete treatment of soil spiked with lindane is studied using surfactant-aided soil-washing (SASW) to exhaust lindane from soil and electrolysis with diamond anodes to mineralize lindane from the soil washing fluid (SWF) waste. Results demonstrated that this technological approach is efficient and allow to remove this hazardous pollutant from soil. They also pointed out the significance of the ratio surfactant/soil in the efficiency of the SASW process and in the performance of the later electrolysis used to mineralize the pollutant. Larger values of this parameter lead to effluents that undergo a very efficient treatment which allows the depletion of lindane for applied charges lower than 15AhL -1 and the recovery of more than 70% of the surfactant for the regeneration of the SWF. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Adverse effects of lindane in a maize agro-ecosystem in Uganda

    International Nuclear Information System (INIS)

    Tukarhirwa, E.M.; Tinzaara, W.; Kiremire, B.T.

    1997-01-01

    The impact of lindane, at commercial rates of application, on invertebrate fauna, soil microbial activity, earthworm populations, crop damage and yields in a maize agro-ecosystem was studied and compared with unsprayed control plots of maize using a pitfall trap, D-Vac suction, litter bag, the earthworm formalin expulsion and crop assessment methods. The findings of the study generally portrayed lindane as having very few effects on the maize agro-ecosystem. (author). 5 refs, 9 tabs

  18. Lindane blocks GABAA-mediated inhibition and modulates pyramidal cell excitability in the rat hippocampal slice.

    Science.gov (United States)

    Joy, R M; Walby, W F; Stark, L G; Albertson, T E

    1995-01-01

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of lindane on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. This was done to establish simultaneous effects on a simple neural network and to develop procedures for more detailed analyses of the effects of lindane. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid. Electrodes were placed in the CA1 region to record extracellular population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural (SC/C) fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. Perfusion with lindane produced both time and dose dependent changes in a number of the responses measured. The most striking effect produced by lindane was the loss of GABAA-mediated recurrent collateral inhibition. This tended to occur rapidly, often before changes in EPSP or PS responses could be detected. With longer exposures to lindane, repetitive discharge of pyramidal cells developed resulting in multiple PSs to single stimuli. Lindane (50 microM) also completely reversed the effects of the injectable anesthetic, propofol, a compound known to potentiate GABAA-mediated inhibition via a direct action on the GABAA receptor-chloride channel complex. An analysis of input/output relationships at varying stimulus intensities showed that lindane increased EPSP and PS response amplitudes at any given stimulus intensity resulting in a leftward shift in the EPSP amplitude/stimulus intensity, PS amplitude/stimulus intensity and PS amplitude/EPSP amplitude relationships. This effect was most noticeable with low intensity stimuli and became progressively less so as stimulus intensities approached those yielding maximal responses. In addition lindane significantly increased paired pulse

  19. Persistence and fate of soil applied 14C-lindane in a maize ecosystem

    International Nuclear Information System (INIS)

    Yeboah, P.O.; Montford, K.G.; Apoh, W.; Dodoo, S.

    1997-01-01

    14 C-lindane applied to soil surface in a maize ecosystem (one month after planting) was taken up by the plant. Within the first 25 days of treatment, 14 C-lindane or its metabolites were found within the entire plant with the greatest concentration in lower leaves (from the ground level); and a sharp build up of lindane concentration towards the tip of each leaf. Radioactivity and hence pesticide concentration was uniformly distributed in the plant with time; to the extent that measurable levels of 14 C-compounds were detected in the tussel cob and the grain. This indicated that soil applied lindane was available to the maize plant. The persistence of 14 C-lindane in soils of variable organic matter content was also studied. Evidence is presented to show that 14 C-lindane dissipated faster in soils of lower organic matter content. Levels of surface applied pesticides that became bound in the soil increased with time after application and also with increasing organic matter content. 14 C-activity was mainly associated with the top soil layer (0-30 mm). (author). 7 refs, 7 figs

  20. Dual actions of lindane (γ-hexachlorocyclohexane) on calcium homeostasis and exocytosis in rat PC12 cells

    International Nuclear Information System (INIS)

    Heusinkveld, Harm J.; Thomas, Gareth O.; Lamot, Ischa; Berg, Martin van den; Kroese, Alfons B.A.; Westerink, Remco H.S.

    2010-01-01

    The persistent organochlorine pesticide lindane is still abundantly found in the environment and in human and animal tissue samples. Lindane induces a wide range of adverse health effects, which are at least partially mediated via the known inhibition of GABA A and glycine receptors. Additionally, lindane has been reported to increase the basal intracellular Ca 2+ concentration ([Ca 2+ ] i ). As Ca 2+ triggers many cellular processes, including cell death and vesicular neurotransmitter release (exocytosis), we investigated whether lindane affects exocytosis, Ca 2+ homeostasis, production of reactive oxygen species (ROS) and cytotoxicity in neuroendocrine PC12 cells. Amperometric recordings and [Ca 2+ ] i imaging experiments with fura-2 demonstrated that lindane (≥ 10 μM) rapidly increases basal exocytosis and basal [Ca 2+ ] i . Additional imaging and electrophysiological recordings revealed that this increase was largely due to a lindane-induced membrane depolarization and subsequent opening of N- and P/Q-type voltage-gated Ca 2+ channels (VGCC). On the other hand, lindane (≥ 3 μM) induced a concentration-dependent but non-specific inhibition of VGCCs, thereby limiting the lindane-induced increase in basal [Ca 2+ ] i and exocytosis. Importantly, the non-specific inhibition of VGCCs also reduced stimulation-evoked exocytosis and Ca 2+ influx. Though lindane exposure concentration-dependently increased ROS production, cell viability was not affected indicating that the used concentrations were not acute cytotoxic. These combined findings indicate that lindane has two, partly counteracting effects. Lindane causes membrane depolarization, thereby increasing basal [Ca 2+ ] i and exocytosis. In parallel, lindane inhibits VGCCs, thereby limiting the basal effects and reducing stimulation-evoked [Ca 2+ ] i and exocytosis. This study further underlines the need to consider presynaptic, non-receptor-mediated effects in human risk assessment.

  1. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Lakshmi, V; Das, Devlina; Das, Nilanjana

    2013-03-01

    Lindane is a notorious organochlorine pesticide due to its high toxicity, persistence in the environment and its tendency to bioaccumulate. A yeast strain isolated from sorghum cultivation field was able to use lindane as carbon and energy source under aerobic conditions. With molecular techniques, it was identified and named as Rhodotorula strain VITJzN03. The effects of nutritional and environmental factors on yeast growth and the biodegradation of lindane was investigated. The maximum production of yeast biomass along with 100 % lindane mineralization was noted at an initial lindane concentration of 600 mg l(-1) within a period of 10 days. Lindane concentration above 600 mg l(-1) inhibited the growth of yeast in liquid medium. A positive relationship was noted between the release of chloride ions and the increase of yeast biomass as well as degradation of lindane. The calculated degradation rate and half life of lindane were found to be 0.416 day(-1) and 1.66 days, respectively. The analysis of the metabolites using GC-MS identified the formation of seven intermediates including γ-pentachlorocyclohexane(γ-PCCH), 1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4-TCCHdiene), 1,2,4-trichlorobenzene (1,2,4 TCB), 1,4-dichlorobenzene (1,4 DCB), chloro-cis-1,2-dihydroxycyclohexadiene (CDCHdiene), 3-chlorocatechol (3-CC) and maleylacetate (MA) derivatives indicating that lindane degradation follows successive dechlorination and oxido-reduction. Based on the results of the present study, the possible pathway for lindane degradation by Rhodotorula sp. VITJzN03 has been proposed. To the best of our knowledge, this is the first report on lindane degradation by yeast which can serve as a potential agent for in situ bioremediation of medium to high level lindane-contaminated sites.

  2. Persistence of lindane in model cattle dips in sub-tropical climate of Delhi, India

    International Nuclear Information System (INIS)

    Singh, D.K.; Menon, P.; Agarwal, H.C.

    1997-01-01

    Persistence of lindane in model cattle dips under field conditions in the sub-tropical climate of Delhi was studied. In one set of experiments two model dips were utilized and filled with 200 L of water and treated with 2.37 MBq of 14 C-labelled and 4 g unlabelled lindane each. The radioactivity in water samples at zero time was estimated and considered to be 100 % (744 dpm/mL) which declined to 17.5 % (132 dpm/mL) 180 d after the treatment in Dip 1 (control dip). In the second dip 50 g of cowdung and soil were added 28 d after treatment and subsequently every time before sampling. The results in both the dips were similar indicating no effect of soil and cowdung on the persistence of lindane in the dips. The half life of lindane in water was 101 days. Lindane was extracted from water by hexane in the presence of methanol. The efficiency of this procedure was 99+ %. The main metabolises of lindane in water, identified by HPLC, were 1, 2, 4- trichlorobenzene, 1,3,5-trichlorobenzene and an unknown compound. In another experiment, 50 L of water was added to one dip which was treated with 2.90 MBq of 14 C-labelled and 1 g unlabelled lindane in 25 ml acetone. The cattle dip was recharged at monthly intervals with about 10 % of the initially applied lindane (290 kBq of 14 C labelled and 100 mg unlabelled lindane in 25 mL acetone). Soil and cow dung were added as in the first experiment. The concentration of lindane declined rapidly to 11.69 % (1.9 μg/mL, 425 dpm/mL) after the third recharge. The main metabolite was 1,2,4- trichlorobenzene which accounted for about 21 % after first and second recharge. The effect of pH ranging from 5 to 9 was also investigated. The dissipation appeared to be faster at pH 8 and comparatively slower at pH 6. (author)

  3. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    Science.gov (United States)

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  4. Integrated survey on toxic effects of lindane on neotropical fish: Corydoras paleatus and Jenynsia multidentata

    International Nuclear Information System (INIS)

    Pesce, Silvia F.; Cazenave, Jimena; Monferran, Magdalena V.; Frede, Silvia; Wunderlin, Daniel A.

    2008-01-01

    We report the effect of lindane on fish experimentally exposed to lindane. Sublethal toxicity was assessed through (a) changes in histopathology; (b) the activity of GST in different organs; and (c) bioaccumulation in exposed fish. We present a survey on toxic effects of lindane at these three levels, proposing a sequence of dose-dependent effects. Physiological damage was reversible at lowest doses, but severe at the highest, including damage consistent with fibrosis in liver and karyolitic nucleus in brain of both studied species. Exposure of Jenynsia multidentata above 6 μg L -1 caused activation a GST in liver and gills, followed by inhibition at 75 μg L -1 . Interestingly, the bioaccumulation rate was suddenly increased when GST was inhibited. Corydoras paleatus exposed to 6.0 μg L -1 lindane did not present significant changes in GST activity; however, enzymatic inhibition was observed above 25 μg L -1 . The bioaccumulation rate in C. paleatus remained constant throughout the experiments. All in all, these results evidence that C. paleatus is more sensitive to lindane than J. multidentata. - We observed an inverse correlation between GST activity and bioaccumulation in exposed fish, showing a severe increase of bioaccumulation and damages upon inhibition of GST

  5. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  6. Distribution of 14C-lindane in the rat after a single dose intraperitoneal and intravenous injection

    International Nuclear Information System (INIS)

    Lievremont, Maurice; Le Flohic, J.-F.; Pascaud, Marc

    1981-01-01

    14 C-Lindane retentions in rat tissues were studied until 24 hrs after a single dose pesticide administration. Each organ shows particular kinetics. Adipose tissue is the most active in pesticide fixation but the lungs retain momentarily a large fraction of Lindane after intravenous injection [fr

  7. Lindane residues in cultivated cucumber and in the most consumed fish in Caspian Sea (Iran).

    Science.gov (United States)

    Shokrzadeh, M; Saeedi Saravi, S S; Zehtab Yazdi, Y

    2009-09-01

    In this study, the concentrations of lindane residues (organochlorine pesticides) were analyzed in samples of cultivated cucumbers (Cucumis sativus L.) and four species of most consumed fish (Sefid, Koli, Kilca and Kafal fish). Samples of cucumber were collected from five sites in Sari city (north, south, east, west and central areas) and samples of fish were caught using electric fishing from four major fishing centers (Chalous and Babolsar cities, Khazar Abad and Miankaleh regions) in Mazandaran province of Iran. Quantitative determination of the lindane content was performed by gas chromatography electron-capture detection (GC-ECD). The results showed that the concentration of lindane in cucumber samples and in the dorsal muscle of the selected fish were less than the Food and Agriculture Organization/World Health Organization (FAO/WHO) recommended intake.

  8. Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767)

    International Nuclear Information System (INIS)

    Kennedy, D.W.; Aust, S.D.; Bumpus, J.A.

    1990-01-01

    The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14 C-labeled compounds. Of these, only [ 14 C]lindane and [ 14 C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14 CO 2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [ 14 C]aldrin, [ 14 C]dieldrin, [ 14 C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor

  9. A Comparative Study of the Persistence, Movement and Metabolism of Six Insecticides in Soils and Plants

    International Nuclear Information System (INIS)

    Fuhremann, T.W.; Lichtenstein, E.P.

    1981-01-01

    Full text: Two soil types and oat plants grown in these soils were incubated under identical environmental conditions. The insecticides used in order to increase the water solubility were 14 C-DDT, 14 C-lindane, 14 C-fonofos, 14 C-parathion, 14 C-phorate and 14 C-carbofuran. Total amounts of 14 C-residues recovered from insecticide-treated loam soils plus oats grown in these soils were similar with DDT and oarbofuran. They were also higher than those observed with the other insecticides. While most of the 14 C-DDT residues remained in the soils, most of the 14 C-carbofuran residues were recovered from oat leaves in the form of carbofuran and 3-hydroxycarbofuran. 14 C-residues of all insecticides were more persistent in loam than in sandy soil and sand-grown oats took up more 14 C-insecticide residues than loamgrown oats. The more water-soluble insecticides, 14 C-phorate and Ccarbofuran were more mobile and were metabolized to a greater extent than insecticides of lower water solubilities. Unextractable (bound) 14 C-residues in loam soil ranged from 2.8% to 29.1% of the applied doses of 14 C-DDT and 14 C-parathion, respectively. Bound 14 C-residues were lower in the sandy soil than in the loam soil, however, plant-bound 14 C-residues were higher in oats grown in the sandy soil than in loam grown oats. Insecticide metabolites recovered from soils and plants were identified and quantitated whenever possible. The oxygen analog metabolites of the organophosphorus insecticides were most abundant in the sandy soil and in oats grown therein. Data illustrate the importance of chemical structure, water solubility and soil type in predicting the comparative environmental behaviour of pesticides. (author)

  10. Insecticide solvents: interference with insecticidal action.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.

  11. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    Science.gov (United States)

    Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen

    2017-04-01

    Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC 15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC 50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC 50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  12. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Liu, Feiling; Guo, Dianhao; Yuan, Zhuting; Chen, Chen; Xiao, Huamei

    2017-11-20

    Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.

  13. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides

    Science.gov (United States)

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds. PMID:26393579

  14. Lindane and propuxur residues in the top soils of some cocoa ...

    African Journals Online (AJOL)

    Lindane and propoxur residues in some topsoil samples from five cocoa growing districts in the Central Region of Ghana have been determined. Ten soil samples were taken randomly at a depth of 0-10 cm from pre-selected farms in each district. Some physical and chemical properties of the soils were determined.

  15. Degradation of lindane by microorganisms. Evaluation of inhibitory effect on microbial activity using radiorespirometry

    International Nuclear Information System (INIS)

    Farghaly, M.; Zayed, S.M.A.D.; Soliman, S.M.

    1997-01-01

    The degradation of U- 14 C-lindane in two type of Egyptian soil was studied under laboratory conditions. The rate of mineralization of lindane was slow. Evolution of 14 CO 2 increased with time and amounted to 3.5-5.5% of the initial concentration within 90 days. At this period both soil types contained about 88% of the applied radiocarbon; 33-37% of the initial dose being bound to the soil. The methanol 14 C-extractables showed by TLC and HPLC analysis the presence of lindane as main product together with traces of minor metabolites. In addition, the effect of different rates of application of lindane on the respiratory activity of soil microorganisms was evaluated using U- 14 C-glucose as substrate. Concentrations up to 5 mgkg -1 caused a short term suppression of 14 CO 2 evolution. A dose of 10 mgkg -1 significantly inhibited soil respiration as determined by 14 Co 2 evolution for the 11 day period of the experiment. (author). 8 refs, 6 figs, 3 tabs

  16. The effect of lindane on non-target fauna in a maize agro-ecosystem in Zambia

    International Nuclear Information System (INIS)

    Deedat, Y.D.; Chanda, S.; Chivundu, A.M.; Kalembe, G.; Mecha, C.D.

    1997-01-01

    The effect of lindane on non-target fauna in a maize agro-ecosystem was studied in Zambia in 1992 and 1993. While lindane was effective against the stalk borers, a target pest, it also affected other non-target fauna. Ants, spiders and springtails were significantly reduced. However the effect was only transient and lasted for approximately two months. Lindane appeared to have no real effect on aerial non-target fauna or on soil inhabiting microorganisms. (author). 8 refs, 6 tabs

  17. Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: A case study of lindane-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.; Mundy, William R.; Eklund, Chris R.; Johnstone, Andrew F.M.; Mack, Cina M.; Pegram, Rex A., E-mail: pegram.rex@epa.gov

    2015-02-15

    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neurons in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC

  18. Present DDT and lindane indoor concentrations after extensive use of wood preservatives in attics in the past; Aktuelle DDT- und Lindan-Konzentrationen in Wohnraeumen nach intensivem Holzschutzmitteleinsatz auf Dachboeden in der Vergangenheit

    Energy Technology Data Exchange (ETDEWEB)

    Rosskamp, E.; Horn, W.; Ullrich, D.; Seifert, B. [Umweltbundesamt, Berlin (Germany). Inst. fuer Wasser-, Boden- und Lufthygiene

    1999-12-01

    In the former German Democratic Republic (GDR) the wood preservative Hylotox 59, which contained DDT and lindane as biocides, was used indoors until 1988. It was the aim of this study to determine the concentration levels of DDT and lindane in the air of attics, newly converted attic apartments or apartments situated immediately under attics which had been treated with Hylotox 59. In some cases dust and wood samples were examined, too. This study shows that concentrations of DDT and lindane of up to 4600 and 930 ng/m{sup 3} can be found in air of treated attics even more than 20 years after the application of wood preservatives. However, the median concentrations in recently converted attic apartments and apartments below an attic were much lower, namely 20 and 40 ng/m{sup 3}, respectively, for DDT and 5 and 20 ng/m{sup 3}, respectively, for lindane. Only some apartments showed DDT and lindane concentrations above 100 ng/m{sup 3}. In these cases biocides had been used directly in the apartment or there was a possibility for an air exchange between the attic and the rooms. Exposure of dwellers to DDT and lindane occurs mainly by inhalation. In addition, infants and small children who usually play on the floor may be exposed by contact with and intake of house dust. The maximum DDT content of house dust observed in the apartments under study was 200 mg/kg, with a median of 20 mg/kg. The lindane content of house dust reached only 9 mg/kg. The calculated exposure of a small child to DDT and lindane in house dust is far below the allowable daily intake (ADI) recommended by FAO/WHO. (orig.) [German] Die Biozide DDT und Lindan wurden in der ehemaligen DDR bis 1988 als Wirkstoffe im Holzschutzmittel Hylotox 59 auf Dachboeden und z.T. auch in Innenraeumen eingesetzt. Ziel dieser Untersuchungen war es, die Biozidbelastung der Raumluft und die von einigen Staub- und Holzproben in vormals Hylotox-behandelten Dachboeden, in Wohnungen direkt unter solchen Dachboeden sowie in

  19. Chloride channels as tools for developing selective insecticides.

    Science.gov (United States)

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  20. Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Pang, R; Li, Y; Dong, Y; Liang, Z; Zhang, Y; Zhang, W

    2014-12-01

    Imidacloprid resistance in the brown planthopper, Nilaparvata lugens, is primarily the result of the over-expression of cytochrome P450 monooxygenases. Here, a field-collected strain of N. lugens was shown to be highly resistant to both imidacloprid and buprofezin. Insecticide exposure and quantitative real-time PCR revealed that its resistance was mainly associated with a cytochrome P450 gene, CYP6AY1. CYP6AY1 is known to metabolize imidacloprid but its effect on buprofezin is unclear. In the 5'-untranslated region of CYP6AY1, a novel alternative splicing was detected. After a 1990-bp promoter region was cloned, its basal luciferase activity was assessed. Furthermore, genotyping studies identified 12 variations in the promoter region that discriminated between the field-collected and control strain. Finally, survival bioassays revealed a single nucleotide polymorphism and an insertion-deletion polymorphism linked to buprofezin and imidacloprid resistance. Mutagenesis of these sites enhanced the promoter activity of CYP6AY1. These results suggest that promoter polymorphisms may affect P450-mediated multiple insecticide resistance of pests. © 2014 The Royal Entomological Society.

  1. Fate and distribution of lindane and endosulfan in maize and cowpea ecosystems respectively

    International Nuclear Information System (INIS)

    Yeboah, P.O.; Montford, K.G.; Klake, R.K.; Akpabli, C.K.

    1997-01-01

    A quantitative study is presented on linande and endosulfan residues in maize and cowpea ecosystems respectively. Both pesticides were found to dissipate very fast under the tropical Ghanaian conditions. The high rate of dissipation in leaves is attributed to the fact that the leaves were exposed to sunshine and wind leading to increased volatilisation. Endosulfan was found to dissipate faster from the cowpea ecosystem than lindane did in the maize ecosystem. The mean residue levels of lindane in maize grains were 0.02 μg g -1 ; whilst residue levels of endosulfan in cowpea seeds were 0.05 μg g -1 . These levels are lower than the maximum residue limits recognized as acceptable by the Codex Alimentarus Commission. (author). 11 refs, 7 tabs

  2. Fate and effects of 14C-lindane in an agricultural ecosystem

    International Nuclear Information System (INIS)

    Farghaly, M.; Zayed, S.M.A.D.; Soliman, S.M.; Nawito, M.; Desouky, H.M.

    1997-01-01

    The fate of 14 C-lindane was studied using a terrestrial field ecosystem that included plants, soil, beetles, earthworms and one type of common bird in Egypt (Asfur baladi). The study was conducted on a restricted field area that was cultivated with maize plants as the target crop and soybean plants as an alternate crop. The residue level in soybean seeds (3.20 μg g -1 ) was almost 10 times more than that in dry maize seeds (0.36 μg g -1 ). The concentration of 14 C-residues in beetles was 2.18 μg g -1 on day 60 after spraying 14 C-lindane, and decreased thereafter. The earthworms, on the other hand, showed a progressive increase in concentration of residues with time. Birds showed the highest concentration of residues in the brain, liver and heart and histological changes were observed in these tissues. (author). 8 refs, 8 figs, 7 tabs

  3. Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India.

    Science.gov (United States)

    Jit, Simran; Dadhwal, Mandeep; Kumari, Hansi; Jindal, Swati; Kaur, Jasvinder; Lata, Pushp; Niharika, Neha; Lal, Devi; Garg, Nidhi; Gupta, Sanjay Kumar; Sharma, Pooja; Bala, Kiran; Singh, Ajaib; Vijgen, John; Weber, Roland; Lal, Rup

    2011-05-01

    α-Hexachlorocyclohexane (HCH), β-HCH, and lindane (γ-HCH) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and hence must be phased out and their wastes/stockpiles eliminated. At the last operating lindane manufacturing unit, we conducted a preliminary evaluation of HCH contamination levels in soil and water samples collected around the production area and the vicinity of a major dumpsite to inform the design of processes for an appropriate implementation of the Convention. Soil and water samples on and around the production site and a major waste dumpsite were measured for HCH levels. All soil samples taken at the lindane production facility and dumpsite and in their vicinity were contaminated with an isomer pattern characteristic of HCH production waste. At the dumpsite surface samples contained up to 450 g kg(-1) Σ HCH suggesting that the waste HCH isomers were simply dumped at this location. Ground water in the vicinity and river water was found to be contaminated with 0.2 to 0.4 mg l(-1) of HCH waste isomers. The total quantity of deposited HCH wastes from the lindane production unit was estimated at between 36,000 and 54,000 t. The contamination levels in ground and river water suggest significant run-off from the dumped HCH wastes and contamination of drinking water resources. The extent of dumping urgently needs to be assessed regarding the risks to human and ecosystem health. A plan for securing the waste isomers needs to be developed and implemented together with a plan for their final elimination. As part of the assessment, any polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) generated during HCH recycling operations need to be monitored.

  4. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2002-01-01

    Behavioral, neurochemical, and immunocytochemical studies characterized the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and permethrin (PM...

  5. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2001-01-01

    Behavioral, neurochemical, and immunocytochemical studies characterized the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and permethrin (PM...

  6. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2003-01-01

    Behavioral, neurochemical, and immunocytochemical studies are characterizing the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and/or permethrin (PM...

  7. 3 Insecticide Use Practice

    African Journals Online (AJOL)

    Administrator

    500,000 metric tonnes in the 1964/1965 season. Problems ... insecticides on the open market. ... effective in the management of insect pests of cocoa. .... Effectiveness and profitability of pest ... Youth in Agriculture; Programme Policy, Strategy.

  8. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  9. The effects of lindane and long-term potentiation (LTP) on pyramidal cell excitability in the rat hippocampal slice.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1997-01-01

    An in vitro orthodromic stimulation technique was used to examine the effects of lindane and long-term potentiation (LTP) inducing stimuli, alone or in combination, on the excitatory afferent terminal of CA1 pyramidal cells and on recurrent collateral evoked inhibition using the rat hippocampal slice model. Hippocampal slices of 400 microns thickness were perfused with oxygenated artificial cerebrospinal fluid. Stimulation of Schaffer collateral/commissural fibers produced extracellular excitatory postsynaptic potential (EPSP) and/or populations spike (PS) responses recorded from electrodes in the CA1 region. A paired-pulse technique was used to measure gamma-aminobutyric acid (GABAA)-mediated recurrent inhibition before and after treatments. After both lindane and LTP, larger PS amplitudes for a given stimulus intensity were seen. The resulting leftward shift in the curve of the PS amplitude versus stimulus intensity was larger after LTP than after 25 microM lindane. Both lindane and LTP treatments reduced PS thresholds and reduced or eliminated recurrent inhibition as measured by paired-pulse stimulation at the 15 msec interval. The reduction of recurrent inhibition after both treatments was more pronounced at lower stimulus intensities. When LTP stimuli were applied after lindane exposure a further large shift to the left was seen in the PS amplitude versus stimulus intensity curve. A smaller shift to the left was seen in the PS amplitude versus stimulus intensity curve only at the higher stimuli when lindane exposure occurred after LTP. Only at low stimulus intensities were further argumentations seen in PS amplitudes when the LTP stimuli was followed by a second LTP stimuli. Previous exposure to 25 microM lindane stimuli does not block the development of a further robust LTP in this in vitro model.

  10. Insecticidal activity of Trichilia claussenii (Meliaceae) fruits against Spodoptera frugiperda

    International Nuclear Information System (INIS)

    Nebo, Liliane; Matos, Andrea Pereira; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da; Rodrigues, Ricardo Ribeiro

    2010-01-01

    An evaluation of the insecticidal activity of the fruits extracts of Trichilia claussenii was carried out and the methanol extract revealed to have strong insecticidal activity. The fractionation of methanol extract of T. claussenii seeds bioassay-guided against Spodoptera frugiperda has led to the identification of the ω-phenylalkyl and alkenyl fatty acids as active compounds in this extract. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. (author)

  11. Minireview: Mode of action of meta-diamide insecticides.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinichi

    2015-06-01

    Meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor noncompetitive antagonists showing high insecticidal activity against Spodoptera litura. The mode of action of the meta-diamides was demonstrated to be distinct from that of conventional noncompetitive antagonists (NCAs) such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. It was suggested that meta-diamides act at or near G336 in the M3 region of the Drosophila RDL GABA receptor. Although the site of action of the meta-diamides appears to overlap with that of macrocyclic lactones including avermectins and milbemycins, differential effects of mutations on the actions of the meta-diamides and the macrocyclic lactones were observed. Molecular modeling studies revealed that the meta-diamides may bind to an inter-subunit pocket near G336 in the Drosophila RDL GABA receptor better when in the closed state, which is distinct from the NCA-binding site, which is in a channel formed by M2s. In contrast, the macrocyclic lactones were suggested to bind to an inter-subunit pocket near G336 in the Drosophila RDL GABA receptor when in the open state. Furthermore, mechanisms underlying the high selectivity of meta-diamides are discussed. This minireview highlights the unique features of novel meta-diamide insecticides and demonstrates why meta-diamides are anticipated to become prominent insecticides that are effective against pests resistant to cyclodienes and fipronil. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Nighat Perveen

    2017-07-01

    Full Text Available Quantitative studies concerning total and differential haemocyte counts and abnormalities were performed under laboratory conditions for larvae, pupae and adults collected from a wild Apis dorsata colony. Haemolymph samples were observed immediately, thirty and sixty minutes after field recommended concentration exposure of five different insecticides. Total haemocyte counts were significantly higher for larvae and pupae but less for adult bees, however, differential haemocyte counts insignificantly different. Exposure of insecticides showed variable response for tested insecticides with immediate increased change with ethofenprox, diafenthiuron and imidacloprid but decreased for all tested insecticides after sixty minutes. For differential haemocyte counts, plasmatocytes and granulocytes increased with exposure of insecticides. Immune response of haemocytes against insecticides showed different degrees of abnormalities like agglutination, denucleation and cell shape distortion. Such studies may help in possible identification of insect defense mechanisms against their exposure to external hazards for instance insecticide exposure.

  13. Botanical Insecticides in Plant Protection

    OpenAIRE

    Grdiša, Martina; Gršić, Kristina

    2013-01-01

    Botanical insecticides are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. Although they have been in use for over one hundred years, the advent of synthetic insecticides has unfortunately displaced their use today. Due to fast action, low cost, easy application and efficiency against a wide range of harmful species, synthetic insecticides have become an important part of pest management in modern agricultural systems....

  14. About the sorption of C-14 labelled γ-hexachlorcyclohexane (lindane) in the ng/l-range at geogene adsorbers

    International Nuclear Information System (INIS)

    Wirth, H.

    1985-01-01

    In order to evaluate the environmental behaviour of chlorinated hydrocarbons more precisely, laboratory adsorption experiments under defined conditions taking lindane as a model were carried out. Adsorbents used were Elbe River suspended matter, quartz, kaolinite, illite, bentonite, Na-humate and peat. Organogenic substrates showed the highest adsorption rates. Adsorption was affected by several parameters such as salinity and temperature. High remobility of lindane was found in desorption experiments. These results can be transferred to natural aquatic systems since the concentration ranges used herein are equivalent to those found in the environment. (orig.) [de

  15. Anticholinesterase insecticide retrospective.

    Science.gov (United States)

    Casida, John E; Durkin, Kathleen A

    2013-03-25

    The anticholinesterase (antiChE) organophosphorus (OP) and methylcarbamate (MC) insecticides have been used very effectively as contact and systemic plant protectants for seven decades. About 90 of these compounds are still in use - the largest number for any insecticide chemotype or mode of action. In both insects and mammals, AChE inhibition and acetylcholine accumulation leads to excitation and death. The cholinergic system of insects is located centrally (where it is protected from ionized OPs and MCs) but not at the neuromuscular junction. Structural differences between insect and mammalian AChE are also evident in their genomics, amino acid sequences and active site conformations. Species selectivity is determined in part by inhibitor and target site specificity. Pest population selection with OPs and MCs has resulted in a multitude of modified AChEs of altered inhibitor specificity some conferring insecticide resistance and others enhancing sensitivity. Much of the success of antiChE insecticides results from a suitable balance of bioactivation and detoxification by families of CYP450 oxidases, hydrolases, glutathione S-transferases and others. Known inhibitors for these enzymes block detoxification and enhance potency which is particularly important in resistant strains. The current market for OPs and MCs of 19% of worldwide insecticide sales is only half of that of 10 years ago for several reasons: there have been no major new compounds for 30 years; resistance has eroded their effectiveness; human toxicity problems are still encountered; the patents have expired reducing the incentive to update registration packages; alternative chemotypes or control methods have been developed. Despite this decline, they still play a major role in pest control and the increasing knowledge on their target sites and metabolism may make it possible to redesign the inhibitors for insensitive AChEs and to target new sites in the cholinergic system. The OPs and MCs are down

  16. Qualidades organolépticas de purês de batatinhas procedentes de culturas tratadas com inseticidas Application of insecticides and their influence on the potato puree flavor

    Directory of Open Access Journals (Sweden)

    Ruth dos Santos Garruti

    1961-01-01

    Full Text Available Resultados significativos foram obtidos na análise do sabor de amostras de purês preparados com batatinhas procedentes de ensaios de aplicação de vários inseticidas no solo, na folhagem e em batatas-semente. Em 1959, dos inseticidas aplicados no solo (BHC, Heptaclor, Aldrin, Parathion e Lindane apenas o BHC imprimiu sabor estranho bastante pronunciado semelhante a môfo, diferindo da testemunha ao nível de 1%.Para Heptaclor e Aldrin não foram verificadas alterações de sabor; Lindane e Parathion apresentaram leves odores estranhos, semelhantes a medicamento. Disyston, aplicado nas batatas-semente, e Metasystox, na folhagem, imprimiram ao purê sabor ardido e odor a remédio, mostrando-se inferiores, respectivamente, aos níveis de 5 e 1%. tanto à testemunha, tratada com carvão, como ao item sem qualquer tratamento. Parathion, aplicado na folhagem, comparado com as mesmas testemunhas, não apresentou diferenças significativas. Em 1960, dos inseticidas aplicados no solo, apenas Lindane, em dose normal e dobrada, diferiu da testemunha ao nível estatístico de 1%, apresentando sabor estranho, semelhante a môfo. Heptaclor, Aldrin e Toxafeno. em doses normal e dobrada, não diferiram da testemunha. classificando-se o sabor do primeiro como regular e dos dois últimos como bom.Organoleptic tests were carried out in 1959 and 1960 to determine the possible occurrence of off-flavor in potato tubers, caused by the application of insecticides to the soil where the plants were grown, on the seed, and on the plant leaves. In 1959 the treated samples were compared against the control by the triangular test; in 1960, in a lattice square 3x3 with four replications. The insecticides applied to the soil in 1959 were as fallows: BHC (gamma-isomer, Heptaclor, Aldrin, Parathion, and Lindane. BHC induced a very strong mold-like «rmusty» off-flavor, significant in relation to the control at the 1% level. Parathion and Lindane induced an unidentified off

  17. Radiotracer studies on the degradation and dissipation of lindane under Malaysian environment. Part of a coordinated programme on the fate of persistent pesticides in the tropics, using radioisotopes

    International Nuclear Information System (INIS)

    Jamaluddin, M.D.

    1983-11-01

    A protocol was designed to provide information on rates of dissipation and degradation of lindane (γ-isomer of 1,2,3,4,5,6-hexachlorocyclohexane), a chemical used in Malaysia for pest control in rice paddies. The parameters studied included adsorption to three Malaysian soils, volatilization, degradation, dissipation through leaching and terminal residues in the grain. 14 C-labelled lindane was used after mixing with appropriate concentrations of the cold chemical. Standard nuclear techniques such as liquid scintillation counting and radiochromatography were applied. Adsorption of lindane to soil decreased in the order clay>sandy clay>loam>sandy loam. Volatilization of lindane was proportional to the chemical concentration and was more rapid in non-flooded and sterilized flooded soils. Under flooding conditions, microorganismal activities seem to play a dominant role in the disappearance, possibly degradation, of lindane. The half-life of lindane in non-sterilized flooded soil ranged from 10.5 to 34.5 days depending on the type of soil. The chemical residue in the grain was well below the maximum residue level. This is part of a project designed to provide data on the degradation and dissipation of lindane in the Malaysian environment in an attempt to pass a realistic judgement as to its persistence

  18. Removal of lindane from an aqueous solution by using aminopropyl silica gel-immobilized calix[6]arene.

    Science.gov (United States)

    Tor, Ali; Aydin, Mehmet Emin; Aydin, Senar; Tabakci, Mustafa; Beduk, Fatma

    2013-11-15

    An aminopropyl silica gel-immobilized calix[6]arene (C[6]APS) has been used for the removal of lindane from an aqueous solution in batch sorption technique. The C[6]APS was synthesized with p-tert-butylcalix[6]arene hexacarboxylate derivative and aminopropyl silica gel in the presence of N,N'-diisopropyl carbodiimide coupling reagent. The sorption study was carried out as functions of solution pH, contact time, initial lindane concentration, C[6]APS dosage and ionic strength of solution. The matrix effect of natural water samples on the sorption efficiency of C[6]APS was also investigated. Maximum lindane removal was obtained at a wide pH range of 2-8 and sorption equilibrium was achieved in 2h. The isotherm analysis indicated that the sorption data can be represented by both Langmuir and Freundlich isotherm models. Increasing ionic strength of the solutions increased the sorption efficiency and matrix of natural water samples had no effect on the sorption of lindane. By using multilinear regression model, regression equation was also developed to explain the effects of the experimental variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effects of some environmental parameters on catalase activity measured in the mussel (Mytilus galloprovincialis) exposed to lindane

    Energy Technology Data Exchange (ETDEWEB)

    Khessiba, Asma [Laboratoire de Bio-surveillance de l' Environnement, Unite d' Ecologie Cotiere, Faculte des Sciences de Bizerte, 7021, Zarzouna (Tunisia); Romeo, Michele [UMR INRA-UNSA 1112, ROSE - Reponse des Organismes aux Stress Environnementaux, Faculte des Sciences, BP 71, 06108, Nice Cedex 2 (France)]. E-mail: romeo@unice.fr; Aissa, Patricia [Laboratoire de Bio-surveillance de l' Environnement, Unite d' Ecologie Cotiere, Faculte des Sciences de Bizerte, 7021, Zarzouna (Tunisia)

    2005-01-01

    Mussels (Mytilus galloprovincialis), collected from the Bizerta lagoon, were acclimated for four days to various conditions of temperature, salinity, photoperiod and food supply and then exposed to lindane at a concentration of 40 {mu}g l{sup -1}. Catalase activity, which is a biomarker of exposure to an oxidative stress, was measured in the whole soft tissues of control and assay groups. In control mussels, high temperature, high salinity and light duration significantly increased catalase activity whereas this activity decreased when food, composed of freeze-dried, algae was available. When mussels were treated with lindane, catalase activities were higher than in controls. This increase was significant with temperature, salinity and light duration. The food supply did not change catalase activity, which was always higher compared to controls. Oxidative stress was shown in mussels exposed to lindane. The results highlight the need of considering abiotic parameters in biomonitoring studies, and especially when using catalase as a biomarker. - Oxidative stress in mussels exposed to lindane was also influenced by a number of abiotic parameters.

  20. Effects of some environmental parameters on catalase activity measured in the mussel (Mytilus galloprovincialis) exposed to lindane

    International Nuclear Information System (INIS)

    Khessiba, Asma; Romeo, Michele; Aissa, Patricia

    2005-01-01

    Mussels (Mytilus galloprovincialis), collected from the Bizerta lagoon, were acclimated for four days to various conditions of temperature, salinity, photoperiod and food supply and then exposed to lindane at a concentration of 40 μg l -1 . Catalase activity, which is a biomarker of exposure to an oxidative stress, was measured in the whole soft tissues of control and assay groups. In control mussels, high temperature, high salinity and light duration significantly increased catalase activity whereas this activity decreased when food, composed of freeze-dried, algae was available. When mussels were treated with lindane, catalase activities were higher than in controls. This increase was significant with temperature, salinity and light duration. The food supply did not change catalase activity, which was always higher compared to controls. Oxidative stress was shown in mussels exposed to lindane. The results highlight the need of considering abiotic parameters in biomonitoring studies, and especially when using catalase as a biomarker. - Oxidative stress in mussels exposed to lindane was also influenced by a number of abiotic parameters

  1. A short history of insecticides

    Directory of Open Access Journals (Sweden)

    Oberemok Volodymyr Volodymyrovych

    2015-07-01

    Full Text Available This review contains a brief history of the use of insecticides. The peculiarities, main advantages, and disadvantages of some modern insecticides are described. The names of the discoverers of some of the most popular insecticide preparations on the world market, are listed. The tendencies to find new insecticides to control the quantity of phytophagous insects are discussed. Special attention is paid to the perspective of creating preparations based on nucleic acids, in particular DNA insecticides. The use of insect-specific, short single-stranded DNA fragments as DNA insecticides, is paving the way in the field of “intellectual” insecticides that “think” before they act. It is worth noting, though, that in the near future, the quantity of produced insecticides will increase due to the challenges associated with food production for a rapidly growing population. It is concluded, that an agreeable interaction of scientists and manufacturers of insecticides should lead to the selection of the most optimal solutions for insect pest control, which would be safe, affordable, and effective at the same time.

  2. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Das, Nilanjana

    2013-11-28

    Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindanecontaminated environments.

  3. Regional changes in brain 2-14C-deoxyglucose uptake induced by convulsant and non-convulsant doses of lindane

    International Nuclear Information System (INIS)

    Sanfeliu, C.; Sola, C.; Camon, L.; Martinez, E.; Rodriguez-Farre, E.

    1990-01-01

    Lindane-induced dose- and time-related changes in regional 2-14C-deoxyglucose (2-DG) uptake were examined in 59 discrete rat brain structures using the 2-DG autoradiographic technique. At different times (0.5-144 hr) after administration of a seizure-inducing single dose of lindane (60 mg/kg), 2-DG uptake was significantly increased in 18 cortical and subcortical regions mainly related to the limbic system (e.g., Ammon's horn, dentate gyrus, septal nuclei, nucleus accumbens, olfactory cortex) and extrapyramidal and sensory-motor areas (e.g., cerebellar cortex, red nucleus, medial vestibular nucleus). There was also a significant increase in superior colliculus layer II. In addition, significant decreases occurred in a group of 6 regions (e.g., auditory and motor cortices). Non-convulsing animals treated with the same dose of lindane showed a regional pattern of 2-DG uptake less modified than the convulsant group. A non-convulsant single dose of lindane (30 mg/kg) also modified significantly the 2-DG uptake (0.5-24 hr) in some brain areas. Although the various single doses of lindane tested produced different altered patterns of brain 2-DG uptake, some structures showed a similar trend in their modification (e.g., superior colliculi and accumbens, raphe and red nuclei). Repeated non-convulsant doses of lindane produced defined and long-lasting significant elevations of 2-DG uptake in some subcortical structures. Considering the treated groups all together, 2-DG uptake increased significantly in 26 of the 59 regions examined but only decreased significantly in 9 of them during the course of lindane effects. This fact can be related to the stimulant action described for this neurotoxic agent. The observed pattern provides a descriptive approach to the functional alterations occurring in vivo during the course of lindane intoxication

  4. Solubilisation of a host molecule in a surfactant film: thermodynamic and structural approach in the case of lindane

    International Nuclear Information System (INIS)

    Testard, Fabienne

    1996-01-01

    In this research thesis, the author aimed at understanding the main aspects of solubilisation in the specific case of a pesticide, the lindane, which is a hydrophobic molecule, poorly soluble in water. She first proposes a review of some existing models of solubilisation, and presents the only existing predictive model for the prediction of solubilisation in water-ionic surfactant binary systems. She addresses these systems and tries to characterise disruptions induced by the presence of the solute for lindane-saturated solutions (study of phase diagrams, of structure for different surfactant concentrations and different temperatures). Then she focuses on a part of the ternary diagram which allows micro emulsions to be reached at the point of spontaneous null curvature. She reports the study (by neutron and X ray scattering at small angles) of structural information on the surfactant film in different aggregates of ternary solutions in presence of solute. She finally proposes a more chemical approach to solubilisation [fr

  5. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample.

    Science.gov (United States)

    Wang, Xilong; Guo, Xiaoying; Yang, Yu; Tao, Shu; Xing, Baoshan

    2011-03-15

    The sorption behavior of organic compounds (phenanthrene, lindane, and atrazine) to sequentially extracted humic acids and humin from a peat soil was examined. The elemental composition, XPS and (13)C NMR data of sorbents combined with sorption isotherm data of the tested compounds show that nonspecific interactions govern sorption of phenanthrene and lindane by humic substances. Their sorption is dependent on surface and bulk alkyl carbon contents of the sorbents, rather than aromatic carbon. Sorption of atrazine by these sorbents, however, is regulated by polar interactions (e.g., hydrogen bonding). Carboxylic and phenolic moieties are key components for H-bonding formation. Thermal analysis reveals that sorption of apolar (i.e., phenanthrene and lindane) and polar (i.e., atrazine) compounds by humic substances exhibit dissimilar relationships with condensation and thermal stability of sorption domains, emphasizing the major influence of domain spatial arrangement on sorption of organic compounds with distinct polarity. Results of pH-dependent sorption indicate that reduction in sorption of atrazine by the tested sorbents is more evident than phenanthrene with increasing pH, supporting the dependence of organic compound sorption on its polarity and structure. This study highlights the different interaction mechanisms of apolar and polar organic compounds with humic substances.

  6. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  7. Non-hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study.

    Directory of Open Access Journals (Sweden)

    Michael C R Alavanja

    Full Text Available Farming and pesticide use have previously been linked to non-Hodgkin lymphoma (NHL, chronic lymphocytic leukemia (CLL and multiple myeloma (MM. We evaluated agricultural use of specific insecticides, fungicides, and fumigants and risk of NHL and NHL-subtypes (including CLL and MM in a U.S.-based prospective cohort of farmers and commercial pesticide applicators. A total of 523 cases occurred among 54,306 pesticide applicators from enrollment (1993-97 through December 31, 2011 in Iowa, and December 31, 2010 in North Carolina. Information on pesticide use, other agricultural exposures and other factors was obtained from questionnaires at enrollment and at follow-up approximately five years later (1999-2005. Information from questionnaires, monitoring, and the literature were used to create lifetime-days and intensity-weighted lifetime days of pesticide use, taking into account exposure-modifying factors. Poisson and polytomous models were used to calculate relative risks (RR and 95% confidence intervals (CI to evaluate associations between 26 pesticides and NHL and five NHL-subtypes, while adjusting for potential confounding factors. For total NHL, statistically significant positive exposure-response trends were seen with lindane and DDT. Terbufos was associated with total NHL in ever/never comparisons only. In subtype analyses, terbufos and DDT were associated with small cell lymphoma/chronic lymphocytic leukemia/marginal cell lymphoma, lindane and diazinon with follicular lymphoma, and permethrin with MM. However, tests of homogeneity did not show significant differences in exposure-response among NHL-subtypes for any pesticide. Because 26 pesticides were evaluated for their association with NHL and its subtypes, some chance finding could have occurred. Our results showed pesticides from different chemical and functional classes were associated with an excess risk of NHL and NHL subtypes, but not all members of any single class of pesticides

  8. Neurotoxicology of insecticides and pheromones

    National Research Council Canada - National Science Library

    Narahashi, Toshio

    1979-01-01

    The purpose of this symposium was to provide a forum where a variety of scientists who were interested in the interactions of insecticides and pheromones with the nervous system got together to exchange their views...

  9. A renaissance for botanical insecticides?

    Science.gov (United States)

    Isman, Murray B

    2015-12-01

    Botanical insecticides continue to be a subject of keen interest among the international research community, reflected in the steady growth in scientific publications devoted to the subject. Until very recently though, the translation of that theory to practice, i.e. the commercialisation and adoption of new botanical insecticides in the marketplace, has seriously lagged behind. Strict regulatory regimes, long the bane of small pesticide producers, are beginning to relax some of the data requirements for 'low-risk' pesticide products, facilitating movement of more botanicals into the commercial arena. In this paper I discuss some of the jurisdictions where botanicals are increasingly finding favour, some of the newer botanical insecticides in the plant and animal health arsenal and some of the specific sectors where botanicals are most likely to compete effectively with other types of insecticidal product. © 2015 Society of Chemical Industry.

  10. Degradation of 14C-Lindane(gamma-hexachlorocyclohexane) in Corn and Soya Bean Seedlings

    International Nuclear Information System (INIS)

    Afifi, M.L.

    2003-01-01

    The degradation of lindane (gamma-hexachlorocyclohexane,(gamma-HCH) by corn and soya bean seedlings has been studied. Following root application, anumber of metabolic products were identified utilizing Gas-liquid chromatography and GLC-mass spectrometry. In corn seedlings, these metabolites proved to be m-dichlorobenzene;1,2,4-trichlorobenzene; 1,2,4,5-tetrachlorobenzene; 2,4,5-and 2,3,5-trichlorophenols and gamma-pentachlorocyclohex-1-ene as compared with the standards. In soya bean seedlings, however, while 1,2,3,4-tetrachlorobenzene and 2,3,5-trichlorophenol were missing, 1,2,3-trichlorobenzene and 2,4,6-trichlorophenol were produced. Of the total chlorinated compounds found in hexane extracts, these metabolic products accounted for 30-35%. The amount of trichlorophenols which contributed to 38% and 16% of the metabolic output in corn and peas respectively, provided futher evidence that the degrading pathways in monocots might differ from these in dicots. The results also show that in both plant tissues dechlorination generally took place and represented adominant intermediary detoxification process

  11. Amelioration of Gamma-hexachlorocyclohexane (Lindane induced renal toxicity by Camellia sinensis in Wistar rats

    Directory of Open Access Journals (Sweden)

    W. L. N. V. Vara Prasad

    2016-11-01

    Full Text Available Aim: A study to assess the toxic effects of gamma-hexachlorocyclohexane (γ-HCH (lindane and ameliorative effects of Camellia sinensis on renal system has been carried out in male Wistar rats. Materials and Methods: Four groups of rats with 18 each were maintained under standard laboratory hygienic conditions and provided feed and water ad libitum. γ-HCH was gavaged at 20 mg/kg b.wt. using olive oil as vehicle to Groups II. C. sinensis at 100 mg/kg b.wt. was administered orally in distilled water to Group IV in addition to γ-HCH 20 mg/kg b.wt. up to 45 days to study ameliorative effects. Groups I and III were treated with distilled water and C. sinensis (100 mg/kg b.wt., respectively. Six rats from each group were sacrificed at fortnight intervals. Serum was collected for creatinine estimation. The kidney tissues were collected in chilled phosphate buffer saline for antioxidant profile and in also 10% buffered formalin for histopathological studies. Results: γ-HCH treatment significantly increased serum creatinine and significantly reduced the renal antioxidative enzymes catalase, superoxide dismutase, and glutathione peroxidase. Grossly, severe congestion was noticed in the kidneys. Microscopically, kidney revealed glomerular congestion, atrophy, intertubular hemorrhages, degenerative changes in tubular epithelium with vacuolated cytoplasm, desquamation of epithelium and urinary cast formation. A significant reduction in serum creatinine levels, significant improvement in renal antioxidant enzyme activities and near to normal histological appearance of kidneys in Group IV indicated that the green tea ameliorated the effects of γ-HCH, on renal toxicity. Conclusion: This study suggested that C. sinensis extract combined with γ-HCH could enhance antioxidant/detoxification system which consequently reduced the oxidative stress thus potentially reducing γ-HCH toxicity and tissue damage.

  12. Lindane induces testicular apoptosis in adult Wistar rats through the involvement of Fas-FasL and mitochondria-dependent pathways

    International Nuclear Information System (INIS)

    Saradha, B.; Vaithinathan, S.; Mathur, P.P.

    2009-01-01

    Lindane, an organochlorine pesticide, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underpinning the gonadal effects of lindane, we sought to investigate the levels of apoptosis-related proteins, namely cytochrome c, caspase-3 and-9, Fas and FasL in the testis of adult rats. Furthermore, the study aims to delineate whether nuclear factor kappa B (NF-κB) is involved in meditating the testicular effects of lindane. Animals were administered with a single dose of lindane (5 mg/kg body weight) and sacrificed at specific post-treatment intervals (0, 3, 6, 12, 24 and 72 h). Significant elevations in the levels of cytosolic cytochrome c with a parallel increase in pro-caspase-9 were observed as early as 6 h following exposure. Time-dependent elevations in the levels of Fas, FasL and caspase-3 were observed. Immunofluorescence studies revealed increased colocalization of Fas and caspase-3 in peritubular germ cells. FasL levels were increased in Sertoli and peritubular germ cells. The cytoplasmic levels of NF-κB p65 decreased from 3 h following exposure with a maximal decline at 12 and 24 h. Changes in the localization of NF-κB were observed with maximal nuclear translocation in germ cells at 12 and 24 h. Terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL) assay revealed a time-dependent increase in the number of apoptotic cells. Taken together, the data illustrate induction of testicular apoptosis in adult rats following exposure to a single dose of lindane. Early activation of NF-κB in contrast to late increase in Fas expression suggests a pro-apoptotic role of NF-κB in testicular response to lindane

  13. The sublethal effects of the organochlorines dieldrin and lindane on growth and reproduction of Eudrilus eugeniae and Eisenia fetida (Oligochaeta

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1994-07-01

    Full Text Available Experimental exposure of the earthworm species Eudrilus eugeniae to organochlorines showed that dieldrin causes damage to sperm ultrastructure when viewed electronmicroscopically. Worms containing concentrations of 7,27 mg/kg dieldrin and higher showed more than 10% sperm damage. Exposure of Eisenia fetida to sublethal concentrations of lindane did not result in sperm damage but demonstrated an increase in growth and reproductive activity. It is argued that quantification of sperm damage and correlation with pesticide concentration could provide a useful tool for evaluating environmental quality. Furthermore, the effects of sublethal concentrations of pesticides that manifest themselves in increased growth and reproductive activity could affect ecological balances.

  14. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinich; Nomura, Michikazu; Hirase, Kangetsu

    2013-04-01

    The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Characterizing the insecticide resistance of Anopheles gambiae in Mali.

    Science.gov (United States)

    Cisse, Moussa B M; Keita, Chitan; Dicko, Abdourhamane; Dengela, Dereje; Coleman, Jane; Lucas, Bradford; Mihigo, Jules; Sadou, Aboubacar; Belemvire, Allison; George, Kristen; Fornadel, Christen; Beach, Raymond

    2015-08-22

    The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases. Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase

  16. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.

  17. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors

    OpenAIRE

    Reid, Molly C.; McKenzie, F. Ellis

    2016-01-01

    The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resistance. This review examines the recent primary research that addresses the putative relationship between agricultural insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was categorized, and additional factors that impact the relationship between agricultural insecticide use and observed insecticide resistance in malari...

  18. Lethal toxicity of Lindane on a teleost fish, Anguilla anguilla from Albufera Lake (Spain): hardness and temperature effects.

    Science.gov (United States)

    Ferrando, M D; Almar, M M; Andreu, E

    1988-02-01

    This paper reports the results of toxicity tests conducted using Anguilla anguilla under three different water temperature (15, 22 and 29 degrees C) and two hardness regimes (250 and greater than 600 ppm CaCO3). The 96-h LC50 increased in the experimental medium (p less than 0.05) by an order of magnitude from 0.32 to 0.45 mg/L between 15 and 29 degrees C. However in the natural medium it is similar (p greater than 0.05) (0.54 to 0.55 mg/L) for these same temperatures. The toxicity of Lindane on eels increased when the water hardness decreased. The 24, 48, 72 and 96-h LC50 for this fish in both media is less at 15 degrees C (96-h LC50 = 0.32 and 0.55 mg/L) than at 29 degrees C (96-h LC50 = 0.45 and 0.55 mg/L). These results suggest that the toxicity of Lindane presents a negative temperature coefficient.

  19. Pyrethrum flowers and pyrethroid insecticides.

    OpenAIRE

    Casida, J E

    1980-01-01

    The natural pyrethrins from the daisy-like flower, Tanacetum or Chrysanthemum cinerariifolium, are nonpersistent insecticides of low toxicity to mammals. Synthetic analogs or pyrethroids, evolved from the natural compounds by successive isosteric modifications, are more potent and stable and are the newest important class of crop protection chemicals. They retain many of the favorable properties of the pyrethrins.

  20. Limonene--A Natural Insecticide.

    Science.gov (United States)

    Beatty, Joseph H.

    1986-01-01

    Describes a high school chemistry student's research project in which limonene was isolated from the oil of lemons and oranges. Outlines the students' tests on the use of this chemical as an insecticide. Discusses possible extensions of the exercises based on questions generated by the students. (TW)

  1. Radioligand Recognition of Insecticide Targets.

    Science.gov (United States)

    Casida, John E

    2018-04-04

    Insecticide radioligands allow the direct recognition and analysis of the targets and mechanisms of toxic action critical to effective and safe pest control. These radioligands are either the insecticides themselves or analogs that bind at the same or coupled sites. Preferred radioligands and their targets, often in both insects and mammals, are trioxabicyclooctanes for the γ-aminobutyric acid (GABA) receptor, avermectin for the glutamate receptor, imidacloprid for the nicotinic receptor, ryanodine and chlorantraniliprole for the ryanodine receptor, and rotenone or pyridaben for NADH + ubiquinone oxidoreductase. Pyrethroids and other Na + channel modulator insecticides are generally poor radioligands due to lipophilicity and high nonspecific binding. For target site validation, the structure-activity relationships competing with the radioligand in the binding assays should be the same as that for insecticidal activity or toxicity except for rapidly detoxified or proinsecticide analogs. Once the radioligand assay is validated for relevance, it will often help define target site modifications on selection of resistant pest strains, selectivity between insects and mammals, and interaction with antidotes and other chemicals at modulator sites. Binding assays also serve for receptor isolation and photoaffinity labeling to characterize the interactions involved.

  2. Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Anacleto, Patrícia; van den Heuvel, Freek H M; Oliveira, C

    2017-01-01

    The presence of contaminants in aquatic ecosystems can cause serious problems to the environment and marine organisms. This study aims to evaluate the phycoremediation capacity of macroalgae Laminaria digitata for pesticides (diflubenzuron and lindane) and toxic elements (cadmium and copper) in s...

  3. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors.

    Science.gov (United States)

    Reid, Molly C; McKenzie, F Ellis

    2016-02-19

    The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resistance. This review examines the recent primary research that addresses the putative relationship between agricultural insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was categorized, and additional factors that impact the relationship between agricultural insecticide use and observed insecticide resistance in malaria vectors were identified. In 23 of the 25 relevant recent publications from across Africa, higher resistance in mosquito populations was associated with agricultural insecticide use. This association appears to be affected by crop type, farm pest management strategy and urban development.

  4. Purification of waters and elimination of organochloric insecticides by means of active coal

    Directory of Open Access Journals (Sweden)

    DRAGAN MARINOVIĆ

    2010-04-01

    Full Text Available Pollution of water and the determination of the degree of its pollution with numerous physical, chemical and biological polluters have become general, ever increasing social and health related problems. Within this study, the concentrations of some most frequently used organochloric insecticides (OCI: a-hexachlorocyclohexane (a-HCH, γ-hexachlorocyclohexane (lindane, heptachlor, aldrin, dieldrin, endrin, dichlorodiphenyl trichlorethane (DDT were investigated. OCI are highly toxic substances for the human population and their effective elimination from the environment is of paramount interest. To determine the OCI concentration in water samples, the EPA–608 method and the liquid–liquid extraction principle were applied. A procedure for OCI elimination was realized by passing the water over four columns filled with various active coals: KRF, K-81/B, NORIT ROW-0.8 and AQUA SORB CS. These active coals are carbonized coconut shells activated by different procedures. The obtained results indicated that best purification of potable and waste water achieved using a column with Norit Row-0.8 filling. Research proved that small quantities of OCI can also be effectively removed using a Norit Row-0.8 active coal filled column, without altering the organoleptic properties of the water, which meets the requirements of water purification processes.

  5. Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides

    Directory of Open Access Journals (Sweden)

    Haoliang Chen

    2017-11-01

    Full Text Available Bradysia odoriphaga (Diptera: Sciaridae is the most important pest of Chinese chive. Insecticides are used widely and frequently to control B. odoriphaga in China. However, the performance of the insecticides chlorpyrifos and clothianidin in controlling the Chinese chive maggot is quite different. Using next generation sequencing technology, different expression unigenes (DEUs in B. odoriphaga were detected after treatment with chlorpyrifos and clothianidin for 6 and 48 h in comparison with control. The number of DEUs ranged between 703 and 1161 after insecticide treatment. In these DEUs, 370–863 unigenes can be classified into 41–46 categories of gene ontology (GO, and 354–658 DEUs can be mapped into 987–1623 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The expressions of DEUs related to insecticide-metabolism-related genes were analyzed. The cytochrome P450-like unigene group was the largest group in DEUs. Most glutathione S-transferase-like unigenes were down-regulated and most sodium channel-like unigenes were up-regulated after insecticide treatment. Finally, 14 insecticide-metabolism-related unigenes were chosen to confirm the relative expression in each treatment by quantitative Real Time Polymerase Chain Reaction (qRT-PCR. The results of qRT-PCR and RNA Sequencing (RNA-Seq are fairly well-established. Our results demonstrate that a next-generation sequencing tool facilitates the identification of insecticide-metabolism-related genes and the illustration of the insecticide mechanisms of chlorpyrifos and clothianidin.

  6. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    Energy Technology Data Exchange (ETDEWEB)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok [Developmental Toxicology Division, Industrial Toxicology Research Centre, P. O. Box 80, M. G. Marg, Lucknow-226 001, U. P. (India); Parmar, Devendra [Developmental Toxicology Division, Industrial Toxicology Research Centre, P. O. Box 80, M. G. Marg, Lucknow-226 001, U. P. (India)

    2007-12-15

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.

  7. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    International Nuclear Information System (INIS)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2007-01-01

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD 50 ) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring

  8. Antifeedant and insecticidal activity of Polygonum persicaria extracts on Nomophila indistinctalis

    Directory of Open Access Journals (Sweden)

    Luisa Quesada-Romero

    2017-05-01

    Full Text Available Context: Vegetal extracts represent an alternative to control against agricultural pests that have become resistant to pesticides. Using natural products is considered to be more friendly to the environment and safe. Aims: To determine the insecticidal and antifeedant activity of Polygonum persicaria extracts of two differents populations in Chile (Valparaiso and Curico against Nomophila indistinctalis larvae. Methods: Insecticide Resistance Action Committee (IRAC susceptibility test was used to evaluate the insecticidal activity of the extracts at concentrations of 100, 250, 500 and 1000 mg/L; against first instar larvae of Nomophila indistinctalis. The antifeedant activity was evaluated to determine the percentage of consumption in third instar larvae on treatment. Results: When comparing the control and the treatment groups in the antifeedant activity assay, significant differences (p<0.05 were observed after 90 minutes of exposure. With respect to the insecticidal activity, all extracts showed significant effects at the applied concentrations compared to the negative control. Moreover, the dichloromethane extracts of Curico and Valparaiso at concentrations greater than 500 mg/L showed a similar insecticidal activity as compared to the commercial formulation Neem. Conclusions: This work presents for the first time the results of the anti-feeding and insecticide activity of ethanol, methanol, and dichloromethane extracts from Polygonum persicaria on Nomophila indistinctalis. The results show that the extracts of this species can be used as an alternative for biological control. In addition, the results obtained allow a bioguided fractionation for the identification of secondary metabolites present in these extracts.

  9. Insecticide-mediated apparent displacement between two invasive species of leafminer fly.

    Directory of Open Access Journals (Sweden)

    Yulin Gao

    Full Text Available BACKGROUND: Closely related invasive species may often displace one another, but it is often difficult to determine mechanisms because of the historical nature of these events. The leafmining flies Liriomyza sativae and Liriomyza trifolii have become serious invasive agricultural pests throughout the world. Where both species have invaded the same region, one predominates over the other. Although L. sativae invaded Hainan Island of China first, it recently has been displaced by the newly invasive L. trifolii. We hypothesized that differential susceptibilities to insecticides could be causing this demographic shift. METHODOLOGY/PRINCIPAL FINDINGS: Avermectin and cyromazine are the most commonly used insecticides to manage leafminers, with laboratory bioassays demonstrating that L. trifolii is significantly less susceptible to these key insecticides than is L. sativae. In trials where similar numbers of larvae of both species infested plants, which subsequently were treated with the insecticides, the eclosing adults were predominately L. trifolii, yet similar numbers of adults of both species eclosed from control plants. The species composition was then surveyed in two regions where L. trifolii has just begun to invade and both species are still common. In field trials, both species occurred in similar proportions before insecticide treatments began. Following applications of avermectin and cyromazine, almost all eclosing adults were L. trifolii in those treatment plots. In control plots, similar numbers of adults of the two species eclosed, lending further credence to the hypothesis that differential insecticide susceptibilities could be driving the ongoing displacement of L. sativae by L. trifolii. CONCLUSIONS/SIGNIFICANCE: Our results show that differential insecticide susceptibility can lead to rapid shifts in the demographics of pest complexes. Thus, successful pest management requires the identification of pest species to understand the

  10. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms.

    Science.gov (United States)

    Burke, Richard D; Todd, Spencer W; Lumsden, Eric; Mullins, Roger J; Mamczarz, Jacek; Fawcett, William P; Gullapalli, Rao P; Randall, William R; Pereira, Edna F R; Albuquerque, Edson X

    2017-08-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  11. Emissions of heavy metals and lindane into German river basins; Schwermetalleintraege in die Oberflaechengewaesser Deutschlands. Quantifizierung der Schwermetalleintraege aus Deutschland zur Umsetzung der Beschluesse der Internationalen Nordseeschutzkonferenz

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, S.; Scherer, U.; Hillenbrand, T.; Marscheider-Weidemann, F.; Behrendt, H.; Opitz, D.

    2002-12-01

    According to international agreements, encouraging all partners to diminish the emission of priority pollutants into North- and Baltic Sea significantly within a time period of 1985 to 2000, the aim of this project was to quantify the changes in the emission situation for both heavy metals and lindane within the mentioned period To reach this aim the total emissions of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and the pesticide lindane ({gamma}-HCH) into German river systems were quantified for the periods of 1983-1985, 1993-1995 and 1999/2000. For the quantification of the emissions via point sources a nation-wide survey on heavy metal data of municipal wastewater treatment plants and industrial direct discharges was carried out. The input via diffuse pathways was calculated using an adapted version of the model MONERIS. This model accounts for the significant transport processes, and it includes a geographical information system (GIS) that provides digital maps as well as extensive statistical information. For a comparison of the calculated heavy metal emission with the measured heavy metal load at monitoring stations the losses of heavy metals due to retention processes within the river systems have to be considered. Therefore heavy metal retention was calculated according to the retention function given by Vink/Behrendt (2002). For the large river basins a good correspondence could be found between estimated and measured heavy metal loads in rivers. The total emission into the German river basins decreased for each metal during the period of 1985 to 2000. The reduction varies between 36 and 85% mainly caused by the decline of emissions via point sources. Today's emissions of heavy metals into river basins of Germany are dominated by the input via diffuse pathways. The most important diffuse pathways are paved urban areas (Cd, Cu, Hg, Pb, Zn), erosion (Pb, Cr) and groundwater (As, Ni). Since the application of the pesticide lindane is illegal today a

  12. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  13. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  14. Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans and T. catigua (Meliaceae)

    International Nuclear Information System (INIS)

    Matos, Andreia Pereira; Nebo, Liliane; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da; Rodrigues, Ricardo Ribeiro

    2009-01-01

    Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae) has led to the identification of the limonoids 11β-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone) and the steroids stigmasterol, β-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda. (author)

  15. 2 Assessmen of the Efficiency of Insecticide

    African Journals Online (AJOL)

    Administrator

    malaria vectors and nuisance in West Africa – a-part. 2. Field evaluation. Malar J. 9: 341. Mosqueira B., Duchon S., Chandre F., Hougard, J. M., Carnevale P. and Mas-Coma S. (2010). Efficacy of an insecticide paint against insecticide- susceptible and resistant mosquitoes – b- Part 1: Laboratory evaluation. Malar J. 9: 340.

  16. Trifluoromethylphenyl amides as novel insecticides and fungicides

    Science.gov (United States)

    Because of increased resistance to insecticides in arthropods, it is necessary to identify new chemicals that may have novel modes of action. Following an extensive literature search for compounds with insecticidal and mosquito repellent activity, we have designed and synthesized a set of 20 trifluo...

  17. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    2007-01-24

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.  Created: 1/24/2007 by Emerging Infectious Diseases.   Date Released: 3/13/2007.

  18. Remedial treatment of lodgepole pine infested with mountain pine beetle: efficacy of three insecticides

    Science.gov (United States)

    Paul E. Tilden

    1985-01-01

    Lindane is registered for remedial control of bark beetles; however, forestry uses are controversial and alternative chemicals are needed. Chlorpyrifos (Dursban 4E), carbaryl (Sevimol 4), and fenitrothion (Sumithion 8E) at 1, 2, and 4 pct active ingredient, and lindane at the registered dosage of 0.6 pct were sprayed on lodgepole pine (Pinus contorta...

  19. Residues of lindane and endosulfan in water and fish samples from rivers, farms in Besease, Agogo and Akomadan in the Ashanti region of Ghana

    International Nuclear Information System (INIS)

    Osafo-Acquaah, S.; Frimpong, E.

    1997-01-01

    Pesticide residue analyses were performed on water and fish samples from River Oda in Besease, River Aframso in Nobewam near Kumasi, River Atwetwe in Akomadan, and River Kowire at Agogo. Residues of lindane and endosulfan were found in water and fish (Oreochromis niloticus, Tilapia zillii, Barbus trispulis, Heterobranchus sp., Tilapia busumana, Ophiocephalus obscura and Chana obscura) samples. The residues of lindane varied between the years and months in the year but were in the range of 0.3 - 15 ng L -1 (1993-94) and 8.7-32.0 ng L -1 (1995) for the water samples and 0.2-24 ng g -1 (1993-93) and 8.4-120.4 ng g -1 (1995) for the fish samples. Residues of endosulfan in the water and the fish samples were zero in 1993-1994 but, in 1995, were in the range of 6.4-35.2 ng L -1 for the water samples and 5.0-267.5 ng g -1 for the fish samples. In all cases the lindane and ensofulfan concentrations in the water were 10,000-20,000 times lower than known toxic concentration levels and therefore unlikely to cause fish toxicity problems. (author). 11 refs, 4 tabs

  20. of Several Organophosphorus Insecticide Metabolites

    Directory of Open Access Journals (Sweden)

    Russell L. Carr

    2015-01-01

    Full Text Available Paraoxonase (PON1 is a calcium dependent enzyme that is capable of hydrolyzing organophosphate anticholinesterases. PON1 activity is present in most mammals and previous research established that PON1 activity differs depending on the species. These studies mainly used the organophosphate substrate paraoxon, the active metabolite of the insecticide parathion. Using serum PON1 from different mammalian species, we compared the hydrolysis of paraoxon with the hydrolysis of the active metabolites (oxons of two additional organophosphorus insecticides, methyl parathion and chlorpyrifos. Paraoxon hydrolysis was greater than that of methyl paraoxon, but the level of activity between species displayed a similar pattern. Regardless of the species tested, the hydrolysis of chlorpyrifos-oxon was significantly greater than that of paraoxon or methyl paraoxon. These data indicate that chlorpyrifos-oxon is a better substrate for PON1 regardless of the species. The pattern of species differences in PON1 activity varied with the change in substrate to chlorpyrifos-oxon from paraoxon or methyl paraoxon. For example, the sex difference observed here and reported elsewhere in the literature for rat PON1 hydrolysis of paraoxon was not present when chlorpyrifos-oxon was the substrate.

  1. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Insecticide control of vector-borne diseases: when is insecticide resistance a problem?

    Directory of Open Access Journals (Sweden)

    Ana Rivero

    Full Text Available Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way-and there may be no simple generality-the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention.

  3. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  4. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  5. Weevil x Insecticide: Does 'Personality' Matter?

    Science.gov (United States)

    Morales, Juliana A; Cardoso, Danúbia G; Della Lucia, Terezinha Maria C; Guedes, Raul Narciso C

    2013-01-01

    An insect's behavior is the expression of its integrated physiology in response to external and internal stimuli, turning insect behavior into a potential determinant of insecticide exposure. Behavioral traits may therefore influence insecticide efficacy against insects, compromising the validity of standard bioassays of insecticide activity, which are fundamentally based on lethality alone. By extension, insect 'personality' (i.e., an individual's integrated set of behavioral tendencies that is inferred from multiple empirical measures) may also be an important determinant of insecticide exposure and activity. This has yet to be considered because the behavioral studies involving insects and insecticides focus on populations rather than on individuals. Even among studies of animal 'personality', the relative contributions of individual and population variation are usually neglected. Here, we assessed behavioral traits (within the categories: activity, boldness/shyness, and exploration/avoidance) of individuals from 15 populations of the maize weevil (Sitophilus zeamais), an important stored-grain pest with serious problems of insecticide resistance, and correlated the behavioral responses with the activity of the insecticide deltamethrin. This analysis was performed at both the population and individual levels. There was significant variation in weevil 'personality' among individuals and populations, but variation among individuals within populations accounted for most of the observed variation (92.57%). This result emphasizes the importance of individual variation in behavioral and 'personality' studies. When the behavioral traits assessed were correlated with median lethal time (LT50) at the population level and with the survival time under insecticide exposure, activity traits, particularly the distance walked, significantly increased survival time. Therefore, behavioral traits are important components of insecticide efficacy, and individual variation should be

  6. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. [Notre Dame Univ., IN (United States); Kakar, S.N.; Coleman, R.D. [Argonne National Lab., IL (United States)

    1992-07-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  7. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. (Notre Dame Univ., IN (United States)); Kakar, S.N.; Coleman, R.D. (Argonne National Lab., IL (United States))

    1992-01-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  8. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools.

    Science.gov (United States)

    Muñiz, Selene; Gonzalvo, Pilar; Valdehita, Ana; Molina-Molina, José Manuel; Navas, José María; Olea, Nicolás; Fernández-Cascán, Jesús; Navarro, Enrique

    2017-11-01

    An ecotoxicological survey of soils that were polluted with wastes from lindane (γ-HCH) production assessed the effects of organochlorine compounds on the metabolism of microbial communities and the toxicity of these compounds to a native earthworm (Allolobophora chlorotica). Furthermore, the bioremediation role of earthworms as facilitators of soil washing and the microbial degradation of these organic pollutants were also studied. Soil samples that presented the highest concentrations of ε-HCH, 2,4,6-trichlorophenol, pentachlorobenzene and γ-HCH were extremely toxic to earthworms in the short term, causing the death of almost half of the population. In addition, these soils inhibited the heterotrophic metabolic activity of the microbial community. These highly polluted samples also presented substances that were able to activate cellular detoxification mechanisms (measured as EROD and BFCOD activities), as well as compounds that were able to cause endocrine disruption. A few days of earthworm activity increased the extractability of HCH isomers (e.g., γ-HCH), facilitating the biodegradation of organochlorine compounds and reducing the intensity of endocrine disruption in soils that had low or medium contamination levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Decrease of insecticide resistance over generations without exposure to insecticides in Nilaparvata lugens (Hemipteran: Delphacidae).

    Science.gov (United States)

    Yang, Yajun; Dong, Biqin; Xu, Hongxing; Zheng, Xusong; Tian, Junce; Heong, Kongleun; Lu, Zhongxian

    2014-08-01

    The brown planthopper, Nilaparvata lugens (Stål), is one of the most important insect pests on paddy rice in tropical and temperate Asia. Overuse and misuse of insecticides have resulted in the development of high resistance to many different insecticides in this pest. Studies were conducted to evaluate the change of resistance level to four insecticides over 15 generations without any exposure to insecticides in brown planthopper. After 15 generations' rearing without exposure to insecticide, brown planthopper could reverse the resistance to imidacloprid, chlorpyrifos, fipronil, and fenobucarb. The range and style of resistance reversal of brown planthopper differed when treated with four different insecticides. To monitor potential changes in insect physiological responses, we measured the activity of each of the three selected enzymes, including acetylcholinesterases (AChE), general esterases (EST), and glutathione S-transferases. After multiple generations' rearing without exposure to insecticide, AChE and EST activities of brown planthopper declined with the increased generations, suggesting that the brown planthopper population adjusted activities of EST and AChE to adapt to the non-insecticide environment. These findings suggest that the reducing, temporary stop, or rotation of insecticide application could be incorporated into the brown planthopper management.

  10. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the

  11. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    Science.gov (United States)

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  12. Insecticidal activity of Trichilia claussenii (Meliaceae) fruits against Spodoptera frugiperda; Atividade inseticida dos frutos de Trichilia claussenii (Meliaceae) sobre Spodoptera frugiperda

    Energy Technology Data Exchange (ETDEWEB)

    Nebo, Liliane; Matos, Andrea Pereira; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da, E-mail: paulo@dq.ufscar.b [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Rodrigues, Ricardo Ribeiro [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Ciencias Biologicas

    2010-07-01

    An evaluation of the insecticidal activity of the fruits extracts of Trichilia claussenii was carried out and the methanol extract revealed to have strong insecticidal activity. The fractionation of methanol extract of T. claussenii seeds bioassay-guided against Spodoptera frugiperda has led to the identification of the {omega}-phenylalkyl and alkenyl fatty acids as active compounds in this extract. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. (author)

  13. Interactive effects of an insecticide and a fungicide on different organism groups and ecosystem functioning in a stream detrital food web.

    Science.gov (United States)

    Dawoud, Mohab; Bundschuh, Mirco; Goedkoop, Willem; McKie, Brendan G

    2017-05-01

    Freshwater ecosystems are often affected by cocktails of multiple pesticides targeting different organism groups. Prediction and evaluation of the ecosystem-level effects of these mixtures is complicated by the potential not only for interactions among the pesticides themselves, but also for the pesticides to alter biotic interactions across trophic levels. In a stream microcosm experiment, we investigated the effects of two pesticides targeting two organism groups (the insecticide lindane and fungicide azoxystrobin) on the functioning of a model stream detrital food web consisting of a detritivore (Ispoda: Asellus aquaticus) and microbes (an assemblage of fungal hyphomycetes) consuming leaf litter. We assessed how these pesticides interacted with the presence and absence of the detritivore to affect three indicators of ecosystem functioning - leaf decomposition, fungal biomass, fungal sporulation - as well as detritivore mortality. Leaf decomposition rates were more strongly impacted by the fungicide than the insecticide, reflecting especially negative effects on leaf processing by detritivores. This result most like reflects reduced fungal biomass and increased detritivore mortality under the fungicide treatment. Fungal sporulation was elevated by exposure to both the insecticide and fungicide, possibly representing a stress-induced increase in investment in propagule dispersal. Stressor interactions were apparent in the impacts of the combined pesticide treatment on fungal sporulation and detritivore mortality, which were reduced and elevated relative to the single stressor treatments, respectively. These results demonstrate the potential of trophic and multiple stressor interactions to modulate the ecosystem-level impacts of chemicals, highlighting important challenges in predicting, understanding and evaluating the impacts of multiple chemical stressors on more complex food webs in situ. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Li, Xiuxia; Shi, Haiyan; Gao, Xiwu; Liang, Pei

    2018-03-01

    Uridine diphosphate-glucuronosyltransferases (UGTs), as multifunctional detoxification enzymes, play important roles in the biotransformation of various compounds. However, their roles in insecticide resistance are still unclear. This study presents a genome-wide identification of the UGTs in diamondback moth, Plutella xylostella (L.), a notorious insect pest of cruciferous crops worldwide. The possible roles of these UGTs in insecticide resistance were evaluated. A total of 21 putative UGTs in P. xylostella were identified. Quantitative real-time polymerase chain reaction (PCR)-based analyses showed that all the UGT genes were expressed in all tested developmental stages and tissues. Bioassay results indicated that a field-collected population (BL) was resistant to 9 of 10 commonly used insecticides, and 10 of 21 UGT mRNAs were upregulated in the BL population. Exposure to the LC 50 of each insecticide affected the expression of most UGT genes. Among these, the expression levels of UGT40V1, UGT45B1 and UGT33AA4 were induced by more than five insecticides, whereas indoxacarb and metaflumizone significantly repressed the expression of most UGT genes. UGTs may play important roles in the metabolism of commonly used insecticides in P. xylostella. These findings provide valuable information for further research on the physiological and toxicological functions of specific UGT genes in P. xylostella. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A combination of ascorbic acid and α-tocopherol or a combination of Mg and Zn are both able to reduce the adverse effects of lindane-poisoning on rat brain and liver.

    Science.gov (United States)

    Hfaiedh, Najla; Murat, Jean-Claude; Elfeki, Abdelfettah

    2012-10-01

    The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of supplementation with ascorbic acid (Vit C) and α-tocopherol (Vit E) or with Mg and Zn upon lindane-induced damages in liver and brain. Under our experimental conditions, lindane poisoning (5mg/kg body weight per day for 3 days) resulted in (1) an increased level of plasma glucose, cholesterol and triglycerides, (2) an increased activity of LDH, ALP, AST, ALT, (3) an oxidative stress in liver and brain as revealed by an increased level of lipids peroxidation (TBARS) and a decrease of glutathione-peroxidase, superoxide dismutase and catalase activities in liver and brain. In conclusion, both Vit C+E or Mg+Zn treatments display beneficial effects upon oxidative stress induced by lindane treatment in liver and brain. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean.

    Science.gov (United States)

    Pocquet, Nicolas; Milesi, Pascal; Makoundou, Patrick; Unal, Sandra; Zumbo, Betty; Atyame, Célestine; Darriet, Frédéric; Dehecq, Jean-Sébastien; Thiria, Julien; Bheecarry, Ambicadutt; Iyaloo, Diana P; Weill, Mylène; Chandre, Fabrice; Labbé, Pierrick

    2013-01-01

    Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations

  18. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Nicolas Pocquet

    Full Text Available Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC, Organophosphates (OP and pyrethroids (PYR families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation. In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to

  19. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    Science.gov (United States)

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  20. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Christof W Schneider

    Full Text Available The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee and clothianidin (0.05-2 ng/bee under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin and ≥1.5 ng/bee (imidacloprid during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further

  1. Malaria Vector Control Still Matters despite Insecticide Resistance.

    Science.gov (United States)

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins

    OpenAIRE

    Martinez, Ana Fl?via Canovas; de Almeida, Lu?s Gustavo; Moraes, Luiz Alberto Beraldo; C?nsoli, Fernando Lu?s

    2017-01-01

    Background The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted att...

  3. Formation and bio release of bound residues of [14 C]-lindane and [14 C]-parathion in two Brazilian soils

    International Nuclear Information System (INIS)

    Andrea, M.M. de.

    1992-01-01

    This work studied the extractable and bound residues formation of 14 C-lindane and 14 C-parathion immediately after application and after 3 months of interaction of the pesticides with the soils. Metabolism, bio release, and the possible bioavailability of bound residues were studied by employing bio meter flasks which allowed a relative comparison of the behaviour of the two different 14 C-pesticides, by a balance of the applied or present radiocarbon in the soils after the bio tests. (author)

  4. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  5. Neurobehavioral toxicology of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Crofton, K.M.

    1986-01-01

    Pyrethroid insecticides are classified as either Type I or Type II based upon in vivo toxic signs, and neurophysiological and biochemical data. Both axonal sodium channels and the γ-aminobutyric acid (GABA) receptor complex have been proposed as the major site of action of the Type II pyrethroids. This investigation characterized the behavior and biochemical effects of low dosages of pyrethroids in rats. Type I and II pyrethroids were tested for effects on figure-eight maze activity and the acoustic startle response (ASR). All compounds decreased figure-eight maze activity. Interactions of Type I and II pyrethroids with the three major binding sites on the GABA complex were determined in vivo. Radioligand binding experiments assessed in vitro interactions of pyrethroids with the three major GABA-complex binding sites. None of the pyrethroids competed for [ 3 H]-muscimol or [ 3 H]-flunitrazepam binding. Only Type II pyrethroids inhibited binding of [ 35 S]-t-butylbicyclophosphorothionate (TBPS) in cortical synaptosome preparations with K/sub i/ values of 5 to 10 μM. The [ 35 S]-TBPS data implicate the TBPS/picrotoxinin binding site in the mechanism of Type II pyrethroid toxicity. The results of these experiments support the classification of pyrethroids into two classes, and demonstrate the utility of the figure-eight maze and the ASR in studies to elucidate neurotoxic mechanisms. The interaction of the Type II pyrethroids is probably restricted to the TBPS/picrotoxinin binding domain on the GABA complex as shown by both the in vivo and in vitro studies

  6. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  7. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  8. Insecticide susceptibility status of human biting mosquitoes in ...

    African Journals Online (AJOL)

    Background: There has been a rapid emergence in insecticide resistance among mosquito population to commonly used public health insecticides. This situation presents a challenge to chemicals that are currently used to control mosquitoes in sub-Saharan African. Furthermore, there is limited information on insecticide ...

  9. Microbes as interesting source of novel insecticides: A review ...

    African Journals Online (AJOL)

    ... strains with good insecticidal properties can be identified, evaluated and utilized for pest control. This paper reviews the insecticidal properties of microbes and their potential utility in pest management. Keywords: Microbes, insecticides, metabolites, pest management. African Journal of Biotechnology, Vol 13(26) 2582- ...

  10. Metabolic control of the insecticides safety use

    Directory of Open Access Journals (Sweden)

    L.I. Solomenko

    2016-06-01

    Full Text Available The results of the conducted research affirm that the phosphororganic insecticides utilization can lead to the break in the nitrogen metabolism, breaking the protein formation, reducing the protein molecules renewal, causing the amino acid and amides accumulation in the active state. It has been revealed that the translocation and transformation of the insecticides under consideration are more closely connected with the changes of insoluble protein fraction. The stagnation point of the Phosphamide and Kaunter impact on the plant has been determined. And only the use of the preparation in optimal norms can influence stimulatingly the course of the process under consideration.

  11. Mesoionic Pyrido[1,2-a]pyrimidinone Insecticides: From Discovery to Triflumezopyrim and Dicloromezotiaz.

    Science.gov (United States)

    Zhang, Wenming

    2017-09-19

    One of the greatest global challenges is to feed the ever-increasing world population. The agrochemical tools growers currently utilize are also under continuous pressure, due to a number of factors that contribute to the loss of existing products. Mesoionic pyrido[1,2-a]pyrimidinones are an unusual yet very intriguing class of compounds. Known for several decades, this class of compounds had not been systemically studied until we started our insecticide discovery program. This Account provides an overview of the efforts on mesoionic pyrido[1,2-a]pyridinone insecticide discovery, beginning from the initial high throughput screen (HTS) discovery to ultimate identification of triflumezopyrim (4, DuPont Pyraxalt) and dicloromezotiaz (5) for commercialization as novel insecticides. Mesoionic pyrido[1,2-a]pyrimidinones with a n-propyl group at the 1-position, such as compound 1, were initially isolated as undesired byproducts from reactions for a fungicide discovery program at DuPont Crop Protection. Such compounds showed interesting insecticidal activity in a follow-up screen and against an expanded insect species list. The area became an insecticide hit for exploration and then a lead area for optimization. At the lead optimization stage, variations at three regions of compound 1, i.e., side-chain (n-propyl group), substituents on the 3-phenyl group, and substitutions on the pyrido- moiety, were explored with many analogues prepared and evaluated. Breakthrough discoveries included replacing the n-propyl group with a 2,2,2-trifluoroethyl group to generate compound 2, and then with a 2-chlorothiazol-5-ylmethyl group to form compound 3. 3 possesses potent insecticidal activity not only against a group of hopper species, including corn planthopper (Peregrinus maidis (Ashmead), CPH) and potato leafhopper (Empoasca fabae (Harris), PLH), as well as two key rice hopper species, namely, brown planthopper (Nilaparvata lugens (Stål), BPH) and rice green leafhopper (Nephotettix

  12. Identification and cloning of two insecticidal protein genes from ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... specificity and environmental safety. The activity ... isolated from a soil sample collected in Songfeng Shan district, Heilongjiang Province, China. Bt S185 ..... Figure 5. B. chain reacti polymorphism. RFLP pattern. PCR-RFLP endonuclease oning and ex e recovered P ned into pEB smids pEB-8 ombinant pla.

  13. Effect of selected insecticides on SF9 insect cell line

    International Nuclear Information System (INIS)

    Saleh, M.; Rahmo, A.; Hajjar, J.

    2013-01-01

    The toxic effect of three insecticides: dimethoate (organophosphate insecticide), acetamiprid (neonicotinoid insecticide) and deltamethrin (pyrethroid insecticide) were evaluated in vitro on cultured Sf9 cell line. Cell growth inhibition was measured by the 3- (4,5- dimethylthiazol - 2-yl) - 2,5 - diphenyl tetrazolium bromide (MTT) assay. Regression Analysis was used to estimate the 20% inhibition of cells growth (IC 20). The IC 20 values obtained for deltamethrin, acetamipridand dimethoate were: 46.8, 61.6 and 68.9 μM, respectively. The proportion of phagocytic cells was positively correlated with the applied concentrations of the insecticides. (author)

  14. Possibilities of Botanical Insecticides in Plant Protection

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Sajfrtová, Marie; Sovová, Helena; Bárnet, M.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 16-23 ISSN 1313-2563 Grant - others:MŠk(CZ) 2B08049 Institutional support: RVO:67985858 Keywords : botanical insecticides * plant extracts * supercritical fluid extraction Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  15. Possibilities of Botanical Insecticides in Plant Protection

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Sajfrtová, Marie; Sovová, Helena; Bárnet, M.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 16-23 ISSN 1313-2563 Grant - others:GA MŠMT(CZ) 2B08049 Institutional research plan: CEZ:AV0Z40720504 Keywords : botanical insecticides * plant exctracts * supercritical fluid extraction Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  16. Insecticidal and fungicidal compounds from Isatis tinctoria.

    Science.gov (United States)

    Seifert, K; Unger, W

    1994-01-01

    Tryptanthrin (1), indole-3-acetonitrile (2) and p-coumaric acid methylester (3) were isolated from the aerial parts of Isatis tinctoria L. The compounds show insecticidal and anti-feedant activity against termites (Reticulitermis santonensis), insect preventive and control activity against larvae of the house longhorn beetle (Hylotrupes bajulus) and fungicidal activity against the brown-rot fungus (Coniophora puteana).

  17. Is Apis mellifera more sensitive to insecticides than other insects?

    Science.gov (United States)

    Hardstone, Melissa C; Scott, Jeffrey G

    2010-11-01

    Honey bees (Apis mellifera L.) are among the most important pollinators in natural and agricultural settings. They commonly encounter insecticides, and the effects of insecticides on honey bees have been frequently noted. It has been suggested that honey bees may be (as a species) uniquely sensitive to insecticides, although no comparative toxicology study has been undertaken to examine this claim. An extensive literature review was conducted, using data in which adult insects were topically treated with insecticides. The goal of this review was to summarize insecticide toxicity data between A. mellifera and other insects to determine the relative sensitivity of honey bees to insecticides. It was found that, in general, honey bees were no more sensitive than other insect species across the 62 insecticides examined. In addition, honey bees were not more sensitive to any of the six classes of insecticides (carbamates, nicotinoids, organochlorines, organophosphates, pyrethroids and miscellaneous) examined. While honey bees can be sensitive to individual insecticides, they are not a highly sensitive species to insecticides overall, or even to specific classes of insecticides. However, all pesticides should be used in a way that minimizes honey bee exposure, so as to minimize possible declines in the number of bees and/or honey contamination. Copyright © 2010 Society of Chemical Industry.

  18. Insecticide resistance in disease vectors from Mayotte: an opportunity for integrated vector management.

    Science.gov (United States)

    Pocquet, Nicolas; Darriet, Frédéric; Zumbo, Betty; Milesi, Pascal; Thiria, Julien; Bernard, Vincent; Toty, Céline; Labbé, Pierrick; Chandre, Fabrice

    2014-07-01

    Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. The low resistance observed in Mayotte's main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control

  19. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    Science.gov (United States)

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina

  20. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies

    Directory of Open Access Journals (Sweden)

    Yébakima André

    2009-10-01

    Full Text Available Abstract Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies. Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71% of the sodium channel 'knock down resistance' (kdr mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT

  1. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies).

    Science.gov (United States)

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-10-26

    The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. These results suggest that the high level of

  2. Exploration of Novel Botanical Insecticide Leads: Synthesis and Insecticidal Activity of β-Dihydroagarofuran Derivatives.

    Science.gov (United States)

    Zhao, Ximei; Xi, Xin; Hu, Zhan; Wu, Wenjun; Zhang, Jiwen

    2016-02-24

    The discovery of novel leads and new mechanisms of action is of vital significance to the development of pesticides. To explore lead compounds for botanical insecticides, 77 β-dihydroagarofuran derivatives were designed and synthesized. Their structures were mainly confirmed by (1)H NMR, (13)C NMR, DEPT-135°, IR, MS, and HRMS. Their insecticidal activity was evaluated against the third-instar larvae of Mythimna separata Walker, and the results indicated that, of these derivatives, eight exhibited more promising insecticidal activity than the positive control, celangulin-V. Particularly, compounds 5.7, 6.6, and 6.7 showed LD50 values of 37.9, 85.1, and 21.1 μg/g, respectively, which were much lower than that of celangulin-V (327.6 μg/g). These results illustrated that β-dihydroagarofuran ketal derivatives can be promising lead compounds for developing novel mechanism-based and highly effective botanical insecticides. Moreover, some newly discovered structure-activity relationships are discussed, which may provide some important guidance for insecticide development.

  3. Ion channels: molecular targets of neuroactive insecticides.

    Science.gov (United States)

    Raymond-Delpech, Valérie; Matsuda, Kazuhiko; Sattelle, Benedict M; Rauh, James J; Sattelle, David B

    2005-11-01

    Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

  4. Mixture for Controlling Insecticide-Resistant Malaria Vectors

    OpenAIRE

    Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabire, R. K.; Lapied, B.; Chandre, Fabrice; Hougard, Jean-Marc

    2008-01-01

    The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area ne...

  5. Insecticides suppress natural enemies and increase pest damage in cabbage.

    Science.gov (United States)

    Bommarco, Riccardo; Miranda, Freddy; Bylund, Helena; Björkman, Christer

    2011-06-01

    Intensive use of pesticides is common and increasing despite a growing and historically well documented awareness of the costs and hazards. The benefits from pesticides of increased yields from sufficient pest control may be outweighed by developed resistance in pests and killing of beneficial natural enemies. Other negative effects are human health problems and lower prices because of consumers' desire to buy organic products. Few studies have examined these trade-offs in the field. Here, we demonstrate that Nicaraguan cabbage (Brassica spp.) farmers may suffer economically by using insecticides as they get more damage by the main pest diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), at the same time as they spend economic resources on insecticides. Replicated similarly sized cabbage fields cultivated in a standardized manner were either treated with insecticides according common practice or not treated with insecticides over two seasons. Fields treated with insecticides suffered, compared with nontreated fields, equal or, at least in some periods of the seasons, higher diamondback moth pest attacks. These fields also had increased leaf damage on the harvested cabbage heads. Weight and size of the heads were not affected. The farmers received the same price on the local market irrespective of insecticide use. Rates of parasitized diamondback moth were consistently lower in the treated fields. Negative effects of using insecticides against diamondback moth were found for the density of parasitoids and generalist predatory wasps, and tended to affect spiders negatively. The observed increased leaf damages in insecticide-treated fields may be a combined consequence of insecticide resistance in the pest, and of lower predation and parasitization rates from naturally occurring predators that are suppressed by the insecticide applications. The results indicate biological control as a viable and economic alternative pest management strategy

  6. Diagnostic Doses of Insecticides for Adult Aedes aegypti to Assess Insecticide Resistance in Cuba.

    Science.gov (United States)

    Rodríguez, María Magdalena; Crespo, Ariel; Hurtado, Daymi; Fuentes, Ilario; Rey, Jorge; Bisset, Juan Andrés

    2017-06-01

    The objective of this study was to determine diagnostic doses (DDs) of 5 insecticides for the Rockefeller susceptible strain of Aedes aegypti , using the Centers for Disease Control and Prevention (CDC) bottle bioassay as a tool for monitoring insecticide resistance in the Cuban vector control program. The 30-min DD values determined in this study were 13.5 μg/ml, 6.5 μg/ml, 6 μg/ml, 90.0 μg/ml, and 15.0 μg/ml for cypermethrin, deltamethrin, lambda-cyhalothrin, chlorpyrifos, and propoxur, respectively. To compare the reliability of CDC bottle bioassay with the World Health Organization susceptible test, 3 insecticide-resistant strains were evaluated for deltamethrin and lambda-cyhalothrin. Results showed that the bottles can be used effectively from 21 to 25 days after treatment and reused up to 4 times, depending on the storage time. The CDC bottle bioassay is an effective tool to assess insecticide resistance in field populations of Ae. aegypti in Cuba and can be incorporated into vector management programs using the diagnostic doses determined in this study.

  7. Emamectin benzoate: new insecticide against Helicoverpa armigera.

    Science.gov (United States)

    Fanigliulo, A; Sacchetti, M

    2008-01-01

    Emamectin benzoate is a new insecticide of Syngenta Crop Protection, with a new mechanism of action and a strong activity against Lepidoptera as well as with and a high selectivity on useful organisms. This molecule acts if swallowed and has some contact action. It penetrates leaf tissues (translaminar activity) and forms a reservoir within the leaf. The mechanism of action is unique in the panorama of insecticides. In facts, it inhibits muscle contraction, causing a continuous flow of chlorine ions in the GABA and H-Glutamate receptor sites. During 2006 and 2007, experimentation was performed by the Bioagritest test facility, according to EPPO guidelines and Principles of Good Experimental Practice (GEP), aiming at establishing the biological efficacy and the selectivity of Emamectin benzoate on industry tomato against Helicoverpa armigera (Lepidoptera: Noctuidoe). The study was performed in Tursi-Policoro (Matera), southern Italy. Experimental design consisted in random blocks, in 4 repetitions. A dosage of 1.5 Kg/ha of the formulate was compared with two commercial formulates: Spinosad 0.2 kg/ha (Laser, Dow Agrosciences Italia) and Indoxacarb 0.125 kg/ha (Steward EC insecticide, Dupont). Three foliage applications were applied every 8 days. The severity of damage induced by H. armigera was evaluated on fruits. Eventual phytotoxic effects were also evaluated. Climatic conditions were optimal for Lepidoptera development, so that the percentage of fruits attacked in 2007 at the first scouting was 68.28%. Emamectin benzoate has shown, in two years of testing, a high control of H. armigera if compared with the standards Indoxacarb and Spinosad. No effect of phytotoxicity was noticed on fruits.

  8. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  9. Effectiveness and profitability of insecticide formulations used for ...

    African Journals Online (AJOL)

    To identify optimal pest control with lower economic risks to farmers, we investigated the effectiveness and profitability of different insecticides and insecticide formulations against bean fly (Ophiomyia spp.) and bean flower thrips (Megalurothrips sjostedtii). Two separate experiments were conducted during 2009 to 2012.

  10. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    USER

    2010-03-15

    Mar 15, 2010 ... This study provides information on the incidence of major insect pests of cowpea as well as the minimum insecticide control intervention necessary for effectively reducing cowpea yield losses on the field. Two insecticide spray regimes (once at flowering and podding) significantly reduced insect population ...

  11. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    Field studies were conducted during the 2008 - 2009 cropping season to determine the minimal insecticide application which can reduce cowpea yield losses on the field due to insect pest infestations in the Transkei region of South Africa. Treatments consisted of five cowpea varieties and four regimes of insecticide spray ...

  12. Design, Synthesis and Insecticidal Activities of Novel Phenyl Substituted Isoxazolecarboxamides

    Institute of Scientific and Technical Information of China (English)

    LIU Peng-fei; ZHANG Ji-feng; YAN Tao; XIONG Li-xia; LI Zheng-ming

    2012-01-01

    Thirteen novel phenyl substituted isoxazolecarboxamides were synthesized,and their structures were characterized by 1H NMR,elementary analysis and high-resolution mass spectrometry(HRMS) techniques.Their evaluated insecticidal activities against oriental armyworm(Mythimna separata) indicate that the phcnyl substituted isoxazolecarboxamides exhibited moderate insecticidal activities,among which compounds 9c and 9k showed comparatively higher activities.

  13. Mechanistic modeling of insecticide risks to breeding birds in ...

    Science.gov (United States)

    Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of the insecticide and the risk the insecticide poses to the environment and non-target wildlife. At the present time, current USEPA risk assessments do not include population-level endpoints. In this paper, we present a new mechanistic model, which allows risk assessors to estimate the effects of insecticide exposure on the survival and seasonal productivity of birds known to use agricultural fields during their breeding season. The new model was created from two existing USEPA avian risk assessment models, the Terrestrial Investigation Model (TIM v.3.0) and the Markov Chain Nest Productivity model (MCnest). The integrated TIM/MCnest model has been applied to assess the relative risk of 12 insecticides used to control corn pests on a suite of 31 avian species known to use cornfields in midwestern agroecosystems. The 12 insecticides that were assessed in this study are all used to treat major pests of corn (corn root worm borer, cutworm, and armyworm). After running the integrated TIM/MCnest model, we found extensive differences in risk to birds among insecticides, with chlorpyrifos and malathion (organophosphates) generally posing the greatest risk, and bifenthrin and ë-cyhalothrin (

  14. Expression of melanin and insecticidal protein from Rhodotorula ...

    African Journals Online (AJOL)

    Both the salmon/red melanin and the insecticidal producing genes of Rhodotorula glutinis was successfully expressed in Escherichia coli using plasmid pZErO-1. This work suggests that in Rhodotorula species melanin and insecticidal toxin are co-expressed and therefore possibly co-evolved. Keywords: Rhodotorula ...

  15. Guide to testing insecticides on coniferous forest defoliators

    Science.gov (United States)

    Carroll B Jr. Williams; David A. Sharpnack; Liz Maxwell; Patrick J. Shea; Mark D. McGregor

    1985-01-01

    This report provides a guide to techniques for designing field tests of candidate insecticides, and for carrying out pilot tests and control projects. It describes experimental designs for testing hypotheses, and for sampling trees to estimate insect population densities and percent reduction after treatments. Directions for applying insecticides by aircraft and for...

  16. Biological efficacy of the ecotoxically favourable insecticides and ...

    African Journals Online (AJOL)

    Administrator

    2011-05-30

    May 30, 2011 ... different, studies done in natural conditions should be favored. Key words: Insecticides ... insecticide was applied on synthetic or natural food of the target insect ..... Pozsgay M, Fast P, Kaplan H, Carey PR (1987). The effect of ...

  17. Ecdysone Agonist: New Insecticides with Novel Mode of Action

    Directory of Open Access Journals (Sweden)

    Y. Andi Trisyono

    2002-12-01

    Full Text Available Development of insect resistance to insecticide has been the major driving force for the development of new insecticides. Awareness and demand from public for more environmentally friendly insecticides have contributed in shifting the trend from using broad spectrum to selective insecticides. As a result, scientists have looked for new target sites beyond the nervous system. Insect growth regulators (IGRs are more selective insecticides than conventional insecticides, and ecdysone agonists are the newest IGRs being commercialized, e.g. tebufenozide, methoxyfenozide, and halofenozide. Ecdysone agonists bind to the ecdysteroid receptors, and they act similarly to the molting hormone 20-hydroxyecdysone. The binding provides larvae or nymphs with a signal to enter a premature and lethal molting cycle. In addition, the ecdysone agonists cause a reduction in the number of eggs laid by female insects. The ecdysone agonists are being developed as selective biorational insecticides. Tebufenozide and methoxyfenozide are used to control lepidopteran insect pests, whereas halofenozide is being used to control coleopteran insect pests. Their selectivity is due to differences in the binding affinity between these compounds to the receptors in insects from different orders. The selectivity of these compounds makes them candidates to be used in combinations with other control strategies to develop integrated pest management programs in agricultural ecosystems. Key words: new insecticides, selectivity, ecdysone agonists

  18. Interactions of transgenic Bacillus thuringiensis insecticidal crops with spiders (Araneae)

    Science.gov (United States)

    Genetically modified crops expressing insecticidal proteins from Bacillus thuringiensis (Bt) have dramatically increased in acreage since their introduction in the mid-1990’s. Although the insecticidal mechanisms of Bt target specific pests, concerns persist regarding direct and indirect effects on...

  19. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  20. Botanical insecticides inspired by plant-herbivore chemical interactions.

    Science.gov (United States)

    Miresmailli, Saber; Isman, Murray B

    2014-01-01

    Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ecotoxicological study of insecticide effects on arthropods in common bean.

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. An Operational Framework for Insecticide Resistance Management Planning.

    Science.gov (United States)

    Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael

    2016-05-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.

  3. Rice Production without Insecticide in Smallholder Farmer's Field

    Directory of Open Access Journals (Sweden)

    M. P. Ali

    2017-05-01

    Full Text Available Highlights:Use of perching, sweeping, and need based insecticide (IPM technique useage produce at par yields compared to prophylactic insecticide useage in rice fields.There exists a technique that can reduce 75% of insecticide useage in rice field.The results were obtained in cooperation between smallholder rice farmers and researchers of Bangladesh.Currently rice protection from insect pests solely depends on chemical pesticides which have tremendous impact on biodiversity, environment, animal, and human health. To reduce their impact from our society we need to cut pesticide use from agricultural practices. To address this issue, we did an experiment to identify realistic solutions that could help farmers build sustainable crop protection systems and minimize useage of insecticides and thus reduce the impact of pesticides in the environment. Innovations developed jointly by farmers and researchers and evaluated for their potential to be adopted by more farmers. In this paper we tested four management practices jointly with smallholder farmer fields in order to select the best one. Four management practices were used namely, T1 = Prophylactic use of insecticide where insecticide was applied in rice field at every 15 days interval without judging the infestation level; T2 = Perching (that is, placing roosting (perching sites for insectivorous birds within the rice field and concurrent sweep net samples along with need-based insecticide application; T3 = Perching only; and T4 = Farmer's own practices. The results revealed that routine application of insecticides for crop protection is not mandatory which is commonly found at use in rice farmers. In our experiment, where prophylactic method or farmers used 3–4 times insecticides without judging the insect pests infestation level, the similar pest population was found when compared to the field where insecticide was not applied. Our management system reduced by 75% the use of insecticides even

  4. Fate and bioavailability of ¹⁴C-pyrene and ¹⁴C-lindane in sterile natural and artificial soils and the influence of aging.

    Science.gov (United States)

    Smídová, Klára; Hofman, Jakub; Ite, Aniefiok E; Semple, Kirk T

    2012-12-01

    Soil organic matter is used to extrapolate the toxicity and bioavailability of organic pollutants between different soils. However, it has been shown that other factors such as microbial activity are crucial. The aim of this study was to investigate if sterilization can reduce differences in the fate and bioavailability of organic pollutants between different soils. Three natural soils with increasing total organic carbon (TOC) content were collected and three artificial soils were prepared to obtain similar TOCs. Soils were sterilized and spiked with (14)C-pyrene and (14)C-lindane. Total (14)C radioactivity, HPCD extractability, and bioaccumulation in Eisenia fetida were measured over 56 days. When compared to non-sterile soils, differences between the natural and artificial soils and the influence of soil-contaminant contact time were generally reduced in the sterile soils (especially with middle TOC). The results indicate the possibility of using sterile soils as "the worst case scenario" in soil ecotoxicity studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A rapid, solid phase extraction (SPE technique for the extraction and gas chromatographic determination lindane pesticide residue in tissue and milk

    Directory of Open Access Journals (Sweden)

    Yuningsih

    2006-03-01

    Full Text Available Organochlorine pesticide contamination in feed can cause residue in animal product (tissue and milk, so its become a problem in food safety. Solid phase extraction (SPE has been carried out for determination organochlorine pesticide residues in food animal production. The technique was rapid, not costly and produce limited amount of hazardous-waste. Samples were homogenized with acetonitrile trough cartridge C18, eluted in fluorocyl column with 2% ether-petroleum or acetonitrile fortissue and milk samples respectively. The recoveries of tissue sample by addition lindane standard solution: 0.50 and 1.00 μg are 85.10 and 103.10% respectively, while that of milk with the addition of 0.50, 1.00 and 1.50 μg are 83.80, 88.69 and 91.24% respectively. Three replicates were carried out for every sample. According of validation criteria of FAO/IAEA the recovery for analysis of pesticide residues was 70-110%. Therefore, the method is applicable.

  6. Insecticide-induced hormesis and arthropod pest management.

    Science.gov (United States)

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry.

  7. Induced tolerance from a sublethal insecticide leads to cross-tolerance to other insecticides.

    Science.gov (United States)

    Hua, Jessica; Jones, Devin K; Relyea, Rick A

    2014-04-01

    As global pesticide use increases, the ability to rapidly respond to pesticides by increasing tolerance has important implications for the persistence of nontarget organisms. A recent study of larval amphibians discovered that increased tolerance can be induced by an early exposure to low concentrations of a pesticide. Since natural systems are often exposed to a variety of pesticides that vary in mode of action, we need to know whether the induction of increased tolerance to one pesticide confers increased tolerance to other pesticides. Using larval wood frogs (Lithobates sylvaticus), we investigated whether induction of increased tolerance to the insecticide carbaryl (AChE-inhibitor) can induce increased tolerance to other insecticides that have the same mode of action (chlorpyrifos, malathion) or a different mode of action (Na(+)channel-interfering insecticides; permethrin, cypermethrin). We found that embryonic exposure to sublethal concentrations of carbaryl induced higher tolerance to carbaryl and increased cross-tolerance to malathion and cypermethrin but not to chlorpyrifos or permethrin. In one case, the embryonic exposure to carbaryl induced tolerance in a nonlinear pattern (hormesis). These results demonstrate that that the newly discovered phenomenon of induced tolerance also provides induced cross-tolerance that is not restricted to pesticides with the same mode of action.

  8. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    Science.gov (United States)

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  9. Insecticidal defenses of Piperaceae from the neotropics.

    Science.gov (United States)

    Bernard, C B; Krishanmurty, H G; Chauret, D; Durst, T; Philogène, B J; Sánchez-Vindas, P; Hasbun, C; Poveda, L; San Román, L; Arnason, J T

    1995-06-01

    Insecticidal and growth-reducing properties of extracts of 14 species of American neotropical Piperaceae were investigated by inclusion in diets of a polyphagous lepidopteran, the European corn borer,Ostrinia nubilalis. Nutritional indices suggested most extracts acted by postdigestive toxicity.Piper aduncum, P. tuberculatum, andP. decurrens were among the most active species and were subjected to bioassay-guided isolation of the active components. Dillapiol was isolated from the active fraction ofP. aduncum, piperlonguminine was isolated fromP. tuberculatum, and a novel neolignan fromP. decurrens. The results support other studies on Asian and AfricanPiper species, which suggest that lignans and isobutyl amides are the active defence compounds in this family.

  10. Insecticidal Constituents from Buddlej aalbiflora Hemsl.

    Science.gov (United States)

    Zhang, Xiu-Yun; Shen, Jing; Zhou, Yu; Wei, Zhi-Ping; Gao, Jin-Ming

    2017-06-01

    Eleven known compounds, deoxymikanolide (1), 1,3-dihydroxyxanthone (2), kumatakenin (3), apigenin (4), chrysin (5), kaempferol (6), Iso-kaempferol (7), luteolin (8), luteolin-3',4'-dimethylether-7-O-β-glucoside (9), luteolin-7-O-β-glucoside (10) and quercetin (11) were identified in MeOH extract of Buddleja albiflora Hemsl (Oleaceae). These compounds (each, 1, 0.5 and 0.25 mg mL -1 ) were tested for insecticidal activity against 3rd and 4th-instar larvae of Plutella xylostella, 3rd-instar larvae of Mythimna separata and 3rd-instar larvae of Macrosiphoniella sanborni. The lowest 50% anti-feedant concentration (AFC 50 ) against P. xylostella and 50% lethal concentration (LC 50 ) against P. xylostella and M. sanborni were observed as 0.0058, 0.0046 and 3.4048 mg L -1 , respectively.

  11. Insecticidal Activity of Cyanohydrin and Monoterpenoid Compounds

    Directory of Open Access Journals (Sweden)

    Joel R. Coats

    2000-04-01

    Full Text Available The insecticidal activities of several cyanohydrins, cyanohydrin esters and monoterpenoid esters (including three monoterpenoid esters of a cyanohydrin were evaluated. Topical toxicity to Musca domestica L. adults was examined, and testing of many compounds at 100 mg/fly resulted in 100% mortality. Topical LD50 values of four compounds for M. domestica were calculated. Testing of many of the reported compounds to brine shrimp (Artemia franciscana Kellog resulted in 100% mortality at 10 ppm, and two compounds caused 100% mortality at 1 ppm. Aquatic LC50 values were calculated for five compounds for larvae of the yellow fever mosquito (Aedes aegypti (L.. Monoterpenoid esters were among the most toxic compounds tested in topical and aquatic bioassays.

  12. Malaria entomological profile in Tanzania from 1950 to 2010: a review of mosquito distribution, vectorial capacity and insecticide resistance.

    Science.gov (United States)

    Kabula, Bilali; Derua, Yahya A; Tungui, Patrick; Massue, Dennis J; Sambu, Edward; Stanley, Grades; Mosha, Franklin W; Kisinza, William N

    2011-12-01

    In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anophelesfunestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence .a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 georeferenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/ collection and

  13. Teenage organophosphate insecticide poisoning: An ugly trend in ...

    African Journals Online (AJOL)

    UNIBEN

    is worsened by uncontrolled sale of organophosphorus insecticides on the streets and in open markets. We report ..... Nicotinic activity results in autonomic nervous system .... optimize outcome.23 Oximes are cholinesterase re-activators used ...

  14. Gas Chromaotography-Mass Spectrometry Analysis of Insecticidal ...

    African Journals Online (AJOL)

    Insecticidal Essential Oil Derived from Chinese Ainsliaea fragrans Champ ex Benth ... Methods: The essential oil of A. fragrans aerial parts was obtained by hydrodistillation and analyzed by ..... toxicity than the crude oil. Caryophyllene showed.

  15. Scepticism towards insecticide treated mosquito nets for malaria ...

    African Journals Online (AJOL)

    Scepticism towards insecticide treated mosquito nets for malaria control in rural ... especially among under-five year children and pregnant women in poor rural ... through social marketing strategy for malaria control prior to the introduction of ...

  16. Design, Synthesis and Insecticidal Activity of Novel Phenylurea Derivatives

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available A series of novel phenylurea derivatives were designed and synthesized according to the method of active groups linkage and the principle of aromatic groups bioisosterism in this study. The structures of the novel phenylurea derivatives were confirmed based on ESI-MS, IR and 1H-NMR spectral data. All of the compounds were evaluated for the insecticidal activity against the third instars larvae of Spodoptera exigua Hiibner, Plutella xyllostella Linnaeus, Helicoverpa armigera Hubner and Pieris rapae Linne respectively, at the concentration of 10 mg/L. The results showed that all of the derivatives displayed strong insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, chlorbenzuron and metaflumizone. Among the synthesized compounds, 3b, 3d, 3f, 4b and 4g displayed broad spectrum insecticidal activity.

  17. Neurotoxicological effects and the mode of action of pyrethroid insecticides

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Bercken, Joep van den

    1990-01-01

    Neuroexcitatory symptoms of acute poisoning of vertebrates by pyrethroids are related to the ability of these insecticides to modify electrical activity in various parts of the nervous system. Repetitive nerve activity, particularly in the sensory nervous system, membrane depolarization, and

  18. Effect of natural and chemical insecticides on Hyalopterus pruni and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Anthmis pseudocotula and their mixtures with chemical insecticide (Malathion) on growth of ... ed the use of natural extracts of Fagonia arabica, Salix ..... Studies on the efficacy of neem products against the aphid Aphis.

  19. Process optimization and insecticidal activity of alkaloids from the ...

    African Journals Online (AJOL)

    Process optimization and insecticidal activity of alkaloids from the root bark of Catalpa ovata G. Don by response surface methodology. ... Tropical Journal of Pharmaceutical Research. Journal Home · ABOUT THIS JOURNAL · Advanced ...

  20. Insect P450 inhibitors and insecticides: challenges and opportunities.

    Science.gov (United States)

    Feyereisen, René

    2015-06-01

    P450 enzymes are encoded by a large number of genes in insects, often over a hundred. They play important roles in insecticide metabolism and resistance, and growing numbers of P450 enzymes are now known to catalyse important physiological reactions, such as hormone metabolism or cuticular hydrocarbon synthesis. Ways to inhibit P450 enzymes specifically or less specifically are well understood, as P450 inhibitors are found as drugs, as fungicides, as plant growth regulators and as insecticide synergists. Yet there are no P450 inhibitors as insecticides on the market. As new modes of action are constantly needed to support insecticide resistance management, P450 inhibitors should be considered because of their high potential for insect selectivity, their well-known mechanisms of action and the increasing ease of rational design and testing. © 2014 Society of Chemical Industry.

  1. Gas Chromatography-Mass Spectrometric Analysis and Insecticidal ...

    African Journals Online (AJOL)

    HP

    Original Research Article. Gas Chromatography-Mass Spectrometric Analysis and ... into a natural fumigant/insecticide for the control of stored product insects. Keywords: Mallotus ..... stability as well as reduce cost. ACKNOWLEDGEMENT.

  2. Gas Chromatography-Mass Spectrometric Analysis and Insecticidal ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research ... apelta aerial parts was analyzed by gas chromatography/mass spectrometric (GC/MS) to determine its composition. ... into a natural fumigant/insecticide for the control of stored product insects.

  3. Federal Insecticide, Fungicide, and Rodenticide Act Section 18 Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — Section 18 of Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) authorizes EPA to allow an unregistered use of a pesticide for a limited time if EPA...

  4. PRN 73-4: Residual Insecticides in Food Handling Establishments

    Science.gov (United States)

    This notice provides a copy of a Federal Register notice published July 6, 1973, regarding certain insecticides used in food-handling establishments. It establishes certain definitions and requirements related to approval for crack and crevice treatment.

  5. Log bioassay of residual effectiveness of insecticides against bark beetles

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Residual effectiveness of nine insecticides applied to bark was tested against western, mountain, and Jeffrey pine beetles. Ponderosa and Jeffrey pine trees were treated and logs cut from them 2 to 13 months later, and bioassayed with the three beetles. The insecticides were sprayed at the rate of 1 gal (3.8 l) per 40- or 80-ft² (3.6 or 7.2 m²) bark surface at varying...

  6. The use of insecticides to control insect pests

    OpenAIRE

    M Wojciechowska; P Stepnowski; M Gołębiowski

    2016-01-01

    Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resi...

  7. Organochlorine insecticide poisoning in Golden Langurs Trachypithecus geei

    Directory of Open Access Journals (Sweden)

    D.C. Pathak

    2011-07-01

    Full Text Available Organochlorine insecticide poisoning was recorded in three Golden Langurs (Trachypithecus geei in Chakrashila Wildlife Sanctuary (CWS in Kokrajhar district of Assam during the month of December, 2008. The poisoning was due to prolonged ingestion of rubber plant leaves sprayed with the insecticide in a rubber plantation adjacent to the sanctuary. Though no specific gross lesions were observed, histopathologically, centilobular hepatic necrosis, mild renal degeneration, necrotic enteritis, pulmonary congestion and neuronal degeneration were recorded in all three animals.

  8. Plant compounds insecticide activity against Coleoptera pests of stored products

    OpenAIRE

    MOREIRA, M.D.; PICANÇO, M.C.; BARBOSA, L.C. de A.; GUEDES, R.N.C.; CAMPOS, M.R. de; SILVA, G.A.; MARTINS, J.C.

    2008-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed...

  9. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation.

  10. Plasmatic concentration of organochlorine lindane acts as metabolic disruptors in HepG2 liver cell line by inducing mitochondrial disorder

    Energy Technology Data Exchange (ETDEWEB)

    Benarbia, Mohammed el Amine [LUNAM Université, Angers (France); Inserm 1063, Angers (France); Macherel, David [LUNAM Université, Angers (France); UMR 1345 IRHS, Angers (France); Faure, Sébastien; Jacques, Caroline; Andriantsitohaina, Ramaroson [LUNAM Université, Angers (France); Inserm 1063, Angers (France); Malthièry, Yves, E-mail: yves.malthiery@univ-angers.fr [LUNAM Université, Angers (France); Inserm 1063, Angers (France)

    2013-10-15

    Lindane (LD) is a persistent environmental pollutant that has been the subject of several toxicological studies. However, concentrations used in most of the reported studies were relatively higher than those found in the blood of the contaminated area residents and effects of low concentrations remain poorly investigated. Moreover, effects on cell metabolism and mitochondrial function of exposure to LD have received little attention. This study was designed to explore the effects of low concentrations of LD on cellular metabolism and mitochondrial function, using the hepatocarcinoma cell line HepG2. Cells were exposed to LD for 24, 48 and 72 h and different parameters linked with mitochondrial regulation and energy metabolism were analyzed. Despite having any impact on cellular viability, exposure to LD at plasmatic concentrations led to an increase of maximal respiratory capacity, complex I activity, intracellular ATP and NO release but decreased uncoupled respiration to ATP synthesis and medium lactate levels. In addition, LD exposure resulted in the upregulation of mitochondrial biogenesis genes. We suggest that, at plasmatic concentrations, LD acts as a metabolic disruptor through impaired mitochondrial function and regulation with an impact on cellular energetic metabolism. In addition, we propose that a cellular assay based on the analysis of mitochondria function, such as described here for LD, may be applicable for larger studies on the effects of low concentrations of xenobiotics, because of the exquisite sensitivity of this organelle. - Highlights: Our data clearly demonstrated in HepG2 cells that exposure at plasmatic low concentrations of LD were able to: • Impair mitochondrial function • Caused alteration on nucleo-mitochondrial cross-talk • Increase nitric oxide release and protein nitration • Impair cellular energetic metabolism and lipid accumulation.

  11. Fate and bioavailability of 14C-pyrene and 14C-lindane in sterile natural and artificial soils and the influence of aging

    International Nuclear Information System (INIS)

    Šmídová, Klára; Hofman, Jakub; Ite, Aniefiok E.; Semple, Kirk T.

    2012-01-01

    Soil organic matter is used to extrapolate the toxicity and bioavailability of organic pollutants between different soils. However, it has been shown that other factors such as microbial activity are crucial. The aim of this study was to investigate if sterilization can reduce differences in the fate and bioavailability of organic pollutants between different soils. Three natural soils with increasing total organic carbon (TOC) content were collected and three artificial soils were prepared to obtain similar TOCs. Soils were sterilized and spiked with 14 C-pyrene and 14 C-lindane. Total 14 C radioactivity, HPCD extractability, and bioaccumulation in Eisenia fetida were measured over 56 days. When compared to non-sterile soils, differences between the natural and artificial soils and the influence of soil-contaminant contact time were generally reduced in the sterile soils (especially with middle TOC). The results indicate the possibility of using sterile soils as “the worst case scenario” in soil ecotoxicity studies. - Highlights: ► Sterile artificial and natural soils with the same TOC content were used. ► The fate and behavior of two 14 C-POPs were studied over 56 days after spiking. ► Sterilization reduced differences between artificial and natural soils. ► There was no effect of time (aging) in POPs bioaccumulation. ► Sterile soils may be used as “the worst case scenario” in POPs availability studies. - Sterilization reduced the differences in POPs fate and bioavailability between artificial and natural soils with the same TOC content and eliminated the influence of soil contact time.

  12. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L [corrected].

    Directory of Open Access Journals (Sweden)

    Hafiz Azhar Ali Khan

    Full Text Available House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-"A" and LC50: LC50-"B" significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies.

  13. Insecticide Mixtures Could Enhance the Toxicity of Insecticides in a Resistant Dairy Population of Musca domestica L

    Science.gov (United States)

    Khan, Hafiz Azhar Ali; Akram, Waseem; Shad, Sarfraz Ali; Lee, Jong-Jin

    2013-01-01

    House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-“A” and LC50: LC50-“B”) significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies. PMID:23613758

  14. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation

    Science.gov (United States)

    de Almeida, Luis Gustavo; de Moraes, Luiz Alberto Beraldo; Trigo, José Roberto; Omoto, Celso

    2017-01-01

    The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects. PMID:28358907

  15. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation.

    Directory of Open Access Journals (Sweden)

    Luis Gustavo de Almeida

    Full Text Available The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects.

  16. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism

    Science.gov (United States)

    Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.

    2009-01-01

    Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582

  17. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  18. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    Science.gov (United States)

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and

  19. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins.

    Science.gov (United States)

    Martinez, Ana Flávia Canovas; de Almeida, Luís Gustavo; Moraes, Luiz Alberto Beraldo; Cônsoli, Fernando Luís

    2017-06-27

    The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted attention as a source of new bioactive molecules because these microbes are exposed to various selection pressures in their association with insects. Analytical techniques must be used to isolate and characterize new compounds, and sensitive analytical tools such as mass spectrometry and high-resolution chromatography are required to identify the least-abundant molecules. We used classical fermentation techniques combined with tandem mass spectrometry to prospect for insecticidal substances produced by the ant symbiont Streptomyces caniferus. Crude extracts from this bacterium showed low biological activity (less than 10% mortality) against the larval stage of the fall armyworm Spodoptera frugiperda. Because of the complexity of the crude extract, we used fractionation-guided bioassays to investigate if the low toxicity was related to the relative abundance of the active molecule, leading to the isolation of porphyrins as active molecules. Porphyrins are a class of photoactive molecules with a broad range of bioactivity, including insecticidal. The active fraction, containing a mixture of porphyrins, induced up to 100% larval mortality (LD 50  = 37.7 μg.cm -2 ). Tandem mass-spectrometry analyses provided structural information for two new porphyrin structures. Data on the availability of porphyrins in 67 other crude extracts of ant ectosymbionts were also obtained with ion-monitoring experiments. Insect-associated bacterial symbionts are a rich source of bioactive compounds. Exploring

  20. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance.

    Science.gov (United States)

    Schama, Renata; Pedrini, Nicolás; Juárez, M Patricia; Nelson, David R; Torres, André Q; Valle, Denise; Mesquita, Rafael D

    2016-02-01

    mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Detection of the acetylcholinesterase insecticide resistance mutation (G328A) in natural populations of Ceratitis capitata

    International Nuclear Information System (INIS)

    Elfekih, Samia; Haran, Julien; Shannon, Matthew; Vogler, Alfried P.

    2015-01-01

    Wild Mediterranean fruit fly specimens collected from various regions worldwide were screened for the glycine to alanine (Gly->Ala) point mutation (G328A) in the acetylcholinesterase enzyme, presumably causing resistance to organophosphates. We found that the single nucleotide polymorphism (SNP) responsible for this amino acid change is located at the beginning of exon 6 of the Ccace2 gene. The identification of the exact location of the SNP permitted PCR primer design around this site and direct sequencing of the corresponding genomic region. We detected the resistance allele in natural Mediterranean fruit fly populations from Brazil and Spain, but not from other sites in four continents. The known treatment history of sites suggests that the resistance build up is linked to organophosphate application in the held. The PCR-based detection provides a screening method useful for monitoring Mediterranean fruit fly insecticide resistance in local populations and improving pest management strategies accordingly. (author)

  2. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  3. Insecticide mixtures for mosquito net impregnation against malaria vectors

    Directory of Open Access Journals (Sweden)

    Corbel V.

    2002-09-01

    Full Text Available Insecticides belonging to the pyrethroid family are the only compounds currently available for the treatment of mosquito nets. Unfortunately, some malaria vector species have developed resistance to pyrethroids and the lack of alternative chemical categories is a great concern. One strategy for resistance management would be to treat mosquito nets with a mixture associating two insecticides having different modes of action. This study presents the results obtained with insecticide mixtures containing several proportions of bifenthrin (a pyrethroid insecticide and carbosulfan (a carbamate insecticide. The mixtures were sprayed on mosquito net samples and their efficacy were tested against a susceptible strain of Anopheles gambiae, the major malaria vector in Africa. A significant synergism was observed with a mixture containing 25 mg/m2 of bifenthrin (half the recommended dosage for treated nets and 6.25 mg/m2 of carbosulfan (about 2 % of the recommended dosage. The observed mortality was significantly more than expected in the absence of any interaction (80 % vs 41 % and the knock-down effect was maintained, providing an effective barrier against susceptible mosquitoes.

  4. Insecticides promote viral outbreaks by altering herbivore competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Chu, Dong; Wang, Shaoli; Wu, Qingjun; Carriére, Yves; Zhou, Xuguo; Zhang, Youjun

    2015-09-01

    While the management of biological invasions is often characterized by a series of single-specieg decisions, invasive species exist within larger food webs. These biotic interactions can alter the impact of control/eradication programs and may cause suppression efforts to inadvertently facilitate invasion spread and impact. We document the rapid replacement of the invasive Bemisia Middle East-Asia Minor I (MEAM1) cryptic biotype by the cryptic Mediterranean (MED) biotype throughout China and demonstrate that MED is more tolerant of insecticides and a better vector of tomato yellow leaf curl virus (TYLCV) than MEAMJ. While MEAM1 usually excludes MED under natural conditions, insecticide application reverses the MEAM1-MED competitive hierarchy and allows MED to exclude MEAMI. The insecticide-mediated success of MED has led to TYLCV outbreaks throughout China. Our work strongly supports the hypothesis that insecticide use in China reverses the MEAMl-MED competitive hierarchy and allows MED to displace MEAM1 in managed landscapes. By promoting the dominance of a Bemisia species that is a competent viral vector, insecticides thus increase the spread and impact of TYLCV in heterogeneous agroecosystems.

  5. The global status of insect resistance to neonicotinoid insecticides.

    Science.gov (United States)

    Bass, Chris; Denholm, Ian; Williamson, Martin S; Nauen, Ralf

    2015-06-01

    The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Insecticidal and Nematicidal Activities of Novel Mimosine Derivatives

    Directory of Open Access Journals (Sweden)

    Binh Cao Quan Nguyen

    2015-09-01

    Full Text Available Mimosine, a non-protein amino acid, is found in several tropical and subtropical plants, which has high value for medicine and agricultural chemicals. Here, in continuation of works aimed to development of natural product-based pesticidal agents, we present the first significant findings for insecticidal and nematicidal activities of novel mimosine derivatives. Interestingly, mimosinol and deuterated mimosinol (D-mimosinol from mimosine had strong insecticidal activity which could be a result of tyrosinase inhibition (IC50 = 31.4 and 46.1 μM, respectively. Of synthesized phosphoramidothionate derivatives from two these amino alcohols, two compounds (1a and 1b showed high insecticidal activity (LD50 = 0.5 and 0.7 μg/insect, respectively with 50%–60% mortality at 50 μg/mL which may be attributed to acetylcholinesterase inhibition. Compounds 1a and 1b also had strong nematicidal activity with IC50 = 31.8 and 50.2 μM, respectively. Our results suggest that the length of the alkyl chain and the functional group at the C5-position of phosphoramidothionates derived from mimosinol and d-mimosinol are essential for the insecticidal and nematicidal activities. These results reveal an unexplored scaffold as new insecticide and nematicide.

  7. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal; br, picanco@ufv; br, guedes@ufv; br, mateusc3@yahoo com; br, agronomiasilva@yahoo com

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  8. Plant compounds insecticide activity against Coleoptera pests of stored products

    International Nuclear Information System (INIS)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio; julioufv@yahoo.com.br

    2007-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD 50 from 2.72 to 39.71 mg g -1 a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  9. An insecticidal toxin from Nephila clavata spider venom.

    Science.gov (United States)

    Jin, Lin; Fang, Mingqian; Chen, Mengrou; Zhou, Chunling; Ombati, Rose; Hakim, Md Abdul; Mo, Guoxiang; Lai, Ren; Yan, Xiuwen; Wang, Yumin; Yang, Shilong

    2017-07-01

    Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on Na V and K V channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.

  10. Intermediate Syndrome Following Organophosphate Insecticide Poisoning

    Directory of Open Access Journals (Sweden)

    Chen-Chang Yang

    2007-11-01

    Full Text Available Acute organophosphate insecticide poisoning can manifest 3 different phases of toxic effects, namely, acute cholinergic crisis, intermediate syndrome (IMS, and delayed neuropathy. Among them, IMS has been considered as a major contributing factor of organophosphate-related morbidity and mortality because of its frequent occurrence and probable consequence of respiratory failure. Despite a high incidence, the pathophysiology that underlies IMS remains unclear. Previously proposed mechanisms of IMS include different susceptibility of various cholinergic receptors, muscle necrosis, prolonged acetylcholinesterase inhibition, inadequate oxime therapy, downregulation or desensitization of postsynaptic acetylcholine receptors, failure of postsynaptic acetylcholine release, and oxidative stress-related myopathy. The clinical manifestations of IMS typically occur within 24 to 96 hours, affecting conscious patients without cholinergic signs, and involve the muscles of respiration, proximal limb muscles, neck flexors, and muscles innervated by motor cranial nerves. With appropriate therapy that commonly includes artificial respiration, complete recovery develops 5–18 days later. Patients with atypical manifestations of IMS, especially a relapse or a continuum of acute cholinergic crisis, however, were frequently reported in clinical studies of IMS. The treatment of IMS is mainly supportive. Nevertheless, because IMS generally concurs with severe organophosphate toxicity and persistent inhibition of acetylcholinesterase, early aggressive decontamination, appropriate antidotal therapy, and prompt institution of ventilatory support should be helpful in ameliorating the magnitude and/or the incidence of IMS. Although IMS is well recognized as a disorder of neuromuscular junctions, its exact etiology, incidence, and risk factors are not clearly defined because existing studies are largely small-scale case series and do not employ a consistent and rigorous

  11. Influence on sensitivity to insecticides: a case study of a settled area ...

    African Journals Online (AJOL)

    monitoring for successful alternative insecticides. There are currently two ... behaviour or modification avoid landing on insecticide .... aquarium fish food18. When they .... National Statistical Office (NSO) Malawi Government 1998 Census. 16.

  12. Mechanistic modeling of insecticide risks to breeding birds in North American agroecosystems

    Science.gov (United States)

    Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of ...

  13. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  14. Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans and T. catigua (Meliaceae); Constituintes quimicos e atividade inseticida dos extratos de frutos de Trichilia elegans E T. catigua (Meliaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andreia Pereira; Nebo, Liliane; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da [Universidade Federal de Sao Carlos (UFSCAR), Sao Carlos, SP (Brazil). Dept. de Quimica], e-mail: paulo@dq.ufscar.br; Rodrigues, Ricardo Ribeiro [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Biologicas

    2009-07-01

    Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae) has led to the identification of the limonoids 11{beta}-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone) and the steroids stigmasterol, {beta}-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda. (author)

  15. Constituintes químicos e atividade inseticida dos extratos de frutos de Trichilia elegans E T. catigua (Meliaceae Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans AND T. catigua (Meliaceae

    Directory of Open Access Journals (Sweden)

    Andréia Pereira Matos

    2009-01-01

    Full Text Available Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae has led to the identification of the limonoids 11β-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone and the steroids stigmasterol, β-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda.

  16. Efficacy of an insecticide paint against insecticide-susceptible and resistant mosquitoes - Part 1: Laboratory evaluation

    Directory of Open Access Journals (Sweden)

    Carnevale Pierre

    2010-11-01

    Full Text Available Abstract Background The main malaria vector Anopheles gambiae and the urban pest nuisance Culex quinquefasciatus are increasingly resistant to pyrethroids in many African countries. There is a need for new products and strategies. Insecticide paint Inesfly 5A IGR™, containing two organophosphates (OPs, chlorpyrifos and diazinon, and insect growth regulator (IGR, pyriproxyfen, was tested under laboratory conditions for 12 months following WHOPES Phase I procedures. Methods Mosquitoes used were laboratory strains of Cx. quinquefasciatus susceptible and resistant to OPs. The paint was applied at two different doses (1 kg/6 m2 and 1 kg/12 m2 on different commonly used surfaces: porous (cement and stucco and non-porous (softwood and hard plastic. Insecticide efficacy was studied in terms of delayed mortality using 30-minute WHO bioassay cones. IGR efficacy on fecundity, fertility and larval development was studied on OP-resistant females exposed for 30 minutes to cement treated and control surfaces. Results After treatment, delayed mortality was high (87-100% even against OP-resistant females on all surfaces except cement treated at 1 kg/12 m2. Remarkably, one year after treatment delayed mortality was 93-100% against OP-resistant females on non-porous surfaces at both doses. On cement, death rates were low 12 months after treatment regardless of the dose and the resistance status. Fecundity, fertility and adult emergence were reduced after treatment even at the lower dose (p -3. A reduction in fecundity was still observed nine months after treatment at both doses (p -3 and adult emergence was reduced at the higher dose (p -3. Conclusions High mortality rates were observed against laboratory strains of the pest mosquito Cx. quinquefasciatus susceptible and resistant to insecticides. Long-term killing remained equally important on non-porous surfaces regardless the resistance status for over 12 months. The paint's effect on fecundity, fertility and

  17. Insecticide Usage and Chemical Contamination Assessment in Asiatic Pennywort

    Science.gov (United States)

    Bumroongsook, S.

    2017-07-01

    The insecticide usage in commercially grown asiatic pennywort plantations in Nakhonpatum and Nonthaburi province, Thailand was surveyed during January-June, 2016. The results showed that asiatic pennywort cuttworms was leaf destructive and caused the most damge to the production. The growers used organophosphate insecticides to control the caterpillars the most, followed by pyrethoid, abamectin, carbamate and organochlorine, respectively. The chemical contaminants of pennywort from 9 fresh markets in Bangkok was monitored, the result indicated that lead was not detected in the samples. The amount of arsenic was less than 0.075 mg / kg. The insecticide residue measurement of dicofol, chlorpyrifos and methidathion was 0.98, 2.84 and 0.46 mg / kg, respectively.

  18. Insecticide resistance in the western flower thrips, Frankliniella occidentalis

    DEFF Research Database (Denmark)

    Jensen, Sten Erik

    of acetylcholinesterase, the target site enzyme for methiocarb. The results from bioassays with synergists included indicated involvement of cytochrome P450- monooxygenases and esterases in methiocarb resistance in the most resistant populations. Selection with methiocarb on one of the populations to increase the level......The western flower thrips, Frankliniella occidentalis (Pergande) is a serious pest on a wide range of crops throughout the world. In Denmark F. occidentalis is a pest in greenhouses. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance...... to insecticides. Since F. occidentulis spread to become a worldwide pest in 1980’es, resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity...

  19. POTENTIATION OF COPAÍBA OIL-RESIN WITH SYNTHETIC INSECTICIDES TO CONTROL OF FALL ARMYWORM

    OpenAIRE

    ALMEIDA, WALDIANE ARAÚJO DE; SILVA, IGOR HONORATO LEDUÍNO DA; SANTOS, ANA CLÁUDIA VIEIRA DOS; BARROS JÚNIOR, AURÉLIO PAES; SOUSA, ADALBERTO HIPÓLITO DE

    2017-01-01

    ABSTRACT The control of Spodoptera frugiperda (J. E. SMITH) (Lepidoptera: Noctuidae) has been carried out mainly with pyrethroids and organophosphates insecticides. The continuous and indiscriminate use of synthetic insecticides, for decades, has led to the selection of resistant populations and has caused concerns for human health and the environment. An alternative is the use of botanical insecticides, including through the mixtures with synthetic insecticides. This study aimed to investiga...

  20. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  1. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management.

    Science.gov (United States)

    Mougabure-Cueto, Gastón; Picollo, María Inés

    2015-09-01

    Chagas disease is a chronic parasitic infection restricted to America. The disease is caused by the protozoa Trypanosoma cruzi, which is transmitted to human through the feces of infected triatomine insects. Because no treatment is available for the chronic forms of the disease, vector chemical control represents the best way to reduce the incidence of the disease. Chemical control has been based principally on spraying dwellings with insecticide formulations and led to the reduction of triatomine distribution and consequent interruption of disease transmission in several areas from endemic region. However, in the last decade it has been repeatedly reported the presence triatomnes, mainly Triatoma infestans, after spraying with pyrethroid insecticides, which was associated to evolution to insecticide resistance. In this paper the evolution of insecticide resistance in triatomines is reviewed. The insecticide resistance was detected in 1970s in Rhodnius prolixus and 1990s in R. prolixus and T. infestans, but not until the 2000s resistance to pyrthroids in T. infestans associated to control failures was described in Argentina and Bolivia. The main resistance mechanisms (i.e. enhanced metabolism, altered site of action and reduced penetration) were described in the T. infestans resistant to pyrethrods. Different resistant profiles were demonstrated suggesting independent origin of the different resistant foci of Argentina and Bolivia. The deltamethrin resistance in T. infestans was showed to be controlled by semi-dominant, autosomally inherited factors. Reproductive and developmental costs were also demonstrated for the resistant T. infestans. A discussion about resistance and tolerance concepts and the persistence of T. infestans in Gran Chaco region are presented. In addition, theoretical concepts related to toxicological, evolutionary and ecological aspects of insecticide resistance are discussed in order to understand the particular scenario of pyrethroid

  2. Field and Laboratory Evaluations of Insecticides for Southern Pine Beetle Control

    Science.gov (United States)

    Felton L. Hastings; Jack E. Coster; [Editors

    1981-01-01

    Reports results of laboratory screenings and field studies of insecticides for use against the southern pine beetle. Preventive as webas remedial efficacywere observed, along with phytotoxicity to pine and understory hardwood species, effects of insecticides on soil microbial and mesofaunal populations, and degradation of insecticides by selected soil microbes.

  3. Pollution Of Insecticide Residues In PPTN Pasar Jumat Area

    International Nuclear Information System (INIS)

    Syahrir, Ulfa T.; Chairul, Sofnie M.

    2000-01-01

    Measurement of insecticide residue pollution from some organochlorin and organo-phosphat in soil and water samples were carried out 1999-2000 periode. The aim of the measurement was to get information about impact of laboratorium activity on insecticide contents in PPTN PASAR JUMAT. Gas chromatograph with electron capture and flame ionization detector were used to measure the pesticide content. Result of the measurement in PPTN area showed that organo-chlorin were alpha BHC, endosulfan band DDT and organo-phosphat were klorphyriphos and malation and were lower than tolerance level

  4. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs.

    Science.gov (United States)

    Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito

    2015-07-01

    Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance. © 2015 John Wiley & Sons Ltd.

  5. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    Science.gov (United States)

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  6. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    OpenAIRE

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementat...

  7. Insecticidal Potential of an Orally Administered Metabolic Extract of ...

    African Journals Online (AJOL)

    The insecticidal activity of Aspergillus niger IHCS-4 metabolic extract against Chrysomya chloropyga larvae was examined in vitro. The toxicity test revealed that 0.04 mg/g and 0.08 mg/g extract concentration significantly (P>0.05) affected the insect larvae, inducing 20% and 65% mortality respectively, within 24 hours.

  8. Effectiveness of plant based insecticides as a sustainable means of ...

    African Journals Online (AJOL)

    Cucumber (Cucumis sativus) is an important crop in Pakistan. It is affected by many biotic and abiotic factors. Among these, Cucumber mosaic virus is the important disease with economic losses. The purpose of this study was to evaluate the effectiveness of plant based insecticides as a sustainable means to control the ...

  9. Studies .on the efficacy of some biorational insecticides against the ...

    African Journals Online (AJOL)

    W. Tin znara*, C. Na11kinga, l Kashaija & W. Tu.vhemereirwe ... Biorat!onal insecticides obtained from tobacco, ash, urine, pepper and a concoction (mixture) were ... Cultural control ... single components were made by adding I 00 ml of tap.

  10. Risk of transmission of viral haemorrhagic fevers and the insecticide ...

    African Journals Online (AJOL)

    ... of transmission of viral haemorrhagic fevers and the insecticide susceptibility status of Ae. aegypti in some sites in Accra, Ghana. Design: Larval surveys were carried to inspect containers within households and estimate larval indices and adult Aedes mosquitoes were collected using human landing collection technique.

  11. The comparative insecticidal and residual efficacy of sniper and ...

    African Journals Online (AJOL)

    Otoigiakih

    Chemical control is still the main approach for urban pest control (Castle et al., 1999; Rozendaal, 1997; Marrs,. 1993; Lee and Yap, 2003; Tidwell et al., 1994). The use of insecticides is seen as the most effective tool in cockroach control program (WHO, 1996; Chavasse and. Yap, 1997; Lee and Yap, 2003; Tidwell et al., ...

  12. Susceptibility of Adult Mosquitoes to Insecticides in Aqueous Sucrose Baits

    Science.gov (United States)

    2011-06-01

    Lee, and A.H. Azahari. 2005. Adult and larval insecticide susceptibility status of Culex quinquefasciatus (Say) mosquitoes in Kuala Lumpur Malaysia ...Trop. Biomed. 22: 63-68. Nayar, J.K. and D.M. Sauerman, Jr. 1971. The effects of diet on life-span, fecundity and flight potential of Aedes

  13. Efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    ... and Betsulfan at 3.2 l ha-1 recorded the highest and lowest yields, respectively. For effective control of cotton bollworms for maximum yield in the ecology, Thionex applied at 2.8 l ha-1 is recommended. Keywords: Control, cotton bollworms, efficacy, Ghana, synthetic insecticides. African Crop Science Journal, Vol. 20, No.

  14. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  15. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P., E-mail: dweston@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Asbell, A.M., E-mail: aasbell@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Hecht, S.A., E-mail: scott.hecht@noaa.gov [NOAA Fisheries, Office of Protected Resources, 510 Desmond Drive S.E., Lacey, WA 98503 (United States); Scholz, N.L., E-mail: nathaniel.scholz@noaa.gov [NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112 (United States); Lydy, M.J., E-mail: mlydy@siu.edu [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)

    2011-10-15

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: > Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. > Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. > Two creeks contained concentrations acutely lethal to sensitive invertebrates. > Bifenthrin was of greatest concern, though less than in prior studies. > Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  16. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    International Nuclear Information System (INIS)

    Weston, D.P.; Asbell, A.M.; Hecht, S.A.; Scholz, N.L.; Lydy, M.J.

    2011-01-01

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: → Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. → Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. → Two creeks contained concentrations acutely lethal to sensitive invertebrates. → Bifenthrin was of greatest concern, though less than in prior studies. → Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  17. Metaflumizone is a novel sodium channel blocker insecticide.

    Science.gov (United States)

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.

  18. Insecticide resistance testing in malaria vectors in Tanzania ...

    African Journals Online (AJOL)

    mosquito survived much better and the scientists had a total of 467 mosquitoes to run the insecticide susceptibility tests. Innovative ways are necessary under field conditions for mosquito breeding in susceptibility studies. Key words: Malaria, Anopheles gambiae complex, larvae, fabric, resistance, susceptibility, Tanzania.

  19. Effective utilization period of long-lasting insecticide treated nets ...

    African Journals Online (AJOL)

    The study was conducted to evaluate the bioefficacy of long-lasting insecticide treated nets (LLITNs) (PermaNet®2.0) over time and the species composition of Anopheles mosquitoes around Bahir Dar. The space spray collection method was used to determine the species composition of indoor resting Anopheles ...

  20. Insecticide resistance and glutathione S-transferases in mosquitoes ...

    African Journals Online (AJOL)

    Mosquito glutathione S-transferases (GSTs) have received considerable attention in the last 20 years because of their role in insecticide metabolism producing resistance. Many different compounds, including toxic xenobiotics and reactive products of intracellular processes such as lipid peroxidation, act as GST substrates.

  1. Larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus ...

    African Journals Online (AJOL)

    Purpose: To evaluate the larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus, Foenuculum vulgare and Tagetes minuta leaf extracts against Culex quinquefasciatus mosquitoes. Methods: The leaves of the plants were extracted with distilled water, ethanol (95 %), and hexane and the extracts screened for ...

  2. Effect of natural and chemical insecticides on Hyalopterus pruni and ...

    African Journals Online (AJOL)

    Experiments were carried out to evaluate the effect of water extracts of Fagonia arabica, Salix alba and Anthmis pseudocotula and their mixtures with chemical insecticide (Malathion) on growth of. Hyalopterus pruni and characters of Armeniaca vulgaris plants and their soils. The data revealed that F.arabica extract at 20% ...

  3. Biological efficacy of the ecotoxically favourable insecticides and ...

    African Journals Online (AJOL)

    The high biologic efficacy, mechanism of action, resistance to water rinsing, high selectivity, and small quantities of application, anticipated a bright future for them. Since results of researches of biological efficacy of insecticides in laboratory and field conditions are statistically different, studies done in natural conditions ...

  4. Insecticide assays against the brown stink bug feeding on pecan

    Science.gov (United States)

    The brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidae), is an economic pest of pecan, Carya illinoinensis (Wangenh) K. Koch (Juglandaceae), and other agronomic crops across the southeastern U.S. Management of this pest is mainly via insecticides. Many commercial products indicate o...

  5. Environmental insecticide residues from tsetse fly control measures in Uganda

    International Nuclear Information System (INIS)

    Sserunjoji-Sebalija, J.

    1976-01-01

    Up to June 1974 areas in Uganda totalling 8600km 2 have been successfully reclaimed from tsetse fly infestation by ground spray of 3% dieldrin water emulsions. A search for equally effective but less persistent and toxic compounds against tsetse flies has been unsuccessful. Fourteen insecticide formulations have been tested for their persistence on tree bark surfaces and, therefore, their availability and toxicity to the target tsetse flies. Only those compounds with a high immediate insecticidal activity (some higher than dieldrin) like endosulfan, Chlorfenvinphos and propoxur could merit further consideration in tsetse control. While some were toxic to tsetse as fresh deposits, they lacked sufficient persistence. A study of the environmental implication from the continued use of the highly persistent and toxic dieldrin has provided useful data on residues likely to be found both in terrestrial and aquatic fauna and flora. These are generally low. Moreover, there is evidence of degradation in some fish species (Protopterus aethiopicus and Clarias). Also, dilution factors and adsorption involving the muddy nature of water run-off, etc., and controlled burning of grasses after tsetse eradication would tend to inactivate the residual insecticide and protect aquatic systems. The general findings have indicated less risk than anticipated of the environmental contamination from tsetse control by application of persistent and toxic insecticides. (author)

  6. Ethnobotany of plants used as insecticides, repellents and ...

    African Journals Online (AJOL)

    An ethnobotanical study on plants used for the prevention and treatment of malaria was conducted to document the indigenous knowledge particularly associated with the use and conservation of anti-malarial, insecticide and insect repellent medicinal plants. In this study, five sampling sites were selected based on the ...

  7. Chemical Composition and Insecticidal Activity of the Essential Oil of ...

    African Journals Online (AJOL)

    Purpose: To investigate the chemical composition and insecticidal activity of the essential oil of the aerial parts of Ostericum grosseserratum against the maize weevil, Sitophilus zeamaisD. Methods: Steam distillation of the aerial parts of O. grosseserratum during the flowering stage was carried out using a Clavenger ...

  8. Chemical composition and insecticidal properties of essential oil ...

    African Journals Online (AJOL)

    Purpose: To determine the insecticidal properties of essential oil from Mosla soochowensis aerial parts against two insect pests, Sitophilus zeamais and Tribolium castaneum. Methods: Hydro-distillation of M. soochowensis was used to extract the essential oil. Gas chromatography/mass spectrometry (GC/MS) analysis was ...

  9. Bio-insecticides and mating disruption in cranberries

    Science.gov (United States)

    Surveys of native entomopathogenic nematodes in Wisconsin have produced a new bio-insecticide involving two particular nematode species (Oscheius onirici and Heterorhabditis georgiana). In field studies, these nematodes have shown high virulence against flea beetles; in the laboratory, these nematod...

  10. Insecticide Use Practices in Cocoa Production in Four Regions in ...

    African Journals Online (AJOL)

    Most of the insecticides used are classified as class II under WHO Hazard category, and the farmers used very minimal protective clothing during pesticides application. The results of this study show that there is the need to intensify education on safe handling and use of pesticides to reduce pesticide abuse, especially by ...

  11. Cytotoxic effects of delfin insecticide (Bacillus thuringiensis) on cell ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... In acute exposure cells showed deformities such as swelling of cells, oval shaped deformity, and ... Commercial grade of delfin insecticide used in this study was manufactured by .... exposure to cigarette extracts. Antibiotics caused .... administration of a neem pesticide on rat metabolic enzymes. J. Environ.

  12. Material gain: bednets treated with insecticides improve the lives of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-15

    ... 700 mosquito nets each day, marketed under brand names such as "Health Net" and ... Material gain: bednets treated with insecticides improve the lives of Tanzanians. July 15, 2011. Image ... The kit is one of the key elements of PSI's Social Marketing of ... The national strategy will work to change this by involving the full ...

  13. Flupyradifurone: a brief profile of a new butenolide insecticide

    Science.gov (United States)

    Nauen, Ralf; Jeschke, Peter; Velten, Robert; Beck, Michael E; Ebbinghaus-Kintscher, Ulrich; Thielert, Wolfgang; Wölfel, Katharina; Haas, Matthias; Kunz, Klaus; Raupach, Georg

    2015-01-01

    BACKGROUND The development and commercialisation of new chemical classes of insecticides for efficient crop protection measures against destructive invertebrate pests is of utmost importance to overcome resistance issues and to secure sustainable crop yields. Flupyradifurone introduced here is the first representative of the novel butenolide class of insecticides active against various sucking pests and showing an excellent safety profile. RESULTS The discovery of flupyradifurone was inspired by the butenolide scaffold in naturally occurring stemofoline. Flupyradifurone acts reversibly as an agonist on insect nicotinic acetylcholine receptors but is structurally different from known agonists, as shown by chemical similarity analysis. It shows a fast action on a broad range of sucking pests, as demonstrated in laboratory bioassays, and exhibits excellent field efficacy on a number of crops with different application methods, including foliar, soil, seed treatment and drip irrigation. It is readily taken up by plants and translocated in the xylem, as demonstrated by phosphor imaging analysis. Flupyradifurone is active on resistant pests, including cotton whiteflies, and is not metabolised by recombinantly expressed CYP6CM1, a cytochrome P450 conferring metabolic resistance to neonicotinoids and pymetrozine. CONCLUSION The novel butenolide insecticide flupyradifurone shows unique properties and will become a new tool for integrated pest management around the globe, as demonstrated by its insecticidal, ecotoxicological and safety profile. © 2014 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25351824

  14. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    Science.gov (United States)

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-07

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  15. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides.

    Science.gov (United States)

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-04-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.

  16. Biological alterations and self-reported symptoms among insecticides-exposed workers in Burkina Faso.

    Science.gov (United States)

    Toe, Adama M; Ilboudo, Sylvain; Ouedraogo, Moustapha; Guissou, Pierre I

    2012-03-01

    Occupationally exposed workers, farm workers and plant protection agents in the Sahel region of Burkina Faso were interviewed to assess adverse health effects of insecticides. The subjects were also examined for changes in both hematological and biochemical parameters. The prevalence of liver and kidney dysfunction was found to be quite high among insecticide applicators, especially among plant protection agents. The prevalence of biochemical alterations seems to be correlated to the frequency of insecticide use. However, no significant differences were found between the hematological parameters among farm workers and plant protection agents. The hematological parameters of all the insecticide applicators were normal. The great majority of insecticide applicators (85%) reported symptoms related to insecticide exposure. The use of insecticides in the agriculture of Burkina Faso is threatening to human health.

  17. Radiation fixation of vinyl chloride in an insecticide aerosol container

    International Nuclear Information System (INIS)

    Kagiya, V.T.; Takemoto, K.

    1975-01-01

    Recently, a large quantity of vinyl chloride has been used as spraying additive for insecticide aerosols. Since January 1974 when the Food and Drug Administration of the United States of America announced that vinyl chloride causes liver cancer, it has been forbidden in Japan and the United States of America to market insecticide aerosol containers containing vinyl chloride. In Japan, following a government order, about 20 million insecticide aerosol containers have been collected and put into storage. A report is given on the radiation fixation of vinyl chloride as polyvinylchloride powder by gamma-ray-induced polymerization in the aerosol container. Insecticide aerosol containers containing vinyl chloride were irradiated by gamma rays from 60 Co at room temperature. Vinyl chloride polymerized to form powdered polymer in the container. Polymerization conversion increased with the irradiation dose, and after 10 Mrad irradiation, vinyl chloride was not found in the sprayed gas. This establishes that vinyl chloride can be fixed by gamma-ray irradiation in the aerosol container. To accelerate the reaction rate, the effect of various additives on the reaction was investigated. It was found that halogenated hydrocarbons, such as chloroform and carbon tetrachloride, accelerated the initiation of the polymerization, and that a vinyl monomer such as vinyl acetate accelerated the reaction rate due to the promotion of the initiation and the high reactivity of the polyvinylacetate radical to vinyl chloride. Consequently, the required irradiation dose for the fixation of vinyl chloride was decreased to less than 5 Mrad by the addition of various kinds of additives. Following the request of the Ministry of Public Welfare, various technical problems for large-scale treatment are being studied with the co-operation of the Federation of Insecticide Aerosols. (author)

  18. Agricultural insecticides threaten surface waters at the global scale.

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-05-05

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  19. Insecticide resistance status of Aedes aegypti (L.) from Colombia.

    Science.gov (United States)

    Fonseca-González, Idalyd; Quiñones, Martha L; Lenhart, Audrey; Brogdon, William G

    2011-04-01

    To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT-PCR. All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda-cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non-specific esterases (NSE) in some of the fenitrothion- and pyrethroid-resistant populations. All populations showed high levels of glutathione-S-transferase (GST) activity. GSTe2 gene was found overexpressed in DDT-resistant populations compared with Rockefeller susceptible strain. Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry.

  20. Underpinning sustainable vector control through informed insecticide resistance management.

    Directory of Open Access Journals (Sweden)

    Edward K Thomsen

    Full Text Available There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions.A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s.Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan.

  1. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. Results At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014F kdr mutation increased throughout the three years and by 2010, the frequency of 1014F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003 and in 2010 the 1014S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12% were observed in Soumousso in 2009 and the difference between sites is significant for each year. Conclusion Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and

  2. Insecticidal effect of plant extracts on Phlebotomus argentipes (Diptera: Psychodidae) in Bihar, India.

    Science.gov (United States)

    Dinesh, Diwakar Singh; Kumari, Seema; Pandit, Vibhishan; Kumar, Jainendra; Kumari, Nisha; Kumar, Prahlad; Hassan, Faizan; Kumar, Vijay; Das, Pradeep

    2015-12-01

    Phlebotomus argentipes (Diptera: Psychodidae), the established vector for kala-azar is presently being controlled by indoor residual spray of DDT in kala-azar endemic areas in India. Search for non-hazardous and non-toxic biodegradable active molecules from botanicals may provide cost-effective and eco-friendly alternatives to synthetic insecticides. The present study was aimed at evaluating various plant extracts from endemic and non-endemic areas of Bihar for their insecticidal activity against sandfly to identify the most effective plant extract. Bio-assay test was conducted with larvae and adult of P. argentipes with different plant extracts collected in distilled water, hexane, ethyl acetate, acetone and methanol. Thin layer chromatography (TLC), column chromatography and high performance liquid chromatography (HPLC) were conducted for detection of active molecules. Adults and larvae of sandflies exposed to the aqueous extract of Nicotiana tabacum resulted in 100 per cent mortality. The hexane extract of Clerodendrum infortunatum was found to kill 77 per cent adults but was ineffective against larvae. Bio-assay test of the ninth fraction (hexane extract-methanol phase) separated by column chromatography was found to be 63 per cent effective. The purple spot on the TLC of this fraction indicated the presence of a diterpenoid. HPLC of this fraction detected nine compounds with two peaks covering 20.44 and 56.52 per cent areas with retention time of 2.439 and 5.182 min, respectively supporting the TLC results. The column separated 9 [th] fraction of C. infortunatum extract was found to be effective in killing 63 per cent of adult P. argentipes. Compounds of this fraction need to be evaluated further for identification and characterization of the active molecule by conducting individual bio-assay tests followed by further fractionation and HPLC. Once the structure of the active molecule is identified and validated, it may be synthesized and formulated as a product.

  3. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal.

    Science.gov (United States)

    Stehle, Sebastian; Knäbel, Anja; Schulz, Ralf

    2013-08-01

    Due to the specific modes of action and application patterns of agricultural insecticides, the insecticide exposure of agricultural surface waters is characterized by infrequent and short-term insecticide concentration peaks of high ecotoxicological relevance with implications for both monitoring and risk assessment. Here, we apply several fixed-interval strategies and an event-based sampling strategy to two generalized and two realistic insecticide exposure patterns for typical agricultural streams derived from FOCUS exposure modeling using Monte Carlo simulations. Sampling based on regular intervals was found to be inadequate for the detection of transient insecticide concentrations, whereas event-triggered sampling successfully detected all exposure incidences at substantially lower analytical costs. Our study proves that probabilistic risk assessment (PRA) concepts in their present forms are not appropriate for a thorough evaluation of insecticide exposure. Despite claims that the PRA approach uses all available data to assess exposure and enhances risk assessment realism, we demonstrate that this concept is severely biased by the amount of insecticide concentrations below detection limits and therefore by the sampling designs. Moreover, actual insecticide exposure is of almost no relevance for PRA threshold level exceedance frequencies and consequential risk assessment outcomes. Therefore, we propose a concept that features a field-relevant ecological risk analysis of agricultural insecticide surface water exposure. Our study quantifies for the first time the environmental and economic consequences of inappropriate monitoring and risk assessment concepts used for the evaluation of short-term peak surface water pollutants such as insecticides.

  4. A Microsatellite-Based Analysis of House Infestation With Triatoma Infestans (Hemiptera: Reduviidae) After Insecticide Spraying in the Argentine Chaco.

    Science.gov (United States)

    Piccinali, Romina V; Gaunt, Michael W; Gürtler, Ricardo E

    2018-05-04

    Prevention of vector-borne transmission of Chagas disease mainly relies on residual insecticide spraying. Despite significant success at a regional scale, house infestation with Triatoma infestans (Klug) (Hemiptera: Reduviidae) still persists in the Gran Chaco ecoregion. One key aspect is the identification of the sources of reinfestant triatomines. After detecting fine-scale genetic structure in two rural villages of Pampa del Indio, Argentine Chaco, we tested hypotheses on the putative origins of the triatomines collected at 4, 8, and 12 mo after insecticide house spraying. We genotyped 10 microsatellite loci in 262 baseline and 83 postspraying triatomines from different houses. Genetic variability was similar between baseline and postspraying populations, but 13 low-frequency alleles were not detected at postspraying. FSTs were not significant between insects collected before and after insecticide spraying at the same house in all but one case, and they clustered together in a neighbor-joining tree. A clustering algorithm detected seven genetic groups, four of them mainly composed of baseline and postspraying insects from the same house. Assignment tests suggested multiple putative sources (including the house of collection) for most postspraying insects but excluded a house located more than 9 km from the study area. The origin of three triatomines was attributed to immigration from other unaccounted sources. Our study is compatible with the hypothesis that house reinfestations in the Argentine Chaco are mostly related to residual foci (i.e., survival of insects within the same community), in agreement with field observations, spatial analysis, and morphometric studies previously published.

  5. A potential target for organophosphate insecticides leading to spermatotoxicity.

    Science.gov (United States)

    Suzuki, Himiko; Tomizawa, Motohiro; Ito, Yuki; Abe, Keisuke; Noro, Yuki; Kamijima, Michihiro

    2013-10-16

    Organophosphate (OP) insecticides as an anticholinesterase also act on the diverse serine hydrolase targets, thereby revealing secondary or unexpected toxic effects including male reproductive toxicity. The present investigation detects a possible target molecule(s) for OP-induced spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) from a chemical standpoint. The activity-based protein profiling (ABPP) approach with a phosphonofluoridate fluorescent probe pinpointed the molecular target for fenitrothion (FNT, a major OP insecticide) oxon (bioactive metabolite of FNT) in the mouse testicular membrane proteome, i.e., FNT oxon phosphorylates the fatty acid amide hydrolase (FAAH), which plays pivotal roles in spermatogenesis and sperm motility acquirement. Subsequently, mice were treated orally with vehicle or FNT for 10 days, and FAAH activity in testis or epididymis cauda was markedly reduced by the subacute exposure. ABPP analysis revealed that FAAH was selectively inhibited among the FNT-treated testicular membrane proteome. Accordingly, FAAH is a potential target for OP-elicited spermatotoxicity.

  6. Voltage-gated sodium channels as targets for pyrethroid insecticides.

    Science.gov (United States)

    Field, Linda M; Emyr Davies, T G; O'Reilly, Andrias O; Williamson, Martin S; Wallace, B A

    2017-10-01

    The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.

  7. Synthesis and Insecticidal Activities of Novel Phthalic Acid Diamides

    Institute of Scientific and Technical Information of China (English)

    闫涛; 李玉新; 李永强; 王多义; 陈伟; 刘卓; 李正名

    2012-01-01

    In order to discover novel insecticides with the new action mode on ryanodine receptor (RyR), a series of novel phthalic acid diamide derivatives were designed and synthesized. All compounds were characterized by 1H NMR spectra and HRMS. The preliminary results of biological activity assessment indicated that some title compounds exhibited excellent insecticidal activities against Mythimna separata, Spodoptera exigua, and Plutella xylostella. The title compound 3-nitro-N-cyclopropyl-N'-[2-methyl-4-(perfluoropropan-2-yl)phenyl]phthalamidte (4a) was more efficient against diamondback moths than the control (chlorantraniliprole). The effects of some title compounds on intracellular calcium of neurons from the Spodoptera exigua proved that the title compounds were RyR activators.

  8. Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity

    International Nuclear Information System (INIS)

    Hainzl, D.; Casida, J.E.

    1996-01-01

    Fipronil is an outstanding new insecticide for crop protection with good selectivity between insects and mammals. The insecticidal action involves blocking the gamma-aminobutyric acid-gated chloride channel with much greater sensitivity of this target in insects than in mammals. Fipronil contains a trifluoromethylsulfinyl moiety that is unique among the agrochemicals and therefore presumably important in its outstanding performance. We find that this substituent unexpectedly undergoes a novel and facile photoextrusion reaction on plants upon exposure to sunlight, yielding the corresponding trifluoromethylpyrazole, i.e., the desulfinyl derivative. The persistence of this photoproduct and its high neuroactivity, resulting from blocking the gamma-aminobutyric acid-gated chloride channel, suggest that it may be a significant contributor to the effectiveness of fipronil. In addition, desulfinylfipronil is not a metabolite in mammals, so the safety evaluations must take into account not only the parent compound but also this completely new environmental product

  9. The impact of insecticides to local honey bee colony Apis cerana indica in laboratory condition

    Science.gov (United States)

    Putra, Ramadhani E.; Permana, Agus D.; Nuriyah, Syayidah

    2014-03-01

    Heavy use of insecticides considered as one of common practice at local farming systems. Even though many Indonesian researchers had stated the possible detrimental effect of insecticide on agriculture environment and biodiversity, researches on this subject had been neglected. Therefore, our purpose in this research is observing the impact of insecticides usage by farmer to non target organisme like local honey bee (Apis cerana indica), which commonly kept in area near agriculture system. This research consisted of field observations out at Ciburial, Dago Pakar, Bandung and laboratory tests at School of Life Sciences and Technology, Institut Teknologi Bandung. The field observations recorded visited agriculture corps and types of pollen carried by bees to the nest while laboratory test recorderd the effect of common insecticide to mortality and behavior of honey bees. Three types of insecticides used in this research were insecticides A with active agent Chlorantraniliprol 50 g/l, insecticide B with active agent Profenofos 500 g/l, and insecticides C with active agent Chlorantraniliprol 100 g/l and λ-cyhalotrin 50g/l. The results show that during one week visit, wild flower, Wedelia montana, visited by most honey bees with average visit 60 honey bees followed by corn, Zea mays, with 21 honey bees. The most pollen carried by foragers was Wedelia montana, Calliandra callothyrsus, and Zea mays. Preference test show that honeybees tend move to flowers without insecticides as the preference to insecticides A was 12.5%, insecticides B was 0%, and insecticides was C 4.2%. Mortality test showed that insecticides A has LD50 value 0.01 μg/μl, insecticide B 0.31 μg/μl, and insecticides C 0.09 μg/μl which much lower than suggested dosage recommended by insecticides producer. This research conclude that the use of insecticide could lower the pollination service provide by honey bee due to low visitation rate to flowers and mortality of foraging bees.

  10. Insecticide susceptibility status of human biting mosquitoes in ...

    African Journals Online (AJOL)

    Matowo Pc

    91.5% (n=483) and An. funestus group was 8.5% (n=45). ..... Chitnis, N., Churcher, T., Donnelly, M.J., Ghani, A.C., Godfray, H.C.J., Gould, F., Hastings, ... Efficacy, persistence and vector susceptibility to pirimiphos-methyl (Actellic® 300CS) insecticide ... Macoris, M.L., Andrighetti, M.T.M., Wanderley, D.M.V. & Ribolla, P.E.M. ...

  11. A critical review of neonicotinoid insecticides for developmental neurotoxicity

    Science.gov (United States)

    Sheets, Larry P.; Li, Abby A.; Minnema, Daniel J.; Collier, Richard H.; Creek, Moire R.; Peffer, Richard C.

    2016-01-01

    Abstract A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood–brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  12. Usage Possibilities of Insecticide Effective Biocidals in Organic Agriculture

    OpenAIRE

    Şimşek, Muharrem; Yağcı, Mürşide; Yaşarer, Haluk

    2016-01-01

    In conventional agriculture it is aimed that mainly increase in the amount of products, synthetic chemicals and fertilizers are used extensively to provide it. Today, terms such as safe food, human and environment health have become more important. Therefore, it is necessary to increase the share of organic agriculture which have less negative impacts to human health and environment, and sustainable use of natural resources. Herein environmentally insecticide effective biocidals to pest contr...

  13. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Science.gov (United States)

    2013-04-11

    Hedychiums have been reported to possess antibacterial, antifungal, and insecticidal activities [4,5]. Strawberry anthracnose, caused by the plant...pathogens Colletotrichum species is one of the most important diseases affecting strawberries worldwide [6]. Colletotrichum fragariae Brooks is most...often associated with anthracnose crown rot of strawberries grown in hot, humid areas such as the southeastern United States [7]. The azalea lace bug

  14. Cytochrome P450 monooxygenases and insecticide resistance in insects.

    OpenAIRE

    Bergé, J B; Feyereisen, R; Amichot, M

    1998-01-01

    Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the seque...

  15. Culminating anti-malaria efforts at long lasting insecticidal net?

    Directory of Open Access Journals (Sweden)

    Sunil Dhiman

    2014-11-01

    Full Text Available Summary: Background: Long-lasting insecticidal nets (LLINs are a primary method in malaria control efforts. However, a decline in the biological efficacy and physical integrity over a period of comparatively lesser time than claimed, waning of naturally acquired immunity among regular users and misuse of LLINs are serious concerns. Search and selection of literature: The literature for the current review was searched in PubMed, SCOPUS Database and Google using combined search strings of related key-words. Literature with sufficient data and information on the current subject was selected to reach a valid conclusion. Findings: The World Health Organization (WHO has emphasized that LLINs should be considered a public good for people inhabiting malaria endemic settings. LLINs exhibited a cumulative effect on the vector density and may force anthropophilic mosquito vectors to find alternative animal hosts for blood meal. However, the physical integrity and biological activity of LLINs declines faster than the anticipated time due to different operational conditions and the spread of insecticide resistance. LLINs have been successful in reducing malaria incidences by either reducing or not allowing human exposure to the vector mosquitoes, but at the same time, LLINs debilitate the natural protective immunity against malaria parasite. Misuse of LLINs for deviant purposes is common and is a serious environmental concern, as people believe that traditional methods of prevention against malaria that have enabled them to survive through a long time are effective and sufficient. Moreover, people are often ill-informed regarding the toxic effects of LLINs. Conclusions: Specific criteria for determining the serviceable life and guidelines on the safe washing and disposal of LLINs need to be developed, kept well-informed and closely monitored. Malaria case management, environment management and community awareness to reduce the misuse of LLINs are crucial

  16. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    Science.gov (United States)

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system.

  18. Blended Refuge and Insect Resistance Management for Insecticidal Corn

    Science.gov (United States)

    Crespo, Andre L B; Pan, Zaiqi; Crain, Philip R; Thompson, Stephen D; Pilcher, Clinton D; Sethi, Amit

    2018-01-01

    Abstract In this review, we evaluate the intentional mixing or blending of insecticidal seed with refuge seed for managing resistance by insects to insecticidal corn (Zea mays). We first describe the pest biology and farming practices that will contribute to weighing trade-offs between using block refuges and blended refuges. Case studies are presented to demonstrate how the trade-offs will differ in different systems. We compare biological aspects of several abstract models to guide the reader through the history of modeling, which has played a key role in the promotion or denigration of blending in various scientific debates about insect resistance management for insecticidal crops. We conclude that the use of blended refuge should be considered on a case-by-case basis after evaluation of insect biology, environment, and farmer behavior. For Diabrotica virgifera virgifera, Ostrinia nubilalis, and Helicoverpa zea in the United States, blended refuge provides similar, if not longer, delays in the evolution of resistance compared to separate block refuges. PMID:29220481

  19. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    Science.gov (United States)

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.

    2016-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671

  20. Neonicotinoid insecticides can serve as inadvertent insect contraceptives

    Science.gov (United States)

    Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R.

    2016-01-01

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera. Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  1. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    Science.gov (United States)

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified.

  2. Dermal insecticide residues from birds inhabiting an orchard

    Science.gov (United States)

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Gentry, S.; Borges, S.L.

    2007-01-01

    The US Environmental Protection Agency conducts risk assessments of insecticide applications to wild birds using a model that is limited to the dietary route of exposure. However, free-flying birds are also exposed to insecticides via the inhalation and dermal routes. We measured azinphos-methyl residues on the skin plus feathers and the feet of brown-headed cowbirds (Molothrus ater) in order to quantify dermal exposure to songbirds that entered and inhabited an apple (Malus x domestica) orchard following an insecticide application. Exposure to azinphos-methyl was measured by sampling birds from an aviary that was built around an apple tree. Birds sampled at 36 h and 7-day post-application were placed in the aviary within 1 h after the application whereas birds exposed for 3 days were released into the aviary 4-day post-application. Residues on vegetation and soil were also measured. Azinphos-methyl residues were detected from the skin plus feathers and the feet from all exposure periods. Our results underscore the importance of incorporating dermal exposure into avian pesticide risk assessments.

  3. Evolution of resistance to pyrethroid insecticides in Musca domestica.

    Science.gov (United States)

    Scott, Jeffrey G

    2017-04-01

    Houseflies, Musca domestica L., are a significant pest because of the numerous diseases they transmit. Control of housefly populations, particularly at animal production facilities, is frequently done using pyrethroid insecticides which kill insects by prolonging the open time of the voltage-sensitive sodium channel (VSSC). Houseflies have evolved resistance to pyrethroids owing to mutations in Vssc and by cytochrome-P450-mediated detoxification. Three Vssc mutations are known: kdr (L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Generally, the levels of resistance conferred by these mutations are kdr-his resistance than kdr. P450-mediated resistance can result from overexpression of CYP6D1 or another P450 (unidentified) whose overexpression is linked to autosomes II or V. The initial use of field-stable pyrethroids resulted in different patterns of evolution across the globe, but with time these mutations have become more widespread in their distribution. What is known about the fitness costs of the resistance alleles in the absence of insecticide is discussed, particularly with respect to the current and future utility of pyrethroid insecticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Mdr65 decreases toxicity of multiple insecticides in Drosophila melanogaster.

    Science.gov (United States)

    Sun, Haina; Buchon, Nicolas; Scott, Jeffrey G

    2017-10-01

    ABC transporters are ubiquitous membrane-bound proteins, present in both prokaryotes and eukaryotes. The major function of eukaryotic ABC transporters is to mediate the efflux of a variety of substrates (including xenobiotics) out of cells. ABC transporters have been widely investigated in humans, particularly for their involvement in multidrug resistance (MDR). Considerably less is known about their roles in transport and/or excretion in insects. ABC transporters are only known to function as exporters in insects. Drosophila melanogaster has 56 ABC transporter genes, including eight which are phylogenetically most similar to the human Mdr genes (ABCB1 clade). We investigated the role of ABC transporters in the ABCB1 clade in modulating the susceptibility to insecticides. We took advantage of the GAL4/UAS system in D. melanogaster to knockdown the expression levels of Mdr65, Mdr50, Mdr49 and ABCB6 using transgenic UAS-RNAi lines and conditional driver lines. The most notable effects were increased sensitivities to nine different insecticides by silencing of Mdr65. Furthermore, a null mutation of Mdr65 decreased the malathion, malaoxon and fipronil LC 50 values by a factor of 1.9, 2.1 and 3.9, respectively. Altogether, this data demonstrates the critical role of ABC transporters, particularly Mdr65, in altering the toxicity of specific, structurally diverse, insecticides in D. melanogaster. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Substances inertes et plantes à effet insecticide utilisées dans la ...

    African Journals Online (AJOL)

    Les insecticides naturels tels que les plantes à effet insecticide et les substances inertes (sable, cendre, terres à diatomées,…) méritent d'être valorisées afin de réduire l'utilisation des insecticides chimiques et protéger l'environnement. Ce travail basé sur une revue documentaire fouillée et actualisée vise à faire la genèse ...

  6. Determination of insecticides malathion and lambda-cyhalothrin residues in zucchini by gas chromatography

    OpenAIRE

    Lofty, Hayam M.; Abd El-Aleem, Abd El-Aziz A.; Monir, Hany H.

    2013-01-01

    A sensitive gas chromatographic method has been developed for the determination of malathion and lambda-cyhalothrin (λ-cyhalothrin) insecticide residues in zucchini. The developed method consists of extraction with acetone, purification and partitioning with methylene chloride, column chromatographic clean-up, and finally capillary gas chromatographic determination of the insecticides. The recoveries of method were greater than 90% and limit of determination was 0.001 ppm for both insecticide...

  7. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    Science.gov (United States)

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  8. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment.

    Science.gov (United States)

    Owusu, Henry F; Chitnis, Nakul; Müller, Pie

    2017-06-16

    Insecticide resistance threatens the success achieved through vector control in reducing the burden of malaria. An understanding of insecticide resistance mechanisms would help to develop novel tools and strategies to restore the efficacy of insecticides. Although we have substantially improved our understanding of the genetic basis of insecticide resistance over the last decade, we still know little of how environmental variations influence the mosquito phenotype. Here, we measured how variations in larval rearing conditions change the insecticide susceptibility phenotype of adult Anopheles mosquitoes. Anopheles gambiae and A. stephensi larvae were bred under different combinations of temperature, population density and nutrition, and the emerging adults were exposed to permethrin. Mosquitoes bred under different conditions showed considerable changes in mortality rates and body weight, with nutrition being the major factor. Weight is a strong predictor of insecticide susceptibility and bigger mosquitoes are more likely to survive insecticide treatment. The changes can be substantial, such that the same mosquito colony may be considered fully susceptible or highly resistant when judged by World Health Organization discriminatory concentrations. The results shown here emphasise the importance of the environmental background in developing insecticide resistance phenotypes, and caution for the interpretation of data generated by insecticide susceptibility assays.

  9. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides.

    Science.gov (United States)

    Miarinjara, Adélaïde; Boyer, Sébastien

    2016-02-01

    Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.

  10. Ecotoxicity of binary mixtures of Microcystis aeruginosa and insecticides to Daphnia pulex

    International Nuclear Information System (INIS)

    Asselman, J.; Janssen, C.R.; Smagghe, G.; De Schamphelaere, K.A.C.

    2014-01-01

    In aquatic ecosystems, mixtures of chemical and natural stressors can occur which may significantly complicate risk assessment approaches. Here, we show that effects of binary combinations of four different insecticides and Microcystis aeruginosa, a toxic cyanobacteria, on Daphnia pulex exhibited distinct interaction patterns. Combinations with chlorpyrifos and tetradifon caused non-interactive effects, tebufenpyrad caused an antagonistic interaction and fenoyxcarb yielded patterns that depended on the reference model used (i.e. synergistic with independent action, additive with concentration addition). Our results demonstrate that interactive effects cannot be generalised across different insecticides, not even for those targeting the same biological pathway (i.e. tebufenpyrad and tetradifon both target oxidative phosphorylation). Also, the concentration addition reference model provided conservative predictions of effects in all investigated combinations for risk assessment. These predictions could, in absence of a full mechanistic understanding, provide a meaningful solution for managing water quality in systems impacted by both insecticides and cyanobacterial blooms. - Highlights:: • 2 of 4 insecticide-Microcystis combinations showed no interactive effect on Daphnia. • One insecticide showed antagonistic deviation patterns. • For one other insecticide the results depended on the reference model used. • Interactive effects between insecticides and Microcystis cannot be generalized. • The concentration addition model provides conservative estimates of mixture effects. - Interactive effects between insecticides and cyanobacterial stressors cannot be generalized, not even for insecticides with closely related known modes of action

  11. Effects of irrigation levels on interactions among Lygus hesperus (Hemiptera: Miridae), insecticides, and predators in cotton.

    Science.gov (United States)

    Asiimwe, Peter; Naranjo, Steven E; Ellsworth, Peter C

    2014-04-01

    Variation in plant quality and natural enemy abundance plays an important role in insect population dynamics. In manipulative field studies, we evaluated the impact of varying irrigation levels and insecticide type on densities of Lygus hesperus Knight and the arthropod predator community in cotton. Three watering levels were established via irrigations timed according to three levels of percent soil water depletion (SWD): 20, 40, or 60, where 40% SWD is considered standard grower practice, 60% represents a deficit condition likely to impose plant productivity losses, and 20% represents surplus conditions with likely consequences on excessive vegetative plant production. The two key L. hesperus insecticides used were the broad-spectrum insecticide acephate and the selective insecticide flonicamid, along with an untreated check. We hypothesized that densities of L. hesperus and its associated predators would be elevated at higher irrigation levels and that insecticides would differentially impact L. hesperus and predator dynamics depending on their selectivity. L. hesperus were more abundant at the higher irrigation level (20% SWD) but the predator densities were unaffected by irrigation levels. Both L. hesperus and its predators were affected by the selectivity of the insecticide with highest L. hesperus densities and lowest predator abundance where the broad spectrum insecticide (acephate) was used. There were no direct interactions between irrigation level and insecticides, indicating that insecticide effects on L. hesperus and its predators were not influenced by the irrigation levels used here. The implications of these findings on the overall ecology of insect-plant dynamics and yield in cotton are discussed.

  12. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment

    Directory of Open Access Journals (Sweden)

    Samantha A. Radford

    2018-02-01

    Full Text Available Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss—adsorption onto the glass surface of the storage jars—was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.

  13. Evaluation of the Insecticidal Efficacy of Wild Type and Recombinant Baculoviruses.

    Science.gov (United States)

    Popham, Holly J R; Ellersieck, Mark R; Li, Huarong; Bonning, Bryony C

    2016-01-01

    A considerable amount of work has been undertaken to genetically enhance the efficacy of baculovirus insecticides. Following construction of a genetically altered baculovirus, laboratory bioassays are used to quantify various parameters of insecticidal activity such as the median lethal concentration (or dose) required to kill 50 % of infected larvae (LC50 or LD50), median survival of larvae infected (ST50), and feeding damage incurred by infected larvae. In this chapter, protocols are described for a variety of bioassays and the corresponding data analyses for assessment of the insecticidal activity of baculovirus insecticides.

  14. Protective effect and economic impact of insecticide application methods on barley

    Directory of Open Access Journals (Sweden)

    Alfred Stoetzer

    2014-03-01

    Full Text Available The objective of this work was to evaluate the protective effect of different forms of insecticide application on the transmission of yellow dwarf disease in barley cultivars, as well as to determine the production costs and the net profit of these managements. The experiments were carried out during 2011 and 2012 growing seasons, using the following managements at main plots: T1, seed treatment with insecticide (ST + insecticide on shoots at 15-day interval; T2, just ST; T3, insecticide applied on shoots, when aphid control level (CL was reached; T4, without insecticide; and T5, ST + insecticide on shoots when CL was reached. Different barley cultivars - BRS Cauê, BRS Brau and MN 6021 - were arranged in the subplots. Insecticides lambda cyhalothrin (pyrethroid and thiamethoxam (neonicotinoid were used. There were differences on yellow dwarf disease index in both seasons for the different treatments, while damage to grain yield was influenced by year and aphid population. Production costs and net profit were different among treatments. Seed treatment with insecticide is sufficient to reduce the transmission of yellow dwarf disease in years with low aphid population pressure, while in years with larger populations, the application of insecticide on shoots is also required.

  15. Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?

    Science.gov (United States)

    Rix, Rachel R; Cutler, G Christopher

    2018-02-01

    Hormetic preconditioning, whereby exposure to mild stress primes an organism to better tolerate subsequent stress, is well documented. It is unknown if exposure to hormetic concentrations of insecticide can trans-generationally prime insects to better tolerate insecticide exposure, or whether exposure to hormetic concentrations of insecticide can induce mutations in genes responsible for insecticide resistance. Using the aphid Myzus persicae (Sulzer) and the insecticide imidacloprid as a model, we examined if exposure to mildly toxic and hormetic concentrations of imidacloprid reduced aphid susceptibility to insecticides across four generations, and whether such exposures induced mutations in the imidacloprid binding site in post-synaptic nicotinic acetylcholine receptors. Chronic, multigenerational exposure of aphids to hormetic concentrations of imidacloprid primed offspring to better survive exposure to certain concentrations of imidacloprid, but not exposure to spirotetramat, an insecticide with a different mode of action. Exposure to hormetic and mildly toxic concentrations of imidacloprid did not result in mutations in any of the examined nicotinic acetylcholine receptor subunits. Our findings demonstrate that exposure to hormetic concentrations of insecticide can prime insects to better withstand subsequent chemical stress, but this is dependent upon the insecticide exposure scenario, and may be subtle over generations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  17. Impact and Selectivity of Insecticides to Predators and Parasitoids

    Directory of Open Access Journals (Sweden)

    Flávio Lemes Fernandes

    2010-04-01

    Full Text Available Problems with the use of insecticides has brought losses, such as, negative impact on natural enemies. When these beneficial insects reduce cause the eruption of pests and resurgence it’s more common. Thus principles of conservation these arthropods are extremely important in the biological natural control of pests, so that these enemies may present a high performance. Because of the negative impacts caused by insecticides on agriculture and their harmful effects on natural enemies, the objective of this article is to approach two important subjects, divided into three parts. Part I relates to the description of the main crop pests and their natural enemies; Part II involves the impact of insecticides on predators and parasitoids and Part III focuses on the selectivity of several groups of insecticides to natural enemies. Before spraying insecticides, it is necessary to choose a product that is efficient to pests and selective to natural enemies. So, it is indispensable to identify correctly the groups and species of natural enemies, since insecticides have an impact on their survival, growth, development, reproduction (sexual ratio, fecundity, longevity and fertility, and behavior (motility, orientation, feeding, oviposition and learning of insects. The mechanisms of toxicity and selectivity of insecticides are related to the properties of higher or lower solubility and molecular weight. Besides, characteristics of the cuticular composition of the integument of natural enemies are extremely important in the selectivity of a product or the tolerance of a certain predator or parasitoid to this molecules.Impacto e Seletividade de Inseticidas para Predadores e ParasitóidesResumo.Dentre os problemas advindos do uso de inseticidas, a destruição de inimigos naturais é fator importante. Estes insetos benéficos podem reduzir problemas de erupção de pragas secundárias, ressurgência de pragas e manter a praga abaixo do nível de dano econ

  18. Sensitivity of Bemisia Tabaci (Hemiptera: Aleyrodidae) to Several New Insecticides in China: Effects of Insecticide Type and Whitefly Species, Strain, and Stage

    Science.gov (United States)

    Xie, Wen; Liu, Yang; Wang, Shaoli; Wu, Qingjun; Pan, Huipeng; Yang, Xin; Guo, Litao; Zhang, Youjun

    2014-01-01

    Abstract Whitefly biotypes B and Q are the two most damaging members of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Control of B. tabaci (and especially of Q) has been impaired by resistance to commonly used insecticides. To find new insecticides for B. tabaci management in China, we investigated the sensitivity of eggs, larvae, and adults of laboratory strains of B and Q (named Lab-B and Lab-Q) and field strains of Q to several insecticides. For eggs, larvae, and adults of B. tabaci and for six insecticides (cyantraniliprole, chlorantraniliprole, pyriproxyfen, buprofezin, acetamiprid, and thiamethoxam), LC 50 values were higher for Lab-Q than for Lab-B; avermectin LC 50 values, however, were low for adults of both Lab-Q and Lab-B. Based on the laboratory results, insecticides were selected to test against eggs, larvae, and adults of four field strains of B. tabaci Q. Although the field strains differed in their sensitivity to the insecticides, the eggs and larvae of all strains were highly sensitive to cyantraniliprole, and the adults of all strains were highly sensitive to avermectin. The eggs, larvae, and adults of B. tabaci Q were generally more resistant than those of B. tabaci B to the tested insecticides. B. tabaci Q eggs and larvae were sensitive to cyantraniliprole and pyriproxyfen, whereas B. tabaci Q adults were sensitive to avermectin. Field trials should be conducted with cyantraniliprole, pyriproxyfen, and avermectin for control of B. tabaci Q and B in China. PMID:25434040

  19. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  20. Degradation of Insecticides in Poultry Manure: Determining the Insecticidal Treatment Interval for Managing House Fly (Diptera: Muscidae) Populations in Poultry Farms.

    Science.gov (United States)

    Ong, Song-Quan; Ab Majid, Abdul Hafiz; Ahmad, Hamdan

    2016-04-01

    It is crucial to understand the degradation pattern of insecticides when designing a sustainable control program for the house fly, Musca domestica (L.), on poultry farms. The aim of this study was to determine the half-life and degradation rates of cyromazine, chlorpyrifos, and cypermethrin by spiking these insecticides into poultry manure, and then quantitatively analyzing the insecticide residue using ultra-performance liquid chromatography. The insecticides were later tested in the field in order to study the appropriate insecticidal treatment intervals. Bio-assays on manure samples were later tested at 3, 7, 10, and 15 d for bio-efficacy on susceptible house fly larvae. Degradation analysis demonstrated that cyromazine has the shortest half-life (3.01 d) compared with chlorpyrifos (4.36 d) and cypermethrin (3.75 d). Cyromazine also had a significantly greater degradation rate compared with chlorpyrifos and cypermethrin. For the field insecticidal treatment interval study, 10 d was the interval that had been determined for cyromazine due to its significantly lower residue; for ChCy (a mixture of chlorpyrifos and cypermethrin), the suggested interval was 7 d. Future work should focus on the effects of insecticide metabolites on targeted pests and the poultry manure environment.

  1. Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Xiaofeng; Sun, Botong; Gurr, Geoff M; Vasseur, Liette; Xue, Minqian; You, Minsheng

    2018-01-01

    The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L.), a globally and economically important pest of cruciferous crops. We isolated Enterococcus sp. (Firmicutes), Enterobacter sp. (Proteobacteria), and Serratia sp. (Proteobacteria) from the guts of P. xylostella and analyzed the effects on, and underlying mechanisms of insecticide resistance. Enterococcus sp. enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella , while in contrast, Serratia sp. decreased resistance and Enterobacter sp. and all strains of heat-killed bacteria had no effect. Importantly, the direct degradation of chlorpyrifos in vitro was consistent among the three strains of bacteria. We found that Enterococcus sp., vitamin C, and acetylsalicylic acid enhanced insecticide resistance in P. xylostella and had similar effects on expression of P. xylostella antimicrobial peptides. Expression of cecropin was down-regulated by the two compounds, while gloverin was up-regulated. Bacteria that were not associated with insecticide resistance induced contrasting gene expression profiles to Enterococcus sp. and the compounds. Our studies confirmed that gut bacteria play an important role in P. xylostella insecticide resistance, but the main mechanism is not direct detoxification of insecticides by gut bacteria. We also suggest that the influence of gut bacteria on insecticide resistance may depend on effects on the immune system. Our work advances understanding of the evolution of insecticide resistance in this key pest and highlights directions for research into insecticide resistance in other insect pest species.

  2. Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xia

    2018-01-01

    Full Text Available The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L., a globally and economically important pest of cruciferous crops. We isolated Enterococcus sp. (Firmicutes, Enterobacter sp. (Proteobacteria, and Serratia sp. (Proteobacteria from the guts of P. xylostella and analyzed the effects on, and underlying mechanisms of insecticide resistance. Enterococcus sp. enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella, while in contrast, Serratia sp. decreased resistance and Enterobacter sp. and all strains of heat-killed bacteria had no effect. Importantly, the direct degradation of chlorpyrifos in vitro was consistent among the three strains of bacteria. We found that Enterococcus sp., vitamin C, and acetylsalicylic acid enhanced insecticide resistance in P. xylostella and had similar effects on expression of P. xylostella antimicrobial peptides. Expression of cecropin was down-regulated by the two compounds, while gloverin was up-regulated. Bacteria that were not associated with insecticide resistance induced contrasting gene expression profiles to Enterococcus sp. and the compounds. Our studies confirmed that gut bacteria play an important role in P. xylostella insecticide resistance, but the main mechanism is not direct detoxification of insecticides by gut bacteria. We also suggest that the influence of gut bacteria on insecticide resistance may depend on effects on the immune system. Our work advances understanding of the evolution of insecticide resistance in this key pest and highlights directions for research into insecticide resistance in other insect pest species.

  3. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies.

    Science.gov (United States)

    Ohnesorg, Wayne J; Johnson, Kevin D; O'Neal, Matthew E

    2009-10-01

    Insect predators in North America suppress Aphis glycines Matsumura (Hemiptera: Aphididae) populations; however, insecticides are required when populations reach economically damaging levels. Currently, insecticides used to manage A. glycines are broad-spectrum (pyrethroids and organophosphates), and probably reduce beneficial insect abundance in soybean, Glycine max (L.) Merr. Our goal was to determine whether insecticides considered reduced-risk by the Environmental Protection Agency could protect soybean yield from A. glycines herbivory while having a limited impact on the aphid's natural enemies. We compared three insecticides (imidacloprid, thiamethoxam, and pymetrozine,) to a broad-spectrum insecticide (lamda-cyhalothrin) and an untreated control using two application methods. We applied neonicotinoid insecticides to seeds (imidacloprid and thiamethoxam) as well as foliage (imidacloprid); pymetrozine and lamda-cyhalothrin were applied only to foliage. Foliage-applied insecticides had lower A. glycines populations and higher yields than the seed-applied insecticides. Among foliage-applied insecticides, pymetrozine and imidacloprid had an intermediate level of A. glycines population and yield protection compared with lamda-cyhalothrin and the untreated control. We monitored natural enemies with yellow sticky cards, sweep-nets, and direct observation. Before foliar insecticides were applied (i.e., before aphid populations developed) seed treatments had no observable effect on the abundance of natural enemies. After foliar insecticides were applied, differences in natural enemy abundance were observed when sampled with sweep-nets and direct observation but not with yellow sticky cards. Based on the first two sampling methods, pymetrozine and the foliage-applied imidacloprid had intermediate abundances of natural enemies compared with the untreated control and lamda-cyhalothrin.

  4. Natural product derived insecticides: discovery and development of spinetoram.

    Science.gov (United States)

    Galm, Ute; Sparks, Thomas C

    2016-03-01

    This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains.

  5. Hepatopancreatic intoxication of lambda cyhalothrin insecticide on albino rats

    OpenAIRE

    Elhalwagy, Manal EA; Abd-Alrahman, Sherif H; Nahas, AA; Ziada, Reem M; Mohamady, Aziza H

    2015-01-01

    Background: Despite the known adverse effects of lambda cyhalothrin insecticide, little is known about its hepatopancreatic intoxication effects. The present study was carried out to elucidate sub-chronic effect of Karat 2.5% EC formulation of lambda cyhalothrin on male albino rats. Methods: To explore the effects of exposure to lambda cyhalothrin on rats and its mechanism, low (1/40 of LD50, 5 mg/kg/day) and high dose (1/4 of LD50, 50 mg/kg/day) lambda cyhalothrin were applied to rats via dr...

  6. Cross-tolerance in amphibians: wood frog mortality when exposed to three insecticides with a common mode of action.

    Science.gov (United States)

    Hua, Jessica; Cothran, Rickey; Stoler, Aaron; Relyea, Rick

    2013-04-01

    Insecticide tolerance and cross-tolerance in nontarget organisms is often overlooked despite its potential to buffer natural systems from anthropogenic influence. We exposed wood frog tadpoles from 15 populations to three acetylcholine esterase-inhibiting insecticides and found widespread variation in insecticide tolerance and evidence for cross-tolerance to these insecticides. Our results demonstrate that amphibian populations with tolerance to one pesticide may be tolerant to many other pesticides. Copyright © 2013 SETAC.

  7. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis

    Science.gov (United States)

    Leah S. Bauer

    1995-01-01

    Insecticidal crystal proteins (also known as d-endotoxins) synthesized by the bacterium Bacillus thuringiensis Berliner (Bt) are the active ingredient of various environmentally friendly insecticides that are 1) highly compatible with natural enemies and other nontarget organisms due to narrow host specificity, 2) harmless to vertebrates, 3) biodegradable in the...

  8. Effects of Nantucket pine tip moth insecticide spray schedules on loblolly pine seedlings

    Science.gov (United States)

    Christopher J. Fettig; Kenneth W. McCravy; C. Wayne Berisford

    2000-01-01

    Frequent and prolonged insecticide applications to control the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera:Torticidae) (NPTM), although effective, may be impractical and uneconomica1, for commercial timber production. Timed insecticide sprays of permethrin (Polmce 3.2® EC) were applied to all possible combinations of spray...

  9. Fate and effects of the insecticide chlorpyrifos in outdoor plankton-dominated microcosms in Thailand.

    NARCIS (Netherlands)

    Daam, M.A.; Crum, S.J.H.; Brink, van den P.J.; Nogueira, A.J.A.

    2008-01-01

    The fate and effects of the insecticide chlorpyrifos were studied in plankton-dominated, freshwater microcosms in Thailand. Disappearance rates of chlorpyrifos from the water column in the present study were similar to those in temperate regions. Insecticide accumulation in the sediment was

  10. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil.

    Science.gov (United States)

    Burtet, Leonardo M; Bernardi, Oderlei; Melo, Adriano A; Pes, Maiquel P; Strahl, Thiago T; Guedes, Jerson Vc

    2017-12-01

    Maize plants expressing insecticidal proteins of Bacillus thuringiensis are valuable options for managing fall armyworm (FAW), Spodoptera frugiperda, in Brazil. However, control failures were reported, and therefore insecticides have been used to control this species. Based on these, we evaluated the use of Bt maize and its integration with insecticides against FAW in southern Brazil. Early-planted Agrisure TL, Herculex, Optimum Intrasect and non-Bt maize plants were severely damaged by FAW and required up to three insecticidal sprays. In contrast, YieldGard VT Pro, YieldGard VT Pro 3, PowerCore, Agrisure Viptera and Agrisure Viptera 3 showed little damage and did not require insecticides. Late-planted Bt maize plants showed significant damage by FAW and required up to four sprays, with the exceptions of Agrisure Viptera and Agrisure Viptera 3. Exalt (first and second sprays); Lannate + Premio (first spray) and Avatar (second spray); and Karate + Match (first spray) and Ampligo (second spray) were the most effective insecticides against FAW larvae in Bt and non-Bt maize. Maize plants expressing Cry proteins exhibited FAW control failures in southern Brazil, necessitating insecticidal sprays. In contrast, Bt maize containing the Vip3Aa20 protein remained effective against FAW. However, regardless of the insecticide used against FAW surviving on Bt maize, grain yields were similar. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Residue age and tree attractiveness influence efficacy of insecticide treatments against ambrosia beetles (Coleoptera: Curculionidae)

    Science.gov (United States)

    Management of ambrosia beetles in ornamental nurseries relies, in part, on treatments of insecticides to prevent beetles from boring into trees emitting stress-induced ethanol. However, data on residual efficacy of commonly used pyrethroid insecticides is warranted to gauge the duration that trees ...

  12. Efficacy of insecticides through contact and oral uptake towards four Agriotes wireworm species under controlled conditions

    NARCIS (Netherlands)

    Rozen, van K.; Huiting, H.F.; Wilhelm, R.; Heger, M.; Ester, A.

    2013-01-01

    Wireworms of Agriotes lineatus, A. obscurus, A. sputator and A. sordidus were exposed to insecticide treated soil using two different control methods. One method consisted of a spray application of insecticides at doses of 50, 100, 200, and 300 g a.i. per ha. The other method consisted of a bait

  13. Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density

    NARCIS (Netherlands)

    Leistra, M.; Zweers, A.J.; Warinton, J.S.; Crum, S.J.H.; Hand, L.H.; Beltman, W.H.J.; Maund, S.J.

    2004-01-01

    Use of the insecticide lambda-cyhalothrin in agriculture may result in the contamination of water bodies, for example by spray drift. Therefore, the possible exposure of aquatic organisms to this insecticide needs to be evaluated. The exposure of the organisms may be reduced by the strong sorption

  14. Influence on sensitivity to insecticides: a case study of a settled area ...

    African Journals Online (AJOL)

    The close proximity of Liwonde National Park to Liwonde town creates a unique situation of a large human population adjacent to a natural undisturbed animal reserve. The closeness of the two ecosystems has an impact on biology of mosquitoes of the area, such as susceptibility to insecticides. Susceptibility to insecticide ...

  15. Evaluation of insecticides for protecting southwestern ponderosa pines from attack by engraver beetles (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Tom E. DeGomez; Christopher J. Hayes; John A. Anhold; Joel D. McMillin; Karen M. Clancy; Paul P. Bosu

    2006-01-01

    Insecticides that might protect pine trees from attack by engraver beetles (Ips spp.) have not been rigorously tested in the southwestern United States. We conducted two field experiments to evaluate the efficacy of several currently and potentially labeled preventative insecticides for protecting high-value ponderosa pine, Pinus ponderosa...

  16. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    Science.gov (United States)

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields.

  17. Insights from agriculture for the management of insecticide resistance in disease vectors.

    Science.gov (United States)

    Sternberg, Eleanore D; Thomas, Matthew B

    2018-04-01

    Key to contemporary management of diseases such as malaria, dengue, and filariasis is control of the insect vectors responsible for transmission. Insecticide-based interventions have contributed to declines in disease burdens in many areas, but this progress could be threatened by the emergence of insecticide resistance in vector populations. Insecticide resistance is likewise a major concern in agriculture, where insect pests can cause substantial yield losses. Here, we explore overlaps between understanding and managing insecticide resistance in agriculture and in public health. We have used the Global Plan for Insecticide Resistance Management in malaria vectors, developed under the auspices of the World Health Organization Global Malaria Program, as a framework for this exploration because it serves as one of the few cohesive documents for managing a global insecticide resistance crisis. Generally, this comparison highlights some fundamental differences between insect control in agriculture and in public health. Moreover, we emphasize that the success of insecticide resistance management strategies is strongly dependent on the biological specifics of each system. We suggest that the biological, operational, and regulatory differences between agriculture and public health limit the wholesale transfer of knowledge and practices from one system to the other. Nonetheless, there are some valuable insights from agriculture that could assist in advancing the existing Global Plan for Insecticide Resistance Management framework.

  18. Pheromone-assisted techniques to improve the efficacy of insecticide sprays against Linepithema humile (Hymenoptera: Formicidae).

    Science.gov (United States)

    Choe, Dong-Hwan; Tsai, Kasumi; Lopez, Carlos M; Campbell, Kathleen

    2014-02-01

    Outdoor residual sprays are among the most common methods for targeting pestiferous ants in urban pest management programs. If impervious surfaces such as concrete are treated with these insecticides, the active ingredients can be washed from the surface by rain or irrigation. As a result, residual sprays with fipronil and pyrethroids are found in urban waterways and aquatic sediments. Given the amount of insecticides applied to urban settings for ant control and their possible impact on urban waterways, the development of alternative strategies is critical to decrease the overall amounts of insecticides applied, while still achieving effective control of target ant species. Herein we report a "pheromone-assisted technique" as an economically viable approach to maximize the efficacy of conventional sprays targeting the Argentine ant. By applying insecticide sprays supplemented with an attractive pheromone compound, (Z)-9-hexadecenal, Argentine ants were diverted from nearby trails and nest entrances and subsequently exposed to insecticide residues. Laboratory experiments with fipronil and bifenthrin sprays indicated that the overall kill of the insecticides on Argentine ant colonies was significantly improved (57-142% increase) by incorporating (Z)-9-hexadecenal in the insecticide sprays. This technique, once it is successfully implemented in practical pest management programs, has the potential of providing maximum control efficacy with reduced amount of insecticides applied in the environment.

  19. Susceptibility of natural enemies of pests of agriculture to commonly applied insecticides in Honduras

    International Nuclear Information System (INIS)

    Bustamante, M.; Sabillon, A.; Velasquez, C.; Ordonez, J.; Baquedano, F.

    1999-01-01

    Insecticides are commonly used by Honduran farmers to control pest insects in agricultural crops such as corn, melons and tomatoes. However, the insecticides have the potential for toxicity to the natural enemies of the pest insects also. Therefore, efforts are being made to identify insecticides which, when used within the Inegerated Pest Management (IPM) programme, are selectively more toxic to the pest insects than their natural enemies. A number of selected chemical insecticides and a biological insecticide (NPV) were tested in three different tests to determine toxicity to two beneficial insects: Telenomus remus Nixon (Hymenoptera: Scelionidae) and Chrysoperla carnea Steph. (Neuroptera: Chrysopidae). All insecticides were toxic to T. remus which suffered high mortality. There was no significant difference in mortality of the insect due to the method of exposure to the insecticides. There were some differences in the toxicity of the insecticides to C. carnea, and abamectin, bifenthrin, cypermethrin, diafenthiuron, imidacloprid and fenpropathrin were relatively less toxic and could be used in IPM for the control of pest insects. (author)

  20. Insecticidal effect of furanocoumarins from fruits of Angelica archangelica L. against larvae Spodoptera littoralis Boisd

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Vrchotová, Naděžda

    2013-01-01

    Roč. 43, MAY 2013 (2013), s. 33-39 ISSN 0926-6690 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Keywords : Angelica archangelica * furanocoumarins * essential oils * plant extracts * spodoptera littoralis * botanical insecticides * insecticidal activity Subject RIV: EH - Ecology, Behaviour Impact factor: 3.208, year: 2013

  1. Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies.

    Science.gov (United States)

    Roubos, Craig R; Rodriguez-Saona, Cesar; Holdcraft, Robert; Mason, Keith S; Isaacs, Rufus

    2014-02-01

    A series of bioassays were conducted to determine the relative toxicities and residual activities of insecticides labeled for use in blueberry (Vaccinium corymbosum L.) on natural enemies, to identify products with low toxicity or short duration effects on biological control agents. In total, 14 insecticides were evaluated using treated petri dishes and four commercially available natural enemies (Aphidius colemani Viereck, Orius insidiosus [Say], Chrysoperla rufilabris [Burmeister], and Hippodamia convergens [Guérin-Menéville]). Dishes were aged under greenhouse conditions for 0, 3, 7, or 14 d before introducing insects to test residual activity. Acute effects (combined mortality and knockdown) varied by insecticide, residue age, and natural enemy species. Broad-spectrum insecticides caused high mortality to all biocontrol agents, whereas products approved for use in organic agriculture had little effect. The reduced-risk insecticide acetamiprid consistently caused significant acute effects, even after aging for 14 d. Methoxyfenozide, novaluron, and chlorantraniliprole, which also are classified as reduced-risk insecticides, had low toxicity, and along with the organic products could be compatible with biological control. This study provides information to guide blueberry growers in their selection of insecticides. Further research will be needed to determine whether adoption of a pest management program based on the use of more selective insecticides will result in higher levels of biological control in blueberry.

  2. Sublethal effects of some synthetic and botanical insecticides on Bemisia tabaci (Hemiptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Esmaeily Saeideh

    2014-07-01

    Full Text Available In addition to direct mortality caused by insecticides, some biological traits of insects may also be affected by sublethal insecticide doses. In this study, we used the age-stage, two-sex life table method to evaluate the sublethal effects of the four synthetic insecticides: abamectin, imidacloprid, diazinon, and pymetrozin as well as the botanical insecticide taken from Calotropis procera (Asclepiadaceae extract, on eggs of the cotton whitefly, Bemisia tabaci (Hem.: Aleyrodidae. The lowest and highest survival rates and oviposition periods were observed in whiteflies treated by diazinon and imidacloprid, respectively. We found significant differences in the net reproductive rate (R0, the intrinsic rate of increase (r, the finite rate of increase (?, and the gross reproductive rate (GRR among different insecticides. Altogether, our results showed that pymetrozin and C. procera induced the most sublethal effects, thus they may be suitable candidates for use in integrated pest management programs of B. tabaci.

  3. Qualitative evaluation of same insecticides sold in Kinshasa and users behavior survey

    International Nuclear Information System (INIS)

    Basilua, K.; Essassi El, M.; Himmi, O.; Said Gmouh; Watsenga, T.

    2009-01-01

    Malaria is a serious public health problem in the tropical countries and particularly into Kinshasa. Anopheles gambiae sl. is the mean vector of this illness. The use of impregnated bednets is the national strategy; the chemical insecticides are used too in figthing the malaria vectors. The survey carried out on 144 households randomly selected in Kinshasa have showed that 61,1% are favourable with using bednets insecticide impregnated and 96,5% of these households use too chemical insecticides, meanly the pyrethroids one (90,5%) and the organophosphates (9,5%). Mass spectrometer analysis revealed that 87,5% of identified insecticides, essentially pyrethroinids have tetramethrine as active substance; the dichlorvos is the only one to be detected as organophosphate and that in some insecticides, the detected molecules are not avowed or different from those avowed or different from those avowed by the manufacturer.

  4. Molecular Descriptors Family on Structure Activity Relationships 2. Insecticidal Activity of Neonicotinoid Compounds

    Directory of Open Access Journals (Sweden)

    Sorana BOLBOACĂ

    2005-01-01

    Full Text Available The neonicotinoids are the newest major class of insecticides modeled after the basic nicotine molecule having improved insecticide activity and generally low toxicity. The insecticidal activities of neonicotinoids were previous studied using 3D and standard partial least squares regression models. The paper describes the ability of the MDF SAR methodology in prediction of insecticidal activities of neonicotinoid compounds. The best MDF SAR bi-varied model was validated on training and test sets and its ability on prediction of insecticidal activity was compared with previous reported models. Even if the MDF SAR methodology is complex and time consuming the results worth the effort because they are statistical significant better then previous reported results.

  5. Effects of various insecticides on the development of the egg parasitoid Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae).

    Science.gov (United States)

    Takada, Y; Kawamura, S; Tanaka, T

    2001-12-01

    The toxicity of six insecticides, acephate, methomyl, ethofenprox, cartap, chlorfluazuron, and Bacillus thuringiensis (Bt) was tested on different developmental stages of the egg parasitoid, Trichogramma dendrolimi (Matsumura). Each of the insecticides tested showed different degrees of toxicity to the parasitoid, Ethofenprox showed the highest toxicity and cartap showed relatively higher toxicity compared with the other insecticides. The development of the parasitoids treated with these two insecticides was normal, similar to that of the control group. Only the emergence of adult wasps from host eggs was disturbed. Emergence of the host, Mamestra brassicae larva was reduced following treatment with ethofenprox, cartap and methomyl. However, adult female wasps, which emerged from host eggs treated with the insecticides had the ability to oviposit normally.

  6. Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba.

    Directory of Open Access Journals (Sweden)

    Dennis Pérez

    2018-01-01

    Full Text Available Within the context of a field trial conducted by the Cuban vector control program (AaCP, we assessed acceptability of insecticide-treated curtains (ITCs and residual insecticide treatment (RIT with deltamethrin by the community. We also assessed the potential influence of interviewees' risk perceptions for getting dengue and disease severity.We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38 were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT.Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement.

  7. Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba.

    Science.gov (United States)

    Pérez, Dennis; Van der Stuyft, Patrick; Toledo, María Eugenia; Ceballos, Enrique; Fabré, Francisco; Lefèvre, Pierre

    2018-01-01

    Within the context of a field trial conducted by the Cuban vector control program (AaCP), we assessed acceptability of insecticide-treated curtains (ITCs) and residual insecticide treatment (RIT) with deltamethrin by the community. We also assessed the potential influence of interviewees' risk perceptions for getting dengue and disease severity. We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT) testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38) were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT. Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement.

  8. Stability of the 14 C-Radiolabelled insecticide guthion

    International Nuclear Information System (INIS)

    Fakhr, I.M.I.; Shaheen, F.A.; Hazzaa, N.I.; Hamdy, N.A.

    1993-01-01

    Under variable conditions simulating those of the agricultural practice, the effects of temperature and PH variations on the stability of 14 C-guthion have been studied. It was found that the insecticide is fairly stable in the acid medium and the half-life of the compound reached 230 days at 25 degree C and declined to about 7 days at 54 degree C, but in the alkaline medium, the degradation rate clearly increased as the PH increased and the half-life reached 24 hours in PH 11 at 25 degree C. In the neutral medium, the half-life was about eight days at 25 degree C while at 54 degree C, it was three days. The insecticide decomposed rapidly as the temperature was raised and the rate was much increased by the combined increase in heat and alkalinity. Some of the degradation products were identified as: O,O-dimethylthio- and di thiophosphoric acid, 4-O x O-3,4-dihydro, 1,2,3-benzo triazine and its hydroxymethyl derivative. 2 figs., 1 tab

  9. Synthesis and Insecticidal Activity of an Oxabicyclolactone and Novel Pyrethroids

    Directory of Open Access Journals (Sweden)

    Elson S. de Alvarenga

    2012-11-01

    Full Text Available Deltamethrin, a member of the pyrethroids, one of the safest classes of pesticides, is among some of the most popular and widely used insecticides in the World. Our objective was to synthesize an oxabicyclolactone 6 and five novel pyrethroids 8–12 from readily available furfural and D-mannitol, respectively, and evaluate their biological activity against four insect species of economic importance namely A. obtectus, S. zeamais, A. monuste orseis, and P. americana. A concise and novel synthesis of 6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one (6 from furfural is described. Photochemical addition of isopropyl alcohol to furan-2(5H-one afforded 4-(1'-hydroxy-1'-methylethyltetrahydro-furan-2-one (3. The alcohol 3 was directly converted into 4-(1'-bromo-1'-methylethyl-tetrahydrofuran-2-one (5 in 50% yield by reaction with PBr3 and SiO2. The final step was performed by cyclization of 5 with potassium tert-butoxide in 40% yield. The novel pyrethroids 8–12 were prepared from methyl (1S,3S-3-formyl-2,2-dimethylcyclopropane-1-carboxylate (7a by reaction with five different aromatic phosphorous ylides. Compounds 6–12 presented high insecticidal activity, with 6 and 11 being the most active. Compound 6 killed 90% of S. zeamais and 100% of all the other insects evaluated. Compound 11 killed 100% of all insects tested.

  10. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    Science.gov (United States)

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Dog poisoning with furadan 35-ST (carbamate insecticide

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena

    2011-01-01

    Full Text Available The first case of poisoning of a dog with Furadan 35-ST in Serbia is described. The active ingredient of Furadan 35-ST is carbofuran (2,3-dihydro-2,2-dimethyl-7- benzofuranyl methyl carbamate, a carbamate insecticide, acaricide and nematocide. This highly poisonous substance is classified by the World Health Organisation into Class 1 b and in Serbia into Group 1 of The List of Poisons. Pathological assessment revealed hyperaemia and degenerative and necrotic changes in the liver, kidneys and heart. In addition, lysis of the nuclei in the motor neurons, loss of tigroid substance and pericellular oedema in the ventral horns of the spinal cord, and acute pancreatitis were found. In addition to the non-specific changes (hyperaemia, degenerative and necrotic changes in the parenchymal organs, the ones in the ventral horns of the spinal cord and acute pancreatitis may lead to carbamate poisoning being suspected. The diagnosis was established on the grounds of toxicological-chemical conformation of carbofuran by means of GC-MS in addition to the macroscopic, microscopic findings in tissue samples taken from the stomach and the liver, which confirmed the suspicion of the dog having been poisoned with the carbamate insecticide. In the current case the results of the diagnostic procedures provided foundations for the initiation of criminal proceedings.

  12. Volatile aldehydes are promising broad-spectrum postharvest insecticides.

    Science.gov (United States)

    Hammond, D G; Rangel, S; Kubo, I

    2000-09-01

    A variety of naturally occurring aldehydes common in plants have been evaluated for their insecticidal activity and for phytotoxicity to postharvest fruits, vegetables, and grains. Twenty-nine compounds were initially screened for their activity against aphids on fava bean leaf disks. Application under reduced pressure (partial vacuum) for the first quarter of fumigation increased insecticidal activity severalfold. The 11 best aldehydes were assayed against aphids placed under the third leaf of whole heads of iceberg lettuce using the same two-tier reduced-pressure regime, which caused no additional detriment to the commodity over fumigation at atmospheric pressure. Phytotoxicity to naked and wrapped iceburg lettuce, green and red table grapes, lemon, grapefruit, orange, broccoli, avocado, cabbage, pinto bean, and rice at doses that killed 100% of aphids was recorded for three promising fumigants: propanal, (E)-2-pentenal, and 2-methyl-(E)-2-butenal. These three compounds have excellent potential as affordable postharvest insect control agents, killing 100% of the aphids with little or no detectable harm to a majority of the commodities tested. Preliminary assays indicate that similar doses are also effective against mealybugs, thrips, and whitefly.

  13. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  14. The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control.

    Science.gov (United States)

    Oxborough, Richard M; N'Guessan, Raphael; Jones, Rebecca; Kitau, Jovin; Ngufor, Corine; Malone, David; Mosha, Franklin W; Rowland, Mark W

    2015-03-24

    The rapid selection of pyrethroid resistance throughout sub-Saharan Africa is a serious threat to malaria vector control. Chlorfenapyr is a pyrrole insecticide which shows no cross resistance to insecticide classes normally used for vector control and is effective on mosquito nets under experimental hut conditions. Unlike neurotoxic insecticides, chlorfenapyr owes its toxicity to disruption of metabolic pathways in mitochondria that enable cellular respiration. A series of experiments explored whether standard World Health Organization (WHO) guidelines for evaluation of long-lasting insecticidal nets, developed through testing of pyrethroid insecticides, are suitable for evaluation of non-neurotoxic insecticides. The efficacy of WHO recommended cone, cylinder and tunnel tests was compared for pyrethroids and chlorfenapyr. To establish bioassay exposure times predictive of insecticide-treated net (ITN) efficacy in experimental hut trials, standard three-minute bioassays of pyrethroid and chlorfenapyr ITNs were compared with longer exposures. Mosquito behaviour and response to chlorfenapyr ITN in bioassays conducted at night were compared to day and across a range of temperatures representative of highland and lowland transmission. Standard three-minute bioassay of chlorfenapyr produced extremely low levels of mortality compared to pyrethroids. Thirty-minute day-time bioassay produced mortality closer to hut efficacy of chlorfenapyr ITN but still fell short of the WHO threshold. Overnight tunnel test with chlorfenapyr produced 100% mortality and exceeded the WHO threshold of 80%. The endogenous circadian activity rhythm of anophelines results in inactivity by day and raised metabolism and flight activity by night. A model which explains improved toxicity of chlorfenapyr ITN when tested at night, and during the day at higher ambient temperature, is that activation of chlorfenapyr and disruption of respiratory pathways is enhanced when the insect is more metabolically

  15. Identification and Development of Biological Markers of Human Exposure to the Insecticide Permethrin

    Science.gov (United States)

    2008-04-01

    used. A variety of techniques have been reviewed by Maynard and Georgiou.70 The ability to engineer antibodies for therapeutic uses, such as......in agriculture, forestry, homes, horticulture , and public health around the world (1-5). Per- methrin is very nontoxic to mammals, whereas it is highly

  16. Identification of Insecticidal Constituents from the Essential Oil from the Aerial Parts Stachys riederi var. japonica.

    Science.gov (United States)

    Quan, Meirong; Liu, Qi Zhi; Liu, Zhi Long

    2018-05-17

    The essential oil of Stachys riederi var. japonica (Family: Lamiaceae) was extracted by hydrodistillation and determined by GC and GC-MS. A total of 40 components were identified, representing 96.01% of the total oil composition. The major compounds in the essential oil were acetanisole (15.43%), anisole (9.43%), 1,8-cineole (8.07%), geraniol (7.89%), eugenol (4.54%), caryophyllene oxide (4.47%), caryophyllene (4.21%) and linalool (4.07%). Five active constituents (acetanisole, anisole, 1,8-cineole, eugenol and geraniol) were identified by bioactivity-directed fractionation. The essential oil possessed fumigant toxicity against maize weevils ( Sitophilus zeamais ) and booklice ( Liposcelis bostrychophila ), with LC 50 values of 15.0 mg/L and 0.7 mg/L, respectively. Eugenol and anisole exhibited stronger fumigant toxicity than the oil against booklice. 1,8-Cineole showed stronger toxicity, and anisole as well as eugenol exhibited the same level of fumigant toxicity as the essential oil against maize weevils. The essential oil also exhibited contact toxicity against S. zeamais adults and L. bostrychophila , with LC 50 values of 21.8 µg/adult and 287.0 µg/cm², respectively. The results indicated that the essential oil of S. riederi var. japonica and its isolates show potential as fumigants, and for their contact toxicity against grain storage insects.

  17. Development of Environment-Friendly Insecticides Based on Enantioselectivity: Bifenthrin as a Case.

    Science.gov (United States)

    Qian, Yi; Zhou, Peixue; Zhang, Quan

    2017-01-01

    Chiral insecticides significantly contribute to the environmental pollutions recently. As the development of industry and agriculture, increasing number of chiral insecticides are to be introduced into the market. However, their enantioselective toxicology to ecosystem still remains uncertain. In this review, we embarked on a structured search of bibliographic databases for peer-reviewed articles regarding the enantioselective effects of bifenthrin, a typical chiral insecticide, on both target and non-target species. With this enantioselective property of chiral insecticides, they often exhibit adverse effects on non-target species enantioselectively. Specifically, the enantioselective effects of bifenthrin on target and non-target organisms were discussed. In target species, R-bifenthrin exerts more significant activities in deinsectization, compared with S-bifenthrin. On the other hand, Sbifenthrin is more toxic to non-target species than R-bifenthrin, which suggests that the application of sole enantiomer is more efficient and environment-friendly than that of racemate. This review confirms the choice of environment-friendly insecticides from the perspective of the enantioselectivity of chiral insecticides. To make insecticides more efficient to target species and less toxic to non-target species, further research should be done to investigated the potential effects of targetactive enantiomers on non-target organisms as well as the enantioselective fate of enantiomers in multiple environmental matrix.

  18. Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies.

    Science.gov (United States)

    Bacci, Leandro; Crespo, André L B; Galvan, Tederson L; Pereira, Eliseu J G; Picanço, Marcelo C; Silva, Gerson A; Chediak, Mateus

    2007-07-01

    Efficient chemical control is achieved when insecticides are active against insect pests and safe to natural enemies. In this study, the toxicity of 17 insecticides to the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the selectivity of seven insecticides to natural enemies of this insect pest were evaluated. To determine the insecticide toxicity, B. tabaci adults were exposed to abamectin, acephate, acetamiprid, cartap, imidacloprid, malathion, methamidophos, bifenthrin, cypermethrin, deltamethrin, esfenvalerate, fenitrothion, fenpropathrin, fenthion, phenthoate, permethrin and trichlorphon at 50 and 100% of the field rate (FR), and to water (untreated control). To determine the insecticide selectivity, adults of Encarsia sp., Acanthinus sp., Discodon sp. and Lasiochilus sp. were exposed to abamectin, acephate, acetamiprid, cartap, imidacloprid, malathion and methamidophos at 50 and 100% FR, and to water. Groups of each insect species were exposed to kale leaves preimmersed in each treatment under laboratory conditions. Mortality of exposed individuals was recorded 24 h after treatment. Cartap and imidacloprid at 50 and 100% FR and abamectin and acetamiprid at 100% FR showed insecticidal activity to B. tabaci adults. Abamectin at 50 and 100% FR was the least insecticidal compound to the natural enemies Acanthinus sp., Discodon sp. and Lasiochilus sp. The present results suggest that abamectin at 100% FR may decrease B. tabaci field populations but can still be harmless to predators. Implications of these results within an integrated pest management context are discussed. Copyright (c) 2007 Society of Chemical Industry.

  19. The response of natural enemies to selective insecticides applied to soybean.

    Science.gov (United States)

    Varenhorst, A J; O'Neal, M E

    2012-12-01

    Natural enemies of the invasive pest Aphis glycines Matsumura can prevent its establishment and population growth. However, current A. glycines management practices include the application of broad-spectrum insecticides that affect pests and natural enemies that are present in the field at the time of application. An alternative is the use of selective insecticides that affect the targeted pest species, although having a reduced impact on the natural enemies. We tested the effects of esfenvalerate, spirotetramat, imidacloprid, and a combination of spirotetramat and imidacloprid on the natural enemies in soybean during the 2009 and 2010 field season. The natural enemy community that was tested differed significantly between 2009 and 2010 (F = 87.41; df = 1, 598; P natural enemy in 2009 was Harmonia axyridis (Pallas) (56.0%) and in 2010 was Orius insidiosus (Say) (41.0%). During 2009, the abundance of natural enemies did not vary between the broad-spectrum and selective insecticides; however, the abundance of natural enemies was reduced by all insecticide treatments when compared with the untreated control. In 2010, the selective insecticide imidacloprid had more natural enemies than the broad-spectrum insecticide. Although we did not observe a difference in the abundance of the total natural enemy community in 2009, we did observe more H. axyridis in plots treated with spirotetramat. In 2010, we observed more O. insidiosus in plots treated with imidacloprid. We suggest a couple of mechanisms to explain how the varying insecticides have different impacts on separate components of the natural enemy community.

  20. Development, oviposition, and mortality of Neoseiulus fallacis (Acari: Phytoseiidae) in response to reduced-risk insecticides.

    Science.gov (United States)

    Villanueva, Raul T; Walgenbach, James F

    2005-12-01

    Eight reduced-risk insecticides (acetamiprid, thiamethoxam, imidacloprid, thiacloprid, methoxyfenozide, pyriproxyfen, indoxacarb, and spinosad) and three conventional insecticides (azinphosmethyl, fenpropathrin, and esfenvalerate) were tested against Neoseiulus fallacis (Garman) (Acari: Phytoseiidae), the most abundant predacious mite in North Carolina apple (Malus spp.) orchards. To assess the effect of insecticides on development and mortality of N. fallacis immatures, 12-h-old eggs were individually placed on bean leaf disks previously dipped in insecticide solutions. Tetranychus urticae Koch (Acari: Tetranychidae) females were added as a food source. None of the reduced-risk insecticides significantly affected immature N. fallacis compared with the control; however, the pyrethroids esfenvalerate and fenpropathrin were highly toxic to immatures. To evaluate the effect of insecticides on mortality and oviposition of adult N. fallacis, 7- to 8-d-old females were confined on insecticide-treated bean leaves with Malephora crocea (Aizoaceae) pollen added as a food source. Spinosad resulted in the highest mortality, whereas azinphosmethyl, acetamiprid, fenpropathrin, and imidacloprid were moderately toxic, and mortality from esfenvalerate, indoxacarb, thiacloprid, methoxyfenozide, pyriproxyfen, and thiamethoxam did not differ significantly from the control. Oviposition was affected in a similar manner, with the exception of acetamiprid that did not affect oviposition, and thiamethoxam that reduced oviposition.

  1. Susceptibility of pest Nezara viridula (Heteroptera: Pentatomidae) and parasitoid Trichopoda pennipes (Diptera: Tachinidae) to selected insecticides.

    Science.gov (United States)

    Tillman, P Glynn

    2006-06-01

    Susceptibility of the southern green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae), and its endoparasitoid Trichopoda pennipes (F.) (Diptera: Tachinidae) to acetamiprid, cyfluthrin, dicrotophos, indoxacarb, oxamyl, and thiamethoxam was compared in residual and oral toxicity tests. In the residual toxicity test, cyfluthrin, dicrotophos, and oxamyl were highly toxic to N. viridula. Thiamethoxam was moderately toxic to these insects. Each of the four insecticides was highly toxic to T. pennipes after prolonged tarsal contact with dried residues of these chemicals. In the oral toxicity test, where N. viridula fed on food covered with insecticide residues, none of the insecticides were toxic to adults of this stink bug, but acetamiprid, dicrotophos, and thiamethoxam were moderately toxic to the nymphs. In the oral toxicity test, where N. viridula fed on a gel-food containing insecticides, cyfluthrin, dicrotophos, oxamyl, and thiamethoxam were highly toxic to this stink bug. In an oral toxicity test using contaminated sugar water, all of the insecticides were highly toxic to T. pennipes. Because insecticides were as toxic, or more toxic, to T. pennipes than to N. viridula, it is extremely important to conserve this parasitoid by applying these insecticides for control of southern green stink bugs only when the pest reaches economic threshold.

  2. Environmental risk assessment of registered insecticides in Iran using Environmental Impact Quotient (EIQ index

    Directory of Open Access Journals (Sweden)

    S. Moinoddini

    2016-05-01

    Full Text Available In the last decades, pesticides have been used extensively, in order to control pests and plant diseases, but negative impacts of pesticides caused several environmental problems and put human health in danger. In order to decrease environmental hazards of pesticide, risk of pesticide application should be measured briefly and precisely. In this study environmental impacts of registered insecticides in Iran which applied in 2001-2002, 2003-2004, 2004-2005, are considered using environmental impact quotient (EIQ index. Results showed that among considered insecticides, Imidacloprid, Fipronil and Tiodicarb, potentially (EIQ were the most hazardous insecticides, respectively. Taking rate of application and active ingredient of insecticide in to account, environmental impact (practical toxicity per cultivated hectare (EIQ Field of each provinces were investigated. In this regard, among different province of Iran, Kerman, Mazandaran and Golestan were in danger more than the others, respectively. Besides, considering the amount of agricultural production in provinces, environmental impact per ton of production were calculated for each provinces which three northern provinces of Mazandaran, Golestan and Guilan, respectively endure the most environmental impact per ton of production. Eventually based on environmental impact quotient, results demonstrated that majority of environmental impacts of insecticide in Iran were due to inadequate knowledge and also overuse of a few number of insecticides. Therefore, by improving knowledge about environmental impact of pesticides and also developing environmental friendly and ecological based methods, negative environmental impacts of insecticides will be reduced significantly.

  3. Consequences of co-applying insecticides and fungicides for managing Thrips tabaci (Thysanoptera: Thripidae) on onion.

    Science.gov (United States)

    Nault, Brian A; Hsu, Cynthia L; Hoepting, Christine A

    2013-07-01

    Insecticides and fungicides are commonly co-applied in a tank mix to protect onions from onion thrips, Thrips tabaci Lindeman, and foliar pathogens. Co-applications reduce production costs, but past research shows that an insecticide's performance can be reduced when co-applied with a fungicide. An evaluation was made of the effects of co-applying spinetoram, abamectin and spirotetramat with commonly used fungicides, with and without the addition of a penetrating surfactant, on onion thrips control in onion fields. Co-applications of insecticides with chlorothalonil fungicides reduced thrips control by 25-48% compared with control levels provided by the insecticides alone in three of five trials. Inclusion of a penetrating surfactant at recommended rates with the insecticide and chlorothalonil fungicide did not consistently overcome this problem. Co-applications of insecticides with other fungicides did not interfere with thrips control. Co-applications of pesticides targeting multiple organisms should be examined closely to ensure that control of each organism is not compromised. To manage onion thrips in onion most effectively, insecticides should be applied with a penetrating surfactant, and should be applied separately from chlorothalonil fungicides. © 2012 Society of Chemical Industry.

  4. Insecticide resistance, control failure likelihood and the First Law of Geography.

    Science.gov (United States)

    Guedes, Raul Narciso C

    2017-03-01

    Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well-recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right - the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision-making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling - aiming to use spatial analysis in area-wide surveys - to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    Science.gov (United States)

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae from Argentina

    Directory of Open Access Journals (Sweden)

    Cristina Mónica Montagna

    2012-06-01

    Full Text Available Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold and deltamethrin (162-fold and a small increase in resistance to the organophosphate azinphos methyl (2-fold were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  7. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.

    Science.gov (United States)

    Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana

    2012-06-01

    Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  8. Decaleside: a new class of natural insecticide targeting tarsal gustatory sites

    Science.gov (United States)

    Rajashekar, Yallappa; Rao, Lingamallu J. M.; Shivanandappa, Thimmappa

    2012-10-01

    Natural sources for novel insecticide molecules hold promise in view of their eco-friendly nature, selectivity, and mammalian safety. Recent progress in understanding the biology of insect olfaction and taste offers new strategies for developing selective pest control agents. We have isolated two natural insecticidal molecules from edible roots of Decalepis hamiltonii named Decalesides I and II, which are novel trisaccharides, highly toxic to household insect pests and stored-product insects. We have experimentally shown that insecticidal activity requires contact with tarsi on the legs but is not toxic orally. The insecticidal activity of molecules is lost by hydrolysis, and various sugars modify toxic response, showing that the insecticidal activity is via gustatory sites on the tarsi. Selective toxicity to insects by virtue of their gustatory site of action and the mammalian safety of the new insecticides is inherent in their chemical structure with 1-4 or 1-1 α linkage that is easily hydrolyzed by digestive enzymes of mammals. Decalesides represent a new chemical class of natural insecticides with a unique mode of action targeting tarsal chemosensory/gustatory system of insects.

  9. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage.

    Science.gov (United States)

    Xie, Wen; Liu, Yang; Wang, Shaoli; Wu, Qingjun; Pan, Huipeng; Yang, Xin; Guo, Litao; Zhang, Youjun

    2014-01-01

    Whitefly biotypes B and Q are the two most damaging members of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Control of B. tabaci (and especially of Q) has been impaired by resistance to commonly used insecticides. To find new insecticides for B. tabaci management in China, we investigated the sensitivity of eggs, larvae, and adults of laboratory strains of B and Q (named Lab-B and Lab-Q) and field strains of Q to several insecticides. For eggs, larvae, and adults of B. tabaci and for six insecticides (cyantraniliprole, chlorantraniliprole, pyriproxyfen, buprofezin, acetamiprid, and thiamethoxam), LC50 values were higher for Lab-Q than for Lab-B; avermectin LC50 values, however, were low for adults of both Lab-Q and Lab-B. Based on the laboratory results, insecticides were selected to test against eggs, larvae, and adults of four field strains of B. tabaci Q. Although the field strains differed in their sensitivity to the insecticides, the eggs and larvae of all strains were highly sensitive to cyantraniliprole, and the adults of all strains were highly sensitive to avermectin. The eggs, larvae, and adults of B. tabaci Q were generally more resistant than those of B. tabaci B to the tested insecticides. B. tabaci Q eggs and larvae were sensitive to cyantraniliprole and pyriproxyfen, whereas B. tabaci Q adults were sensitive to avermectin. Field trials should be conducted with cyantraniliprole, pyriproxyfen, and avermectin for control of B. tabaci Q and B in China. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  10. Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon

    Directory of Open Access Journals (Sweden)

    Osta Mike A

    2012-07-01

    Full Text Available Abstract Background Analysis of Culex pipiens mosquitoes collected from a single site in Lebanon in 2005, revealed an alarming frequency of ace-1 alleles conferring resistance to organophosphate insecticides. Following this, in 2006 the majority of municipalities switched to pyrethroids after a long history of organophosphate usage in the country; however, since then no studies have assessed the impact of changing insecticide class on the frequency of resistant ace-1 alleles in C. pipiens. Methods C. pipiens mosquitoes were captured indoors from 25 villages across the country and subjected to established methods for the analysis of gene amplification at the Ester locus and target site mutations in ace-1 gene that confer resistance to organophosphates. Results We conducted the first large-scale screen for resistance to organosphosphates in C. pipiens mosquitoes collected from Lebanon. The frequency of carboxylesterase (Ester and ace-1 alleles conferring resistance to organophosphates were assessed among C. pipiens mosquitoes collected from 25 different villages across the country between December 2008 and December 2009. Established enzymatic assay and PCR-based molecular tests, both diagnostic of the major target site mutations in ace-1 revealed the absence of the F290V mutation among sampled mosquitoes and significant reduction in the frequency of G119S mutation compared to that previously reported for mosquitoes collected from Beirut in 2005. We also identified a new duplicated ace-1 allele, named ace-1D13, exhibiting a resistant phenotype by associating a susceptible and a resistant copy of ace-1 in a mosquito line sampled from Beirut in 2005. Fisher’s exact test on ace-1 frequencies in the new sample sites, showed that some populations exhibited a significant excess of heterozygotes, suggesting that the duplicated allele is still present. Starch gel electrophoresis indicated that resistance at the Ester locus was mainly attributed to the

  11. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans.

    Science.gov (United States)

    Moyes, Catherine L; Vontas, John; Martins, Ademir J; Ng, Lee Ching; Koou, Sin Ying; Dusfour, Isabelle; Raghavendra, Kamaraju; Pinto, João; Corbel, Vincent; David, Jean-Philippe; Weetman, David

    2017-07-01

    Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.

  12. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans

    Science.gov (United States)

    Vontas, John; Martins, Ademir J.; Ng, Lee Ching; Koou, Sin Ying; Dusfour, Isabelle; Raghavendra, Kamaraju; Pinto, João; Corbel, Vincent; David, Jean-Philippe; Weetman, David

    2017-01-01

    Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance. PMID:28727779

  13. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans.

    Directory of Open Access Journals (Sweden)

    Catherine L Moyes

    2017-07-01

    Full Text Available Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus, making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids. Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.

  14. Posttreatment Feeding Affects Mortality of Bed Bugs (Hemiptera: Cimicidae) Exposed to Insecticides.

    Science.gov (United States)

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2016-02-01

    Insecticide sprays and dusts are used for controlling bed bugs, Cimex lectularius L. In natural environments, bed bugs have daily access to hosts after they are exposed to insecticides. The established laboratory insecticide bioassay protocols do not provide feeding after insecticide treatments, which can result in inflated mortality compared with what would be encountered in the field. We evaluated the effect of posttreatment feeding on mortality of bed bugs treated with different insecticides. None of the insecticides tested had a significant effect on the amount of blood consumed and percent feeding. The effect of posttreatment feeding on bed bug mortality varied among different insecticides. Feeding significantly reduced mortality in bed bugs exposed to deltamethrin spray, an essential oil mixture (Bed Bug Fix) spray, and diatomaceous earth dust. Feeding increased the mean survival time for bed bugs treated with chlorfenapyr spray and a spray containing an essential oil mixture (Ecoraider), but did not affect the final mortality. First instars hatched from eggs treated with chlorfenapyr liquid spray had reduced feeding compared with nymphs hatched from nontreated eggs. Those nymphs hatched from eggs treated with chlorfenapyr liquid spray and successfully fed had reduced mortality and a higher mean survival time than those without feeding. We conclude that the availability of a bloodmeal after insecticide exposure has a significant effect on bed bug mortality. Protocols for insecticide efficacy testing should consider offering a bloodmeal to the treated bed bugs within 1 to 3 d after treatment. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants

    Science.gov (United States)

    Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.

    2013-01-01

    Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID

  16. Modes of Action, Resistance and Toxicity of Insecticides Targeting Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-01-01

    Nicotinic acetylcholine receptors (nAChRs) of insects play a key role in fast excitatory neurotransmission. Several classes of insecticides target insect nAChRs, which are composed of subunit members of a family of multiple subunit encoding genes. Alternative splicing and RNA A-to-I editing can add further to receptor diversity. Native and recombinant receptors have been explored as sites of insecticide action using radioligands, electrophysiology and site-directed mutagenesis. We have reviewed the properties of native and recombinant insect nAChRs, the challenges of functional recombinant insect nAChR expression, nAChR interactions with ligands acting at orthosteric and allosteric sites and in particular their interactions with insecticides. Actions on insect nAChRs of cartap, neonicotinoids, spinosyns, sulfoxamines, butenolides and mesoionic insecticides are reviewed and current knowledge of their modes of action are addressed. Mutations that add to our understanding of insecticide action and those leading to resistance are discussed. Co-crystallisation of neonicotinoids with the acetylcholine binding protein (AChBP), a surrogate for the nAChR ligand binding domain, has proved instructive. Toxicity issues relating to insecticides targeting nAChRs are also considered. An overview of insecticide classes targeting insect nAChRs has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native nAChRs remains poorly understood and functional expression still presents difficulties. These topics together with improved understanding of the precise sites of insecticide actions on insect nAChRs will be the subject of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Household use of insecticide consumer products in a dengue endemic area in México

    Science.gov (United States)

    Loroño-Pino, María Alba; Chan-Dzul, Yamili N.; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E.; Keefe, Thomas J.; Beaty, Barry J.; Eisen, Lars

    2014-01-01

    Objectives To evaluate household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue endemic area in México. Methods A questionnaire was administered to 441 households in Mérida City or other communities in Yucatán State to assess household use of insecticide consumer products. Results Most (86.6%) households took action to kill insect pests with consumer products. Among those households, the most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%), and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. During the part of the year when a given product type was used, the frequency of use was daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%), and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to ∼31 $U.S. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $U.S.) for Mérida City alone. Conclusion Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. PMID:25040259

  18. Household use of insecticide consumer products in a dengue-endemic area in México.

    Science.gov (United States)

    Loroño-Pino, María Alba; Chan-Dzul, Yamili N; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E; Keefe, Thomas J; Beaty, Barry J; Eisen, Lars

    2014-10-01

    To evaluate the household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue-endemic area of México. A questionnaire was administered to 441 households in Mérida City and other communities in Yucatán to assess household use of insecticide consumer products. A total of 86.6% of surveyed households took action to kill insect pests with consumer products. The most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%) and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. Products were used daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%) and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to approximately 31 $US. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $US) for Mérida City alone. Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. © 2014 John Wiley & Sons Ltd.

  19. Environmental risks and challenges associated with neonicotinoid insecticides

    Science.gov (United States)

    Hladik, Michelle L.; Main, Anson; Goulson, Dave

    2018-01-01

    Neonicotinoid use has increased rapidly in recent years, with a global shift towards insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sub-lethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to non-target organisms and considering whether there are more environmentally benign alternatives.

  20. Organophosphate insecticide poisoning of Canada geese in the Texas panhandle

    Science.gov (United States)

    White, D.H.; Mitchell, C.A.; Wynn, L.D.; Flickinger, Edward L.; Kolbe, E.J.

    1982-01-01

    Sixteen hundred waterfowl, mostly Canada Geese, died near Etter, Texas, in late January 1981 from anticholinesterase poisoning. Winter wheat in the area of the die-off had been treated with organophosphate insecticides to control greenbugs. Cholinesterase (ChE) levels in brains of a sample of geese found dead were 75% below normal, enough to account for death (Ludke et al. 1975). The gastrointestinal (G I) tracts of geese found dead were packed with winter wheat; gas chromatography techniques identified parathion and methyl parathion in the GI tract contents. Residues of both chemicals were confirmed by mass spectrometry. We recommend that less toxic materials, such as malathion, be used on grain crops when waterfowl are in the vicinity of treatment.

  1. Impact of repeated insecticide application on soil microbial activity

    International Nuclear Information System (INIS)

    Xu Bujin; Zhang Yongxi; Chen Meici; Zhu Nanwen; Ming Hong

    2001-01-01

    The effects of repeated insecticide application on soil microbial activity were studied both in a cotton field and in the laboratory. The results of experiment show that there are some effects on soil microbial activities, such as the population of soil microorganisms, soil respiration, dehydrogenase activity and nitrogen fixation. The degree of effects depends on the chemical dosage. Within the range of 0.5-10.0 μg/g air-dry-soil, the higher the concentration, the stronger effect. In this experiment, the effect disappeared within 4, 8 or 16 days after treatment, depending on the dose applied. In field conditions, the situation is more complex and the data of field experiment show greater fluctuation. (author)

  2. Neural network-based QSAR and insecticide discovery: spinetoram

    Science.gov (United States)

    Sparks, Thomas C.; Crouse, Gary D.; Dripps, James E.; Anzeveno, Peter; Martynow, Jacek; DeAmicis, Carl V.; Gifford, James

    2008-06-01

    Improvements in the efficacy and spectrum of the spinosyns, novel fermentation derived insecticide, has long been a goal within Dow AgroSciences. As large and complex fermentation products identifying specific modifications to the spinosyns likely to result in improved activity was a difficult process, since most modifications decreased the activity. A variety of approaches were investigated to identify new synthetic directions for the spinosyn chemistry including several explorations of the quantitative structure activity relationships (QSAR) of spinosyns, which initially were unsuccessful. However, application of artificial neural networks (ANN) to the spinosyn QSAR problem identified new directions for improved activity in the chemistry, which subsequent synthesis and testing confirmed. The ANN-based analogs coupled with other information on substitution effects resulting from spinosyn structure activity relationships lead to the discovery of spinetoram (XDE-175). Launched in late 2007, spinetoram provides both improved efficacy and an expanded spectrum while maintaining the exceptional environmental and toxicological profile already established for the spinosyn chemistry.

  3. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    Science.gov (United States)

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  4. Monoclonal Antibody Analysis and Insecticidal Spectrum of Three Types of Lepidopteran-Specific Insecticidal Crystal Proteins of Bacillus thuringiensis

    Science.gov (United States)

    Höfte, Herman; Van Rie, Jeroen; Jansens, Stefan; Van Houtven, Annemie; Vanderbruggen, Hilde; Vaeck, Mark

    1988-01-01

    We have investigated the protein composition and the insecticidal spectrum of crystals of 29 Bacillus thuringiensis strains active against lepidopteran larvae. All crystals contained proteins of 130 to 140 kilodaltons (kDa) which could be grouped into three types by the molecular weight of the protoxin and the trypsin-activated core fragment. Proteins of the three types showed a characteristic insecticidal spectrum when tested against five lepidopteran species. Type A crystal proteins were protoxins of 130 or 133 kDa, which were processed into 60-kDa toxins by trypsin. Several genes encoding crystal proteins of this type have been cloned and sequenced earlier. They are highly conserved in the N-terminal half of the toxic fragment and were previously classified in three subtypes (the 4.5-, 5.3-, and 6.6-kilobase subtypes) based on the restriction map of their genes. The present study shows that different proteins of these three subtypes were equally toxic against Manduca sexta and Pieris brassicae and had no detectable activity against Spodoptera littoralis. However, the 4.5-, 5.3-, and 6.6-kilobase subtypes differed in their toxicity against Heliothis virescens and Mamestra brassicae. Type B crystal proteins consisted of 140-kDa protoxins with a 55-kDa tryptic core fragment. These were only active against one of the five insect species tested (P. brassicae). The protoxin and the trypsin-activated toxin of type C were 135- and 63-kDa proteins, respectively. Proteins of this type were associated with high toxicity against S. littoralis and M. brassicae. A panel of 35 monoclonal antibodies was used to compare the structural characteristics of crystal proteins of the three different types and subtypes. Each type of protein could be associated with a typical epitope structure, indicating an unambiguous correlation between antigenic structure and insect specificity. Images PMID:16347711

  5. Digestive enzyme as benchmark for insecticide resistance development in Culex pipiens larvae to chemical and bacteriologic insecticides.

    Science.gov (United States)

    Kamel, Nashwa H; Bahgat, Iman M; El Kady, Gamal A

    2013-04-01

    This work monitored changes in some digestive enzymes (trypsin and aminopeptidase) associated with the building up of resistance in Cx. pipiens larvae to two chemical insecticides (methomyl and/or malathion) and one biological insecticide (Bacillus thuringiensis-H14 or B.t H 14). The LC50 value of methomyl for both field- and the 12th generation (F12) of the selected strain was 1.789 ppm and 8.925 ppm respectively. The LC50 value of malathion for both field and the F12 of the selected strain was 0.082 ppm and 0.156 ppm respectively, and those of B.t H14 of field strain and the F12 was 2.550ppm & 2.395ppm respectively. The specific activity of trypsin enzyme in control susceptible colony was 20.806 +/- 0.452micromol/min/mg protein; but at F4 and F8 for malathion and methomyl treated larvae were 10.810 +/- 0.860 & 15.616+/-0.408 micromol/min/mg protein, respectively. Trypsin activity of F12 in treated larvae with B.t.H14 was 2.097 +/- 0.587 microiol/min/mg protein. Aminopeptidase specific activity for susceptible control larvae was 173.05 +/- 1.3111 micromol/min/mg protein. This activity decreased to 145.15 +/- 4.12, 152.497 +/- 6.775 & 102.04 +/- 3.58a micromol/min/mg protein after larval (F 12) treatment with methomyl, malathion and B.t H 14 respectively.

  6. Determination of insecticidal activity of Heliopsis longipes A. Gray Blake, an endemic plant of Guanajuato state

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández Morales

    2012-09-01

    Full Text Available Mosquitoes are involved in transmission of infectious diseases like malaria which affect human health, causing economic losses due to expensive treatments and job incapacity of patients. Strategies to minimize transmission of this disease are the employ of chemical insecticides that are excellent methods to reduce insect populations; however it causes deleterious effects on human health and environmental damage. Therefore is necessary to explore harmless alternatives, such as plant extracts which are potential source of natural insecticides. In this work we evaluated insecticidal properties of Heliopsis longipes A. Gray Blake against third instar larvae of Anopheles albimanus, malaria vector. Results showed that H.longipes A. Gray Blake has insecticide properties to control insect involved in malaria transmission.

  7. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises.

    Science.gov (United States)

    de Oliveira, Jhones Luiz; Campos, Estefânia Vangelie Ramos; Bakshi, Mansi; Abhilash, P C; Fraceto, Leonardo Fernandes

    2014-12-01

    This review article discusses the use of nanotechnology in combination with botanical insecticides in order to develop systems for pest control in agriculture. The main types of botanical insecticides are described, together with different carrier systems and their potential uses. The botanical insecticides include those based on active principles isolated from plant extracts, as well as essential oils derived from certain plants. The advantages offered by the systems are highlighted, together with the main technological challenges that must be resolved prior to future implementation of the systems for agricultural pest control. The use of botanical insecticides associated with nanotechnology offers considerable potential for increasing agricultural productivity, while at the same time reducing impacts on the environment and human health.

  8. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    Science.gov (United States)

    To better understand the transport of neonicotinoid insecticides to a sensitive freshwater ecosystem, monthly samples (October 2015-September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in...

  9. Daphnid life cycle responses to the insecticide chlorantraniliprole and its transformation products

    NARCIS (Netherlands)

    Lavtižar, V.; Helmus, R.; Kools, S.A.E.; Dolenc, D; van Gestel, C.A.M.; Trebše, P.; Waaijers, S.L.; Kraak, M.H.S.

    2015-01-01

    Chlorantraniliprole (CAP) is a newly developed, widely applied insecticide. In the aquatic environment, several transformation products are formed under natural conditions, one by dehydration and others by photoinduced degradation. Data on aquatic ecotoxicity of CAP can mainly be found in

  10. Control of sugar beet pests at early season by seed treatment with insecticides

    Directory of Open Access Journals (Sweden)

    Kereši Tatjana

    2006-01-01

    Full Text Available In the period 2001-2004, experiments were conducted in the region of Bačka (northern Serbia to assess the efficiency of insecticide treatment of sugar beet seeds in controlling soil pests (larvae of Elateridae family and reducing the damage caused by beet weevil (Bothynoderes punctiventris G e r m and flea beetle (Chaetocnema tibialis I l l i g. Several insecticides mostly systemic ones (carbofuran, thiamethoxam, fipronil, imidacloprid and clothianidin, and their combinations with pyrethroids in different doses were tested in field conditions. Stand density, percentages of plants damaged by B. punctiventris and C. tibialis, injury level and weight of juvenile plants served as parameters for evaluation of insecticide efficiency. Most of the insecticides applied to seeds provided a significantly better stand density compared with the untreated control. Because of their systemic action, imidacloprid, thiamethoxam and their mixtures with pyrethroids provided very good protection of juvenile plants from C. tibialis and in some cases from B. punctiventris.

  11. Perceived Threat of Malaria and the Use of Insecticide Treated Bed ...

    African Journals Online (AJOL)

    2013-12-17

    Dec 17, 2013 ... Keywords: malaria; children; insecticide treated nets; health belief model; .... including malaria, were usually handled by the only designated nurse. .... The familiar saying that “prevention is better and cheaper than cure” may ...

  12. The effect of insecticide-treated bed net on malarial parasitaemia ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... nets sold by a social marketing project were used as the intervention group. ... Keywords: Insecticide-treated bed net, Effectiveness, Malaria control, South-South Nigeria.

  13. Outcome of Patients with Cholinergic Insecticide Poisoning Treated with Gastric Lavage: A Prospective Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Mekkattukunnel Andrews

    2014-12-01

    Conclusion: Number or timing of GL does not show any association with mortality while multiple GL had protective effect against development of late RF and IMS. Hence, GL might be beneficial in cholinergic insecticide poisoning.

  14. Design, Synthesis, and Insecticidal Activity of Some Novel Diacylhydrazine and Acylhydrazone Derivatives

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available In this study a series of diacylhydrazine and acylhydrazone derivatives were designed and synthesized according to the method of active group combination and the principles of aromatic group bioisosterism. The structures of the novel derivatives were determined on the basis on 1H-NMR, IR and ESI-MS spectral data. All of the compounds were evaluated for their in vivo insecticidal activity against the third instar larvae of Spodoptera exigua Hiibner, Helicoverpa armigera Hubner, Plutella xyllostella Linnaeus and Pieris rapae Linne, respectively, at a concentration of 10 mg/L. The results showed that all of the derivatives displayed high insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, metaflumizone and tolfenpyrad, and approximately identical insecticidal activity against H. armigera, P. xyllostella and P. rapae as the references metaflumizone and tolfenpyrad.

  15. Interaction of insecticide and media moisture on ambrosia beetle (Coleoptera: Curculionidae) attacks on ornamental trees

    Science.gov (United States)

    Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are among the most economically damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but rec...

  16. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi

    Directory of Open Access Journals (Sweden)

    Lijian Xu

    2016-08-01

    Full Text Available Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008. With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis.

  17. Threshold levels for effects of insecticides in freshwater ecosystems: a review

    NARCIS (Netherlands)

    Wijngaarden, van R.P.A.; Brock, T.C.M.; Brink, van den P.J.

    2005-01-01

    A literature review of freshwater (model) ecosystem studies with neurotoxic insecticides was performed to assess ecological threshold levels, to compare these levels with the first tier approach within European Union (EU) administration procedures, and to evaluate the ecological consequences of

  18. Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment

    Science.gov (United States)

    This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...

  19. Calcium uptake by sarcoplasmic reticulum in the presence of organophosphorus insecticide methyl-parathion

    International Nuclear Information System (INIS)

    Blasiak, J.

    1995-01-01

    Using an isotope labelling technique it has been shown that an organophosphorus insecticide methyl parathion (0,0-diethyl 0-4-nitrophenyl phosphorothionate) depressed calcium uptake by sarcoplasmic reticulum isolated from rabbit hind leg muscle. The effect was significant for insecticide concentrations of 50 and 100 μM and was dose-dependent. The insecticide exerted a more pronounced effect on calcium uptake in the presence of ATP in the reticulum environment than in the absence of ATP. The inhibitory action of methyl parathion on Ca 2+ accumulation by sarcoplasmic reticulum can cause a rise in myoplasmic free Ca 2+ , the essential prerequisite for contracture activation. Because methyl parathion, as well as other organophosphorus insecticides, is primarily neurotoxic, evidence of non-specific effect could be important for assessing its environmental safety. (author). 20 refs, 2 figs

  20. Potentialisation de l'efficacite insecticide des poudres de feuilles ou ...

    African Journals Online (AJOL)

    Potentialisation de l'efficacite insecticide des poudres de feuilles ou amandes de neemier Azadirachta indica A . Juss par formulation avec la cendre de tiges de mil contre Sitophilus zeamais motsch. Et Sitophilus oryzae L. (Coleoptera : Curc.

  1. Evaluating the efficacy of biological and conventional insecticides with the new 'MCD bottle' bioassay.

    Science.gov (United States)

    Sternberg, Eleanore D; Waite, Jessica L; Thomas, Matthew B

    2014-12-16

    Control of mosquitoes requires the ability to evaluate new insecticides and to monitor resistance to existing insecticides. Monitoring tools should be flexible and low cost so that they can be deployed in remote, resource poor areas. Ideally, a bioassay should be able to simulate transient contact between mosquitoes and insecticides, and it should allow for excito-repellency and avoidance behaviour in mosquitoes. Presented here is a new bioassay, which has been designed to meet these criteria. This bioassay was developed as part of the Mosquito Contamination Device (MCD) project and, therefore, is referred to as the MCD bottle bioassay. Presented here are two experiments that serve as a proof-of-concept for the MCD bottle bioassay. The experiments used four insecticide products, ranging from fast-acting, permethrin-treated, long-lasting insecticide nets (LLINs) that are already widely used for malaria vector control, to the slower acting entomopathogenic fungus, Beauveria bassiana, that is currently being evaluated as a prospective biological insecticide. The first experiment used the MCD bottle to test the effect of four different insecticides on Anopheles stephensi with a range of exposure times (1 minute, 3 minutes, 1 hour). The second experiment is a direct comparison of the MCD bottle and World Health Organization (WHO) cone bioassay that tests a subset of the insecticides (a piece of LLIN and a piece of netting coated with B. bassiana spores) and a further reduced exposure time (5 seconds) against both An. stephensi and Anopheles gambiae. Immediate knockdown and mortality after 24 hours were assessed using logistic regression and daily survival was assessed using Cox proportional hazards models. Across both experiments, fungus performed much more consistently than the chemical insecticides but measuring the effect of fungus required monitoring of mosquito mortality over several days to a week. Qualitatively, the MCD bottle and WHO cone performed comparably

  2. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins.

    Science.gov (United States)

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Banchariya, Anjali; Rao, Atmakuri Ramakrishna

    2017-03-24

    Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has

  3. Willingness to pay for insecticide-treated nets in Berehet District, Amhara Region, Northern Ethiopia: implication of social marketing.

    Science.gov (United States)

    Aleme, Adisu; Girma, Eshetu; Fentahun, Netsanet

    2014-01-01

    Understanding the feasibility of achieving widespread coverage with Insecticide-Treated Nets has to be preceded by learning how people value the Insecticide-Treated Nets and estimating the potential demand and willingness to pay so that sustainability of the intervention can be assured. The objective of this study was to determine willingness to pay for Insecticide-Treated Nets among households in Berehet District, Northern Ethiopia. A community-based cross-sectional study was conducted using both quantitative and qualitative methods in five randomly selected Kebeles from January-February 2012. Open ended contingent valuation technique with follow-up method was used. Qualitative data were collected through focus group discussions and observation methods. Binary logistic regression was used to determine the association between dependent and independent variables. The average number of individuals per Insecticide-Treated Nets was 3.83. Nearly 68.5% persons had willingness to buy Insecticide-Treated Nets if they have access to these Nets. The median maximum price a person is willingness to pay for blue rectangular Insecticide-Treated Net was 20 ETB. People had willingness to pay 30 ETB for blue and white conical insecticide-treated nets. Working on knowledge of malaria (OR=0.68, CI (0.47, 0.98; ppay Insecticide-Treated Nets. Respondents who prefer Kebele/place/ to buy Insecticide-Treated Net for rectangular shape had a significant association with a willingness to pay for Insecticide-Treated Nets (OR=1.92, CI= 1.07-3.92). Promotions, products, price and place had significant association with willingness to pay for Insecticide-Treated Nets. Designing a social marketing strategy helps ensure sustainable supply of Insecticide-Treated Nets and proper use of Insecticide-Treated Nets.

  4. Efficacy of insecticides in fruit borer control and residues on sugar apple fruit

    Directory of Open Access Journals (Sweden)

    Alessandro da Silva Oliveira

    Full Text Available ABSTRACT Bahia is the Brazilian state with the largest production of sugar apple fruits (Annona squamosa L., and fruit borer (Cerconota anonella, Sepp. 1830 is a key crop pest. Insecticides are the main strategy for pest control even though there are no pesticides registered for this crop. This study aimed to assess the efficacy of insecticides to control fruit borer and determine the levels of insecticide residues in sugar apple fruits aiming at requesting the extension of authorization to use insecticide products in this crop. The experiment was conducted in an eight-year-old irrigated orchard (2 × 4 m located in Anagé, Bahia, Brazil. The experimental design was a randomized block design with 10 treatments (three insecticides with three doses and a control with water and 5 replications. Each plot was composed of four plants but only the two central ones were assessed. Insecticides and doses (g a.i. 100 L−1 water were Bacillus thuringiensis: 0.8, 1.7, and 2.5; triflumuron: 2.4, 3.6, and 4.8; and imidacloprid: 4.0, 10.0, and 16.0. Nine sprayings were carried out at fortnightly intervals with a costal sprayer with constant pressure, JA-2 nozzle, and with jet directed to the fruits. Ten assessments were performed in order to observe fruit borer presence in 30 previously marked fruits per plot. Imidacloprid, at the highest studied dose, was the only effective treatment. Analyses of imidacloprid residues, at 21 and 30 days after the highest dose application, indicated levels higher than the maximum limit allowed. Insecticides under the conditions tested do not meet the norms for requesting the extension of authorization to use insecticides for citrus in sugar apple fruits.

  5. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera

    Science.gov (United States)

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Danka, Robert G.; Tarver, Matthew R.; Ottea, James A.; Healy, Kristen B.

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature. PMID:26431171

  6. Synthesis and Insecticidal Activities of Novel Analogues of Chlorantraniliprole Containing Nitro Group

    Institute of Scientific and Technical Information of China (English)

    FENG Qi; WANG Ming-zhong; XIONG Li-xia; LIU Zhi-li; LI Zheng-ming

    2011-01-01

    Twelve novel analogues of chlorantraniliprole containing nitro group were synthesized,and their structures were characterized by 1H NMR and high-resolution mass spectrometry(HRMS).Their evaluated insecticidal activities against oriental armyworm(Mythimna separata) indicate that the nitro-containing analogues showed favorable insecticidal activities,while the activity of compounds 5g at 0.25 mg/L was 40%,but still lower than chlorantraniliprole.

  7. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China

    Directory of Open Access Journals (Sweden)

    Liu Yangyang

    2011-12-01

    Full Text Available Abstract Background In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant carboxylesterase alleles (Ester were recorded previously and sometimes co-existed in one field population, representing a complex situation for the evolution of Ester genes. Results In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to organophosphates, and low resistance to carbamates. Six types of Ester alleles, EsterB1, Ester2, Ester8, Ester9, EsterB10, and Ester11 were identified, and the overall pattern of their frequencies in geographic distribution was consistent with the report seven years prior to this study. Statistical correlation analysis indicated that Ester8 and Ester9 positively correlated with resistance to four insecticides, and EsterB10 to one insecticide. The occurrences of these three alleles were positively correlated, while the occurrence of EsterB1 was negatively correlated with Ester8, indicating an allelic competition. Conclusion Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly "one to many".

  8. Bioassay method for toxicity studies of insecticide formulations to Tuta absoluta (meyrick, 1917)

    OpenAIRE

    Galdino, Tarcísio Visintin da Silva; Picanço, Marcelo Coutinho; Morais, Elisangela Gomes Fidelis de; Silva, Nilson Rodrigues; Silva, Geverson Aelton Rezende da; Lopes, Mayara Cristina

    2011-01-01

    Chemical control is the main method for controlling the tomato leafminer, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae). Reported techniques for the evaluation of insecticide toxicity to the tomato leafminer are not in agreement with field conditions and do not allow us to verify whether doses used in the field are efficient for control. Thus, the objective of this work was to develop a bioassay methodology to study the toxicity of insecticide formulations to T. absoluta that repre...

  9. Bioassay method for toxicity studies of insecticide formulations to tuta absoluta (meyrick, 1917).

    OpenAIRE

    GALDINO, T. V. da S.; PICANÇO, M. C.; MORAIS, E. G. F. de; SILVA, N. R.; SILVA, G. A. R da; LOPES, M. C.

    2014-01-01

    Chemical control is the main method for controlling the tomato leafminer, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae). Reported techniques for the evaluation of insecticide toxicity to the tomato leafminer are not in agreement with field conditions and do not allow us to verify whether doses used in the field are efficient for control. Thus, the objective of this work was to develop a bioassay methodology to study the toxicity of insecticide formulations to T. absoluta that repre...

  10. Impact of fertilization and granular insecticides on the incidence of tobacco aphid, myzus persicae (sulz)

    International Nuclear Information System (INIS)

    Razaq, A.; Hussain, N.; Khalil, S.K.; Alamzeb

    1989-01-01

    Field studies were conducted on the control of tobacco aphid, Myzus persicase (Sulz) with four granular insecticides, viz, Furadan 3% G, Diazinon 5% g, Thiodan 5% g and Larsban 5% g, with and without NPK fertilization. The aphid population was significantly higher in the fertilized plots compared to the non-fertilized ones. All the four insecticides significantly reduced the aphids density compared to the check. Furada 3% gave best results for the control of this pest. (author)

  11. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    OpenAIRE

    Godfray, H.Charles J.; Blacquiere, Tjeerd; Field, Linda M.; Hails, Rosemary S.; Petrokofsky, Gillian; Potts, Simon G.; Raine, Nigel E.; Vanbergen, Adam J.; McLean, Angela R.

    2014-01-01

    There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as pol...

  12. Status of insecticide resistance in high-risk malaria provinces in Afghanistan.

    Science.gov (United States)

    Ahmad, Mushtaq; Buhler, Cyril; Pignatelli, Patricia; Ranson, Hilary; Nahzat, Sami Mohammad; Naseem, Mohammad; Sabawoon, Muhammad Farooq; Siddiqi, Abdul Majeed; Vink, Martijn

    2016-02-18

    Insecticide resistance seriously threatens the efficacy of vector control interventions in malaria endemic countries. In Afghanistan, the status of insecticide resistance is largely unknown while distribution of long-lasting insecticidal nets has intensified in recent years. The main objective of this study was thus to measure the level of resistance to four classes of insecticides in provinces with medium to high risk of malaria transmission. Adult female mosquitoes were reared from larvae successively collected in the provinces of Nangarhar, Kunar, Badakhshan, Ghazni and Laghman from August to October 2014. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), bendiocarb (0.1 %), permethrin (0.75 %) and deltamethrin (0.05 %). In addition, the presence of kdr mutations was investigated in deltamethrin resistant and susceptible Anopheles stephensi mosquitoes collected in the eastern provinces of Nangarhar and Kunar. Analyses of mortality rates revealed emerging resistance against all four classes of insecticides in the provinces located east and south of the Hindu Kush mountain range. Resistance is observed in both An. stephensi and Anopheles culicifacies, the two dominant malaria vectors in these provinces. Anopheles superpictus in the northern province of Badakhshan shows a different pattern of susceptibility with suspected resistance observed only for deltamethrin and bendiocarb. Genotype analysis of knock down resistance (kdr) mutations at the voltage-gated channel gene from An. stephensi mosquitoes shows the presence of the known resistant alleles L1014S and L1014F. However, a significant fraction of deltamethrin-resistant mosquitoes were homozygous for the 1014L wild type allele indicating that other mechanisms must be considered to account for the observed pyrethroid resistance. This study confirms the importance of monitoring insecticide resistance for the development of an integrated vector management in Afghanistan. The

  13. Insecticides are not always the answer for combatting pests in onion fields

    OpenAIRE

    Hutchinson, Harlie

    2016-01-01

    Onion thrips are the insect vector of a severe virus in onion, Iris yellow spot virus. The thrips and virus are primary threats to the economic stability of onion production worldwide. Overuse of insecticides to suppress onion thrips has resulted in the development of resistance, reduced performance of insecticides, and reduced onion yields. There is a compelling desire to find alternatives to better manage these pests. In this study, we assessed onion thrips populations on onions with low...

  14. Eupatorium Capillifolium Essential Oil: Chemical Composition, Antifungal Activity, and Insecticidal Activity

    Science.gov (United States)

    2010-01-01

    deionized water. One percent oil concentration was used based on commercial botanical insecticides such as Neem (Azadiractin), Ecotrol (Rosmarinus...analyses for E. capillifolium oil and two commercial insecticides (Malathion, Neem ) topically applied to adult azalea lace bugs, S. pyrioides...0.93 (0.06) . . . 262.58 < 0.0001 exposure time . 695 0.44 (0.04) . . . 135.87 < 0.0001 a Malathion and Neem used as positive baseline controls for

  15. Synthesis of the Insecticide Prothrin and Its Analogues from Biomass-Derived 5-(Cloromethyl)furfural

    Science.gov (United States)

    2013-12-19

    Synthesis of the Insecticide Prothrin and Its Analogues from Biomass-Derived 5‑(Chloromethyl) furfural Fei Chang,† Saikat Dutta,† James J. Becnel...derived platform chemical 5- (chloromethyl) furfural in six steps and overall 65% yield. Two structural analogues of prothrin were also prepared following...insecticidal activities. KEYWORDS: biomass, furans, pyrethroids, synthesis, 5-(chloromethyl) furfural ■ INTRODUCTION Previously, we have described the

  16. Country-level operational implementation of the Global Plan for Insecticide Resistance Management.

    Science.gov (United States)

    Hemingway, Janet; Vontas, John; Poupardin, Rodolphe; Raman, Jaishree; Lines, Jo; Schwabe, Chris; Matias, Abrahan; Kleinschmidt, Immo

    2013-06-04

    Malaria control is reliant on the use of long-lasting pyrethroid-impregnated nets and/or indoor residual spraying (IRS) of insecticide. The rapid selection and spread of operationally significant pyrethroid resistance in African malaria vectors threatens our ability to sustain malaria control. Establishing whether resistance is operationally significant is technically challenging. Routine monitoring by bioassay is inadequate, and there are limited data linking resistance selection with changes in disease transmission. The default is to switch insecticides when resistance is detected, but limited insecticide options and resistance to multiple insecticides in numerous locations make this approach unsustainable. Detailed analysis of the resistance situation in Anopheles gambiae on Bioko Island after pyrethroid resistance was detected in this species in 2004, and the IRS program switched to carbamate bendiocarb, has now been undertaken. The pyrethroid resistance selected is a target-site knock-down resistance kdr-form, on a background of generally elevated metabolic activity, compared with insecticide-susceptible A. gambiae, but the major cytochrome P450-based metabolic pyrethroid resistance mechanisms are not present. The available evidence from bioassays and infection data suggests that the pyrethroid resistance mechanisms in Bioko malaria vectors are not operationally significant, and on this basis, a different, long-lasting pyrethroid formulation is now being reintroduced for IRS in a rotational insecticide resistance management program. This will allow control efforts to be sustained in a cost-effective manner while reducing the selection pressure for resistance to nonpyrethroid insecticides. The methods used provide a template for evidence-based insecticide resistance management by malaria control programs.

  17. Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus.

    Science.gov (United States)

    Miah, Mohammad Asaduzzaman; Elzaki, Mohammed Esmail Abdalla; Han, Zhaojun

    2017-07-01

    Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p -nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min -1  mg protein -1 , respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC-MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4' or 5'hydroxy-imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development.

  18. Monitoring the operational impact of insecticide usage for malaria control on Anopheles funestus from Mozambique

    Directory of Open Access Journals (Sweden)

    Sharp Brian L

    2007-10-01

    Full Text Available Abstract Background Indoor residual spraying (IRS has again become popular for malaria control in Africa. This combined with the affirmation by WHO that DDT is appropriate for use in the absence of longer lasting insecticide formulations in some malaria endemic settings, has resulted in an increase in IRS with DDT as a major malaria vector control intervention in Africa. DDT was re-introduced into Mozambique's IRS programme in 2005 and is increasingly becoming the main insecticide used for malaria vector control in Mozambique. The selection of DDT as the insecticide of choice in Mozambique is evidence-based, taking account of the susceptibility of Anopheles funestus to all available insecticide choices, as well as operational costs of spraying. Previously lambda cyhalothrin had replaced DDT in Mozambique in 1993. However, resistance appeared quickly to this insecticide and, in 2000, the pyrethroid was phased out and the carbamate bendiocarb introduced. Low level resistance was detected by biochemical assay to bendiocarb in 1999 in both An. funestus and Anopheles arabiensis, although this was not evident in WHO bioassays of the same population. Methods Sentinel sites were established and monitored for insecticide resistance using WHO bioassays. These assays were conducted on 1–3 day old F1 offspring of field collected adult caught An. funestus females to determine levels of insecticide resistance in the malaria vector population. WHO biochemical assays were carried out to determine the frequency of insecticide resistance genes within the same population. Results In surveys conducted between 2002 and 2006, low levels of bendiocarb resistance were detected in An. funestus, populations using WHO bioassays. This is probably due to significantly elevated levels of Acetylcholinesterase levels found in the same populations. Pyrethroid resistance was also detected in populations and linked to elevated levels of p450 monooxygenase activity. One site had

  19. Organochlorine insecticide poisoning in Golden Langurs Trachypithecus geei

    OpenAIRE

    D.C. Pathak

    2011-01-01

    Organochlorine insecticide poisoning was recorded in three Golden Langurs (Trachypithecus geei) in Chakrashila Wildlife Sanctuary (CWS) in Kokrajhar district of Assam during the month of December, 2008. The poisoning was due to prolonged ingestion of rubber plant leaves sprayed with the insecticide in a rubber plantation adjacent to the sanctuary. Though no specific gross lesions were observed, histopathologically, centilobular hepatic necrosis, mild renal degeneration, necrotic enteritis, pu...

  20. Synergistic potential of dillapiole-rich essential oil with synthetic pyrethroid insecticides against fall armyworm

    OpenAIRE

    Fazolin, Murilo; Estrela, Joelma Lima Vidal; Medeiros, André Fábio Monteiro; Silva, Iriana Maria da; Gomes, Luiara Paiva; Silva, Maria Samylla de Farias

    2016-01-01

    ABSTRACT: The objective of this study was to evaluate the synergy and response homogeneity of the Spodoptera frugiperda larvae population to the Piper aduncum essential oil in combination with pyrethroid insecticides (alpha-cypermethrin, beta-cypermethrin, fenpropathrin, and gamma-cyhalothrin) compared to piperonylbutoxide (PBO) as positive control. Synergism (SF) comparisons were obtained using lethal concentration (LC50) and lethal dose (LD50) ratios of insecticides individually and in thei...

  1. Preparation of durable insecticide cotton fabrics through sol–gel treatment with permethrin

    OpenAIRE

    Ardanuy Raso, Mònica; Faccini, Mirko; Amantia, David; Aubouy, Laurent; Borja, Guadalupe

    2014-01-01

    This paper presents the development of an industrially viable procedure for the fabrication of durable insecticide textiles based on the sol–gel technique. Permethrin was incorporated on cotton fabrics by a silicon oxide nanocoating applied by conventional padding followed by curing. The effect of the sol–gel process parameters, such as silica solid content and the permethrin/tetraethyl orthosilicate (TEOS) ratio on the insecticide activity and on the textile properties of the resulting fabri...

  2. Variation effect on the insecticide activity of DDT analogues. A chemometric approach

    Science.gov (United States)

    Itoh, S.; Nagashima, U.

    2002-08-01

    We investigated a variation effect on the insecticide activity of DDT analogues by using the first principles electronic structure calculations and the neural network analysis. It has been found that the charge distribution at the specific atomic sites in the DDT molecule is related to their toxicity. This approach can contribute to designing a new insecticide and a new harmlessness process of the DDT analogues.

  3. Assessing Insecticide Susceptibility of Laboratory Lutzomyia longipalpis and Phlebotomus papatasi Sand Flies (Diptera: Psychodidae: Phlebotominae).

    Science.gov (United States)

    Denlinger, David S; Lozano-Fuentes, Saul; Lawyer, Phillip G; Black, William C; Bernhardt, Scott A

    2015-09-01

    Chemical insecticides are effective for controlling Lutzomyia and Phlebotomus sand fly (Diptera: Psychodidae) vectors of Leishmania parasites. However, repeated use of certain insecticides has led to tolerance and resistance. The objective of this study was to determine lethal concentrations (LCs) and lethal exposure times (LTs) to assess levels of susceptibility of laboratory Lutzomyia longipalpis (Lutz and Nieva) and Phlebotomus papatasi (Scopoli) to 10 insecticides using a modified version of the World Health Organization (WHO) exposure kit assay and Centers for Disease Control and Prevention (CDC) bottle bioassay. Sand flies were exposed to insecticides coated on the interior of 0.5-gallon and 1,000-ml glass bottles. Following exposure, the flies were allowed to recover for 24 h, after which mortality was recorded. From dose-response survival curves for L. longipalpis and P. papatasi generated with the QCal software, LCs causing 50, 90, and 95% mortality were determined for each insecticide. The LCs and LTs from this study will be useful as baseline reference points for future studies using the CDC bottle bioassays to assess insecticide susceptibility of sand fly populations in the field. There is a need for a larger repository of sand fly insecticide susceptibility data from the CDC bottle bioassays, including a range of LCs and LTs for more sand fly species with more insecticides. Such a repository would be a valuable tool for vector management. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  5. Synergistic potential of dillapiole-rich essential oil with synthetic pyrethroid insecticides against fall armyworm

    Directory of Open Access Journals (Sweden)

    Murilo Fazolin

    2016-03-01

    Full Text Available ABSTRACT: The objective of this study was to evaluate the synergy and response homogeneity of the Spodoptera frugiperda larvae population to the Piper aduncum essential oil in combination with pyrethroid insecticides (alpha-cypermethrin, beta-cypermethrin, fenpropathrin, and gamma-cyhalothrin compared to piperonylbutoxide (PBO as positive control. Synergism (SF comparisons were obtained using lethal concentration (LC50 and lethal dose (LD50 ratios of insecticides individually and in their respective synergistic combinations with essential oil and PBO. Dose/concentration-mortality slope curves were used to establish relative toxicity increase promoted by synergism. They also determined homogeneity response. Residual contact revealed significant potentiation for commercial insecticides formulated with beta-cypermethrin (SF=9.05-0.5 and fenpropathrin (SF=34.05-49.77 when combined with the P. aduncum essential oil. For topical contact, significant potentiation occurred only for alpha-cypermethrin (SF=7.55-3.68, fenpropathrin (SF=3.37-1.21, and gamma-cyhalothrin (SF=5.79-10.48 insecticides when combined with essential oil. With the exception of fenpropathrin and gamma-cyhalothrin, insecticides synergistic combinations presented homogeneous response by topical as well as residual contact at least with essential oil. The SF significance values ​​of the P. aduncum essential oil combined with alpha-cypermethrin, beta-cypermethrin, fenpropathrin, and gamma-cyhalothrin insecticides indicated potential for this oil to be used as an alternative to PBO.

  6. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Directory of Open Access Journals (Sweden)

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  7. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    Science.gov (United States)

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  8. Concentration-mortality responses of Myzus persicae and natural enemies to selected insecticides.

    Science.gov (United States)

    Bacci, Leandro; Rosado, Jander F; Picanço, Marcelo C; Pereira, Eliseu J G; Silva, Gerson A; Martins, Júlio C

    2012-01-01

    The toxicity of six insecticides was determined for the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae), and some of its natural enemies - the predatory beetles Cycloneda sanguinea (Coccinellidae) and Acanthinus sp. (Anthicidae), and the wasp parasitoid Diaeretiella rapae (Aphidiidae). Natural enemies from these groups are important natural biological control agents in a number of agroecosystems, and insecticides potentially safe to these non-target organisms should be identified using standardized tests. Thus, concentration-mortality bioassays were carried out with both the aphid and its natural enemies to assess the toxicity and selectivity of acephate, deltamethrin, dimethoate, methamidophos, methyl parathion, and pirimicarb. The latter insecticide was highly selective to all natural enemies tested, and its LC(90) for M. persicae was 14-fold lower than the field rate recommended for control of the aphid in brassica crops. Methyl parathion also showed selectivity to C. sanguinea and Acanthinus sp., but not to D. rapae. Acephate was the least potent insecticide against M. persicae and was equally or more toxic to the natural enemies relative to the aphid. Pirimicarb and methyl parathion were efficient against M. persicae and selective in favor of two of the natural enemies tested. Acanthinus sp. and C. sanguinea were more tolerant to the insecticides than was the parasitoid D. rapae. This study shows that there are selective insecticides that may be compatible with conservation of natural enemies in brassica crops, which is important practical information to improve integrated pest management systems in these crops.

  9. A Landscape View of Agricultural Insecticide Use across the Conterminous US from 1997 through 2012.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Simplification of agricultural landscapes is expected to have positive effects on many crop pests and negative effects on their natural enemies, potentially leading to increased pest pressure, decreased crop yield, and increased insecticide use. While many intermediate links in this causal chain have empirical support, there is mixed evidence for ultimate relationships between landscape simplification, crop yield, and insecticide use, especially at large spatial and temporal scales. We explored relationships between landscape simplification (proportion of a county in harvested cropland and insecticide use (proportion of harvested cropland treated with insecticides, using county-level data from the US Census of Agriculture and a variety of standard and spatiotemporal regression techniques. The best model indicated that insecticide use across the US has increased between 1997 and 2012, was strongly dependent on the crops grown in a county, increased with average farm income and size, and increased with annual growing degree days. After accounting for those variables, and other unidentified spatial and temporal structure in the data, there remained a statistically significant, moderate, positive relationship between insecticide use and landscape simplification. These results lend general support to the causal chain outlined above, and to the notion that a landscape perspective is useful for managing ecosystem services that are provided by mobile organisms and valuable to agriculture.

  10. Degradation analysis of some synthetic and bio-insecticides sprayed on okra crop using HPLC

    International Nuclear Information System (INIS)

    Abar, M.F.; Haq, M.A.; Yasmin, N.; Khan, M.F.U.

    2012-01-01

    This study aimed to find out the degradation of three conventional and two bio-insecticides sprayed on okra crop. Imidacloprid, Endosulfan and Profenofos were selected as convectional and biosal and spinosad as bioinsecticide. The insecticides were sprayed at the rates of 49.4, 642.2, 988, 35.5 and 158 g. a. i. ha/sup -1/ respectively. The insecticide residues were analyzed in the leaf and fruit after 0, 1, 3 and 7 days using high performance liquid chromatography. First order degradation kinetics was fitted on this data and degradation rate constants and half life were calculated. Conventional insecticides were found to be more persistent in the crop (Average half life: 1.95, 2.42 and 1.57 days for imidacloprid, endosulfan and profenofos respectively) than bioinsecticides (Average half life 1.25 and 0.27 days for spinosad and biosal respectively). Residues of all tested insecticides were compared with codex and EU MRLs and found both the bio-insecticides treated crops safe for human consumption even after few hours of spray. Endosulfan and profenofos treated crops were not found to be fit for consumption even after 7 days of application. Imidacloprid being biorational (low risk) was also safe for consumption on the next day of application. (author)

  11. Synthesis and Insecticidal Activities of New Ester-Derivatives of Celangulin-V

    Directory of Open Access Journals (Sweden)

    Wenjun Wu

    2011-12-01

    Full Text Available In order to develop new biorational pesticides, ten new 6-substituted ester derivatives of Celangulin-V were designed and synthesized. The structures of the new derivatives were confirmed by IR, 1H-NMR, 13C-NMR and ESI-MS spectral analysis. Insecticidal activities of these compounds were tested against the third-instar larvae of Mythimna separata. Two derivatives (1.1, 1.2 showed higher insecticidal activities than Celangulin-V, with mortality of 75.0% and 83.3%, respectively. While four compounds (1.3, 1.4, 1.7, 1.8 denoted lower insecticidal activities, the others (1.5, 1.6, 1.9, 1.10 revealed no activities at a concentration of 10 mg.mL−1. The results suggest that C-6 substitutions of Celangulin-V are very important in determining the insecticidal activities of its ester-derivatives. That the acetyl (1.1 and propionyl (1.2 derivatives possessed much higher insecticidal activities than Celangulin-V itself supported the view that Celangulin-V has the potential to be a lead structure of semi-synthetic green insecticides.

  12. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae).

    Science.gov (United States)

    Dang, Kai; Doggett, Stephen L; Veera Singham, G; Lee, Chow-Yang

    2017-06-29

    The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.

  13. Physiological selectivity and activity reduction of insecticides by rainfall to predatory wasps of Tuta absoluta.

    Science.gov (United States)

    Barros, Emerson C; Bacci, Leandro; Picanco, Marcelo C; Martins, Júlio C; Rosado, Jander F; Silva, Gerson A

    2015-01-01

    In this study, we carried out three bioassays with nine used insecticides in tomato crops to identify their efficiency against tomato leaf miner Tuta absoluta, the physiological selectivity and the activity reduction of insecticides by three rain regimes to predatory wasps Protonectarina sylveirae and Polybia scutellaris. We assessed the mortality caused by the recommended doses of abamectin, beta-cyfluthrin, cartap, chlorfenapyr, etofenprox, methamidophos, permethrin, phenthoate and spinosad to T. absoluta and wasps at the moment of application. In addition, we evaluated the wasp mortality due to the insecticides for 30 days on plants that did not receive rain and on plants that received 4 or 125 mm of rain. Spinosad, cartap, chlorfenapyr, phenthoate, abamectin and methamidophos caused mortality higher than 90% to T. absoluta, whereas the pyrethroids beta-cyfluthrin, etofenprox and permethrin caused mortality between 8.5% and 46.25%. At the moment of application, all the insecticides were highly toxic to the wasps, causing mortality higher than 80%. In the absence of rain, all the insecticides continued to cause high mortality to the wasps for 30 days after the application. The toxicity of spinosad and methamidophos on both wasp species; beta-cyfluthrin on P. sylveirae and chlorfenapyr and abamectin on P. scutellaris, decreased when the plants received 4 mm of rain. In contrast, the other insecticides only showed reduced toxicity on the wasps when the plants received 125 mm of rain.

  14. The effect of insecticide applications to melon crop on melon aphid and its natural enemies

    International Nuclear Information System (INIS)

    Guerra, J.; Gonzalez, J.E.; Ceballos, J.; Checa, B.

    1999-01-01

    Melons are an important export crop for Panama and are cultivated on more than 1000 ha of land. Long growing season, extending well into January, allows several generations and build up of heavy populations of an important insect pest, Aphis gossypii, the melon aphid. Growers find it difficult to cultivate melons without several applications of insecticides. Although the insecticide applications control the aphids, they may also have adverse effects on the natural enemies of the aphid, in particular the two predatory insects Cycloneda sanguinea and Chrysoperla carnea. The purpose of this research was to evaluate the impact of insecticide applications on these insects and on the yield of melons, and to estimate residues of the applied insecticides in soil. The insecticides were applied as four different type of treatments to melon crop. The treatments were (i) three periodic applications of endosulfan (Thiodan 35EC), each at 0.52 kg a.i./ha, (ii) three applications of fenitrothion (Sumithion 50WP), each at 0.35 kg a.i./ha, (iii) two applications of fenitrothion and one of endosulfan, and (iv) grower's treatment, which included applications of six different insecticides. The effect of the insecticide applications was evaluated by estimating numbers of each of the three type of insects before and within 72 hours after the applications and estimating yield of melons. All insecticide treatments reduced the populations of Aphis gossypii, but they also reduced the numbers of the benificial insects. Endosulfan was somewhat less toxic to C. carnea than the other insecticides were, since greater number of C. carnea were recorded from the plots treated with endosulfan than the other treated plots. The best yield of melons was recorded in the plots which were sprayed with fenitrothion, followed by the plots sprayed with endosulfan. and then those with grower's insecticides. Soon after the application of endosulfan the residue in the soil was 0.2 mg/kg, but it declined to less

  15. Effects of Different Systemic Insecticides in Carotenoid Content, Antibacterial Activity and Morphological Characteristics of Tomato (Solanum lycopersicum var Diamante)

    OpenAIRE

    LEXTER R. NATIVIDAD; Maria Fatima T. Astrero; Lenard T. Basinga; Maria Karysa G. Calang

    2014-01-01

    This study aimed to determine the effects of different systemic insecticides in tomato (Lycopersicon esculentum var. Diamante). The study also assessed different systemic insecticides used in other plants in their effectiveness and suitability to tomato by evaluating the carotenoid content and antibacterial activity of each insecticide. Morphological characteristics such as the weight, the number and the circumference of tomato fruits and the height of the plant were also observed. Moreover, ...

  16. Insecticidal activity of Jatropha curcas extracts against housefly, Musca domestica.

    Science.gov (United States)

    Chauhan, Nitin; Kumar, Peeyush; Mishra, Sapna; Verma, Sharad; Malik, Anushree; Sharma, Satyawati

    2015-10-01

    The hexane and ether extracts of leaves, bark and roots of Jatropha curcas were screened for their toxicity against different developmental stages of housefly. The larvicidal, pupicidal and adulticidal activities were analysed at various concentrations (0.78-7.86 mg/cm(2)) of hexane and ether extracts. The lethal concentration values (LC50) of hexane extract of J. curcas leaves were 3.0 and 0.27 mg/cm(2) for adult and larval stages of housefly, respectively, after 48 h. Similarly, the ether extract of leaf showed the LC50 of 2.20 and 4.53 mg/cm(2) for adult and larval stages of housefly. Least toxicity was observed with hexane root extract of J. curcas with LC50 values of 14.18 and 14.26 mg/cm(2) for adult and larvae of housefly, respectively, after 48 h. The variation in LC50 against housefly pupae was found to be 8.88-13.10 mg/cm(2) at various J. curcas extract concentrations. The GC-MS analysis of J. curcas leaf extract revealed the presence of trans-phytol (60.81 %), squalene (28.58 %), phytol (2.52 %) and nonadecanone (1.06 %) as major components that could be attributed for insecticidal activity of J. curcas extracts.

  17. Wet air oxidation of seedcorn wastes containing pesticides and insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, M.; Schlaefer, O.; Onyeche, T.I.; Schroeder, C.; Bormann, H.; Schaefer, S. [CUTEC-Inst. GmbH (Clausthal Environment Technology Inst.), Clausthal-Zellerfeld (Germany)

    2003-07-01

    Wet air oxidation as an alternative treatment process to pyrolysis and combustion of seedcorn wastes was investigated in lab-scale experiments. Due to solid condition of the seed corn waste, the process has been adapted by repeated spraying of water on the seed corn bulk to avoid the production of sludge and its subsequent dewatering. Original seed corns from industrial production plants were used for a degradation kinetic study under smooth wet air oxidation conditions. The temperatures were between 80 and 150 C, the pressure from 1 to 4.5 bar and the pH at different values from 3 to 13. Degradation rates for five different compounds of pesticides and insecticides, namely Imidacloprid, Thiram, Hymexazol, Carbofuran and Tefluthrin were conducted. These compounds represent the recently used in agricultural seedcorn applications. The degradation rate depends linearly on temperature between 80 and 150 C. At 120 C the lowest degradation rate was found for Tefluthrin by 25 mg/h per L reaction volume while the highest degradation rate to be conducted was for Imidacloprid at 363 mg/h L. (orig.)

  18. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  19. Study on Soil Mobility of Two Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Mária Mörtl

    2016-01-01

    Full Text Available Movement of two neonicotinoid insecticide active ingredients, clothianidin (CLO and thiamethoxam (TMX, was investigated in different soil types (sand, clay, or loam and in pumice. Elution profiles were determined to explore differences in binding capacity. Soil characterized by high organic matter content retained the ingredients, whereas high clay content resulted in long release of compounds. Decrease in concentration was strongly influenced by soil types: both CLO and TMX were retained in loam and clay soils and showed ready elution through sandy soil and pumice. Elution capability of the active ingredients in sandy soil correlated with their water solubility, indicating approximately 30% higher rapidity for TMX than for CLO. Soil organic carbon-water partitioning coefficients (Koc determined were in good agreement with literature values with somewhat lower value for CLO in sandy soil and substantially higher values for TMX in clay soil. High mobility of these neonicotinoid active ingredients in given soil types urges stronger precautionary approach taken during their application.

  20. Hepatopancreatic intoxication of lambda cyhalothrin insecticide on albino rats.

    Science.gov (United States)

    Elhalwagy, Manal Ea; Abd-Alrahman, Sherif H; Nahas, A A; Ziada, Reem M; Mohamady, Aziza H

    2015-01-01

    Despite the known adverse effects of lambda cyhalothrin insecticide, little is known about its hepatopancreatic intoxication effects. The present study was carried out to elucidate sub-chronic effect of Karat 2.5% EC formulation of lambda cyhalothrin on male albino rats. To explore the effects of exposure to lambda cyhalothrin on rats and its mechanism, low (1/40 of LD50, 5 mg/kg/day) and high dose (1/4 of LD50, 50 mg/kg/day) lambda cyhalothrin were applied to rats via drinking water for 3 months. Blood samples were collected monthly, and the animals were dissected for liver and pancreas's examination at the end of the experiment. Lambda cyhalothrin administration was associated with the elevation in lipid peroxidation marker, malondialdehyde (MDA), reduction in SH-protein a major marker for antioxidant, as well as basel paraoxonase (PON) in both treated groups throughout the experimental periods. In addition, significant elevations in liver enzymes alanin amino transferase, (ALT), and aspartate amino transferase (AST), as well as plasma acetylcholinesterase (AChE) and glucose level. While, significant reduction in insulin level through the experimental periods. Results of histopathological and histochemical studies showed that lambda cyhalothrin exposure induces liver and pancreatic tissues damage and depletion in glycogen content was pronounced in liver of both treated groups. In conclusion subchronic intoxication with lambda cyhalothrin formulation induced remarkable changes in the examined parameters.

  1. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    The objective of this project was to provide initial estimates of the relationship between insecticide use on passenger aircraft and exposure levels present in the cabin environment. The work was initially divided into three tasks including 1) a review of insecticide application practices in commercial aircraft, 2) exploratory measurements of insecticide concentrations in treated aircraft and 3) screening level exposure modeling. Task 1 gathered information that is needed to assess the time-concentration history of insecticides in the airline cabin. The literature review focused on application practices, information about the cabin environment and existing measurements of exposure concentrations following treatment. Information from the airlines was not available for estimating insecticide application rates in the U.S. domestic fleet or for understanding how frequently equipment rotate into domestic routes following insecticide treatment. However, the World Health Organization (WHO) recommends several methods for treating aircraft with insecticide. Although there is evidence that these WHO guidelines may not always be followed, and that practices vary by airline, destination, and/or applicator company, the guidelines in combination with information related to other indoor environments provides a plausible basis for estimating insecticide loading rates on aircraft. The review also found that while measurements of exposure concentrations following simulated aerosol applications are available, measurements following residual treatment of aircraft or applications in domestic aircraft are lacking. Task 2 focused on developing an approach to monitor exposure concentrations in aircraft using a combination of active and passive sampling methods. An existing active sampling approach was intended to provide data immediately following treatment while a passive sampler was developed to provide wider coverage of the fleet over longer sampling periods. The passive sampler, based

  2. Susceptibility to chemical insecticides of two Brazilian populations of the visceral leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Alexander, B; Barros, V C; de Souza, S F; Barros, S S; Teodoro, L P; Soares, Z R; Gontijo, N F; Reithinger, R

    2009-10-01

    To investigate the insecticide susceptibility of two geographically separated Lutzomyia longipalpis populations (Lapinha and Montes Claros) with different histories of insecticide exposure (i.e. no exposure and repeated exposure, respectively). (i) Bioassay monitoring of sand fly survival over time when exposed to a range of insecticides; and (ii) analysis of the level of insecticide detoxification enzymes in individual sand flies caught at both study sites. Insecticides tested were the organophosphates malathion and fenitrothion and the pyrethroids lambda-cyhalothrin, permethrin and deltamethrin. Survival analyses showed that whilst there was no overall significant difference in susceptibility of both populations to organophosphates, Lapinha sand flies were significantly more susceptible to pyrethroids than those from Montes Claros. Multiple regression analyses also showed that insecticide susceptibility in both locations varied with sand fly sex. The relative susceptibilities of the two sand fly populations to tested insecticides were also compared. Thus, Montes Claros sand flies were most susceptible to malathion, followed by fenitrothion, deltamethrin and permethrin. Those from Lapinha were most susceptible to lambda-cyhalothrin, followed by malathion, permethrin, deltamethrin and fenitrothion. Biochemical analyses demonstrated that Montes Claros sand flies had significantly lower insecticide detoxification enzyme activity than Lapinha sand flies. Our results are the first record of significantly reduced susceptibility to the insecticides used in control of wild populations of Lu. longipalpis. They demonstrate the importance of evaluating chemicals against this species by conventional bioassay and microplate assays before and during spraying programmes.

  3. Synergistic Combinations of a Pyrethroid Insecticide and an Emulsifiable Oil Formulation of Beauveria bassiana to Overcome Insecticide Resistance in Listronotus maculicollis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Wu, Shaohui; Kostromytska, Olga S; Koppenhöfer, Albrecht M

    2017-08-01

    The annual bluegrass weevil, Listronotus maculicollis (Kirby), is a major pest of golf course turf in eastern North America and has become particularly problematic owing to widespread development of insecticide resistance. As an alternative option to manage resistant adult L. maculicollis, we explored combinations of the pyrethroid insecticide bifenthrin with an emulsifiable oil formulation of the entomopathogenic fungus Beauveria bassiana strain GHA (Bb ES). Combinations synergistically enhanced mortality in both insecticide-susceptible and insecticide-resistant L. maculicollis adults in the laboratory when bifenthrin was used at LC50s for each population. To determine the component behind the synergism, technical spores of B. bassiana GHA and the emulsifiable oil carrier in the fungal formulation were tested separately or in combination with bifenthrin. In both separate and combined applications, the emulsifiable oil carrier was responsible for high mortality within 3 d after treatment and interacted synergistically with bifenthrin, whereas fungus-induced mortality started later. Strong synergism was also observed in three field experiments with a relatively resistant L. maculicollis population. Combinations of Bb ES and bifenthrin hold promise as an effective L. maculicollis management tool, particularly of pyrethroid-resistant populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria : A cluster randomised controlled trial

    NARCIS (Netherlands)

    Sluydts, V.; Durnez, L.; Heng, S.; Gryseels, C.; Canier, L.; Kim, S.; Van Roey, K.; Kerkhof, K.; Khim, N.; Mao, S.; Menard, D.; Coosemans, M.

    2016-01-01

    Background Although effective topical repellents provide personal protection against malaria, whether mass use of topical repellents in addition to long-lasting insecticidal nets can contribute to a further decline of malaria is not known, particularly in areas where outdoor transmission occurs. We

  5. Efficacy of Silk Channel Injections with Insecticides for Management of Lepidoptera Pests of Sweet Corn.

    Science.gov (United States)

    Sparks, A N; Gadal, L; Ni, X

    2015-08-01

    The primary Lepidoptera pests of sweet corn (Zea mays L. convar. saccharata) in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J. E. Smith). Management of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers frequently spraying daily. This level of insecticide use presents problems for small growers, particularly for "pick-your-own" operations. Injection of oil into the corn ear silk channel 5-8 days after silking initiation has been used to suppress damage by these insects. Initial work with this technique in Georgia provided poor results. Subsequently, a series of experiments was conducted to evaluate the efficacy of silk channel injections as an application methodology for insecticides. A single application of synthetic insecticide, at greatly reduced per acre rates compared with common foliar applications, provided excellent control of Lepidoptera insects attacking the ear tip and suppressed damage by sap beetles (Nitidulidae). While this methodology is labor-intensive, it requires a single application of insecticide at reduced rates applied ∼2 wk prior to harvest, compared with potential daily applications at full rates up to the day of harvest with foliar insecticide applications. This methodology is not likely to eliminate the need for foliar applications because of other insect pests which do not enter through the silk channel or are not affected by the specific selective insecticide used in the silk channel injection, but would greatly reduce the number of applications required. This methodology may prove particularly useful for small acreage growers. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2017-01-01

    Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log K ow ) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log K ow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study.

    Science.gov (United States)

    Eddleston, Michael; Eyer, Peter; Worek, Franz; Mohamed, Fahim; Senarathna, Lalith; von Meyer, Ludwig; Juszczak, Edmund; Hittarage, Ariyasena; Azhar, Shifa; Dissanayake, Wasantha; Sheriff, M H Rezvi; Szinicz, Ladislaus; Dawson, Andrew H; Buckley, Nick A

    Although more than 100 organophosphorus insecticides exist, organophosphorus poisoning is usually regarded as a single entity, distinguished only by the compound's lethal dose in animals. We aimed to determine whether the three most common organophosphorus insecticides used for self-poisoning in Sri Lanka differ in the clinical features and severity of poisoning they cause. We prospectively studied 802 patients with chlorpyrifos, dimethoate, or fenthion self-poisoning admitted to three hospitals. Blood cholinesterase activity and insecticide concentration were measured to determine the compound and the patients' response to insecticide and therapy. We recorded clinical outcomes for each patient. Compared with chlorpyrifos (35 of 439, 8.0%), the proportion dying was significantly higher with dimethoate (61 of 264, 23.1%, odds ratio [OR] 3.5, 95% CI 2.2-5.4) or fenthion (16 of 99, 16.2%, OR 2.2, 1.2-4.2), as was the proportion requiring endotracheal intubation (66 of 439 for chlorpyrifos, 15.0%; 93 of 264 for dimethoate, 35.2%, OR 3.1, 2.1-4.4; 31 of 99 for fenthion, 31.3%, 2.6, 1.6-4.2). Dimethoate-poisoned patients died sooner than those ingesting other pesticides and often from hypotensive shock. Fenthion poisoning initially caused few symptoms but many patients subsequently required intubation. Acetylcholinesterase inhibited by fenthion or dimethoate responded poorly to pralidoxime treatment compared with chlorpyrifos-inhibited acetylcholinesterase. Organophosphorus insecticide poisoning is not a single entity, with substantial variability in clinical course, response to oximes, and outcome. Animal toxicity does not predict human toxicity since, although chlorpyrifos is generally the most toxic in rats, it is least toxic in people. Each organophosphorus insecticide should be considered as an individual poison and, consequently, patients might benefit from management protocols developed for particular organophosphorus insecticides.

  8. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand

    Science.gov (United States)

    2013-01-01

    Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011. PMID:24294938

  9. Selective insecticide-induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Wang, Ai-Hua; Wu, Jin-Cai; Yu, Yue-Shu; Liu, Jing-Lan; Yue, Jiang-Fei; Wang, Mei-Yue

    2005-08-01

    The use of selective insecticides in rice, Oryza sativa L., fields often causes resurgence of nontarget pest insects. This study was conducted to investigate the effect of two selective insecticides, buprofezin and imidacloprid, on Tryporyza incertulas (Walker), a nontarget pest. After larval feeding on rice plants treated with each insecticide, fecundity, ovary protein content, and titer of juvenile hormone III (JHIII) in the resulting female moths were determined with 'Xiushui 63' rice susceptible to T. incertulas and 'Zhendao 2' moderately resistant to T. incertulas. The fecundity of females developed from larvae that fed on the insecticide-treated Xiushui 63 plants was stimulated compared with that of moths from larvae that fed on rice plants that were not treated with either insecticide. There was no stimulating effect in females from larvae that fed on insecticide-treated Zhendao 2 plants. The weight of fourth instars (final instars) that fed on the insecticide-treated Xiushui 63 rice plants was significantly greater than that of control, increasing by 50.3 and 46.7% for 60 and 112.5 g (AI) ha(-1) buprofezin, and by 23.7 and 19.5% for 15 and 37.5 g (AI) ha(-1) imidacloprid treatments, respectively. Ovary protein content in adult females developed from larvae that fed on the rice treated with the high dose of buprofezin was significantly higher than that in control. For the high and low doses of imidacloprid during the second instar, and the low dose of imidacloprid during the fourth instar, JHIII titers in female adults were also significantly higher than that in control, increasing by 152.81, 90.52, and 114.19%, respectively.

  10. Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations.

    Science.gov (United States)

    Yang, X-Q; Zhang, Y-L

    2015-06-01

    The codling moth Cydia pomonella (L.) is an economically important fruit pest and it has been directly targeted by insecticides worldwide. Serious resistance to insecticides has been reported in many countries. As one of the most serious invasive pest, the codling moth has populated several areas in China. However, resistance to insecticides has not been reported in China. We investigated the insecticide-resistance status of four field populations from Northwestern China by applying bioassays, enzyme activities, and mutation detections. Diagnostic concentrations of lambda-cyhalothrin, chlorpyrifos-ethyl, carbaryl, and imidacloprid were determined and used in bioassays. Field populations were less susceptible to chlorpyrifos-ethyl and carbaryl than laboratory strain. Insensitive populations displayed an elevated glutathione S-transferases (GSTs) activity. Reduced carboxylesterase (CarE) activity was observed in some insecticide insensitive populations and reduced acetylcholinesterase activity was observed only in the Wuw population. The cytochrome P450 polysubstrate monooxygenases activities in four field populations were not found to be different from susceptible strains. Neither the known-resistance mutation F399V in the acetylcholinesterase (AChE) gene, ace1, nor mutations in CarE gene CpCE-1 were found in adult individuals from our field populations. Native-PAGE revealed that various CarE isozymes and AChE insensitivity were occurring among Chinese populations. Our results indicate that codling moth populations from Northwestern China were insensitivity to chlorpyrifos-ethyl and carbaryl. Increased GST activity was responsible for insecticides insensitivity. Decreased CarE activity, as well as the presence of CarE and AChE polymorphisms might also be involved in insecticides insensitivity. New management strategies for managing this pest are discussed.

  11. Acceptability and perceived side effects of insecticide indoor residual spraying under different resistance management strategies

    Directory of Open Access Journals (Sweden)

    Rodríguez Américo David

    2006-01-01

    Full Text Available OBJECTIVE: To assess household acceptability and perceived side effects of residual indoor pyrethroid (PYR, carbamate and organophosphate insecticides sprayed by annual rotation (ROT, spatial mosaic (MOS, and a single insecticide (DDT or PYR in communities of the coastal plain of Chiapas, Mexico. MATERIAL AND METHODS: A questionnaire to assess the acceptability and perceived side effects of indoor insecticides was administered to one member of 30% of the families in eight villages of Chiapas. The association of different insecticide treatments with their responses was evaluated (Chi-square. The intensity of side effects indicated under different treatments was compared in an ordered logistic model, using a severity index as the response variable. RESULTS: Insecticide spraying as a probable cause of symptoms was identified by 2.1% of interviewees. A significantly high percentage of persons with blurred vision, dizziness, sneezing, coughing, numbness, watery eyes, and itching lived in villages under MOS and ROT and a high severity index was significantly associated with ROT treatment. Reduction of mosquito bites and cockroaches were the perceived main benefits, and most villagers that perceived no benefits lived in DDT treated villages. Most of the interviewees welcomed spraying (83.7%, but the smell and having to remove furniture from houses were the main arguments against it. CONCLUSIONS: Acceptability correlated with insecticide spray coverage, although the most frequent suggestion for improvement was to increase the understanding of the objectives of spraying in the communities. The frequency of side effects was low, but higher in localities where a combination of insecticides was applied. This is a limitation for the use of this type of resistance management strategy in public health.

  12. Activity of Selected Formulated Biorational and Synthetic Insecticides Against Larvae of Helicoverpa armigera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Vivan, L M; Torres, J B; Fernandes, P L S

    2017-02-01

    This work studied 17 insecticides belonging to nucleopolyhedrovirus (NPV), Bacillus thuringiensis (Bt kurstaki and Bt aizawai), benzoylureas (insect growth regulators [IGRs]), carbamates, organophosphates, spinosyns, and diamides against larvae of Helicoverpa armigera (Hübner), invasive species in the South American continent. Larvae of different instars were fed for 7 d with untreated or insecticide-treated diets. Mortality was recorded daily for 7 d, and surviving larvae were individually weighed on the seventh day. The NPV and Bt insecticides caused 100% mortality of first-instar larvae and first-instar and second-instar larvae, respectively. However, both NPV and Bt-based products caused low mortality of third-instar larvae and did not kill older larvae. The IGR lufenuron was highly effective against all three ages of larvae tested, whereas teflubenzuron and triflumuron produced maximum 60% mortality of second-instar larvae and lower than 50% to older larvae. Thiodicarb, chlorantraniliprole, indoxacarb, chlorpyrifos, and chlorfenapyr, irrespective of tested age, caused 100% mortality of larvae, with the last two insecticides reaching 100% mortality within 2 d of feeding on the treated diet. Flubendiamide caused lower mortality but significantly affected the weight of surviving larvae, whereas neither spinosad nor methomyl produced significant mortality or affected the weight of larvae. Based on the results, the age of H. armigera larvae plays an important role in the recommendation of NPV and Bt insecticides. Furthermore, there are potential options between biological and synthetic insecticides tested against H. armigera, and recording larval size during monitoring, in addition to the infestation level, should be considered when recommending biological-based insecticides to control this pest. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production.

    Science.gov (United States)

    Leach, Heather; Wise, John C; Isaacs, Rufus

    2017-12-01

    High tunnels are large protective structures used for season extension of many crops, including raspberries. These structures are often covered in plastic films to reduce and diffuse ultraviolet light transmission for pest and disease control, but this may also affect the photodegradation and efficacy of pesticides applied under these tunnels. We compared the residue levels of ten insecticides under three tunnel plastics with varying levels of UV transmission and open field conditions. Raspberry plants placed in research-scale tunnels were treated with insecticides and residues on fruit and foliage were monitored for one or two weeks in early 2015 and early and late 2016. Plastics that reduce UV transmission resulted in 50% greater residues of some insecticides compared to transparent plastics, and 60% compared to uncovered tunnels. This increased persistence of residues was evident within 1 day and remained consistently higher for up to 14 days. This pattern was demonstrated for multiple insecticides, including bifenthrin, esfenvalerate, imidacloprid, thiamethoxam, and spinosad. In contrast, the insecticide malathion degraded rapidly regardless of the plastic treatment, indicating less sensitivity to photodegradation. Bioassays using insecticide-treated leaves that were under UV-blocking plastic revealed higher mortality of the invasive fruit pest, Drosophila suzukii, compared to leaves that were uncovered. This indicates that the activity of pesticides under high tunnels covered in UV-reducing plastics may be prolonged, allowing for fewer insecticide applications and longer intervals between sprays. This information can be used to help optimize pest control in protected culture berry production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii.

    Science.gov (United States)

    Main, Bradley J; Everitt, Amanda; Cornel, Anthony J; Hormozdiari, Fereydoun; Lanzaro, Gregory C

    2018-04-04

    Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase

  15. Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique.

    Science.gov (United States)

    Kloke, R Graham; Nhamahanga, Eduardo; Hunt, Richard H; Coetzee, Maureen

    2011-02-09

    The dual problems of rising insecticide resistance in the malaria vectors and increasing human malaria cases since 2001 in southern Mozambique are cause for serious concern. The selection of insecticides for use in indoor residual spraying (IRS) programmes is highly dependent on the extent to which local mosquitoes are susceptible to the approved classes of insecticides. The insecticide resistance status and role in malaria transmission of Anopheles funestus was evaluated at the Maragra Sugar Estate in southern Mozambique where an IRS vector control programme has been in operation for seven years using the carbamate insecticide bendiocarb. No Anopheles species were captured inside the sugar estate control area. Anopheles funestus group captured outside of the estate represented 90% (n = 475) of the total collections. Of the specimens identified to species by PCR (n = 167), 95% were An. funestus s.s. One An. rivulorum was identified and seven specimens did not amplify. The Anopheles gambiae complex was less abundant (n = 53) and of those identified (n = 33) 76% were An. arabiensis and 24% An. merus. Insecticide susceptibility tests showed that wild-caught and F-1 family An. funestus were resistant to deltamethrin (32.5% mortality) and lambda-cyhalothrin (14.6% mortality), less so to bendiocarb (71.5% mortality) and fully susceptible to both malathion and DDT (100%). Bendiocarb and pyrethroid resistance was nullified using 4% piperonyl butoxide (Pbo), strongly suggesting that both are mediated by P450 monooxygenase detoxification. ELISA tests of An. funestus for Plasmodium falciparum, gave a sporozoite rate of 6.02% (n = 166). One unidentified member of the An. gambiae complex tested positive for P. falciparum sporozoites. Anopheles funestus was found to be the most abundant and principle vector of malaria in this area, with members of the An. gambiae complex being secondary vectors. Despite the continual use of bendiocarb within the estate for seven years and the

  16. Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique

    Directory of Open Access Journals (Sweden)

    Nhamahanga Eduardo

    2011-02-01

    Full Text Available Abstract Background The dual problems of rising insecticide resistance in the malaria vectors and increasing human malaria cases since 2001 in southern Mozambique are cause for serious concern. The selection of insecticides for use in indoor residual spraying (IRS programmes is highly dependent on the extent to which local mosquitoes are susceptible to the approved classes of insecticides. The insecticide resistance status and role in malaria transmission of Anopheles funestus was evaluated at the Maragra Sugar Estate in southern Mozambique where an IRS vector control programme has been in operation for seven years using the carbamate insecticide bendiocarb. Results No Anopheles species were captured inside the sugar estate control area. Anopheles funestus group captured outside of the estate represented 90% (n = 475 of the total collections. Of the specimens identified to species by PCR (n = 167, 95% were An. funestus s.s. One An. rivulorum was identified and seven specimens did not amplify. The Anopheles gambiae complex was less abundant (n = 53 and of those identified (n = 33 76% were An. arabiensis and 24% An. merus. Insecticide susceptibility tests showed that wild-caught and F-1 family An. funestus were resistant to deltamethrin (32.5% mortality and lambda-cyhalothrin (14.6% mortality, less so to bendiocarb (71.5% mortality and fully susceptible to both malathion and DDT (100%. Bendiocarb and pyrethroid resistance was nullified using 4% piperonyl butoxide (Pbo, strongly suggesting that both are mediated by P450 monooxygenase detoxification. ELISA tests of An. funestus for Plasmodium falciparum, gave a sporozoite rate of 6.02% (n = 166. One unidentified member of the An. gambiae complex tested positive for P. falciparum sporozoites. Conclusion Anopheles funestus was found to be the most abundant and principle vector of malaria in this area, with members of the An. gambiae complex being secondary vectors. Despite the continual use of

  17. Insecticide residue monitoring in sediments water fish and mangroves at the Cimanuk Delta

    International Nuclear Information System (INIS)

    Sumatra, Made

    1982-01-01

    The water and sediments from the upper stream of Cimanuk river carry insecticide residues especially during the rainy season. The insecticides are deposited in the estuary of Cimanuk river and along the coast of Cimanuk delta. The insecticide residues found at the delta were diazinon thiodan DDE o p-DDT and p p-DDT. Those insecticides are found in most of the water sediments and mangrove leaves samples and some of fishes samples. The samples were taken from the river the estuary the sea, the tambaks, the coast line, and from paddy field. No insecticide residue is found in the water samples taken in the dry season but they are found in the sediment samples taken in both the dry and rainy season. Generally the diazinon residues are higher at the surface than at 0.5m depth in compact sediment but they are higher at 0.5m depth than at the surface of the mud from the coast line. Diazinon and thiodan are found only in three fish samples out of twenty samples analyzed but thiodan is found in almost all of the sediment and mangrove leaves samples. DDT is found in almost all of the samples analyzed. (author)

  18. Using trap crops for control of Acalymma vittatum (Coleoptera: Chrysomelidae) reduces insecticide use in butternut squash.

    Science.gov (United States)

    Cavanagh, A; Hazzard, R; Adler, L S; Boucher, J

    2009-06-01

    Striped cucumber beetle, Acalymma vittatum F., is the primary insect pest of cucurbit crops in the northeastern United States. Adult beetles colonize squash crops from field borders, causing feeding damage at the seedling stage and transmitting bacterial wilt Erwinia tracheiphila Hauben et al. 1999. Conventional control methods rely on insecticide applications to the entire field, but surrounding main crops with a more attractive perimeter could reduce reliance on insecticides. A. cittatum shows a marked preference for Blue Hubbard squash (Cucurbita maxima Duchesne) over butternut squash (C. moschata Poir). Given this preference, Blue Hubbard squash has the potential to be an effective perimeter trap crop. We evaluated this system in commercial butternut fields in 2003 and 2004, comparing fields using perimeter trap cropping with Blue Hubbard to conventionally managed fields. In 2003, we used a foliar insecticide to control beetles in the trap crop borders, and in 2004, we compared systemic and foliar insecticide treatments for the trap crop borders. We found that using a trap crop system reduced or eliminated the need to spray the main crop area, reducing insecticide use by up to 94% compared with conventional control methods, with no increase in herbivory or beetle numbers. We surveyed the growers who participated in these experiments and found a high level of satisfaction with the effectiveness and simplicity of the system. These results suggest that this method of pest control is both effective and simple enough in its implementation to have high potential for adoption among growers.

  19. Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: Direct and indirect effects

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Geoff K. [Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX (United Kingdom)]. E-mail: gkf@soton.ac.uk; Brink, Paul J. van den [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, P.O. Box 8080, 6700 DD Wageningen (Netherlands)

    2007-05-15

    Non-target effects on terrestrial arthropod communities of the broad-spectrum insecticides chlorpyrifos and cypermethrin and the selective insecticide pirimicarb were investigated in winter wheat fields in summer. Effects of chlorpyrifos on arthropod abundance and taxonomic richness were consistently negative whereas effects of cypermethrin were negative for predatory arthropods but positive for soil surface Collembola. Pirimicarb effects were marginal, primarily on aphids and their antagonists, with no effect on the Collembola community. Collembola-predator ratios were significantly higher following cypermethrin treatment, suggesting that cypermethrin-induced increases in collembolan abundance represent a classical resurgence. Observations in other studies suggest Collembola resurgences may be typical after synthetic pyrethroid applications. Collembola responses to insecticides differed among species, both in terms of effect magnitude and persistence, suggesting that coarse taxonomic monitoring would not adequately detect pesticide risks. These findings have implications for pesticide risk assessments and for the selection of indicator species. - Direct and indirect insecticide effects differ among closely-related arthropod taxa; resurgence of Collembola may occur widely after synthetic pyrethroid insecticide applications.

  20. Reduced Insecticide Susceptibility in Aedes vexans (Diptera: Culicidae) Where Agricultural Pest Management Overlaps With Mosquito Abatement.

    Science.gov (United States)

    Dunbar, Mike W; Bachmann, Amanda; Varenhorst, Adam J

    2018-05-04

    Mosquito abatement programs in Midwestern communities frequently exist within landscapes dominated by agriculture. Although separately managed, both agricultural pests and mosquitoes are targeted by similar classes of insecticides. As a result, there is the potential for unintended insecticide exposure to mosquito populations from agricultural pest management. To determine the impact that agricultural management practices have on mosquito insecticide susceptibility we compared the mortality of Aedes vexans (Meigen; Diptera: Culicidae) between populations sampled from locations with and without mosquito abatement in South Dakota, a region dominated by agricultural production. Collection locations were either within towns with mosquito abatement programs (n = 2; Brookings and Sioux Falls, SD) or located > 16 km from towns with mosquito abatement programs (n = 2; areas near Harrold and Willow Lake, SD). WHO bioassays were used to test susceptibly of adults to differing insecticide classes relative to their respective controls; 1) an organochlorine (dieldrin 4%), 2) an organophosphate (malathion 5%), and 3) a pyrethroid (lambda-cyhalothrin 0.05%). Corrected mortality did not significantly differ between locations with or without abatement; however, when locations were analized by proportion of developed land within the surrounding landscape pyrethroid mortality was significantly lower where crop production dominated the surrounding landscape and mosquito abatement was present. These data suggest that agricultural pest management may incidentally contribute to reduced mosquito susceptibility where overlap between agricultural pest management and mosquito abatement exists. Decoupling insecticide classes used by both agricultural and public health pest management programs may be necessary to ensure continued efficacy of pest management tools.