WorldWideScience

Sample records for insect viruses

  1. Viruses of insects reared for food and feed

    DEFF Research Database (Denmark)

    Maciel Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even...... with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks...... for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays...

  2. Viruses of insects reared for food and feed.

    Science.gov (United States)

    Maciel-Vergara, Gabriela; Ros, Vera I D

    2017-07-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in industrial settings, can be the key for a change in the way natural resources are utilized in order to produce meat, animal protein and a list of other valuable animal products. However, because insect mass rearing technology is relatively new, little is known about the different factors that determine the quality and yield of the production process. Obtaining such knowledge is crucial for the success of insect-based product development. One of the issues that is likely to compromise the success of insect rearing is the outbreak of insect diseases. In particular, viral diseases can be devastating for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks in mass rearing systems, ranging from simple sanitation methods to highly sophisticated methods including RNAi and transgenics. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii.

    Science.gov (United States)

    Lee, Kwang-Zin; Vilcinskas, Andreas

    2017-09-01

    The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Regions identity between the genome of vertebrates and non-retroviral families of insect viruses.

    Science.gov (United States)

    Fan, Gaowei; Li, Jinming

    2011-11-10

    The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species. Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses. Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.

  5. Regions identity between the genome of vertebrates and non-retroviral families of insect viruses

    Directory of Open Access Journals (Sweden)

    Fan Gaowei

    2011-11-01

    Full Text Available Abstract Background The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species. Results Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses. Conclusion Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.

  6. Insect-Specific Virus Discovery: Significance for the Arbovirus Community

    Directory of Open Access Journals (Sweden)

    Bethany G. Bolling

    2015-09-01

    Full Text Available Arthropod-borne viruses (arboviruses, especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.

  7. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-11-01

    Full Text Available Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  8. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    Science.gov (United States)

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. How to collect and process large polyhedral viruses of insects

    Science.gov (United States)

    W. D. Rollinson; F. B. Lewis

    1962-01-01

    Polyhedral viruses have proved highly effective and very practical for control of certain pine sawflies; and a method of collecting and processing the small polyhedra (5 microns or less) characteristic of sawflies has been described. There is experimental evidence that the virus diseases of many Lepidopterous insects can be used similarly for direct control. The...

  10. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    Science.gov (United States)

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Impact of Ultraviolet-Blocking Plastic Films on Insect Vectors of Virus Diseases Infesting Crisp Lettuce

    OpenAIRE

    Díaz Desani, Beatriz M.; Biurrun, R.; Moreno, Aránzazu; Nebreda, Miguel; Fereres, Alberto

    2006-01-01

    Ultraviolet (UV)-absorbing plastic films are being used as a photoselective barrier to control insect vectors and associated virus diseases in different horticultural crops. A 2-year experiment was carried out in northeastern Spain (Navarra) to evaluate the impact of a UV-blocking film (AD-IR AV) on the population density of insect pests and the spread of insect-transmitted virus diseases associated with head lettuce [Lactuca sativa (L.)]. Results showed that the UV-absorbing plastic film did...

  12. A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors.

    Science.gov (United States)

    Ghanim, Murad; Brumin, Marina; Popovski, Smadar

    2009-08-01

    A simple, rapid, inexpensive method for the localization of virus transcripts in plant and insect vector tissues is reported here. The method based on fluorescent in situ hybridization using short DNA oligonucleotides complementary to an RNA segment representing a virus transcript in the infected plant or insect vector. The DNA probe harbors a fluorescent molecule at its 5' or 3' ends. The protocol: simple fixation, hybridization, minimal washing and confocal microscopy, provides a highly specific signal. The reliability of the protocol was tested by localizing two phloem-limited plant virus transcripts in infected plants and insect tissues: Tomato yellow leaf curl virus (TYLCV) (Begomovirus: Geminiviridae), exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a circulative non-propagative manner, and Potato leafroll virus (Polerovirus: Luteoviridae), similarly transmitted by the aphid Myzus persicae (Sulzer). Transcripts for both viruses were localized specifically to the phloem sieve elements of infected plants, while negative controls showed no signal. TYLCV transcripts were also localized to the digestive tract of B. tabaci, confirming TYLCV route of transmission. Compared to previous methods for localizing virus transcripts in plant and insect tissues that include complex steps for in-vitro probe preparation or antibody raising, tissue fixation, block preparation, sectioning and hybridization, the method described below provides very reliable, convincing, background-free results with much less time, effort and cost.

  13. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    Science.gov (United States)

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an

  15. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses

    Science.gov (United States)

    Li, Linlin; Joseph, G. Victoria; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  16. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  17. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    International Nuclear Information System (INIS)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.

    1987-01-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120

  18. Effective chikungunya virus-like particle vaccine produced in insect cells.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    Full Text Available The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLPs in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs. Herein we show that a single immunization with 1 µg of non-adjuvanted CHIKV VLPs induced high titer neutralizing antibody responses and provided complete protection against viraemia and joint inflammation upon challenge with the Réunion Island CHIKV strain in an adult wild-type mouse model of CHIKV disease. CHIKV VLPs produced in insect cells using recombinant baculoviruses thus represents as a new, safe, non-replicating and effective vaccine candidate against CHIKV infections.

  19. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Directory of Open Access Journals (Sweden)

    Junmin Li

    Full Text Available Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi which generates viral-derived small interfering RNAs (siRNAs. However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus was infected by Rice black-streaked dwarf virus (RBSDV (Reoviridae; Fijivirus, more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV, a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  20. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  1. Transcriptomic response of the insect vector, Peregrinus maidis, to Maize mosaic rhabdovirus and identification of conserved responses to propagative viruses in hopper vectors.

    Science.gov (United States)

    Martin, Kathleen M; Barandoc-Alviar, Karen; Schneweis, Derek J; Stewart, Catherine L; Rotenberg, Dorith; Whitfield, Anna E

    2017-09-01

    Maize mosaic virus (MMV) is a plant-pathogenic rhabdovirus that is transmitted by the corn planthopper, Peregrinus maidis, in a propagative manner. P. maidis supports long-term MMV infections with no negative effects on insect performance. To elucidate whole-body transcriptome responses to virus infection, RNA-Seq was used to examine differential gene expression of virus-infected adult insects, and libraries were prepared from replicated groups of virus-exposed insects and non-exposed insects. From the 68,003 de novo-assembled transcripts, 144 were differentially-expressed (DE) during viral infection with comparable numbers up- and down-regulated. DE transcripts with similarity to genes associated with transposable elements (i.e., RNA-directed DNA polymerases) were enriched and may represent a mechanisim for modulating virus infection. Comparison of the P. maidis DE transcripts to published propagative virus-responsive transcript databases for two other hopper vectors revealed that 16% of the DE transcripts were shared across the three systems and may represent conserved responses to propagative viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  3. Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus

    Science.gov (United States)

    Clavijo, Gabriel; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo; López-Ferber, Miguel

    2010-01-01

    An insect nucleopolyhedrovirus naturally survives as a mixture of at least nine genotypes. Infection by multiple genotypes results in the production of virus occlusion bodies (OBs) with greater pathogenicity than those of any genotype alone. We tested the hypothesis that each OB contains a genotypically diverse population of virions. Few insects died following inoculation with an experimental two-genotype mixture at a dose of one OB per insect, but a high proportion of multiple infections were observed (50%), which differed significantly from the frequencies predicted by a non-associated transmission model in which genotypes are segregated into distinct OBs. By contrast, insects that consumed multiple OBs experienced higher mortality and infection frequencies did not differ significantly from those of the non-associated model. Inoculation with genotypically complex wild-type OBs indicated that genotypes tend to be transmitted in association, rather than as independent entities, irrespective of dose. To examine the hypothesis that virions may themselves be genotypically heterogeneous, cell culture plaques derived from individual virions were analysed to reveal that one-third of virions was of mixed genotype, irrespective of the genotypic composition of the OBs. We conclude that co-occlusion of genotypically distinct virions in each OB is an adaptive mechanism that favours the maintenance of virus diversity during insect-to-insect transmission. PMID:19939845

  4. Supercoiled circular DNA of an insect granulosis virus.

    Science.gov (United States)

    Tweeten, K A; Bulla, L A; Consigli, R A

    1977-08-01

    The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of (3)H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 x 10(6) by sedimentation in neutral sucrose and 78 x 10(6) by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 x 10(6). The buoyant density of the granulosis virus DNA was 1.703 g/cm(3) and that of its insect host DNA was 1.697 g/cm(3). Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively.

  5. Novel double-stranded RNA viruses of plant-feeding insects encode a serine-alanine-proline rich protein and a polymerase distantly related to fungal viruses

    Science.gov (United States)

    Novel double stranded RNAs (~8 kbp) were isolated from the three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genome organization of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and ...

  6. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    Science.gov (United States)

    Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.

    2016-01-01

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855

  7. Natural Variation in Resistance to Virus Infection in Dipteran Insects

    Directory of Open Access Journals (Sweden)

    William H. Palmer

    2018-03-01

    Full Text Available The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus–host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus–host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.

  8. Duck hepatitis A virus structural proteins expressed in insect cells self-assemble into virus-like particles with strong immunogenicity in ducklings.

    Science.gov (United States)

    Wang, Anping; Gu, Lingling; Wu, Shuang; Zhu, Shanyuan

    2018-02-01

    Duck hepatitis A virus (DHAV), a non-enveloped ssRNA virus, can cause a highly contagious disease in young ducklings. The three capsid proteins of VP0, VP1 and VP3 are translated within a single large open reading frame (ORF) and hydrolyzed by protease 3CD. However, little is known on whether the recombinant viral structural proteins (VPs) expressed in insect cells could spontaneously assemble into virus-like particles (VLPs) and whether these VLPs could induce protective immunity in young ducklings. To address these issues, the structural polyprotein precursor gene P1 and the protease gene 3CD were amplified by PCR, and the recombinant proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures and immunogenicity. The recombinant proteins expressed in Sf9 cells were detected by indirect immunofluorescence assay and Western blot analysis. Electron microscopy showed that the recombinant proteins spontaneously assembled into VLPs in insect cells. Western blot analysis of the purified VLPs revealed that the VLPs were composed with the three structural proteins. In addition, vaccination with the VLPs induced high humoral immune response and provided strong protection. Therefore, our findings may provide a framework for development of new vaccines for the prevention of duck viral hepatitis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin

    NARCIS (Netherlands)

    Nalcacioglu, Remziye; Muratoglu, Hacer; Yesilyurt, Aydın; Oers, van Monique M.; Vlak, Just M.; Demirbag, Zihni

    2016-01-01

    Previously we have generated a recombinant Chilo iridescent virus (CIV) by inserting the green fluorescent protein gene (gfp) into the CIV 157L open reading frame (ORF) locus and showed that this recombinant (rCIV-Δ157L-gfp) was fully infectious both in cell culture as well as in insect larvae.

  10. Plant-feeding insects harbor double-stranded RNA viruses encoding a novel proline-alanine rich protein and a polymerase distantly related to that of fungal viruses

    Science.gov (United States)

    Novel double-stranded RNAs (~8 kbp) were isolated from three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genomes of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and Circulifer tenell...

  11. Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts.

    Science.gov (United States)

    Mann, Krin S; Dietzgen, Ralf G

    2014-08-01

    Rhabdoviruses are taxonomically classified in the family Rhabdoviridae, order Mononegavirales. As a group, rhabdoviruses can infect plants, invertebrates and vertebrates. Plant cyto- and nucleorhabdoviruses infect a wide variety of species across both monocot and dicot families, including agriculturally important crops such as lettuce, wheat, barley, rice, maize, potato and tomato. Plant rhabdoviruses are transmitted by and replicate in hemipteran insects such as aphids (Aphididae), leafhoppers (Cicadellidae), or planthoppers (Delphacidae). These specific interactions between plants, viruses and insects offer new insights into host adaptation and molecular virus evolution. This review explores recent advances as well as knowledge gaps in understanding of replication, RNA silencing suppression and movement of plant rhabdoviruses with respect to both plant and insect hosts.

  12. The Immune Responses of the Animal Hosts of West Nile Virus: A Comparison of Insects, Birds, and Mammals

    Directory of Open Access Journals (Sweden)

    Laura R. H. Ahlers

    2018-04-01

    Full Text Available Vector-borne diseases, including arboviruses, pose a serious threat to public health worldwide. Arboviruses of the flavivirus genus, such as Zika virus (ZIKV, dengue virus, yellow fever virus (YFV, and West Nile virus (WNV, are transmitted to humans from insect vectors and can cause serious disease. In 2017, over 2,000 reported cases of WNV virus infection occurred in the United States, with two-thirds of cases classified as neuroinvasive. WNV transmission cycles through two different animal populations: birds and mosquitoes. Mammals, particularly humans and horses, can become infected through mosquito bites and represent dead-end hosts of WNV infection. Because WNV can infect diverse species, research on this arbovirus has investigated the host response in mosquitoes, birds, humans, and horses. With the growing geographical range of the WNV mosquito vector and increased human exposure, improved surveillance and treatment of the infection will enhance public health in areas where WNV is endemic. In this review, we survey the bionomics of mosquito species involved in Nearctic WNV transmission. Subsequently, we describe the known immune response pathways that counter WNV infection in insects, birds, and mammals, as well as the mechanisms known to curb viral infection. Moreover, we discuss the bacterium Wolbachia and its involvement in reducing flavivirus titer in insects. Finally, we highlight the similarities of the known immune pathways and identify potential targets for future studies aimed at improving antiviral therapeutic and vaccination design.

  13. Natural aquatic insect carriers of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV).

    Science.gov (United States)

    Sudhakaran, R; Haribabu, P; Kumar, S Rajesh; Sarathi, M; Ahmed, V P Ishaq; Babu, V Sarath; Venkatesan, C; Hameedl, A S Sahul

    2008-04-01

    Five different species of aquatic insects were collected from nursery ponds containing the freshwater prawn Macrobrachium rosenbergii infected with Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV). The insects were screened as potential natural carriers of MrNV and XSV. RT-PCR (reverse transcription polymerase chain reaction) analysis gave positive results for MrNV and XSV in Belostoma sp., Aesohna sp., Cybister sp. and Notonecta sp., and negative results for Nepa sp. An Aedes albopictus mosquito cell line (C6/36) was used for infectivity assays, with viral inoculum prepared from the aquatic insects, since C6/36 cells have recently been shown to be susceptible to infection with MrNV and XSV. The C6/36 cells were harvested 4 d post-challenge for examination by electron microscopy. This revealed aggregation of viral particles throughout the cytoplasm for cells challenged with inocula from all the insect species except Nepa sp. Our results indicate that several aquatic insect species may present a risk for MrNV and XSV transmission to M. rosenbergii.

  14. Emerging strategies for RNA interference (RNAi) applications in insects.

    Science.gov (United States)

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  15. Replication of Syngrapha falcifera Multiple-Nuclear Polyhedrosis Virus-D in Different Insect Cells

    Science.gov (United States)

    Khalid Nessr Alhag, Sadeq; Xin, Peng Jian

    Six insect cell lines were tested for susceptibility to Syngrapha falcifera multiple nucleocapsid nucleopolyhedrovirus-D (SfaMNPV-D) infection by use of a typical endpoint assay procedure. Cell lines from Trichoplusia ni (Tn5B1-4), (L105-clone), Spodoptera litura (SL-ZSU-1), Spodoptera frugiperda (IPLB-SF-21), Pieris rapaeb (Pr-E-HNU9) and Helicoverpa zea (BCIRL-HZ-AM1) in 96-well tissue culture plates were infected with dilutions of extra cellular virus suspensions of (SfaMNPV-D). Each cell/virus combination was incubated at temperatures 27°C and wells were scored for positive infection at 2 to 4 day intervals. The resulting data were analyzed by Reed and Muench method, providing virus titers for each combination of virus, cell line. The results were categorized by accuracy and by rapidity of maximum titer. Virus titer of Tn5B-4 was higher than other cell lines TCID50 8.7x108, the lowest level detected in infected was in (Pr-E-HNU9) cells TCID50 2.4x108. No Virions or polyhedral inclusion bodies were detected in infected SL-ZSU-1 cells.

  16. Development of an influenza virus vaccine using the baculovirus-insect cell expression system : implications for pandemic preparedness

    NARCIS (Netherlands)

    Cox, M.M.J.

    2009-01-01

    Key word

    Influenza, rHA, vaccine, baculovirus, insect cells, production, pandemic preparedness

    Influenza (or flu) is a highly contagious, acute viral respiratory disease that occurs seasonally in most parts of the world and is caused by influenza viruses. Influenza

  17. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    Science.gov (United States)

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  18. An Integrated Molecular Database on Indian Insects.

    Science.gov (United States)

    Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil

    2018-01-01

    MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.

  19. RNA Interference in Insect Vectors for Plant Viruses

    Directory of Open Access Journals (Sweden)

    Surapathrudu Kanakala

    2016-12-01

    Full Text Available Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  20. Characterizing Enterovirus 71 and Coxsackievirus A16 virus-like particles production in insect cells.

    Science.gov (United States)

    Somasundaram, Balaji; Chang, Cindy; Fan, Yuan Y; Lim, Pei-Yin; Cardosa, Jane; Lua, Linda

    2016-02-15

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    Science.gov (United States)

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.

  2. Viruses of insects reared for food and feed

    NARCIS (Netherlands)

    Maciel-Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in

  3. RNA Interference in Insect Vectors for Plant Viruses

    OpenAIRE

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests...

  4. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Science.gov (United States)

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  5. Mapping protein interactions between Dengue virus and its human and insect hosts.

    Directory of Open Access Journals (Sweden)

    Janet M Doolittle

    Full Text Available BACKGROUND: Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. METHODOLOGY/PRINCIPAL FINDINGS: We implemented a computational approach to predict interactions between Dengue virus (DENV and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9. Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. CONCLUSIONS/SIGNIFICANCE: Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets.

  6. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera

    Directory of Open Access Journals (Sweden)

    Nagata Tatsuya

    2011-05-01

    Full Text Available Abstract Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE containing the envelope gene (env of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.

  7. Identification of minimal sequences of the Rhopalosiphum padi virus 5' untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems

    DEFF Research Database (Denmark)

    Groppelli, Elisabetta; Belsham, Graham; Roberts, Lisa O.

    2007-01-01

    Rhopalosiphum padi virus (RhPV) is a member of the family Dicistroviridae. The genomes of viruses in this family contain two open reading frames, each preceded by distinct internal ribosome entry site (IRES) elements. The RhPV 5' IRES is functional in mammalian, insect and plant translation syste...

  8. Is there a role for symbiotic bacteria in plant virus transmission?

    Science.gov (United States)

    During the process of circulative plant virus transmission by insect vectors, viruses interact with different insect vector tissues prior to transmission to a new host plant. An area of intense debate in the field is whether bacterial symbionts of insect vectors are involved in the virus transmissi...

  9. Diseases in insects produced for food and feed

    DEFF Research Database (Denmark)

    Eilenberg, Jørgen; Vlak, J.M.; Nielsen-Leroux, C.

    2015-01-01

    Increased production of insects on a large scale for food and feed will likely lead to many novel challenges, including problems with diseases. We provide an overview of important groups of insect pathogens, which can cause disease in insects produced for food and feed. Main characteristics of each...... pathogen group (viruses, bacteria, fungi, protists and nematodes) are described and illustrated, with a selection of examples from the most commonly produced insect species for food and feed. Honeybee and silkworm are mostly produced for other reasons than as human food, yet we can still use them...... as examples to learn about emergence of new diseases in production insects. Results from a 2014 survey about insect diseases in current insect production systems are presented for the first time. Finally, we give some recommendations for the prevention and control of insect diseases. Key words: disease...

  10. Biotechnological Applications of an Insect-Specific Alphavirus.

    Science.gov (United States)

    Erasmus, Jesse H; Weaver, Scott C

    2017-12-01

    The coupling of viral and arthropod host diversity, with evolving methods of virus discovery, has resulted in the identification and classification of a growing number of novel insect-specific viruses (ISVs) that appear to be evolutionarily related to many human pathogens but have either lost or have yet to gain the ability to replicate in vertebrates. The discovery of ISVs has raised many questions as to the origin and evolution of many human pathogenic viruses and points to the role that arthropods may play in this evolutionary process. Furthermore, the use of ISVs to control the transmission of arthropod-borne viruses has been proposed and demonstrated experimentally. Previously, our laboratory reported on the discovery and characterization of Eilat virus (EILV), an insect-specific alphavirus that phylogenetically groups within the mosquito-borne clade of medically relevant alphaviruses, including eastern equine encephalitis virus (EEEV) and Venezuelan equine encephalitis virus (VEEV), as well as chikungunya virus (CHIKV). Despite its evolutionary relationship to these human pathogens, EILV is unable to replicate in vertebrate cells due to blocks at attachment/entry and RNA replication. We recently demonstrated that, using a chimeric virus approach, EILV could be utilized as a platform for vaccine and diagnostic development, serving as a proof-of-concept for other ISVs. Due to the vast abundance of ISVs, there is an untapped resource for the development of vaccines and diagnostics for a variety of human pathogens and further work in this area is warranted.

  11. Insect immunology and hematopoiesis.

    Science.gov (United States)

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  13. Genetic insights into Graminella nigrifrons competence for Maize fine streak virus infection and transmission

    Science.gov (United States)

    Insects are critical for the spread of most plant virus diseases, with >75% of plant viruses depending on an insects for transmission to new, uninfected hosts. However, little is known about the molecular and cellular factors in the insect that are important for virus transmission. The black-faced l...

  14. Defense and counterdefense in the RNAi-based antiviral immune system in insects

    NARCIS (Netherlands)

    van Mierlo, J.T.; van Cleef, K.W.; Rij, R.P. van

    2011-01-01

    RNA interference (RNAi) is an important pathway to combat virus infections in insects and plants. Hallmarks of antiviral RNAi in these organisms are: (1) an increase in virus replication after inactivation of major actors in the RNAi pathway, (2) production of virus-derived small interfering RNAs

  15. Insect bite reactions

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2013-01-01

    Full Text Available Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some

  16. Novel Insect-Specific Eilat Virus-Based Chimeric Vaccine Candidates Provide Durable, Mono- and Multivalent, Single-Dose Protection against Lethal Alphavirus Challenge.

    Science.gov (United States)

    Erasmus, Jesse H; Seymour, Robert L; Kaelber, Jason T; Kim, Dal Y; Leal, Grace; Sherman, Michael B; Frolov, Ilya; Chiu, Wah; Weaver, Scott C; Nasar, Farooq

    2018-02-15

    Most alphaviruses are mosquito borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. Recently, a host-restricted, mosquito-borne alphavirus, Eilat virus (EILV), was described with an inability to infect vertebrate cells based on defective attachment and/or entry, as well as a lack of genomic RNA replication. We investigated the utilization of EILV recombinant technology as a vaccine platform against eastern (EEEV) and Venezuelan equine encephalitis viruses (VEEV), two important pathogens of humans and domesticated animals. EILV chimeras containing structural proteins of EEEV or VEEV were engineered and successfully rescued in Aedes albopictus cells. Cryo-electron microscopy reconstructions at 8 and 11 Å of EILV/VEEV and EILV/EEEV, respectively, showed virion and glycoprotein spike structures similar to those of VEEV-TC83 and other alphaviruses. The chimeras were unable to replicate in vertebrate cell lines or in brains of newborn mice when injected intracranially. Histopathologic examinations of the brain tissues showed no evidence of pathological lesions and were indistinguishable from those of mock-infected animals. A single-dose immunization of either monovalent or multivalent EILV chimera(s) generated neutralizing antibody responses and protected animals against lethal challenge 70 days later. Lastly, a single dose of monovalent EILV chimeras generated protective responses as early as day 1 postvaccination and partial or complete protection by day 6. These data demonstrate the safety, immunogenicity, and efficacy of novel insect-specific EILV-based chimeras as potential EEEV and VEEV vaccines. IMPORTANCE Mostly in the last decade, insect-specific viruses have been discovered in several arbovirus families. However, most of these viruses are not well studied and largely have been ignored. We explored the use of the mosquito-specific alphavirus EILV as an alphavirus vaccine

  17. Novel insect-specific flavivirus isolated from northern Europe

    Science.gov (United States)

    Huhtamo, Eili; Moureau, Gregory; Cook, Shelley; Julkunen, Ora; Putkuri, Niina; Kurkela, Satu; Uzcátegui, Nathalie Y.; Harbach, Ralph E.; Gould, Ernest A.; Vapalahti, Olli; de Lamballerie, Xavier

    2012-01-01

    Mosquitoes collected in Finland were screened for flaviviral RNA leading to the discovery and isolation of a novel flavivirus designated Hanko virus (HANKV). Virus characterization, including phylogenetic analysis of the complete coding sequence, confirmed HANKV as a member of the “insect-specific” flavivirus (ISF) group. HANKV is the first member of this group isolated from northern Europe, and therefore the first northern European ISF for which the complete coding sequence has been determined. HANKV was not transcribed as DNA in mosquito cell culture, which appears atypical for an ISF. HANKV shared highest sequence homology with the partial NS5 sequence available for the recently discovered Spanish Ochlerotatus flavivirus (SOcFV). Retrospective analysis of mitochondrial sequences from the virus-positive mosquito pool suggested an Ochlerotatus mosquito species as the most likely host for HANKV. HANKV and SOcFV may therefore represent a novel group of Ochlerotatus-hosted insect-specific flaviviruses in Europe and further afield. PMID:22999256

  18. Special Issue: Honey Bee Viruses

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  19. Special Issue: Honey Bee Viruses

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  20. Seed treatments for the control of insects and diseases in sugarbeet

    Science.gov (United States)

    Insect feeding and vectoring of viruses cause serious problems in sugarbeet production worldwide. In order to ameliorate insect and disease problems on sugarbeet, two seed treatments, Poncho Beta (60 g a.i. clothianidin + 8 g a.i. beta-cyfluthrin/100,000 seed) and Cruiser Tef (60 g a.i. thiamethoxa...

  1. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Directory of Open Access Journals (Sweden)

    Goldbach Rob W

    2011-07-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections.

  2. Microbial secondary metabolites are an alternative approaches against insect vector to prevent zoonotic diseases

    Directory of Open Access Journals (Sweden)

    Dharumadurai Dhanasekaran

    2014-08-01

    Full Text Available Approximately 1500 naturally occurring microorganisms have been identified as potentially insecticidal agents. Metabolites from 942 microbial isolates were screened for insecticidal and properties. The isolates included 302 streptomycetes, 502 novel actinobacteria including representatives of 18 genera, 28 unidentified aerobic actinobacteria, 70 fungi and 40 bacteria other than actinobacteria showed the insecticidal activity. Most spore-forming bacteria pathogenic to insects belong to the family Bacillaceae. Only four Bacillus species namely Bacillus thuringiensis, Bacillus popilliae, Bacillus lentimorbus, Bacillus sphaericus have been closely examined as insect control agents. Fungi are applied directly in the form of spores, mycelia or blastospores or by their metabolites. Many viruses that belong to the family Baculoviridae are pathogenic in insects. The microbial insecticides are generally pest-specific, readily biodegradable and usually lack toxicity to higher animals. This review paper communicates the insect problem in the transmission of diseases in human, animals, plants and problem of chemical insecticides control of insects using microbial metabolites from actinobacteria, bacteria, fungi and viruses.

  3. The Insect Microbiome Modulates Vector Competence for Arboviruses

    Directory of Open Access Journals (Sweden)

    Natapong Jupatanakul

    2014-11-01

    Full Text Available Diseases caused by arthropod-borne viruses (arboviruses, such as Dengue, West Nile, and Chikungunya, constitute a major global health burden and are increasing in incidence and geographic range. The natural microbiota of insect vectors influences various aspects of host biology, such as nutrition, reproduction, metabolism, and immunity, and recent studies have highlighted the ability of insect-associated bacteria to reduce vector competence for arboviruses and other pathogens. This reduction can occur through mechanisms, such as immune response activation, resource competition, or the production of anti-viral molecules. Studying the interactions between insect vectors and their microbiota is an important step toward developing alternative strategies for arbovirus transmission control.

  4. Characterization of burdock mottle virus, a novel member of the genus Benyvirus, and the identification of benyvirus-related sequences in the plant and insect genomes.

    Science.gov (United States)

    Kondo, Hideki; Hirano, Shuichi; Chiba, Sotaro; Andika, Ida Bagus; Hirai, Makoto; Maeda, Takanori; Tamada, Tetsuo

    2013-10-01

    The complete nucleotide sequence of the burdock mottle virus (BdMoV) isolated from an edible burdock plant (Arctium lappa) in Japan has been determined. BdMoV has a bipartite genome, whose organization is similar to RNA1 and RNA2 of benyviruses, beet necrotic yellow vein virus (BNYVV), beet soil-borne mosaic virus (BSBMV), and rice stripe necrosis virus (RSNV). BdMoV RNA1 (7038 nt) contains a single open reading frame (ORF) encoding a 249-kDa polypeptide that consists of methyl-transferase, helicase, papain-like protease, AlkB-like, and RNA-dependent RNA polymerase domains. The AlkB-like domain sequence is not present in the proteins encoded by other known benyviruses, but is found in replication-associated proteins of viruses mainly belonging to the families Alfaflexiviridae and Betaflexiviridae. BdMoV RNA2 (4315 nt) contains six ORFs that are similar to those of benyviruses: these are coat protein (CP), CP readthrough, triple gene block movement and cysteine-rich proteins. Phylogenetic analyses showed that BdMoV is more closely related to BNYVV and BSBMV than to RSNV. Database searches showed that benyvirus replicase-related sequences are present in the chromosomes of a chickpea plant (Cicer arietinum) and a blood-sucking insect (Rhodnius prolixus). Some other benyvirus-related sequences are found in the transcriptome shotgun libraries of a few species of plants and a bark beetle. Our results show that BdMoV is a distinct species of the genus Benyvirus and that ancestral and extant benyviruses may have infected or currently infect a wide range of hosts, including plants and insects. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Performance of some transgenic cotton cultivars against insect pest complex, virus incidence and yield

    International Nuclear Information System (INIS)

    Babar, T.K.; Karar, H.; Hasnain, M.; Saleem, M.; Ali, A.

    2013-01-01

    Five cultivars of cotton i.e., IR4-NIBGE, IR5-NIBGE Bt-121, Sitara-10M and Sitara-11M were screened for resistance against insect pest complex and Cotton Leaf Curl Virus (CLCuV) incidence in the research area of Cotton Research Station, Multan. The result depicted that the most resistant variety against jassids was IR4-NIBGE and Sitara-11M whereas IR4-NIBGE showed the maximum resistance against whitefly infestation. The least susceptible variety to the infestation of thrips was Sitara-10M. The most susceptible variety to the prevalence of Red Cotton Bug (RCB) was IR4-NIBGE. The genotype Bt-121 showed the attack of spotted bollworm. The high population of Dusky Cotton Bug (DCB) was observed on Bt-121 throughout the season. The incidence of virus percentage increased with the passage of time; however, the variety IR5-NIBGE exhibited maximum level of tolerance. Variety Bt-121 gave the maximum yield i.e., 1852 kg per acre followed by IR5-NIBGE, Sitara-11M, Sitara-10M 1584, 1503, 1466 kg per acre respectively. Our results suggest that IR4-NIBGE and Sitara -11M are comparatively tolerant to jassids and whitefly which are the yield losing pest. So IR4-NIBGE and Sitara -11M varieties can be included in IPM programme for the management of these voracious pests. (author)

  6. The role of gut bacteria in Schmallenberg virus transmission by Culicoides biting midges

    Science.gov (United States)

    When an arbo-virus enters a vector it will first enter the gut system of this insect before entering cells of the insect body. Once in the gut-system, arbo-viruses and gut microbiota can interact with each other. We wondered if different gut bacterial communities could influence virus infection of b...

  7. Pathogenesis induced by (recombinant) baculoviruses in insects

    NARCIS (Netherlands)

    Flipsen, H.

    1995-01-01

    Infection of insect larvae by a baculovirus leads to cessation of feeding and finally to the death of the larva. Under optimal conditions this process may take as little as five days during which the virus multiplies approximately a billion times and transforms 30% of the larval weight into

  8. Hypothesis for heritable, anti-viral immunity in crustaceans and insects

    Directory of Open Access Journals (Sweden)

    Flegel Timothy W

    2009-09-01

    Full Text Available Abstract Background It is known that crustaceans and insects can persistently carry one or more viral pathogens at low levels, without signs of disease. They may transmit them to their offspring or to naïve individuals, often with lethal consequences. The underlying molecular mechanisms have not been elucidated, but the process has been called viral accommodation. Since tolerance to one virus does not confer tolerance to another, tolerance is pathogen-specific, so the requirement for a specific pathogen response mechanism (memory was included in the original viral accommodation concept. Later, it was hypothesized that specific responses were based on the presence of viruses in persistent infections. However, recent developments suggest that specific responses may be based on viral sequences inserted into the host genome. Presentation of the hypothesis Non-retroviral fragments of both RNA and DNA viruses have been found in insect and crustacean genomes. In addition, reverse-transcriptase (RT and integrase (IN sequences are also common in their genomes. It is hypothesized that shrimp and other arthropods use these RT to recognize "foreign" mRNA of both RNA and DNA viruses and use the integrases (IN to randomly insert short cDNA sequences into their genomes. By chance, some of these sequences result in production of immunospecific RNA (imRNA capable of stimulating RNAi that suppresses viral propagation. Individuals with protective inserts would pass these on to the next generation, together with similar protective inserts for other viruses that could be amalgamated rapidly in individual offspring by random assortment of chromosomes. The most successful individuals would be environmentally selected from billions of offspring. Conclusion This hypothesis for immunity based on an imRNA generation mechanism fits with the general principle of invertebrate immunity based on a non-host, "pattern recognition" process. If proven correct, understanding the

  9. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. El virus de la mancha clorótica del tomate: Tomato chlorotic spot virus (TCSV)

    Science.gov (United States)

    Tomato chlorotic spot virus has emerged as a major pathogen of vegetables in Puerto Rico, the Caribbean and Florida. This virus is transmitted by thrips making management difficult. Growers must be aware of the distribution, host range, insect vectors, symptoms, modes of transmission to successfully...

  11. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection.

    Directory of Open Access Journals (Sweden)

    Daniel Mendes Pereira Ardisson-Araújo

    Full Text Available Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3 has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV expression. Five different forms of Ba3 were assessed; (1 the full-length sequence, (2 the pro-peptide and mature region, (3 only the mature region, and the mature region fused to an (4 insect or a (5 virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect

  12. 21 CFR 866.3240 - Equine encephalomyelitis virus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents... these viruses. Equine encephalomyelitis viruses are transmitted to humans by the bite of insects, such...

  13. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts.

    Science.gov (United States)

    Longdon, Ben; Day, Jonathan P; Schulz, Nora; Leftwich, Philip T; de Jong, Maaike A; Breuker, Casper J; Gibbs, Melanie; Obbard, Darren J; Wilfert, Lena; Smith, Sophia C L; McGonigle, John E; Houslay, Thomas M; Wright, Lucy I; Livraghi, Luca; Evans, Luke C; Friend, Lucy A; Chapman, Tracey; Vontas, John; Kambouraki, Natasa; Jiggins, Francis M

    2017-01-25

    A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. © 2017 The Authors.

  14. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts

    Science.gov (United States)

    Day, Jonathan P.; Schulz, Nora; Leftwich, Philip T.; de Jong, Maaike A.; Wilfert, Lena; Smith, Sophia C. L.; McGonigle, John E.; Houslay, Thomas M.; Livraghi, Luca; Evans, Luke C.; Friend, Lucy A.; Vontas, John; Kambouraki, Natasa

    2017-01-01

    A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria. We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. PMID:28100819

  15. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

    Directory of Open Access Journals (Sweden)

    Aliza Hariton Shalev

    2016-07-01

    Full Text Available The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV, in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector.

  16. Single Assay Detection of Acute Bee Paralysis Virus, Kashmir Bee Virus and Israeli Acute Paralysis Virus

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Kryger, Per

    2012-01-01

    A new RT-PCR primer pair designed to identify Acute Bee Paralysis Virus (ABPV), Kashmir Bee Virus (KBV) or Israeli Acute Bee Paralysis Virus (IAPV) of honey bees (Apis mellifera L.) in a single assay is described. These primers are used to screen samples for ABPV, KBV, or IAPV in a single RT-PCR ......-PCR reaction saving time and money. The primers are located in the predicted overlapping gene (pog/ORFX) which is highly conserved across ABPV, KBV, IAPV and other dicistroviruses of social insects. This study has also identified the first case of IAPV in Denmark....

  17. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens

    NARCIS (Netherlands)

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Pijlman, Gorben P.

    2016-01-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious

  18. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster.

    Science.gov (United States)

    Webster, Claire L; Waldron, Fergal M; Robertson, Shaun; Crowson, Daisy; Ferrari, Giada; Quintana, Juan F; Brouqui, Jean-Michel; Bayne, Elizabeth H; Longdon, Ben; Buck, Amy H; Lazzaro, Brian P; Akorli, Jewelna; Haddrill, Penelope R; Obbard, Darren J

    2015-07-01

    Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.

  19. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  20. Natural Variation in Resistance to Virus Infection in Dipteran Insects

    NARCIS (Netherlands)

    Palmer, W.H.; Varghese, F.S.; Rij, R.P. van

    2018-01-01

    The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus

  1. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    International Nuclear Information System (INIS)

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P.

    1991-01-01

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with [ 3 H]glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Galβ1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked α1-6 to the asparagine-linked N-acetylglucosamine

  2. Prevention of vector transmitted diseases with clove oil insect repellent.

    Science.gov (United States)

    Shapiro, Rochel

    2012-08-01

    Vector repellent is one element in the prevention of vector-borne diseases. Families that neglect protecting their children against vectors risk their children contracting illnesses such as West Nile virus, eastern equine encephalitis, Lyme disease, malaria, dengue hemorrhagic fever, yellow fever, babesiosis, Crimean-Congo hemorrhagic fever, Rocky Mountain spotted fever, Southern tick-associated rash illness, ehrlichiosis, tick-borne relapsing fever, tularemia, and other insect and arthropod related diseases (CDC, 2011). Identification of families at risk includes screening of the underlying basis for reluctance to apply insect repellent. Nurses and physicians can participate in a positive role by assisting families to determine the proper prophylaxis by recommending insect repellent choices that are economical, safe, and easy to use. A holistic alternative might include the suggestion of clove oil in cases where families might have trepidations regarding the use of DEET on children. This article will explore the safety and effectiveness of clove oil and its use as an insect repellent. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Expression and characterization of human group C rotavirus virus-like particles in insect cells

    International Nuclear Information System (INIS)

    Clark, Kristina B.; Lin, S.-C.; Humphrey, Charles; Foytich, Kimberly; Esona, Mathew; Wang Yuhuan; Liu, Merry; Jiang Baoming

    2009-01-01

    Group C rotavirus (GpC RV) is a causative agent of acute gastroenteritis in children and adults. We expressed the three major capsid proteins VP2, VP6 and VP7 of human GpC RV in baculovirus and demonstrated the self-assembly of VP2/6/7 or VP6/7 virus-like particles (VLPs) in insect cells. We examined a number of parameters, including the kinetics of protein synthesis in different cell lines and media, to optimize the most favorable conditions for the synthesis of recombinant viral proteins and the production of VLPs in Sf9 cells. Hyperimmune serum to VP2/6/7 and VP6/7 VLPs recognized individual recombinant proteins of human GpC RV by Western blot analysis. This serum also showed specific reactivities with the corresponding GpC VLPs but not GpA RV by using immune electron microscopy (IEM) and enzyme immunoassay (EIA). The ability to produce an unlimited amount of GpC RV antigen and the availability of high quality antibody will allow us to develop sensitive and specific diagnostic assays to better determine the epidemiology and disease burden of GpC RV in humans.

  4. Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus.

    Science.gov (United States)

    He, Wen-Bo; Li, Jie; Liu, Shu-Sheng

    2015-01-08

    Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus (TYLCCNV), which it transmits, although virus infection of the whitefly per se reduced its performance. Here, we use electrical penetration graph recording to investigate the direct and indirect effects of TYLCCNV on the feeding behaviour of MEAM1. When feeding on either cotton, a non-host of TYLCCNV, or uninfected tobacco, a host of TYLCCNV, virus-infection of the whiteflies impeded their feeding. Interestingly, when viruliferous whiteflies fed on virus-infected tobacco, their feeding activities were no longer negatively affected; instead, the virus promoted whitefly behaviour related to rapid and effective sap ingestion. Our findings show differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus, and help to unravel the behavioural mechanisms underlying a mutualistic relationship between an insect vector and a plant virus that also has features reminiscent of an insect pathogen.

  5. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts

    Energy Technology Data Exchange (ETDEWEB)

    Stenger, Drake C., E-mail: drake.stenger@ars.usda.gov [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Krugner, Rodrigo [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Nouri, Shahideh; Ferriol, Inmaculada; Falk, Bryce W. [Department of Plant Pathology, University of California, Davis, CA 95616 (United States); Sisterson, Mark S. [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States)

    2016-11-15

    Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of the corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.

  6. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil.

    Directory of Open Access Journals (Sweden)

    Andressa Zelenski de Lara Pinto

    Full Text Available Viruses may represent the most diverse microorganisms on Earth. Novel viruses and variants continue to emerge. Mosquitoes are the most dangerous animals to humankind. This study aimed at identifying viral RNA diversity in salivary glands of mosquitoes captured in a sylvatic area of Cerrado at the Chapada dos Guimarães National Park, Mato Grosso, Brazil. In total, 66 Culicinae mosquitoes belonging to 16 species comprised 9 pools, subjected to viral RNA extraction, double-strand cDNA synthesis, random amplification and high-throughput sequencing, revealing the presence of seven insect-specific viruses, six of which represent new species of Rhabdoviridae (Lobeira virus, Chuviridae (Cumbaru and Croada viruses, Totiviridae (Murici virus and Partitiviridae (Araticum and Angico viruses. In addition, two mosquito pools presented Kaiowa virus sequences that had already been reported in South Pantanal, Brazil. These findings amplify the understanding of viral diversity in wild-type Culicinae. Insect-specific viruses may present a broader diversity than previously imagined and future studies may address their possible role in mosquito vector competence.

  7. potential for biological control of rice yellow mottle virus vectors

    African Journals Online (AJOL)

    Administrator

    Insect pests and disease infestations are the primary constraints in rice (Oryza sativa) production .... Asia. Of all the rice diseases, the one caused by the rice yellow mottle virus (RYMV), first reported ..... yellow mottle virus in Central Africa.

  8. Evolutionary origins of hepatitis A virus in small mammals

    NARCIS (Netherlands)

    J.-F. Drexler (Jan-Felix); V.M. Corman (Victor); A.N. Lukashev (Alexander); J.M.A. van den Brand (Judith); A. Gmyl (Anatoly); S. Brunink (Sebastian); A. Rasche (Andrea); N. Seggewi (Nicole); H. Feng (Hui); L.M.E. Leijten (Lonneke); P. Vallo (Peter); T. Kuiken (Thijs); A. Dotzauer (Andreas); R.G. Ulrich (Rainer); S.M. Lemon (Stanley M.); C. Drosten (Christian)

    2015-01-01

    textabstractHepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian

  9. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2018-02-01

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can

  10. Cloning of fusion protein gene of Newcastle disease virus into a baculovirus derived bacmid shuttle vector, in order to express it in insect cell line

    Directory of Open Access Journals (Sweden)

    Hashemzadeh MS

    2015-05-01

    Full Text Available Abstract Background: Newcastle disease virus (NDV is one of the major pathogens in poultry and vaccination is intended to control the disease, as an effective solution, yet. Fusion protein (F on surface of NDV, has a fundamental role in virus pathogenicity and can induce protective immunity, alone. With this background, here our aim was to construct a baculovirus derived recombinant bacmid shuttle vector (encoding F-protein in order to express it in insect cell line. Materials and Methods: In this experimental study, at first complete F gene from avirulent strain La Sota of NDV was amplified by RT-PCR to produce F cDNA. The amplicon was cloned into T/A cloning vector and afterwards into pFastBac Dual donor plasmid. After the verification of cloning process by two methods, PCR and enzymatic digestion analysis, the accuracy of F gene sequence was confirmed by sequencing. Finally, F-containing recombinant bacmid was subsequently generated in DH10Bac cell and the construct production was confirmed by a special PCR panel, using F specific primers and M13 universal primers. Results: Analysis of confirmatory tests showed that the recombinant bacmid, expressing of F-protein gene in correct sequence and framework, has been constructed successfully. Conclusion: The product of this F-containing recombinant bacmid, in addition to its independent application in the induction of protective immunity, can be used with the other individual recombinant baculoviruses, expressing HN and NP genes to produce NDV-VLPs in insect cell line.

  11. The Mexican bean beetle (Epilachna varivestis regurgitome and insights into beetle-borne virus specificity.

    Directory of Open Access Journals (Sweden)

    Cassidy R Gedling

    Full Text Available For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant's defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle "regurgitome" and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions.

  12. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis.

    Science.gov (United States)

    Margaria, P; Bosco, L; Vallino, M; Ciuffo, M; Mautino, G C; Tavella, L; Turina, M

    2014-05-01

    Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.

  13. Handling small arbovirus vectors safely during biosafety level 3 containment: Culicoides variipennis sonorensis (Diptera:Ceratopogonidae) and exotic bluetongue viruses.

    Science.gov (United States)

    Hunt, G J; Tabachnick, W J

    1996-05-01

    Equipment and procedures are described for biosafety level 3 (BL-3) containment work with small, zoophilic arthropods. BL-3 classified pathogens always must be manipulated in biological safety cabinets. Procedures, including physical barriers and handling methods, that prevent the escape of potentially virus-infected insects are discussed, and the use of a monitoring system for insect security is explained. The inability to recover escaped minute, flying insects poses a major difference from similar work with larger insects, such as mosquitoes. Methods were developed for the safe and secure handling of Culicoides variipennis sonorensis Wirth & Jones infected with exotic bluetongue viruses during BL-3 containment.

  14. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects.

    Science.gov (United States)

    Mongelli, Vanesa; Saleh, Maria-Carla

    2016-09-29

    Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.

  15. Granulosis viruses, with emphasis on the GV of the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Consigli, R A; Tweeten, K A; Anderson, D K; Bulla, L A

    1983-01-01

    The granulosis viruses and nuclear polyhedrosis viruses are being considered for use as biological insecticides for control of their insect hosts. Many of these insect species, which include some of the most serious pests of agriculture and forests, have become difficult to control because they have developed resistance to chemical insecticides. Several laboratory and field studies have demonstrated that the baculoviruses (GV and NPV) are promising alternatives to chemicals for the control of economically important insects. These viruses are highly virulent, selective, and stable, and the impact on the environment following their application is minimal. A decision concerning the application of baculoviruses to stored grain and field crops must be based upon a prudent consideration of the benefits to be obtained and the potential risks of their use. Such decisions should be made only after consideration of the physical, chemical, and biological properties of these viruses. In addition, methods must be developed for the unequivocal identification of these viruses, and their effects on nontarget species at the cellular and molecular levels must be investigated. This can best be accomplished if a sufficient body of knowledge regarding the molecular properties of these viruses and their infection process is accumulated by an extensive quantitative approach. Much of this knowledge is lacking because, prior to their consideration for use as insecticides, the baculoviruses appeared to have little medical or economic importance. As a result, interest in studying them was limited. It has become obvious that the molecular properties of these viruses must be investigated if full advantage is to be taken of using them as insect control agents, and if present and future problems concerning their use as insecticides are to be handled properly. Fundamental research on the biochemical and biophysical properties of baculoviruses has concentrated mainly on a variety of nuclear

  16. Sterile insect technique and radiation in insect control

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  17. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  18. Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell.

    Science.gov (United States)

    Shoji, Kan; Akiyama, Yoshitake; Suzuki, Masato; Hoshino, Takayuki; Nakamura, Nobuhumi; Ohno, Hiroyuki; Morishima, Keisuke

    2012-12-01

    In this paper, an insect biofuel cell (BFC) using trehalose included in insect hemolymph was developed. The insect BFC is based on trehalase and glucose oxidase (GOD) reaction systems which oxidize β-glucose obtained by hydrolyzing trehalose. First, we confirmed by LC-MS that a sufficient amount of trehalose was present in the cockroach hemolymph (CHL). The maximum power density obtained using the insect BFC was 6.07 μW/cm(2). The power output was kept more than 10 % for 2.5 h by protecting the electrodes with a dialysis membrane. Furthermore, the maximum power density was increased to 10.5 μW/cm(2) by using an air diffusion cathode. Finally, we succeeded in driving a melody integrated circuit (IC) and a piezo speaker by connecting five insect BFCs in series. The results indicate that the insect BFC is a promising insect-mountable battery to power environmental monitoring micro-tools.

  19. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  20. Structure of the Triatoma virus capsid.

    Science.gov (United States)

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S; Costabel, Marcelo D; Marti, Gerardo A; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M A; Rey, Felix A

    2013-06-01

    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  1. Black fly involvement in the epidemic transmission of vesicular stomatitis New Jersey virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Mead, Daniel G; Howerth, Elizabeth W; Murphy, Molly D; Gray, Elmer W; Noblet, Raymond; Stallknecht, David E

    2004-01-01

    The transmission routes of Vesicular stomatitis New Jersey virus (VSNJV), a causative agent of vesicular stomatitis, an Office International des Epizooties List-A disease, are not completely understood. Epidemiological and entomological studies conducted during the sporadic epidemics in the western United States have identified potential virus transmission routes involving insect vectors and animal-to-animal contact. In the present study we experimentally tested the previously proposed transmission routes which were primarily based on field observations. Results obtained provide strong evidence for the following: (1) hematophagous insects acquire VSNJV by unconventional routes while blood feeding on livestock, (2) clinical course of VSNJV infection in livestock following transmission by an infected insect is related to insect bite site, (3) infection of livestock via insect bite can result in multiple transmission possibilities, including animal-to-animal contact. Taken together, these data significantly add to our understanding of the transmission routes of a causative agent of one of the oldest known infectious diseases of livestock, for which the details have remained largely unknown despite decades of research.

  2. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  3. Control of sweet potato virus diseases.

    Science.gov (United States)

    Loebenstein, Gad

    2015-01-01

    Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. © 2015 Elsevier Inc. All rights reserved.

  4. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  5. Insects: A nutritional alternative

    Science.gov (United States)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  6. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  7. Nuclear import of Maize fine streak virus proteins in Drosophila S2 cells

    Science.gov (United States)

    Maize fine streak virus (MFSV) is a member of the genus Nucleorhabdovirus, family Rhabdoviridae and is transmitted by the leafhopper Graminella nigrifons. The virus replicates in both its plant host and in its insect vector. Nucleorhabdoviruses replicate in the nucleus and assemble at the inner nu...

  8. Transgenic strategies to confer resistance against viruses in rice plants

    Directory of Open Access Journals (Sweden)

    Takahide eSasaya

    2014-01-01

    Full Text Available Rice (Oryza sativa L. is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. In an effort to improve control, many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA-interference (RNAi, also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral Achilles’ heel gene to target for RNAi attack when engineering plants.

  9. All insects are equal, but some insects are more equal than others

    OpenAIRE

    Fischer, Arnout R.H.; Steenbekkers, L.P.A.

    2018-01-01

    Purpose: Lack of acceptance of insects as food is considered a barrier against societal adoption of the potentially valuable contribution of insects to human foods. An underlying barrier may be that insects are lumped together as one group, while consumers typically try specific insects. The purpose of this paper is to investigate the ways in which Dutch consumers, with and without insect tasting experience, are more or less willing to eat different insects. Design/methodology/approach: In a ...

  10. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses.

    NARCIS (Netherlands)

    Mierlo, J.T. van; Bronkhorst, A.W.; Overheul, G.J.; Sadanandan, S.A.; Ekstrom, J.O.; Heestermans, M.; Hultmark, D.; Antoniewski, C.; Rij, R.P. van

    2012-01-01

    RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus

  11. Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses

    International Nuclear Information System (INIS)

    Firth, Andrew E.; Blitvich, Bradley J.; Wills, Norma M.; Miller, Cathy L.; Atkins, John F.

    2010-01-01

    Flaviviruses have a positive-sense, single-stranded RNA genome of ∼11 kb, encoding a large polyprotein that is cleaved to produce ∼10 mature proteins. Cell fusing agent virus, Kamiti River virus, Culex flavivirus and several recently discovered flaviviruses have no known vertebrate host and apparently infect only insects. We present compelling bioinformatic evidence for a 253-295 codon overlapping gene (designated fifo) conserved throughout these insect-specific flaviviruses and immunofluorescent detection of its product. Fifo overlaps the NS2A/NS2B coding sequence in the - 1/+ 2 reading frame and is most likely expressed as a trans-frame fusion protein via ribosomal frameshifting at a conserved GGAUUUY slippery heptanucleotide with 3'-adjacent RNA secondary structure (which stimulates efficient frameshifting in vitro). The discovery bears striking parallels to the recently discovered ribosomal frameshifting site in the NS2A coding sequence of the Japanese encephalitis serogroup of flaviviruses and suggests that programmed ribosomal frameshifting may be more widespread in flaviviruses than currently realized.

  12. Simple screening strategy with only water bath needed for the identification of insect-resistant genetically modified rice.

    Science.gov (United States)

    Zhang, Fang; Wang, Liu; Wang, Rui; Ying, Yibin; Wu, Jian

    2015-02-03

    An informative, with simple instrument needed, rapid and easily updated strategy for the identification of insect-resistant genetically modified (GM) rice has been described. Such strategy is based on a parallel series of loop-mediated isothermal amplification (LAMP) reactions targeting the rice endogenous gene sucrose phosphate synthase (Sps), the top two most frequently used genetic elements (Agrobacterium tumefaciens nopaline synthase terminator (Nos) and Cauliflower mosaic virus 35S promoter (CaMV35S)), and an insect-resistant specific gene (Cry1Ac) and detected visually by phosphate ion (Pi)-induced coloration reaction. After a logical judgment of visible readouts has been obtained, three popular insect-resistant GM rice events in China can be successfully identified within 35 min, using either microwell strips or paper bases.

  13. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    Science.gov (United States)

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  14. Insects and Scorpions

    Science.gov (United States)

    ... insects or scorpions can be hazardous to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects of stinging or biting insects or scorpions range ...

  15. The Ebola virus VP35 protein is a suppressor of RNA silencing.

    Directory of Open Access Journals (Sweden)

    Joost Haasnoot

    2007-06-01

    Full Text Available RNA silencing or interference (RNAi is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.

  16. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae

    NARCIS (Netherlands)

    Zheng, S.J.; Snoeren, T.A.L.; Hogewoning, S.W.; Loon, van J.J.A.; Dicke, M.

    2010-01-01

    Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced

  17. Data mining cDNAs reveals three new single stranded RNA viruses in Nasonia (Hymenopetera:Pteromalidae)

    Science.gov (United States)

    Hymenopteran viruses may provide insights into colony collapse disorder in honey bees and other insect species. Three novel small RNA viruses were discovered during the genomics effort for the beneficial parasitoid of flies in the genus Nasonia (Hymenoptera). Genomics provides a great deal of inform...

  18. Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique.

    Directory of Open Access Journals (Sweden)

    Harindranath Cholleti

    Full Text Available Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with 'insect-specific' viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV. The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.

  19. All insects are equal, but some insects are more equal than others

    NARCIS (Netherlands)

    Fischer, Arnout R.H.; Steenbekkers, L.P.A.

    2018-01-01

    Purpose: Lack of acceptance of insects as food is considered a barrier against societal adoption of the potentially valuable contribution of insects to human foods. An underlying barrier may be that insects are lumped together as one group, while consumers typically try specific insects. The purpose

  20. Insect Repellents: Protect Your Child from Insect Bites

    Science.gov (United States)

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Mosquitoes, biting ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is ...

  1. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  2. A nuclear insect appears

    International Nuclear Information System (INIS)

    Shin, Gi Hwal

    1989-06-01

    This book is dairy of a nuclear insect in A. F. era. It consists of 6 parts, which have fun pictures and titles. The contents are the letter that is sent the Homo sapiens by insect, exodus of nuclear insect F 100 years latter. The time that a nuclear insect is attacked in F 101, the time that a nuclear dinosaur is beat in AF 102, the time that a nuclear insect struggles in AF 104 and the time that a nuclear insect drifts in AF 104.

  3. Stinging Insect Matching Game

    Science.gov (United States)

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  4. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  5. Structure of the Triatoma virus capsid

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Gaëlle; Pous, Joan [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Agirre, Jon [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rozas-Dennis, Gabriela S. [U.N.S., San Juan 670 (8000) Bahía Blanca (Argentina); U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Costabel, Marcelo D. [U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Marti, Gerardo A. [Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584 (1900) La Plata (Argentina); Navaza, Jorge; Bressanelli, Stéphane [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Guérin, Diego M. A., E-mail: diego.guerin@ehu.es [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rey, Felix A., E-mail: diego.guerin@ehu.es [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France)

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  6. Structure of the Triatoma virus capsid

    International Nuclear Information System (INIS)

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S.; Costabel, Marcelo D.; Marti, Gerardo A.; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M. A.; Rey, Felix A.

    2013-01-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed

  7. Viral replication kinetics and in vitro cytopathogenicity of parental and reassortant strains of bluetongue virus serotype 1, 6 and 8

    NARCIS (Netherlands)

    Coetzee, M.P.A.; Vuuren, van M.; Stokstad, M.; Myrmel, M.; Gennip, van H.G.P.; Rijn, van P.A.; Venter, E.H.

    2014-01-01

    Bluetongue virus (BTV), a segmented dsRNA virus, is the causative agent of bluetongue (BT), an economically important viral haemorrhagic disease of ruminants. Bluetongue virus can exchange its genome segments in mammalian or insect cells that have been co-infected with more than one strain of the

  8. Virus diseases of peppers (Capsicum spp.) and their control.

    Science.gov (United States)

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.

  9. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a 60 Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment

  10. Applying the sterile insect technique to the control of insect pests

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, L E; Klassen, W [Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria)

    1991-09-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a {sup 60}Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment.

  11. Study of entomophatogenic fungus to control vector insect of citrus tristeza virus on citrus

    Directory of Open Access Journals (Sweden)

    Dwiastuti M.E.

    2017-08-01

    Full Text Available Citrus Tristeza Virus (CTV disease is a silent killer, which threatens to decrease productivity, quality and even death of citrus plants and the erosion of genetic resources. Spreading in the field very quickly by the intermediate insect vector pest, aphid (Toxoptera citricida, T. Aurantii and A. Gosypii. The microbes studied for potential biopesticide candidates are: Beauveria bassiana and Hirsutella citriformis, and Metarhizium anisopliae (Metch Sorokin previously reported to control Diaphorina citri pests resulting effectiveness of > 25% and was able to suppress yield loss up to 10%. The objectives of the study examined the effectiveness of entomopathogen in controlling the pest of CTV vector, Toxoptera citricida, in the laboratory and screen house, to findout the physiological, biochemical and molecular physiology of entomopathogen. The results showed that the best entomopathogen suspension concentration was B.bassiana 106 followed by H. citriformis 106 and M. anisopliae 106. Entomopatogen B. bassiana and H. citriformis effectively controled the CTV vector pest in the laboratory. In the semi-field experiments at the screen house, the most effective result was H.citriformis 106 and the combination of H.citriformis 106 + B.bassiana 106, killing up to 50% and 100% on day 7th H.citriformis had the most physiological character, was able to develop optimally at a temperature of 20-400C and humidity between 60-80%. The biochemical character of the entomopathogenic fungus B.bassiana contained cellulase enzyme and phosphate solvent and IAA hormone, at most compared to the others. H.citriformis had not been found to contain enzymes and hormones. The molecular biochemical characterization of entomopathogenic fungi using FS1 and NS2 primers more clearly distinguished isolates and entomopathogenic species.

  12. Deficiências minerais nas fôlhas induzidas por moléstias e pragas Leaf deficiencies associated with virus infection or insect toxin

    Directory of Open Access Journals (Sweden)

    A. S. Costa

    1965-01-01

    Full Text Available Certas moléstias de vírus e o efeito fitotóxico provocado por toxinas de alguns insetos influenciam a composição mineral das fôlhas de plantas afetadas. As alterações provocadas podem se assemelhar a deficiências minerais puramente nutricionais e, em certos casos, há realmente menor teor do elemento associado aos sintomas da moléstia. A aplicação do elemento faltante nos casos citados não provoca geralmente recuperação dos tecidos afetados, com exceção da deficiência de zinco associada à infecção de citros pela tristeza. É sugerido que a resposta à aplicação do elemento em deficiência dependerá de ser ou não esta, sintoma primário ou secundário da moléstia. É salientado que as recomendações sôbre adubação, baseadas nos resultados da diagnose foliar, deverão sempre considerar a possibilidade de não serem as deficiências constatadas resultantes sempre da falta de disponibilidade do elemento no solo, mas, possivelmente, da interferência de fatôres como a infecção por vírus, ação de toxina de inseto etc.Virus diseases or the toxicogenic effect induced by insect feeding influence the mineral content of affected plants. Some of the changes induced result in leaf deficiencies similar to those associated with lack of the available element in the soil. Application of the lacking element in most cases does not promote a favorable response with exception of the zinc deficiency associated with tristeza infection in citrus. It is suggested that the negative or positive response might depend on the symptom being primary or secondary. It is pointed out that fertilizer recommendations based on foliar diagnosis should always take into consideration that the deficiencies encountered are not necessarily theresult of lack of the available element in thesoil, but sometimes of the interference of virus diseases, insect toxins, and other factors.

  13. Insects, isotopes and radiation

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1987-01-01

    The article describes the increased use of nuclear techniques in controlling harmful insects. The sterile insect technique (SIT), which uses radiation to sexually sterilize insects and prevent reproduction, is particularly effective in eradication programmes. At the present time, there are approximately 10 species of insect pests being attacked by the SIT. Research and development is being conducted on other insect species and it is anticipated that the technology will be more widely used in the future

  14. Response to Dengue virus infections altered by cytokine-like substances from mosquito cell cultures

    Directory of Open Access Journals (Sweden)

    Laosutthipong Chaowanee

    2010-11-01

    Full Text Available Abstract Background With both shrimp and commercial insects such as honey bees, it is known that stable, persistent viral infections characterized by absence of disease can sometimes shift to overt disease states as a result of various stress triggers and that this can result in serious economic losses. The main research interest of our group is to understand the dynamics of stable viral infections in shrimp and how they can be destabilized by stress. Since there are no continuous cell lines for crustaceans, we have used a C6/36 mosquito cell line infected with Dengue virus to test hypotheses regarding these interactions. As a result, we accidentally discovered two new cytokine-like substances in 5 kDa extracts from supernatant solutions of acutely and persistently infected mosquito cells. Results Naïve C6/36 cells were exposed for 48 h to 5 kDa membrane filtrates prepared from the supernatant medium of stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Subsequent challenge of naïve cells with a virulent stock of Dengue virus 2 (DEN-2 and analysis by confocal immunofluorescence microscopy using anti-DEN-2 antibody revealed a dramatic reduction in the percentage of DEN-2 infected cells when compared to control cells. Similar filtrates prepared from C6/36 cells with acute DEN-2 infections were used to treat stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Confocal immunofluorescence microscopy revealed destabilization in the form of an apoptosis-like response. Proteinase K treatment removed the cell-altering activities indicating that they were caused by small polypeptides similar to those previously reported from insects. Conclusions This is the first report of cytokine-like substances that can alter the responses of mosquito cells to Dengue virus. This simple model system allows detailed molecular studies on insect cytokine production and on cytokine activity in a standard insect cell line.

  15. Mal de Río Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector.

    Science.gov (United States)

    de Haro, Luis A; Dumón, Analía D; Mattio, María F; Argüello Caro, Evangelina Beatriz; Llauger, Gabriela; Zavallo, Diego; Blanc, Hervé; Mongelli, Vanesa C; Truol, Graciela; Saleh, María-Carla; Asurmendi, Sebastián; Del Vas, Mariana

    2017-01-01

    Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae ) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.

  16. Marketing insects

    DEFF Research Database (Denmark)

    Schiemer, Carolin; Halloran, Afton Marina Szasz; Jespersen, Kristjan

    2018-01-01

    In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood is a mar......In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood...... is a marketing term for nutrient-packed foods, which are successfully promoted to Western consumers with the promises of health, well-being and beauty. However, the increase in the demand in the West is argued to cause negative social, environmental, economic and cultural consequences – externalities – felt...

  17. Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015.

    Science.gov (United States)

    Schuler-Faccini, Lavinia; Ribeiro, Erlane M; Feitosa, Ian M L; Horovitz, Dafne D G; Cavalcanti, Denise P; Pessoa, André; Doriqui, Maria Juliana R; Neri, Joao Ivanildo; Neto, Joao Monteiro de Pina; Wanderley, Hector Y C; Cernach, Mirlene; El-Husny, Antonette S; Pone, Marcos V S; Serao, Cassio L C; Sanseverino, Maria Teresa V

    2016-01-29

    In early 2015, an outbreak of Zika virus, a flavivirus transmitted by Aedes mosquitoes, was identified in northeast Brazil, an area where dengue virus was also circulating. By September, reports of an increase in the number of infants born with microcephaly in Zika virus-affected areas began to emerge, and Zika virus RNA was identified in the amniotic fluid of two women whose fetuses had been found to have microcephaly by prenatal ultrasound. The Brazil Ministry of Health (MoH) established a task force to investigate the possible association of microcephaly with Zika virus infection during pregnancy and a registry for incident microcephaly cases (head circumference ≥2 standard deviations [SD] below the mean for sex and gestational age at birth) and pregnancy outcomes among women suspected to have had Zika virus infection during pregnancy. Among a cohort of 35 infants with microcephaly born during August-October 2015 in eight of Brazil's 26 states and reported to the registry, the mothers of all 35 had lived in or visited Zika virus-affected areas during pregnancy, 25 (71%) infants had severe microcephaly (head circumference >3 SD below the mean for sex and gestational age), 17 (49%) had at least one neurologic abnormality, and among 27 infants who had neuroimaging studies, all had abnormalities. Tests for other congenital infections were negative. All infants had a lumbar puncture as part of the evaluation and cerebrospinal fluid (CSF) samples were sent to a reference laboratory in Brazil for Zika virus testing; results are not yet available. Further studies are needed to confirm the association of microcephaly with Zika virus infection during pregnancy and to understand any other adverse pregnancy outcomes associated with Zika virus infection. Pregnant women in Zika virus-affected areas should protect themselves from mosquito bites by using air conditioning, screens, or nets when indoors, wearing long sleeves and pants, using permethrin-treated clothing and gear

  18. Insect (food) allergy and allergens.

    Science.gov (United States)

    de Gier, Steffie; Verhoeckx, Kitty

    2018-05-03

    Insects represent an alternative for meat and fish in satisfying the increasing demand for sustainable sources of nutrition. Approximately two billion people globally consume insects. They are particularly popular in Asia, Latin America, and Africa. Most research on insect allergy has focussed on occupational or inhalation allergy. Research on insect food safety, including allergenicity, is therefore of great importance. The objective of this review is to provide an overview of cases reporting allergy following insect ingestion, studies on food allergy to insects, proteins involved in insect allergy including cross-reactive proteins, and the possibility to alter the allergenic potential of insects by food processing and digestion. Food allergy to insects has been described for silkworm, mealworm, caterpillars, Bruchus lentis, sago worm, locust, grasshopper, cicada, bee, Clanis bilineata, and the food additive carmine, which is derived from female Dactylopius coccus insects. For cockroaches, which are also edible insects, only studies on inhalation allergy have been described. Various insect allergens have been identified including tropomyosin and arginine kinase, which are both pan-allergens known for their cross-reactivity with homologous proteins in crustaceans and house dust mite. Cross-reactivity and/or co-sensitization of insect tropomyosin and arginine kinase has been demonstrated in house dust mite and seafood (e.g. prawn, shrimp) allergic patients. In addition, many other (allergenic) species (various non-edible insects, arachnids, mites, seafoods, mammals, nematoda, trematoda, plants, and fungi) have been identified with sequence alignment analysis to show potential cross-reactivity with allergens of edible insects. It was also shown that thermal processing and digestion did not eliminate insect protein allergenicity. Although purified natural allergens are scarce and yields are low, recombinant allergens from cockroach, silkworm, and Indian mealmoth are

  19. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards

  20. Impact of managed honey bee viruses on wild bees.

    Science.gov (United States)

    Tehel, Anja; Brown, Mark Jf; Paxton, Robert J

    2016-08-01

    Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far suggest that DWV spills over from managed to wild bee species and has the potential to cause population decline. That DWV and other viruses of A. mellifera are found in other bee species needs to be considered for the sustainable management of bee populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Insect barcode information system.

    Science.gov (United States)

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client- server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. http://www.nabg-nbaii.res.in/barcode.

  2. Occurrence, Distribution and Properties of Alfalfa Mosaic Virus

    Directory of Open Access Journals (Sweden)

    A.D. Zadjaii

    2002-01-01

    Full Text Available Alfalfa Mosaic Virus (AlflMV was recorded on 21 hosts comprising of four field crops, 14 vegetables, one ornamental plant and two new weed species (Heliotropium europaeum and Ammi majus belonging to nine families. The virus was identified and confirmed on the basis of its biological, serological (ELISA and physical properties. The leaves, stem and crown from systemically infected alfalfa plant contained high concentration of the virus. It was nonpersistently transmitted by cotton aphids (Aphis gossypii. The wide host range, including virus reservoirs, seed-borne infection and insect transmission account for high incidence and distribution of AlfMV in the country. The virus isolate had a dilution end point between 1 x 10-3 to l x 10-4, 65-67 °C thermal inactivation point and a few days in-vitro longevity and appears to be similar to the AlfMV-S strain.

  3. RNA interference: Applications and advances in insect toxicology and insect pest management.

    Science.gov (United States)

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Edible insects

    NARCIS (Netherlands)

    Huis, van A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than

  5. Sources of variation in an enzyme-linked immunoassay of bluetongue virus in Culicoides variipennis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Tabachnick, W J; Mecham, J O

    1991-03-01

    An enzyme-linked immunoassay for detecting bluetongue virus in infected Culicoides variipennis was evaluated using a nested analysis of variance to determine sources of experimental error in the procedure. The major source of variation was differences among individual insects (84% of the total variance). Storing insects at -70 degrees C for two months contributed to experimental variation in the ELISA reading (14% of the total variance) and should be avoided. Replicate assays of individual insects were shown to be unnecessary, since variation among replicate wells and plates was minor (2% of the total variance).

  6. Insects and human nutrition

    DEFF Research Database (Denmark)

    Roos, Nanna

    2018-01-01

    Despite high diversity in species as well as metamorphological life-­stages, edible insects are essentially an animal-source food contributing high quality protein and fat when viewed in the context of human nutrition. The nutritional contribution of insects to diets in populations where insects ...

  7. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... all life stages of insects from and around the corpse. The collected specimens are subjected to further analysis either in the field itself or in the laboratory. A forensic entomologist has three main objectives in his mind while analyzing the insect data: determination of place, time and mode of death, each of.

  8. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  9. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double

  10. Sterile insect supply, emergence, and release

    International Nuclear Information System (INIS)

    Dowell, R.V.; Worley, J.; Gomes, P.J.

    2005-01-01

    Insect mass-rearing for a sterile insect technique (SIT) programme is designed to move beyond the large-scale rearing of insects in a laboratory to the industrial production of consistently high-quality insects for sterilization and release. Each facility reflects the unique biology of the insect reared within it, but there are some generalities for all rearing facilities. Rearing insects in self-contained modules offers flexibility, and increased safety from catastrophic occurrences, compared with using a single building which houses all facets of the rearing process. Although mechanizing certain aspects of the rearing steps helps provide a consistently high-quality insect, successful mass-rearing and delivery depends largely upon the human component. Besides production in centralized facilities, insects can be produced from purchased eggs, or nowadays, adult insects are often obtained from specialized satellite emergence/collection facilities. Interest in commercializing insect production and release is increasing. Shipping sterile insects, sometimes over long distances, is now common practice. Procedures for handling and chilling adult insects, and providing food and water prior to release, are continually being improved. Sterile insects are released via static-release receptacles, ground-release systems, or most commonly from the air. The aerial release of chilled sterile insects is the most efficient method of release, especially when aircraft flight paths are guided by a Global Positioning System (GPS) linked to a computer-controlled release mechanism. (author)

  11. Insects vis a vis radiations

    International Nuclear Information System (INIS)

    Srivastava, Meera

    2014-01-01

    Insects have turned out to be much more radiation resistant. For most insects a dose of about 500-700 Gy is required to kill them within a few weeks of exposure; although cockroaches require 900-1000 Gy. Killing insects in less than a few days requires much higher doses. These doses are for mature insects, the immature stages of some insects can be killed by doses as low as 40 Gy. Some insects can be sterilized at even lower doses, and this has application in insect control. Screw-worms, for example, can be sterilized with doses of 25-50 Gy. By contrast, doses as low as 3 Gy caused death of humans in Hiroshima and Nagasaki and doses of about 6 Gy caused death of fire fighters in the Chernobyl accident. It is not exactly certain what the basis is for the resistance of insects to ionizing radiation. It is not animal size by itself, nor lack of penetration. It is also not because of few dividing cells as these are more radiosensitive than non-dividing ones. The speculation that insects might have lower oxygen tensions, and the lack of oxygen is known to protect cells from radiation also does not work. Insect cells might have an enhanced capacity to repair radiation damage also could not be proven. The number of chromosomes influenced radio-sensitivity, and that insects had fewer chromosomes could be true. The radiation resistance is inherent to the cells, since cells derived from insects are also radiation resistant when grown in cell culture. For example, a dose of 60 Gy is required to produce a 80% kill of insect cells, while doses of 1-2 Gy are sufficient to generate this level of killing in mammalian cells. But, nevertheless, according to recent researches, radiation from Japan's leaking Fukushima nuclear plant has caused mutations in some butterflies. It is therefore clear that insects are resistant to ionizing radiation and that this resistance is an inherent property of their cells. But it is not clear exactly what the basis of this cellular resistance is

  12. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes

    OpenAIRE

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-01-01

    Summary The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epide...

  13. Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets.

    Science.gov (United States)

    Legarrea, S; Betancourt, M; Plaza, M; Fraile, A; García-Arenal, F; Fereres, A

    2012-04-01

    Aphid-transmitted viruses frequently cause severe epidemics in lettuce grown under Mediterranean climates. Spatio-temporal dynamics of aphid-transmitted viruses and its vector were studied on lettuce (Lactuca sativa L.) grown under tunnels covered by two types of nets: a commercial UV-absorbing net (Bionet) and a Standard net. A group of plants infected by Cucumber mosaic virus (CMV, family Bromoviridae, genus Cucumovirus) and Lettuce mosaic virus (LMV, family Potyviridae, genus Potyvirus) was transplanted in each plot. The same virus-infected source plants were artificially infested by the aphid Macrosiphum euphorbiae (Thomas). Secondary spread of insects was weekly monitored and plants were sampled for the detection of viruses every two weeks. In 2008, the infection rate of both CMV and LMV were lower under the Bionet than under the Standard cover, probably due to the lower population density and lower dispersal rate achieved by M. euphorbiae. However, during spring of 2009, significant differences in the rate of infection between the two covers were only found for LMV six weeks after transplant. The spatial distribution of the viruses analysed by SADIE methodology was "at random", and it was not associated to the spatial pattern of the vector. The results obtained are discussed analyzing the wide range of interactions that occurred among UV-radiation, host plant, viruses, insect vector and environmental conditions. Our results show that UV-absorbing nets can be recommended as a component of an integrated disease management program to reduce secondary spread of lettuce viruses, although not as a control measure on its own. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. How is Europe positioned for a re-emergence of Schmallenberg virus?

    Science.gov (United States)

    Stavrou, Anastasios; Daly, Janet M; Maddison, Ben; Gough, Kevin; Tarlinton, Rachael

    2017-12-01

    Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011 to 2013, infecting ruminants and causing foetal deformities after infection of pregnant animals. The main impact of the virus was financial loss due to restrictions on trade of animals, meat and semen. Although effective vaccines were produced, their uptake was never high. Along with the subsequent decline in new SBV infections and natural replacement of previously exposed livestock, this has resulted in a decrease in the number of protected animals. Recent surveillance has shown that a large population of naïve animals is currently present in Europe and that the virus is circulating at a low level. These changes in animal status, in combination with favourable conditions for insect vectors, may open the door to the re-emergence of SBV and another large scale outbreak in Europe. This review details the potential and preparedness for SBV re-emergence in Europe, discusses possible co-ordinated sentinel monitoring programmes for ruminant seroconversion and the presence of SBV in the insect vectors, and provides an overview of the economic impact associated with diagnosis, control and the effects of non-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  16. Radiations: tool for insect pest management

    International Nuclear Information System (INIS)

    Swami, Kailash Kumar; Kiradoo, M.M.; Srivastava, Meera

    2012-01-01

    The discovery that X-rays or gamma radiation could cause sufficient genetic damage to insect reproductive systems to induce sterility resulted from work conducted by H.J. Muller starting in the 1920s. The sterilizing effect of radiation was noted by scientists of the US Department of Agriculture who had been seeking a method to sterilize insects for many years. These scientists had theorized that if large numbers of the target insect species were reared, sterilized, and released into the field, the sterile insects would mate with the wild insects. These mating would result in no offspring and thus a decline in the population would be obtained. They calculated that if sufficient numbers of sterile insects were released, reproductive rate for the wild population would rapidly decline and reach zero. In simple language, birth control of insects. Radiation sterilization was the answer. In a SIT operation, radiation is used to sexually sterilize insects. Since the SIT is species specific, the selection the insect pest or group of pests on which to work is of primary importance. The Joint Division of the IAEA Food and Agriculture Organization (FAO) has been involved in the use of isotopes and radiation in insect control since 1964. Isotopes are used as tags or markers, for instance, of chemical molecules, insects, or plants. For example, with these tags one can follow the fate of insecticides within insects and the environment; the incorporation of nutrients into the insect; and the movements of insects under field conditions. They also can plants on which insects feed so that the quantity of consumed food can be measured and directly correlated with plant resistance. They can be used as well to follow parasites and predators of insects - for example, their movements, numbers, and ability to help control insect pests. Radiations therefore have come as a novel tool to combat insect pest problem and in future could be very helpful in various other ways, of be it be cost

  17. Evolution of the Insects

    Science.gov (United States)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  18. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique involves the mass-rearing of insects, which are sterilized by gamma rays from a 60 Co source before being released in a controlled fashion into nature. Matings between the sterile insects released and native insects produce no progeny, and so if enough of these matings occur the pest population can be controlled or even eradicated. A modification of the technique, especially suitable for the suppression of the moths and butterflies, is called the F, or inherited sterility method. In this, lower radiation doses are used such that the released males are only partially sterile (30-60%) and the females are fully sterile. When released males mate with native females some progeny are produced, but they are completely sterile. Thus, full expression of the sterility is delayed by one generation. This article describes the use of the sterile insect technique in controlling the screwworm fly, the tsetse fly, the medfly, the pink bollworm and the melon fly, and of the F 1 sterility method in the eradication of local gypsy moth infestations. 18 refs, 5 figs, 1 tab

  19. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods

    Directory of Open Access Journals (Sweden)

    Dan Sun

    2017-09-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2 and discuss their future prospects for becoming crucial technologies in arthropods.

  20. Experimental infection of white-tailed deer with bluetongue virus serotype 8

    NARCIS (Netherlands)

    Drolet, B.S.; Reister, L.M.; Mecham, J.O.; Wilson, W.C.; Nol, P.; Vercauteren, K.C.; Rijn, van P.A.; Bowen, R.A.

    2013-01-01

    Bluetongue (BT) is an insect-transmitted, economically important disease of domestic and wild ruminants. Although only five of the 26 reported bluetongue virus (BTV) serotypes are considered endemic to the USA, 10 exotic serotypes have been isolated primarily in the southeastern region of the

  1. Edible insects are the future?

    Science.gov (United States)

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.

  2. Zika Virus: Medical Countermeasure Development Challenges.

    Directory of Open Access Journals (Sweden)

    Robert W Malone

    2016-03-01

    Full Text Available Reports of high rates of primary microcephaly and Guillain-Barré syndrome associated with Zika virus infection in French Polynesia and Brazil have raised concerns that the virus circulating in these regions is a rapidly developing neuropathic, teratogenic, emerging infectious public health threat. There are no licensed medical countermeasures (vaccines, therapies or preventive drugs available for Zika virus infection and disease. The Pan American Health Organization (PAHO predicts that Zika virus will continue to spread and eventually reach all countries and territories in the Americas with endemic Aedes mosquitoes. This paper reviews the status of the Zika virus outbreak, including medical countermeasure options, with a focus on how the epidemiology, insect vectors, neuropathology, virology and immunology inform options and strategies available for medical countermeasure development and deployment.Multiple information sources were employed to support the review. These included publically available literature, patents, official communications, English and Lusophone lay press. Online surveys were distributed to physicians in the US, Mexico and Argentina and responses analyzed. Computational epitope analysis as well as infectious disease outbreak modeling and forecasting were implemented. Field observations in Brazil were compiled and interviews conducted with public health officials.

  3. Zika Virus: Medical Countermeasure Development Challenges

    Science.gov (United States)

    Malone, Robert W.; Homan, Jane; Callahan, Michael V.; Glasspool-Malone, Jill; Damodaran, Lambodhar; Schneider, Adriano De Bernardi; Zimler, Rebecca; Talton, James; Cobb, Ronald R.; Ruzic, Ivan; Smith-Gagen, Julie; Janies, Daniel; Wilson, James

    2016-01-01

    Introduction Reports of high rates of primary microcephaly and Guillain–Barré syndrome associated with Zika virus infection in French Polynesia and Brazil have raised concerns that the virus circulating in these regions is a rapidly developing neuropathic, teratogenic, emerging infectious public health threat. There are no licensed medical countermeasures (vaccines, therapies or preventive drugs) available for Zika virus infection and disease. The Pan American Health Organization (PAHO) predicts that Zika virus will continue to spread and eventually reach all countries and territories in the Americas with endemic Aedes mosquitoes. This paper reviews the status of the Zika virus outbreak, including medical countermeasure options, with a focus on how the epidemiology, insect vectors, neuropathology, virology and immunology inform options and strategies available for medical countermeasure development and deployment. Methods Multiple information sources were employed to support the review. These included publically available literature, patents, official communications, English and Lusophone lay press. Online surveys were distributed to physicians in the US, Mexico and Argentina and responses analyzed. Computational epitope analysis as well as infectious disease outbreak modeling and forecasting were implemented. Field observations in Brazil were compiled and interviews conducted with public health officials. PMID:26934531

  4. Multiplication of maize rayado fino virus in the leafhopper vector Dalbulus maidis.

    Science.gov (United States)

    Rivera, C; Gámez, R

    1986-01-01

    The enzyme-linked immunosorbent assay (ELISA) was used to demonstrate the increase in titer of maize rayado fino virus (MRFV) in its leafhopper vector, Dalbulus maidis. Viral antigen concentration attained a maximum in the body of the insect 25 days after virus acquisition and decreased thereafter. Substantial differences in concentration were observed among viruliferous leafhoppers. MRFV was serially passed through 5 successive leafhopper populations. The results provide further evidence of multiplication of MRFV in D. maidis.

  5. Insect anaphylaxis: addressing clinical challenges.

    Science.gov (United States)

    Tracy, James M; Lewis, Elena J; Demain, Jeffrey G

    2011-08-01

    Few allergic reactions are as potentially life-threatening, or frightening to the patient, as anaphylaxis. Food, medications, and insect stings are the three most common triggers of anaphylaxis, but insect allergy provides the best opportunity to understand the biology of anaphylaxis. If the physician can establish a diagnosis of insect allergy, treatment with nearly 98% effectiveness can be initiated. However, sometimes patients have a compelling history of insect sting anaphylaxis, but negative skin and blood tests. This situation presents us with a fascinating opportunity to understand the biology of insect anaphylaxis. Recent and ongoing work shows that occult mast cell disease may be critical in insect anaphylaxis. Mastocytosis, serum tryptase and basophil biology are key elements; genetic markers may potentially help us diagnose at-risk individuals and determine proper treatment. Understanding basophil activation may play an additional role both in diagnosis and knowing when therapy might be terminated. Mast cell disease, serum tryptase and basophil biology are providing an opportunity to better understand and manage insect allergy. This evolving understanding should improve long-term management of insect anaphylaxis and help us to better understand the clinical dilemma of appropriate management of the history-positive patient in which testing is unable to detect venom-specific IgE. Furthermore, omalizumab's immunomodulatory effects may play a role in difficult-to-treat insect allergy and mastocytosis. Finally, unrelated to these, but still important as an ongoing risk factor, is the continued underutilization of epinephrine for both acute and long-term management of insect anaphylaxis.

  6. Environmental RNAi in herbivorous insects.

    Science.gov (United States)

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. © 2015 Ivashuta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies.

    Science.gov (United States)

    Barletta, Ana Beatriz Ferreira; Silva, Maria Clara L Nascimento; Sorgine, Marcos H Ferreira

    2012-07-24

    The understanding of mosquito immune responses can provide valuable tools for development of novel mosquito control strategies. Aiming the study at insect innate immunity, continuous insect cell lines have been established and used as research tools due to the fact that they constitute more homogeneous, sensitive, and reproducible systems than the insects from which they originated. More recently, Aag-2, an Aedes aegypti cell lineage, began to be frequently used as a model for studies of mosquito immunity. Nevertheless, to our knowledge, no study has systematically characterized the responses of Aag-2 cell line against different kinds of pathogens and compared its response to those exhibited by whole mosquitoes. For this reason, in this study we characterized gene expression profiles of the Aag-2 cell line in response to different kinds of immune challenges, such as Gram negative and positive bacteria, fungi and viruses, comparing the obtained results with the ones already described in the literature for whole mosquitoes. Aedes aegypti Aag-2 cells were exposed to different immune stimuli (gram-positive and gram negative heat inactivated bacteria, zymosan or Sindbis virus) for 24 hours and the expression of selected marker genes from toll, IMD and Jak/STAT pathways was analyzed by qPCR. Also, cells were incubated with fluorescent latex beads for evaluation of its phagocytosis capacity. Aag-2 cells were stimulated with two concentrations of heat-killed Gram negative (Enterobacter cloacae) or Gram positive (Micrococcus luteus) bacteria, Zymosan or infected with Sindbis virus and the expression of key genes from the main immune related pathways, Toll, IMD and Jak/STAT, were investigated. Our results suggest that Toll and IMD pathways are activated in response to both Gram positive and negative bacteria and Zymosan in Aag-2 cells, displaying an immune profile similar to those described in the literature for whole mosquitoes. The same stimuli were also capable of

  8. Seedling protection and field practices for management of insect vectors and viral diseases of hot pepper (Capsicum chinense Jacq.) in Uganda

    DEFF Research Database (Denmark)

    Karungi, J.; Obua, T.; Kyamanywa, S.

    2013-01-01

    The focus of this study was on nursery and field management of seed and insect vectors of viruses on hot pepper. Seedlings raised from hypochlorite-treated seeds under a net tunnel nursery were compared with seedlings raised from untreated seeds in an open nursery. The two groups of seedlings were...

  9. Edible insects of Northern Angola

    OpenAIRE

    Lautenschläger,Thea; Neinhuis,Christoph; Monizi,Mawunu; Mandombe,José Lau; Förster,Anke; Henle,Thomas; Nuss,Matthias

    2017-01-01

    From 2013–2017, we accompanied and interviewed local people harvesting edible insects in the Northern Angolan province of Uíge. Insect and host plant samples were collected for species identification and nutritive analyses. Additionally, live caterpillars were taken to feed and keep until pupation and eclosion of the imago, necessary for morphological species identification. Altogether, 18 insect species eaten by humans were recorded. Twenty four edible insect species were formerly known from...

  10. Pathogen avoidance by insect predators

    OpenAIRE

    Meyling, Nicolai V.; Ormond, Emma; Roy, Helen E.; Pell, Judith K.

    2008-01-01

    Insects can detect cues related to the risk of attack by their natural enemies. Pathogens are among the natural enemies of insects and entomopathogenic fungi attack a wide array of host species. Evidence documents that social insects in particular have adapted behavioural mechanisms to avoid infection by fungal pathogens. These mechanisms are referred to as 'behavioural resistance'. However, there is little evidence for similar adaptations in non-social insects. We have conducted experime...

  11. Implication of the Bacterial Endosymbiont Rickettsia spp. in Interactions of the Whitefly Bemisia tabaci with Tomato yellow leaf curl virus

    Science.gov (United States)

    Kliot, Adi; Cilia, Michelle; Czosnek, Henryk

    2014-01-01

    ABSTRACT Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. We report here that infection with Rickettsia spp., a facultative endosymbiont of whiteflies, altered TYLCV-B. tabaci interactions. A B. tabaci strain infected with Rickettsia acquired more TYLCV from infected plants, retained the virus longer, and exhibited nearly double the transmission efficiency compared to an uninfected B. tabaci strain with the same genetic background. Temporal and spatial antagonistic relationships were discovered between Rickettsia and TYLCV within the whitefly. In different time course experiments, the levels of virus and Rickettsia within the insect were inversely correlated. Fluorescence in situ hybridization analysis of Rickettsia-infected midguts provided evidence for niche exclusion between Rickettsia and TYLCV. In particular, high levels of the bacterium in the midgut resulted in higher virus concentrations in the filter chamber, a favored site for virus translocation along the transmission pathway, whereas low levels of Rickettsia in the midgut resulted in an even distribution of the virus. Taken together, these results indicate that Rickettsia, by infecting the midgut, increases TYLCV transmission efficacy, adding further insights into the complex association between persistent plant viruses, their insect vectors, and microorganism tenants that reside within these insects. IMPORTANCE Interest in bacterial endosymbionts in arthropods and many aspects of their host biology in agricultural and human health systems has been increasing. A recent and relevant studied example is the influence of Wolbachia on dengue virus transmission by mosquitoes. In parallel with our recently studied whitefly-Rickettsia-TYLCV system, other studies have shown that dengue virus levels in the mosquito vector are inversely correlated with

  12. Edible insects in China: Utilization and prospects.

    Science.gov (United States)

    Feng, Ying; Chen, Xiao-Ming; Zhao, Min; He, Zhao; Sun, Long; Wang, Cheng-Ye; Ding, Wei-Feng

    2018-04-01

    The use of edible insects has a long history in China, where they have been consumed for more than 2000 years. In general, the level of acceptance is high for the consumption of insects in China. Many studies on edible insects have been conducted in the last 20 years, and the scope of the research includes the culture of entomophagy and the identification, nutritional value, farming and breeding of edible insects, in addition to food production and safety. Currently, 324 species of insects from 11 orders are documented that are either edible or associated with entomophagy in China, which include the common edible species, some less commonly consumed species and some medicinal insects. However, only approximately 10 to 20 types of insects are regularly consumed. The nutritional values for 174 species are available in China, including edible, feed and medicinal species. Although the nutritional values vary among species, all the insects examined contain protein, fat, vitamins and minerals at levels that meet human nutritional requirements. Edible insects were, and continue to be, consumed by different ethnic groups in many parts of China. People directly consume insects or food products made from insects. The processing of products from insect protein powder, oil and chitin, and the development of healthcare foods has been studied in China. People also consume insects indirectly by eating livestock that were fed insects, which may be a more acceptable pathway to use insects in human diets. Although limited, the data on the food safety of insects indicate that insects are safe for food or feed. Incidences of allergic reactions after consuming silkworm pupae, cicadas and crickets have been reported in China. Insect farming is a unique breeding industry in rural China and is a source of income for local people. Insects are reared and bred for human food, medicine and animal feed using two approaches in China: the insects are either fully domesticated and reared

  13. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  14. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  15. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  16. Seed Transmission of Beet Curly Top Virus and Beet Curly Top Iran Virus in a Local Cultivar of Petunia in Iran

    Science.gov (United States)

    Anabestani, Ameneh; Behjatnia, Seyed Ali Akbar; Izadpanah, Keramat; Tabein, Saeid

    2017-01-01

    Beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV) are known as the causal agents of curly top disease in beet and several other dicotyledonous plants in Iran. These viruses are transmitted by Circulifer species, and until now, there has been no confirmed report of their seed transmission. A percentage (38.2–78.0%) of the seedlings developed from the seeds of a petunia local cultivar under insect-free conditions showed stunting, interveinal chlorosis, leaf curling, and vein swelling symptoms, and were infected by BCTV when tested by PCR. Presence of BCTV in seed extracts of petunia local cultivar was confirmed by PCR and IC-PCR, followed by sequencing. Agroinoculation of curly top free petunia plants with a BCTV infectious clone resulted in BCTV infection of plants and their developed seeds. These results show the seed infection and transmission of BCTV in a local cultivar of petunia. Similar experiments performed with BCTIV showed that this virus is also seed transmissible in the same cultivar of petunia, although with a lower rate (8.8–18.5%). Seed transmission of curly top viruses may have significant implications in the epidemiology of these viruses. PMID:29035342

  17. Eating insects

    OpenAIRE

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards eating creatures that are not regarded as food. The low consumer acceptance of this culturally inappropriate food is currently considered to be one of the key barriers to attaining the benefits of this po...

  18. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  19. The Native Hawaiian Insect Microbiome Initiative: A Critical Perspective for Hawaiian Insect Evolution

    Directory of Open Access Journals (Sweden)

    Kirsten E. Poff

    2017-12-01

    Full Text Available Insects associate with a diversity of microbes that can shape host ecology and diversity by providing essential biological and adaptive services. For most insect groups, the evolutionary implications of host–microbe interactions remain poorly understood. Geographically discrete areas with high biodiversity offer powerful, simplified model systems to better understand insect–microbe interactions. Hawaii boasts a diverse endemic insect fauna (~6000 species characterized by spectacular adaptive radiations. Despite this, little is known about the role of bacteria in shaping this diversity. To address this knowledge gap, we inaugurate the Native Hawaiian Insect Microbiome Initiative (NHIMI. The NHIMI is an effort intended to develop a framework for informing evolutionary and biological studies in Hawaii. To initiate this effort, we have sequenced the bacterial microbiomes of thirteen species representing iconic, endemic Hawaiian insect groups. Our results show that native Hawaiian insects associate with a diversity of bacteria that exhibit a wide phylogenetic breadth. Several groups show predictable associations with obligate microbes that permit diet specialization. Others exhibit unique ecological transitions that are correlated with shifts in their microbiomes (e.g., transition to carrion feeding from plant-feeding in Nysius wekiuicola. Finally, some groups, such as the Hawaiian Drosophila, have relatively diverse microbiomes with a conserved core of bacterial taxa across multiple species and islands.

  20. Insects and diseases

    Science.gov (United States)

    John W. Couston

    2009-01-01

    Insects and diseases are a natural part of forested ecosystems. Their activity is partially regulated by biotic factors, e.g., host abundance, host quality; physical factors, e.g., soil, climate; and disturbances (Berryman 1986). Insects and diseases can influence both forest patterns and forest processes by causing, for example, defoliation and mortality. These...

  1. Protecting Yourself from Stinging Insects

    Science.gov (United States)

    ... from St ing in g In sect s Flying Insects Outdoor workers are at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While ... If a worker is stung by a stinging insect: ■■ Have someone stay with the worker to be ...

  2. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    , defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar...... defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects...

  3. Insects: An Interdisciplinary Unit

    Science.gov (United States)

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  4. Insects: Bugged Out!

    Science.gov (United States)

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  5. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  6. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  7. Predicting the potential establishment of two insect species using the simulation environment INSIM (INsect SIMulation)

    NARCIS (Netherlands)

    Hemerik, Lia; Nes, van Egbert H.

    2016-01-01

    Degree-day models have long been used to predict events in the life cycle of insects and therewith the timing of outbreaks of insect pests and their natural enemies. This approach assumes, however, that the effect of temperature is linear, whereas developmental rates of insects are non-linearly

  8. Insects and Bugs

    Science.gov (United States)

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  9. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  10. Continuous Influx of Genetic Material from Host to Virus Populations.

    Directory of Open Access Journals (Sweden)

    Clément Gilbert

    2016-02-01

    Full Text Available Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86 can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69 belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.

  11. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.

    Science.gov (United States)

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra

    2017-12-18

    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  12. Insect Bites and Stings

    Science.gov (United States)

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  13. The Curious Connection Between Insects and Dreams.

    Science.gov (United States)

    Klein, Barrett A

    2011-12-21

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  14. Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California.

    Directory of Open Access Journals (Sweden)

    Abhineet M Sharma

    Full Text Available Some diseases manifest as one characteristic set of symptoms to the host, but can be caused by multiple pathogens. Control treatments based on plant symptoms can make it difficult to effectively manage such diseases, as the biology of the underlying pathogens can vary. Grapevine leafroll disease affects grapes worldwide, and is associated with several viral species in the family Closteroviridae. Whereas some of the viruses associated with this disease are transmitted by insect vectors, others are only graft-transmissible. In three regions of California, we surveyed vineyards containing diseased vines and screened symptomatic plants for all known viral species associated with grapevine leafroll disease. Relative incidence of each virus species differed among the three regions regions, particularly in relation to species with known vectors compared with those only known to be graft-transmitted. In one region, the pathogen population was dominated by species not known to have an insect vector. In contrast, populations in the other surveyed regions were dominated by virus species that are vector-transmissible. Our survey did not detect viruses associated with grapevine leafroll disease at some sites with characteristic disease symptoms. This could be explained either by undescribed genetic diversity among these viruses that prevented detection with available molecular tools at the time the survey was performed, or a misidentification of visual symptoms that may have had other underlying causes. Based on the differences in relative prevalence of each virus species among regions and among vineyards within regions, we expect that region and site-specific management strategies are needed for effective disease control.

  15. Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV and Plants

    Directory of Open Access Journals (Sweden)

    Xiao L. Tan

    2017-09-01

    Full Text Available Herbivory defense systems in plants are largely regulated by jasmonate-(JA and salicylate-(SA signaling pathways. Such defense mechanisms may impact insect feeding dynamic, may also affect the transmission-acquisition relationship among virus, plants and vectoring insects. In the context of the tomato – whitefly – Tomato Yellow Leaf Curl Virus (TYLCV biological model, we tested the impact of pre-infesting plants with a non-vector insect (aphid Myzus persicae on feeding dynamics of a vector insect (whitefly Bemisia tabaci as well as virus transmission-acquisition. We showed that an aphid herbivory period of 0–48 h led to a transient systemic increase of virus concentration in the host plant (root, stem, and leaf, with the same pattern observed in whiteflies feeding on aphid-infested plants. We used real-time quantitative PCR to study the expression of key genes of the SA- and JA-signaling pathways, as well as electrical penetration graph (EPG to characterize the impact of aphid pre-infestation on whitefly feeding during TYLCV transmission (whitefly to tomato and acquisition (tomato to whitefly. The impact of the duration of aphid pre-infestation (0, 24, or 48 h on phloem feeding by whitefly (E2 during the transmission phase was similar to that of global whitefly feeding behavior (E1, E2 and probing duration during the acquisition phase. In addition, we observed that a longer phase of aphid pre-infestation prior to virus transmission by whitefly led to the up-regulation and down-regulation of SA- and JA-signaling pathway genes, respectively. These results demonstrated a significant impact of aphid pre-infestation on the tomato – whitefly – TYLCV system. Transmission and acquisition of TYLCV was positively correlated with feeding activity of B. tabaci, and both were mediated by the SA- and JA-pathways. TYLCV concentration during the transmission phases was modulated by up- and down-regulation of SA- and JA-pathways, respectively. The two

  16. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  17. The basic principles of the application of sterile insect technique for area-wide insect pest control

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2006-01-01

    Sterile Insect Technique (SIT) is a new insect pest control technique, potential, and compatible to other techniques. This technique includes irradiation of insect colony in the laboratory using gamma, n, or x-rays and then release them in the field periodically to obtain the increase of sterility probability level from the first generation to the dependence as the result the decrease of the fertility level in the field. The effect the release of sterile insects ( 9:1 ratio to the male indigenous and reproductive potential every single female of each generation reproduce 5 females ) to the insect reduction population model is conceptually discussed. From one million of the female parental decrease to be 26, 316; 1,907; 10; and 0 insects at the first, second, third, and the forth progeny respectively. Then if sterile insect technique integrated with chemical technique (insecticide) 90% kill, it will be much more effective compared to the application sterile insect technique only. From the number of one million population of insects will decrease to be 2,632; 189; and 0 insects at the first, second, and the third progeny respectively. In the Lepidoptera insects was found a phenomenon of inherited sterility. According to Knipling (1970) the inherited sterility in the first offspring caused by chromosome translocation in the gamete . In the individual of heterozygote will be die and in the homozygotes is still alive. Interspecific hybrid sterility first time was found by Laster (1972) from a cross between males Heliothis virescens (F) and females Heliothis subflexa Guenee. Male moths of the first offspring from the cross between H. virescens and H. subflexa is sterile and the females still remain fertile. If the female moths of the first offspring back crossed with male H. virescens the phenomenon of sterility always found will same situation as mention earlier the male offspring is sterile and the females is fertile ( the male F2 will be sterile and the females will

  18. Advances on polyphenism in insects.

    Science.gov (United States)

    Xue, Xian-Ci; Yu, Li

    2017-09-20

    Polyphenism denotes that one genome produces two or more distinct phenotypes due to environmental inductions. Many cases have been reported in insects, for example, metamorphosis, seasonal polyphenism, the caste of eusocial insects and so on. Polyphenism is one of the most important reasons for insects to survive and thrive, because insects can adapt and use the environmental cues around them in order to avoid predators and reproduce by changing their phenotypes. Polyphenism has received growing attentions, ranging from the earlier description of this phenomenon to the exploration of possible inducing factors. With the recent advent of the genomic era, more and more studies based on next generation sequencing, gene knockout and RNA interference have been reported to reveal the molecular mechanism of polyphenism. In this review, we summarize the progresses of the polyphenism in insects and envision prospects of future researches.

  19. Susceptibility of Culicoides variipennis sonorensis to infection by polymerase chain reaction-detectable bluetongue virus in cattle blood.

    Science.gov (United States)

    Tabachnick, W J; MacLachlan, N J; Thompson, L H; Hunt, G J; Patton, J F

    1996-05-01

    Cattle bloods containing only polymerase chain reaction (PCR)--detectable bluetongue-10 viral nucleic acid, but as determined by virus isolation techniques, not bluetongue-10 virus, were incapable of infecting intrathoracically inoculated Culicoides variipennis sonorensis. These insects also failed to transmit bluetongue-10 virus when fed on sheep. Cattle whose blood contain only PCR-detectable bluetongue viral nucleic acid, but no infectious virus, are unlikely to play a role in the epidemiology of bluetongue. The biological significance of PCR-based detection assays and their effect on animal health regulations on the international trade of livestock and livestock germplasm is discussed. Bluetongue virus infection provides a very useful model with which to study arthropod-transmitted RNA virus infections of humans and other animals.

  20. Utilization of an Eilat Virus-Based Chimera for Serological Detection of Chikungunya Infection.

    Science.gov (United States)

    Erasmus, Jesse H; Needham, James; Raychaudhuri, Syamal; Diamond, Michael S; Beasley, David W C; Morkowski, Stan; Salje, Henrik; Fernandez Salas, Ildefonso; Kim, Dal Young; Frolov, Ilya; Nasar, Farooq; Weaver, Scott C

    2015-01-01

    In December of 2013, chikungunya virus (CHIKV), an alphavirus in the family Togaviridae, was introduced to the island of Saint Martin in the Caribbean, resulting in the first autochthonous cases reported in the Americas. As of January 2015, local and imported CHIKV has been reported in 50 American countries with over 1.1 million suspected cases. CHIKV causes a severe arthralgic disease for which there are no approved vaccines or therapeutics. Furthermore, the lack of a commercially available, sensitive, and affordable diagnostic assay limits surveillance and control efforts. To address this issue, we utilized an insect-specific alphavirus, Eilat virus (EILV), to develop a diagnostic antigen that does not require biosafety containment facilities to produce. We demonstrated that EILV/CHIKV replicates to high titers in insect cells and can be applied directly in enzyme-linked immunosorbent assays without inactivation, resulting in highly sensitive detection of recent and past CHIKV infection, and outperforming traditional antigen preparations.

  1. Radioactive labelling of insects

    International Nuclear Information System (INIS)

    Thygesen, Th.

    Experiments are described with the internal contamination of insects with phosphorus 32 introduced previously in plants of the brassica type using three different techniques. The intake of radioactivity from the plants to the insects is shown. (L.O.)

  2. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  3. Consuming insects

    DEFF Research Database (Denmark)

    Roos, Nanna; van Huis, A.

    2017-01-01

    as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and vegetables. Various recent studies have indicated such bioactivity in different insect species....... The enormous number of edible insect species may be a source of novel bioactive compounds with health benefits addressing global health challenges. However, any identified health benefits need to be confirmed in human studies or in standardised assays accepted in health research prior to making health claims....

  4. The Curious Connection Between Insects and Dreams

    Directory of Open Access Journals (Sweden)

    Barrett A. Klein

    2011-12-01

    Full Text Available A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  5. The Curious Connection Between Insects and Dreams

    Science.gov (United States)

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  6. VP7: an attachment protein of bluetongue virus for cellular receptors in Culicoides variipennis.

    Science.gov (United States)

    Xu, G; Wilson, W; Mecham, J; Murphy, K; Zhou, E M; Tabachnick, W

    1997-07-01

    The importance of VP7 of bluetongue virus (BTV) in the binding of BTV to membrane proteins of the BTV vector Culicoides variipennis was investigated. Core BTV particles, prepared from whole viruses, lacked outer proteins VP2 and VP5 and had VP7 exposed. More core particles and whole viruses bound to membrane preparations of adults of C. variipennis and KC cells, which were cultured from this vector insect, than to membrane preparations of Manduca sexta larvae. More core particles than whole viruses bound to membrane preparations of adults of C. variipennis and KC cells. Polyclonal anti-idiotypic antibodies (anti-Id), which were made against an antigen-combining region of an anti-BTV-10 VP7 antibody and functionally mimicked VP7, bound more to the membrane preparations of adults of C. variipennis and KC cells, and less to cytosol preparations. In Western overalay analysis, the Culicoides plasma membrane preparation reduced binding of an anti-VP7 monoclonal antibody to VP7. Whole and core BTV particles and the anti-Id bound to a membrane protein with a molecular mass of 23 kDa that was present predominantly in membrane preparations of adults of C. variipennis and KC cells. This protein was present in much lower concentrations in membrane preparations of C6/36 and DM-2 insect cells.

  7. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  8. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    International Nuclear Information System (INIS)

    Germann, U.A.; Willingham, M.C.; Pastan, I.; Gottesman, M.M.

    1990-01-01

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by [ 3 H]azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the [ 3 H]azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart

  9. Virus infection decreases the attractiveness of white clover plants for a non-vectoring herbivore

    DEFF Research Database (Denmark)

    van Mölken, Tamara; Caluwe, Hannie de; Hordijk, Cornelis A.

    2012-01-01

    Plant pathogens and insect herbivores are prone to share hosts under natural conditions. Consequently, pathogen-induced changes in the host plant can affect herbivory, and vice versa. Even though plant viruses are ubiquitous in the field, little is known about plant-mediated interactions between ...

  10. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  11. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  12. 40 CFR 161.590 - Nontarget insect data requirements.

    Science.gov (United States)

    2010-07-01

    ... pollinators (4) CR CR CR CR CR CR TEP TEP 141-5 Nontarget insect testing—aquatic insects Acute toxicity to aquatic insects (5) 142-1 Aquatic insect life-cycle study (5) 142-1 Simulated or actual field testing for aquatic insects (5) 142-3 Nontarget insect testing—predators and parasites (5) 143-1thru 143-3 Key: CR...

  13. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  14. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  15. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  16. Transmission of vesicular stomatitis New Jersey virus to cattle by the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Perez de Leon, Adalberto A; Tabachnick, Walter J

    2006-03-01

    Laboratory-reared Culicoides sonorensis Wirth & Jones were infected with vesicular stomatitis virus serotype New Jersey (family Rhabdoviridae, genus Vesiculovirus, VSNJV) through intrathoracic inoculation. After 10-d incubation at 25 degrees C, these insects were allowed to blood feed on four steers. Two other steers were exposed to VSNJV through intralingual inoculation with 10(8) tissue culture infective dose50 VSNJV. All six steers became seropositive for VSNJV. The results demonstrate the ability of C. sonorensis to transmit VSNJV to livestock. Only the animals intralingually inoculated with VSNJV showed clinical signs in the form of vesicles at the site of inoculation. Uninfected C. sonorensis allowed to feed on the exposed animals did not become infected with VSNJV. Animals infected by C. sonorensis showed a slower antibody response compared with intralingually inoculated animals. This is probably because of different amounts of virus received via insect transmission and syringe inoculation. A significant difference was found in the serum acute-phase protein alpha-1-acid glycoprotein in animals that received VSNJV through C. sonorensis transmission. These animals had previously been exposed to insect attack in the field compared with intralingually inoculated animals and C. sonorensis-infected animals that had been protected from insect attack. The failure to observe clinical signs of vesicular stomatitis through transmission of VSNJV by C. sonorensis may explain widespread subclinical infections during vesicular stomatitis epidemics.

  17. Practical application of insect-parasitic nematodes and sterile flies

    International Nuclear Information System (INIS)

    Galle, F.; Loosjes, M.

    1987-01-01

    The company 'de Groene Vlieg' started with commercial control of the onion fly by means of the sterile insect technique. At the moment 10 per cent of the Dutch spring sown onions are treated with this method. The mass-rearing, the estimations of populations and the repeated releases of sterilized flies make it a rather complicated method. It can be applied economically per field, but only in areas with a concentration of onion growing. For export we see no possibilities yet. In principle the sterile insect technique can be applied also to other flies (carrot rust fly, cabbage root fly), but a suitable artificial diet is still lacking. Since some years we also rear the insect parasitic nematodes Heterorhabditis sp. and Neoaplectana bibionis. The later is experimentally used with success against Agrotis segetum caterpillars in lettuce. Research will yield more applications of nematodes against different pests. We use Heterorhabditis sp. in practice against the black vine weevil (Otiorhynchus sulcatus), a serious pest in glass houses, tree nurseries and gardens. Good control is achieved with a dose of one half to one million nematodes per square meter in moist soil and with temperatures above 12 degrees C. The application is similar to that of a chemical insecticide. The pest is killed by symbiontic bacteria, released by the nematodes after penetrating into the body cavity of the larvae. The nematodes are delivered by mail. If cooled they can be kept alive for over four weeks in the package. We export already to Switzerland and plan to export also to Western Germany. At this moment a possible admittance is under investigation in the Netherlands for application of a nuclear polyhedrosis virus against Spodoptera exigua caterpillars

  18. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments.

    Science.gov (United States)

    Zotti, M J; Smagghe, G

    2015-06-01

    The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.

  19. Southern rice black-streaked dwarf virus: a white-backed planthopper transmitted fijivirus threadening rice production in Asia

    Directory of Open Access Journals (Sweden)

    Guohui eZhou

    2013-09-01

    Full Text Available Southern rice black-streaked dwarf virus (SRBSDV, a nonenveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice–virus–insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens and small brown planthopper (Laodelphax striatellus. Rice, maize, Chinese sorghum (Coix lacryma-jobi and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.

  20. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  1. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  2. 21 CFR 1250.95 - Insect control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be... generally accepted methods of insect control. ...

  3. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    Science.gov (United States)

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.

  4. Herbivory increases diversification across insect clades.

    Science.gov (United States)

    Wiens, John J; Lapoint, Richard T; Whiteman, Noah K

    2015-09-24

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.

  5. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  6. Insect Capital

    Directory of Open Access Journals (Sweden)

    Andrew Pilsch

    2015-12-01

    Full Text Available In this note, Pilsch address William Gibson’s use of insect imagery in to trouble the common understanding of the novel Neuromancer, its commentary on corporate culture, and its relationship to a then-emergent posthumanism. Further, he concludes by suggesting that, for Gibson, the insect hive as an image for the corporate body shows that corporate culture is, in contrast to the banal image the term brings to mind, a set of nefarious cultural techniques derived for interfacing human bodies with the corporation’s native environment in the postmodern era: the abstractions of data.

  7. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Alfalfa Leaf Curl Virus: an Aphid-Transmitted Geminivirus.

    Science.gov (United States)

    Roumagnac, Philippe; Granier, Martine; Bernardo, Pauline; Deshoux, Maëlle; Ferdinand, Romain; Galzi, Serge; Fernandez, Emmanuel; Julian, Charlotte; Abt, Isabelle; Filloux, Denis; Mesléard, François; Varsani, Arvind; Blanc, Stéphane; Martin, Darren P; Peterschmitt, Michel

    2015-09-01

    The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  10. Cowpea mosaic virus-based chimaeras Effects of inserted peptides on the phenotype, host range, and transmissibility of the modified viruses

    International Nuclear Information System (INIS)

    Porta, Claudine; Spall, Valerie E.; Findlay, Kim C.; Gergerich, Rose C.; Farrance, Christine E.; Lomonossoff, George P.

    2003-01-01

    Expression of foreign peptides on the surface of cowpea mosaic virus particles leads to the creation of chimaeras with a variety of phenotypes and yields. Two factors were shown to be particularly significant in determining the properties of a given chimaera: the length of the inserted sequence and its isoelectric point. The deleterious effect of high isoelectric point on the ability of chimeras to produce a systemic infection occurs irrespective of the site of insertion of the peptide. Ultrastructural analysis of tissue infected with chimaeras with different phenotypes showed that all produced particles with a tendency to aggregate, irrespective of the size or isoelectric point of the insert. Host range and transmission studies revealed that the expression of a foreign peptide did not (1) alter the virus host range, (2) increase the rate of transmission by beetles or through seed, or (3) change the insect vector specificity. These findings have implications for both the utility and the biosafety of Cowpea mosaic virus-based chimaeras

  11. Attention-like processes in insects.

    Science.gov (United States)

    Nityananda, Vivek

    2016-11-16

    Attention is fundamentally important for sensory systems to focus on behaviourally relevant stimuli. It has therefore been an important field of study in human psychology and neuroscience. Primates, however, are not the only animals that might benefit from attention-like processes. Other animals, including insects, also have to use their senses and select one among many stimuli to forage, avoid predators and find mates. They have evolved different mechanisms to reduce the information processed by their brains to focus on only relevant stimuli. What are the mechanisms used by insects to selectively attend to visual and auditory stimuli? Do these attention-like mechanisms achieve the same functions as they do in primates? To investigate these questions, I use an established framework for investigating attention in non-human animals that proposes four fundamental components of attention: salience filters, competitive selection, top-down sensitivity control and working memory. I discuss evidence for each of these component processes in insects and compare the characteristics of these processes in insects to what we know from primates. Finally, I highlight important outstanding questions about insect attention that need to be addressed for us to understand the differences and similarities between vertebrate and insect attention. © 2016 The Author(s).

  12. Plant responses to insect egg deposition

    NARCIS (Netherlands)

    Hilker, M.; Fatouros, N.E.

    2015-01-01

    Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect

  13. Insect pathogens as biological control agents: Back to the future.

    Science.gov (United States)

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  14. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption.

    Science.gov (United States)

    Poma, Giulia; Cuykx, Matthias; Amato, Elvio; Calaprice, Chiara; Focant, Jean Francois; Covaci, Adrian

    2017-02-01

    Due to the rapid increase in world population, the waste of food and resources, and non-sustainable food production practices, the use of alternative food sources is currently strongly promoted. In this perspective, insects may represent a valuable alternative to main animal food sources due to their nutritional value and sustainable production. However, edible insects may be perceived as an unappealing food source and are indeed rarely consumed in developed countries. The food safety of edible insects can thus contribute to the process of acceptance of insects as an alternative food source, changing the perception of developed countries regarding entomophagy. In the present study, the levels of organic contaminants (i.e. flame retardants, PCBs, DDT, dioxin compounds, pesticides) and metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) were investigated in composite samples of several species of edible insects (greater wax moth, migratory locust, mealworm beetle, buffalo worm) and four insect-based food items currently commercialized in Belgium. The organic chemical mass fractions were relatively low (PCBs: 27-2065 pg/g ww; OCPs: 46-368 pg/g ww; BFRs: up to 36 pg/g ww; PFRs 783-23800 pg/g ww; dioxin compounds: up to 0.25 pg WHO-TEQ/g ww) and were generally lower than those measured in common animal products. The untargeted screening analysis revealed the presence of vinyltoluene, tributylphosphate (present in 75% of the samples), and pirimiphos-methyl (identified in 50% of the samples). The levels of Cu and Zn in insects were similar to those measured in meat and fish in other studies, whereas As, Co, Cr, Pb, Sn levels were relatively low in all samples (consume these insect species with no additional hazards in comparison to the more commonly consumed animal products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature.

    Science.gov (United States)

    Kis, András; Tholt, Gergely; Ivanics, Milán; Várallyay, Éva; Jenes, Barnabás; Havelda, Zoltán

    2016-04-01

    Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect-mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off-target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12-15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect-mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process. © 2015 BSPP and John Wiley & Sons Ltd.

  16. ORAL INSECT REPELLENTS - INSECT TASTE RECEPTORS AND THEIR ACTION,

    Science.gov (United States)

    CULICIDAE, * CHEMORECEPTORS ), INSECT REPELLENTS, ELECTROPHYSIOLOGY, STIMULATION(PHYSIOLOGY), ELECTROLYTES(PHYSIOLOGY), BLOOD, INGESTION(PHYSIOLOGY), REPRODUCTION(PHYSIOLOGY), NUTRITION, ENTOMOLOGY, AEDES, MOUTH

  17. Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Badia-Martinez, Daniel; Peralta, Bibiana [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); Andres, German; Guerra, Milagros [Electron Microscopy Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Campus Cantoblanco, 28049 Madrid (Spain); Gil-Carton, David [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); Abrescia, Nicola G.A., E-mail: nabrescia@cicbiogune.es [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2012-09-01

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  18. Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography

    International Nuclear Information System (INIS)

    Badia-Martinez, Daniel; Peralta, Bibiana; Andrés, German; Guerra, Milagros; Gil-Carton, David; Abrescia, Nicola G.A.

    2012-01-01

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  19. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    Directory of Open Access Journals (Sweden)

    Fanny Balique

    2015-04-01

    Full Text Available Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  20. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    OpenAIRE

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by...

  1. A novel method for transmitting southern rice black-streaked dwarf virus to rice without insect vector.

    Science.gov (United States)

    Yu, Lu; Shi, Jing; Cao, Lianlian; Zhang, Guoping; Wang, Wenli; Hu, Deyu; Song, Baoan

    2017-08-15

    Southern rice black-streaked dwarf virus (SRBSDV) has spread from the south of China to the north of Vietnam in the past few years, and has severely influenced rice production. However, previous study of traditional SRBSDV transmission method by the natural virus vector, the white-backed planthopper (WBPH, Sogatella furcifera), in the laboratory, researchers are frequently confronted with lack of enough viral samples due to the limited life span of infected vectors and rice plants and low virus acquisition and inoculation efficiency by the vector. Meanwhile, traditional mechanical inoculation of virus only apply to dicotyledon because of the higher content of lignin in the leaves of the monocot. Therefore, establishing an efficient and persistent-transmitting model, with a shorter virus transmission time and a higher virus transmission efficiency, for screening novel anti-SRBSDV drugs is an urgent need. In this study, we firstly reported a novel method for transmitting SRBSDV in rice using the bud-cutting method. The transmission efficiency of SRBSDV in rice was investigated via the polymerase chain reaction (PCR) method and the replication of SRBSDV in rice was also investigated via the proteomics analysis. Rice infected with SRBSDV using the bud-cutting method exhibited similar symptoms to those infected by the WBPH, and the transmission efficiency (>80.00%), which was determined using the PCR method, and the virus transmission time (30 min) were superior to those achieved that transmitted by the WBPH. Proteomics analysis confirmed that SRBSDV P1, P2, P3, P4, P5-1, P5-2, P6, P8, P9-1, P9-2, and P10 proteins were present in infected rice seedlings infected via the bud-cutting method. The results showed that SRBSDV could be successfully transmitted via the bud-cutting method and plants infected SRBSDV exhibited the symptoms were similar to those transmitted by the WBPH. Therefore, the use of the bud-cutting method to generate a cheap, efficient, reliable supply of

  2. Mass-rearing for sterile insect release

    International Nuclear Information System (INIS)

    Parker, A.G.

    2005-01-01

    As the sterile insect technique (SIT) relies upon released sterile male insects efficiently competing with wild males to mate with wild females, it follows that mass-rearing of insects is one of the principal steps in the process. Mass-rearing for the SIT presents both problems and opportunities due to the increased scale involved compared with rearing insects for most other purposes. This chapter discusses facility design, environmental concerns, strain management, quality control, automation, diet, sex separation, marking, and storage in relation to rearing for the SIT. (author)

  3. Insects diversity in lima bean (Phaseolus lunatus

    Directory of Open Access Journals (Sweden)

    WIWIN SETIAWATI

    2005-10-01

    Full Text Available Lima bean (Phaseolus lunatus is a vegetable which usually made as a home yard plant for Indonesian people to fulfill their daily needs. This plant has not been produced in the large number by the farmer. So it is hard to find in the market. Lima bean is light by many kind of insect. Inventory, identification and the study of insect taxon to this plant is being done to collect some information about the insect who life in the plant. The research was done in Balitsa experiment garden in the district of Lembang in Bandung regency on November 2003-February 2004, the experiment start at 4 weeks age, at the height of 1260 m over the sea level. The observation was made systematically by absolute method (D-vac macine and relative method (sweeping net. The research so that there were 26 species of phytofagous insect, 9 species of predator insect, 6 species of parasitoid insect, 4 species of pollinator and 14 species of scavenger insect. According to the research the highest species number was got in the 8th week (3rd sampling, which had 27 variety of species, so the highest diversity was also got in this with 2,113 point. Aphididae and Cicadellidae was the most insect found in roay plant. The research also had high number of species insect so the diversity of insect and evenness become high. A community will have the high stability if it is a long with the high diversity. High evenness in community that has low species dominance and high species number of insect so the high of species richness.

  4. Detection of bluetongue virus in the blood of inoculated calves: comparison of virus isolation, PCR assay, and in vitro feeding of Culicoides variipennis.

    Science.gov (United States)

    MacLachlan, N J; Nunamaker, R A; Katz, J B; Sawyer, M M; Akita, G Y; Osburn, B I; Tabachnick, W J

    1994-01-01

    The interval after infection when bluetongue virus (BTV) was present in the blood of calves inoculated with BTV serotype 10 (BTV 10) was evaluated by virus isolation (VI) in embryonated chicken eggs (ECE), BTV-specific polymerase chain reaction (PCR), and in vitro blood feeding of vector Culicoides variipennis (C.v.) sonorensis. BTV nucleic acid was detected by PCR in blood cells for 16 to 20 weeks after infection whereas infectious virus was detected by VI in ECE for 2 to 8 weeks. BTV was detected in calf blood by in vitro feeding of C.v. sonorensis for only 0 to 2 weeks after inoculation of calves with BTV 10. Selected bloods which were positive by PCR analysis but not by VI in ECE were not infectious for sheep. The data are consistent with the hypothesis that prolonged viremia in BTV-infected cattle results from association of the virus with blood cells, especially erythrocytes. The fact that calf blood that contained viral nucleic acid as determined by PCR analysis, but not infectious virus as determined by VI in ECE, was not infectious for either the insect vector or sheep suggests that cattle whose blood contains BTV nucleic acid but not infectious virus are unimportant to the epidemiology of BTV infection.

  5. Radioisotopes and food preservation against insects

    International Nuclear Information System (INIS)

    Hachem Ahmad, M.S.

    1998-01-01

    The book describes how to preserve food from harmful insects by using radioisotopes. It focusses on the impact of ionized radiation on the different stages of insect growth and on its metabolism and immunity. It also discusses the relationship between radiation doses and insect reproduction. It explains the various methods to detect the irradiated foods

  6. Infeksi Cucumber mosaic virus dan Chilli veinal mottle virus pada Cabai di Kabupaten Rejang Lebong, Bengkulu

    Directory of Open Access Journals (Sweden)

    Mimi Sutrawati

    2013-04-01

    Full Text Available Mosaic disease caused by Cucumber mosaic virus (CMV and Chilli veinal mottle Virus (ChiVMV has been distributed widely in chilli in Indonesia and considered as important disease. A research was conducted to investigate the spread and incidence of CMV and ChiVMV in Rejang Lebong, Bengkulu and to identify its insect vector. Symptomatic and asymptomatic leaf samples were collected systematically from several chillipepper fields for further detection by DAS-ELISA (Double antibody sandwich-enzyme linked immunosorbant assay using specific antibody for CMV and ChiVMV. The result showed that infection of both CMV and ChiVMV was found with disease incidence reached 20-50%, whereas infection only by ChiVMV or CMV were 50-80% and 20-50%, respectively. One species of aphid, i.e. Aphis gossypii was found from the fields.Key words: Aphis gossypii, CMV, ChiVMV, disease incidence

  7. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles.

    Science.gov (United States)

    Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen

    2016-01-15

    Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-06-08

    The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epidemic. Wolbachia-harboring mosquitoes displayed lower viral prevalence and intensity and decreased disseminated infection and, critically, did not carry infectious virus in the saliva, suggesting that viral transmission was blocked. Our data indicate that the use of Wolbachia-harboring mosquitoes could represent an effective mechanism to reduce Zika virus transmission and should be included as part of Zika control strategies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae).

    Science.gov (United States)

    Carpenter, Jennifer A; Keegan, Liam P; Wilfert, Lena; O'Connell, Mary A; Jiggins, Francis M

    2009-11-26

    ADARs are RNA editing enzymes that target double stranded RNA and convert adenosine to inosine, which is read by translation machinery as if it were guanosine. Aside from their role in generating protein diversity in the central nervous system, ADARs have been implicated in the hypermutation of some RNA viruses, although why this hypermutation occurs is not well understood. Here we describe the hypermutation of adenosines to guanosines in the genome of the sigma virus--a negative sense RNA virus that infects Drosophila melanogaster. The clustering of these mutations and the context in which they occur indicates that they have been caused by ADARs. However, ADAR-editing of viral RNA is either rare or edited viral RNA are rapidly degraded, as we only detected evidence for editing in two of the 104 viral isolates we studied. This is the first evidence for ADARs targeting viruses outside of mammals, and it raises the possibility that ADARs could play a role in the antiviral defences of insects.

  10. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos.

    Science.gov (United States)

    Barennes, Hubert; Phimmasane, Maniphet; Rajaonarivo, Christian

    2015-01-01

    Insect consumption (entomophagy) is a potentially high nutritious and healthy source of food with high fat, protein, vitamin, fiber and micronutrient content. At least 2 billion people globally eat insects (over 1900 edible species) though this habit is regarded negatively by others. There is a limited amount of data on the perception and consumption of insects. We conducted a national cross-sectional survey in the Lao People's Democratic Republic (Laos) to assess the prevalence and characteristics of insect consumption among adult lay people and insect vendors. We conducted a multi stage randomized national survey in 1303 households in 96 villages in 16 Lao provinces. Three insect vendors or collectors per village were also included. A standardized pretested questionnaire addressed the following issues: socioeconomic characteristics, type of insects consumed and frequency of consumption, reasons and trends in consumption as well as reports on side effects, over the last 10 years. A total of 1059 adults (Sex ratio F/M: 1.2, 30 ethnic groups), and 256 vendors were enrolled. A total of 1025 (96.8%) lay people were currently insect consumers, 135 (13.0%) daily or weekly consumers, and 322 (31.1%) consumed several times per month. For the majority (575, 55.6%) the consumption was infrequent (less than a few times per year) and only 22 (2%) had never eaten insects. Consumption started in childhood. Insect availability was seasonal (670, 63.2%) and respondents would have eaten more insects, if they had been more available (919, 86.7%). Hmong and Leu ethnic groups had significantly lower consumption levels than the general population. Eggs of weaver ants, short-tailed crickets, crickets, grasshoppers, and cicadas were the top 5 insects consumed. Consumption had decreased in the last decade, mostly due to less availability (869; 84.0%) and change of life (29; 5.5%). Of 1059, 80 (7.5%) reported allergy problems and 106 (10.0%) reported some use in traditional medicine. A

  11. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos.

    Directory of Open Access Journals (Sweden)

    Hubert Barennes

    Full Text Available Insect consumption (entomophagy is a potentially high nutritious and healthy source of food with high fat, protein, vitamin, fiber and micronutrient content. At least 2 billion people globally eat insects (over 1900 edible species though this habit is regarded negatively by others. There is a limited amount of data on the perception and consumption of insects. We conducted a national cross-sectional survey in the Lao People's Democratic Republic (Laos to assess the prevalence and characteristics of insect consumption among adult lay people and insect vendors.We conducted a multi stage randomized national survey in 1303 households in 96 villages in 16 Lao provinces. Three insect vendors or collectors per village were also included. A standardized pretested questionnaire addressed the following issues: socioeconomic characteristics, type of insects consumed and frequency of consumption, reasons and trends in consumption as well as reports on side effects, over the last 10 years.A total of 1059 adults (Sex ratio F/M: 1.2, 30 ethnic groups, and 256 vendors were enrolled. A total of 1025 (96.8% lay people were currently insect consumers, 135 (13.0% daily or weekly consumers, and 322 (31.1% consumed several times per month. For the majority (575, 55.6% the consumption was infrequent (less than a few times per year and only 22 (2% had never eaten insects. Consumption started in childhood. Insect availability was seasonal (670, 63.2% and respondents would have eaten more insects, if they had been more available (919, 86.7%. Hmong and Leu ethnic groups had significantly lower consumption levels than the general population. Eggs of weaver ants, short-tailed crickets, crickets, grasshoppers, and cicadas were the top 5 insects consumed. Consumption had decreased in the last decade, mostly due to less availability (869; 84.0% and change of life (29; 5.5%. Of 1059, 80 (7.5% reported allergy problems and 106 (10.0% reported some use in traditional medicine. A

  12. Respiratory symptoms in insect breeders.

    Science.gov (United States)

    Harris-Roberts, J; Fishwick, D; Tate, P; Rawbone, R; Stagg, S; Barber, C M; Adisesh, A

    2011-08-01

    A number of specialist food suppliers in the UK breed and distribute insects and insect larvae as food for exotic pets, such as reptiles, amphibians and invertebrates. To investigate the extent of work-related (WR) symptoms and workplace-specific serum IgE in workers potentially exposed to a variety of biological contaminants, including insect and insect larvae allergens, endotoxin and cereal allergens at a UK specialist insect breeding facility. We undertook a study of respiratory symptoms and exposures at the facility, with subsequent detailed clinical assessment of one worker. All 32 workers were assessed clinically using a respiratory questionnaire and lung function. Eighteen workers consented to provide serum for determination of specific IgE to workplace allergens. Thirty-four per cent (11/32) of insect workers reported WR respiratory symptoms. Sensitization, as judged by specific IgE, was found in 29% (4/14) of currently exposed workers. Total inhalable dust levels ranged from 1.2 to 17.9 mg/m(3) [mean 4.3 mg/m(3) (SD 4.4 mg/m(3)), median 2.0 mg/m(3)] and endotoxin levels of up to 29435 EU/m(3) were recorded. Exposure to organic dusts below the levels for which there are UK workplace exposure limits can result in respiratory symptoms and sensitization. The results should alert those responsible for the health of similarly exposed workers to the potential for respiratory ill-health and the need to provide a suitable health surveillance programme.

  13. Bugs, butterflies, and spiders: children's understandings about insects

    Science.gov (United States)

    Shepardson, Daniel P.

    2002-06-01

    This article explores elementary children's ideas about insects. The study involved 20 children from each grade level, kindergarten through fifth-grade, for a total of 120 children. The data collection procedure was designed to investigate what an insect means to children, through the use of three different tasks: draw and explain, interview about instances, and the formulation of a general rule. Considering children's responses to the three tasks, I found that their ideas about insects reflect understandings based on physical characteristics of size and shape, arthropod characteristics, insect characteristics, human-insect interactions, life habits of insects, feeding habits of insects, and means of locomotion. Children's understandings are juxtaposed to that of a scientific perspective, elucidating implications for curriculum development and instructional practice.

  14. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    International Nuclear Information System (INIS)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-01-01

    Highlights: → All three capsid proteins can be expressed in insect cells in baculovirus expression system. → All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. → The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  15. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Wang, Junwei, E-mail: jwwang@neau.edu.cn [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China)

    2011-05-27

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  16. Testing mechanistic models of growth in insects.

    Science.gov (United States)

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  17. Potential of Insect-Derived Ingredients for Food Applications

    NARCIS (Netherlands)

    Tzompa Sosa, D.A.; Fogliano, V.

    2017-01-01

    Insects are a sustainable and efficient protein and lipid source, compared with conventional livestock. Moreover, insect proteins and lipids are highly nutritional. Therefore, insect proteins and lipids can find its place as food ingredients. The use of insect proteins and lipids as food ingredients

  18. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost......-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient...

  19. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  20. Negative-strand RNA viruses: the plant-infecting counterparts.

    Science.gov (United States)

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Culicoides and the Tartar Steppe: Il Deserto dei Tartari Culicoides and the spread of blue tongue virus.

    Science.gov (United States)

    Houin, R

    2008-12-01

    Culicoides were described for the first time in England in 1713, but named by Latreille in 1809 only. Even so, they were better known as Ceratopogon until Kieffer reintroduced the name Culicoides. The family name became Ceratopogonidae, the description by Meigen (1803) being better adapted to that systematic level. Culicoides were considered simply as biting insects until it was found that they can carry filaria and viruses. In 1944, du Toit in Transvaal described their role in the transmission of blue-tongue virus. Blue-tongue disease has since extended progressively northward from South Africa, disseminated by Culicoides imicola. At the end of the 20th century, it reached the southern shores of the Mediterranean sea, and has since threatened the southern Europe. Surveillance and prevention procedures were put in place, but fortress Europe was taken breached when a different strain of the virus entered through Belgium in 2006. Transmitted by local Culicoides species that were aggressive and abundant, the disease spread quickly, in a disastrous epizootic southward through more than half of France. Westward, infected insects have been carried by wind over the Channel, introducing the disease to England.

  2. Use of habitat odour by host-seeking insects.

    Science.gov (United States)

    Webster, Ben; Cardé, Ring T

    2017-05-01

    Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.

  3. The evolution of plant-insect mutualisms.

    Science.gov (United States)

    Bronstein, Judith L; Alarcón, Ruben; Geber, Monica

    2006-01-01

    Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.

  4. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  5. The Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kiragu, J.

    2006-01-01

    Insect pests have caused an increasing problem in agriculture and human health through crop losses and disease transmission to man and livestock. Intervention to ensure food security and human health has relied on Integrated Pest Management (IPM) strategies to keep the pests population below economic injury levels. IPM integrate a variety of methods, but there has been over-reliance on chemical control following the discovery of insecticidal properties of DDT. It is now realized that, maintaining pest populations at controlled levels is unsustainable and eradication options is now being considered. Although the Sterile Insect Technique(SIT) could be used for insect suppression, it is gaining favour in the elimination (eradication) of the target pest population through Areawide-based IPM (Author)

  6. The 5' untranslated region of a novel infectious molecular clone of the dicistrovirus cricket paralysis virus modulates infection.

    Science.gov (United States)

    Kerr, Craig H; Wang, Qing S; Keatings, Kathleen; Khong, Anthony; Allan, Douglas; Yip, Calvin K; Foster, Leonard J; Jan, Eric

    2015-06-01

    Dicistroviridae are a family of RNA viruses that possesses a single-stranded positive-sense RNA genome containing two distinct open reading frames (ORFs), each preceded by an internal ribosome entry site that drives translation of the viral structural and nonstructural proteins, respectively. The type species, Cricket paralysis virus (CrPV), has served as a model for studying host-virus interactions; however, investigations into the molecular mechanisms of CrPV and other dicistroviruses have been limited as an established infectious clone was elusive. Here, we report the construction of an infectious molecular clone of CrPV. Transfection of in vitro-transcribed RNA from the CrPV clone into Drosophila Schneider line 2 (S2) cells resulted in cytopathic effects, viral RNA accumulation, detection of negative-sense viral RNA, and expression of viral proteins. Transmission electron microscopy, viral titers, and immunofluorescence-coupled transwell assays demonstrated that infectious viral particles are released from transfected cells. In contrast, mutant clones containing stop codons in either ORF decreased virus infectivity. Injection of adult Drosophila flies with virus derived from CrPV clones but not UV-inactivated clones resulted in mortality. Molecular analysis of the CrPV clone revealed a 196-nucleotide duplication within its 5' untranslated region (UTR) that stimulated translation of reporter constructs. In cells infected with the CrPV clone, the duplication inhibited viral infectivity yet did not affect viral translation or RNA accumulation, suggesting an effect on viral packaging or entry. The generation of the CrPV infectious clone provides a powerful tool for investigating the viral life cycle and pathogenesis of dicistroviruses and may further understanding of fundamental host-virus interactions in insect cells. Dicistroviridae, which are RNA viruses that infect arthropods, have served as a model to gain insights into fundamental host-virus interactions in

  7. Identification and profiling of conserved and novel microRNAs in Laodelphax striatellus in response to rice black-streaked dwarf virus (RBSDV infection

    Directory of Open Access Journals (Sweden)

    Jun-Min Li

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are small non-coding endogenous RNA molecules that play important roles in various biological processes. This study examined microRNA profiles of Laodelphax striatellus using the small RNA libraries derived from virus free (VF and rice black-streaked dwarf virus (RBSDV infected (RB insects. A total of 59 mature miRNAs (46 miRNA families were identified as conserved insect miRNAs in both VF and RB libraries. Among these conserved miRNAs, 24 were derived from the two arms of 12 miRNA precursors. Nine conserved L. striatellus miRNAs were up-regulated and 12 were down-regulated in response to RBSDV infection. In addition, a total of 20 potential novel miRNA candidates were predicted in the VF and RB libraries. The miRNA transcriptome profiles and the identification of L. striatellus miRNAs differentially expressed in response to RBSDV infection will contribute to future studies to elucidate the complex miRNA-mediated regulatory network activated by pathogen challenge in insect vectors.

  8. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens

    International Nuclear Information System (INIS)

    Ourth, Donald D.

    2004-01-01

    An insect antiviral compound was purified from Heliothis virescens larval hemolymph by gel-filtration high pressure liquid chromatography (HPLC) and C-18 reverse-phase HPLC and its structure was determined by mass spectrometry. The antiviral compound is an N-myristoylated-peptide containing six amino acids with calculated molecular weight of 916 Da. The N-terminus contains the fatty acid myristoyl, and the C-terminus contains histidine with two methyl groups giving the histidine a permanent positive charge. The remainder of the compound is essentially non-polar. The structure of the compound corresponds with the 'myristate plus basic' motif expressed by certain viral proteins in their binding to the cytoplasmic side of the plasma membrane to initiate viral assembly and budding from a host cell. The insect antiviral compound may inhibit viral assembly and/or budding of viruses from host cells that could include the human immunodeficiency virus-1 (HIV-1) and herpes simplex virus-1 that use this motif for exit from a host cell. Using the formazan assay, the myristoylated-peptide was effective against HIV-1, with a nine times increase in the viability and protection in vitro of treated CEM-SS cells when compared with infected but untreated control cells

  9. Biology and genomics of viruses within the genus Gammabaculovirus.

    Science.gov (United States)

    Arif, Basil; Escasa, Shannon; Pavlik, Lillian

    2011-11-01

    Hymenoptera is a very large and ancient insect order encompassing bees, wasps, ants and sawflies. Fossil records indicate that they existed over 200 million years ago and about 100 million years before the appearance of Lepidoptera. Sawflies have been major pests in many parts of the world and some have caused serious forest defoliation in North America. All baculoviruses isolated from sawflies are of the single nucleocapsids phenotype and appear to replicate in midgut cells only. This group of viruses has been shown to be excellent pest control agents and three have been registered in Canada and Britain for this purpose. Sawfly baculoviruses contain the smallest genome of all baculoviruses sequenced so far. Gene orders among sequenced sawfly baculoviruses are co-linear but this is not shared with the genomes of lepidopteran baculoviruses. One distinguishing feature among all sequenced sawfly viruses is the lack of a gene encoding a membrane fusion protein, which brought into question the role of the budded virus phenotype in Gammabaculovirus biology.

  10. Phytoplasmas: bacteria that manipulate plants and insects.

    Science.gov (United States)

    Hogenhout, Saskia A; Oshima, Kenro; Ammar, El-Desouky; Kakizawa, Shigeyuki; Kingdom, Heather N; Namba, Shigetou

    2008-07-01

    Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.

  11. Prostaglandins and their receptors in insect biology

    Directory of Open Access Journals (Sweden)

    David eStanley

    2011-12-01

    Full Text Available We treat the biological significance of prostaglandins (PGs and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  12. Modern insect control: Nuclear techniques and biotechnology

    International Nuclear Information System (INIS)

    1988-01-01

    The Symposium dealt primarily with genetic methods of insect control, including sterile insect technique (SIT), F 1 sterility, compound chromosomes, translocations and conditional lethals. Research and development activities on various aspects of these control technologies were reported by participants during the Symposium. Of particular interest was development of F 1 sterility as a practical method of controlling pest Lepidoptera. Genetic methods of insect control are applicable only on an area wide basis. They are species specific and thus do not reduce populations of beneficial insects or cause other environmental problems. Other papers presented reported on the potential use of radiation as a quarantine treatment for commodities in international trade and the use of radioisotopes as ''tags'' in studying insects

  13. Insects and other invertebrates

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Diane M. Bowers

    1985-01-01

    Quaking aspen throughout its range appears to be host to several insect and other invertebrate pests (fig. 1). It is a short-lived species that is palatable to a large variety of animals. Furniss and Carolin (1977) listed 33 insect species that use aspen as a food source. Some are quite damaging and may kill otherwise healthy stands of aspen; others feed on weakened or...

  14. How Insects Survive Winter in the Midwest

    Science.gov (United States)

    Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...

  15. Microbial brokers of insect-plant interactions revisited.

    Science.gov (United States)

    Douglas, Angela E

    2013-07-01

    Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis.

  16. Microbial Pest Control Agents: Are they a Specific And Safe Tool for Insect Pest Management?

    Science.gov (United States)

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-01-01

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully used bioinsecticide in the integrated pest management programs in the world. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity". Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Microbiological Load of Edible Insects Found in Belgium

    OpenAIRE

    Rudy Caparros Megido; Sandrine Desmedt; Christophe Blecker; François Béra; Éric Haubruge; Taofic Alabi; Frédéric Francis

    2017-01-01

    Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crick...

  18. Love Games that Insects Play

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. Love Games that Insects Play - The Evolution of Sexual Behaviours in Insects ... Author Affiliations. K N Ganeshaiah1. Department of Genetics & Plant Breeding University of Agricultural Sciences, GKVK Bangalore 560 065, India ...

  19. Tomato yellow leaf curl virus can be acquired and transmitted by Bemisia tabaci (Gennadius) from tomato fruits

    NARCIS (Netherlands)

    Delatte, H.; Dalmon, A.; Rist, D.; Soustrade, I.; Wuster, G.; Lett, J.M.; Goldbach, R.W.; Peterschmitt, M.; Reynaud, B.

    2003-01-01

    The whitefly Bemisia tabaci is an insect pest causing worldwide economic losses, especially as a vector of geminiviruses such as Tomato yellow leaf curl virus (TYLCV). Currently, imported and exported tomato fruit are not monitored for TYLCV infection because they are not considered to represent a

  20. External Insect Morphology: A Negative Factor in Attitudes toward Insects and Likelihood of Incorporation in Future Science Education Settings

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2012-01-01

    This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher's attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers…

  1. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector.

    Science.gov (United States)

    Iatrou, K; Meidinger, R G

    1990-01-01

    A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186

  2. Diversity in protein glycosylation among insect species.

    Directory of Open Access Journals (Sweden)

    Gianni Vandenborre

    Full Text Available BACKGROUND: A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum, the silkworm (Bombyx mori, the honeybee (Apis mellifera, the fruit fly (D. melanogaster and the pea aphid (Acyrthosiphon pisum. To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE: The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.

  3. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp

    International Nuclear Information System (INIS)

    Liu Wangjing; Chang Yunshiang; Wang Chunghsiung; Kou, Guang-Hsiung; Lo Chufang

    2005-01-01

    Here, we report for the first time the successful use of cycloheximide (CHX) as an inhibitor to block de novo viral protein synthesis during WSSV (white spot syndrome virus) infection. Sixty candidate IE (immediate-early) genes were identified using a global analysis microarray technique. RT-PCR showed that the genes corresponding to ORF126, ORF242 and ORF418 in the Taiwan isolate were consistently CHX-insensitive, and these genes were designated ie1, ie2 and ie3, respectively. The sequences for these IE genes also appear in the two other WSSV isolates that have been sequenced. Three corresponding ORFs were identified in the China WSSV isolate, but only an ORF corresponding to ie1 was predicted in the Thailand isolate. In a promoter activity assay in Sf9 insect cells using EGFP (enhanced green fluorescence protein) as a reporter, ie1 showed very strong promoter activity, producing higher EGFP signals than the insect Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV) ie2 promoter

  4. Insect Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature and environment derived from beetle and other insect fossils. Parameter keywords describe what was measured in this data set. Additional...

  5. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    Science.gov (United States)

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genetic basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Robinson, A.S.

    2014-01-01

    The use of the sterile insect technique for insect control relies on the introduction of sterility in the females of the wild population. This sterility is produced following the mating of these females with released males carrying, in their sperm, dominant lethal mutations that have been induced by ionizing radiation. As well as radiation-induced sterility, natural mechanisms can be recruited, especially the use of hybrid sterility. Radiation is usually one of the last procedures that insects undergo before leaving mass-rearing facilities for release in the field. It is essential that the dosimetry of the radiation source be checked to ensure that all the insects receive the required minimum dose. A dose should be chosen that maximizes the level of introduced sterility in the wild females in the field. Irradiation in nitrogen can provide protection against the detrimental somatic effects of radiation. Currently, the development of molecular methods to sterilize pest insects in the field, by the release of fertile insects carrying trans genes, is very much in vogue. It is concluded that using a physical process, such as radiation, will always have significant advantages over genetic and other methods of sterilization for the large-scale application of the sterile insect technique. (author)

  7. Insect Immunity: The Post-Genomic Era

    OpenAIRE

    Bangham, Jenny; Jiggins, Frank; Lemaitre, Bruno

    2006-01-01

    Insects have a complex and effective immune system, many components of which are conserved in mammals. But only in the last decade have the molecular mechanisms that regulate the insect immune response--and their relevance to general biology and human immunology--become fully appreciated. A meeting supported by the Centre National de la Récherche Scientifique (France) was held to bring together the whole spectrum of researchers working on insect immunity. The meeting addressed diverse aspects...

  8. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  9. Horizontal Transmission of Intracellular Insect Symbionts via Plants

    Directory of Open Access Journals (Sweden)

    Ewa Chrostek

    2017-11-01

    Full Text Available Experimental evidence is accumulating that endosymbionts of phytophagous insects may transmit horizontally via plants. Intracellular symbionts known for manipulating insect reproduction and altering fitness (Rickettsia, Cardinium, Wolbachia, and bacterial parasite of the leafhopper Euscelidius variegatus have been found to travel from infected insects into plants. Other insects, either of the same or different species can acquire the symbiont from the plant through feeding, and in some cases transfer it to their progeny. These reports prompt many questions regarding how intracellular insect symbionts are delivered to plants and how they affect them. Are symbionts passively transported along the insect-plant-insect path, or do they actively participate in the process? How widespread are these interactions? How does symbiont presence influence the plant? And what conditions are required for the new infection to establish in an insect? From an ecological, evolutionary, and applied perspective, this mode of horizontal transmission could have profound implications if occurring frequently enough or if new stable symbiont infections are established. Transmission of symbionts through plants likely represents an underappreciated means of infection, both in terms of symbiont epidemiology and the movement of symbionts to new host species.

  10. Recombinant DNA technology and insect control

    International Nuclear Information System (INIS)

    Seawright, J.A.; Cockburn, Andrew F.

    1989-01-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal

  11. Recombinant DNA technology and insect control

    Energy Technology Data Exchange (ETDEWEB)

    Seawright, J A; Cockburn, Andrew F [Insects Affecting Man and Animals Laboratory, Agric. Res. Serv., U.S. Department of Agriculture, Gainesville, FL (United States)

    1989-08-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal.

  12. Baculovirus display of fusion protein of Peste des petits ruminants virus and hemagglutination protein of Rinderpest virus and immunogenicity of the displayed proteins in mouse model

    International Nuclear Information System (INIS)

    Masmudur Rahman, Md.; Shaila, M.S.; Gopinathan, Karumathil P.

    2003-01-01

    Recombinant Bombyx mori nucleopolyhedroviruses (BmNPV) displaying the immunodominant ectodomains of fusion glycoprotein (F) of Peste des petitis ruminants virus (PPRV) and the hemagglutinin protein (H) of Rinderpest virus (RPV), on the budded virions as well as the surface of the infected host cells have been constructed. The F and H protein sequences were inserted in-frame within the amino-terminal region of BmNPV envelope glycoprotein GP64 expressing under the strong viral polyhedrin (polh) promoter. We improved the recombinant virus selection in BmNPV by incorporating the green fluorescent protein gene (gfp) as selection marker under a separate promoter within the transfer cassette harboring the desired genes. Following infection of the insect larvae or the host-derived BmN cells with these recombinant BmNPVs, the expressed GP64 fusion proteins were displayed on the host cell surface and the budded virions. The antigenic epitopes of the recombinant proteins were properly displayed and the recombinant virus particles induced immune response in mice against PPRV or RPV

  13. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  14. Insect immunology and hematopoiesis

    OpenAIRE

    Hillyer, Julián F.

    2015-01-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and...

  15. Antibody Persistence in Adults Two Years after Vaccination with an H1N1 2009 Pandemic Influenza Virus-Like Particle Vaccine.

    Directory of Open Access Journals (Sweden)

    Nuriban Valero-Pacheco

    Full Text Available The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs, have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans.

  16. Microbiological Load of Edible Insects Found in Belgium.

    Science.gov (United States)

    Caparros Megido, Rudy; Desmedt, Sandrine; Blecker, Christophe; Béra, François; Haubruge, Éric; Alabi, Taofic; Francis, Frédéric

    2017-01-13

    Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crickets from European farms and smoked termites and caterpillars from a traditional Congolese market) and to evaluate the efficiency of different processing methods (blanching for all species and freeze-drying and sterilization for European species) in reducing microorganism counts. All untreated insect samples had a total aerobic count higher than the limit for fresh minced meat (6.7 log cfu/g). Nevertheless, a species-dependent blanching step has led to a reduction of the total aerobic count under this limit, except for one caterpillar species. Freeze-drying and sterilization treatments on European species were also effective in reducing the total aerobic count. Yeast and mold counts for untreated insects were above the Good Manufacturing Practice limits for raw meat, but all treatments attained a reduction of these microorganisms under this limit. These results confirmed that fresh insects, but also smoked insects from non-European trades, need a cooking step (at least composed of a first blanching step) before consumption. Therefore, blanching timing for each studied insect species is proposed and discussed.

  17. Microbiological Load of Edible Insects Found in Belgium

    Directory of Open Access Journals (Sweden)

    Rudy Caparros Megido

    2017-01-01

    Full Text Available Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crickets from European farms and smoked termites and caterpillars from a traditional Congolese market and to evaluate the efficiency of different processing methods (blanching for all species and freeze-drying and sterilization for European species in reducing microorganism counts. All untreated insect samples had a total aerobic count higher than the limit for fresh minced meat (6.7 log cfu/g. Nevertheless, a species-dependent blanching step has led to a reduction of the total aerobic count under this limit, except for one caterpillar species. Freeze-drying and sterilization treatments on European species were also effective in reducing the total aerobic count. Yeast and mold counts for untreated insects were above the Good Manufacturing Practice limits for raw meat, but all treatments attained a reduction of these microorganisms under this limit. These results confirmed that fresh insects, but also smoked insects from non-European trades, need a cooking step (at least composed of a first blanching step before consumption. Therefore, blanching timing for each studied insect species is proposed and discussed.

  18. Musca domestica Salivary Gland Hypertrophy Virus, a Globally Distributed Insect Virus That Infects and Sterilizes Female Houseflies

    DEFF Research Database (Denmark)

    Prompiboon, Pannipa; Lietze, Verena-Ulrike; Denton, John S S

    2010-01-01

    The housefly, Musca domestica, is a cosmopolitan pest of livestock and poultry and is of economic, veterinary, and public health importance. Populations of M. domestica are naturally infected with M. domestica salivary gland hypertrophy virus (MdSGHV), a nonoccluded double-stranded DNA virus...... that inhibits egg production in infected females and is characterized by salivary gland hypertrophy (SGH) symptoms. MdSGHV has been detected in housefly samples from North America, Europe, Asia, the Caribbean, and the southwestern Pacific. In this study, houseflies were collected from various locations......, and the polymorphism detected was correlated with geographic source. The virulence of the geographic MdSGHV isolates was evaluated by per os treatment of newly emerged and 24-h-old houseflies with homogenates of infected salivary glands. In all cases, 24-h-old flies displayed a resistance to oral infection...

  19. Electronic nose in edible insects area

    OpenAIRE

    Martin Adámek; Anna Adámková; Marie Borkovcová; Jiří Mlček; Martina Bednářová; Lenka Kouřimská; Josef Skácel; Michal Řezníček

    2017-01-01

    Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manusc...

  20. Feeding Studies of Irradiated Foods with Insects

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, Srisan

    1978-06-15

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  1. Feeding studies of irradiated foods with insects

    International Nuclear Information System (INIS)

    Loaharanu, S.

    1978-01-01

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  2. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  3. A noda-like virus isolated from the sweetpotato pest spodoptera eridania (Cramer) (Lep.; noctuidae)

    Science.gov (United States)

    Zeddam; Rodriguez; Ravallec; Lagnaoui

    1999-11-01

    A small isometric virus has been isolated from larvae of the sweetpotato pest Spodoptera eridania (Cramer) collected near Pariacoto, Ancash province, Peru. It is designated the Pariacoto virus (PaV). In addition to its high pathogenicity on its natural host Spodoptera eridania, PaV was found to replicate in Spodoptera ochrea (Hampson) larvae but not in Spodoptera frugiperda (Smith) larvae. The size of the viral particle was estimated to be about 30 nm in diameter. Polyacrylamide gel electrophoresis showed a protein of approximately 40.5 kDa. After agarose gel electrophoresis, the viral genome appeared to be bipartite RNA. Gel immunodiffusion tests showed no serological relationship between PaV and Nodamura virus, the type species for insect nodaviruses. Electron microscopy confirmed that viral replication occurs in the cytoplasm. These properties are similar to those of other members of family Nodaviridae, to which the virus is currently assigned. Copyright 1999 Academic Press.

  4. Understanding Zika virus.

    Science.gov (United States)

    Murray, John S

    2017-01-01

    This article describes what pediatric healthcare professionals should know about Zika virus (ZIKV). ZIKV is classified as an arthropod-borne, single-stranded RNA virus of the Flaviviridae family and genus Flavivirus. ZIKV is not new. The virus was first discovered almost 70 years ago in Uganda. The first isolate of the virus was found in rhesus monkeys in the Zika Forrest, hence the nomenclature. The primary route of ZIKV transmission to humans is through the bite of an infected Aedes species mosquito-primarily Aedes aegypti. When the mosquito bites individuals infected with the virus, mosquitos then become the vector of transmitting the infection to others. Women can also pass ZIKV to their fetus during pregnancy and at the time of delivery. ZIKV can also be transmitted through sexual activity from an individual who is infected with the virus to his or her partners. It is estimated that approximately 18% of individuals infected with ZIKV will go on to develop symptoms. When symptoms develop, it is usually within 3-12 days, although this may vary. Most often, symptoms are mild and self-limited. The most common symptoms are fever, arthralgia, maculopapular rash, and conjunctivitis lasting up to seven days. Less frequent symptoms include headache, vertigo, myalgia, vomiting, and diarrhea. At present, there is no vaccine available to prevent ZIKV and no specific antiviral treatment. Supportive care consisting of rest, hydration, analgesics, antihistamines, and antipyretics is recommended as needed. Given that there is no vaccine or treatment for ZIKV, considerable efforts must be focused on prevention. One of the most effective ways of preventing ZIKV infection is through avoiding mosquito bites, especially when traveling to or residing in areas where transmission is present. Precautions should include wearing appropriate attire with the objective of having as little skin exposed as possible, use of screens for windows and doors, and use of insect repellent. What is

  5. Anatomy of adult Megaphragma (Hymenoptera: Trichogrammatidae, one of the smallest insects, and new insight into insect miniaturization.

    Directory of Open Access Journals (Sweden)

    Alexey A Polilov

    Full Text Available The body size, especially in cases of extreme reduction, is an important characteristic that strongly determines the morphology, physiology, and biology of animals. Miniaturization is a widespread trend in animal evolution and one of the principal directions of evolution in insects. Miniaturization-related features of insect morphology have been subject to intensive studies during the last few years, but the structure of the smallest insects remains insufficiently known. It is especially important to study hymenopterans of the genus Megaphragma, which include the smallest flying insects and a species in which an almost anucleate nervous system was recently discovered. This article is the first detailed study of the external and internal morphology of adults of Megaphragma mymaripenne and M. amalphitanum using histological methods, 3D computer modeling and other techniques. It is shown that in spite of the extremely small size the organization of Megaphragma retains a considerkable level of structural complexity. On the other hand, miniaturization leads to re-organizations of several organ systems. Unique structural features related to miniaturization have been found in both species: lysis of cell bodies and nuclei of neurons at late stages of pupal development, absence of the heart, and considerable reductions in the set of muscles. Comparative analysis of structure in the smallest insects representing different taxa has revealed common features of the evolutionary process of miniaturization in insects.

  6. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  7. Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae

    Directory of Open Access Journals (Sweden)

    O'Connell Mary A

    2009-11-01

    Full Text Available Abstract Background ADARs are RNA editing enzymes that target double stranded RNA and convert adenosine to inosine, which is read by translation machinery as if it were guanosine. Aside from their role in generating protein diversity in the central nervous system, ADARs have been implicated in the hypermutation of some RNA viruses, although why this hypermutation occurs is not well understood. Results Here we describe the hypermutation of adenosines to guanosines in the genome of the sigma virus--a negative sense RNA virus that infects Drosophila melanogaster. The clustering of these mutations and the context in which they occur indicates that they have been caused by ADARs. However, ADAR-editing of viral RNA is either rare or edited viral RNA are rapidly degraded, as we only detected evidence for editing in two of the 104 viral isolates we studied. Conclusion This is the first evidence for ADARs targeting viruses outside of mammals, and it raises the possibility that ADARs could play a role in the antiviral defences of insects.

  8. Seasonal drivers of the epidemiology of arthropod-borne viruses in Australia.

    Directory of Open Access Journals (Sweden)

    Jemma L Geoghegan

    2014-11-01

    Full Text Available Arthropod-borne viruses are a major cause of emerging disease with significant public health and economic impacts. However, the factors that determine their activity and seasonality are not well understood. In Australia, a network of sentinel cattle herds is used to monitor the distribution of several such viruses and to define virus-free regions. Herein, we utilize these serological data to describe the seasonality, and its drivers, of three economically important animal arboviruses: bluetongue virus, Akabane virus and bovine ephemeral fever virus. Through epidemiological time-series analyses of sero-surveillance data of 180 sentinel herds between 2004-2012, we compared seasonal parameters across latitudes, ranging from the tropical north (-10°S to the more temperate south (-40°S. This analysis revealed marked differences in seasonality between distinct geographic regions and climates: seasonality was most pronounced in southern regions and gradually decreased as latitude decreased toward the Equator. Further, we show that both the timing of epidemics and the average number of seroconversions have a strong geographical component, which likely reflect patterns of vector abundance through co-varying climatic factors, especially temperature and rainfall. Notably, despite their differences in biology, including insect vector species, all three viruses exhibited very similar seasonality. By revealing the factors that shape spatial and temporal distributions, our study provides a more complete understanding of arbovirus seasonality that will enable better risk predictions.

  9. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  10. Stinging insect allergy: state of the art 2015.

    Science.gov (United States)

    Tankersley, Michael S; Ledford, Dennis K

    2015-01-01

    Stinging insect allergy is responsible for more than 10% of all cases of anaphylaxis. The potential culprit insects are diverse and vary with geography. The incidence of insect allergy is declining in some areas and increasing in others, possibly due to effects of climate change, introduction of species into new areas, outdoor recreational activities, and movement of human populations that brings insects into contact with a greater number of people. Flying Hymenoptera and imported fire ant stings are responsible for the majority of patients evaluated for insect anaphylaxis. The most efficient means of identifying allergy to insects is skin testing although falsely positive and negative results occur. The limitations of testing coupled with the natural temporal variability of allergic sensitivity complicate the interpretation of test results. The clinical history is of paramount importance to be certain that the test results are relevant; therefore, screening or testing before a history of a sting reaction is not advisable. Mast cell disorders are associated with severe anaphylaxis from insect stings and should be considered in affected subjects. Insect immunotherapy, using venoms for most insects and whole-body extracts for imported fire ants, is proven effective in reducing the likelihood of anaphylaxis due to subsequent stings from 40%-60% to less than 5%. Future clinical application of component testing or in vitro cellular tests, such as the basophil activation test, may improve optimal choices for immunotherapy. Published by Elsevier Inc.

  11. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects.

    Science.gov (United States)

    Otte, Tobias; Hilker, Monika; Geiselhardt, Sven

    2018-03-01

    The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.

  12. Strategies for Enhanced Crop Resistance to Insect Pests.

    Science.gov (United States)

    Douglas, Angela E

    2018-04-29

    Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

  13. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... He writes popular science articles in ... science, English poetry is his area of ... A fascinating branch of insect science (ento- ... Methods in Forensic Entomology .... bullet wound to the right temple, and a substantial pooling of.

  14. Expression of variable viruses as herpes simplex glycoprotein D and varicella zoster gE glycoprotein using a novel plasmid based expression system in insect cell

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sulaiman

    2017-11-01

    Full Text Available Several prokaryotic and eukaryotic expression systems have been used for in vitro production of viruses’ proteins. However eukaryotic expression system was always the first choice for production of proteins that undergo post-translational modification such as glycosylation. Recombinant baculoviruses have been widely used as safe vectors to express heterologous genes in the culture of insect cells, but the manipulation involved in creating, titrating, and amplifying viral stocks make it time consuming and laborious. Therefore, to facilitate rapid expression in insect cell, a plasmid based expression system was used to express herpes simplex type 1 glycoprotein D (HSV-1 gD and varicella zoster glycoprotein E (VZV gE. Recombinant plasmids were generated, transfected into insect cells (SF9, and both glycoproteins were expressed 48 h post-infection. A protein with approximately molecular weight of 64-kDa and 98-kDa for HSV-1 gD and VZV gE respectively was expressed and confirmed by SDS. Proteins were detected in insect cells cytoplasm and outer membrane by immunofluorescence. The antigenicity and immunoreactivity of each protein were confirmed by immunoblot and ELISA. Results suggest that this system can be an alternative to the traditional baculovirus expression for small scale expression system in insect cells.

  15. Australian Consumers' Awareness and Acceptance of Insects as Food.

    Science.gov (United States)

    Wilkinson, Kerry; Muhlhausler, Beverly; Motley, Crystal; Crump, Anna; Bray, Heather; Ankeny, Rachel

    2018-04-19

    Insects have long been consumed as part of the diets of many Asian, African, and South American cultures. However, despite international agencies such as the Food and Agriculture Organization of the United Nations advocating the nutritional, environmental, and economic benefits of entomophagy, attitudinal barriers persist in Western societies. In Australia, the indigenous ‘bush tucker’ diet comprising witchetty grubs, honey ants, and Bogong moths is quite well known; however, in most Australian locales, the consumption of insects tends to occur only as a novelty. Therefore, this study aimed to investigate the awareness and acceptance of insects as food. An online survey of 820 consumers found that 68% of participants had heard of entomophagy, but only 21% had previously eaten insects; witchetty grubs, ants, grasshoppers, and crickets were the most commonly tasted insects. Taste, appearance, safety, and quality were identified as the factors that were most likely to influence consumer willingness to try eating insects, but consumer attitudes towards entomophagy were underpinned by both food neophobia (i.e., reluctance to eat new or novel foods) and prior consumption of insects. Neophobic consumers were far less accepting of entomophagy than neophilic consumers, while consumers who had previously eaten insects were most accepting of insects as food. Incorporating insects into familiar products (e.g., biscuits) or cooked meals also improved their appeal. Collectively, these findings can be used by the food industry to devise production and/or marketing strategies that overcome barriers to insect consumption in Australia.

  16. Australian Consumers’ Awareness and Acceptance of Insects as Food

    Directory of Open Access Journals (Sweden)

    Kerry Wilkinson

    2018-04-01

    Full Text Available Insects have long been consumed as part of the diets of many Asian, African, and South American cultures. However, despite international agencies such as the Food and Agriculture Organization of the United Nations advocating the nutritional, environmental, and economic benefits of entomophagy, attitudinal barriers persist in Western societies. In Australia, the indigenous ‘bush tucker’ diet comprising witchetty grubs, honey ants, and Bogong moths is quite well known; however, in most Australian locales, the consumption of insects tends to occur only as a novelty. Therefore, this study aimed to investigate the awareness and acceptance of insects as food. An online survey of 820 consumers found that 68% of participants had heard of entomophagy, but only 21% had previously eaten insects; witchetty grubs, ants, grasshoppers, and crickets were the most commonly tasted insects. Taste, appearance, safety, and quality were identified as the factors that were most likely to influence consumer willingness to try eating insects, but consumer attitudes towards entomophagy were underpinned by both food neophobia (i.e., reluctance to eat new or novel foods and prior consumption of insects. Neophobic consumers were far less accepting of entomophagy than neophilic consumers, while consumers who had previously eaten insects were most accepting of insects as food. Incorporating insects into familiar products (e.g., biscuits or cooked meals also improved their appeal. Collectively, these findings can be used by the food industry to devise production and/or marketing strategies that overcome barriers to insect consumption in Australia.

  17. Endocrinology of insects

    National Research Council Canada - National Science Library

    Downer, Roger G. H; Laufer, Hans

    1983-01-01

    Contents: Organization of the neuroendocrine system - Chemistry of insect hormones and neurohormones - Regulation of metamorphosis - Regulation of reproduction - Regulation of growth and development...

  18. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  19. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  20. Tomographic reconstruction of neopterous carboniferous insect nymphs.

    Directory of Open Access Journals (Sweden)

    Russell Garwood

    Full Text Available Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One-Anebos phrixos gen. et sp. nov.-is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles' palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work.

  1. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  2. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses.

    Science.gov (United States)

    Jones, R A C

    2016-01-01

    Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity. © 2016 Elsevier Inc. All rights reserved.

  3. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    OpenAIRE

    Mammen P Mammen; Chusak Pimgate; Constantianus J M Koenraadt; Alan L Rothman; Jared Aldstadt; Ananda Nisalak; Richard G Jarman; James W Jones; Anon Srikiatkhachorn; Charity Ann Ypil-Butac; Arthur Getis; Suwich Thammapalo; Amy C Morrison; Daniel H Libraty; Sharone Green

    2008-01-01

    Editors' Summary Background. Every year, over 50 million people living in tropical and subtropical urban and semi-urban areas become infected with dengue (a mosquito-borne viral infection) and several hundred thousand develop a potentially lethal complication called dengue hemorrhagic fever. Dengue is caused by four closely related viruses that are transmitted to people through the bites of infected female Aedes aegypti mosquitoes. These day-biting insects, which breed in household water cont...

  4. Allergic risks of consuming edible insects: A systematic review.

    Science.gov (United States)

    Ribeiro, José Carlos; Cunha, Luís Miguel; Sousa-Pinto, Bernardo; Fonseca, João

    2018-01-01

    The expected future demand for food and animal-derived protein will require environment-friendly novel food sources with high nutritional value. Insects may be one of such novel food sources. However, there needs to be an assessment of the risks associated with their consumption, including allergic risks. Therefore, we performed a systematic review aiming to analyse current data available regarding the allergic risks of consuming insects. We reviewed all reported cases of food allergy to insects, and studied the possibility of cross-reactivity and co-sensitisation between edible insects, crustaceans and house dust mites. We analysed a total of 25 articles - eight assessing the cross-reactivity/co-sensitisation between edible insects, crustaceans and house dust mites; three characterizing allergens in edible insects and 14 case reports, describing case series or prevalence studies of food allergy caused by insects. Cross-reactivity/co-sensitisation between edible insects and crustaceans seems to be clinically relevant, while it is still unknown if co-sensitisation between house dust mites and edible insects can lead to a food allergy. Additionally, more information is also needed about the molecular mechanisms underlying food allergy to insects, although current data suggest that an important role is played by arthropod pan-allergens such as tropomyosin or arginine kinase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Three-way interaction among plants, bacteria, and coleopteran insects.

    Science.gov (United States)

    Wielkopolan, Beata; Obrępalska-Stęplowska, Aleksandra

    2016-08-01

    Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.

  6. Insect anaphylaxis: where are we? The stinging facts 2012.

    Science.gov (United States)

    Tracy, James M; Khan, Fatima S; Demain, Jeffrey G

    2012-08-01

    Insect allergy remains an important cause of morbidity and mortality in the United States. In 2011, the third iteration of the stinging insect hypersensitivity practice parameter was published, the first being published in 1999 and the second in 2004. Since the 2004 edition, our understanding of insect hypersensitivity has continued to expand and has been incorporated into the 2011 edition. This work will review the relevant changes in the management of insect hypersensitivity occurring since 2004 and present our current understanding of the insect hypersensitivity diagnosis and management. Since the 2004 commissioning by the Joint Task Force (JTF) on Practice Parameters of 'Stinging insect hypersensitivity: a practice parameter update', there have been important contributions to our understanding of insect allergy. These contributions were incorporated into the 2011 iteration. Similar efforts were made by the European Allergy Asthma and Clinical Immunology Interest Group in 2005 and most recently in 2011 by the British Society of Allergy and Clinical Immunology. Our understanding of insect allergy, including the natural history, epidemiology, diagnostic testing, and risk factors, has greatly expanded. This evolution of knowledge should provide improved long-term management of stinging insect hypersensitivity. This review will focus primarily on the changes between the 2004 and 2011 stinging insect practice parameter commissioned by the JTF on Practice Parameters, but will, where appropriate, highlight the differences between working groups.

  7. The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus).

    Science.gov (United States)

    Murakami, Ritsuko; Nakashima, Nobuhiko; Hinomoto, Norihide; Kawano, Shinji; Toyosato, Tetsuya

    2011-05-01

    The complete genome of pepper vein yellows virus (PeVYV) was sequenced using random amplification of RNA samples isolated from vector insects (Aphis gossypii) that had been given access to PeVYV-infected plants. The PeVYV genome consisted of 6244 nucleotides and had a genomic organization characteristic of members of the genus Polerovirus. PeVYV had highest amino acid sequence identities in ORF0 to ORF3 (75.9 - 91.9%) with tobacco vein distorting polerovirus, with which it was only 25.1% identical in ORF5. These sequence comparisons and previously studied biological properties indicate that PeVYV is a distinctly different virus and belongs to a new species of the genus Polerovirus.

  8. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    Science.gov (United States)

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  9. Expression of feline immunodeficiency virus gag and env precursor proteins in Spodoptera frugiperda cells and their use in immunodiagnosis

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Vliet, A.L.W. van; Egberink, H.F.; Hesselink, W.; Ronde, A. de

    1993-01-01

    The gag and env genes of the feline immunodeficiency virus strain UT113 were cloned into a baculovirus transfer vector. The recombinant plasmids were used to create recombinant baculoviruses that expressed either the gag or the env precursor protein in insect cells (Sf9 cells). Leader sequence

  10. Spatio-Temporal Dynamics of Viruses are Differentially Affected by Parasitoids Depending on the Mode of Transmission

    Directory of Open Access Journals (Sweden)

    Elisa Viñuela

    2012-11-01

    Full Text Available Relationships between agents in multitrophic systems are complex and very specific. Insect-transmitted plant viruses are completely dependent on the behaviour and distribution patterns of their vectors. The presence of natural enemies may directly affect aphid behaviour and spread of plant viruses, as the escape response of aphids might cause a potential risk for virus dispersal. The spatio-temporal dynamics of Cucumber mosaic virus (CMV and Cucurbit aphid-borne yellows virus (CABYV, transmitted by Aphis gossypii in a non-persistent and persistent manner, respectively, were evaluated at short and long term in the presence and absence of the aphid parasitoid, Aphidius colemani. SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersion at short term, which enhanced CMV spread, though consequences of parasitism suggest potential benefits for disease control at long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV at long term. The impact of aphid parasitoids on the dispersal of plant viruses with different transmission modes is discussed.

  11. Spatial distribution of aquatic insects

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann

    (time since glacial disturbance and habitat stability) and question the generality of these processes for the understanding of species richness gradients in European rivers. Using regional distributions of European mayflies, stoneflies, and caddisflies this chapter demonstrates that differences...... and shape the habitat requirements and distribution of one of the most affected groups of freshwater species: aquatic insects. It comprises four chapters each addressing different spatial factors in relation to the occurrence of aquatic insects in Europe. Chapter I examine two spatial ecological processes...... niche is derived from local distribution patterns, without incorporating landscape history it can lead to an erroneous niche definition. Chapter III provides some of the first evidence for differences in dispersal phenology related to flight potential in aquatic insects. The chapter highlights...

  12. Characterization of self-assembled virus-like particles of dromedary camel hepatitis e virus generated by recombinant baculoviruses.

    Science.gov (United States)

    Zhou, Xianfeng; Kataoka, Michiyo; Liu, Zheng; Takeda, Naokazu; Wakita, Takaji; Li, Tian-Cheng

    2015-12-02

    Dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus, has been identified in dromedary camels in Dubai, United Arab Emirates. The antigenicity, pathogenicity and epidemiology of this virus have been unclear. Here we first used a recombinant baculovirus expression system to express the 13 and 111 N-terminus amino-acid-truncated DcHEV ORF2 protein in insect Tn5 cells, and we obtained two types of virus-like particles (VLPs) with densities of 1.300 g/cm(3) and 1.285 g/cm(3), respectively. The small VLPs (Dc4sVLPs) were estimated to be 24 nm in diameter, and were assembled by a protein with the molecular mass 53 kDa. The large VLPs (Dc3nVLPs and Dc4nVLPs) were 35 nm in diameter, and were assembled by a 64-kDa protein. An antigenic analysis demonstrated that DcHEV was cross-reactive with G1, G3-G6, ferret and rat HEVs, and DcHEV showed a stronger cross-reactivity to G1 G3-G6 HEV than it did to rat and ferret HEV. In addition, the antibody against DcHEV-LPs neutralized G1 and G3 HEV in a cell culture system, suggesting that the serotypes of these HEVs are identical. We also found that the amino acid residue Met-358 affects the small DcHEV-LPs assembly. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Biology and Genomics of Viruses Within the Genus Gammabaculovirus

    Directory of Open Access Journals (Sweden)

    Shannon Escasa

    2011-11-01

    Full Text Available Hymenoptera is a very large and ancient insect order encompassing bees, wasps, ants and sawflies. Fossil records indicate that they existed over 200 million years ago and about 100 million years before the appearance of Lepidoptera. Sawflies have been major pests in many parts of the world and some have caused serious forest defoliation in North America. All baculoviruses isolated from sawflies are of the single nucleocapsids phenotype and appear to replicate in midgut cells only. This group of viruses has been shown to be excellent pest control agents and three have been registered in Canada and Britain for this purpose. Sawfly baculoviruses contain the smallest genome of all baculoviruses sequenced so far. Gene orders among sequenced sawfly baculoviruses are co-linear but this is not shared with the genomes of lepidopteran baculoviruses. One distinguishing feature among all sequenced sawfly viruses is the lack of a gene encoding a membrane fusion protein, which brought into question the role of the budded virus phenotype in Gammabaculovirus biology.

  14. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and...

  15. Coconut leaf bioactivity toward generalist maize insect pests

    Science.gov (United States)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  16. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  17. The evolutionary development of plant-feeding insects and their nutritional endosymbionts.

    Science.gov (United States)

    Skidmore, Isabel H; Hansen, Allison K

    2017-12-01

    Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen-poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore-endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect-symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect-plant interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Nutritional and sensory quality of edible insects

    Directory of Open Access Journals (Sweden)

    Lenka Kouřimská

    2016-10-01

    Full Text Available Insects are for many nations and ethnic groups an indispensable part of the diet. From a nutritional point of view, insects have significant protein content. It varies from 20 to 76% of dry matter depending on the type and development stage of the insect. Fat content variability is large (2–50% of dry matter and depends on many factors. Total polyunsaturated fatty acids' content may be up to 70% of total fatty acids. Carbohydrates are represented mainly by chitin, whose content ranges between 2.7 mg and 49.8 mg per kg of fresh matter. Some species of edible insects contain a reasonable amount of minerals (K, Na, Ca, Cu, Fe, Zn, Mn and P as well as vitamins such as B group vitamins, vitamins A, D, E, K, and C. However their content is seasonal and dependent on the feed. From the hygienic point of view it should be pointed out that some insects may produce or contain toxic bioactive compounds. They may also contain residues of pesticides and heavy metals from the ecosystem. Adverse human allergic reactions to edible insects could be also a possible hazard. Keywords: Chitin, Entomophagy, Fat, Minerals, Proteins, Vitamins

  19. Edible insects contributing to food security?

    NARCIS (Netherlands)

    Huis, van Arnold

    2015-01-01

    Because of growing demand for meat and declining availability of agricultural land, there is an urgent need to find alternative protein sources. Edible insects can be produced with less environmental impact than livestock. Insect meal can replace scarce fishmeal as feed ingredient, in particular

  20. Edible Insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    This text provides an important overview of the contributions of edible insects to ecological sustainability, livelihoods, nutrition and health, food culture and food systems around the world. While insect farming for both food and feed is rapidly increasing in popularity around the world, the ro...

  1. Insect cadaver applications: pros and cons

    Science.gov (United States)

    Application of entomopathogenic nematodes (EPNs) formulated as insect cadavers has become an alternative to aqueous application for the control of agricultural pests. In this approach, the infected insect host cadaver is applied directly to the target site and pest suppression is achieved by the inf...

  2. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control

    International Nuclear Information System (INIS)

    Nelson, S.O.; Bartley, P.G. Jr.; Lawrence, K.C.

    1998-01-01

    The permittivities of bulk samples of adult insects of the rice weevil, red flour beetle, sawtoothed grain beetle, and lesser grain borer were measured at single frequencies of 9.4 and 11.7 Ghz in X-band waveguide at about 23 degrees C, and permittivities of homogenized samples of the same species were measured from 0.2 to 20 GHz at temperatures from 10 to 70 degrees C with an open-ended coaxial-line probe and network analyzer. Sample densities for the coaxial-line probe measurements were determined from the X-band measurements with a linear relationship between the cube root of the dielectric constant and sample bulk density determined from permittivity measurements on bulk samples of the adult insects in a waveguide sample holder taken with the short-circuited line technique. Since linearity of the cube root of the dielectric constant with bulk density is consistent with the Landau and Lifshitz, Looyenga dielectric mixture equation, this equation was used to calculate estimated dielectric constants and loss factors of the insects from measured permittivities and volume fractions determined from measured bulk density and adult insect density determined by air-comparison pycnometer measurements. Estimated dielectric constants and loss factors of the insects are presented graphically for temperatures from 10 to 70 degrees C, and tabulated data are provided for range information and comparative purposes

  3. Anaphylaxis and insect allergy.

    Science.gov (United States)

    Demain, Jeffrey G; Minaei, Ashley A; Tracy, James M

    2010-08-01

    Anaphylaxis is an acute-onset and potentially life-threatening allergic reaction that can be caused by numerous allergic triggers including stinging insects. This review focuses on recent advances, natural history, risk factors and therapeutic considerations. Recent work suggests that concerns over insect allergy diagnosis continue to exist. This is especially true with individuals who have a convincing history of a serious life-threatening anaphylactic event, but lack the necessary diagnostic criteria of venom-specific IgE by skin test or in-vitro diagnostic methods to confirm the diagnosis. The role of occult mastocytosis or increased basophile reactivity may play a role in this subset population. Additionally, epinephrine continues to be underutilized as the primary acute intervention for an anaphylactic reaction in the emergent setting. The incidence of anaphylaxis continues to rise across all demographic groups, especially those less than 20 years of age. Fortunately, the fatalities related to anaphylaxis appear to have decreased over the past decades. Our understanding of various triggers, associated risk factors, as well as an improved understanding and utilization of biological markers such as serum tryptase have improved. Our ability to treat insect anaphylaxis by venom immunotherapy is highly effective. Unfortunately, anaphylaxis continues to be underappreciated and undertreated especially in regard to insect sting anaphylaxis. This includes the appropriate use of injectable epinephrine as the primary acute management tool. These findings suggest that continued education of the general population, primary care healthcare providers and emergency departments is required.

  4. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-01-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. PMID:26941044

  5. Acoustic communication in insect disease vectors

    Directory of Open Access Journals (Sweden)

    Felipe de Mello Vigoder

    2013-01-01

    Full Text Available Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  6. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  7. Investigation--Insects!

    Science.gov (United States)

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  8. Impacts of urbanization process on insect diversity

    OpenAIRE

    Shuisong Ye; Yan Fang; Kai Li

    2013-01-01

    Rapid worldwide urbanization during the last century has led to more than half the world’s population living in urban regions. Studies of how urbanization affects insect diversity have focused on the following: insect abundance, distribution, extinction, food habits and ecosystem services. Native insect populations have declined greatly in urban areas, where studies of their spatial distribution have revealed that abundance decreases along what is termed the rural–city center gradient (RCG), ...

  9. Toxicological characteristics of edible insects in China: A historical review.

    Science.gov (United States)

    Gao, Yu; Wang, Di; Xu, Meng-Lei; Shi, Shu-Sen; Xiong, Jin-Feng

    2018-04-10

    Edible insects are ideal food sources, which contain important nutrients and health-promoting compounds. With a rapid development of industrial insect farming, insect-derived food is a novel and emerging food industry. Edible insects have been traditionally consumed in various communities, while continuously gaining relevance in today's society; however, they currently remain underutilized. Although there are a large number of literature on edible insects, these literature primarily focus on the nutritional value edible insects. The toxicity assessment data of edible insects remain incomprehensive, especially for the new national standard that is currently in effect; and many data and conclusions are not accurately specified/reported. Therefore, we performed a literature review and summarized the data on the toxicological assessment of edible insects in China. The review first describes the research progress on safety toxicological assessment, and then offers references regarding the development of 34 edible insect species in China. These data can be a platform for the development of future toxicological assessment strategies, which can be carried out by a multidisciplinary team, possibly consisting of food engineers, agronomists, farmers, and so on, to improve the acceptability of edible insects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The Evolution of Agriculture in Insects

    DEFF Research Database (Denmark)

    Mueller, Ulrich G.; Gerardo, Nicole M.; Aanen, Duur Kornelis

    2005-01-01

    Agriculture has evolved independently in three insect orders: once in ants, once in termites, and seven times in ambrosia beetles. Although these insect farmers are in some ways quite different from each other, in many more ways they are remarkably similar, suggesting convergent evolution. All pr...

  11. Alpha particle radiography of small insects

    International Nuclear Information System (INIS)

    Chingshen Su

    1993-01-01

    Radiographies of ants, mosquitoes, cockroaches and small bugs have been done with a radioisotope 244 Cm alpha source. Energy of alpha particles was varied by attenuating the 5.81 MeV alpha particles with adjustable air spacings from the source to the sample. The LR-115 was used to register radiographs. The image of the insect registered on the LR-115 was etched out in a 2.5 N NaOH solution at 52 o C for certain minutes, depending on various irradiation conditions for the insects. For larger insects, a scanning device for the alpha particle irradiation has been fabricated to take the radiograph of whole body of the insect, and the scanning period can be selected to give desired irradiation dosage. A CCDTV camera system connected to a microscope interfaced to an IBM/AT computer is used to register the microscopic image of the radiograph and to print it out with a video copy processor. (Author)

  12. The plasticity of extracellular fluid homeostasis in insects.

    Science.gov (United States)

    Beyenbach, Klaus W

    2016-09-01

    In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.

  13. The insect cookbook : food for a sustainable planet

    NARCIS (Netherlands)

    Huis, van A.; Gurp, van H.; Dicke, M.

    2014-01-01

    In The Insect Cookbook, two entomologists and a chef make the case for insects as a sustainable source of protein for humans and a necessary part of our future diet. They provide consumers and chefs with the essential facts about insects for culinary use, with recipes simple enough to make at home

  14. Variation in RNA virus mutation rates across host cells.

    Directory of Open Access Journals (Sweden)

    Marine Combe

    2014-01-01

    Full Text Available It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10(-6 to 10(-4 substitutions per nucleotide per round of copying (s/n/r and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV, which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10(-5 s/n/r. Cell immortalization through p53 inactivation and oxygen levels (1-21% did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.

  15. An extreme case of plant-insect codiversification

    DEFF Research Database (Denmark)

    Cruaud, Astrid; Rønsted, Nina; Chanterasuwan, Bhanumas

    2012-01-01

    It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores...... and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical...... for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups...

  16. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    Science.gov (United States)

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  17. Synthesis of model compounds derived from natural clerodane insect antifeedants

    NARCIS (Netherlands)

    Klein Gebbinck, E.A.

    1999-01-01

    Insect antifeedants are compounds with the ability to reduce or inhibit insect feeding without directly killing the insect. Such compounds offer a number of properties that are highly desirable in environmentally friendly crop protection agents. Although the principle of insect control

  18. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti

    OpenAIRE

    Terradas, Gerard; Allen, Scott L.; Chenoweth, Stephen F.; McGraw, Elizabeth A.

    2017-01-01

    Background The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito’s geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviv...

  19. Phylogenomics resolves the timing and pattern of insect evolution.

    Science.gov (United States)

    Misof, Bernhard; Liu, Shanlin; Meusemann, Karen; Peters, Ralph S; Donath, Alexander; Mayer, Christoph; Frandsen, Paul B; Ware, Jessica; Flouri, Tomáš; Beutel, Rolf G; Niehuis, Oliver; Petersen, Malte; Izquierdo-Carrasco, Fernando; Wappler, Torsten; Rust, Jes; Aberer, Andre J; Aspöck, Ulrike; Aspöck, Horst; Bartel, Daniela; Blanke, Alexander; Berger, Simon; Böhm, Alexander; Buckley, Thomas R; Calcott, Brett; Chen, Junqing; Friedrich, Frank; Fukui, Makiko; Fujita, Mari; Greve, Carola; Grobe, Peter; Gu, Shengchang; Huang, Ying; Jermiin, Lars S; Kawahara, Akito Y; Krogmann, Lars; Kubiak, Martin; Lanfear, Robert; Letsch, Harald; Li, Yiyuan; Li, Zhenyu; Li, Jiguang; Lu, Haorong; Machida, Ryuichiro; Mashimo, Yuta; Kapli, Pashalia; McKenna, Duane D; Meng, Guanliang; Nakagaki, Yasutaka; Navarrete-Heredia, José Luis; Ott, Michael; Ou, Yanxiang; Pass, Günther; Podsiadlowski, Lars; Pohl, Hans; von Reumont, Björn M; Schütte, Kai; Sekiya, Kaoru; Shimizu, Shota; Slipinski, Adam; Stamatakis, Alexandros; Song, Wenhui; Su, Xu; Szucsich, Nikolaus U; Tan, Meihua; Tan, Xuemei; Tang, Min; Tang, Jingbo; Timelthaler, Gerald; Tomizuka, Shigekazu; Trautwein, Michelle; Tong, Xiaoli; Uchifune, Toshiki; Walzl, Manfred G; Wiegmann, Brian M; Wilbrandt, Jeanne; Wipfler, Benjamin; Wong, Thomas K F; Wu, Qiong; Wu, Gengxiong; Xie, Yinlong; Yang, Shenzhou; Yang, Qing; Yeates, David K; Yoshizawa, Kazunori; Zhang, Qing; Zhang, Rui; Zhang, Wenwei; Zhang, Yunhui; Zhao, Jing; Zhou, Chengran; Zhou, Lili; Ziesmann, Tanja; Zou, Shijie; Li, Yingrui; Xu, Xun; Zhang, Yong; Yang, Huanming; Wang, Jian; Wang, Jun; Kjer, Karl M; Zhou, Xin

    2014-11-07

    Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects. Copyright © 2014, American Association for the Advancement of Science.

  20. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009.

    Directory of Open Access Journals (Sweden)

    Nicholas W Calderone

    Full Text Available In the US, the cultivated area (hectares and production (tonnes of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc. increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc. was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination.

  1. Construction and Characterization of Insect Cell-Derived Influenza VLP: Cell Binding, Fusion, and EGFP Incorporation

    Directory of Open Access Journals (Sweden)

    Yi-Shin Pan

    2010-01-01

    Full Text Available We have constructed virus-like particles (VLPs harboring hemagglutinin (HA, neuraminidase (NA, matrix protein 1 (M1 ,and proton channel protein (M2 using baculovirus as a vector in the SF9 insect cell. The size of the expressed VLP was estimated to be ~100 nm by light scattering experiment and transmission electron microscopy. Recognition of HA on the VLP surface by the HA2-specific monoclonal antibody IIF4 at acidic pH, as probed by surface plasmon resonance, indicated the pH-induced structural rearrangement of HA. Uptake of the particle by A549 mediated by HA-sialylose receptor interaction was visualized by the fluorescent-labeled VLP. The HA-promoted cell-virus fusion activity was illustrated by fluorescence imaging on the Jurkat cells incubated with rhodamine-loaded VLP performed at fusogenic pH. Furthermore, the green fluorescence protein (GFP was fused to NA to produce VLP with a pH-sensitive probe, expanding the use of VLP as an antigen carrier and a tool for viral tracking.

  2. A Review on the Fascinating World of Insect Resources: Reason for Thoughts

    Directory of Open Access Journals (Sweden)

    R. K. Lokeshwari

    2010-01-01

    Full Text Available Insect resources are vast and diverse due to their enormous diversity. The exploitation and utilization of insect resources is broadly classified into four different categories. The first category is the insects of industrial resources. This level includes the utilization of silk worm, honeybee, lac insect, dye insect, and aesthetic insect. The second category is the utilization of insects for edible and therapeutic purposes. Insects are high in protein and many are rich sources of vitamins and minerals. The third category is the use of insects in forensic investigation. By analyzing the stages of succession of insects at first, rough estimation of the postmortem intervals can be done. The fourth category is the insects of ecological importance. Many insect species act as potential predators and parasites of destructive pests of insect order Lepidoptera, Diptera, and Orthoptera. Insects are also used as bioindicator to assess the cumulative effects of environmental stressors such as pollutants. Despites these fascinating benefits, insect resources are often neglected in India due to lack of proper documentation, less expertise, and advance enterprises in these fields. Hence, the paper reviews the different fascinating facets of insect resources in order to explore and utilize it in a sustainable way with reference to Indian region.

  3. Notes on collecting flower-visiting insects

    NARCIS (Netherlands)

    Willemstein, S.C.

    1974-01-01

    Flower-visiting insects may play a role in the pollination of the flowers they visit. An important indication for this is the pollen they carry on their body. The transport of pollen does not prove pollination without observations of the behaviour of the insects on the flowers, but at least it

  4. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    Science.gov (United States)

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Plant odour plumes as mediators of plant-insect interactions.

    Science.gov (United States)

    Beyaert, Ivo; Hilker, Monika

    2014-02-01

    Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a 'POP concept' for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory-mediated plant-insect interactions. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  6. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  7. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  8. ENTOMOLOGY - INSECTS AND OTHER PESTS IN FIELD CROPS

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2009-12-01

    Full Text Available The academic textbook Entomology - Insects and other pests in field crops, describes the most important pests of field crops supported by many photographs. The textbook encompasses 15 chapters. Importance of entomology in intensive plant production is discussed in introductory chapter, in terms of increased threat of insects and other pests. Morphology, anatomy and physiology are given in the second and third chapter, while ways and phases of insect development are elaborated in the fourth chapter. The fifth chapter, overview of insect systematic is given. Polyphagous insects are described from the sixth to fourteenth chapter, as follows: pests of cereals, maize, sugar beet, sunflower, oil seed rape, soybean, forage crops and stored products. In the last chapter, principles of integrated pest management are described due to proper application of all control measures to obtain healthier food production.

  9. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  10. Atomic war on insects intensified

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Intensive research work in many countries using nuclear methods aimed at reducing the immense food losses caused by insects have led to a number of important trial operations this year. Some are now in progress in Capri, the famous Italian tourist island, and in Central America. Both are directed against the Mediterranean fruit fly, which attacks most fruit in tropical and sub-tropical countries. Similar methods are also developing to combat other insect pests

  11. Remote sensing of forest insect disturbances: Current state and future directions.

    Science.gov (United States)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  12. New feed ingredients: the insect opportunity.

    Science.gov (United States)

    van Raamsdonk, L W D; van der Fels-Klerx, H J; de Jong, J

    2017-08-01

    In the framework of sustainability and a circular economy, new ingredients for feed are desired and, to this end, initiatives for implementing such novel ingredients have been started. The initiatives include a range of different sources, of which insects are of particular interest. Within the European Union, generally, a new feed ingredient should comply with legal constraints in terms of 'yes, provided that' its safety commits to a range of legal limits for heavy metals, mycotoxins, pesticides, contaminants, pathogens etc. In the case of animal proteins, however, a second legal framework applies which is based on the principle 'no, unless'. This legislation for eradicating transmissible spongiform encephalopathy consists of prohibitions with a set of derogations applying to specific situations. Insects are currently considered animal proteins. The use of insect proteins is a good case to illustrate this difference between a positive, although restricted, modus and a negative modus for allowing animal proteins. This overview presents aspects in the areas of legislation, feed safety, environmental issues, efficiency and detection of the identity of insects. Use of insects as an extra step in the feed production chain costs extra energy and this results in a higher footprint. A measure for energy conversion should be used to facilitate the comparison between production systems based on cold- versus warm-blooded animals. Added value can be found by applying new commodities for rearing, including but not limited to category 2 animal by-products, catering and household waste including meat, and manure. Furthermore, monitoring of a correct use of insects is one possible approach for label control, traceability and prevention of fraud. The link between legislation and enforcement is strong. A principle called WISE (Witful, Indicative, Societal demands, Enforceable) is launched for governing the relationship between the above-mentioned aspects.

  13. Evolutionary conservation and changes in insect TRP channels.

    Science.gov (United States)

    Matsuura, Hironori; Sokabe, Takaaki; Kohno, Keigo; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2009-09-10

    TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA). NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP family members. As shown for mammalian TRP channels, this

  14. Evolutionary conservation and changes in insect TRP channels

    Directory of Open Access Journals (Sweden)

    Tominaga Makoto

    2009-09-01

    Full Text Available Abstract Background TRP (Transient Receptor Potential channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. Results All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA. NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. Conclusion The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP

  15. Metagenomic analysis of bat guano samples revealed the presence of viruses potentially carried by insects, among others by Apis mellifera in Hungary.

    Science.gov (United States)

    Zana, Brigitta; Kemenesi, Gábor; Urbán, Péter; Földes, Fanni; Görföl, Tamás; Estók, Péter; Boldogh, Sándor; Kurucz, Kornélia; Jakab, Ferenc

    2018-03-01

    The predominance of dietary viruses in bat guano samples had been described recently, suggesting a new opportunity to survey the prevalence and to detect new viruses of arthropods or even plant-infecting viruses circulating locally in the ecosystem. Here we describe the diversity of viruses belonging to the order Picornavirales in Hungarian insectivorous bat guano samples. The metagenomic analysis conducted on our samples has revealed the significant predominance of aphid lethal paralysis virus (ALPV) and Big Sioux River virus (BSRV) in Hungary for the first time. Phylogenetic analysis was used to clarify the relationship to previously identified ALPV strains infecting honey bees, showing that our strain possesses a close genetic relationship with the strains that have already been described as pathogenic to honey bees. Furthermore, studies have previously confirmed the ability of these viruses to replicate in adult honey bees; however, no signs related to these viruses have been revealed yet. With the identification of two recently described possibly honey bee infecting viruses for the first time in Hungary, our results might have importance for the health conditions of Hungarian honey bee colonies in the future.

  16. Guide for dosimetry for sterile insect release programs. 2. ed.

    International Nuclear Information System (INIS)

    2004-01-01

    This guide outlines dosimetric procedures to be followed for the radiation sterilization of live insects for use in pest management programs. The primary use of irradiated, reproductively sterile insects is in the Sterile Insect Technique, where large numbers of sterile insects are released into the field to mate with and thus control pest populations of the same species. A secondary use of sterile insects is as benign hosts for rearing insect parasitoids. The procedures outlined in this guide will help ensure that insects processed with ionizing radiation from gamma, electron, or X-ray sources receive absorbed doses within a predetermined range. Information on effective dose ranges for specific applications of insect sterilization, or on methodology for determining effective dose ranges, is not within the scope of this guide. Note: Dosimetry is only one component of a total quality control program to ensure that irradiated insects are adequately sterilized and sufficiently competitive or otherwise suitable for their intended purpose. This guide covers dosimetry in the irradiation of insects for these types of irradiators: self-contained dry-storage 137 Cs or 60 Co irradiators, large-scale gamma irradiators, and electron accelerators. Additional, detailed information on dosimetric procedures to be followed in installation qualification, operational qualification, performance qualification, and routine product processing can be found in ISO/ASTM Practices 51608 (X-ray [bremsstrahlung] facilities), 51649 (electron beam facilities), 51702 (large-scale gamma facilities), and ASTM Practice E 2116 (self-contained dry-storage gamma facilities). The absorbed dose for insect sterilization is typically within the range of 20 Gy to 600 Gy

  17. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  18. Trapping of insects in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, S.C.; Parulekar, A.H.

    Some insects caught on RV Gaveshani, while on a cruise in the Arabian Sea in May-June 1986 is reported Of the 23 insects caught, 16 were lepidopterans An interesting flight behaviour of Psychota sp is described...

  19. Nonlinear flight dynamics and stability of hovering model insects

    Science.gov (United States)

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  20. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption

    OpenAIRE

    Poma, Giulia; Cuykx, Matthias; Amato, Elvio; Calaprice, Chiara; Focant, Jean Francois; Covaci, Adrian

    2017-01-01

    Abstract: Due to the rapid increase in world population, the waste of food and resources, and non-sustainable food production practices, the use of alternative food sources is currently strongly promoted. In this perspective, insects may represent a valuable alternative to main animal food sources due to their nutritional value and sustainable production. However, edible insects may be perceived as an unappealing food source and are indeed rarely consumed in developed countries. The food safe...

  1. Toward exascale production of recombinant adeno-associated virus for gene transfer applications.

    Science.gov (United States)

    Cecchini, S; Negrete, A; Kotin, R M

    2008-06-01

    To gain acceptance as a medical treatment, adeno-associated virus (AAV) vectors require a scalable and economical production method. Recent developments indicate that recombinant AAV (rAAV) production in insect cells is compatible with current good manufacturing practice production on an industrial scale. This platform can fully support development of rAAV therapeutics from tissue culture to small animal models, to large animal models, to toxicology studies, to Phase I clinical trials and beyond. Efforts to characterize, optimize and develop insect cell-based rAAV production have culminated in successful bioreactor-scale production of rAAV, with total yields potentially capable of approaching the exa-(10(18)) scale. These advances in large-scale AAV production will allow us to address specific catastrophic, intractable human diseases such as Duchenne muscular dystrophy, for which large amounts of recombinant vector are essential for successful outcome.

  2. Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity

    DEFF Research Database (Denmark)

    Porta, Claudine; Xu, Xiaodong; Loureiro, Silvia

    2013-01-01

    Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or...

  3. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes

    Directory of Open Access Journals (Sweden)

    Silvina Goenaga

    2015-11-01

    Full Text Available Nhumirim virus (NHUV is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV. This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUVandWNV, or solely withWNVas a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi, while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease.

  4. Ecological Importance of Insects in Selenium Biogenic Cycling

    Directory of Open Access Journals (Sweden)

    Nadezhda Golubkina

    2014-01-01

    Full Text Available Selenium is an essential trace element for animal and human beings. Despite the importance of insects in most ecosystems and their significant contribution to the biological cycling of trace elements due to high abundance, population productivity, and diverse ecosystem functions, surprisingly little information is available on selenium bioaccumulation by these arthropods. This review considers selenium essentiality and toxicity to insects as well as insects’ contribution to selenium trophic transfer through the food chains. Data on Se accumulation by insects of the Dniester River Valley with no anthropogenic Se loading reveal typically low Se content in necrophagous insects compared to predators and herbivores and seasonal variations in Se accumulation.

  5. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet

    Directory of Open Access Journals (Sweden)

    Dimitrov Mitko

    2009-08-01

    Full Text Available Abstract Background N,N-Diethyl-3-methylbenzamide (deet remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system. Results By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase. Conclusion These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health.

  6. In vivo evaluation of insect wax for hair growth potential

    Science.gov (United States)

    Ma, Jinju

    2018-01-01

    Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential. PMID:29438422

  7. In vivo evaluation of insect wax for hair growth potential.

    Directory of Open Access Journals (Sweden)

    Jinju Ma

    Full Text Available Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential.

  8. Edible insects are the future?

    OpenAIRE

    Huis, van, Arnold

    2016-01-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect speci...

  9. Nano-particles - A recent approach to insect pest control

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Available online at http://www.academicjournals.org/AJB ... It is now known that many insects possess ferromagnetic materials in the head ... nanoparticles in insects and their potential for use in insect pest management. ... often synthesized using chemical methods. ..... opacus termite: FMR characterization.

  10. Monitoring sterile and wild insects in area-wide integrated pest management programmes

    International Nuclear Information System (INIS)

    Vreysen, M.J.B.

    2005-01-01

    Insect pest control programmes, which integrate the release of sterile insects, can be efficient only if the released insects have an optimal biological quality. Frequent monitoring of the quality of reared insects after being released in the field is an important but often neglected component of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Parameters of sterile insects, which should be monitored regularly, are sexual competitiveness of the released insects, and related components, e.g. survival, mobility, dispersal characteristics, and spatial occupation of the habitat. A well-balanced monitoring programme will, at any given time, provide essential feedback on the progress being made. This information is prerequisite to efficient implementation of the release and cost-efficient use of sterile insects. The type of monitoring to be done will be determined largely by the particular biology of the target insect species. The most important parameter in relation to the release of sterile insects is the rate of sterility induced in the wild insect pest population; it will provide the best evidence that any observed changes, e.g. in the density of the target insect, are caused by the release of sterile insects. (author)

  11. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  12. Molecular Genetics of Beauveria bassiana Infection of Insects.

    Science.gov (United States)

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Nutritional contributions of insects to primate diets: implications for primate evolution.

    Science.gov (United States)

    Rothman, Jessica M; Raubenheimer, David; Bryer, Margaret A H; Takahashi, Maressa; Gilbert, Christopher C

    2014-06-01

    Insects and other invertebrates form a portion of many living and extinct primate diets. We review the nutritional profiles of insects in comparison with other dietary items, and discuss insect nutrients in relation to the nutritional needs of living primates. We find that insects are incorporated into some primate diets as staple foods whereby they are the majority of food intake. They can also be incorporated as complements to other foods in the diet, providing protein in a diet otherwise dominated by gums and/or fruits, or be incorporated as supplements to likely provide an essential nutrient that is not available in the typical diet. During times when they are very abundant, such as in insect outbreaks, insects can serve as replacements to the usual foods eaten by primates. Nutritionally, insects are high in protein and fat compared with typical dietary items like fruit and vegetation. However, insects are small in size and for larger primates (>1 kg) it is usually nutritionally profitable only to consume insects when they are available in large quantities. In small quantities, they may serve to provide important vitamins and fatty acids typically unavailable in primate diets. In a brief analysis, we found that soft-bodied insects are higher in fat though similar in chitin and protein than hard-bodied insects. In the fossil record, primates can be defined as soft- or hard-bodied insect feeders based on dental morphology. The differences in the nutritional composition of insects may have implications for understanding early primate evolution and ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Resistance to sap-sucking insects in modern-day agriculture

    Directory of Open Access Journals (Sweden)

    Martin eDe Vos

    2013-06-01

    Full Text Available Plants and herbivores have co-evolved in their natural habitats for about 350 million years, but since the domestication of crops, plant resistance against insects has taken a different turn. With the onset of monoculture-driven modern agriculture, selective pressure on insects to overcome resistances has dramatically increased. Therefore plant breeders have resorted to high-tech tools to continuously create new insect-resistant crops. Efforts in the past 30 years have resulted in elucidation of mechanisms of many effective plant defenses against insect herbivores. Here, we critically appraise these efforts and - with a focus on sap-sucking insects - discuss how these findings have contributed to herbivore-resistant crops. Moreover, in this review we try to assess where future challenges and opportunities lay ahead. Of particular importance will be a mandatory reduction in systemic pesticide usage and thus a greater reliance on alternative methods, such as improved plant genetics for plant resistance to insect herbivores.

  15. Pharmacological factors in the saliva of blood-feeding insects. Implications for vesicular stomatitis epidemiology.

    Science.gov (United States)

    Tabachnick, W J

    2000-01-01

    Vesicular stomatitis (VS) epizootics in the Western United States have caused substantial economic losses to U.S. livestock industries in 1995, 1997, and 1998. The role of arthropods in transmitting VS to U.S. livestock is unclear. In particular, the impact of arthropod salivary gland factors in VS infections in livestock needs study. Pharmacological effects of arthropod salivary gland factors on animals are reviewed. The potential effects of arthropod saliva on the transmission and spread of VS virus to livestock in the Western U.S. is presented with emphasis on the biting midge, Culicoides sonorensis. Information is discussed with attention to vector potential of C. sonorensis, and its use as a model for evaluating insect salivary gland pharmacology on livestock response to VS.

  16. Insect Pest Control Newsletter, No. 82, January 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia_SI/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  17. Insect Pest Control Newsletter, No. 82, January 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia{sub S}I/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  18. Aquatic insect populations in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Rozilah Ismail; Ahyaudin Ali

    2002-01-01

    Periodic sampling of aquatic insects was carried out in an experimental plot of the Muda rice agroecosystem. The study which was conducted from August to December 1995, investigated the impact of the pesticides Broadox and Trebon on aquatic insect populations during the rice growing period. The results indicated that there was no significant difference in abundance and diversity of aquatic insects between the treated and non-treated area. The four dominant aquatic insects were from the families; Chironomidae, Dysticidae, Corixidae and Belostomatidae. Water temperature and dissolved oxygen showed changes throughout the rice growing season and the values of these parameters decreased gradually towards the end of the rice growing season in January when the rice plants were maturing. (Author)

  19. Influence of nonsystemic transmission on the epidemiology of insect borne arboviruses: a case study of vesicular stomatitis epidemiology in the western United States.

    Science.gov (United States)

    Lord, Cynthia C; Tabachnick, Walter J

    2002-05-01

    Nonsystemic transmission, where a pathogen is transmitted between infected and uninfected vectors without the vertebrate host becoming viremic, may provide an explanation for transmission in systems where the vertebrate hosts have been difficult to identify. This transmission pathway had been previously demonstrated for tick-borne viruses and bacteria, but the recent demonstration for Simulium and vesicular stomatitis virus is the first for a blood-feeding insect. The epidemiology of vesicular stomatitis viruses has been difficult to understand, and nonsystemic transmission may be important. We use mathematical formulations of the basic reproduction number, R(0), to compare systemic and nonsystemic transmission. The absence of a latent period before host infectiousness in nonsystemic transmission may allow a more rapid increase in prevalence in the biting flies early in the development of a new outbreak. Aggregation of flies between hosts and at favored feeding sites on hosts will be important, but further data on nonsystemic transmission as a function of space and time are required to fully assess this pathway. The data needed to compare the two pathways and their relative roles in virus epidemiology are discussed.

  20. Usefulness of the insect food in the long-term space stay

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi

    2016-07-01

    The meal is important in life in the space. The importance of space foods is not only health maintenance. The space foods are one of the Life-support system for a space trip. Time for meal is time of the relaxation of home life of the astronaut. However, the breeding of the large animal is still impossible in the spaceship now narrowly. If it is fish and an insect, the breeding in the spaceship is possible. We recognize an insect as ingredients on the earth. As for the insect, possibility to save a food shortage of the earth is expected in future. We suggested the space foods using the insect for 12 years. The cultivation of the insect is pushed forward now in Europe. We suggest a menu to have you know the space foods which took in an insect more. The insect which we used for this menu is silkworm-pupa, a grasshopper, a larva of a wasp and apple snail. The Japanese foods were registered with world's cultural heritage. Therefore we used an insect to make our Japanese foods. Space foods must be universal food. This is because the astronauts are recruited from the whole world. Space foods that a world astronaut eats and thinks to be delicious are necessary. We want to take in an insect in world cooking in future. The insect food includes essential amino acids and essential fatty acid. The insect is superior nutritionally. We will think that insect food is necessary more and more on both the space and the earth in future. The insect is precious ingredients relieving a food shortage for the human.

  1. Insect pest control newsletter. No. 65

    International Nuclear Information System (INIS)

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  2. Insect pest control newsletter. No. 65

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  3. Molecular and Biological Characterization of Chinese Sacbrood Virus LN Isolate

    OpenAIRE

    Mingxiao, Ma; Ming, Li; Jian, Cheng; Song, Yang; Shude, Wang; Pengfei, Li

    2011-01-01

    Chinese sacbrood virus (CSBV) was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of CSBV is 8863 nucleotides in length and contains a single large open reading frame encoding a 319.614 kDa polyprotein. The coding sequence is flanked by a 178-nucleotide 5′ nontranslated leader sequence and a 142-nucleotide 3′ nontranslated region, followed a poly(A) tail. Four major structural proteins, VP1,VP2, VP3 and VP4, were predicted in the N-teminal of the poly...

  4. The Bombyx mori nucleopolyhedrovirus Bm111 affects virulence but not virus replication.

    Science.gov (United States)

    Han, Yingying; Xia, Hengchuan; Tang, Qi; Lü, Peng; Ma, Shangshang; Yang, Yanhua; Shao, Dandan; Ma, Quanbing; Chen, Keping

    2014-07-01

    The Bm111 of Bombyx mori nucleopolyhedrovirus (BmNPV) encodes a small polypeptide (70 amino acids) of which the function remains unknown. To characterize its function, multiple sequence alignments were performed, and the predicted protein was found to share amazingly high (98 %) sequence identity with the Bombyx mandarina nucleopolyhedrovirus ORF110 (Boma110) but negligible with proteins of other insect viruses, indicating the close relationship between these two NPVs with silkworm larvae. The transcription of Bm111 was detected as early as 3 hpi in BmNPV-infected BmN cells, suggesting it is an early gene. To investigate the role of Bm111 in baculovirus life cycle, a Bm111-knockout virus was constructed by bacmid recombination in Escherichia coli. The results showed that knockout of the Bm111 did not affect the replication of virus DNA, but significantly extended the death time of infected silkworm larvae compared to the wild-type or rescued viruses. We also successfully expressed the recombinant protein Bm111 in E. coli to provide sufficient material for subsequent studies. Taken together, our data indicate that Bm111 only affects the virulence of BmNPV, but not its replication.

  5. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    Science.gov (United States)

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

  6. Arriving at the age of pest insect transgenesis

    International Nuclear Information System (INIS)

    Atkinson, Peter W.; O'Brochta, David A.

    2000-01-01

    Technologies that enable the stable genetic transformation of insects other than the vinegar fly, Drosophila melanogaster Meigen, have been sought since D. melanogaster was initially transformed using the P transposable element (Rubin and Spradling 1982). D. melanogaster transformation can now be achieved by using Type II eukaryotic transposable elements such as P, hobo, Hermes, mariner, Minos and piggyBac (Blackman et al. 1989, Lidholm et al. 1993, Loukeris et al. 1995a, O'Brochta et al. 1996, Rubin and Spadling 1982, A. M. Handler, personal communication). The success of this strategy led to many attempts to extend it into non-drosophilid insects and this approach has recently been successful with the use of four different transposable elements to transform two non-drosophilid insect species, the Medfly, Ceratitis capitata Wied. and the yellow fever mosquito, Aedes aegypti L. (Coates et al. 1998, Handler et al. 1998, Jasinskiene et al. 1998, Loukeris et al. 1995b). The generation of these transgenic insects has, in part, arisen through the adoption of two approaches. One has been the isolation of new transposable elements from non-drosophilid insects. The second has been the implementation of mobility assays that have quickly enabled the mobility properties of these new elements in the target pest species to be determined. The success of these approaches will most likely be extended to other pest insect species over the next five years and will increase our ability to use modern genetic techniques to develop new strategies to control pest insects

  7. Insect pests of Eucalyptus and their control

    Energy Technology Data Exchange (ETDEWEB)

    Sen-Sarma, P K; Thakur, M L

    1983-12-01

    In India, about sixty odd species of insects have so far been recorded to be associated with Eucalyptus. Important pests are some xylophagous insects, sap suckers, defoliators and termites. Of these, stem and root borer, Celostrna scabrator Fabr, and some species of termites have been recognised as key pests, whereas Apogonia coriaces Waterhouse, Mimeta mundissima Walker (Coleoptera: Scarabaeidae), Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), Brachytrypus portenosus Lichtenstein and Gymmogryllus humeralis Walker (Orthoptera: Gryllidae) are likely to become potential pests in Eucalyptus nurseries. In this paper available information on insect pests of Eucalyptus, their bioecology and control measures have been presented.

  8. Measuring Asymmetry in Insect-Plant Networks

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Claudia P T [Programa de Pos-Graduacao em Fisica, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); De Almeida, Adriana M [Departamento de Botanica, Ecologia e Zoologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); Corso, Gilberto, E-mail: claudia@dfte.ufrn.br, E-mail: adrianam@ufrn.br, E-mail: corso@cb.ufrn.br [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil)

    2011-03-01

    In this work we focus on interaction networks between insects and plants and in the characterization of insect plant asymmetry, an important issue in coevolution and evolutionary biology. We analyze in particular the asymmetry in the interaction matrix of animals (herbivorous insects) and plants (food resource for the insects). Instead of driving our attention to the interaction matrix itself we derive two networks associated to the bipartite network: the animal network, D{sub 1}, and the plant network, D{sub 2}. These networks are constructed according to the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. To explore the asymmetry between D{sub 2} and D{sub 1} we test for a set of 23 networks from the ecologic literature networks: the difference in size, {Delta}L, clustering coefficient difference, {Delta}C, and mean connectivity difference, {Delta}. We used a nonparametric statistical test to check the differences in {Delta}L, {Delta}C and {Delta}. Our results indicate that {Delta}L and {Delta} show a significative asymmetry.

  9. Mechanosensation and Adaptive Motor Control in Insects.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-10-24

    The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Phylogenetic origin and diversification of RNAi pathway genes in insects

    DEFF Research Database (Denmark)

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander

    2016-01-01

    RNAinterference (RNAi) refers tothe set ofmolecular processes foundin eukaryotic organisms in which smallRNAmolecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense...... against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes...... across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect...

  11. Transforming insect biomass into consumer wellness foods: A review.

    Science.gov (United States)

    Sun-Waterhouse, Dongxiao; Waterhouse, Geoffrey I N; You, Lijun; Zhang, Jianan; Liu, Yang; Ma, Lukai; Gao, Jie; Dong, Yi

    2016-11-01

    Potential food shortages, human health challenges and environmental concerns, all thematically linked to growing and aging global populations, drive the search for alternative and sustainable food sources. Insects, which have been part of the human diet since antiquity though not currently widely consumed in Western societies, are rich in high quality proteins and nutrients and bioactives. Accordingly, insects could make a significant contribution to the global food supply chain in the future. This review explores the potential of entomophagy in an integrated global food network and focuses on practical approaches for transforming insect biomass into consumer food products. Carefully regulated breeding, rearing, harvesting and processing of insect bioresources are critical for realising the concept of "edible insects for human well-being". Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Functional and structural analysis of GP64, the major envelope glycoprotein of the Budded Virus phenotype of Autographa californica and Orgyia pseudotsugata Multicapsid Nucleopolyhedroviruses

    NARCIS (Netherlands)

    Oomens, A.G.P.

    1999-01-01

    The Baculoviridae are a family of large, enveloped, double-stranded DNA viruses, that cause severe disease in the larvae of mostly lepidopteran insects. Baculoviruses have been studied with the aim of developing alternatives to chemical pest control, and later for their potential as systems

  13. Fungus-insect gall of Phlebopus portentosus.

    Science.gov (United States)

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. © 2015 by The Mycological Society of America.

  14. Insect and pest control newsletter. No. 53

    International Nuclear Information System (INIS)

    1999-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  15. Insect and pest control newsletter. No. 56

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  16. Insect and pest control newsletter. No. 55

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  17. Insect and pest control newsletter. No. 55

    International Nuclear Information System (INIS)

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  18. Insect and pest control newsletter. No. 54

    International Nuclear Information System (INIS)

    2000-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  19. Insect and pest control newsletter. No. 56

    International Nuclear Information System (INIS)

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  20. Insect and pest control newsletter. No. 52

    International Nuclear Information System (INIS)

    1998-12-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  1. Insect and pest control newsletter. No. 50

    International Nuclear Information System (INIS)

    1997-10-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  2. Insect and pest control newsletter. No. 51

    International Nuclear Information System (INIS)

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  3. Insect and pest control newsletter. No. 51

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  4. Quality in mass-produced insects: definition and evaluation

    International Nuclear Information System (INIS)

    Chambers, D.L.

    1975-01-01

    The insect that is mass-produced and released in a control programme is in effect a biological bullet, a self-guided missile designed to deliver a beneficial effect against a pest insect. The ability of the released insect to achieve this objective may be influenced in many ways. The control of the quality of mass-produced insects must include an understanding of the behavioural components critical to their success and an evaluation of their performance based upon these behavioural components. The paper discusses some of the principles and techniques being used and developed to study behavioural performance and quality. Included are discussions of tests of: vigour, irritability, activity, sound production, response thresholds, reproductive preference and drive, biotic potential, and others. (author)

  5. Towards fenceless boundaries for solar powered insect biobots.

    Science.gov (United States)

    Latif, Tahmid; Whitmire, Eric; Novak, Tristan; Bozkurt, Alper

    2014-01-01

    Demonstration of remote navigation with instrumented insects, such as the Madagascar Hissing Cockroach, Gromphadorhina portentosa, has enabled the concept of biobotic agents for search and rescue missions and environmental monitoring applications. The biobots can form the nodes of a mobile sensor network to be established, for example, in unknown and dynamic environments after natural disasters to pinpoint surviving victims. We demonstrate here, for the first time, the concept of an invisible fence for insect biobots with an ultimate goal of keeping insect biobots within a certain distance of each other or a base station to ensure a reliable wireless network. For extended mission durations, this fenceless boundary would also be used to guide insects towards light sources for autonomous solar charging of their on-board batteries.

  6. Mechanisms for regulating oxygen toxicity in phytophagous insects.

    Science.gov (United States)

    Ahmad, S; Pardini, R S

    1990-01-01

    The antioxidant enzymatic defense of insects for the regulation of oxygen toxicity was investigated. Insect species examined were lepidopterous larvae of the cabbage looper (Trichoplusia ni), southern armyworm (Spodoptera eridania), and black swallowtail (Papilio polyxenes). These phytophagous species are subject to both endogenous and exogenous sources of oxidative stress from toxic oxygen radicals, hydrogen peroxide (H2O2) and lipid peroxides (LOOH). In general, the constitutive levels of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GT), and its peroxidase activity (GTpx), and glutathione reductase (GR), correlate well with natural feeding habits of these insects and their relative susceptibility to prooxidant plant allelochemicals, quercetin (a flavonoid), and xanthotoxin (a photoactive furanocoumarin). Induction of SOD activity which rapidly destroys superoxide radicals, appears to be the main response to dietary prooxidant exposure. A unique observation includes high constitutive activity of CAT and a broader subcellular distribution in all three insects than observed in most mammalian species. These attributes of CAT appear to be important in the prevention of excessive accumulation of cytotoxic H2O2. Unlike mammalian species, insects possess very low levels of a GPOX-like activity toward H2O2. Irrefutable proof that this activity is due to a selenium-dependent GPOX found in mammals, is lacking at this time. However, the activity of selenium-independent GTpx is unusually high in insects, suggesting that GTpx and not GPOX plays a prominent role in scavenging deleterious LOOHs. The GSSG generated from the GPOX and GTpx reactions may be reduced to GSH by GR activity. A key role of SOD in protecting insects from prooxidant toxicity was evident when its inhibition resulted in enhanced toxicity towards prooxidants. The role of antioxidant compounds in protecting these insects from toxic forms of oxygen has not been explored in

  7. Radioisotope labelling of several major insect pest

    International Nuclear Information System (INIS)

    Sutrisno, Singgih

    1981-01-01

    Radioisotope uptake by insects could take place through various parts i.e. mouth, cuticula, intersegmental, secretion and excretion organs. Usually insects are labelled internally by feeding them on an artificial diet containing radioisotope solution. Labelling of several insect pests of cabbage (Crocidolomia binotalis) Zell and Plutella maculipennis Curt and rice (Chilo suppressalis Walker) by dipping of the pupae in 32 P solution showed a promising result. Pupae of Crocidolomia binotalis Zell dipped in 3 ml solution of 32 P with specific activities of 1, 3, 5 and 7 μCi/ml had developed labelled adults of sufficiently high radioactivity levels for ecological studies. Similar results were also obtained with Plutella maculipennis Curt and Chilo suppressalis Walker with doses of 1, 3, 5, 7 and 9 μCi/ml 32 P solution. The best doses for radioisotope labelling by dipping of the insects Crocidolomia binotalis Zell, Plutella maculipennis Curt, and Chilo suppressalis Walker were 1, 9, and 7 μCi/ml respectivelly. (author)

  8. Insect transgenesis: current applications and future prospects.

    Science.gov (United States)

    Fraser, Malcolm J

    2012-01-01

    The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized. Copyright © 2012 by Annual Reviews. All rights reserved.

  9. Nocturnal insects use optic flow for flight control

    OpenAIRE

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flyin...

  10. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    Science.gov (United States)

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  11. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication.

    Science.gov (United States)

    Asser-Kaiser, Sabine; Radtke, Pit; El-Salamouny, Said; Winstanley, Doreen; Jehle, Johannes A

    2011-02-20

    An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Unraveling navigational strategies in migratory insects.

    Science.gov (United States)

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M

    2012-04-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. WATERMELON MOSAIC VIRUS OF PUMPKIN (Cucurbita maxima) FROM SULAWESI: IDENTIFICATION, TRANSMISSION, AND HOST RANGE

    OpenAIRE

    Wasmo Wakmana; M.S. Kontong; D.S. Teakle; D.M. Persley

    2016-01-01

    A mosaic disease of pumpkin (Cucurbita maxima) was spread widely in Sulawesi. Since the virus had not yet been identified, a study was conducted to identify the disease through mechanical inoculation, aphid vector transmission, host range, and electron microscopic test. Crude sap of infected pumpkin leaf samples was rubbed on the cotyledons of healthy pumpkin seedlings for mechanical inoculation. For insect transmission, five infective aphids were infected per seedling. Seedlings of eleven di...

  14. Watermelon Mosaic Virus Of Pumpkin (Cucurbita Maxima) From Sulawesi: Identification, Transmission, And Host Range

    OpenAIRE

    Wakmana, Wasmo; Kontong, M.S; Teakle, D.S; Persley, D.M

    2002-01-01

    A mosaic disease of pumpkin (Cucurbita maxima) was spread widely in Sulawesi. Since the virus had not yet been identified, a study was conducted to identify the disease through mechanical inoculation, aphid vector transmission, host range, and electron microscopic test. Crude sap of infected pumpkin leaf samples was rubbed on the cotyledons of healthy pumpkin seedlings for mechanical inoculation. For insect transmission, five infective aphids were infected per seedling. Seedlings of eleven di...

  15. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  16. Insects as human food; from farm to fork.

    Science.gov (United States)

    Bessa, Leah Wilson; Pieterse, Elsje; Sigge, Gunnar; Hoffman, Louw Christiaan

    2017-12-30

    Over the course of the last few years, the consumption of insects, known as entomophagy, has sparked increasing interest amongst scientists and environmentalists as a potential solution to the inevitable global food security and sustainability issues humans will be facing in the coming years. Despite the fact that insects have been an integral part of over 2 billion people's diet worldwide, the concept of eating insects is still new to Western culture. As a result, there are many unknowns regarding insects as a food source, and this has led to a number of studies and investigations being done in recent years to create more knowledge and awareness around this new concept in the food industry. This review discusses some of the key topics and new developments published over recent years, such as the nutritional benefits, food safety concerns, functional properties, potential product concepts and the current ideas and attitudes towards insects as a food source in Western culture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Neonicotinoid insecticides can serve as inadvertent insect contraceptives

    Science.gov (United States)

    Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R.

    2016-01-01

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera. Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  18. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Directory of Open Access Journals (Sweden)

    Charlotte L. R. Payne

    2017-02-01

    Full Text Available Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  19. A review of chemosensation and related behavior in aquatic insects.

    Science.gov (United States)

    Crespo, José G

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.

  20. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Science.gov (United States)

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems. PMID:28218635

  1. Ecosystem Services from Edible Insects in Agricultural Systems: A Review.

    Science.gov (United States)

    Payne, Charlotte L R; Van Itterbeeck, Joost

    2017-02-17

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  2. Using mass-release of engineered insects to manage insecticide resistance

    International Nuclear Information System (INIS)

    Alphey, Nina; Coleman, Paul G.; Donnelly, Christl A.

    2006-01-01

    Transgenic crops expressing insecticidal toxins derived from Bacillus thuringiensis (Bt) are widely used to control insect pests. The benefits of such crops would be lost if resistance to the toxins spread to a significant proportion of the pest population. The main resistance management method, mandatory in the US, is the high-dose/refuge strategy, requiring nearby refuges of toxin-free crops, and the use of toxin doses sufficiently high to kill not only wild type insects but also insects heterozygous for a resistance allele, thereby rendering the resistance functionally recessive. We propose that mass-release of harmless toxin-sensitive insects could substantially delay or even reverse the spread of resistance. Mass-release of such insects is an integral part of RIDL, a genetics-based method of pest control related to the Sterile Insect Technique. We used a population genetic mathematical model to analyze the effects of releasing male insects homozygous for a female-specific dominant lethal genetic construct, and concluded that this RIDL strategy could form an effective component of a resistance management scheme for insecticidal plants and other toxins. (author)

  3. Using mass-release of engineered insects to manage insecticide resistance

    Energy Technology Data Exchange (ETDEWEB)

    Alphey, Nina [University of Oxford (United Kingdom). Dept. of Zoology; Alphey, Luke [Oxitec Limited, Oxford (United Kingdom); Coleman, Paul G [London School of Hygiene and Tropical Medicine (United Kingdom). Dept. of Infectious and Tropical Diseases; Donnelly, Christl A [Imperial College Faculty of Medicine, London (United Kingdom). Dept. of Infectious Disease Epidemiology

    2006-07-01

    Transgenic crops expressing insecticidal toxins derived from Bacillus thuringiensis (Bt) are widely used to control insect pests. The benefits of such crops would be lost if resistance to the toxins spread to a significant proportion of the pest population. The main resistance management method, mandatory in the US, is the high-dose/refuge strategy, requiring nearby refuges of toxin-free crops, and the use of toxin doses sufficiently high to kill not only wild type insects but also insects heterozygous for a resistance allele, thereby rendering the resistance functionally recessive. We propose that mass-release of harmless toxin-sensitive insects could substantially delay or even reverse the spread of resistance. Mass-release of such insects is an integral part of RIDL, a genetics-based method of pest control related to the Sterile Insect Technique. We used a population genetic mathematical model to analyze the effects of releasing male insects homozygous for a female-specific dominant lethal genetic construct, and concluded that this RIDL strategy could form an effective component of a resistance management scheme for insecticidal plants and other toxins. (author)

  4. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders...

  5. Influence of presence and spatial arrangement of belowground insects on host-plant selection of aboveground insects: a field study

    NARCIS (Netherlands)

    Soler, J.J.; Schaper, S.V.; Bezemer, T.M.; Cortesero, A.M.; Hoffmeister, T.S.; Van der Putten, W.H.; Vet, L.E.M.; Harvey, J.A.

    2009-01-01

    1. Several studies have shown that above- and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host-plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was

  6. Role of radioisotopes in the study of insect pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2013-01-01

    Although the use of nuclear techniques, particularly radioisotopes, in entomological research is less than a century old, the contribution of radioisotopes to the science of studying insects (Entomology) is indispensable. In fact, radioisotopes provided a very important and sometimes a unique tool for solving many research problems in entomology. This article discusses the most important and widely used applications of radioisotopes in studying insect pests. In particular, it concentrates on the subject of radioisotopes used in entomological research, methods of labeling insect with radioisotopes, half life of radioisotopes, and the role of radioisotopes in physiological, ecological, biological and behavioral studies of insects. (author)

  7. Pseudacteon decapitating flies: Potential vectors of a fire ant virus?

    International Nuclear Information System (INIS)

    Valles, S.M.; Porter, S.D.

    2007-01-01

    Solenopsis invicta virus (SINV-1) is a positive-stranded RNA virus recently found to infect all stages of the red imported fire ant, Solenopsis invicta (Valles et al. 2004; Valles and Strong 2005). SINV-1 and a second genotype have been tentatively assigned to the Dicistroviridae (Mayo 2002). Infected individuals or colonies did not exhibit any immediate, discernible symptoms in the field. However, under stress from introduction into the laboratory, brood death was often observed among infected colonies, ultimately leading to the death of the entire colony (Valles et al. 2004). These characteristics are consistent with other insect-infecting positive-stranded RNA viruses. They often persist as inapparent, asymptomatic infections that, under certain conditions, induce replication within the host, resulting in observable symptoms and often death (Christian and Scotti 1998; Fernandez et al. 2002). The SINV infection rate among colonies was reported to be around 25% in Gainesville, Florida (Valles et al. 2004; Valles and Strong 2005). SINV vertical and horizontal transmission were inferred based on RT-PCR detection of virus genome in eggs and successful colony to colony transfer under lab conditions (Valles et al. 2004). However, the exact mechanisms by which the virus is spread from nest to nest in the field are unknown. Our results indicate that SINV does not replicate within Pseudacteon decapitating flies that parasitize S. invicta. Flies appeared to develop normally from SINV-infected S. invicta workers. Mechanical transmission of SINV to uninfected ants by oviposition appears unlikely

  8. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Insects and sex

    NARCIS (Netherlands)

    Beukeboom, Leo

    2005-01-01

    Most organisms reproduce sexually, but the evolution of sexual reproduction is not yet well understood. Sexual reproduction leads to new variation and adaptations to the environment, but sex is also costly. Some insects reproduce without sex through parthenogenesis or paedogenesis. Almost all sexual

  11. Insects - a natural nutrient source for poultry - a review

    DEFF Research Database (Denmark)

    Józefiak, D; Josefiak, A; Kieronczyk, B

    2016-01-01

    , such as fishmeal. With estimated 1.5 to 3 million species, the class of insects harbours the largest species variety in the world including species providing a high protein and sulphur amino acids content, which can be successfully exploited as feed for poultry. The aim of this paper is to review the present state...... of knowledge concerning the use of insect protein in poultry nutrition and the possibilities of mass production of insects for the feed industry. There is no doubt that insects have an enormous potential as a source of nutrients (protein) and active substances (polyunsaturated fatty acids, antimicrobial...... peptides) for poultry. It can be concluded, based on many experimental results, that meals from insects being members of the orders Diptera (black soldier fly, housefly), Coleoptera (mealworms) and Orthoptera (grasshoppers, locust, crickets and katylids), may be successfully used as feed material...

  12. MEIMAN: Database exploring Medicinal and Edible insects of Manipur.

    Science.gov (United States)

    Shantibala, Tourangbam; Lokeshwari, Rajkumari; Thingnam, Gourshyam; Somkuwar, Bharat Gopalrao

    2012-01-01

    We have developed MEIMAN, a unique database on medicinal and edible insects of Manipur which comprises 51 insects species collected through extensive survey and questionnaire for two years. MEIMAN provides integrated access to insect species thorough sophisticated web interface which has following capabilities a) Graphical interface of seasonality, b) Method of preparation, c) Form of use - edible and medicinal, d) habitat, e) medicinal uses, f) commercial importance and g) economic status. This database will be useful for scientific validations and updating of traditional wisdom in bioprospecting aspects. It will be useful in analyzing the insect biodiversity for the development of virgin resources and their industrialization. Further, the features will be suited for detailed investigation on potential medicinal and edible insects that make MEIMAN a powerful tool for sustainable management. The database is available for free at www.ibsd.gov.in/meiman.

  13. Cleptobiosis in Social Insects

    Directory of Open Access Journals (Sweden)

    Michael D. Breed

    2012-01-01

    Full Text Available In this review of cleptobiosis, we not only focus on social insects, but also consider broader issues and concepts relating to the theft of food among animals. Cleptobiosis occurs when members of a species steal food, or sometimes nesting materials or other items of value, either from members of the same or a different species. This simple definition is not universally used, and there is some terminological confusion among cleptobiosis, cleptoparasitism, brood parasitism, and inquilinism. We first discuss the definitions of these terms and the confusion that arises from varying usage of the words. We consider that cleptobiosis usually is derived evolutionarily from established foraging behaviors. Cleptobionts can succeed by deception or by force, and we review the literature on cleptobiosis by deception or force in social insects. We focus on the best known examples of cleptobiosis, the ectatommine ant Ectatomma ruidum, the harvester ant Messor capitatus, and the stingless bee Lestrimellita limão. Cleptobiosis is facilitated either by deception or physical force, and we discuss both mechanisms. Part of this discussion is an analysis of the ecological implications (competition by interference and the evolutionary effects of cleptobiosis. We conclude with a comment on how cleptobiosis can increase the risk of disease or parasite spread among colonies of social insects.

  14. Stinging and biting insect allergy: an Australian experience.

    Science.gov (United States)

    Solley, Graham O

    2004-12-01

    Stings and bites from various insects are responsible for many anaphylactic events. To document the clinical features of specific forms of anaphylaxis and investigate clinical concerns regarding stinging and biting insect allergy. All patients presenting for evaluation of adverse reactions to insect stings or bites between December 1980 and December 1997 had the clinical details of their reactions recorded and their reactions classified. The spectrum of clinical symptoms and signs is similar to that seen in anaphylaxis from other sources; stings on the head or neck are not more likely to cause life-threatening reactions than stings elsewhere on the body; a lesser reaction will not necessarily lead to a more serious reaction from a future sting; asthmatic patients do appear to have an increased risk of asthma as a feature of their anaphylactic response; anaphylaxis is usually confined to a particular insect species for the individual patient; patients who have had multiple stings at one time may have experienced true anaphylaxis and not a "toxic" response; and patients who have had anaphylaxis from other sources are at no greater risk than that of the general population of reacting similarly to insect stings or bites. Anaphylactic events from insect stings show the same clinical features as those from other sources. Systemic reactions seem confined to a specific insect species. Patients who experience RXN3 reactions from multiple stings at one time should undergo specific venom testing, because many have experienced true anaphylaxis and not a toxic response. Future consideration should be given to the role of beta-adrenergic antagonists and ACE inhibitors in patients with systemic reactions.

  15. A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells.

    Science.gov (United States)

    Lu, M; Farrell, P J; Johnson, R; Iatrou, K

    1997-12-05

    It has been previously reported that baculovirus homologous regions, the regions of baculovirus genomes that contain the origins of DNA replication, can augment the expression of a small number of baculovirus genes in vitro. We are now reporting that a region of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) containing the homologous region 3 (HR3) acts as an enhancer for the promoter of a nonviral gene, the cytoplasmic actin gene of the silkmoth B. mori. Incorporation of the HR3 sequences of BmNPV into an actin promoter-based expression cassette results in an augmentation of transgene expression in transfected cells by two orders of magnitude relative to the control recombinant expression cassette. This increase is due to a corresponding increase in the rate of transcription from the actin promoter and not to replication of the expression cassette and occurs only when the HR3 element is linked to the expression cassette in cis. A comparable degree of enhancement in the activity of the silkworm actin promoter occurs also in heterologous lepidopteran cells. Concomitant supplementation of transfected cells with the BmIE1 trans-activator, which was previously shown to be capable of functioning in vitro as a transcriptional co-activator of the cytoplasmic actin gene promoter, results in more than a 1,000-fold increase in the level of expression of recombinant proteins placed under the control of the actin gene promoter. These findings provide the foundation for the development of a nonlytic insect cell expression system for continuous high-level expression of recombinant proteins. Such a system should provide levels of expression of recombinant proteins comparable to those obtained from baculovirus expression systems and should also have the additional advantage of continuous production in a cellular environment that, in contrast to that generated by a baculovirus infection, supports continuously proper posttranslational modifications of recombinant

  16. A study of the Bronze Age insect fauna

    OpenAIRE

    Reilly, Eileen

    2008-01-01

    This section examines the insect remains from eleven samples retained during the excavation of site A. The samples are all from ditch fills from a variety of trenches that were dug during the 1993, 1994 and 1995 excavation seasons (§2.5.1). A total of fourteen samples were processed and examined, but three produced no insect remains and are therefore not discussed in detail.As the samples are from different trenches, the insect assemblage can be looked at in a number o...

  17. Insects associated with ponderosa pine in Colorado

    Science.gov (United States)

    Robert E. Stevens; J. Wayne Brewer; David A. Leatherman

    1980-01-01

    Ponderosa pine serves as a host for a wide variety of insects. Many of these, including all the particularly destructive ones in Colorado, are discussed in this report. Included are a key to the major insect groups, an annotated list of the major groups, a glossary, and a list of references.

  18. Insect acetyl-CoA carboxylase: activity during the larval, pupal and adult stages of insect development.

    Science.gov (United States)

    Goldring, J P; Read, J S

    1993-12-01

    1. The activity of the lipogenic enzyme, acetyl-CoA carboxylase, was investigated in four insect species; Bombyx mori (Lepidoptera), Tenebrio molitor (Coleoptera), Glossina morsitans and Sarcophaga nodosa (Diptera). 2. Acetyl-CoA carboxylase activity in larval, pupal and adult forms was compared with the saponifiable lipid mass at each stage of the life-cycle, and found to follow similar patterns except for Tenebrio molitor. 3. The results are examined in relation to known metabolic requirements for each insect.

  19. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control.

    Science.gov (United States)

    Arora, Arinder K; Douglas, Angela E

    2017-11-01

    All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Virus infection of a weed increases vector attraction to and vector fitness on the weed.

    Science.gov (United States)

    Chen, Gong; Pan, Huipeng; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Fang, Yong; Shi, Xiaobin; Zhang, Youjun

    2013-01-01

    Weeds are important in the ecology of field crops, and when crops are harvested, weeds often become the main hosts for plant viruses and their insect vectors. Few studies, however, have examined the relationships between plant viruses, vectors, and weeds. Here, we investigated how infection of the weed Datura stramonium L. by tomato yellow leaf curl virus (TYLCV) affects the host preference and performance of the TYLCV vector, Bemisia tabaci (Gennadius) Q. The results of a choice experiment indicated that B. tabaci Q preferentially settled and oviposited on TYLCV-infected plants rather than on healthy plants. In addition, B. tabaci Q performed better on TYLCV-infected plants than on healthy plants. These results demonstrate that TYLCV is indirectly mutualistic to B. tabaci Q. The mutually beneficial interaction between TYLCV and B. tabaci Q may help explain the concurrent outbreaks of TYLCV and B. tabaci Q in China.

  1. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases.

    Science.gov (United States)

    Pastula, Daniel M; Smith, Daniel E; Beckham, J David; Tyler, Kenneth L

    2016-06-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas.

  2. Changes in gene expression caused by insect venom immunotherapy responsible for the long-term protection of insect venom-allergic patients

    NARCIS (Netherlands)

    Niedoszytko, Marek; Bruinenberg, Marcel; de Monchy, Jan; Weersma, Rinse K.; Wijmenga, Cisca; Jassem, Ewa; Oude Elberink, Joanne N. G.

    Background: Insect venom immunotherapy (VIT) is the only causative treatment of insect venom allergy (IVA). The immunological mechanism(s) responsible for long-term protection achieved by VIT are largely unknown. A better understanding is relevant for improving the diagnosis, prediction of

  3. Global warming favours light-coloured insects in Europe

    Science.gov (United States)

    Zeuss, Dirk; Brandl, Roland; Brändle, Martin; Rahbek, Carsten; Brunzel, Stefan

    2014-01-01

    Associations between biological traits of animals and climate are well documented by physiological and local-scale studies. However, whether an ecophysiological phenomenon can affect large-scale biogeographical patterns of insects is largely unknown. Insects absorb energy from the sun to become mobile, and their colouration varies depending on the prevailing climate where they live. Here we show, using data of 473 European butterfly and dragonfly species, that dark-coloured insect species are favoured in cooler climates and light-coloured species in warmer climates. By comparing distribution maps of dragonflies from 1988 and 2006, we provide support for a mechanistic link between climate, functional traits and species that affects geographical distributions even at continental scales. Our results constitute a foundation for better forecasting the effect of climate change on many insect groups. PMID:24866819

  4. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    Science.gov (United States)

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the

  5. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    Directory of Open Access Journals (Sweden)

    Bernal Matarrita-Carranza

    2017-10-01

    Full Text Available The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees, Vespidae (wasps, and Formicidae (ants. In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect

  6. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    Science.gov (United States)

    Matarrita-Carranza, Bernal; Moreira-Soto, Rolando D.; Murillo-Cruz, Catalina; Mora, Marielos; Currie, Cameron R.; Pinto-Tomas, Adrián A.

    2017-01-01

    The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and

  7. Evolutionary origins of hepatitis A virus in small mammals.

    Science.gov (United States)

    Drexler, Jan Felix; Corman, Victor M; Lukashev, Alexander N; van den Brand, Judith M A; Gmyl, Anatoly P; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G; Lemon, Stanley M; Drosten, Christian

    2015-12-08

    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses.

  8. Biological basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Lance, D.R.; McInnis, D.O.

    2005-01-01

    In principle, the sterile insect technique (SIT) is applicable to controlling a wide variety of insect pests, but biological factors, interacting with socio-economic and political forces, restrict its practical use to a narrower set of pest species and situations. This chapter reviews how the biology and ecology of a given pest affect the feasibility and logistics of developing and using the SIT against that pest insect. The subjects of pest abundance, distribution, and population dynamics are discussed in relation to producing and delivering sufficient sterile insects to control target populations. Pest movement and distribution are considered as factors that influence the feasibility and design of SIT projects, including the need for population- or area-wide management approaches. Biological characteristics, that affect the ability of sterile insects to interact with wild populations, are presented, including the nature of mating systems of pests, behavioural and physiological consequences of mass production and sterilization, and mechanisms that males use to block a female's acquisition and/or use of sperm from other males. An adequate knowledge of the biology of the pest species and potential target populations is needed, both for making sound decisions on whether integration of the SIT into an area-wide integrated pest management (AW-IPM) programme is appropriate, and for the efficient and effective application of the technique. (author)

  9. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  10. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  11. Identification and characterization of insect-specific proteins by genome data analysis

    Directory of Open Access Journals (Sweden)

    Clark Terry

    2007-04-01

    Full Text Available Abstract Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts. ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through

  12. Molecular determinants of odorant receptor function in insects

    Indian Academy of Sciences (India)

    2014-07-20

    Jul 20, 2014 ... other host-odor responsive receptors from vector insect spe- cies would .... those that mediate host-seeking behaviour in insect disease vectors and ... receptors are transmitted and processed via olfactory circuits. (Vosshall ...

  13. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    Science.gov (United States)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.

    Science.gov (United States)

    Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V

    2014-01-01

    A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects

  15. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    Science.gov (United States)

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  16. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Electronic nose in edible insects area

    Directory of Open Access Journals (Sweden)

    Martin Adámek

    2017-01-01

    Full Text Available Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manuscript describes the phases of edible insect culinary treatment and methods of distinguishing mealworm (Tenebrio molitor and giant mealworm (Zophobas morio using simple electronic nose. These species were measured in the live stage, after killing with boiling water, after drying and after inserting into the chocolate.The sensing device was based on the Arduino Mega platform with the ability to store the recorded data on the SD memory card, and with the possibility to communicate via internet. Data analysis shows that even a simple, cheap and portable electronic nose can distinguish between the different steps of culinary treatment (native samples, dried samples, samples enriched with chocolate for cooking and selected species. Another benefit of the electronic nose could be its future introduction into the control mechanisms of food security systems (e.g. HACCP.

  18. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    Directory of Open Access Journals (Sweden)

    Y Lei

    Full Text Available DENV envelope glycoprotein (E is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  20. A study on feasibility of insect-control with γ-ray

    International Nuclear Information System (INIS)

    Huifen Feng; Jingren Li; Xin Hu

    1993-01-01

    Insect-control with Co-γ-ray is a method for conserving archives, books, cotton textiles, historical relics, wood structured houses and furniture. The temporary and residual effects of γ-ray on irradiated objects and the biological effects on insects are presented in this report. Our study shows that there is no obvious harmful effect on irradiated objects when the radiation dose is below 870 Gy, while there is obvious deterioration to the objects when the dose is above 870 Gy. On the other hand, a dose below 870 Gy is strong enough for the insects to be affected. At the dose of 43.5 - 130.5 Gy, the irradiated insects' reproductive function could be damaged or insects killed. (author)

  1. Estimating Aquatic Insect Populations. Introduction to Sampling.

    Science.gov (United States)

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  2. Forest habitat conservation in Africa using commercially important insects.

    Science.gov (United States)

    Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie

    2011-01-01

    African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.

  3. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia.

    Science.gov (United States)

    Otuka, Akira

    2013-10-28

    This review examines recent studies of the migration of three rice planthoppers, Laodelphax striatellus, Sogatella furcifera, and Nilaparvata lugens, in East Asia. Laodelphax striatellus has recently broken out in Jiangsu province, eastern China. The population density in the province started to increase in the early 2000s and peaked in 2004. In 2005, Rice stripe virus (RSV) viruliferous rate of L. striatellus peaked at 31.3%. Since then, rice stripe disease spread severely across the whole province. Due to the migration of the RSV vectors, the rice stripe disease spread to neighboring countries Japan and Korea. An overseas migration of L. striatellus that occurred in 2008 was analyzed, when a slow-moving cold vortex, a type of low pressure system, reached western Japan from Jiangsu, carrying the insects into Japan. Subsequently the rice stripe diseases struck these areas in Japan severely. In Korea, similar situations occurred in 2009, 2011, and 2012. Their migration sources were also estimated to be in Jiangsu by backward trajectory analysis. Rice black-streaked dwarf virus, whose vector is L. striatellus, has recently re-emerged in eastern China, and the evidence for overseas migrations of the virus, just like the RSV's migrations, has been given. A method of predicting the overseas migration of L. striatellus has been developed by Japanese, Chinese, and Korean institutes. An evaluation of the prediction showed that this method properly predicted migration events that occurred in East Asia from 2008 to 2011. Southern rice black-streaked dwarf virus (SRBSDV) was first found in Guangdong province. Its vector is S. furcifera. An outbreak of SRBSDV occurred in southern China in 2009 and spread to Vietnam the same year. This disease and virus were also found in Japan in 2010. The epidemic triggered many migration studies to investigate concrete spring-summer migration routes in China, and the addition of migration sources for early arrivals in Guangdong and Guangxi

  4. Implication of the Whitefly Bemisia tabaci Cyclophilin B Protein in the Transmission of Tomato yellow leaf curl virus.

    Science.gov (United States)

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Tomato yellow leaf curl virus (TYLCV) is a single-stranded (ssDNA) begomoviruses that causes severe damage to tomato and several other crops worldwide. TYLCV is exclusively transmitted by the sweetpotato whitefly, Bemisia tabaci in a persistent circulative and propagative manner. Previous studies have shown that the transmission, retention, and circulation of TYLCV in its vector involves interaction with insect and endosymbiont proteins, which aid in the transmission of the virus, or have a protective role in response to the presence of the virus in the insect body. However, only a low number of such proteins have been identified. Here, the role of B. tabaci Cyclophilin B (CypB) in the transmission of TYLCV protein was investigated. Cyclophilins are a large family of cellular prolyl isomerases that have many molecular roles including facilitating protein-protein interactions in the cell. One cyclophilin protein has been implicated in aphid-luteovirus interactions. We demonstrate that the expression of CypB from B. tabaci is altered upon TYLCV acquisition and retention. Further experiments used immunocapture-PCR and co-immunolocalization and demonstrated a specific interaction and colocalization between CypB and TYLCV in the the midgut, eggs, and salivary glands. Membrane feeding of anti-CypB antibodies and TYLCV-infected plants showed a decrease in TYLCV transmission, suggesting a critical role that CypB plays in TYLCV transmission. Further experiments, which used membrane feeding with the CypB inhibitor Cyclosporin A showed decrease in CypB-TYLCV colocalization in the midgut and virus transmission. Altogether, our results indicate that CypB plays an important role in TYLCV transmission by B. tabaci .

  5. Implication of the whitefly Bemisia tabaci Cyclophilin B protein in the transmission of Tomato yellow leaf curl virus

    Directory of Open Access Journals (Sweden)

    Surapathrudu Kanakala

    2016-11-01

    Full Text Available Tomato yellow leaf curl virus (TYLCV is a single-stranded (ssDNA begomoviruses that causes severe damage to tomato and several other crops worldwide. TYLCV is exclusively transmitted by the sweetpotato whitefly, Bemisia tabaci in a persistent circulative and propagative manner. Previous studies have shown that the transmission, retention and circulation of TYLCV in its vector involves interaction with insect and endosymbiont proteins, which aid in the transmission of the virus, or have a protective role in response to the presence of the virus in the insect body. However, only a low number of such proteins have been identified. Here, the role of B. tabaci Cyclophilin B (CypB in the transmission of TYLCV protein was investigated. Cyclophilins (Cyps are a large family of cellular prolyl isomerases that have many molecular roles including facilitating protein-protein interactions in the cell. One cyclophilin protein has been implicated in aphid-luteovirus interactions. We demonstrate that the expression of CypB from B. tabaci is altered upon TYLCV acquisition and retention. Further experiments used immunocapture-PCR and co-immunolocalization and demonstrated a specific interaction and colocalization between CypB and TYLCV in the the midgut, eggs and salivary glands. Membrane feeding of anti-CypB antibodies and TYLCV infected plants showed a decrease in TYLCV transmission, suggesting a critical role that CypB plays in TYLCV transmission. Further experiments, which used membrane feeding with the CypB inhibitor Cyclosporin A (CsA showed decrease in CypB-TYLCV colocalization in the midgut and virus transmission. Altogether, our results indicate that CypB plays an important role in TYLCV transmission by B. tabaci.

  6. FAO/IAEA international conference on area-wide control of insect pests integrating the sterile insect and related nuclear and other techniques. Programme book of abstracts

    International Nuclear Information System (INIS)

    1998-06-01

    The organization of this International Conference on the Areawide Approach to the Control of Insect Pests is appropriate and timely. There is increasing interest in the holistic approach to dealing with major insect pest problems. This interest has been prompted by the steady progress scientists have made in the development of the sterile insect technique for eliminating the screwworm from North America, the melon fly from Okinawa, the elimination and containment of the medfly in various countries and the progress that scientists have made in eradicating tsetse fly populations from isolated areas. Increased interest has also been shown by agriculturalists because of the realization that the farm-to-farm reactive method of insect control is only a temporary solution to problems and that pests continue to be about as numerous as ever from year-to-year. In the meantime, there is increasing public concern over the environmental hazards created by the use of broad-spectrum insecticides to deal with insect pest problems. The sterile insect technique provides a feasible way to manage total insect pest populations. However, other techniques and strategies appropriately integrated into management programs can increase the effectiveness and efficiency of area-wide management programs. These include the augmentation of massproduced biological organisms and the use of semiochemicals such as the insect sex pheromones. This conference will give pest management scientists from many countries the opportunity to exchange information on the area-wide approach to insect pest management - an approach that if fully developed can be highly effective, low in cost and at the same time make a major contribution to alleviating the environmental concerns associated with primary reliance on broad-spectrum insecticides for controlling insect pests. This document contains 200 abstracts of papers presented at the conference

  7. An immunological axis of biocontrol: infections in field-trapped insects

    Science.gov (United States)

    Tunaz, Hasan; Stanley, David

    2009-09-01

    Insect immunology is an active research arena, however, the vast majority of research in the area is conducted on model species taken from laboratory cultures. We tested the hypothesis that insects are regularly exposed to infections or invasions in nature and here report results of a field study designed to assess the extent of natural infections in insects collected from agrarian fields surrounding Kahramanmaraş, Turkey. Specimens were dissected to assess numbers of nodules. Formation of darkened, melanotic nodules is the predominant cellular immune reaction to microbial and parasitic infection, and once formed, the nodules are permanently attached to internal surfaces. The collected insects were healthy. Of the >400 examined specimens, at least some nodules were found in 98%. Numbers of nodules ranged from ˜2/individual to >100 nodules/individual. We conclude that insects are regularly challenged by microbial and parasitic infections from which they recover. The novel implication of our data is that insect immune systems may limit the host range and effectiveness of agents deployed in biological control programs. Knowledge of insect immune systems may contribute to increased use of biopesticides globally.

  8. Minor lipophilic compounds in edible insects

    OpenAIRE

    Monika Sabolová; Anna Adámková; Lenka Kouřimská; Diana Chrpová; Jan Pánek

    2016-01-01

    Contemporary society is faced with the question how to ensure suffiecient nutrition (quantity and quality) for rapidly growing population. One solution can be consumption of edible insect, which can have very good nutritional value (dietary energy, protein, fatty acids, fibers, dietary minerals and vitamins composition). Some edible insects species, which contains a relatively large amount of fat, can have a potential to be a „good" (interesting, new) source of minor lipophilic compound...

  9. Developmental constraint of insect audition

    Directory of Open Access Journals (Sweden)

    Strauß Johannes

    2006-12-01

    Full Text Available Abstract Background Insect ears contain very different numbers of sensory cells, from only one sensory cell in some moths to thousands of sensory cells, e.g. in cicadas. These differences still await functional explanation and especially the large numbers in cicadas remain puzzling. Insects of the different orders have distinct developmental sequences for the generation of auditory organs. These sensory cells might have different functions depending on the developmental stages. Here we propose that constraints arising during development are also important for the design of insect ears and might influence cell numbers of the adults. Presentation of the hypothesis We propose that the functional requirements of the subadult stages determine the adult complement of sensory units in the auditory system of cicadas. The hypothetical larval sensory organ should function as a vibration receiver, representing a functional caenogenesis. Testing the hypothesis Experiments at different levels have to be designed to test the hypothesis. Firstly, the neuroanatomy of the larval sense organ should be analyzed to detail. Secondly, the function should be unraveled neurophysiologically and behaviorally. Thirdly, the persistence of the sensory cells and the rebuilding of the sensory organ to the adult should be investigated. Implications of the hypothesis Usually, the evolution of insect ears is viewed with respect to physiological and neuronal mechanisms of sound perception. This view should be extended to the development of sense organs. Functional requirements during postembryonic development may act as constraints for the evolution of adult organs, as exemplified with the auditory system of cicadas.

  10. Phenoptosis in arthropods and immortality of social insects.

    Science.gov (United States)

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  11. Broadening insect gastronomy

    DEFF Research Database (Denmark)

    Halloran, Afton Marina Szasz; Münke, Christopher; Vantomme, Paul

    2015-01-01

    In recent years there has been a trend among chefs to diversify their ingredients and techniques, drawing inspiration from other cultures and creating new foods by blending this knowledge with the flavours of their local region. Edible insects, with their plethora of taste, aromatic, textural and...

  12. Insect biodiversity of the Algodones Dunes of California

    Directory of Open Access Journals (Sweden)

    Lynn Kimsey

    2017-11-01

    Full Text Available Over a nine year period beginning in 2007 we surveyed the insects of the Algodones Dunes, Imperial Count, California, as part of a study undertaken for the U.S. Bureau of Land Management. In a series of 22 collecting trips ranging in duration from 2 to 8 days we thus far have accumulated records of 1,840 species, 21 orders and 244 families from the dunes. Hymenoptera constituted the most diverse order, comprising about 45% of all the species recovered. Insect diversity and abundance peaked during the hottest part of the year between the months of May and September. Life history traits of the insects sampled included herbivores (29.6%, parasitoids (28.7%, predators (18.1%, pollen/nectar feeders (10.9%, detritivores (6.2% and scavengers (2.4%. Seventy-nine or 4% of the insect species collected in the dunes have been solely recorded from there, and 3% of the species almost certainly derive from adjacent aquatic habitats or agricultural ecosystems, as their life histories could not be completed in Algodones Dunes habitat. The insect fauna of the Algodones Dunes is unexpectedly rich and diverse.

  13. Context dependency and generality of fever in insects

    Science.gov (United States)

    Stahlschmidt, Z. R.; Adamo, S. A.

    2013-07-01

    Fever can reduce mortality in infected animals. Yet, despite its fitness-enhancing qualities, fever often varies among animals. We used several approaches to examine this variation in insects. Texas field crickets ( Gryllus texensis) exhibited a modest fever (1 °C increase in preferred body temperature, T pref) after injection of prostaglandin, which putatively mediates fever in both vertebrates and invertebrates, but they did not exhibit fever during chronic exposure to heat-killed bacteria. Further, chronic food limitation and mating status did not affect T pref or the expression of behavioural fever, suggesting limited context dependency of fever in G. texensis. Our meta-analysis of behavioural fever studies indicated that behavioural fever occurs in many insects, but it is not ubiquitous. Thus, both empirical and meta-analytical results suggest that the fever response in insects `is widespread, although certainly not inevitable' (Moore 2002). We highlight the need for future work focusing on standardizing an experimental protocol to measure behavioural fever, understanding the specific mechanism(s) underlying fever in insects, and examining whether ecological or physiological costs often outweigh the benefits of fever and can explain the sporadic nature of fever in insects.

  14. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    Science.gov (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  15. An evolutionary analysis of the Secoviridae family of viruses.

    Directory of Open Access Journals (Sweden)

    Jeremy R Thompson

    Full Text Available The plant-infecting Secoviridae family of viruses forms part of the Picornavirales order, an important group of non-enveloped viruses that infect vertebrates, arthropods, plants and algae. The impact of the secovirids on cultivated crops is significant, infecting a wide range of plants from grapevine to rice. The overwhelming majority are transmitted by ecdysozoan vectors such as nematodes, beetles and aphids. In this study, we have applied a variety of computational methods to examine the evolutionary traits of these viruses. Strong purifying selection pressures were calculated for the coat protein (CP sequences of nine species, although for two species evidence of both codon specific and episodic diversifying selection were found. By using Bayesian phylogenetic reconstruction methods CP nucleotide substitution rates for four species were estimated to range from between 9.29×10(-3 to 2.74×10(-3 (subs/site/year, values which are comparable with the short-term estimates of other related plant- and animal-infecting virus species. From these data, we were able to construct a time-measured phylogeny of the subfamily Comovirinae that estimated divergence of ninety-four extant sequences occurred less than 1,000 years ago with present virus species diversifying between 50 and 250 years ago; a period coinciding with the intensification of agricultural practices in industrial societies. Although recombination (modularity was limited to closely related taxa, significant and often unique similarities in the protein domains between secovirid and animal infecting picorna-like viruses, especially for the protease and coat protein, suggested a shared ancestry. We discuss our results in a wider context and find tentative evidence to indicate that some members of the Secoviridae might have their origins in insects, possibly colonizing plants in a number of founding events that have led to speciation. Such a scenario; virus infection between species of

  16. The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus)

    OpenAIRE

    Murakami, Ritsuko; Nakashima, Nobuhiko; Hinomoto, Norihide; Kawano, Shinji; Toyosato, Tetsuya

    2011-01-01

    The complete genome of pepper vein yellows virus (PeVYV) was sequenced using random amplification of RNA samples isolated from vector insects (Aphis gossypii) that had been given access to PeVYV-infected plants. The PeVYV genome consisted of 6244 nucleotides and had a genomic organization characteristic of members of the genus Polerovirus. PeVYV had highest amino acid sequence identities in ORF0 to ORF3 (75.9 - 91.9%) with tobacco vein distorting polerovirus, with which it was only 25.1% iden...

  17. The Importance of Insects in Australian Aboriginal Society: A Dictionary Survey

    Directory of Open Access Journals (Sweden)

    Aung Si

    2015-09-01

    Full Text Available Insects and their products have long been used in Indigenous Australian societies as food, medicine and construction material, and given prominent roles in myths, traditional songs and ceremonies. However, much of the available information on the uses of insects in Australia remains anecdotal. In this essay, we review published dictionaries of Aboriginal languages spoken in many parts of Australia, to provide an overview of the Indigenous names and knowledge of insects and their products. We find that that native honeybees and insect larvae (particularly of Lepidoptera and Coleoptera are the most highly prized insects, and should be recognized as cultural keystone species. Many insects mentioned in dictionaries lack scientific identifications, however, and we urge documentary linguists to address this important issue.

  18. Stinging insect identification: Are the allergy specialists any better than their patients?

    Science.gov (United States)

    Baker, Troy W; Forester, Joseph P; Johnson, Monica L; Sikora, Jeremy M; Stolfi, Adrienne; Stahl, Mark C

    2016-05-01

    It has been reported that the general population is not skillful at identifying stinging insects with the exception of the honeybee. No information is available to evaluate allergy physicians' accuracy with stinging insect identification. To measure the accuracy of allergists' ability to identify stinging insects and assess their common practices for evaluating individuals with suspected insect hypersensitivity. A picture-based survey and a dried specimen insect box were constructed to determine allergists' and nonallergists' accuracy in identifying insects. Allergists attending the 2013 American College of Allergy, Asthma, and Immunology meeting were invited to participate in the study. Common practice approaches for evaluating individuals with stinging insect hypersensitivity were also investigated using a brief questionnaire. Allergy physicians are collectively better at insect identification than nonallergists. Overall, the mean (SD) number of correct responses for nonallergists was 5.4 (2.0) of a total of 10. This score was significantly lower than the score for allergists (6.1 [2.0]; P = .01) who participated in the study. Most allergists (78.5%) test for all stinging insects and use skin testing (69.5%) as the initial test of choice for evaluating individuals with insect hypersensitivity. Overall, allergists are more skilled at Hymenoptera identification. Most allergy specialists reported testing for all stinging insects when evaluating insect hypersensitivity, and skin testing was the preferred testing method in nearly 70% of allergists. These data support the practice parameter's recommendation to consider testing for all flying Hymenoptera insects during venom evaluation, which most of the participating allergists surveyed incorporate into their clinical practice. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Detergent extraction of herpes simplex virus type 1 glycoprotein D by zwitterionic and non-ionic detergents and purification by ion-exchange high-performance liquid chromatography

    NARCIS (Netherlands)

    Welling-Wester, S; Feijlbrief, M; Koedijk, DGAM; Welling, GW

    1998-01-01

    Detergents (surfactants) are the key reagents in the extraction and purification of integral membrane proteins. Zwitterionic and non-ionic detergents were used for the extraction of recombinant glycoprotein D (gD-1) of herpes simplex virus type 1 (HSV-1) from insect cells infected with recombinant

  20. Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses.

    Directory of Open Access Journals (Sweden)

    Karel Schoonvaere

    Full Text Available The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia cornuta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombi and Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee O. cornuta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV and Ganda bee virus (GABV based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in O. cornuta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects.