WorldWideScience

Sample records for inorganic membrane reactor

  1. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  2. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  3. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  4. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  5. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  6. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  7. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  8. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-01-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  9. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  10. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  11. Gas Permeation Characteristics across Nano-Porous Inorganic Membranes

    Directory of Open Access Journals (Sweden)

    M.R Othman, H. Mukhtar

    2012-10-01

    Full Text Available An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.

  12. Organic and inorganic osmolytes at lipid membrane interfaces

    DEFF Research Database (Denmark)

    Westh, P.; Peters, Günther H.j.

    2008-01-01

    This chapter discusses the interactions of organic osmolytes and membranous interfaces, and the effects of these interactions on the properties of the membrane. It also includes a treatment of inorganic ions at the membrane interface since osmolyte effects involve a balance between organic...... and inorganic components. Before turning to the physicochemical discussion of interfacial interactions, the chapter outlines some central parts of the biology and biotechnology of organic osmolytes. It reviews the central relationships in preferential interaction theory, which we use in subsequent paragraphs...

  13. Inorganic membranes for hydrogen production and purification: a critical review and perspective.

    Science.gov (United States)

    Lu, G Q; Diniz da Costa, J C; Duke, M; Giessler, S; Socolow, R; Williams, R H; Kreutz, T

    2007-10-15

    Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In thermochemical processes for hydrogen production from fossil fuels, separation and purification is a critical technology. Where water-gas shift reaction is involved for converting the carbon monoxide to hydrogen, membrane reactors show great promises for shifting the equilibrium. Membranes are also important to the subsequent purification of hydrogen. For hydrogen production and purification, there are generally two classes of membranes both being inorganic: dense phase metal and metal alloys, and porous ceramic membranes. Porous ceramic membranes are normally prepared by sol-gel or hydrothermal methods, and have high stability and durability in high temperature, harsh impurity and hydrothermal environments. In particular, microporous membranes show promises in water gas shift reaction at higher temperatures. In this article, we review the recent advances in both dense phase metal and porous ceramic membranes, and compare their separation properties and performance in membrane reactor systems. The preparation, characterization and permeation of the various membranes will be presented and discussed. We also aim to examine the critical issues in these membranes with respect to the technical and economical advantages and disadvantages. Discussions will also be made on the relevance and importance of membrane technology to the new generation of zero-emission power technologies.

  14. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.

    2016-01-01

    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  15. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  16. Flow-through pretreatment of lignocellulosic biomass with inorganic nanoporous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R.; Lynd, Lee; Shao, Xiongjun

    2018-04-03

    A process for the pretreatment of lignocellulosic biomass is provided. The process generally includes flowing water through a pretreatment reactor containing a bed of particulate ligno-cellulosic biomass to produce a pressurized, high-temperature hydrolyzate exit stream, separating solubilized compounds from the hydrolyzate exit stream using an inorganic nanoporous membrane element, fractionating the retentate enriched in solubilized organic components and recycling the permeate to the pretreatment reactor. The pretreatment process provides solubilized organics in concentrated form for the subsequent conversion into biofuels and other chemicals.

  17. Functionalized inorganic membranes for gas separation

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Molaison, Jennifer Lynn [Marietta, GA; Schick, Louis Andrew ,; Ramaswamy, Vidya [Niskayuna, NY

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  18. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Andalaft, E; Vega, R; Correa, M; Araya, R; Loyola, P [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1997-02-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs.

  19. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    International Nuclear Information System (INIS)

    Andalaft, E.; Vega, R.; Correa, M.; Araya, R.; Loyola, P.

    1997-01-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs

  20. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  1. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  2. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  3. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  4. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  5. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  6. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  7. Innovative hybrid biological reactors using membranes; Reactores biologico hibrido innovadores utilizando membranas

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-07-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  8. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  9. Hybrid inorganic-organic membranes: Tuning pore properties by sequential grafting

    NARCIS (Netherlands)

    Sripathi, V.G.P.

    2014-01-01

    In this thesis, the synthesis of inorganic - polymeric hybrid membranes by sequential grafting is discussed, for application in gas separation. At high pressures and temperatures, organic (olymer) membranes may suffer from swelling and plasticization. Generally, this causes a reduced molecular

  10. Inorganic membranes for carbon capture and power generation

    Science.gov (United States)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  11. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  12. Commercial and research status report for inorganic membranes: Suggested uses in environmental and waste management processes

    International Nuclear Information System (INIS)

    Pohl, P.I.

    1993-04-01

    This document reports on a search of the literature regarding inorganic membrane technology for use in hazardous and radioactive waste treatment. The report lists and discusses DOE waste management separation needs where membranes could be used and describes inorganic membranes and the characteristics that may make them applicable for these separations. It may serve as a tool for making waste treatment design decisions and for weighing technical proposals in the area of separations

  13. Inorganic membranes for separative techniques: from uranium isotope separation to non-nuclear fields

    International Nuclear Information System (INIS)

    Charpin, J.; Rigny, P.

    1989-01-01

    Uranium enrichment leads to the development of inorganic porous barriers - either ceramic or metallic. A wide range of these products had considerable potential for the improvement of filtration techniques in liquid media (ultrafiltration and microfiltration). This is how a new generation of inorganic membranes was created reputed for their performance and especially for their lifetime and their behaviour (mechanical and temperature stability, corrosion resistance). These membranes now have a respectable position in applications in the agro-food biotechnology industries, to give only two examples. Before the non-nuclear applications of inorganic membranes are presented, their success in the nuclear power industry are pointed out

  14. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2011-09-01

    Full Text Available Composite inorganic membranes were synthesised for gas component separation of N2, CF4 and C3F6. Selectivities lower than Knudsen selectivities were obtained due to membrane defects. A composite ceramic membrane consisting of a ceramic support structure, a MFI intermediate zeolite layer and a Teflon top layer, was developed to improve separation.

  15. Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes.

    Science.gov (United States)

    Kang, Moon-Sung; Choi, Yong-Jin; Moon, Seung-Hyeon

    2004-05-15

    An approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e., iron hydroxides and silicon compounds) at the BP junction and the optimum concentration have been investigated. To immobilize these inorganic matters, novel methods (i.e., electrodeposition of the iron hydroxide and processing of the sol-gel to introduce silicon groups at the BP junction) were suggested. At optimal concentrations, the immobilized inorganic matters significantly enhanced the water-splitting fluxes, indicating that they provide alternative paths for water dissociation, but on the other hand possibly reduce the polarization of water molecules between the sulfonic acid and quaternary ammonium groups at high contents. Consequently, the amount of inorganic substances introduced should be optimized to obtain the maximum water splitting in the BPM.

  16. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  17. Preparation of geopolymer-based inorganic membrane for removing Ni{sup 2+} from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; Yuan, Yuan; Wang, Kaituo; He, Yan; Cui, Xuemin, E-mail: cui-xm@tsinghua.edu.cn

    2015-12-15

    Highlights: • A type free-sintering geopolymer membrane for waste water treatment was fabricated. • The geopolymer inorganic membrane held good strength and appropriate water flux. • The mechanism of removing Ni{sup 2+} combined actions of the adsorption and rejection. • The geopolymer membrane is a promising way to remove heavy metal ions in industry. - Abstract: A type of novel free-sintering and self-supporting inorganic membrane for wastewater treatment was fabricated in this study. This inorganic membrane was synthesised using metakaolin and sodium silicate solutions moulded according to a designed molar ratio (SiO{sub 2}/Al{sub 2}O{sub 3} = 2.96, Na{sub 2}O/Al{sub 2}O{sub 3} = 0.8 and H{sub 2}O/Na{sub 2}O = 19) which formed a homogenous structure and had a relative concentration pore size distribution, via scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses. In this work, the Ni{sup 2+} removal effect of geopolymer inorganic membrane was studied under different pH value, initial concentration of Ni{sup 2+} solutions and initial operation temperature. Results showed that geopolymer inorganic membrane efficiently removes Ni{sup 2+} from wastewater because of the combined actions of the adsorption and rejection of this membrane on Ni{sup 2+} during membrane separation. Therefore, geopolymer inorganic membrane may have positive potential applications in removing Ni{sup 2+} or other heavy metal ions from aqueous industrial wastewater.

  18. Study on low level radioactive wastewater treatment by inorganic membrane permeation combined with complexation

    International Nuclear Information System (INIS)

    Li Junfeng; Wang Jianlong; Bai Qinzhong

    2007-01-01

    Inorganic membranes exhibit greater mechanical durability in some operations than polymeric membranes. They do not suffer from the performance degradation that was resulted from compaction of the membrane structure under pressure or ageing. Membrane permeation combined with complexation was tested for radioactive wastes processing purpose. Sodium poly-acrylic acid was selected as the complexing agent, the efficiency of inorganic membrane with cut-off 1kD, 3kD, 8kD assisted by sodium poly-acrylic acid of different molecular weight were compared. The removal efficiencies of nuclides such as strontium, cesium and cobalt by were compared. The flux and retention factors of different membrane system were compared. The impacts of complexation agent concentration on permeate flux retention factors were studied. The long term behaviours of the membrane system were also studied. Diatomite filter was selected as the pretreatment method, and the efficiency of diatomite filter for pretreatment was investigated also. (author)

  19. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  20. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu; Phuoc, Duong; Nunes, Suzana Pereira

    2017-01-01

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  1. ENHANCEMENT OF EQUILIBRIUMSHIFT IN DEHYDROGENATION REACTIONS USING A NOVEL MEMBRANE REACTOR; FINAL

    International Nuclear Information System (INIS)

    Shamsuddin Ilias, Ph.d., P.E.; Franklin G. King, D.Sc.

    2001-01-01

    With the advances in new inorganic materials and processing techniques, there has been renewed interest in exploiting the benefits of membranes in many industrial applications. Inorganic and composite membranes are being considered as potential candidates for use in membrane-reactor configuration for effectively increasing reaction rate, selectivity and yield of equilibrium limited reactions. To investigate the usefulness of a palladium-ceramic composite membrane in a membrane reactor-separator configuration, we investigated the dehydrogenation of cyclohexane by equilibrium shift. A two-dimensional pseudo-homogeneous reactor model was developed to study the dehydrogenation of cyclohexane by equilibrium shift in a tubular membrane reactor. Radial diffusion was considered to account for the concentration gradient in the radial direction due to permeation through the membrane. For a dehydrogenation reaction, the feed stream to the reaction side contained cyclohexane and argon, while the separation side used argon as the sweep gas. Equilibrium conversion for dehydrogenation of cyclohexane is 18.7%. The present study showed that 100% conversion could be achieved by equilibrium shift using Pd-ceramic membrane reactor. For a feed containing cyclohexane and argon of 1.64 x 10(sup -6) and 1.0 x 10(sup -3) mol/s, over 98% conversion could be readily achieved. The dehydrogenation of cyclohexane was also experimentally investigated in a palladium-ceramic membrane reactor. The Pd-ceramic membrane was fabricated by electroless deposition of palladium on ceramic substrate. The performance of Pd-ceramic membrane was compared with a commercially available hydrogen-selective ceramic membrane. From limited experimental data it was observed that by appropriate choice of feed flow rate and sweep gas rate, the conversion of cyclohexane to benzene and hydrogen can increased to 56% at atmospheric pressure and 200 C in a Pd-ceramic membrane reactor. In the commercial ceramic membrane

  2. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslavtsev, Andrei B [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-11-30

    Information on composite materials with ionic conductivity including inorganic composites and hybrid polymeric ion exchange membranes containing inorganic or polymeric nanoparticles is generalized. The nature of the effect of increase in the ionic conductivity in this type of materials and the key approaches used for theoretical estimation of the conductivity are considered. Data on the ionic conductivity and some other important properties of composites and membrane materials are presented. Prospects for utilization of composite materials and hybrid membranes in hydrogen power engineering are briefly outlined.

  3. Development of thin film inorganic membranes for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyo Jeong

    2012-08-22

    Membrane-based gas separation systems are noteworthy among technological options for carbon capture and storage (CCS), which is an important strategy to reduce CO{sub 2} emitted from point sources, e.g. mainly fossil power plants. In Oxyfuel-Combustion and Pre-Combustion of CCS power plant concepts oxygen separation from air is required. To meet this requirement oxygen transport membranes (OTM) consisting of gastight mixed ionic electronic conductors (MIEC) are proposed, which are associated with significantly lower efficiency losses compared with conventional air separation technologies. For cost effective application a maximum oxygen flux has to be achieved to reduce the membrane area. This can be met by reduction of membrane thickness. Therefore, the reduction of the membrane thickness to the micrometer range or even below is aimed in the present thesis. Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO) with fluorite crystal structure and La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) with perovskite crystal structure were developed as thin film membrane. CGO is expected to be more stable than other potential MIEC membranes in reducing atmospheres and to achieve sufficient oxygen permeation, e.g. in syngas production or petrol chemistry. LSCF is expected to be highly permeable with an acceptable chemical stability in Oxyfuel-combustion. Various porous ceramic substrates were prepared by vacuum-slip-casting and warm-pressing, and then characterized for porosity, gas-permeability and surface roughness. Subsequently, two approaches to fabrication of thin film membranes were investigated, which are wetchemical deposition (WCD) and physical vapor deposition (PVD). For WCD, nano-dispersions and colloidal sols were prepared for membrane top-layer and/or interlayer. When CGO nano-dispersion (NDCGO) was spin-coated as thin film membrane, the gastightness of sintered membranes was increased with decrease in spinning time and increase in concentration of

  4. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling

    Science.gov (United States)

    Zhang, Yang; Wan, Ying; Pan, Guoyuan; Yan, Hao; Yao, Xuerong; Shi, Hongwei; Tang, Yujing; Wei, Xiangrong; Liu, Yiqun

    2018-03-01

    A series of thin-film composite reverse osmosis membranes based on polyamide have been modified by coating the polyvinyl alcohol and 3-mercaptopropyltriethoxysilane aqueous solution prepared by a sol-gel process on the membrane surface, followed by thermal crosslinking treatment. In order to improve the hydrophilicity of the modified TFC membranes, the membranes were then immersed into H2O2 aqueous solution to convert -SH into -SO3H. The resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, streaming potential, XPS as well as static contact angle. After surface modification with the organic-inorganic hybrid material, the TFC membranes show increased NaCl rejection and decreased water flux with increasing 3-mercaptopropyltrimethoxysilane content in coating solution. The optimal modification membrane (PA-SMPTES-0.8) exhibits a NaCl rejection of 99.29%, higher than that (97.20%) of the virgin PA membrane, and a comparable water flux to virgin PA membrane (41.7 L/m2 h vs 47.9 L/m2 h). More importantly, PA-SMPTES-0.8 membrane shows much more improved fouling resistance to BSA than virgin PA and PVA modified PA (PA-PVA-1.0) membranes. PA-SMPTES-0.8 membrane loses about 13% of the initial flux after BSA fouling for 12 h, which is lower than that of virgin PA and PA-PVA-1.0 membranes (42% and 18%). Furthermore, the flux recovery of PA-SMPTES-0.8 membrane reaches 94% after cleaning. Thus the TFC membranes modified by this organic-inorganic hybrid technology show potential applications as antifouling RO membrane for desalination and purification.

  5. Water transport mechanisms across inorganic membranes in rad waste treatment by electro dialysis

    International Nuclear Information System (INIS)

    Andalaft, E.; Labayru, R.

    1992-01-01

    The work described in this paper deals with effects and mechanisms of water transport across an inorganic membrane, as related to some studied on the concentration of caesium, strontium, plutonium and other cations of interest to radioactive waste treatment. Several different water transport mechanisms are analysed and assessed as to their individual contribution towards the total transference of water during electro-dialysis using inorganic membranes. Water transfer assisted by proton jump mechanism, water of hydration transferred along with the ions, water related to thermo-osmotic effect, water transferred by concentration gradient and water transferred electrolytically under zeta potential surface charge drive are some of the different mechanism discussed. (author)

  6. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B; Huyghebaert, A

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  7. Heavy metals and color retention by a synthesized inorganic membrane

    Directory of Open Access Journals (Sweden)

    A. Chougui

    2014-11-01

    The ceramic membranes were tested for the removal of cadmium, zinc, Methylene Blue and Malachite Green from water under a pressure of 5 bar and a treatment time of 2 h. Liquid filtration and flow tests through these membranes resulted in a rejection rate of 100% for Methylene Blue and Malachite Green. This paper also presents the ability of the tubular membrane prepared to separate heavy metals (cadmium and zinc from their synthetic aqueous solutions. The influence of the applied pressure, feed solute concentration, feed pH on the rejection of cadmium and zinc ions was studied. Retention rates of cadmium and zinc ions of 100% were observed for an initial feed concentration of 10−4 mol/L.

  8. Supported liquid inorganic membranes for nuclear waste separation

    Science.gov (United States)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  9. Steam reforming of heptane in a fluidized bed membrane reactor

    Science.gov (United States)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.

    n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.

  10. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  11. 3. International conference on catalysis in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The 3. International Conference on Catalysis in Membrane Reactors, Copenhagen, Denmark, is a continuation of the previous conferences held in Villeurbanne 1994 and Moscow 1996 and will deal with the rapid developments taking place within membranes with emphasis on membrane catalysis. The approx. 80 contributions in form of plenary lectures and posters discuss hydrogen production, methane reforming into syngas, selectivity and specificity of various membranes etc. The conference is organised by the Danish Catalytic Society under the Danish Society for Chemical Engineering. (EG)

  12. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  13. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  14. Dense inorganic membranes - studies on transport properties, defect chemistry and catalytic behaviour

    NARCIS (Netherlands)

    ten Elshof, Johan E.

    1997-01-01

    Oxygen separation with dense oxide membranes may be an attractive method for the production of oxygen from air. Another possible application is the direct supply of oxygen in membrane reactors for the (partial) oxidation of hydrocarbons. The driving force for oxygen permeation through dense mixed

  15. Recent Advances on Carbon Molecular Sieve Membranes (CMSMs and Reactors

    Directory of Open Access Journals (Sweden)

    Margot A. Llosa Tanco

    2016-08-01

    Full Text Available Carbon molecular sieve membranes (CMSMs are an important alternative for gas separation because of their ease of manufacture, high selectivity due to molecular sieve separation, and high permeance. The integration of separation by membranes and reaction in only one unit lead to a high degree of process integration/intensification, with associated benefits of increased energy, production efficiencies and reduced reactor or catalyst volume. This review focuses on recent advances in carbon molecular sieve membranes and their applications in membrane reactors.

  16. Preparations of an inorganic-framework proton exchange nanochannel membrane

    Science.gov (United States)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  17. Membrane interactions and antimicrobial effects of inorganic nanoparticles

    DEFF Research Database (Denmark)

    Malekkhaiat Häffner, Sara; Malmsten, Martin

    2017-01-01

    Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in t......Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.......g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections....... Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological...

  18. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.

    Science.gov (United States)

    Wadekar, Shardul S; Vidic, Radisav D

    2017-05-16

    Active layers of two fully aromatic and two semi-aromatic nanofiltration membranes were studied along with surface charge at different electrolyte composition and effective pore size to elucidate their influence on separation mechanisms for inorganic ions by steric, charge, and dielectric exclusion. The membrane potential method used for pore size measurement is underlined as the most appropriate measurement technique for this application owing to its dependence on the diffusional potentials of inorganic ions. Crossflow rejection experiments with dilute feed composition indicate that both fully aromatic membranes achieved similar rejection despite the differences in surface charge, which suggests that rejection by these membranes is exclusively dependent on size exclusion and the contribution of charge exclusion is weak. Rejection experiments with higher ionic strength and different composition of the feed solution confirmed this hypothesis. On the other hand, increase in the ionic strength of feed solution when the charge exclusion effects are negligible due to charge screening strongly influenced ion rejection by semi-aromatic membranes. The experimental results confirmed that charge exclusion contributes significantly to the performance of semi-aromatic membranes in addition to size exclusion. The contribution of dielectric exclusion to overall ion rejection would be more significant for fully aromatic membranes.

  19. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways

    International Nuclear Information System (INIS)

    Chen, Pingping; Hao, Lie; Wu, Wenjia; Li, Yifan; Wang, Jingtao

    2016-01-01

    Highlights: • A series of hybrid membranes are prepared using fillers with different structures. • The fillers (0-D, 1-D, and 2-D) are sulfonated to ensure close surface component. • The effect of filler’s structure on microstructure of hydrid membrane is explored. • For single-kind filler series, 2-D filler has the strongest conduction promotion. • The synergy effect of different kinds of fillers is systematacially investigated. - Abstract: For hybrid membrane, the polymer-inorganic interface along filler surface can be facilely created to be distinctive and controllable pathway for mass transfer. Herein, three kinds of fillers are used as inorganic additives including zero-dimensional silica (0-D, SiO_2), one-dimensional halloysite nanotube (1-D, HNT), and two-dimensional graphene oxide (2-D, GO), which are functionalized by sulfonated polymer layer to ensure close surface component. Then the fillers are incorporated into two types of polymer matrixes (phase-separated sulfonated poly(ether ether ketone) and non-phase-separated chitosan) to prepare three series of hybrid membranes with single-kind filler, double-kinds fillers, or triple-kinds fillers, respectively. The microstructures, physicochemical properties, and proton conduction properties (under hydrated and anhydrous conditions) of the membranes are extensively investigated. It is found that (i) for the single-kind filler-filled membranes, 2-D filler has the strongest promotion ability for proton conductivity of membrane due to the constructed wide and long-range pathways for proton transfer; (ii) while for the hybrid membranes with double-kinds fillers, instead of synergistic promotion effect, the fillers cause more tortuous transfer pathways within membranes and then decrease proton conductivity; (iii) the hybrid membranes with triple-kinds fillers exhibit similar behavior but a little higher conductivity than the membranes with double-kinds fillers.

  20. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  1. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  2. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  3. Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

    Science.gov (United States)

    Ma, Xiaoli

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H 8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H 6/C3H8 separation properties of MFI zeolite membrane and CMS membrane. MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H 6/C3H8 mixture separation. CMS membranes were synthesized by coating/pyrolysis method on mesoporous gamma-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H 6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N 2 and C3H6 and C3H6/C 3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores. CMS membranes demonstrate excellent C3H6/C 3H8 separation

  4. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  5. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  6. Recovery of hydrogen from impurities using a palladium membrane reactor

    International Nuclear Information System (INIS)

    Willms, R.S.; Okuno, K.

    1993-01-01

    One of the important steps in processing the exhaust from a fusion reactor is recovering tritium which is incorporated into molecules such as water and methane. One device which may prove to be very effective for this purpose is a palladium membrane reactor. This is a reactor which incorporates a Pd/Ag membrane in the reactor geometry. Reactions such as water gas shift, steam reforming and methane cracking can be carried out over the reactor catalyst, and the product hydrogen can be simultaneously removed from the reacting mixture. Because product is removed, greater than usual conversions can be obtained. In addition ultrapure hydrogen is produced, eliminating the need for an additional processing step. A palladium membrane reactor has been built and tested with three different catalysts. Initial results with a Ni-based catalyst show that it is very effective at promoting all three reactions listed above. Under the proper conditions, hydrogen recoveries approaching 100% have been observed. This study serves to experimentally validate the palladium membrane reactor as potentially important tool for fusion fuel processing

  7. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  8. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes

    International Nuclear Information System (INIS)

    Li Siwen; Zhou Zhen; Liu Meilin; Li Wen; Ukai, Junzo; Hase, Kohei; Nakanishi, Masatsugu

    2006-01-01

    Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H 3 PO 4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H 3 PO 4 content and temperature, reaching 3.2 x 10 -3 S/cm at 110 deg. C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H 3 PO 4 . The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 x 10 -2 S/cm at 110 deg. C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 deg. C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells

  9. The Membrane Gradostat Reactor: Secondary metabolite production ...

    African Journals Online (AJOL)

    This manuscript focuses on the aspect of a membrane gradostat as an entirely different concept compared to submerged hollow fibre modules. The use of membrane bioreactor (MBR) technology is rapidly advancing in the wastewater treatment industries. However, this is not the case in the biopharmaceutical ...

  10. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  11. Noble gas separation from nuclear reactor effluents using selective adsorption with inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Paplawsky, W.J.

    1981-01-01

    A radioactive waste gas treatment system utilizing selective adsorption on inorganic adsorbents is described for application to PWRs. The system operates at near ambient pressure, does not require a hydrogen recombiner, has low radioactive gas inventories, and is cost competitive with existing treatment systems. The proposed technique is also applicable for recovery of noble gases from the containment building of a nuclear reactor after an accident. A system design for this application is also presented

  12. Biofilm formation on membranes used for membrane aerated biological reactors, under different stress conditions

    International Nuclear Information System (INIS)

    Andrade-Molinar, C.; Ballinas-Casarrubias, M. L.; Solis-Martinez, F. J.; Rivera-Chavira, B. E.; Cuevas-Rodirguez, G.; Nevarez-Moorillon, G. V.

    2009-01-01

    Bacterial biofilm play an important role in wastewater treatment processes, and have been optimized in the membrane aerated biofilm reactors (MABR). In MABR, a hydrophobic membrane is used as support for the formation of biofilm, and supplements enough aeration to assure an aerobic process. (Author)

  13. Reactor vessel using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  14. Membrane reactor technology for ultrapure hydrogen production

    NARCIS (Netherlands)

    Patil, Charudatta Subhash

    2005-01-01

    The suitability of polymer electrolyte membrane fuel cells (PEMFC) for stationary and vehicular applications because of its low operating temperatures, compactness, higher power density, cleaner exhausts and higher efficiencies compared to conventional internal combustion engines and gas turbines

  15. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  16. Bifunctionalized organic-inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol.

    Science.gov (United States)

    Tripathi, Bijay P; Kumar, Mahendra; Saxena, Arunima; Shahi, Vinod K

    2010-06-01

    Chitosan was modified into N-p-carboxy benzyl chitosan (NCBC) by introducing an aromatic ring grafted with acidic -COOH group and highly stable and cross-linked nanostructured NCBC-silica composite membranes were prepared for pervaporation dehydration of water-ethanol mixture. These membranes were tailored to comprise three regions namely: hydrophobic region, highly charged region and selective region, in which weak acidic group (-COOH) was grafted at organic segment while strong acidic group (-SO(3)H) was grafted at inorganic segment to achieve high stability and less swelling in water-ethanol mixture. Cross-linking density and NCBC-silica content in membrane matrix has been systematically optimized to control the nanostructure of the developed polymer matrix for studying the effects of molecular structure on the swelling, and PV performance. Among prepared membranes, nanocomposite membrane with 3h cross-linking time and 90% (w/w) of NCBC-silica content (PCS-3-3) exhibited 1.66×10(-4)cm(3)(STP) cm/cm(2) s cmHg water permeability (P(W)), while 1.35×10(-7) cm(3)(STP) cm/cm(2) s cmHg ethanol permeability (P(EtOH)) of developed membrane and 1231 PV selectivity factor at 30 °C for separating water from 90% (w/w) ethanol mixture. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  18. Ceramic membrane reactor with two reactant gases at different pressures

    Science.gov (United States)

    Balachandran, Uthamalingam; Mieville, Rodney L.

    2001-01-01

    The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

  19. Progress in Treatment of Oily Wastewater by Inorganic Porous Ceramic Membrane

    Directory of Open Access Journals (Sweden)

    Dai Xiaoyuan

    2017-01-01

    Full Text Available The composition and complexity of oily wastewater contains many solid particles, free oil, emulsified oil and so on.It brought about a series of environmental pollution problems when oily wastewater was directly discharged into rivers, lakes and other water bodies. Therefore, researchers are committed to study how to deal with oily wastewater to deal with oily wastewater to apply it to meet the requirements of water injection.Inorganic porous ceramic membrane has excellent properties among many filtering methods. For example, high temperature and high pressure resistance, resistance to acid and alkali, low energy consumption, no pollution to the environment and has a good prospect in the field of oily wastewater treatment, which has attracted the attention of many scholars not only at home but also on abroad. This article describes the present situation of the research on the treatment of oily wastewater by ceramic membrane in recent years, and expounded the significance of the treatment of oily wastewater to people’s lives and makes an expectation for the development of inorganic porous ceramic membrane in the future.

  20. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  1. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  2. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  3. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  4. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  5. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  6. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  7. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

    Science.gov (United States)

    Nishizawa, K; Nakajima, M; Nabetani, H

    2000-04-05

    A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

  8. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters : The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor,

  9. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  10. Dry Reforming of Methane Using a Nickel Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Jonas M. Leimert

    2017-12-01

    Full Text Available Dry reforming is a very interesting process for synthesis gas generation from CH 4 and CO 2 but suffers from low hydrogen yields due to the reverse water–gas shift reaction (WGS. For this reason, membranes are often used for hydrogen separation, which in turn leads to coke formation at the process temperatures suitable for the membranes. To avoid these problems, this work shows the possibility of using nickel self-supported membranes for hydrogen separation at a temperature of 800 ∘ C. The higher temperature effectively suppresses coke formation. The paper features the analysis of the dry reforming reaction in a nickel membrane reactor without additional catalyst. The measurement campaign targeted coke formation and conversion of the methane feedstock. The nickel approximately 50% without hydrogen separation. The hydrogen removal led to an increase in methane conversion to 60–90%.

  11. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2013-09-01

    Full Text Available The advanced use of inorganic membranes, such as zeolites, in large-scale industrial processes is hindered by the inability to manufacture continuous and defect-free membranes. We therefore aimed to construct such a defect-free membrane. Various zeolites were synthesised on the inner surface of ?-alumina support tubes by a hydrothermal process. Gas permeation properties were investigated at 298 K for single component systems of N2, CF4 and C3F6. Ideal selectivities lower than Knudsen selectivities were obtained as a result of defects from intercrystalline slits and crack formation during synthesis and template removal. A composite ceramic membrane consisting of a ceramic support structure, a mordenite framework inverted intermediate zeolite layer and a Teflon AF 2400 top layer was developed to improve separation. The Teflon layer sealed possible defects present in the separation layer forcing the gas molecules to follow the path through the zeolite pores. Ideal selectivities of 88 and 71 were obtained for N2/CF4 and N2/C3F6 respectively. Adsorption experiments performed on materials present in the membrane structure suggested that although adsorption of C3F6 onto Teflon AF 2400 compared to CF4 results in a considerable contribution to permeation for the composite ceramic membrane, the sealing effect of the zeolite layer by the Teflon layer is the reason for the large N2/CF4 and N2/C3F6 selectivities obtained. The Teflon layer effectively sealed intercrystalline areas in-between zeolite crystals, which resulted in high ideal selectivies for N2/CF4 and N2/C3F6.

  12. APPLICATION OF MEMBRANE SORPTION REACTOR TECHNOLOGY FOR LRW MANAGEMENT

    International Nuclear Information System (INIS)

    Glagolenko, Yuri; Dzekun, Evgeny; Myasoedovg, Boris; Gelis, Vladimir; Kozlitin, Evgeny; Milyutin, Vitaly; Trusov, Lev; Rengel, Mike; Mackay, Stewart M.; Johnson, Michael E.

    2003-01-01

    A new membrane-sorption technology has been recently developed and industrially implemented in Russia for the treatment of the Liquid (Low-Level) Radioactive Waste (LRW). The first step of the technology is a precipitation of the radionuclides and/or their adsorption onto sorbents of small particle size. The second step is filtration of the precipitate/sorbent through the metal-ceramic membrane, Trumem.. The unique feature of the technology is a Membrane-Sorption Reactor (MSR), in which the precipitation / sorption and the filtration of the radionuclides occur simultaneously, in one stage. This results in high efficiency, high productivity and compactness of the equipment, which are the obvious advantages of the developed technology. Two types of MSR based on Flat Membranes device and Centrifugal Membrane device were developed. The advantages and disadvantages of application of each type of the reactors are discussed. The MSR technology has been extensively tested and efficiently implemented at ''Mayak '' nuclear facility near Chelyabinsk, Russia as well as at other Russian sites. The results of this and other applications of the MSR technology at the different Russian nuclear facilities are discussed. The results of the first industrial applications of the MSR technology for radioactive waste treatment in Russia and analysis of the available information about LRW accumulated in other countries imply that this technology can be successfully used for the Low Level Radioactive Waste treatment in the USA and in other nuclear countries

  13. Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane

    NARCIS (Netherlands)

    Brunetti, A.; Caravella, A.; Fernandez Gesalaga, E.; Pacheco Tanaka, D. A.; Gallucci, F.; Drioli, E.; Curcio, E.; Viviente, J. L.; Barbieri, G.

    2015-01-01

    In hydrogen production, the syngas streams produced by reformers and/or coal gasification plants contain a large amount of H2 and CO in need of upgrading. To this purpose, reactors using Pd-based membranes have been widely studied as they allow separation and recovery of a pure hydrogen stream.

  14. Novel Inorganic/Polymer Composite Membranes for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.S. Winston [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Dutta, Prabir K. [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Schmit, Steve J. [Gradient Technology, Elk River, MN (United States)

    2016-10-01

    The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustion CO2 capture is expected to achieve the DOE target of $40/tonne CO2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10-6 cm3 (STP)/(cm2 • s • cm Hg), 3000 GPU = 10-6 mol/(m2 • s • Pa)) with a high CO2/N2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO2 permeance with > 500 CO2/N2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in

  15. Continuous hyperpolarization with parahydrogen in a membrane reactor

    Science.gov (United States)

    Lehmkuhl, Sören; Wiese, Martin; Schubert, Lukas; Held, Mathias; Küppers, Markus; Wessling, Matthias; Blümich, Bernhard

    2018-06-01

    Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.

  16. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-02-03

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  17. Inorganic photocatalytic membranes for the remediation of VOCs in groundwater at the Portsmouth Site

    International Nuclear Information System (INIS)

    Bischoff, B.L.; Fain, D.E.; James, D.L. II

    1997-01-01

    A small-scale demonstration of a new photocatalytic membrane reactor was undertaken at the X-623 Groundwater Treatment Facility at the Portsmouth Gaseous Diffusion Plant. The photocatalytic membrane reactor initially removed between 60 and 65% of the TCE in a single pass. It also removed significant amounts of three additional compounds (including completely removing one of the compounds). It is believed that these compounds were vinyl chloride, and two isomers of dichloroethylene. Within three days from startup, high suspended solids (mainly bacteria) contained in the feedwater tank caused plugging of the system's prefilter. The high concentration of bacteria was the result of a previously unknown large amount of activated carbon present in the feed tank prior to addition of the groundwater. It was also later discovered that fine colloidal silt particles had fouled the photocatalytic membranes and reduced their activity yielding only about a 20% reduction of TCE. The silt particles were determined to be between 50 and 100 nm and were able to pass through the 500 nm (0.5 μm) diameter pores of the prefilter. The results of this field test demonstrated the potential for success of the deployment of this technology, the simplicity, flexibility, and operability of the process and that improvements to the system design are needed prior to any future demonstrations. 9 figs

  18. Catalytic membrane reactor for tritium extraction system from He purge

    International Nuclear Information System (INIS)

    Santucci, Alessia; Incelli, Marco; Sansovini, Mirko; Tosti, Silvano

    2016-01-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm 3 /h and a H 2 /He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H 2 feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been measured by using

  19. Catalytic membrane reactor for tritium extraction system from He purge

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Incelli, Marco [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); DEIM, University of Tuscia, Via del Paradiso 47, 01100 Viterbo (Italy); Sansovini, Mirko; Tosti, Silvano [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2016-11-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm{sup 3}/h and a H{sub 2}/He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H{sub 2} feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been

  20. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  1. Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2010-01-01

    In this theoretical work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, has been compared for ultra-pure hydrogen production via methane reforming. Using detailed theoretical models, the required membrane area to reach a given conversion

  2. Comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2009-01-01

    In this work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, have been compared for the reforming of methane for the production of ultra-pure hydrogen. Using detailed theoretical models, the required membrane area to reach a given

  3. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Geenevasen, J.A.J. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES), or bis(triethoxysilyl)ethane (BTESE) and MTES. Early-stage hydrolysis and condensation rates of the individual silane precursors were followed with 29Si liquid NMR and structural characteristics of more developed sols were studied with Dynamic Light Scattering. Condensation was found to proceed at more or less similar rates for the different precursors. Homogeneously mixed hybrid colloids can therefore be formed from precursor mixtures. The conditions of preparation under which clear sols with low viscosity could be formed from BTESE/MTES were determined. These sols were synthesised at moderate water/silane and acid/silane ratios and could be applied for the coating of defect-free microporous membranes for molecular separations under hydrothermal conditions.

  4. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  5. Upgrading of Gasification Gases by means of a Catalytic Membrane Reactor: WGS Catalysts and Inorganic Palladium Membranes HENRECA Project (ENE2004-07758-CO2-01). Final Report; Estudios de Enriquecimiento en H{sub 2} de Gases de Gasificacion mediante el Uso Reactor Catalitico de Membranas: Catalizadores WGS y Membranas Inorganicas de Paladio. Informe Final Proyecto HENRECA (ENE2004-07758-C02-01)

    Energy Technology Data Exchange (ETDEWEB)

    Maranon Bujan, M.; Sanchez Hervas, J. M.; Barreiro Carou, M. del

    2008-07-01

    The combination of a CO catalytic converter with a highly hydrogen selective membrane out stands as a very promising technology for the upgrading of biomass gasification gases. The advantages of this combined system over the traditional two stages WGS technology has been investigated within the HENRECA project, financed under the Spanish PN 2004-2007 of the Ministry of Science and Technology. This project started in September 2004 and had a duration of three years. The Division of Combustion and Gasification of CIEMAT participates in this project in three main activities: the study of the catalytic activity of WGS catalysts synthesised by the other partner of the project (University Rey Juan Carlos), the design of the reaction-separation system and the design and construction of a bench-scale pilot plant where the performance of the membranes prepared by URJC and the catalytic membrane system were investigated. This report describes the activities carried out within the project and the main results obtained. (Author) 14 ref.

  6. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  7. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  8. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  9. Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane.

    Science.gov (United States)

    Uragami, Tadashi; Katayama, Takuya; Miyata, Takashi; Tamura, Hiroshi; Shiraiwa, Tadashi; Higuchi, Akon

    2004-01-01

    To control swelling of quaternized chitosan (q-Chito) membranes, mixtures of q-Chito as an organic component and tetraethoxysilane (TEOS) as an inorganic component were prepared using the sol-gel reaction, and novel q-Chito/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation, the effect of TEOS content on the water/ethanol selectivity of q-Chito/TEOS hybrid membranes was investigated. Hybrid membranes containing up to 45 mol % TEOS exhibited higher water/ethanol selectivity than the q-Chito membrane. This resulted from depressed swelling of the membranes by formation of a cross-linked structure. However, introduction of excess TEOS led to greater swelling of the hybrid membranes. Therefore, the water/ethanol selectivity of the hybrid membranes containing more than 45 mol % TEOS was lower than that of the q-Chito membrane. The relationship between the structure of q-Chito/TEOS hybrid membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotrope is discussed in detail.

  10. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater.

    Science.gov (United States)

    Ng, Kok-Kwang; Lin, Cheng-Fang; Panchangam, Sri Chandana; Andy Hong, Pui-Kwan; Yang, Ping-Yi

    2011-08-01

    A novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant. The new reactor has a longer sludge retention time (SRT) and lower mixed liquor suspended solids (MLSS) content than does the conventional. Three different hydraulic retention times (HRTs) of 6, 9, and 12 h were studied. The results show faster rise of the transmembrane pressure (TMP) with decreasing hydraulic retention time (HRT) in both reactors, where most significant membrane fouling was associated with high SMP (consisting of carbohydrate and protein) contents that were prevalent at the shortest HRT of 6 h. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. Rapid membrane fouling was attributed to increased production of biomass and SMP, as in the conventional reactor. SMP of 10-100 kDa from both MBRs were predominant with more than 70% of the SMP <100 kDa. Protein was the major component of SMP rather than carbohydrate in both reactors. The new reactor sustained operation at constant permeate flux that required seven times less frequent chemical cleaning than did the conventional reactor. The new BEMR offers effective organics removal while reducing membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ciora, Richard J [Media and Process Technology Inc., Pittsburgh, PA (United States); Liu, Paul KT [Media and Process Technology Inc., Pittsburgh, PA (United States)

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  12. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  13. Multienzyme Immobilized Polymeric Membrane Reactor for the Transformation of a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Rupam Sarma

    2018-04-01

    Full Text Available We have developed an integrated, multienzyme functionalized membrane reactor for bioconversion of a lignin model compound involving enzymatic catalysis. The membrane bioreactors were fabricated through the layer-by-layer assembly approach to immobilize three different enzymes (glucose oxidase, peroxidase and laccase into pH-responsive membranes. This novel membrane reactor couples the in situ generation of hydrogen peroxide (by glucose oxidase to oxidative conversion of a lignin model compound, guaiacylglycerol-β-guaiacyl ether (GGE. Preliminary investigation of the efficacy of these functional membranes towards GGE degradation is demonstrated under convective flow mode. Over 90% of the initial feed could be degraded with the multienzyme immobilized membranes at a residence time of approximately 22 s. GGE conversion product analysis revealed the formation of oligomeric oxidation products upon reaction with peroxidase, which may be a potential hazard to membrane bioreactors. These oxidation products could further be degraded by laccase enzymes in the multienzymatic membranes, explaining the potential of multi enzyme membrane reactors. The multienzyme incorporated membrane reactors were active for more than 30 days of storage time at 4 °C. During this time span, repetitive use of the membrane reactor was demonstrated involving 5–6 h of operation time for each cycle. The membrane reactor displayed encouraging performance, losing only 12% of its initial activity after multiple cycles of operation.

  14. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  15. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  16. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  17. Pd-Ag membrane reactor for steam reforming reactions: a comparison between different fuels

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2008-01-01

    The simulation of a dense Pd-based membrane reactor for carrying out the methane, the methanol and the ethanol steam reforming (SR) reactions for pure hydrogen production is performed. The same simulation is also performed in a traditional reactor. This modelling work shows that the use of membrane

  18. Sewage disposal using anaerobic membrane reactor. Kenkiseimaku reactor ni yoru gesui shori

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y. (Dic-Degremont Co. Ltd., Tokyo (Japan))

    1991-11-01

    Discussions were given on a small-scale sewage disposal of about bod 200 mg/l, for which no many examples of use have been hitherto available, using a system combining an anaerobic reactor and membrane modules. Experiments had been carried out from 1988 through 1990 as a part of the Aqua-Renaissance Project. The test equipment wza installed in the premises of the Chigasaki Coastal Research Facilities operated by the Ministry of International Trade and Industry, which used sewage flowing from the adjoining sewage treatment plant for the southern area of the Fujisawa City. The test facility consisted of a system comprising a pretreatment facility, SS decomposing reactor, fluid-bed reactor, separation membrane modules, nitrogen removing facility and micro-organism activity measurement. The test facility was constucted assuming a treatment of 10 m{sup 3} a day. The system was divided into a composite system, A system and B system to operate the system in simplified flows. As a result of comparing the composite system, A system and B system, it was found that B system can deal with wider range of disposal for a small-scale sewage treatment of about 1000 m{sup 3} a day. 6 refs., 14 figs., 3 tabs.

  19. Feasibility study of a reverse flow catalytic membrane reactor with porous membranes for the production of syngas

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper a novel reverse flow catalytic membrane reactor (RFCMR) is proposed for the partial oxidation of CH4 to syngas. The feasibility of the RFCMR concept has been investigated for industrial conditions on basis of a simulation study employing a reactor model, which includes a detailed

  20. Performance of integrated bioelectrochemical membrane reactor: Energy recovery, pollutant removal and membrane fouling alleviation

    Science.gov (United States)

    Dong, Yue; He, Weihua; Li, Chao; Liang, Dandan; Qu, Youpeng; Han, Xiaoyu; Feng, Yujie

    2018-04-01

    A novel hybrid bioelectrochemical membrane reactor with integrated microfiltration membrane as the separator between electrodes is developed for domestic wastewater treatment. After accumulation of biofilm, the organic pollutants are mainly degraded in anodic compartment, and microfiltration membrane blocks the adverse leakage of dissolved oxygen from aerated cathodic compartment. The maximum system power output is restricted by gas-water ratio following a Monod-like relationship. Within the tested gas-water ratios ranging from 0.6 to 42.9, the half-saturation constant (KQ) is 5.9 ± 0.9 with a theoretic maximum power density of 20.4 ± 1.0 W m-3. Energy balance analysis indicates an appropriate gas-water ratio regulation (from 2.3 to 28.6) for cathodic compartment is necessary to obtain positive energy output for the system. A maximum net electricity output is 9.09 × 10-3 kWh m-3 with gas-water ratio of 17.1. Notably, the system achieves the chemical oxygen demand removal of 98.3 ± 0.3%, ammonia nitrogen removal of 99.6 ± 0.1%, and total nitrogen removal of 80.0 ± 0.9%. This work verifies an effective integration of microfiltration membrane into bioelectrochemical system as separator for high-quality effluent and provides an insight into the operation and regulation of biocathode system for effective electrical energy output.

  1. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  2. Nuclear power plant laundry drain treatment using membrane bio reactor

    International Nuclear Information System (INIS)

    Tsukamoto, Masaaki; Kohanawa, Osamu; Kinugasa, Atsushi; Ogawa, Naoki; Murogaki, Kenta

    2012-01-01

    In nuclear power plant, the radioactive effluent generated by washing the clothes worn in controlled area and the hand and shower water used at the controlled area are treated in laundry drain treatment system. Although various systems which treat such liquid waste preexist, the traditional treatment system has disadvantages such as high running cost and a large amount of secondary waste generation. To solve these matters, we have considered application of an activated sludge system, membrane bio reactor, which has been practically used in general industry. For nuclear power plant, the activated sludge system has been developed, tested in its adaptability and the adequacy has been proved. Some preexisting treatment systems have been replaced with this activated sludge system for the first time in a domestic nuclear power plant, and the renewal system is now in operation. The result is reported. (author)

  3. Tritium isolation from lithium inorganic compounds applicable to thermonuclear reactor breeding blanket

    International Nuclear Information System (INIS)

    Vasil'ev, V.G.; Ershova, Z.V.; Nikiforov, A.S.

    1982-01-01

    Tritium separation from inorganic lithium compounds: Li 2 O, LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , LiF, LiBeF 3 , Li 2 BeF 4 irradiated with a beam of a gamma facility and a nuclear reactor, has been studied. In the first case the gas phase is absent. In the latter one- the tritium amount in the gas does not exceed 1-2% of its total amount in the salt. Based on the EPR spectra of irradiated salts the concentrations of paramagnetic centres are calculated. It is shown that during thermal annealing the main portion of tritium in the gas phase is in the form of oxide (HTO, T 2 O). Tritium is separated from lithium fluoroberyllates in the form of hydrogen (HT, T 2 ). The kinetics of tritium oxide isolation from irradiated lithium oxide aluminate, metha- and orthosilicates, lithium sulphate has been studied. The activation energies of tritium oxide separation process are presented. A supposition is made that chemical reaction of the HTO (T 2 O) or HT(T 2 ) or HF(TF) formation is a limiting stage. Clarification of the process stage limiting the rate of tritium recovery will permit to evaluate conditions for the optimum work of lithium material in the blanket, lithium zone to select the lithium element structure and temperature regime of irradiation

  4. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  5. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John P. [Univ. of Texas-Dallas, Richardson, TX (United States). Dept. of Chemistry

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H2/CO2 selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO2-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H2/CO2 selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux and selectivity at 300 °C, which is comparable to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  6. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  7. Characterization of Selected Parameters of Organic-Inorganic Hybrid Membranes Based on Various Polymers and Nd-Fe-B Fillers

    Directory of Open Access Journals (Sweden)

    Rybak A.

    2016-12-01

    Full Text Available In this paper magnetic organic-inorganic hybrid membranes based on EC, PPO polymer matrices and various magnetic powder microparticles were synthesized and studied. Constant pressure permeation technique and the Time Lag method were used to obtain the gas transport coefficients. The mechanical, rheological and magnetic parameters of magnetic hybrid membranes were examined. It was found that their separation and gas transport properties (D, P, S and α were improved with the decrease in powder particle size and the increase of membrane’s remanence, saturation magnetization and magnetic particle filling. The increase of the magnetic powder addition and a decrease of its granulation improved also mechanical and rheological parameters of the tested membranes. This improvement also had a positive effect on their gas separation properties and their potential usage in the future.

  8. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  9. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  10. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  11. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  12. Optimization of a membrane reactor for hydrogen production with genetic algorithms

    International Nuclear Information System (INIS)

    Raceanu, Mircea; Iordache, Ioan; Curuia, Marian; Rasoi, Gabriel; Patularu, Laurentiu; Enache, Adrian

    2009-01-01

    Full text: Hydrogen is produced via steam reforming of hydrocarbons such as natural gas or methane by using conventional systems. Unfortunately, these systems need at least four different stages, consisting of three reactors and a purification system. Moreover, the steam reforming reaction is an endothermic thermodynamically limited system, meaning that high temperature energy supply is needed for complete conversion. Among different technologies related to production, separation and purification of H 2 , membrane technologies seem to really play a fundamental role. The specific thermodynamic limits are overcome using the so-called membrane reactors, systems in which both reaction and separation occur simultaneously. The hydrogen is driven across the membrane by the pressure difference, depending on the temperature, pressure and reactor length the methane can be completely converted and consequently very pure hydrogen is produced. A membrane reactor has two components which can be optimized namely, the membrane and the reactor dimensions. This paper presents a study on optimization of membrane reactor for enhancing the overall production. A mathematical heterogeneous model of the reactor was used for optimization of reactor performance. Genetic algorithms were used as powerful methods for optimization of complex problems. (authors)

  13. The Effect of Surfactant and Compatibilizer on Inorganic Loading and Properties of PPO-based EPMM Membranes

    Science.gov (United States)

    Bissadi, Golnaz

    Hybrid membranes represent a promising alternative to the limitations of organic and inorganic materials for high productivity and selectivity gas separation membranes. In this study, the previously developed concept of emulsion-polymerized mixed matrix (EPMM) membranes was further advanced by investigating the effects of surfactant and compatibilizer on inorganic loading in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which inorganic part of the membranes originated from tetraethylorthosilicate (TEOS). The polymerization of TEOS, which consists of hydrolysis of TEOS and condensation of the hydrolyzed TEOS, was carried out as (i) one- and (ii) two-step processes. In the one-step process, the hydrolysis and condensation take place in the same environment of a weak acid provided by the aqueous solution of aluminum hydroxonitrate and sodium carbonate. In the two-step process, the hydrolysis takes place in the environment of a strong acid (solution of hydrochloric acid), whereas the condensation takes place in weak base environment obtained by adding excess of the ammonium hydroxide solution to the acidic solution of the hydrolyzed TEOS. For both one- and two-step processes, the emulsion polymerization of TEOS was carried out in two types of emulsions made of (i) pure trichloroethylene (TCE) solvent, and (ii) 10 w/v% solution of PPO in TCE, using different combinations of the compatibilizer (ethanol) and the surfactant (n-octanol). The experiments with pure TCE, which are referred to as a gravimetric powder method (GPM) allowed assessing the effect of different experimental parameters on the conversion of TEOS. The GPM tests also provided a guide for the synthesis of casting emulsions containing PPO, from which the EPMM membranes were prepared using a spin coating technique. The synthesized EPMM membranes were characterized using 29Si nuclear magnetic resonance (29Si NMR), differential scanning calorimetry (DSC), inductively coupled plasma mass

  14. Les réacteurs à membranes : possibilités d'application dans l'industrie pétrolière et pétrochimique Membrane Reactors: Possibilities of Application in the Petroleum and Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Guy C.

    2006-11-01

    use is very limited in membrane reactors as they cannot withstand temperatures higher than 150°C. Metal, ceramic or glass membrane are preferred. Published work on membrane reactors is mainly concerned with dehydrogenation reactions and the in-situ separation of hydrogen. Dense palladium membranes or microporous inorganic membranes are used. A typical membrane reactor is presented in Fig. 1. The catalyst constitutes a fixed bed in the inside tube where dehydrogenation of cyclohexane into benzene takes place. Hydrogen produced by the reaction, permeates through the palladium wall. Carrier argon is used on the permeate side to lower the partial pressure of hydrogen and therefore increase the permeation rate. The main factors enhancing the equilibrium shift and therefore the conversion are presented in Table 1. Potential applications in the petroleum and petrochemical industry. Three potentially interesting applications are identified and the advantages of using a membrane reactor are discussed. They are : propane dehydrogenation into propylene, cyclohexanic naphthene dehydrogenation and natural gas steam reforming. For these chemical reactions, palladium based membranes show the best performance in terms of temperature resistance, hydrogen selectivity and permeability. The conversion of the dehydrogenation reaction of propane is increased by a higher temperature or a lower pressure as presented in Table 2. Selective draw-off of hydrogen from the reactor through a permeable wall increases the conversion from 48. 6% to 75. 5% (Table 3 or decreases the reaction temperature from 600 to 500°C (Table 4. Table 5 presents the effect of the selective draw-off of hydrogen on the conversion or the operating temperature for conditions found in industrial propane dehydrogenation processes. For a specified conversion, the use of a membrane reactor results in a lower operating temperature which reduces considerably catalyst coking. It allows also the use of common materials for the

  15. Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2017-06-01

      Keywords: Direct Methanol Fuel Cell, Poly(ether ether ketone, cyclodextrin-silica, sulfonation, ionic conductivity. Article History: Received January 18th 2017; Received in revised form April 21st 2017; Accepted June 22nd 2017; Available online How to Cite This Article: Kusworo, T.D., Hakim, M.F. and Hadiyanto, H. (2017 Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application. International Journal of Renewable Energy Development, 6(2, 165-170. https://doi.org/10.14710/ijred.6.2.165-170

  16. Behaviour of inorganics and refractory lining design in a entrained flow reactor for the production of BTL

    Energy Technology Data Exchange (ETDEWEB)

    Berjonneau, J.; Poirier, J.; Colombel, L. (CNRS CRMHT, Orleans (France)); Pichavant, M. (CNRS ISTO, Orleans (France)); Defoort, F. (CEA LPTM DTN/SE2T/LPTM, Grenoble (France))

    2007-07-01

    During the gasification of biomass, inorganic species are produced and constitute an important obstacle in this process. The aim of this study is to understand the behaviour of the inorganic species particularly the production of ashes. These ashes will coat the reactor wall and will play at the same time the role of protection of the refractory layer against external attacks and of thermal insulation. To define the operating conditions and to design the refractory structure, melting temperature of the slag is one of the most important properties. To know this characteristic a thermodynamic approach is used. The database used for the calculation is firstly validated by comparison with systems available in the literature and with an experimental approach. (orig.)

  17. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2012-01-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity

  18. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  19. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  20. The Enhancement of the Selectivity of Complex Reactions by a Catalytic Membrane Reactor -Ethylene Oxidation Over a Ag Catalyst Supported in a Ceramic Membrane-

    OpenAIRE

    馮, 臨; 小林, 正義; Lin, FENG; Masayoshi, KOBAYASHI

    1991-01-01

    This research demonstrated that, using a membrane reactor consisting of a tubular, microporous, glass-ceramic membrane, it is possible to achieve selective oxidation of ethylene to ethylene oxide with an Ag catalyst. In experiments which a reaction temperature range of 115 to 300℃ and a contact time of 1.5 to 5 seconds, resulting data illustrated the following characteristics of this membrane reactor : 1) compared with a classic tubular reactor, the selectivity of ethylene oxide is increased ...

  1. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  2. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  3. The effect of gas permeation through vertical membranes on chemical switching reforming (CSR) reactor performance

    NARCIS (Netherlands)

    Wassie, S.A.; Gallucci, F.; Cloete, S.; Zaabout, A.; van Sint Annaland, M.; Amini, S.

    2016-01-01

    A novel membrane assisted fluidized bed reactor concept has been proposed for ultra-pure hydrogen production with integrated CO2 capture from steam methane reforming. The so-called Chemical Switching Reactor (CSR) concept combines the use of an oxygen carrier for supplying heat and catalysing the

  4. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential

  5. A dense Pd/Ag membrane reactor for methanol steam reforming: Experimental study

    NARCIS (Netherlands)

    Basile, A.; Gallucci, F.; Paturzo, L.

    2005-01-01

    This paper focuses on an experimental study of the methanol steam reforming (MSR) reaction. A dense Pd/Ag membrane reactor (MR) has been used, and its behaviour has been compared to the performance of a traditional reactor (TR) packed with the same catalyst type and amount. The parameters

  6. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  7. A Catalytically Active Membrane Reactor for Fast, Highly Exothermic, Heterogeneous Gas Reactions. A Pilot Plant Study

    NARCIS (Netherlands)

    Veldsink, Jan W.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    Membrane reactors have been frequently studied because of their ability to combine chemical activity and separation properties into one device. Due to their thermal stability and mechanical strength, ceramic membranes are preferred over polymeric ones, but small transmembrane fluxes obstruct a

  8. A catalytically membrane reactor for fast, highly exothermic, heterogeneous gas reactions : a pilot plant study

    NARCIS (Netherlands)

    Veldsink, J.W.; Veldsink, J.W.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    Membrane reactors have been frequently studied because of their ability to combine chemical activity and separation properties into one device. Due to their thermal stability and mechanical strength, ceramic membranes are preferred over polymeric ones, but small transmembrane fluxes obstruct a

  9. Membrane assisted fluidized bed reactor: experimental demonstration for partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.

    2004-01-01

    In this thesis the reactor concept has been developed on the basis of an experimental study on the effect of fluidization conditions on the membrane permeation rate in a MAFBR, the extent of gas back mixing and the tube-to-bed heat transfer rates in the presence of membrane bundles with and without

  10. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Tosti, S.; Basile, A.; Borelli, R.; Borgognoni, F.; Castelli, S.; Fabbricino, M.; Gallucci, F.; Licusati, C.

    2009-01-01

    The ethanol steam reforming reaction carried out in a Pd-based tubular membrane reactor has been modelled via a finite element code. The model considers the membrane tube divided into finite volume elements where the mass balances for both lumen and shell sides are carried out accordingly to the

  11. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Maloncy, M.L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology (Netherlands)

    2004-07-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branch ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. A model studies using C6 components are conduct. Separated n-C6 from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  12. Microfiltration Process by Inorganic Membranes for Clarification of TongBi Liquor

    Directory of Open Access Journals (Sweden)

    Minyan Huang

    2012-02-01

    Full Text Available Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs. The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL, a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in terms of flux, transmittance of the ingredients, physical-chemical parameters, removal of macromolecular materials and fouling resistance. The results show that 0.2 μm zirconium oxide membrane is more suitable. The stable permeate flux reaches 135 L·h−1·m−2, the cumulative transmittance of the indicator is 65.53%. Macromolecular materials, such as starch, protein, tannin, pectin and total solids were largely eliminated in retentate after filtration using 0.2 μm ZrO2 ceramic membrane, resulting in clearer TBL. Moreover, this work also reveals that continuous ultrasound could strengthen membrane process that the permeate flux increases significantly. This work demonstrates that the purification of CHME with ceramic membranes is possible and yielded excellent results.

  13. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  14. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  15. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    International Nuclear Information System (INIS)

    Liger, Karine; Mascarade, Jérémy; Joulia, Xavier; Meyer, Xuan-Mi; Troulay, Michèle; Perrais, Christophe

    2016-01-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q_2 form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  16. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    Science.gov (United States)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  17. A novel auto-thermal reforming membrane reactor for high purity H2

    International Nuclear Information System (INIS)

    Tony Boyd; Grace, J.R.; Lim, C.J.; Adris, A.M.

    2006-01-01

    A novel hydrogen reactor based on steam reforming of natural gas has been developed and tested. The reactor produces high purity hydrogen using in-situ perm-selective membranes installed in a fluidized catalyst bed, thus shifting the thermodynamic equilibrium of the SMR reaction and eliminating the need for downstream hydrogen purification. The reactor is particularly suited to auto-thermal reforming, where air is added to the reformer to provide the endothermic reaction heat, thus eliminating the need to indirectly heat the reactor. The gas flow pattern within the fluidized bed induces an internal circulation of catalyst particles between the central SMR reaction (permeation) zone and an outer annulus. The circulating hot catalyst particles from the oxidation zone carry the required endothermic heat of reaction for the reforming, while ensuring that the palladium membranes are not exposed to excessive temperatures or to oxygen. Another beneficial characteristic of the reactor is that very little of the nitrogen present in the oxidation air reaches the reaction zone, thus maintaining the hydrogen driving force for the perm-selective membranes. Pilot plant results carried out in a semi-industrial scale reactor will be presented. The reactor was operated up to 650 C and 14 bar. Pure hydrogen (99.999+%) was initially obtained from the reactor and an equilibrium shift was demonstrated. (authors)

  18. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—II. Operation in presence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    This is the second communication of a series dealing with an experimental and modelling study on propane catalytic combustion in a membrane reactor with separate feed of reactants. In paper I the behaviour of the reactor in the absence of trans-membrane pressure gradients was presented and

  19. Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Favuzza, Paolo; Tarquini, Pietro [ENEA, Dipartimento TER, C.R. ENEA Casaccia, Via Anguillarese 301, Roma (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy)

    2008-10-15

    A membrane reactor has been studied for separating the hydrogen produced by the dissociation of hydroiodic acid in the thermochemical-sulfur iodine process. A dense metal membrane tube of wall thickness 0.250 mm has been considered in this analysis for hosting a fixed-bed catalyst: the selective separation of hydrogen from an azeotropic H{sub 2}O-HI mixture has been studied in the temperature range of 700-800 K. The materials being considered for the construction of the membrane tube are niobium and tantalum; as a matter of fact, the most commonly used Pd-Ag membranes cannot withstand the corrosive environment generated by the hydroiodic acid. The Damkohler-Peclet analysis has been used for designing the membrane reactor, while a finite element method has simulated its behaviour: the effect of the temperature and pressure on the HI conversion and hydrogen yield has been evaluated. (author)

  20. Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor

    DEFF Research Database (Denmark)

    Su, Ziran; Luo, Jianquan; Pinelo, Manuel

    2018-01-01

    ) should be minimized to reduce accumulation of large oligodextran molecules on the membrane surface, which might diffuse through the membrane and thus broaden the Mw distribution of the products in the permeate. Both dextranase and dextran caused membrane irreversible fouling. The fouling caused...... product, hypersaline wastewater discharge and potential safety hazards. In this work, a novel enzymatic membrane reactor (EMR) system to produce oligodextran is proposed, whereby in-situ product recovery can be manipulated to control the Mw distribution of the resulting products. Results showed...... that the membrane material played an important role in the permeate flux and transmission of oligodextran. Among the tested membranes, a 20kDa polyethersulfone (PES) membrane was found to be optimal for building up the EMR, as it successfully controlled the oligodextran Mw within the desired range with a relatively...

  1. Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts.

    Science.gov (United States)

    Chu, Kyoung Hoon; Fathizadeh, Mahdi; Yu, Miao; Flora, Joseph R V; Jang, Am; Jang, Min; Park, Chang Min; Yoo, Sung Soo; Her, Namguk; Yoon, Yeomin

    2017-11-22

    Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramic GO ) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramic GO membrane (14.4-58.6 L/m 2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m 2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramic GO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na 2 SO 4 , CaCl 2 , and CaSO 4 ). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramic GO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

  2. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  3. Adlayers of palladium particles and their aggregates on porous polypropylene hollow fiber membranes as hydrogenization contractors/reactors

    NARCIS (Netherlands)

    Volkov, V.V.; Lebedeva, V.I.; Petrova, I.V.; Bobyl, A.V.; Konnikov, S.G.; Roldughin, V.I.; Erkel, J. van; Tereshchenko, G.F.

    2011-01-01

    Principal approaches for the preparation of catalytic membrane reactors based on polymer membranes containing palladium nanoparticles and for the description of their characteristics are presented. The method for the development of adlayers composed of palladium nanoparticles and their aggregates on

  4. Bipolar membranes in forward bias region for fuel cell reactors

    International Nuclear Information System (INIS)

    Lobyntseva, Elena; Kallio, Tanja; Kontturi, Kyoesti

    2006-01-01

    Three bipolar membranes, two home-made composed of commercial cation (DuPont) and anion (FuMA-Tech) exchange membranes (called Nafion/FT-FAA and Nafion/FT-FAS) and a commercial one, BP-1 from FuMA-Tech, were investigated in order to characterize their suitability to use in a H 2 /O 2 fuel cell intended to produce hydrogen peroxide on the cathode instead of water. The Nafion/FT-FAA and Nafion/FT-FAS membranes were prepared using a hot-pressing method. The optimal hot-pressing conditions were determined by measuring the ionic conductivity of the membranes. The latter was observed to depend on the relative humidity of the bipolar membrane. Of the studied bipolar membranes, Nafion/FT-FAA showed the best performance. The transport number of protons measured in a concentration cell was observed to depend on the direction of the proton diffusion flux through these membranes so that transport numbers of ca. unity were obtained when the cation exchange side faced the solution with higher proton concentration. In the opposite case, when the higher concentration faced anion exchange side, the transport number of proton was clearly lower, indicating the usefulness of the bipolar membranes for hydrogen peroxide production in the fuel cell

  5. Advanced design of fast reactor-membrane reformer (FR-MR)

    International Nuclear Information System (INIS)

    Tashimo, M.; Hori, I.; Yasuda, I.; Shirasaki, Y.; Kobayashi, K.

    2004-01-01

    A new plant concept of nuclear-produced hydrogen is being studied using a Fast Reactor-Membrane Reformer (FR-MR). The conventional steam methane reforming (SMR) system is a three-stage process. The first stage includes the reforming, the second contains a shift reaction and the third is the separation process. The reforming process requires high temperatures of 800 ∼ 900 deg C. The shift process generates heat and is performed at around 200 deg C. The membrane reforming has only one process stage under a nonequilibrium condition by removing H2 selectively through a membrane tube. The steam reforming temperature can be decreased from 800 deg C to 550 deg C, which is a remarkable benefit offered by the non-equilibrium condition. With this new technology, the reactor type can be changed from a High Temperature Gas-cooled Reactor (HTGR) to a Fast Reactor (FR). A Fast Reactor-Membrane Reformer (FR-MR) is composed of a nuclear plant and a hydrogen plant. The nuclear plant is a sodium-cooled Fast Reactor with mixed oxide fuel and with a power of 240 MWt. The heat transport system contains two circuits, the primary circuit and the secondary circuit. The membrane reformer units are set in the secondary circuit. The heat, supplied by the sodium, can produce 200 000 Nm 3 /h by 2 units. There are two types of membranes. One is made of Pd another one (advanced) is made of, for example V, or Nb. The technology for the Pd membrane is already established in a small scale. The non-Pd type is expected to improve the performance. (author)

  6. Improvement of Membrane Performances to Enhance the Yield of Vanillin in a Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Giovanni Camera-Roda

    2014-02-01

    Full Text Available In membrane reactors, the interaction of reaction and membrane separation can be exploited to achieve a “process intensification”, a key objective of sustainable development. In the present work, the properties that the membrane must have to obtain this result in a pervaporation reactor are analyzed and discussed. Then, the methods to enhance these properties are investigated for the photocatalytic synthesis of vanillin, which represents a case where the recovery from the reactor of vanillin by means of pervaporation while it is produced allows a substantial improvement of the yield, since its further oxidation is thus prevented. To this end, the phenomena that control the permeation of both vanillin and the reactant (ferulic acid are analyzed, since they ultimately affect the performances of the membrane reactor. The results show that diffusion of the aromatic compounds takes place in the presence of low concentration gradients, so that the process is controlled by other phenomena, in particular by the equilibrium with the vapor at the membrane-permeate interface. On this basis, it is demonstrated that the performances are enhanced by increasing the membrane thickness and/or the temperature, whereas the pH begins to limit the process only at values higher than 6.5.

  7. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  8. SPEEK-MO{sub 2} (M = Zr, Sn) composite membranes for direct ethanol fuel cell: an inorganic modification of proton conductive

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguti, Carla A.; Gomes, Ailton S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano], e-mail: kawagutica@gmail.com

    2007-07-01

    Organic-inorganic composite membranes based on sulfonated poly(ether ether ketone) (SPEEK) for application in the direct ethanol fuel cell (DEFC) were synthesized. Particle of sulfated zirconia/tin oxide (SO{sub 4}{sup 2-}/ZrO{sub 2}, SnO{sub 2}, SO{sub 3}-/SnO{sub 2}) was synthesized by sol-gel method, and composite membranes with different oxide and different oxide contents were prepared from a mixture of SO{sub 4}{sup 2-}/ZrO{sub 2} or SnO{sub 2} or SO{sub 3}-/SnO{sub 2} powder and SPEEK solution. The physico-chemical properties of the membranes were studied by water or ethanol solution uptake measurements, scanning electron microscopy (SEM), the membrane's water and ethanol permeabilities were evaluated in pervaporation experiments and the conductivity determined by impedance spectroscopy. The ethanol permeabilities were decreased by inorganic modification. At several temperatures analysed, all SPEEK-MO{sub 2} composite exhibited better ethanol solution uptake than water uptake and this sorption is decreased when inorganic particles are add. A reduction of the proton conductivity by the inorganic modification was observed. (author)

  9. Pervaporation Separation of Water-Ethanol Mixtures Using Organic-Inorganic Nanocomposite Membranes

    Science.gov (United States)

    Preyssler type heteropolyacid viz., H14[NaP5W30O110] incorporated chitosan nanocomposite membranes (NCMs) were prepared by solution casting, characterized using a variety of techniques and employed in the pervaporation separation of water-ethanol mixtures as a function of feed wa...

  10. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  11. Palladium based membranes and membrane reactors for hydrogen production and purification : An overview of research activities at Tecnalia and TU/e

    NARCIS (Netherlands)

    Fernandez, E.; Helmi Siasi Farimani, A.; Medrano Jimenez, J.A.; Coenen, K.T.; Arratibel Plazaola, A.; Melendez Rey, J.; de Nooijer, N.C.A.; Viviente, J.L.; Zuniga, J.; van Sint Annaland, M.; Gallucci, F.; Pacheco Tanaka, D.A.

    2017-01-01

    In this paper, the main achievements of several European research projects on Pd based membranes and Pd membrane reactors for hydrogen production are reported. Pd-based membranes have received an increasing interest for separation and purification of hydrogen. In addition, the integration of such

  12. Liquid Membranes as a Tool for Chemical Speciation of Metals in Natural Waters: Organic and Inorganic Complexes of Nickel.

    Science.gov (United States)

    Vergel, Cristina; Mendiguchía, Carolina; Moreno, Carlos

    2018-04-15

    The different species of nickel present in natural waters exhibit different transport behaviour through bulk liquid membranes (BLMs). This fact has been used to design and optimise a separation/pre-concentration system applicable to separate labile and non-labile nickel fractions. A hydrazone derivative-1,2-cyclohexanedione bis-benzoyl-hydrazone (1,2-CHBBH) dissolved in toluene/dimethyl formamide (2% DMF)-was used as a chemical carrier of nickel species, from an aqueous source solution (sample) to a receiving acidic solution. Both chemical and hydrodynamic conditions controlling the transport system were studied and optimised. Under optimum conditions, variations in the transport of nickel ions as a function of organic (humic acids) and inorganic (chloride ions) ligands were studied. Relationships between the permeability coefficient ( P ) or recovery efficiency (%R) and the concentrations of ligands and nickel species were analysed using Winhumic V software. A negative correlation between P and the concentration of organic nickel complexes was found, suggesting that only labile nickel species are transported through the liquid membrane, with non-labile complexes remaining in the water sample; allowing for their separation and subsequent quantification in natural waters.

  13. Liquid Membranes as a Tool for Chemical Speciation of Metals in Natural Waters: Organic and Inorganic Complexes of Nickel

    Directory of Open Access Journals (Sweden)

    Cristina Vergel

    2018-04-01

    Full Text Available The different species of nickel present in natural waters exhibit different transport behaviour through bulk liquid membranes (BLMs. This fact has been used to design and optimise a separation/pre-concentration system applicable to separate labile and non-labile nickel fractions. A hydrazone derivative—1,2-cyclohexanedione bis-benzoyl-hydrazone (1,2-CHBBH dissolved in toluene/dimethyl formamide (2% DMF—was used as a chemical carrier of nickel species, from an aqueous source solution (sample to a receiving acidic solution. Both chemical and hydrodynamic conditions controlling the transport system were studied and optimised. Under optimum conditions, variations in the transport of nickel ions as a function of organic (humic acids and inorganic (chloride ions ligands were studied. Relationships between the permeability coefficient (P or recovery efficiency (%R and the concentrations of ligands and nickel species were analysed using Winhumic V software. A negative correlation between P and the concentration of organic nickel complexes was found, suggesting that only labile nickel species are transported through the liquid membrane, with non-labile complexes remaining in the water sample; allowing for their separation and subsequent quantification in natural waters.

  14. Waste Water treatment by membrane bioreactors; Tratamiento de aguas residuales urbanas mediante reactores biologicos de membranas

    Energy Technology Data Exchange (ETDEWEB)

    Malfeito, J. J.; Palacios, E.

    2001-07-01

    Wastewater reuse plants can be simplified to a single step process with a membrane bioreactor developed by PRIDESA. The process consists on a biological reactor integrated with immersed membranes that combines clarification and filtration of an activated sludge process into a simplified single step process. Because of the design of the membranes and plate and frame module, the hydrostatic pressure difference is enough to ensure the design permeate flowrate. That means low energy requirements and reduced fouling, as contaminants are not forced into the membrane pores. A 90-days pilot scale operation for reclamation of urban wastewater was studied and the performance of the system was investigated with a sludge retention time (SRT) of 25 days and membrane flux between 50.90 l/h. with different membranes. Averaged 98% of BODS, a 95% of COD and a 99.49% of SS were removed. (Author) 5 refs.

  15. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor

    DEFF Research Database (Denmark)

    Garcia-Robledo, Emilio; Ottosen, Lars Ditlev Mørck; Voigt, Niels Vinther

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activ......Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study...

  16. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  17. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  18. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    and users to generate and test models systematically, efficiently and reliably. In this way, development of products and processes can be faster, cheaper and very efficient. In this contribution, as part of the framework a generic modeling template for the systematic derivation of problem specific catalytic...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  19. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  20. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  1. A new combination of membranes and membrane reactors for improved tritium management in breeder blanket of fusion machines

    International Nuclear Information System (INIS)

    Demange, D.; Staemmler, S.; Kind, M.

    2011-01-01

    Tritium used as fuel in future fusion machines will be produced within the breeder blanket. The tritium extraction system recovers the tritium to be routed into the inner-fuel cycle of the machine. Accurate and precise tritium accountancy between both systems is mandatory to ensure a reliable operation. Handling in the blanket huge helium flow rates containing tritium as traces in molecular and oxide forms is challenging both for the process and the accountancy. Alternative tritium processes based on combinations of membranes and membrane reactors are proposed to facilitate the tritium management. The PERMCAT process is based on counter-current isotope swamping in a palladium membrane reactor. It allows recovering tritium efficiently from any chemical species. It produces a pure hydrogen stream enriched in tritium of advantage for integration upstream of the accountancy stage. A pre-separation and pre-concentration stage using new zeolite membranes has been studied to optimize the whole process. Such a combination could improve the tritium processes and facilitate accountancy in DEMO.

  2. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    Directory of Open Access Journals (Sweden)

    Vorleak Chea

    2014-10-01

    Full Text Available This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR. The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1, consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2, whereas at the highest substrate concentration (500 mg·L−1, it was shown that the reaction was limited by the oxygen content.

  3. Membrane support of accelerated fuel capsules for inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Petzoldt, R.W.; Moir, R.W.

    1993-01-01

    The use of a thin membrane to suspend an (inertial fusion energy) fuel capsule in a holder for injection into a reactor chamber is investigated. Capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. This information is used to calculate maximum target accelerations. Membranes must be thin (perhaps of order one micron) to minimize their effect on capsule implosion symmetry. For example, a 5 μm thick cryogenic mylar membrane is calculated to allow 1,000 m/s 2 acceleration of a 3 mm radius, 100 mg capsule. Vibration analysis (for a single membrane support) shows that if membrane vibration is not deliberately minimized, allowed acceleration may be reduced by a factor of four. A two membrane alternative geometry would allow several times greater acceleration. Therefore, alternative membrane geometry's should be used to provide greater target acceleration potential and reduce capsule displacement within the holder (for a given membrane thickness)

  4. Co-current and counter-current configurations for ethanol steam reforming in a dense Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; de Falco, M.; Tosti, S.; Marrelli, L; Basile, A.

    2008-01-01

    The ethanol steam-reforming reaction to produce pure hydrogen has been studied theoretically. A mathematical model has been formulated for a traditional system and a palladium membrane reactor packed with a Co-based catalyst and the simulation results related to the membrane reactor for both

  5. Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Silau, Harald; Pinelo, Manuel

    2018-01-01

    activated by lithiation followed by functionalization with acid chlorides at 0 °C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface...... initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support...

  6. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    Watanuki, K.; Nakajima, H.; Hasegawa, N.; Kaneko, H.; Tamaura, Y.

    2006-01-01

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  7. Study of behaviour of radioactive iodine inorganic compounds in PWR type reactor loops

    International Nuclear Information System (INIS)

    Alm, M.; Johannsen, K.-H.; Dreyer, R.

    1980-01-01

    Compounds of radioactive iodine and its distribution between water and vapour depending on temperature, pressure and water regime of reactor coolant with water under pressure are investigated. The field of variation of parameters indicated is widened as compared with operating reactor parameters (pressure 2-14 MPa, temperature 210-335 deg C). Distribution of iodine compounds has been studied by a statistical method. For WWER-type reactors the following conclusions have been drawn: radioactive iodine in water and vapor in the first and second loops exists in the form of iodide, radioactive iodine concentration in water vapour at constant temperature and pressure mainly is depended on water pH value, radioactive iodine solubility in water vapor at normal parameters of the reactor first loop can be approximately calculated by the equation: Ksub(d)=Csub(g)/Csub(l)=(rhosub(g)/rhosub(l))sup(2), where Ksub(d) is a coefficient of solid distribution between water and vapour, rho is density c is concentration [ru

  8. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis

    Science.gov (United States)

    Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.

    2015-01-01

    Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…

  9. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  10. Influence of geometrical and operational parameters on the performance of porous catalytic membrane reactors

    NARCIS (Netherlands)

    Aran, H.C.; Klooster, H.J.G.; Jani, J.M.; Wessling, Matthias; Lefferts, Leonardus; Lammertink, Rob G.H.

    2012-01-01

    In this study, porous membrane reactors with various characteristic length (inner diameter), controllable catalyst support thickness, active catalyst surface area and tunable wetting properties are described for heterogeneously catalyzed gas¿liquid¿solid (G¿L¿S) reactions. We developed porous

  11. Carbon-coated ceramic membrane reactor for production of hydrogen via aqueous phase reforming of sorbitol

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2014-01-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of

  12. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis...

  13. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology, Delft (Netherlands)

    2005-03-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branched ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. Model studies using C{sub 6} components are conducted. n-C{sub 6} separated from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  14. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  15. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor

    DEFF Research Database (Denmark)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John M.

    2018-01-01

    were used as the matrix to further exploit the potential of the biocatalytic membranes. such prepared biocatalytic membranes were enzymatically active on both sides, making it possible to construct a bifacial enzymatic membrane reactor (EMR) for highly efficient micro-pollutants removal (taking...

  16. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Damodar, Rahul A.; Hou, Sheng-Chon

    2010-01-01

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO 2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  17. Dehydration of an azeotrope of ethanol/water by sodium carboxymethylcellulose membranes cross-linked with organic or inorganic cross-linker

    Directory of Open Access Journals (Sweden)

    2010-11-01

    Full Text Available To control the swelling of sodium carboxymethylcellulose (CMCNa membranes, mixtures of CMCNa and glutaraldehyde (GA and mixtures of CMCNa as an organic component and tetraethoxysilane (TEOS as an inorganic component were prepared, and CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation (PV, the effects of the GA or TEOS content on the water/ethanol selectivity and permeability of these CMCNa/GA cross-linked and CMCNa/TEOS hybrid membranes were investigated. Cross-linked and hybrid membranes containing up to 10 wt% GA or 10 wt% TEOS exhibited higher water/ethanol selectivity than CMCNa membrane without any cross-linker. This resulted from both increased density and depressed swelling of the membranes by the formation of a cross-linked structure. The relationship between the structure of the CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes and their permeation and separation characteristics for an ethanol/water azeotrope during PV is discussed in detail.

  18. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...... into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...... content was only 51.7% without desorption of CO2, while it increased when the liquid of UASB was recycled through the DU. The CH4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63L/h, respectively. The loss of methane due to dissolution...

  19. Performance and membrane fouling of a step-fed submerged membrane sequencing batch reactor treating swine biogas digestion slurry.

    Science.gov (United States)

    Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao

    2018-01-02

    To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.

  20. [Pollution prevention and control of aqueous extract of astragali radix processed with ZrO2 inorganic ceramic membrane micro-filtration].

    Science.gov (United States)

    Pan, Lin-Men; Huang, Min-Yan; Guo, Li-Wei

    2012-11-01

    To study the measures for preventing and controlling the pollution of aqueous extract of Astragali Radix proceeded with inorganic ceramic membrane micro-filtration, in order to find effective measures for preventing and controlling the membrane pollution. The resistance distribution, polymer removal and changes in physical and chemical parameters of the zirconium oxide film of different pore diameters were determined to analyze the state or location of pollutants as well as the regularity of formation. Meanwhile, recoil and ultrasonic physical measures were adopted to strengthen the membrane process, in order to explore the methods for preventing and controlling the membrane pollution. When 0.2 microm of ZrO2 micro-filtrated aqueous extract of Astragali Radix, the rate of pollution was as high as 44.9%. The hole blocking resistance and the concentration polarization resistance were the main filtration resistances, while the surface deposit resistance decreased with the increase in the membrane's hold diameter; after micro-filtration, the liquid turbidity significantly reduced, with slight changes in both pH and viscosity. The 0.2 microm ZrO2 micro-filtration membrane performed better than the 0.05 microm pore size membrane in terms of conductivity. The 0. 2 microm and 0.05 microm pore diameter membranes showed better performance in the removal of pectin. The ultrasonic measure to strengthen membranes is more suitable to this system, with a flux rate up by 41.7%. The membrane optimization process adopts appropriate measures for preventing and controlling the membrane pollution, in order to reduce the membrane pollution, recover membrane performance and increase filtration efficiency.

  1. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  2. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  3. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    International Nuclear Information System (INIS)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    Highlights: • A new UASB configuration was developed by coupling with degassing membrane. • In-situ biogas upgrading was achieved with high methane content (>90%). • Decrease of dissolved methane in the anaerobic effluent was achieved. - Abstract: A new technology for in-situ biogas upgrading and recovery of CH 4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO 2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO 2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH 4 content was only 51.7% without desorption of CO 2 , while it increased when the liquid of UASB was recycled through the DU. The CH 4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63 L/h, respectively. The loss of methane due to dissolution in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH 4 concentration in the effluent decreased from higher than 0.94 mM to around 0.13 mM, and thus efficient recovery of CH 4 from the anaerobic effluent was achieved. In the whole operational period, the COD removal efficiency and CH 4 yield were not obviously affected by the gas desorption

  4. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors.

    Science.gov (United States)

    Ako, Olga Y; Kitamura, Y; Intabon, K; Satake, T

    2008-09-01

    A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield (Y(CH4)) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.

  5. Effectiveness of inorganic membrane mixture of natural zeolite and portland white cement in purifying of peat water based on turbidity parameter

    Science.gov (United States)

    Elfiana; Fuadi, A.; Diana, S.

    2018-04-01

    Peat water is water surface that brownish red colour caused by the contained constituents. Solving the peat watercolor problem requires special attention considering the quantity of peat water and suitable to be used to meet the daily needs. This study aims to know the inorganic membrane capability of mix nature zeolite and white Portland cement to purifying the peat water based on turbidity parameter. The study was conducted by varying the composition of nature zeolite (Za) and white Portland cement (Sp) in the ratio of Za: Sp is (25%:75%; 50%:50%; 75%:25%) with zeolite condition activated using HCl 2M and nonactivated zeolite treatments. The result of the characteristic test on membrane morphology using SEM (Scanning Electron Microscope) showed that the pore surface size of the membrane is 2 μm that could classified in microfiltration membrane an organic type. The characteristic test showed also resulted in the density of 0.77 to 0.86 gr/cm3, porosity 26.22% to 35.93%, and permeability 2736.19 to 8428.15. While the water retention capacity is in range of 30.64% to 46.46%, The result of inorganic membrane application on peat water showed turbidity of peat water decreased 94.17%, from 10.3 NTU to 0.6 NTU.

  6. A distributed dynamic model of a monolith hydrogen membrane reactor

    International Nuclear Information System (INIS)

    Michelsen, Finn Are; Wilhelmsen, Øivind; Zhao, Lei; Aasen, Knut Ingvar

    2013-01-01

    Highlights: ► We model a rigorous distributed dynamic model for a HMR unit. ► The model includes enough complexity for steady-state and dynamic analysis. ► Simulations show that the model is non-linear within the normal operating range. ► The model is useful for studying and handling disturbances such as inlet changes and membrane leakage. - Abstract: This paper describes a distributed mechanistic dynamic model of a hydrogen membrane reformer unit (HMR) used for methane steam reforming. The model is based on a square channel monolith structure concept, where air flows adjacent to a mix of natural gas and water distributed in a chess pattern of channels. Combustion of hydrogen gives energy to the endothermic steam reforming reactions. The model is used for both steady state and dynamic analyses. It therefore needs to be computationally attractive, but still include enough complexity to study the important steady state and dynamic features of the process. Steady-state analysis of the model gives optimum for the steam to carbon and steam to oxygen ratios, where the conversion of methane is 92% and the hydrogen used as energy for the endothermic reactions is 28% at the nominal optimum. The dynamic analysis shows that non-linear control schemes may be necessary for satisfactory control performance

  7. Theoretical Study of Palladium Membrane Reactor Performance During Propane Dehydrogenation Using CFD Method

    Directory of Open Access Journals (Sweden)

    Kamran Ghasemzadeh

    2017-04-01

    Full Text Available This study presents a 2D-axisymmetric computational fluid dynamic (CFD model to investigate the performance Pd membrane reactor (MR during propane dehydrogenation process for hydrogen production. The proposed CFD model provided the local information of temperature and component concentration for the driving force analysis. After investigation of mesh independency of CFD model, the validation of CFD model results was carried out by other modeling data and a good agreement between CFD model results and theoretical data was achieved. Indeed, in the present model, a tubular reactor with length of 150 mm was considered, in which the Pt-Sn-K/Al2O3 as catalyst were filled in reaction zone. Hence, the effects of the important operating parameter (reaction temperature on the performances of membrane reactor (MR were studied in terms of propane conversion and hydrogen yield. The CFD results showed that the suggested MR system during propane dehydrogenation reaction presents higher performance with respect to once obtained in the conventional reactor (CR. In particular, by applying Pd membrane, was found that propane conversion can be increased from 41% to 49%. Moreover, the highest value of propane conversion (X = 91% was reached in case of Pd-Ag MR. It was also established that the feed flow rate of the MR is to be the one of the most important factors defining efficiency of the propane dehydrogenation process.

  8. Testing of a 7-tube palladium membrane reactor for potential use in TEP

    International Nuclear Information System (INIS)

    Carlson, Bryan J.; Trujillo, Stephen; Willms, R. Scott

    2010-01-01

    A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO 2 ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m 2 and a catalyst volume to membrane area ratio of 4.63 cc/cm 2 (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m 2 ). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m 2 . The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm 2 . The total membrane area of the 7-tube PMR (0.0851 m 2 ) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m 2 ). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR

  9. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Transport from the Membrane to the Packed Bed

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  10. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Transport from the membrane to the packed bed

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  11. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  12. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—I. Operation in absence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    A pilot plant study on propane catalytic combustion in a membrane reactor with separate reactant feeds is presented. The membrane consisted of a porous alumina tube activated by insertion into its pores of a Pt/γ-Al2O3 catalyst. The role of reactants concentration and of the feed flow rates were

  13. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  14. Planar ceramic membrane assembly and oxidation reactor system

    Science.gov (United States)

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  15. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  16. Effects of inorganic carbon on the nitrous oxide emissions and microbial diversity of an anaerobic ammonia oxidation reactor.

    Science.gov (United States)

    Zhang, Wenjie; Wang, Dunqiu; Jin, Yue

    2018-02-01

    Inorganic carbon (IC) is important for anaerobic ammonium oxidation (anammox). In this study, the effects of the IC concentration on N 2 O emissions and microbial diversity in an anammox reactor were investigated. N 2 O emissions were positively correlated with IC concentrations, and IC concentrations in the range of 55-130 mg/L were optimal, considering the nitrogen removal rate and N 2 O emissions. High IC concentrations resulted in the formation of CaCO 3 on the surface of anammox granules, which impacted the diffusion conditions of the substrate. Microbial community analysis indicated that high IC concentrations decreased the populations of specific bacteria, such as Achromobacter spanius strain YJART-7, Achromobacter xylosoxidans strain IHB B 6801, and Denitratisoma oestradiolicum clone 20b_15. D. oestradiolicum clone 20b_15 appeared to be the key contributor to N 2 O emissions. High N 2 O emissions may result from changes in organic carbon sources, which lead to denitrification by D. oestradiolicum clone 20b_15. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Application of CO{sub 2} selective membrane reactors in pre-combustion decarbonisation systems for power production

    Energy Technology Data Exchange (ETDEWEB)

    Steven C.A. Kluiters; Virginie C. Feuillade; Jan Wilco Dijkstra; Daniel Jansen; Wim G. Haije [Energy research Centre of the Netherlands (ECN), Petten (Netherlands)

    2006-07-01

    For pre-combustion decarbonisation of fuels for large-scale power production or H{sub 2} generation both CO{sub 2} and H{sub 2} selective membranes are viable candidates for use in steam reforming and water gas shift membrane reactors. It will be shown that the choice between either option is not a matter of taste, but dictated by the fuel used and, to a lesser extent, the total system layout. Hydrotalcites, clay-like materials, are shown to be promising candidates as membrane material for low temperature, below 400{sup o}C, membrane shift reactors. 7 refs., 6 figs., 1 tab.

  18. On the potential of nickel catalysts for steam reforming in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z.; Boon, J.; Van Delft, Y.C.; Dijkstra, J.W.; Van den Brink, R.W. [Energy research Center of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2010-10-15

    Hydrogen membrane reactors have been identified as a promising option for hydrogen production for power generation from natural gas with pre-combustion decarbonisation. While Pd or Pd-alloy membranes already provide good hydrogen permeances the most suitable catalyst design for steam reforming in membrane reactors (SRMR) is yet to be identified. This contribution aims to provide insight in the suitability of nickel based catalysts in SRMR. The use of nickel (Ni) catalysts would benefit the cost-effectiveness of membrane reactors and therefore its feasibility. For this, the activity of nickel catalysts in SRMR was assessed with kinetics reported in literature. A 1D model was composed in order to compare the hydrogen production rates derived from the kinetics with the rate of hydrogen withdrawal by permeation. Catalyst stability was studied by exposing the catalysts to reformate gas with two different H/C ratios to mimic the hydrogen lean reformate gas in the membrane reactor. For both the activity (modeling) and stability study the Ni-based catalysts were compared to relevant catalyst compositions based on rhodium (Rh). Using the high pressure kinetics reported for Al2O3 supported Rh and MgAl2O4 and Al2O3 supported Ni catalyst it showed that Ni and Rh catalysts may very well provide similar hydrogen production rates. Interestingly, the stability of Ni-based catalysts proved to be superior to precious metal based catalysts under exposure to simulated reformate feed gas with low H/C molar ratio. A commercial (pre-)reforming Ni-based catalyst was selected for further testing in an experimental membrane reactor for steam reforming at high pressure. During the test period 98% conversion at 873 K could be achieved. The conversion was adjusted to approximately 90% and stable conversion was obtained during the test period of another 3 weeks. Nonetheless, carbon quantification tests of the Ni catalyst indicated that a small amount of carbon had deposited onto the catalyst

  19. CO-free hydrogen production by ethanol steam reforming in a Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Basile, A.; Gallucci, F.; Iulianelli, A.; Tosti, S.

    2008-01-01

    In this work, the ethanol steam reforming (ESR) reaction has been studied by using a dense Pd-Ag membrane reactor (MR) by varying the water/ethanol molar ratio between 3:1 and 9:1 in a temperature range of 300-400°C and at 1.3 bar as reaction pressure. The MR was packed with a commercial Ru-based

  20. Application of Forward Osmosis Membrane in a Sequential Batch Reactor for Water Reuse

    KAUST Repository

    Li, Qingyu

    2011-07-01

    Forward osmosis (FO) is a novel membrane process that potentially can be used as an energy-saving alternative to conventional membrane processes. The objective of this study is to investigate the performance of a FO membrane to draw water from wastewater using seawater as draw solution. A study on a novel osmotic sequential batch reactor (OsSBR) was explored. In this system, a plate and frame FO cell including two flat-sheet FO membranes was submerged in a bioreactor treating the wastewater. We found it feasible to treat the wastewater by the OsSBR process. The DOC removal rate was 98.55%. Total nitrogen removal was 62.4% with nitrate, nitrite and ammonium removals of 58.4%, 96.2% and 88.4% respectively. Phosphate removal was almost 100%. In this OsSBR system, the 15-hour average flux for a virgin membrane with air scouring is 3.103 LMH. After operation of 3 months, the average flux of a fouled membrane is 2.390 LMH with air scouring (23% flux decline). Air scouring can help to remove the loose foulants on the active layer, thus helping to maintain the flux. Cleaning of the FO membrane fouled in the active layer was probably not effective under the conditions of immersing the membrane in the bioreactor. LC-OCD results show that the FO membrane has a very good performance in rejecting biopolymers, humics and building blocks, but a limited ability in rejecting low molecular weight neutrals.

  1. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick; Apo, Daniel J.; Hunt, Anton; Ghoniem, Ahmed F.

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating

  2. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  3. Elaboration by tape-casting and co-sintering of multilayer catalytic membrane reactor- performances

    International Nuclear Information System (INIS)

    Julian, A.

    2008-12-01

    This research deals with the increasing interest of the conversion of natural gas into liquid fuels (diesel, kerosene) using the Gas To Liquid (GTL) process. Within this context, Catalytic Membrane-based Reactors (CMR) would allow an improvement of the process efficiency and a reduction of investment and production costs with respect to the present technologies. They allow performing the separation of oxygen from air, and the conversion of natural gas into synthesis gas within a single step. After having highlighted the economical and technological advantages of using a ceramic membrane for the production of syngas (H 2 + CO 2 ), the author describes the protocols of synthesis of powders selected for the dense membrane and the porous support, and their physical characteristics. The obtained powders are then adapted to the tape-casting forming process. Graded-composition multilayer structures and microstructure are then elaborated by co-sintering. Performances in terms of membrane oxygen flows are presented. Mechanisms limiting the oxygen flow are discussed in order to propose ways of improving membrane performances. The limits of the studied system are defined in terms of elastic properties, and optimization ways are proposed for the dense membrane material composition in terms of mechanical properties and performance in oxygen semi-permeation

  4. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati (RM) I-00044 (Italy); Basile, Angelo [Institute on Membrane Technology, ITM-CNR, c/o Univ. of Calabria, via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Castelli, Stefano [ENEA, Dipartimento ACS, C.R. ENEA Casaccia, Via Anguillarese 301, Roma I-00123 (Italy); Fabbricino, Massimiliano; Licusati, Celeste [Dept. of Hydraulic and Environmental Engineering, Univ. of Naples Federico II, Via Claudio 21, Naples 80125 (Italy); Gallucci, Fausto [Fundamentals of Chemical Reaction Engineering Group, Faculty of Science and Technology, University of Twente, Enschede (Netherlands)

    2009-06-15

    The ethanol steam reforming reaction carried out in a Pd-based tubular membrane reactor has been modelled via a finite element code. The model considers the membrane tube divided into finite volume elements where the mass balances for both lumen and shell sides are carried out accordingly to the reaction and permeation kinetics. Especially, a simplified ''power law'' has been applied for the reaction kinetics: the comparison with experimental data obtained by using three different kinds of catalyst (Ru, Pt and Ni based) permitted defining the coefficients of the kinetics expression as well as to validate the model. Based on the Damkohler-Peclet analysis, the optimization of the membrane reformer has been also approached. (author)

  5. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Asgari, A.

    2008-01-01

    In this work, the removal of ammonia from synthesis purge gas of an ammonia plant has been investigated. Since the ammonia decomposition is thermodynamically limited, a membrane reactor is used for complete decomposition. A double pipe catalytic membrane reactor is used to remove ammonia from purge gas. The purge gas is flowing in the reaction side and is converted to hydrogen and nitrogen over nickel-alumina catalyst. The hydrogen is transferred through the Pd-Ag membrane of tube side to the shell side. A mathematical model including conservation of mass in the tube and shell side of reactor is proposed. The proposed model was solved numerically and the effects of different parameters on the rector performance were investigated. The effects of pressure, temperature, flow rate (sweep ratio), membrane thickness and reactor diameter have been investigated in the present study. Increasing ammonia conversion was observed by raising the temperature, sweep ratio and reducing membrane thickness. When the pressure increases, the decomposition is gone toward completion but, at low pressure the ammonia conversion in the outset of reactor is higher than other pressures, but complete destruction of the ammonia cannot be achieved. The proposed model can be used for design of an industrial catalytic membrane reactor for removal of ammonia from ammonia plant and reducing NO x emissions

  6. Preparation and characterization of a nickel/alumina composite membrane for high temperature hydrogen separation. Application in a membrane reactor for the dry reforming of methane; De la synthese d'une membrane composite nikel/ceramique permselective a l'hydrogene au reacteur membranaire. Application au reformage du methane

    Energy Technology Data Exchange (ETDEWEB)

    Haag, St.

    2003-11-01

    The objective of this work was to develop composite inorganic membranes based on nickel or palladium supported on a porous ceramic for high temperature hydrogen separation. These membranes were used in a membrane reactor for the dry reforming of methane in order to shift the chemical equilibrium towards the production of hydrogen and carbon monoxide. The metal layers were deposited on a tubular alumina support by electroless plating. The Ni and the Pd layers are 1 micron thick. The hydrogen permeation tests were done for high temperatures. The Pd/ceramic membrane is permselective to hydrogen and the H{sub 2}/N{sub 2} separation factor (single gas) is 60 at 400 deg C with a transmembrane pressure difference of 1 bar. With a gas mixture, the H{sub 2}/N{sub 2} separation factor is 13. This membrane is not completely dense and the transport mechanism of hydrogen through the Pd layer is mixed: solution-diffusion through the metal bulk and surface diffusion through the defects of the film. However, an embrittlement of the palladium layer under hydrogen atmosphere was observed at 500 deg C. The Ni/ceramic membrane is stable until 600 deg C, its permselectivity to hydrogen increases with the temperature. The use of a sweep gas can provide a H{sub 2}/N{sub 2} separation factor (mixture) of about 25. The main diffusion mechanism is surface diffusion through the pores. Both membranes are not catalytic. Thus, some catalysts composed of nickel and cobalt supported on MgO, SiO{sub 2} or Al{sub 2}O{sub 3} were prepared. These systems allow to reach theoretical limits of conversion calculated for a conventional fixed bed reactor. In the membrane reactor, an enhancement of the methane conversion (15-20%) is observed with both membranes due the selective removal of hydrogen during the reaction. The Ni/ceramic membrane more stable, more permeable and as selective as the palladium one is a brand new material for high temperature hydrogen separation. (author)

  7. Development of a membrane-assisted fluidized bed reactor - 2 - Experimental demonstration and modeling for the partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    A small laboratory-scale membrane-assisted fluidized bed reactor (MAFBR) was constructed in order to experimentally demonstrate the reactor concept for the partial oxidation of methanol to formaldehyde. Methanol conversion and product selectivities were measured at various overall fluidization

  8. A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2007-01-01

    In this theoretical work the CO2 conversion into methanol in both a traditional reactor (TR) and a membrane reactor (MR) is considered. The purpose of this study was to investigate the possibility of increasing CO2 conversion into methanol with respect to a TR. A zeolite MR, able to combine

  9. Performance and economics of a Pd-based planar WGS membrane reactor for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, M.D. [CSIRO Energy Technology, Pullenvale QLD 4069 (Australia); Donelson, R. [CSIRO Process Science and Engineering, Clayton VIC 3168 (Australia); Dave, N.C. [CSIRO Energy Technology, North Ryde NSW 2113 (Australia)

    2010-10-15

    Conceptual 300 tonne per day (tpd) H{sub 2}-from-coal plants have been the subject of several major costing exercises in the past decade. Incorporating conventional high- and low-temperature water-gas-shift (WGS) reactors, amine-based CO{sub 2} removal and PSA-based H{sub 2} purification systems, these studies provide a benchmark against which alternative H{sub 2}-from-coal technologies can be compared. The catalytic membrane reactor (CMR), combining a WGS catalyst and hydrogen-selective metal membrane, can potentially replace the multiple shift and separation stages of a plant based on conventional technology. CMR-based shift and separation offers several major advantages over the conventional approach, including greater-than-equilibrium WGS conversion, the containment of the CO{sub 2} at high-pressure and a reduction in the number of unit processes. To determine capital costs of a WGS CMR-based H{sub 2}-from-coal plant, a prototype planar CMR was constructed and tested with varying catalyst bed depth, residence time and membrane type (commercially-sourced 50 {mu}m Pd or 40 {mu}m Pd-25Ag wt%). Experiments to measure CO conversion, and H{sub 2} flux and yield were conducted at 400 C with a feed pressure of 20 bar H{sub 2}O:C ratio of 3 and a H{sub 2} product pressure of 1 bar. Under the optimum conditions examined (with a 40 {mu}m-thick Pd-25Ag membrane and <3 mm-thick catalyst bed), a membrane surface area of {proportional_to}25,000 m{sup 2} would be required to provide a throughput of 300 tpd with 85% H{sub 2} yield. The capital cost of the CMR component of the plant would be around $US 180 million (based on current metal prices), of which 73% can be attributed to the cost of the Pd-Ag alloy membranes. Incorporation of a membrane that meets the 2015 US DOE cost and flux targets would offer

  10. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp strain DCA1

    NARCIS (Netherlands)

    Hage, J.C.; Houten, R.T.; Tramper, J.; Hartmans, S.

    2004-01-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown

  11. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  12. Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow-fiber membrane reactor

    NARCIS (Netherlands)

    Guit, R.P.M.; Kloosterman, M.; Meindersma, G.W.; Mayer, M.; Meijer, E.M.

    1991-01-01

    The aptitude of a hollow-fiber membrane reactor to det. lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from C. cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its

  13. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS; A

    International Nuclear Information System (INIS)

    Carl R.F. Lund

    2001-01-01

    This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO(sub 2). During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO(sub 2) partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO(sub 2) partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO(sub 2). Finally, the performance of sulfided CoMo/Al(sub 2)O(sub 3) catalysts under conditions of high CO(sub 2) partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H(sub 2)S that is required in the feed

  14. Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost

    Science.gov (United States)

    Olagunju, O. A.; Musonge, P.

    2017-07-01

    This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.

  15. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  16. Drinking water treatment using a submerged internal-circulation membrane coagulation reactor coupled with permanganate oxidation.

    Science.gov (United States)

    Zhang, Zhongguo; Liu, Dan; Qian, Yu; Wu, Yue; He, Peiran; Liang, Shuang; Fu, Xiaozheng; Li, Jiding; Ye, Changqing

    2017-06-01

    A submerged internal circulating membrane coagulation reactor (MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride (PACl) was used as coagulant, and a hydrophilic polyvinylidene fluoride (PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure (TMP), zeta potential (ZP) of the suspended particles in raw water, and KMnO 4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China (GB 5749-2006), as evaluated by turbidity (<1 NTU) and total organic carbon (TOC) (<5mg/L) measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon (DOC) in the raw water also increased with increasing TMP in the range of 0.01-0.05MPa. High ZP induced by PACl, such as 5-9mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity. However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1-2mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO 4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes. Copyright © 2016. Published by Elsevier B.V.

  17. Performance and economics of a Pd-based planar WGS membrane reactor for coal gasification

    International Nuclear Information System (INIS)

    Dolan, M.D.; Donelson, R.; Dave, N.C.

    2010-01-01

    Conceptual 300 tonne per day (tpd) H 2 -from-coal plants have been the subject of several major costing exercises in the past decade. Incorporating conventional high- and low-temperature water-gas-shift (WGS) reactors, amine-based CO 2 removal and PSA-based H 2 purification systems, these studies provide a benchmark against which alternative H 2 -from-coal technologies can be compared. The catalytic membrane reactor (CMR), combining a WGS catalyst and hydrogen-selective metal membrane, can potentially replace the multiple shift and separation stages of a plant based on conventional technology. CMR-based shift and separation offers several major advantages over the conventional approach, including greater-than-equilibrium WGS conversion, the containment of the CO 2 at high-pressure and a reduction in the number of unit processes. To determine capital costs of a WGS CMR-based H 2 -from-coal plant, a prototype planar CMR was constructed and tested with varying catalyst bed depth, residence time and membrane type (commercially-sourced 50 μm Pd or 40 μm Pd-25Ag wt%). Experiments to measure CO conversion, and H 2 flux and yield were conducted at 400 C with a feed pressure of 20 bar H 2 O:C ratio of 3 and a H 2 product pressure of 1 bar. Under the optimum conditions examined (with a 40 μm-thick Pd-25Ag membrane and 2 would be required to provide a throughput of 300 tpd with 85% H 2 yield. The capital cost of the CMR component of the plant would be around $US 180 million (based on current metal prices), of which 73% can be attributed to the cost of the Pd-Ag alloy membranes. Incorporation of a membrane that meets the 2015 US DOE cost and flux targets would offer cost parity, with a plant cost of $US 44 million and a total membrane area of ∝13,000 m 2 . Meeting these performance and cost targets would likely require a shift to very thin Pd-alloy membranes or highly-permeable Group IV, V body-centred-cubic alloys. (author)

  18. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  19. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol

    International Nuclear Information System (INIS)

    Han, Ying; Lv, Enmin; Ma, Lingling; Lu, Jie; Chen, Kexun; Ding, Jincheng

    2015-01-01

    Highlights: • The reactor coupling membrane pervaporation with a fixed-bed reactor was studied. • The factors effecting the esterification of oleic acid were investigated. • NaA zeolite membrane was used for dehydration in the coupled reactor. - Abstract: Process intensification through membrane pervaporation (PV) integrated with a fixed-bed reactor could be successfully applied to the esterification of oleic acid and ethanol, which is a crucial step in the biodiesel synthesis using waste oil and grease as resource. The properties of the NaA zeolite membrane such as structure, formulation and separation were investigated by scanning electronic microscopy–energy dispersive spectrometry (SEM–EDS), X-ray diffractometry (XRD) and PV dehydration. Results showed that the NaA zeolite membrane had good separating property for removing water from the organics mixture. The operating conditions were optimized as the ethanol to oleic acid molar ratio of 15:1, feedstock flow rate of 1.0 ml/min, reaction temperature of 80.0 °C and catalyst bed height of 132 mm. The final conversion of oleic acid increased from 84.23% to 87.18% by PV using the NaA zeolite membrane at 24.0 h of operation. The membrane showed good PV performance after used for eight successive runs in the PV-assisted esterification. The resin exhibited a much high catalytic activity and operation stability after used for 100 h in the consecutive single pass fixed-bed esterification.

  20. Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector

    International Nuclear Information System (INIS)

    Sjardin, M.; Damen, K.J.; Faaij, A.P.C.

    2006-01-01

    The membrane reactor is a novel technology for the production of hydrogen from natural gas. It promises economic small-scale hydrogen production, e.g. at refuelling stations and has the potential of inexpensive CO 2 separation. Four configurations of the membrane reactor have been modelled with Aspen plus to determine its thermodynamic and economic prospects. Overall energy efficiency is 84% HHV without H 2 compression (78% with compression up to 482bar). The modelling results also indicate that by using a sweep gas, the membrane reactor can produce a reformer exit stream consisting mainly of CO 2 and H 2 O (>90% mol ) suited for CO 2 sequestration after water removal with an efficiency loss of only 1% pt . Reforming with a 2MW membrane reactor (250 unit production volume) costs 14$/GJ H 2 including compression, which is more expensive than conventional steam reforming+compression (12$/GJ). It does, however, promise a cheap method of CO 2 separation, 14$/t CO 2 captured, due to the high purity of the exit stream. The well-to-wheel chain of the membrane reactor has been compared to centralised steam reforming to assess the trade-off between production scale and the construction of a hydrogen and a CO 2 distribution infrastructure. If the scale of centralised hydrogen production is below 40MW, the trade-off could be favourable for the membrane reactor with small-scale CO 2 capture (18$/GJ including H 2 storage, dispensing and CO 2 sequestration for 40MW SMR versus 19$/GJ for MR). The membrane reactor might become competitive with conventional steam reforming provided that thin membranes can be combined with high stability and a cheap manufacturing method for the membrane tubes. Thin membranes, industrial utility prices and larger production volumes (i.e. technological learning) might reduce the levelised hydrogen cost of the membrane reactor at the refuelling station to less than 14$/GJ including CO 2 sequestration cost, below that of large-scale H 2 production with

  1. Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors

    DEFF Research Database (Denmark)

    Mohd Sueb, Mohd Shafiq Bin; Luo, Jianquan; Meyer, Anne S.

    2017-01-01

    In order to maximize enzymatic xylan depolymerization while simultaneously purifying the resulting monosaccharide (xylose), different ultrafiltration (UF) membrane reactor configurations were evaluated. Initial results showed that the two hydrolytic enzymes required for complete depolymerization...... which hindered enzymatic attack in addition to fouling. Reaction with both enzymes followed by UF was found to be the optimal configuration, providing at least 40% higher xylan hydrolysis than the cascade configuration (involving sequential reaction with each of the enzymes separately......) and the simultaneous reaction-filtration with both enzymes, respectively. This study thus confirmed that the reactor configuration has a crucial impact on the performance of both the reaction and the separation process of xylose during enzymatic xylan degradation, and that the type of fouling mechanism varies...

  2. Effect of inlet conditions on the performance of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.; Arzu, P.; Costello, A.

    1997-10-01

    Palladium membrane reactors (PMR) will be used to remove tritium and other hydrogen isotopes from impurities, such as tritiated methane and tritiated water, in the exhaust of the International Thermonuclear Experimental Reactor. In addition to fusion-fuel processing, the PMR system can be used to recover tritium from tritiated waste water. This paper investigates the effect of inlet conditions on the performance of a PMR. A set of experiments were run to determine, independently, the effect of inlet compositions and residence time on performance. Also, the experiments were designed to determine if the injected form of hydrogen (CH 4 or H 2 O) effects performance. Results show that the PMR operates at optimal hydrogen recovery with a broad range of inlet compositions and performance is shown to increase with increased residence time. PMR performance is shown to be independent of whether hydrogen is injected in the form of CH 4 or H 2 O

  3. Membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

    Science.gov (United States)

    Rivero, M J; Parsons, S A; Jeffrey, P; Pidou, M; Jefferson, B

    2006-01-01

    Urban water recycling is now becoming an important issue where water resources are becoming scarce. This paper looks at reusing grey water; the preference is treatment processes based on biological systems to remove the dissolved organic content. Here, an alternative process, photocatalysis is discussed as it is an attractive technology that could be well-suited for treating the recalcitrant organic compounds found in grey water. The photocatalytic process oxidises organic reactants at a catalyst surface in the presence of ultraviolet light. Given enough exposure time, organic compounds will be oxidized into CO2 and water. The best contact is achieved in a slurry reactor but a second step to separate and recover the catalyst is need. This paper discusses a new membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

  4. Membrane reactor for water detritiation: a parametric study on operating parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, J.; Liger, K.; Troulay, M.; Perrais, C. [CEA, DEN, DTN/STPA/LIPC, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X.; Meyer, X.M. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.

  5. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    Science.gov (United States)

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis

    2011-01-01

    was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) with a working volume of ∼190 μL. The prototype also contained the necessary sensors and actuators, i.e., pressure transducer, mixing via magnetic stirrer bar and a temperature controller. The functionality of the prototype...... was demonstrated by performing a continuous enzymatic degradation of pectin experiment for a range of reactor conditions: different membrane molecular weight cutoff (MWCO) values, enzyme-to-substrate ratios (E/S), and substrate feeding rates (F) were assessed. Based on the experimental data, it was found...

  7. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  8. Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility

    Science.gov (United States)

    Li, Jian-Hua; Ni, Xing-Xing; Zhang, De-Bin; Zheng, Hui; Wang, Jia-Bin; Zhang, Qi-Qing

    2018-06-01

    A facile and versatile approach for the preparation of super-hydrophilic, excellent antifouling and hemocompatibility membranes had been developed through the generation in situ of bio-inspired polydopamine (PDA) microspheres on PVDF membranes. SEM images showed that the PDA microspheres were uniformly dispersed on the upper surface and the lower surface of the modified membranes. And there were a great number of PDA microspheres immobilized on the cross-section, but the interconnected pores structure was not destroyed. These facts indicated the existence of membrane micro-reactor effect for the whole membrane structure. Considering the remarkable improvement of hydrophilicity, antifouling properties, and permeation fluxes, we also proposed the cluster phenolic hydroxyl effect for the PVDF/PDA hybrid membranes. And the cluster phenolic hydroxyl effect can be ascribed to the all directions distributed phenolic hydroxyl groups on the whole membrane structure. Besides, the self-driven filtration experiments showed the great wetting ability and permeability of the PVDF/PDA hybrid membranes in filtration process without any external pressure. This implied the existence of accelerating self-driven force after the water flow flowed into the internal of membranes, which contributed to the increase of water flow velocity. All the three aspects were in favor of the enhancement of hydrophilicity, antifouling properties and permeability of the modified membranes. Moreover, the conventional filtration tests, oil/water emulsion filtration tests and protein adsorption tests were also carried out to discuss the practical applications of PVDF/PDA hybrid membranes. And the hemocompatibility of the modified membranes was also proved to enhance greatly through the hemolysis tests and platelet adhesion tests, indicating that the membranes were greatly promising in biomedical applications. The strategy of material modification reported here is substrate-independent and can be extended

  9. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  10. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  11. Nuclear Track-Etched Pore Membrane Production Using OAEP's Research Reactor

    International Nuclear Information System (INIS)

    Chittrakarn, Thawat; Bhongsuwan, Tripob; Wanichapichart, Pikul; Nuanuin, Paiboon; Chongkum, Somporn; Khonduangkaew, Areerat; Bordeepong, Sunaree

    2003-10-01

    Result of this study shows that the OAEP's nuclear research reactor is a good source of both fast and thermal neutrons for pore piercing process on polycarbonate thin film. With our experimental design, the fast neutron provides better results in pore piercing comparing with thermal neutron bombardment. This can be explained that most of the latent tracks that occur by thermal neutron bombardment do not piercing through the thin film. Chemical etching process using NaOH solution with an appropriated time, concentration and temperature was employed to enlarge the latent tracks in the bombarded film by fast neutrons. Fast neutron bombardment with 5, 10 and 20 minutes bombarding time successfully produces the nuclear track membrane. Pore size and pore density of the produced membranes examined by SEM were 0.24-1.01 μm and 4.67 - 245 x 10 6 pore/cm 2 , respectively. Bubble point test showed the maximum pore diameter of the produced membrane ranged between 1.18 - 3.25 μm. Water permeability was studied and compared between the produced and commercial membranes

  12. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  13. Electrochemical growth of highly oriented organic-inorganic superlattices using solid-supported multilamellar membranes as templates.

    Science.gov (United States)

    Xing, Li-Li; Li, Da-Peng; Hu, Shu-Xin; Jing, Huai-Yu; Fu, Honglan; Mai, Zhen-Hong; Li, Ming

    2006-02-08

    Controllable depositing of relatively thick inorganic sublayers into organic templates to fabricate organic-inorganic superlattices is of great importance. We report a novel approach to fabricating phospholipid/Ni(OH)(2) superlattices by electrochemical deposition of the inorganic component into solid-supported multilamellar templates. The well-ordered and highly oriented multilamellar templates are produced by spreading small drops of lipid solution on silicon surfaces and letting the solvent evaporate slowly. The templates which are used as working electrodes preserve the lamellar structure in the electrolyte solution. The resulting superlattices are highly oriented. The thickness of the nickel hydroxide is controlled by the concentration of nickel ions in the electrolyte bath. The electron density profiles derived from the X-ray diffraction data reveal that the thickness of the nickel hydroxide sublayers increases from 15 to 27 A as the concentration of nickel nitrate increases from 0.005 mol/L to 0.08 mol/L. We expect that the new method can be extended to depositing a variety of inorganic components including metals, oxides, and semiconductors.

  14. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali

    2016-01-01

    reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor

  15. A novel water perm-selective membrane dual-type reactor concept for Fischer-Tropsch synthesis of GTL (gas to liquid) technology

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Mirvakili, A.; Paymooni, K.

    2011-01-01

    The present study proposes a novel configuration of Fischer-Tropsch synthesis (FTS) reactors in which a fixed-bed water perm-selective membrane reactor is followed by a fluidized-bed hydrogen perm-selective membrane reactor. This novel concept which has been named fixed-bed membrane reactor followed by fluidized-bed membrane reactor (FMFMDR) produces gasoline from synthesis gas. The walls of the tubes of a fixed-bed reactor (water-cooled reactor) of FMFMDR configuration are coated by a high water perm-selective membrane layer. In this new configuration, two membrane reactors instead of one membrane reactor are developed for FTS reactions. In other words, two different membrane layers are used. In order to investigate the performance of FMFMDR, a one-dimensional heterogeneous model is taken into consideration. The simulation results of three schemes named fluidized-bed membrane dual-type reactor (FMDR), FMFMDR and conventional fixed-bed reactor (CR) are presented. They have been compared in terms of temperature, gasoline and CO 2 yields, H 2 and CO conversions and the water permeation rate through the membrane layer. Results show that the gasoline yield in FMFMDR is higher than the one in FMDR. The FMFMDR configuration not only decreases the undesired product such as CO 2 but also produces more gasoline. -- Research highlights: → The application of H-SOD membrane layer in FTS reactors. → Approximate 7.5% and 37% increase in the gasoline yield in terms of [g/g feed x 100] in comparison with FMDR and CR, respectively. → A remarkable decrease in CO 2 emission to the environment. → A good configuration mainly due to reduction in catalysts sintering as a result of in situ water removal.

  16. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  17. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuwen; Li, Qian; Shen, Peijun; Liu, Yong; Yang, Zhibin; Ding, Weizhong; Lu, Xionggang [School of Material Science and Engineering, Shanghai University, No. 275 Mail Box, 149 Yanchang Road, Shanghai 200072 (China)

    2008-07-15

    To maximize hydrogen production from coke oven gas (COG), partial oxidation of methane in COG was studied thermodynamically and experimentally. Thermodynamic analysis indicates that an optimal hydrogen yield of 1.04-1.10 mole per mole of the consumed COG can be achieved when the initial ratio of O{sub 2} and CH{sub 4} is 0.57-0.46 in a temperature range of 800-900 C, and the corresponding amplification of original hydrogen in COG reaches 1.8-1.9 times. The amplification of original hydrogen was carried out in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-{delta}} (BCFNO) membrane reactor, and the hydrogen yield in the lab scale was about 80% more than that of original H{sub 2} in model COG. In a large hydrogen content in COG, the ceramic membrane reactors made from perovskite mixed-conducting oxygen-permeable materials must have higher stability to withstand the harsh reduction condition. (author)

  18. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xiulian [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wei Qifeng, E-mail: weiqifeng163@163.com [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Hu Surong; Wei Sijie [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with {omega}{sup 1/2} ({omega}: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH{sub 4}Cl concentration was 53.46 g L{sup -1} and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min{sup -1}. Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  19. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    Science.gov (United States)

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  20. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    International Nuclear Information System (INIS)

    Ren Xiulian; Wei Qifeng; Hu Surong; Wei Sijie

    2010-01-01

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with ω 1/2 (ω: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH 4 Cl concentration was 53.46 g L -1 and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min -1 . Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  1. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    International Nuclear Information System (INIS)

    Willms, R.S.; Wilhelm, R.; Okuno, K.

    1994-01-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming

  2. Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Ki Yong; Lee, Yong Taek [Kyung Hee University, Yongin (Korea, Republic of)

    2013-10-15

    In this paper, polymer composite membranes and ceramic composite membranes were prepared in order to compare differences in pervaporation performances relative to the support layers. PVDF was used for the polymer support layers, and a-Al{sub 2}O{sub 3} was used for the ceramic support layers. For active layer was coated for PDMS, which is a rubbery polymer. The characterization of membranes were analysed by SEM, contact angle, and XPS. We studied performances relative to the composite membrane support layers in the ABE mixture solutions. The results of the pervaporation, the flux of the ceramic composite membrane was shown to be 250.87 g/m{sup 2}h, which was higher than that of polymer composite membranes, at 195.64 g/m{sup 2}h. However, it was determined that the separation factor of the polymer composite membranes was 31.98 which were higher than that of the ceramic composite membranes, at 20.66.

  3. Tunable permeability and selectivity : Heatable inorganic porous hollow fiber membrane with a thermo-responsive microgel coating

    NARCIS (Netherlands)

    Lohaus, T.; de Wit, P.; Kather, M.; Menne, D.; Benes, N. E.; Pich, A.; Wessling, M.

    2017-01-01

    In recent years, the interest in responsive materials to design membranes with tunable properties increased in order to customize membranes for adaptable process requirements. The majority of development methods require external adjustment of the feed stream temperature to achieve a responsiveness

  4. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents.

    Science.gov (United States)

    Arca-Ramos, A; Eibes, G; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    In this study, the removal of bisphenol A (BPA) by laccase in a continuous enzymatic membrane reactor (EMR) was investigated. The effects of key parameters, namely, type of laccase, pH, and enzyme activity, were initially evaluated. Once optimal conditions were determined, the continuous removal of the pollutant in an EMR was assessed in synthetic and real biologically treated wastewaters. The reactor configuration consisted of a stirred tank reactor coupled to a ceramic membrane, which prevented the sorption of the pollutant and allowed the recovery and recycling of laccase. Nearly complete removal of BPA was attained under both operation regimes with removal yields above 94.5 %. In experiments with real wastewater, the removal of BPA remained high while the presence of colloids and certain ions and the formation of precipitates on the membrane potentially affected enzyme stability and made necessary the periodic addition of laccase. Polymerization and degradation were observed as probable mechanisms of BPA transformation by laccase.

  6. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Mascarade, Jeremy

    2015-01-01

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q 2 O+H 2 ↔H 2 O+Q 2 (Q=H,D or T) and selective permeation of Q 2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  7. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.

    1997-01-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information

  8. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, S.A.; Willms, R.S.

    1997-04-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information.

  9. Optimization of a Pd-based membrane reactor for hydrogen production from methane steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Assis, A.J.; Hori, C.E.; Silva, L.C.; Murata, V.V. [Universidade Federal de Uberlandia (UFU), MG (Brazil). School of Chemical Engineering]. E-mail: adilsonjassis@gmail.com

    2008-07-01

    In this work, it is proposed a phenomenological model in steady state to describe the performance of a membrane reactor for hydrogen production through methane steam reform as well as it is performed an optimization of operating conditions. The model is composed by a set of ordinary differential equations from mass, energy and momentum balances and constitutive relations. They were used two different intrinsic kinetic expressions from literature. The results predicted by the model were validated using experimental data. They were investigated the effect of five important process parameters, inlet reactor pressure (PR0), methane feed flow rate (FCH40), sweep gas flow rate (FI), external reactor temperature (TW) and steam to methane feed flow ratio (M), both on methane conversion (XCH{sub 4} ) and hydrogen recovery (YH{sub 2}). The best operating conditions were obtained through simple parametric optimization and by a method based on gradient, which uses the computer code DIRCOL in FORTRAN. It is shown that high methane conversion (96%) as well as hydrogen recovery (91%) can be obtained, using the optimized conditions. (author)

  10. Water transport mechanisms across inorganic membranes in rad waste treatment by electro dialysis. Mecanismos de transporte de agua atraves de membranas inorganicas en tratamiento de desechos radiactivos por electrodialisis

    Energy Technology Data Exchange (ETDEWEB)

    Andalaft, E; Labayru, R [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1992-12-01

    The work described in this paper deals with effects and mechanisms of water transport across an inorganic membrane, as related to some studied on the concentration of caesium, strontium, plutonium and other cations of interest to radioactive waste treatment. Several different water transport mechanisms are analysed and assessed as to their individual contribution towards the total transference of water during electro-dialysis using inorganic membranes. Water transfer assisted by proton jump mechanism, water of hydration transferred along with the ions, water related to thermo-osmotic effect, water transferred by concentration gradient and water transferred electrolytically under zeta potential surface charge drive are some of the different mechanism discussed. (author).

  11. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-08-01

    Full Text Available Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m3 H2 m-3 day-1 developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9.

  12. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst

    NARCIS (Netherlands)

    Basile, A.; Parmaliana, A.; Tosti, S.; Iulianelli, A.; Gallucci, F.; Espro, C.; Spooren, J.

    2008-01-01

    The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate

  13. System design study of a membrane reforming hydrogen production plant using a small sized sodium cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Y.; Konomura, M.; Hori, T.; Sato, H.; Uchida, S.

    2004-01-01

    In this study, a membrane reforming hydrogen production plant using a small sized sodium cooled reactor was designed as one of promising concepts. In the membrane reformer, methane and steam are reformed into carbon dioxide and hydrogen with sodium heat at a temperature 500 deg-C. In the equilibrium condition, steam reforming proceeds with catalyst at a temperature more than 800 deg-C. Using membrane reformers, the steam reforming temperature can be decreased from 800 to 500 deg-C because the hydrogen separation membrane removes hydrogen selectively from catalyst area and the partial pressure of hydrogen is kept much lower than equilibrium condition. In this study, a hydrogen and electric co-production plant has been designed. The reactor thermal output is 375 MW and 25% of the thermal output is used for hydrogen production (70000 Nm 3 /h). The hydrogen production cost is estimated to 21 yen/Nm 3 but it is still higher than the economical goal (17 yen/Nm 3 ). The major reason of the high cost comes from the large size of hydrogen separation reformers because of the limit of hydrogen separation efficiency of palladium membrane. A new highly efficient hydrogen separation membrane is needed to reduce the cost of hydrogen production using membrane reformers. There is possibility of multi-tube failure in the membrane reformers. In future study, a design of measures against tube failure and elemental experiments of reaction between sodium and reforming gas will be needed. (authors)

  14. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    International Nuclear Information System (INIS)

    Slade, S.M.; Smith, J.R.; Campbell, S.A.; Ralph, T.R.; Ponce de Leon, C.; Walsh, F.C.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO 2 , ZrO 2 or TiO 2 ; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm -3 sulfuric acid at 298 K. The TiO 2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO 2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  15. CFD modelling of a membrane reactor for hydrogen production from ammonia

    Science.gov (United States)

    Shwe Hla, San; Dolan, Michael D.

    2018-01-01

    Despite the growing use of hydrogen (H2) as a transport fuel, one of the major barriers still remaining is efficient and inexpensive fuel distribution and storage. Current approaches, such as compression, liquefaction or metal hydride formation, incur a significant energy penalty. Ammonia (NH3) has long been considered a prospective H2 medium, exhibiting a higher volumetric H2 density than liquid H2, through liquid-phase storage at mild pressure. Decomposition of NH3 into H2 and N2 can be achieved via use of catalytic reactors and fuel-cell-grade H2 can be produced using metal membranes at H2 distribution sites.In this study, a 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model has been developed to understand the performance of the H2 separation process in gas mixtures derived from an NH3-cracking reaction. The reactor consists of 19 tubular membrane tubes, each 470 mm long, inside a tubular shell with an inner diameter of 130 mm. Standard transport and energy equations governing a 3D, pressure-based, steady-state model were derived from the laws of conservation of mass, momentum and energy. The governing equations were solved using commercial CFD software ANSYS Fluent 18.0. Gas flow and mixing were modelled by the two-equation standard k-epsilon model for closure. Coupled solver was used for pressure-velocity coupling, enabling a pseudo-transient option with pseudo time steps of 0.01 s. To estimate H2 permeation through the metal membrane, a constant H2 permeability of 3.0E-07 mol.m-1 s-1 Pa-0.5 derived from series of experiments tested under a range of industrial conditions, was used. Model simulations were conducted for an adiabatic temperature of 300 °C, a feed-side pressure of 7.8 bara and a permeate side pressure of 0.1 bara. A parametric analysis was carried out to explore the effects of variation in total feed-gas flow and effects of changes in NH3-cracking efficiency on H2 production rates and H2 yields. The model estimated that 4.6-11.6 kg H2

  16. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor

    International Nuclear Information System (INIS)

    Hedayati, Ali; Le Corre, Olivier; Lacarrière, Bruno; Llorca, Jordi

    2016-01-01

    Ethanol steam reforming (ESR) was performed over Pd-Rh/CeO 2 catalyst in a catalytic membrane reactor (CMR) as a reformer unit for production of fuel cell grade pure hydrogen. Experiments were performed at 923 K, 6–10 bar, and fuel flow rates of 50–200 μl/min using a mixture of ethanol and distilled water with steam to carbon ratio of 3. A static model for the catalytic zone was derived from the Arrhenius law to calculate the total molar production rates of ESR products, i.e. CO, CO 2 , CH 4 , H 2 , and H 2 O in the catalytic zone of the CMR (coefficient of determination R 2  = 0.993). The pure hydrogen production rate at steady state conditions was modeled by means of a static model based on the Sieverts' law. Finally, a dynamic model was developed under ideal gas law assumptions to simulate the dynamics of pure hydrogen production rate in the case of the fuel flow rate or the operating pressure set point adjustment (transient state) at isothermal conditions. The simulation of fuel flow rate change dynamics was more essential compared to the pressure change one, as the system responded much faster to such an adjustment. The results of the dynamic simulation fitted very well to the experimental values at P = 7–10 bar, which proved the robustness of the simulation based on the Sieverts' law. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, when fed online by the pure hydrogen generating reformer studied. - Highlights: • Ethanol steam reforming (ESR) experiments were performed in a Pd-Ag membrane reactor. • The model of the catalytic zone of the reactor was derived from the Arrhenius law. • The permeation zone (membrane) was modeled based on the Sieverts' law. • The Sieverts' law model showed good results for the range of P = 7–10 bar. • Pressure and fuel flow rate adjustments were considered for dynamic simulation.

  17. Oxygen distribution in packed-bed membrane reactors for partial oxidations: effect of the radial porosity profiles on the product selectivity

    NARCIS (Netherlands)

    Kurten, U.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    A two-dimensional, pseudohomogeneous reactor model was presented to describe the radial and axial concentration profiles in a packed-bed membrane reactor and the local velocity field while accounting for the influences due to the distributive membrane flow and the radial porosity profile. The effect

  18. Definition of validated membrane reactor model for 5 kW power output CHP system for different natural gas compositions

    NARCIS (Netherlands)

    Di Marcoberardino, Gioele; Gallucci, Fausto; Manzolini, Giampaolo; van Sint Annaland, Martin

    2016-01-01

    Over the last years, many studies focused on the development of membrane reactors for micro-cogeneration systems based on PEM fuel cells, thanks to its unique feature of separating pure hydrogen. This work deals with (i) the design of a fluidized bed membrane reactor flexible towards different

  19. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    Science.gov (United States)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this

  20. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Papet, Sebastien

    2000-01-01

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO 2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol -1 . Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author) [fr

  1. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  2. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.

    Science.gov (United States)

    Kumar, Amit; Vercruyssen, Aline; Dewulf, Jo; Lens, Piet; Van Langenhove, Herman

    2012-01-01

    A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1 g m(-3) h(-1) was achieved. A surface area based maximum elimination capacity (EC(m)) of 4.2 × 10(-3) g m(-2) h(-1) was observed, which is 2-10 times higher than reported in other gas phase biological treatment studies. However, further research is needed to optimize the TCE feeding cycle and to evaluate the inhibiting effects of TCE and its intermediates on TOL biodegradation.

  3. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Scott, W.R.; Birdsell, S.A.; Wilhelm, R.C.

    1995-01-01

    The palladium membrane reactor (PMR) is being investigated as a means for recovering hydrogen isotopes (including tritium) from compounds such as water and methane. Previous work with protiated water and methane showed that this device can be used to obtain high hydrogen recovery efficiencies using a single processing pass and with essentially no waste production. With these successful proof-of-principle results completed, recent work has focused on PMR development. This included studies of various geometries and testing with tritium. The results, which are reported here, have led to a better understanding of the PMR and will lead to the ultimate goal of building a production PMR and putting it into practical tritium processing service. 3 refs., 5 figs., 1 tab

  4. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  5. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng; Chen, Tao; He, Lipeng; Pinnau, Ingo; Lai, Zhiping; Huang, Kuo-Wei

    2012-01-01

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters

  6. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor

    CSIR Research Space (South Africa)

    Baloyi, Liberty N

    2016-12-01

    Full Text Available stainless steel (PSS) is evaluated for the production of hydrogen and the potential replacement of the current two-stage Water-Gas Shift (WGS) reaction by a single stage reaction. The permeability of a 20 µm Pd–Ag membrane reactor was examined at 320 °C, 380...

  7. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng

    2012-11-07

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...

  9. Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas

    NARCIS (Netherlands)

    Psara, N.; Van Sint Annaland, M.; Gallucci, F.

    2015-01-01

    The scope of this paper is the development and implementation of a safety risk assessment methodology to highlight hazards potentially prevailing during autothermal reforming of natural gas for hydrogen production in a membrane reactor, as well as to reveal potential accidents related to hydrogen

  10. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  11. Mixed reforming of simulated gasoline to hydrogen in a BSCFO membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenliang; Han, Wei; Xiong, Guoxing; Yang, Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P.O. Box 110, Dalian 116023 (China)

    2006-10-30

    Currently, fuel cells are receiving more and more attention as the most promising new power generation technology, and fuel processing by the mixed reforming of liquid hydrocarbons (MRL) with water and oxygen is regarded as a desirable way for fuel cells. In this paper, we developed a new mixed reforming method for hydrogen production by combining a dense ceramic membrane Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}(BSCFO) with a catalyst LiLaNiO/{gamma}-Al{sub 2}O{sub 3} in a membrane reactor and reforming a simulated gasoline. During a 500-h long-term test at optimized reaction conditions, all the components in the simulated gasoline converted completely, and around 90% selectivity of CO, around 95% selectivity of H{sub 2} and around 8.0mLcm{sup -2}min{sup -1} oxygen permeation flux were achieved. This provides a new optional way of hydrogen production for fuel cells. (author)

  12. Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Alessandro Abbà

    2017-01-01

    Full Text Available A thermophilic aerobic membrane reactor (TAMR treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C with high MLSS concentrations (up to 200 gTS L−1. The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.

  13. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment.

    Science.gov (United States)

    Chu, Huaqiang; Cao, Dawen; Dong, Bingzhi; Qiang, Zhimin

    2010-03-01

    This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its high concentrations of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS). The removal of pollutants was mainly ascribed to microbial degradation in BDDMR because the dynamic membrane alone was much less effective in pollutant removal. Though the diatomite particles (5-20microm) were much smaller in size than the aperture of the stainless steel support mesh (74microm), microorganisms and their extracellular polymer substances could bind these particles tightly to form bio-diatomite particles which were completely retained by the support mesh. The analysis of molecular weight (MW) distribution by gel permeation chromatography (GPC) shows that the BDDMR could effectively remove the hydrophilic fraction of dissolved organic materials present in the raw water. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  15. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  16. A polymeric membrane ion selective electrode based on organic-inorganic composite ion exchanger for the determination of thorium(IV)

    International Nuclear Information System (INIS)

    Chandra, Sulekh; Agarwal, Himanshu; Chandan Kumar, Singh; Sindhu, Susheel Kumar; Pankaj Kumar

    2005-01-01

    A poly(vinyl chloride) membrane electrode based on organic- inorganic composite ion exchanger, tin(IV) tungstoselenate-pyridine, has been prepared and tested for the selective determination of thorium(IV) ions. The PVC membrane electrode comprising 16% composite ion exchanger as the electroactive phase, 50% o-dioctyl phthalate as plasticizer, 4% tetraphenyl borate as anionic excluder and 30% poly(vinylchloride) displays a linear response to thorium(IV) ions over a wide concentration range of 1.0 x 10 -1 -8.0 x 10 -6 M with a Nernstain slope of 14.2 mV/ decade. The electrode shows a very short response time (∼15 s) and may be used in the pH range 2.5-9.0. The selectivity coefficient for alkali, alkaline earth and transition is smaller than 4.0 x 10 -4 . The sensor has been successfully used as an indicator electrode in the potentiometric titration of Th 4+ with EDTA as well as also for the determination of Th 4+ in the binary mixtures. (author)

  17. Effects of inorganic ions on morphology of octacalcium phosphate grown on cation selective membrane at physiological temperature and pH in relation to enamel formation

    Science.gov (United States)

    Iijima, Mayumi; Moriwaki, Yutaka

    1989-05-01

    The crystal growth of octacalcium phosphate (OCP) is of particular interest, since there is a possibility that OCP is formed in the early stage of tooth enamel formation. In this study, the effects of CO2-3, Mg2+ and F-ions on the morphology of OCP were investigated in a membrane system, where a cation selective membrane was used to simulate amelogenesis. Reactions were carried out at pH 6.3, 6.5 and 6.8 for 3 days at 37°C. In most cases, these ions suppressed the crystal growth in the c-axis direction of OCP, particularly when they coexisted. The morphology of OCP crystal changed from ribbon-like to flake-like, depending on the inhibitory activity. The inhibitory activity, particularly that of F - ion, was suppressed at pH lower than pH 6.8. Antagonistic effect of Mg2+ and F-ion was observed at pH 6.5. In the case of F - ion, OCP crystals showed a unique pattern, which suggests hydrolysis of OCP and subsequent growth of apatite. These findings indicate that inorganic ions, particularly F - ion, influence the growth of OCP. Although CO2-3, Mg2+andF-ions coexisted, extended growth in the c-axis direction of OCP took place at pH 6.0.

  18. Synthesis of a catalytic reactor membrane for synthesis gas production; Elaboration d'une membrane de reacteur catalytique pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Juste, E.; Julian, A.; Chartier, T. [Limoges Univ., Lab. Science des Procedes Ceramiques et de Traitements de Surface (SPCTS, UMR 6638 CNRS), 87 (France); Juste, E.; Julian, A.; Del Gallo, P.; Richet, N. [Centre de Recherche Claude-Delorme, Air Liquide, 78 - Jouy en Josas (France)

    2007-07-01

    The conversion of natural gas to synthesis gas (mixture of H{sub 2} and CO) is a main challenge for the hydrogen and clean fuels production. Mixed (ionic O{sup 2-} and electronic) conducing ceramics membrane reactors seem particularly promising. The design considered for the membrane is a tri-layer system integrating a reforming catalyst and a dense membrane laying on a porous support. Among the materials considered for the dense membrane, perovskites La{sub 1-x}Sr{sub x}Fe{sub 1-y}Ga{sub y}O{sub 3-{delta}} seem to be interesting for their performances and stability. The oxygen flux through the membrane is measured in terms of temperature under different oxygen partial pressure gradients. In the industrial experimental conditions, the membrane is submitted to a strong oxygen (air/methane) partial pressure gradient of about 900 C which induces mechanical stresses, on account of the material expansion difference, in terms of p{sub O2}. In this framework, the evolutions of the performances and of the expansion coefficient have been followed in terms of the substitutions rates in La{sub (1-x)}Sr{sub x}Fe{sub (1-y)}Ga{sub y}O{sub 3-{delta}} with x{<=}0.5 and y{<=}0.5. (O.M.)

  19. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    Science.gov (United States)

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reverse-Bumpy-Ball-Type-Nanoreactor-Loaded Nylon Membranes as Peroxidase-Mimic Membrane Reactors for a Colorimetric Assay for H₂O₂.

    Science.gov (United States)

    Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji

    2016-04-01

    Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.

  1. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  2. Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Diogo; Chibante, Vania; Mendes, Adelio; Madeira, Luis M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Zheng, Ju-Meng [Dutch Separation Technology Institute (DSTI), 3800 AE Amersfoort (Netherlands); Tosti, Silvano; Borgognoni, Fabio [ENEA, Unita Tecnica Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati (RM) I-00044 (Italy)

    2010-11-15

    In this work, it is described an experimental study regarding the performance of a Pd-Ag membrane reactor recently proposed and suitable for the production of ultra-pure hydrogen. A dense metallic permeator tube was assembled by an innovative annealing and diffusion welding technique from a commercial flat sheet membrane of Pd-Ag. A ''finger-like'' configuration of the self-supported membrane has been designed and used as a packed-bed membrane reactor (MR) for producing ultra-pure hydrogen via water-gas shift reaction (WGS). A CuO/ZnO/Al{sub 2}O{sub 3} catalyst, from REB Research and Consulting, was used for packing the WGS membrane reactor. The performance of the reactor was evaluated in terms of CO conversion and H{sub 2} recovery in a wide range of conditions: temperature from 200 C to 300 C, feed pressure from 1.0 bar to 4.0 bar, vacuum and sweep-gas modes and with a simulated reformate feed (4.70% CO, 34.78% H{sub 2}O, 28.70% H{sub 2}, 10.16% CO{sub 2} balanced in N{sub 2}). Also, the effect of the reactants feed composition was investigated and discussed. CO conversions remained in most conditions above the thermodynamic equilibrium based on feed conditions. In particular, it is worth mentioning that around 100% of CO conversion and almost complete H{sub 2} recovery was achieved when operating the MR at 300 C with a GSHV = 1200 L{sub N} kg{sub cat}{sup -1} h{sup -1}, P{sub feed} = 4 bar, P{sub perm} = 3 bar and using 1000 mL{sub N} min{sup -1} of sweep-gas. (author)

  3. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found...... to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting...... a highly hydrophilic membrane with appropriate pore size. Operating under threshold flux could minimize the concentration polarization and cake/gel/scaling layers, but might not avoid irreversible fouling caused by adsorption and pore blocking. The effects of membrane properties, pH, agitation and CGMP...

  4. Hydrogen production in membrane reactors using Rh catalysts on binary supports

    Energy Technology Data Exchange (ETDEWEB)

    Carrara, Carlos; Roa, Alejandro; Cornaglia, Laura; Lombardo, Eduardo A. [Instituto de Investigaciones en Catalisis y Petroquimica (FIQ, UNL-CONICET), Sgo del Estero 2829-3000 Santa Fe (Argentina); Mateos-Pedrero, Cecilia; Ruiz, Patricio [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Place Croix du Sud 2/17, 1348 Louvain-la Neuve (Belgium)

    2008-04-15

    The binary supports employed in this work were prepared by different methods. The Ti(7%)-MgO and the Ti(13%)-SiO{sub 2} were obtained using the grafting technique. The La(27%)-SiO{sub 2} was obtained through the incipient wetness impregnation with La(NO{sub 3}){sub 3} of Aerosil 300, previously calcined at 1173 K. The Rh was incorporated to these supports by wet impregnation. The catalysts were first evaluated for the CH{sub 4} + CO{sub 2} reaction in a fixed-bed reactor. They were found to be active and stable as to justify their use in the membrane reactor, which was operated at 823 K achieving methane conversions up to twice as much as the equilibrium values. In all cases, the activity of the Rh solids remained constant after 120 h on stream with very little formation of carbonaceous residues only detected through LRS. The catalysts were characterized through either hydrogen or carbon monoxide chemisorption, TPR, XRD, LRS and XPS. The Rh(0.6)/La-SiO{sub 2} catalyst showed a high metal dispersion that remained constant after use and the highest capacity to restore the CH{sub 4} + CO{sub 2} equilibrium when H{sub 2} was permeated out of the reaction section. The Rh(0.8)/Ti-MgO showed the highest Rh/oxide interaction associated with the lowest capacity to restore the reaction equilibrium. The Rh(0.8)/Ti-SiO{sub 2} exhibited an intermediate activity due in part to the partial segregation of the TiO{sub 2} upon calcinations and the subsequent appearance of small Rh crystallites in the used catalysts. (author)

  5. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    Science.gov (United States)

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  6. Membrane bio-reactor - Research, pilot installation and measurement campaign; Membranbioreaktor (MBR) - Forschung, Pilotanlage und Messkampagne - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hersener, J -L [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U [Meritec GmbH, Guntershausen (Switzerland)

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE), takes a look at a project involving a fermenter installation in Eastern Switzerland. Research work is noted, the pilot installation is described and the results of a measurement campaign are presented and commented on. The plant is able to handle about 20,000-25,000 tonnes of slurry and organic waste. The plant is built as a membrane bio-reactor and allows the separation of the digested biomass into fractions of solid and liquid fertilisers and useful water. Furthermore, a part of the separated and digested liquid is returned to the fermenter in order to improve the digestion process. For the production of electricity a 1.1 MW generator is installed. The adaptations made during the measurement period are noted and commented on. According to the authors, the results - although difficult to interpret - show that the concept of a membrane bio-reactor can work successfully.

  7. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  8. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor.

    Science.gov (United States)

    Wu, Lingtian; Xu, Cen; Li, Sha; Liang, Jinfeng; Xu, Hong; Xu, Zheng

    2017-06-01

    In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Willms, R.S.; Birdsell, S.A.; Wilhelm, R.C.

    1995-01-01

    The palladium membrane reactor (PMR) is proving to be a simple and effective means for recovering hydrogen isotopes from fusion fuel impurities such as methane and water. This device directly combines two techniques which have long been utilized for hydrogen processing, namely catalytic shift reactions and palladium/silver permeators. A proof-of-principle (PMR) has been constructed and tested at the Tritium Systems Test Assembly of Los Alamos National Laboratory. The first tests with this device showed that is was effective for the proposed purpose. Initial work concluded that a nickel catalyst was an appropriate choice for use in a PMR. More detailed testing of the PMR with such a catalyst was performed and reported in other works. It was shown that a nickel catalyst-packed PMR did, indeed, recover hydrogen from water and methane with efficiencies approaching 100% in a single processing pass. These experiments were conducted over an extended period of time and no failure or need for regeneration was encountered. These positive results have prompted further PMR development. Topics addressed include alternate PMR geometries and initial testing of the PMR with tritium. These are the subjects of this paper

  10. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2009-08-10

    Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.

  11. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China); Lee, Hyung-Sool [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 (Canada); Wang, Ai-Jie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. Black-Right-Pointing-Pointer Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). Black-Right-Pointing-Pointer PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. Black-Right-Pointing-Pointer The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 {+-} 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m{sup -3} d{sup -1}) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m{sup -3} d{sup -1} (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  12. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    International Nuclear Information System (INIS)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-01-01

    Highlights: ► A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. ► Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). ► PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. ► The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 ± 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m −3 d −1 ) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m −3 d −1 (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  13. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  14. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    Science.gov (United States)

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene Diamine

    Directory of Open Access Journals (Sweden)

    Hsien-Ming Kao

    2012-06-01

    Full Text Available Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol-block-poly(ethylene glycol-block-poly(propylene glycol bis(2-aminopropyl ether complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS and 3-(triethoxysilylpropyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC, Fourier transform infrared (FTIR spectroscopy, alternating current (AC impedance and solid-state nuclear magnetic resonance (NMR spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains.

  16. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor

    International Nuclear Information System (INIS)

    Mozia, Sylwia; Toyoda, Masahiro; Inagaki, Michio; Tryba, Beata; Morawski, Antoni W.

    2007-01-01

    An application of carbon-coated TiO 2 for decomposition of methylene blue (MB) in a photocatalytic membrane reactor (PMR), coupling photocatalysis and direct contact membrane distillation (DCMD) was investigated. Moreover, photodegradation of a model pollutant in a batch reactor without membrane distillation (MD) was also examined. Carbon-modified TiO 2 catalysts containing different amount of carbon and commercially available TiO 2 (ST-01) were used in this study. The carbon-coated catalyst prepared from a mixture of ST-01 and polyvinyl alcohol in the mass ratio of 70/30 was the most effective in degradation of MB from all of the photocatalysts applied. Photodecomposition of MB on the recovered photocatalysts was lower than on the fresh ones. The photodegradation of MB in the PMR was slower than in the batch reactor, what probably resulted from shorter time of exposure of the catalyst particles to UV irradiation. The MD process could be successfully applied for separation of photocatalyst and by-products from the feed solution

  17. Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials

    DEFF Research Database (Denmark)

    Sigurdardóttir, Sigyn Björk; Lehmann, Jonas; Ovtar, Simona

    2018-01-01

    Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and in...

  18. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  19. Preliminary study on application of Pd composite membrane in helium purification system of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Cai Jianhua; Yang Xiaoyong; Wang Jie; Yu Suyuan

    2008-01-01

    Helium purification system (HPS) is the main part of the helium auxiliary system of high-temperature gas-cooled reactors (HTGR), also in fusion reactors. Some exploratory work was carried out on the application of Pd composite membrane in the separation of He and H 2 . A typical single stripper permeator with recycle (SSP) system was designed, based on the design parameters of a small scale He purification test system CIGNE in CADARACHE, CEA, France, and finite element analysis method was used to solve the model. The total length of membrane module is fixed to 0.5 m. The results show that the concentration of H 2 is found to reduce from 1 000 μL/L in feed gas to 5 μL/L in the product He (the upper limitation of HPS in HTGR). And the molar ratio of product He to feed gas is 96.18% with the optimized ratio of sweep gas to retentive gas 0. 3970. It's an exponential distribution of H 2 concentration along the membrane module. The results were also compared with the other two popular designs, two stripper in series permeator (TSSP) and continuous membrane column (CMC). (authors)

  20. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 1: Influence of operating conditions

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  1. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor

    Directory of Open Access Journals (Sweden)

    Liberty N. Baloyi

    2016-12-01

    Full Text Available Hydrogen as an energy carrier has the potential to decarbonize the energy sector. This work presents the application of a palladium-silver (Pd–Ag membrane-based reactor. The membrane reactor which is made from Pd–Ag film supported by porous stainless steel (PSS is evaluated for the production of hydrogen and the potential replacement of the current two-stage Water-Gas Shift (WGS reaction by a single stage reaction. The permeability of a 20 μm Pd–Ag membrane reactor was examined at 320 °C, 380 °C and 430 °C. The effect of continuous hydrogen exposure on the Pd–Ag membrane at high temperature and low temperature was examined to investigate the thermal stability and durability of the membrane. During continuous operation to determine thermal stability, the membrane reactor exhibited stable hydrogen permeation at 320 °C for 120 h and unstable hydrogen permeation at 430 °C was observed. For the WGS reaction, the reactor was loaded with Ferrochrome catalyst. The membrane showed the ability to produce high purity hydrogen, with a CO conversion and an H2 recovery of 84% and 88%, respectively. The membrane suffered from hydrogen embrittlement due to desorption and adsorption of hydrogen on the membrane surface. SEM analysis revealed cracks that occurred on the surface of the membrane after hydrogen exposure. XRD analysis revealed lattice expansion after hydrogen loading which suggests the occurrence of phase change from α-phase to the more brittle β-phase.

  2. Processing Tritiated Water at the Savannah River Site: A Production-Scale Demonstration of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Sessions, K

    2004-01-01

    The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory. The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented

  3. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  4. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    conversion are required for alleviation of glucose product inhibition. Supported by numerous calculations this review assesses the quantitative aspects of glucose product inhibition on enzyme-catalyzed cellulose degradation rates. The significance of glucose product inhibition on dimensioning of different......Product inhibition of cellulolytic enzymes affects the efficiency of the biocatalytic conversion of lignocellulosic biomass to ethanol and other valuable products. New strategies that focus on reactor designs encompassing product removal, notably glucose removal, during enzymatic cellulose...... reactor features, including system set-up, dilution rate, glucose output profile, and the problem of cellobiose are examined to illustrate the quantitative significance of the glucose product inhibition and the total glucose concentration on the cellulolytic conversion rate. Comprehensive overviews...

  5. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  6. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xia Siqing, E-mail: siqingxia@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li Haixiang; Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang Yanhao [College of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101 (China); Yang Xin; Jia Renyong; Xie Kang; Xu Xiaotian [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2011-08-30

    Highlights: {yields} We designed a novel hollow fiber membrane biofilm reactor for p-CNB removal. {yields} Biotransformation pathway of p-CNB in the reactor was investigated in this study. {yields} Nitrate and sulfate competed more strongly for hydrogen than p-CNB. {yields} This reactor achieved high removal efficiency and hydrogen utilization efficiency. - Abstract: para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H{sub 2} as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2 mg/L and a hydraulic residence time of 4.8 h, which corresponded to a p-CNB flux of 0.058 g/m{sup 2} d. The H{sub 2} availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.

  7. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.

    Science.gov (United States)

    Hage, J C; Van Houten, R T; Tramper, J; Hartmans, S

    2004-06-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown in a continuous culture resulted in the formation of a stable and active DCA-degrading biofilm on the membrane. The maximum removal rate of the MBR was reached at a DCA concentration of approximately 80 micro M. Simulation of the DCA fluxes into the biofilm showed that the MBR performance at lower concentrations was limited by the DCA diffusion rate rather than by kinetic constraints of strain DCA1. Aerobic biodegradation of DCA present in anoxic water could be achieved by supplying oxygen solely from the gas phase to the biofilm grown on the liquid side of the membrane. As a result, direct aeration of the water, which leads to undesired coagulation of iron oxides, could be avoided.

  8. Development and process optimization of an enzyme membrane reactor for lactose hydrolysis. Entwicklung und verfahrenstechnische Optimierung eines Enzym-Membranreaktors fuer die Hydrolyse von Laktose

    Energy Technology Data Exchange (ETDEWEB)

    Czermak, P

    1990-01-01

    The development and process optimization up to the production stage of a vapour sterilizable hollow-fiber membrane reactor for dialysis is illustrated by the example of enzymatic hydrolysis of lactose. The expected conversion efficiency of the membrane reactor is a function of the mass transfer resistance and by the deviations from the defined hydrodynamic status. The transport/reaction behaviour of membrane reactors is therefore described by a model for real reactors which takes account of the non-linear kinetics of the native enzyme, the real mixing conditions inside the reactor, and the mass transfer through the membrane. A coupled numerical solution is used for the calculations. The reaction kinetics, the mass transfer inside the membrane, the hydrodynamics and the conversion rate are determined experimentally. The model can calculate important design data from selected data of the reaction system. Measurements of conversion rates show that the results obtained with real substances, e.g. milk, are well compatible with the model calculations. (orig.) With 85 figs., 25 tabs.

  9. Double-side active TiO{sub 2}-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, G.Em., E-mail: groman@chem.demokritos.gr [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Likodimos, V.; Falaras, P. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel CVD reactor for the developments of double side active TiO{sub 2} membranes. Black-Right-Pointing-Pointer Double side active TiO{sub 2} membranes efficiently photodegrade organic pollutants. Black-Right-Pointing-Pointer A photocatalytic membrane purification device for continuous flow water treatment. - Abstract: A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO{sub 2} photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO{sub 2} nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of {gamma}-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO{sub 2} deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.

  10. Analysis of Gas Separated for Silica Membrane in Hydrogen Gas Production by Using Nuclear Reactor Thermal

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2007-01-01

    One of the hydrogen production method that have been developed is a thermo-chemical method. This method is permissible to increase thermal efficiency up to 70 % and to decrease of operational temperature from 800℃ down to 450 ℃. One of several factor that can increase of the hydrogen production thermal efficiency at the above method is to apply a separated membrane that have a relative good for permeansce and selectivity performance. It had been carried out for analyzing of time and temperature CVD (Chemical Vapouration Deposition) that is affected to permeansce and power selecting performance of the membrane. The layering membrane silica process was carried out by means of the CVD method at atmosphere pressure. The membrane silica layering that was observed was developed by a CVD method in atmospheric pressure. The silica membrane was formed at the out side surface of the alumina gamma cylinder that had been coated by alumina gamma which it has average porosity about of 0.01 mic.meter. A permeansce and separation power performance of the membrane silica that was carried out by means of CVD method at 600 ℃ on H 2 , He and N 2 are : 2 x 10 -10 , 9 x 10 -9 and 4 x 10 -7 mol Pa/m 2 s and the selected power of H 2 /N 2 = 45. The permeansce of that membrane is relative good but the selected power is relative not so good. (author)

  11. Study on treating of low-level radioactive reactor wastewater by combined membrane process (UF-RO)

    International Nuclear Information System (INIS)

    Lu Yunyun; Cao Qiru; Chen Yunming; Huang Lijuan; Bai Xiaofeng; Li Bing; Feng Liang

    2013-01-01

    According to the characteristics of radionuclide exists in the low-level radioactive reactor waste water from HFETR, we use a new combined membrane process separation technology to study the efficient treating of low-lever radioactive reactor wastewater. First, the prepared the simulated wastewater contained Cs + , Sr 2+ , CO 2+ , Ni 2+ , and Fe 3+ . Then, we sequentially investigated the pressure, ion concentration, pH value and EDTA, which have effects on the desalination rate of membrane processing metal ions in wastewater. The results show that: in the condition of pH = 7, and added 0.15 mol/L EDTA, the simulated wastewater separated by UF-RO, desalination rates of Cs + , Sr 2+ , CO 2+ , Ni 2+ and Fe 3+ are all above 95%; In the subsequent trials, adding 0.15 mol/L EDTA into the radioactive residuary solution, and then treating by UF-RO-RO, the decontamination efficiency can reach 95.7%. (authors)

  12. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  13. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Liang, Jun; Xu, Xiaoyin; Shen, Shuang

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.

  14. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor.

    Science.gov (United States)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-11-15

    Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8±1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 gm(-3) d(-1)) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 gm(-3) d(-1) (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  16. Insight into effects of antibiotics on reactor performance and evolutions of antibiotic resistance genes and microbial community in a membrane reactor.

    Science.gov (United States)

    Wen, Qinxue; Yang, Lian; Zhao, Yaqi; Huang, Long; Chen, Zhiqiang

    2018-04-01

    A lab-scale anoxic/oxic-membrane bioreactor was designed to treat antibiotics containing wastewater at different antibiotics concentrations (0.5 mg/L, 1 mg/L and 3 mg/L of each antibiotic). Overall COD and NH 4 + N removal (more than 90%) were not affected during the exposure to antibiotics and good TN removal was also achieved, while TP removal was significantly affected. The maximum removal efficiency of penicillin and chlorotetracycline reached 97.15% and 96.10% respectively due to strong hydrolysis, and sulfamethoxazole reached 90.07% by biodegradation. However, 63.87% of norfloxacin maximum removal efficiency was achieved mainly by sorption. The system had good ability to reduce ARGs, peaking to more than 4 orders of magnitude, which mainly depended on the biomass retaining of the membrane module. Antibiotics concentration influenced the evolution of ARGs and bacterial communities in the reactor. This research provides great implication to reduce ARGs and antibiotics in antibiotics containing wastewater using A/O-MBR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  18. Surface modification of gas diffusion layers by inorganic nanomaterials for performance enhancement of proton exchange membrane fuel cells at low RH conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, 7001 E Williams Field Rd., Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, 7001 E Williams Field Rd., Mesa, AZ 85212 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2009-08-15

    Prompted by our earlier study that fumed silica on gas diffusion layer (GDL) favored a performance improvement of the single fuel cell at lower RH conditions, the present study has been carried out with inorganic oxides in the nanoscale such as TiO{sub 2}, Al{sub 2}O{sub 3}, commercially available mixed oxides, hydrophilic silica and aerosil silica. The structure of each of the oxide coating on the GDL surface has resulted in refinement with graded pore dimension as seen from the Hg porosimetry data. The fuel cell evaluation at various RH conditions (50-100%) revealed that the performance of all the inorganic oxides loaded GDL is very high compared to that of pristine GDL. The results confirm our earlier observation that inorganic oxides on GDL bring about structural refinement favorable for the transport of gases, and their water retaining capacity enable a high performance of the fuel cell even at low RH conditions. (author)

  19. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  20. Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anaya, Nelson M.; Faghihzadeh, Fatemeh [Department of Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Rd., Bliss Hall 203, Kingston, RI 02881 (United States); Ganji, Nasim; Bothun, Geoff [Department of Chemical Engineering, University of Rhode Island, 16 Greenhouse Rd., Crawford Hall, Kingston, RI 02881 (United States); Oyanedel-Craver, Vinka, E-mail: craver@uri.edu [Department of Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Rd., Bliss Hall 203, Kingston, RI 02881 (United States)

    2016-09-15

    Continuous and batch reactors were used to assess the effect of the exposure of casein-coated silver nanoparticles (AgNPs) on Escherichia coli (E. coli). Additionally, E. coli membrane extracts, membrane permeability and Langmuir film balance assays were used to determine integrity and changes in lipid composition in response to AgNPs exposure. Results showed that batch conditions were not appropriate for the tests due to the production of exopolymeric substances (EPS) during the growth phase. After 5 h of contact between AgNPs and the used growth media containing EPS, the nanoparticles increased in size from 86 nm to 282 nm reducing the stability and thus limiting cell-nanoparticle interactions. AgNPs reduced E. coli growth by 20% at 1 mg/L, in terms of Optical Density 670 (OD670), while no effect was detected at 15 mg/L. At 50 mg/L of AgNPs was not possible to perform the test due to aggregation and sedimentation of the nanoparticles. Membrane extract assays showed that at 1 mg/L AgNPs had a greater change in area (− 4.4cm{sup 2}) on bacteria compared to 15 mg/L (− 4.0cm{sup 2}). This area increment suggested that membrane disruption caused by AgNPs had a stabilizing/rigidifying effect where the cells responded by shifting their lipid composition to more unsaturated lipids to counteract membrane rigidification. In chemostats, the constant inflow of fresh media and aeration resulted in less AgNPs aggregation, thus increased the AgNPs-bacteria interactions, in comparison to batch conditions. AgNPs at 1 mg/L, 15 mg/L, and 50 mg/L inhibited the growth (OD670 reduction) by 0%, 11% and 16.3%, respectively. Membrane extracts exposed to 1 mg/L, 15 mg/L, and 50 mg/L of AgNPs required greater changes in area by − 0.5 cm{sup 2}, 2.7 cm{sup 2} and 3.6 cm{sup 2}, respectively, indicating that the bacterial membranes were disrupted and bacteria responded by synthesizing lipids that stabilize or strengthen membranes. This study showed that the chemostat is more

  1. Optimization of the biological process using flat membrane bioreactors. Maximum treatment performance with minimum reactor volume; Optimizacion del proceso biologico con BRM de membrana plana. Maximo rendimiento de depuracion con minimo volumen de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lluch Vallmithana, S.; Lopez Gavin, A.

    2006-07-01

    In a conventional activated sludge process, the membranes are inside the biological reactor where they drain the water through suction or a water column. This system can be operated with heavy loads and sludge of 12-14 g/l or more, and is not affected by problems of bulking or foaming. This makes it suitable for treating difficult industrial waste waters, providing treated water that is free of bacteria and viruses. Micro filtration membranes are flat without any rubbing between them. The membranes require infrequent chemical cleaning and do not need back washing. As no final sedimented is needed, the waste water treatment plant occupies less space. (Author)

  2. Solar membrane natural gas steam-reforming process: evaluation of reactor performance

    NARCIS (Netherlands)

    de Falco, M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  3. Solar membrane natural gas steam-reforming process : evaluation of reactor performance

    NARCIS (Netherlands)

    Falco, de M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  4. Enrichment of Thermophilic Syntrophic Anaerobic Glutamate-Degrading Consortia using a Dialysis Membrane Reactor

    NARCIS (Netherlands)

    Plugge, C.M.; Stams, A.J.M.

    2002-01-01

    A dialysis cultivation system was used to enrich slow-growing moderately thermophilic anaerobic bacteria at high cell densities. Bicarbonate buffered mineral salts medium with 5 mM glutamate as the sole carbon and energy source was used and the incubation temperature was 55 degrees C. The reactor

  5. Development of packed bed membrane reactor for the oxidative dehydrogenation of propane

    NARCIS (Netherlands)

    Kotanjac, Zeljko

    2009-01-01

    In this research, a reactor concept for the oxidative dehydrogenation of propane was studied. First a literature survey was performed, to investigate which are the best catalyst systems and best operating conditions that result in the largest propylene yield. In the kinetic study of ODHP over a

  6. 有机/无机杂化渗透汽化优先透醇膜研究进展%Advances in organic/inorganic hybrid alcohol perm-selective pervaporation membrane

    Institute of Scientific and Technical Information of China (English)

    李杰; 王乃鑫; 纪树兰

    2014-01-01

    渗透汽化优先透醇膜分离技术可有效解决燃料乙醇和丁醇生产中发酵产率较低的瓶颈问题,受到广泛关注。膜材料的选择与改性以及膜结构的构建是提高透醇性能的关键。有机/无机杂化膜可以实现有机和无机材料的优势互补,被认为是未来分离膜领域最重要的发展方向之一。本文扼要回顾了用于优先透醇渗透汽化分离的有机无机杂化材料,结合本文作者课题组的研究工作,重点阐述了杂化粒子的结构、粒径、界面相容性、纳微分散、负载量等因素对渗透汽化传递过程的作用机制,进一步对近年来发展的成膜新方法进行了总结。在此基础上,提出今后有机/无机杂化渗透汽化优先透醇膜研究的主要方向是发展新型纳米级、超疏水并与有机聚合物具有高度界面相容性的无机粒子,以及构建高负载量的纳微结构与超亲醇表面。%Alcohol perm-selective pervaporations membrane could resolve the product inhibition problem effectively for the use of ethanol and butanol recovery from fermentation process. The selection and modification of membrane material,and the construction of membrane structure are the key issues for better pervaporation performance. Organic/inorganic hybrid membranes combine the advantages of both organic polymers and inorganic materials,forming highly promising membranes for separation. This paper reviews the advances in organic/inorganic hybrid alcohol perm-selective pervaporation membrane materials. Several issues and research priorities which will impact the pervaporation ability of hybrid membrane for biofuel recovery are identified and discussed,including particle structure,particle size,compatibility and dispersion of inorganic particles in the polymer,and particle loading. Novel preparation methods in recent years are also presented in detail. Finally,the prospect of developing novel particles with nano size

  7. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  8. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...... continuous aeration, could remove more than 5.5 g N/m2/day (at loads up to 8 g N/m2/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O2 (oxygen) to NH4+ (ammonium) (LO2/LNH4) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16...

  9. Gravity filtration performances of the bio-diatomite dynamic membrane reactor for slightly polluted surface water purification.

    Science.gov (United States)

    Chu, Huaqiang; Dong, Bingzhi; Zhang, Yalei; Zhou, Xuefei

    2012-01-01

    A bio-diatomite dynamic membrane (BDDM) reactor for surface water treatment under a water head of 30, 40, 50, 60 and 70 cm, respectively, was investigated, which was very effective for pollutants removal. The water head exerted strong influences on filtration flux of BDDM during the precoating process, as well as on the formation of BDDM and turbidity variations. A high filtration flux (approximately 200-300 L/m2 h) could be achieved in the long filtration times of BDDM with a stable effluent turbidity of approximately 0.11-0.25 NTU. The BDDM could remove particles larger than 25 μm completely. The adopted sintered diatomite mainly consisted of macro pores, which were beneficial for improving the filtration flux of BDDM. During the backwash stage, the BDDM could be removed completely by the air backwash.

  10. Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Šindelář, V.; Kubáň, Pavel

    2017-01-01

    Roč. 950, JAN (2017), s. 49-56 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : bambus[6]uril * electromembrane extraction selectivity * inorganic anions Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  11. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction

    International Nuclear Information System (INIS)

    Wang, Ai-Jie; Cui, Dan; Cheng, Hao-Yi; Guo, Yu-Qi; Kong, Fan-Ying; Ren, Nan-Qi; Wu, Wei-Min

    2012-01-01

    Highlights: ► A novel membrane-free up-flow biocatalyzed electrolysis reactor (UBER) was developed. ► Nitrobenzene as the mode of nitroaromatics was efficiently converted to aniline. ► The impact of phosphate buffer and acetate concentrations and power supplied were investigated. ► The prospects of UBER for the recalcitrant compound removal were discussed. - Abstract: A new bioelectrochemical system (BES), a membrane-free, continuous feeding up-flow biocatalyzed electrolysis reactor (UBER) was developed to reduce oxidative toxic chemicals to less- or non-toxic reduced form in cathode zone with oxidation of electron donor in anode zone. Influent was fed from the bottom of UBER and passed through cathode zone and then anode zone. External power source (0.5 V) was provided between anode and cathode to enhance electrochemical reactions. Granular graphite and carbon brush were used as cathode and anode, respectively. This system was tested for the reduction of nitrobenzene (NB) using acetate as electron donor and carbon source. The influent contained NB (50–200 mg L −1 ) and acetate (1000 mg L −1 ). NB was removed by up to 98% mainly in cathode zone. The anode potential maintained under −480 mV. The maximum NB removal rate was up to 3.5 mol m −3 TV d −1 (TV = total empty volume) and the maximum aniline (AN) formation rate was 3.06 mol m −3 TV d −1 . Additional energy required was less than 0.075 kWh mol −1 NB. The molar ratio of NB removed vs acetate consumed varied from 4.3 ± 0.4 to 2.3 ± 0.1 mol mol −1 . Higher influent phosphate or acetate concentration helped NB removal rate. NB could be efficiently reduced to AN as the power supplied of 0.3 V.

  12. A polygeneration from a dual-gas partial catalytic oxidation coupling with an oxygen-permeable membrane reactor

    International Nuclear Information System (INIS)

    Hao, Yanhong; Huang, Yi; Gong, Minhui; Li, Wenying; Feng, Jie; Yi, Qun

    2015-01-01

    Highlights: • A new polygeneration system (PL-PCO-OPMR) to DME/methanol/power is proposed. • Exergeo-economic analysis is adopted to disclose the performance of systems. • Key technological conditions and parameters for PL-PCO-OPMR are optimized. • PL-PCO-OPMR shows high energy efficiency and low CO_2 emission. • PL-PCO-OPMR is an attractive way for high efficient and clean use of COG and CGG. - Abstract: Polygeneration system, typically involving chemicals/fuels and electricity co-production, is a promising technology for the sustainable development of energy and environment. In this study, a new polygeneration system based on coal and coke oven gas (COG) inputs for co-production of dimethyl ether (DME)/methanol and electricity is proposed. In the new system, an appropriate syngas for the synthesis of DME is from coal gasified gas (CGG) reforming of COG coupled with an oxygen-permeable membrane reactor, in which both COG and CGG reforming process and fuel combustion process are incorporated, which reduces exergy destruction in the whole reforming process. In order to obtain the best performance of CO_2 reduction, energy saving and economic benefit, the key operation parameters of the proposed process are analyzed and optimized. The new system is compared with the process based on CH_4/CO_2 dry reforming, in terms of exergy efficiency, exergy cost and CO_2 emissions. Through the new system, the exergy efficiency can be increased by 7.8%, the exergy cost can be reduced by 0.88 USD/GJ and the CO_2 emission can be reduced by 0.023 kg/MJ. These results suggest that the polygeneration system from CGG and COG partial catalytic oxidation coupling with an oxygen-permeable membrane reactor (PL-PCO-OPMR) would be a more attractive way for highly efficient and clean use of CGG and COG.

  13. A comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane dual-type FTS reactor in GTL technology

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, M.R.; Forghani, A.A.; Mostafazadeh, A. Khosravanipour; Shariati, A. [Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran)

    2010-01-15

    In this work, a comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane reactor for Fischer-Tropsch Synthesis (FTS) has been carried out. In both modes of operations, a system with two-catalyst bed instead of one single catalyst bed is developed for FTS reactions. In the first catalytic reactor, the synthesis gas is partly converted to products in a conventional water-cooled fixed-bed reactor, while in the second reactor which is a membrane fixed-bed reactor, the FTS reactions are completed and heat of reaction is used to preheat the feed synthesis gas to the first reactor. In the co-current mode, feed gas is entered into the tubes of the second reactor in the same direction with the reacting gas stream in shell side while in the counter-current mode the gas streams are in the opposite direction. Simulation results for both co-current and counter-current modes have been compared in terms of temperature, gasoline and CO{sub 2} yields, H{sub 2} and CO conversion, selectivity of components as well as permeation rate of hydrogen through the membrane. The results showed that the reactor in the co-current configuration operates with lower conversion and lower permeation rate of hydrogen, but it has more favorable profile of temperature. The counter-current mode of operation decreases undesired products such as CO{sub 2} and CH{sub 4} and also produces more gasoline. (author)

  14. High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor

    International Nuclear Information System (INIS)

    Cao Peigang; Dube, Marc A.; Tremblay, Andre Y.

    2008-01-01

    High-purity fatty acid methyl ester (FAME) was produced from different lipids, such as soybean oil, canola oil, a hydrogenated palm oil/palm oil blend, yellow grease, and brown grease, combined with methanol using a continuous membrane reactor. The membrane reactor combines reaction and separation in a single unit, provides continuous mixing of raw materials, and maintains a high molar ratio of methanol to lipid in the reaction loop while maintaining two phases during the reaction. It was demonstrated that the membrane reactor can be operated using a very broad range of feedstocks at highly similar operating conditions to produce FAME. The total glycerine and free glycerine contents of the FAME produced were below the ASTM D6751 standard after a single reaction step. Under essentially the same reaction conditions, a conventional batch reaction was not able to achieve the same degree of FAME purity. The effect of the fatty acid composition of the lipid feedstocks on the FAME purity was also shown. It was demonstrated that, due to the fatty acid composition, FAME from virgin soybean oil and virgin canola oil was produced in the membrane reactor within ASTM specifications even without a water washing step

  15. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Intraparticle mass transport

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  16. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Intraparticle Mass Transport

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  17. Reactor building 3D-model for evaluating the pressures on concrete regularization and foundation waterproofing membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mello Junior, Glauco J.T.; Cardoso, Tarcisio de F.; Prates, Carlos L.M. [Eletrobras Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Gerencia de Analise de Tensoes GAN.T], e-mail: glauco@eletronuclear.gov.br, e-mail: tarci@eletronuclear.gov.br, e-mail: prates@eletronuclear.gov.br

    2009-07-01

    Angra dos Reis site in Brazil has already 2 operating PWR NPPs. Unit 3, with identical design to Unit 2, also a 1350 MW PWR, is expected to have its construction started in 2009. This new plant shall be founded directly on sound rock. The first step is to prepare this rock surface with a concrete regularization and a foundation waterproofing membrane. This study presents a 3D model approach of the corresponding reactor building to verify the maximum pressure acting on this surface. The 3D model permits to show a more realistic pressure distribution at every foundation specific detail. A static analysis is performed using ANSYS Mechanical Release 11.1. Dead weight, permanent and live loads, Safe Shutdown Earthquake (SSE) combined with Burst Pressure Wave (BPW) from the Feedwater Tank (SSB=SSE+BPW) and differences of temperature are taken into account. Considering all foundation nodes , the pressure distribution on the waterproofing membrane for each load case is obtained for vertical and horizontal directions, which corresponds to compression and tangential reaction loads. The maximum values occur in distinct positions for each load case. The maximum results are obtained according to DIN 25449 (2008) load combination criteria. The results are compared to a simplified analysis performed before, showing a good agreement in global values. (author)

  18. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Reactor building 3D-model for evaluating the pressures on concrete regularization and foundation waterproofing membrane

    International Nuclear Information System (INIS)

    Mello Junior, Glauco J.T.; Cardoso, Tarcisio de F.; Prates, Carlos L.M.

    2009-01-01

    Angra dos Reis site in Brazil has already 2 operating PWR NPPs. Unit 3, with identical design to Unit 2, also a 1350 MW PWR, is expected to have its construction started in 2009. This new plant shall be founded directly on sound rock. The first step is to prepare this rock surface with a concrete regularization and a foundation waterproofing membrane. This study presents a 3D model approach of the corresponding reactor building to verify the maximum pressure acting on this surface. The 3D model permits to show a more realistic pressure distribution at every foundation specific detail. A static analysis is performed using ANSYS Mechanical Release 11.1. Dead weight, permanent and live loads, Safe Shutdown Earthquake (SSE) combined with Burst Pressure Wave (BPW) from the Feedwater Tank (SSB=SSE+BPW) and differences of temperature are taken into account. Considering all foundation nodes , the pressure distribution on the waterproofing membrane for each load case is obtained for vertical and horizontal directions, which corresponds to compression and tangential reaction loads. The maximum values occur in distinct positions for each load case. The maximum results are obtained according to DIN 25449 (2008) load combination criteria. The results are compared to a simplified analysis performed before, showing a good agreement in global values. (author)

  20. Catalytic reforming of methane to syngas in an oxygen-permeative membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Takeshi; Kubo, Keiko; Saito, Tomoyuki; Hitomi, Atsushi, E-mail: turano@jp.tdk.com [Materials and Process Development Center, TDK Corporation 570-2, Matsugashita, Minamihatori, Narita, Chiba 286-8588 (Japan)

    2011-05-15

    For fuel cell applications, partial oxidative reforming of methane to syngas, hydrogen and carbon monoxide, was performed via a dense oxygen-permeative ceramic membrane composed by both ionic and electronic conductive materials. The modification of Ni-based catalyst by noble metals was investigated to increase oxygen permeation flux and decrease carbon deposition during reforming reaction. The role of each component in catalyst was also discussed.

  1. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  2. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  3. Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling.

    Science.gov (United States)

    Ly, Quang Viet; Nghiem, Long D; Sibag, Mark; Maqbool, Tahir; Hur, Jin

    2018-05-01

    The relative ratios of chemical oxygen demand (COD) to nitrogen (N) in wastewater are known to have profound effects on the characteristics of soluble microbial products (SMP) from activated sludge. In this study, the changes in the SMP characteristics upon different COD/N ratios and the subsequent effects on ultrafiltration (UF) membrane fouling potentials were examined in sequencing batch reactors (SBR) using excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). Three unique fluorescent components were identified from the SMP samples in the bioreactors operated at the COD/N ratios of 100/10 (N rich), 100/5 (N medium), and 100/2 (N deficient). The tryptophan-like component (C1) was the most depleted at the N medium condition. Fulvic-like (C2) and humic-like (C3) components were more abundant with N rich wastewater. Greater abundances of large size biopolymer (BP) and low molecular weight neutrals (LMWN) were found under the N deficient and N rich conditions, respectively. SMPs from various COD/N exhibited a greater degree on membrane fouling following the order of 100/2 > 100/10 > 100/5. C1 and C2 had close associations with reversible and irreversible fouling, respectively, while the reversible fouling potential of C3 depended on the COD/N ratios. No significant impact of COD/N ratio was observed on the relative contributions of SMP size fractions to either reversible or irreversible fouling potential. However, the COD/N ratios likely altered the BP foulants' composition with greater contribution of proteinaceous substances to reversible fouling under the N deficient condition than at other N richer conditions. The opposite trend was observed for irreversible fouling. Our results provided further insight into changes in different SMP constitutes and their membrane fouling in response to microbial activities under different COD/N ratios. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    overpredicted the oxygen transfer by a factor of 1.3 relative to the result calculated from the outlet gas oxygen concentration, which was considered the most accurate of the measured benchmarks. A mass transfer coefficient derived from the clean water testing with oxygen sensors at the membrane......-liquid interface was the most accurate of the predictive models (overpredicted by a factor of 1.1) while a coefficient determined by measuring bulk liquid dissolved oxygen underpredicted the oxygen transfer by a factor of 3. The mechanistic model was found to be an adequate tool for design because it used...

  5. Exergy analysis of a hydrogen fired combined cycle with natural gas reforming and membrane assisted shift reactors for CO2 capture

    International Nuclear Information System (INIS)

    Atsonios, K.; Panopoulos, K.D.; Doukelis, A.; Koumanakos, A.; Kakaras, Em.

    2012-01-01

    Highlights: ► Exergy analysis of NGCC with CCS. ► WGS-MR: exergetically efficient technology for CCS, less than 2% total exergy losses. ► 10% of total exergy dissipation in the ATR. ► Optimization of ATR operation and CO 2 stream treatment. - Abstract: Hydrogen production from fossil fuels together with carbon capture has been suggested as a means of providing a carbon free power. The paper presents a comparative exergetic analysis performed on the hydrogen production from natural gas with several combinations of reactor systems: (a) oxy or air fired autothermal reforming with subsequent water gas shift reactor and (b) membrane reactor assisted with shift catalysts. The influence of reactor temperature and pressure as well as operating parameter steam-to-carbon ratio, is also studied exergetically. The results indicate optimal power plant configurations with CO 2 capture, or hydrogen delivery for industrial applications.

  6. Research progress in zeolite-based organic-inorganic hybrid membranes%以分子筛为基础的有机-无机杂化膜研究进展

    Institute of Scientific and Technical Information of China (English)

    延檬羽; 王晓东; 黄伟

    2017-01-01

    This review describes the preparation method and the research progress of organic - inorganic hybird membranes, in which the membranes filled with molecular sieves are focused on. The contents included the calssification, the advantages and the preparation methods of hybird membranes. The compatibility and ultra thin separation layer are the hotspot problems.%介绍了目前有机-无机杂化膜制备的常用方法,着重针对分子筛与高聚物共混型的有机-无机杂化膜的研究进展进行论述,包括有机-无机杂化改性的优势、杂化膜的分类及其制备方法等内容.其中,有机介质与无机粒子分子筛间的相容性、杂化膜的分离皮层薄化等是热点问题.

  7. Experimental study of lactose hydrolysis and separation in cstr-uf membrane reactor

    Directory of Open Access Journals (Sweden)

    M. Namvar-Mahboub

    2012-09-01

    Full Text Available In this study, the effect of processing conditions on the performance of continuous stirred tank -ultrafiltration (CSTR-UF in dead - end mode was investigated. An UF membrane with a molecular weight cutoff of 3 kDa made of regenerated cellulose material was used to separate enzyme from products. The effect of operating pressure ranging between 2 and 5 bar and time on the performance of the CSTR-UF system was studied. The experiments were performed with a 0.139 molar aqueous solution of lactose as feed. According to the experimental data, the lactose concentration in the permeate decreased with time due to concentration polarization and hydrolysis. It was found that the rejection factor of lactose increases from 33 to 77% with time from 5 to 85 min. Permeation flux of the membrane was evaluated in terms of pure water flux (PWF and lactose aqueous solution. Results showed that a high operating pressure led to a high permeation flux for both mentioned cases. Also, adding lactose and enzyme to pure water caused a reduction of the permeation flux due to concentration polarization.

  8. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  9. Water reuse by membrane bioreactors (MBR); Reutilizacion de agua depurada mediante reactores biologicos de membrana (MBR)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G.; Huete, E.; Martinez, L. C.; Torres, A.

    2010-07-01

    This paper shows an up-to date overview of the use of membrane bioreactor (MBR) to obtain water treated for reusing it. Considering the existing rules. it has been presented a summary of published studies in which the quality of the effluent is analyzed in terms on physico-chemical and biological parameters. Furthermore, MBR results are compared with the conventional treatment ones. Due to the suitability of MBR technology for removing pathogens, particular attention has been paid to disinfection process and the mechanism that govern it. Results from reviewed studies of MBR have showed equal or better quality of water treated than conventional treatments (activated sludge plus disinfection tertiary treatment by the addition of antibacterial agents). (Author) 32 refs.

  10. Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2015-06-01

    Full Text Available After the dyeing process, part of the dyes used to color textile materials are not fixed into the substrate and are discharged into wastewater as residual dyes. In this study, a heterogeneous photocatalytic process combined with microfiltration has been investigated for the removal of C.I. Disperse Red 73 from synthetic textile effluents. The titanium dioxide (TiO2 Aeroxide P25 was selected as photocatalyst. The photocatalytic treatment achieved between 60% and 90% of dye degradation and up to 98% chemical oxygen demand (COD removal. The influence of different parameters on photocatalytic degradation was studied: pH, initial photocatalyst loading, and dye concentration. The best conditions for dye degradation were pH 4, an initial dye concentration of 50 mg·L−1, and a TiO2 loading of 2 g·L−1. The photocatalytic membrane treatment provided a high quality permeate, which can be reused.

  11. Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor.

    Science.gov (United States)

    Cannilla, Catia; Bonura, Giuseppe; Frusteri, Leone; Frusteri, Francesco

    2014-05-20

    In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.

  12. Monitoring and modeling of nitrogen conversions in membrane-aerated biofilm reactors: Effects of intermittent aeration

    DEFF Research Database (Denmark)

    Ma, Yunjie

    Nitrogen can be removed from sewage by a variety of physicochemical and biological processes. Due to the high removal efficiency and relatively low costs, biological processes have been widely adopted for treating nitrogen-rich wastewaters. Among the biological technologies, biofilm processes show...... the membrane, whilst NH4+ is provid-ed from the bulk liquid phase. The counter substrate supply not only offers flexible aeration control, but also supports the development of a unique mi-crobial community and spatial structure inside the biofilm. In this study, lab-scale MABRs were operated under two types...... relevant biological N2O production pathways. Sensitive kinetic parameters were estimated with long-term bulk performance data. With the calibrated model, roles of HB and AnAOB were discussed and evaluated in mitigating N2O emissions in auto-trophic nitrogen removal MABRs. Moreover, I developed a 1-D...

  13. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  14. Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    OpenAIRE

    Slade, S.; Smith, James; Campbell, S.; Ralph, T.; Ponce de Leon, C.; Walsh, F.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion® solution (1100 EW, 10%wt in water). Inert filler particles (SiO2, ZrO2 or TiO2; 5–20%wt) were incorporated into the aqueous Nafion® solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm−3 sulfuric acid at 298 K. The TiO2 filler sig...

  15. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao

    2016-05-31

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  16. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao; Zeng, Gaofeng; Lai, Zhiping; Huang, Kuo-Wei

    2016-01-01

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  17. Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors.

    Science.gov (United States)

    Ontiveros-Valencia, Aura; Tang, Youneng; Zhao, He-Ping; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Rittmann, Bruce E; Krajmalnik-Brown, Rosa

    2014-07-01

    We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO3(-)) and perchlorate (ClO4(-)) in contaminated groundwater. The groundwater also contained oxygen (O2) and sulfate (SO4(2-)), which became important electron sinks that affected the NO3(-) and ClO4(-) removal rates. Using pyrosequencing, we elucidated how important phylotypes of each "primary" microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO4(2-) reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the "primary" groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.

  18. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment.

    Science.gov (United States)

    Saddoud, Ahlem; Sayadi, Sami

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCODm(-3)d(-1) with gradual increase to an average of 13.27 kg TCODm(-3)d(-1). At stable conditions, the treatment efficiency was high with an average COD and BOD(5) reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCODm(-3)d(-1). The removal efficiencies of SCOD and BOD(5) were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  19. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    International Nuclear Information System (INIS)

    Saddoud, Ahlem; Sayadi, Sami

    2007-01-01

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m -3 d -1 with gradual increase to an average of 13.27 kg TCOD m -3 d -1 . At stable conditions, the treatment efficiency was high with an average COD and BOD 5 reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m -3 d -1 . The removal efficiencies of SCOD and BOD 5 were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines

  20. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  1. Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment

    International Nuclear Information System (INIS)

    Damodar, Rahul-Ashok; You, Sheng-Jie; Chiou, Guan-Wei

    2012-01-01

    Highlights: ► The charge differences between particle and membrane accelerate the intensity of fouling and binding of TiO 2 particles. ► Severe fouling at pH 5 and low fouling at pH ≥ 7 at all flux conditions. ► The presence of a very thin TiO 2 cake layer can alter the hydrophilicity of the membrane surface. ► The resistance offered by dense TiO 2 cake layer could dominate the hydrophilic effect of TiO 2 particles. - Abstract: In this study, the effects of MPR's operating conditions such as permeate flux, solution pH, and membrane hydrophobicity on separation characteristics and membrane fouling caused by TiO 2 deposition were investigated. The extent of fouling was measured in terms of TMP and tank turbidity variation. The results showed that, at mildly acidic conditions (pH ∼ 5), the turbidity within the tank decreased and the extent of turbidity drop increased with increasing flux for all the membranes. On the other hand, at pH ≥ 7, the turbidity remained constant at all flux and for all membranes tested. The fouling variation at different pH was closely linked with the surface charge (zeta potential) and hydrophilicity of both membrane and particles. It was observed that the charge differences between the particles and membranes accelerate the intensity of fouling and binding of TiO 2 particles on the membrane surface under different pH conditions. The presence of a very thin layer of TiO 2 can alter the hydrophilicity of the membranes and can slightly decrease the TMP (filtration resistance) of the fouled membranes. Besides, the resistance offered by the dense TiO 2 cake layer would dominate this hydrophilic effect of TiO 2 particles, and it may not alter the filtration resistance of the fouled membranes.

  2. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  3. The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater.

    Science.gov (United States)

    Shariati, Seyed Ramin Pajoum; Bonakdarpour, Babak; Zare, Nasim; Ashtiani, Farzin Zokaee

    2011-09-01

    The use of membrane sequencing batch reactors, operated at HRT of 8, 16 and 24h, was considered for the treatment of a synthetic petroleum wastewater. Increase in HRT resulted in statistically significant decrease in MLSS. Removal efficiencies higher than 97% were found for the three model hydrocarbon pollutants at all HRTs, with air stripping making a small contribution to overall removal. Particle size distribution (PSD) and microscopic analysis showed reduction in the protozoan populations in the activated sludge with decreasing HRT. PSD analysis also showed a higher proportion of larger and smaller sized particles at the lowest HRT. The rate of membrane fouling was found to increase with decreasing HRT; SMP, especially carbohydrate SMP, and mixed liquor apparent viscosity also showed a pronounced increase with decreasing HRT, whereas the concentration of EPS and its components decreased. FTIR analysis identified organic compounds as the main component of membrane pore fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A Cadmium Ion-selective Membrane Electrode Based on Strong Acidic Organic-inorganic Composite Cation-exchanger: Polyaniline Ce(IV Molybdate

    Directory of Open Access Journals (Sweden)

    Syed Ashfaq NABI

    2008-05-01

    Full Text Available A cadmium ion-selective composite cation-exchanger polyaniline Ce(IV molybdate was used as electroactive component for the construction of a ion-selective membrane electrode. The membrane electrode showed a Nerstian response for Cd(II ions over a wide concentration range 5 × 10-6 – 1 × 10-1 with a sub-Nerstian slope of 27 mV per decade change in concentration of cadmium ions. The limit of detection was also ascertained to be 5 × 10-6 M. It has a fast response time 15 s and can be very well utilized for more than three months with out any appreciable divergence in potentials. The optimum pH for the smooth functioning of this electrode was found to be in the Ph range of 2.5 – 7.5. The electrode also showed better selectivity for Cd(II ions over many other interfering ions. The practical utility of membrane electrode was demonstrated by using as indicator electrode for the potentiometric titration of Cd(II with EDTA and determination of cadmium content in drain water.

  5. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  6. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  7. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Saddoud, Ahlem [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia); Sayadi, Sami [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia)], E-mail: sami.sayadi@cbs.rnrt.tn

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m{sup -3} d{sup -1} with gradual increase to an average of 13.27 kg TCOD m{sup -3} d{sup -1}. At stable conditions, the treatment efficiency was high with an average COD and BOD{sub 5} reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m{sup -3} d{sup -1}. The removal efficiencies of SCOD and BOD{sub 5} were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  8. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor.

    Science.gov (United States)

    Asha, Raju C; Kumar, Mathava

    2015-01-01

    The presence of sulfamethoxazole (SMX) in a real-time poultry wastewater was identified via HPLC analysis. Subsequently, SMX removal from the poultry wastewater was investigated using a continuous-mode membrane-photocatalytic slurry reactor (MPSR). The real-time poultry wastewater was found to have an SMX concentration of 0-2.3 mg L(-1). A granular activated carbon supported TiO2 (GAC-TiO2) was synthesized, characterized and used in MPSR experiments. The optimal MPSR condition, i.e., HRT ∼ 125 min and catalyst dosage 529.3 mg L(-1), for complete SMX removal was found out using unconstrained optimization technique. Under the optimized condition, the effect of SMX concentration on MPSR performance was investigated by synthetic addition of SMX (i.e., 1, 25, 50, 75 and 100 mg L(-1)) into the wastewater. Interestingly, complete removals of total volatile solids (TVS), biochemical oxygen demand (BOD) and SMX were observed under all SMX concentrations investigated. However, a decline in SMX removal rate and proportionate increase in transmembrane-pressure (TMP) were observed when the SMX concentration was increased to higher levels. In the MPSR, the SMX mineralization was through one of the following degradation pathways: (i) fragmentation of the isoxazole ring and (ii) the elimination of methyl and amide moieties followed by the formation of phenyl sulfinate ion. These results show that the continuous-mode MPSR has great potential in the removal for SMX contaminated real-time poultry wastewater and similar organic micropollutants from wastewater.

  9. Investigation on the conditions mitigating membrane fouling caused by TiO{sub 2} deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Damodar, Rahul-Ashok [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung li 320, Taiwan, ROC (China); You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung li 320, Taiwan, ROC (China); Chiou, Guan-Wei [Department of Civil Engineering, Chung Yuan Christian University, Chung li 320, Taiwan, ROC (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The charge differences between particle and membrane accelerate the intensity of fouling and binding of TiO{sub 2} particles. Black-Right-Pointing-Pointer Severe fouling at pH 5 and low fouling at pH {>=} 7 at all flux conditions. Black-Right-Pointing-Pointer The presence of a very thin TiO{sub 2} cake layer can alter the hydrophilicity of the membrane surface. Black-Right-Pointing-Pointer The resistance offered by dense TiO{sub 2} cake layer could dominate the hydrophilic effect of TiO{sub 2} particles. - Abstract: In this study, the effects of MPR's operating conditions such as permeate flux, solution pH, and membrane hydrophobicity on separation characteristics and membrane fouling caused by TiO{sub 2} deposition were investigated. The extent of fouling was measured in terms of TMP and tank turbidity variation. The results showed that, at mildly acidic conditions (pH {approx} 5), the turbidity within the tank decreased and the extent of turbidity drop increased with increasing flux for all the membranes. On the other hand, at pH {>=} 7, the turbidity remained constant at all flux and for all membranes tested. The fouling variation at different pH was closely linked with the surface charge (zeta potential) and hydrophilicity of both membrane and particles. It was observed that the charge differences between the particles and membranes accelerate the intensity of fouling and binding of TiO{sub 2} particles on the membrane surface under different pH conditions. The presence of a very thin layer of TiO{sub 2} can alter the hydrophilicity of the membranes and can slightly decrease the TMP (filtration resistance) of the fouled membranes. Besides, the resistance offered by the dense TiO{sub 2} cake layer would dominate this hydrophilic effect of TiO{sub 2} particles, and it may not alter the filtration resistance of the fouled membranes.

  10. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  11. Influence of air scouring on the performance of a Self Forming Dynamic Membrane BioReactor (SFD MBR) for municipal wastewater treatment.

    Science.gov (United States)

    Salerno, Carlo; Vergine, Pompilio; Berardi, Giovanni; Pollice, Alfieri

    2017-01-01

    The Membrane BioReactor (MBR) is a well-established filtration-based technology for wastewater treatment. Despite the high quality of the effluent produced, one of the main drawbacks of the MBR is membrane fouling. In this context, a possible evolution towards systems having potentially lower installation and operating costs is the Self Forming Dynamic Membrane BioReactor (SFD MBR). Key of this technology is the self-formation of a biological filtering layer on a support of inert material. In this work, a lab-scale aerobic SFD MBR equipped with a nylon mesh was operated at approximately 95Lm -2 h -1 . Two mesh pore sizes (20 and 50μm) and three air scouring flow rates (150, 250, and 500mL air min -1 ) were tested at steady state. Under all the tested conditions, the SFD MBR effectively treated real municipal wastewater. The quality of the produced effluent increased for lower mesh size and lower air scouring intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Continuous production of lactic acid from molasses by perfusion culture of Lactococcus lactis using a stirred ceramic membrane reactor.

    Science.gov (United States)

    Ohashi, R; Yamamoto, T; Suzuki, T

    1999-01-01

    A perfusion culture system was used for continuous production of lactic acid by retaining cells at a high density of Lactococcus lactis in a stirred ceramic membrane reactor (SCMR). After the cell concentration increased to 248 g/l, half of the culture broth volume was replaced with the fermentation medium. Subsequently, a substrate solution containing glucose (run 1) or molasses (run 2) was continuously supplied to the cells retained in the SCMR. Simultaneously, the culture supernatant was extracted using a ceramic filter with a pore size of 0.2 mum. The dilution rate was initially set at 0.4 h(-1) and gradually decreased to 0.2 h(-1) due to reduction in the permeability of the filter. The concentration of glucose in the substrate solution was adjusted to 60 g/l for the transition and the first period until 240 h, 90 g/l for the second period from 240 h to 440 h, and 70 g/l for the third period from 440 h to 643 h. The average concentration of lactic acid in the filtrate reached 46 g/l in the first period, 43 g/l in the second period, and 33 g/l for the third period. The productivity obtained for the first period reached 15.8 g.l(-1).h(-1), twice as much as that achieved in repeated batch fermentations. Based on the results obtained in run 1, the substrate solution containing 120 g/l of molasses was continuously supplied for 240 h in run 2. The concentration and productivity of lactic acid reached 40 g/l and 10.6 g.l(-1).h(-1), respectively, by continuously replenishing the culture medium at a dilution rate of 0.26 h(-1). These results demonstrated that the filtration capacity of the SCMR was sufficient for a continuous and rapid replenishment of molasses solution from the dense cell culture and, therefore, the perfusion culture system is considered to provide a low-cost process for continuous production of lactic acid from cheap resources.

  13. Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate

    Energy Technology Data Exchange (ETDEWEB)

    Teerachaiyapat, Thanyarutt; Ramakul, Prakorn [Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom (Thailand)

    2016-01-15

    Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lactic acid in the feed solution, with good agreement achieved.

  14. Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate

    International Nuclear Information System (INIS)

    Teerachaiyapat, Thanyarutt; Ramakul, Prakorn

    2016-01-01

    Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lactic acid in the feed solution, with good agreement achieved.

  15. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Directory of Open Access Journals (Sweden)

    Bernardo Castro-Dominguez

    2016-09-01

    Full Text Available Palladium-based catalytic membrane reactors (CMRs effectively remove H2 to induce higher conversions in methane steam reforming (MSR and water-gas-shift reactions (WGS. Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i a conventional packed bed reactor packed (PBR for MSR, (ii a PBR with five layers of two catalysts in series and (iii a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

  16. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  17. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  18. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  19. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future.

  20. Carbamazepine degradation using a N-doped TiO_2 coated photocatalytic membrane reactor: Influence of physical parameters

    International Nuclear Information System (INIS)

    Horovitz, Inna; Avisar, Dror; Baker, Mark A.; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-01-01

    Highlights: • UV–vis N-doped TiO_2 was deposited by sol-gel onto Al_2O_3 microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al_2O_3 membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO_2 vs. non-doped TiO_2 membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al_2O_3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO_2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO_2 films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO_2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO_2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  1. Carbamazepine degradation using a N-doped TiO{sub 2} coated photocatalytic membrane reactor: Influence of physical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Horovitz, Inna [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Avisar, Dror [The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Baker, Mark A.; Grilli, Rossana [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Lozzi, Luca; Di Camillo, Daniela [Department of Physical and Chemical Sciences, University of L' Aquila, Via Vetoio, I-67100 L' Aquila (Italy); Mamane, Hadas, E-mail: hadasmg@post.tau.ac.il [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-05

    Highlights: • UV–vis N-doped TiO{sub 2} was deposited by sol-gel onto Al{sub 2}O{sub 3} microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al{sub 2}O{sub 3} membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO{sub 2} vs. non-doped TiO{sub 2} membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al{sub 2}O{sub 3} photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO{sub 2} photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO{sub 2} films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO{sub 2}-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO{sub 2}-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  2. Process for producing curved surface of membrane rings for large containers, particulary for prestressed concrete pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1977-01-01

    Membrane rings for large pressure vessels, particularly for prestressed-concrete pressure vessels, often have curved surfaces. The invention describes a process of producing these at site, which is particularly advantageous as the forming and installation of the vessel component coincide. According to the invention, the originally flat membrane ring is set in a predetermined position, is then pressed in sections by a forming tool (with a preformed support ring as opposite tool), and shaped. After this, the shaped parts are welded to the ring-shaped wall parts of the large vessel. The manufacture of single and double membrane rings arrangements is described. (HP) [de

  3. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  4. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  5. Optimized coupling of a submerged membrane electro-bioreactor with pre-anaerobic reactors containing anode electrodes for wastewater treatment and fouling reduction

    Directory of Open Access Journals (Sweden)

    Nader Taghipour

    2017-09-01

    Full Text Available In this paper, the performance of a submerged membrane electro-bioreactor with pre-anaerobic reactors containing anode electrodes (SMEBR+ was compared with that of a membrane bioreactor (MBR in municipal wastewater treatment. The new design idea of the SMEBR+ was based on applications of direct current (DC on the anode and cathode electrodes. The pilot study was divided into 2 stages and operated for 48 days. In Stage I, the MBR was continuously operated for 24 days without the application of electrodes. In Stage II, the SMEBR+ was continuously operated for 24 days, while aluminum electrodes and an intermittent DC were working with an operational mode of 2 min ON/4 min OFF at a constant voltage of 1.4 V. The results indicated that membrane fouling was reduced by nearly 22.02% in the SMEBR+ compared to the MBR. The results also showed that the SMEBR+ increased the quality of effluent to the extent that high removals of NH3+-N, PO43−-P, and chemical oxygen demand (COD were 98%, 76%, and 90%, respectively. This system, in comparison with those proposed in other studies, showed a suitable improvement in biological treatments, considering the high removal of NH3+-N. Therefore, SMEBR+ can be considered as a promising treatment alternative to the conventional MBR.

  6. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials

  7. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    Science.gov (United States)

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  9. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, C.S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen View the MathML source from light hydrocarbons

  10. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, C.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen (<10 ppm CO) from light hydrocarbons such as

  11. Interaction of Inorganic Nanoparticles With Cell Membranes

    National Research Council Canada - National Science Library

    Hofmann, Heinrich

    2008-01-01

    The discussion regarding toxic effects of nanoparticles, especially for people exposed to the particles during manufacturing, use of nanomaterials or because the particles have entered the biosphere...

  12. Characterization of plasma membrane bound inorganic ...

    African Journals Online (AJOL)

    ... N-ethylmaliemide (NEM), phenylarsineoxide, ABC superfamily transport modulator verapamil and was also by F1Fo-ATPase inhibitor quercetin. Conclusion: We conclude that there are significant differences within promastigote, amastigote and mammalian host in cytosolic pH homeostasis to merit the inclusion of PPase ...

  13. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity...... on the total nitrogen (TN) removal and the productions of NO and N2O. The model is applied to evaluate how periodic aeration as a control parameter reduces NO and N2O production but maintains high TN removal in MABR. The simulation results show over 3.5% of the removed TN could be attributed to NO and N2O...... production in MABR under the operational conditions optimal for TN removal (72%). An analysis of factors governing the Anammox activity in MABR shows that enhancing Anammox activity not only helps to achieve a high level of nitrogen removal but also reduces NO and N2O productions. Comparison of aeration...

  14. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Directory of Open Access Journals (Sweden)

    Yao Weilin

    2016-01-01

    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  15. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas.

    Science.gov (United States)

    Qiao, Wei; Takayanagi, Kazuyuki; Niu, Qigui; Shofie, Mohammad; Li, Yu You

    2013-12-01

    The performance of thermophilic anaerobic co-digestion of coffee grounds and sludge using membrane reactor was investigated for 148 days, out of a total research duration of 263 days. The OLR was increased from 2.2 to 33.7 kg-COD/m(3)d and HRT was shortened from 70 to 7 days. A significant irreversible drop in pH confirmed the overload of reactor. Under a moderately high OLR of 23.6 kg-COD/m(3)d, and with HRT and influent total solids of 10 days and 150 g/L, respectively, the COD removal efficiency was 44.5%. Hydrogen in biogas was around 100-200 ppm, which resulted in the persistent propionate of 1.0-3.2g/L. The VFA consumed approximately 60% of the total alkalinity. NH4HCO3 was supplemented to maintain alkalinity. The stability of system relied on pH management under steady state. The 16SrDNA results showed that hydrogen-utilizing methanogens dominates the archaeal community. The propionate-oxidizing bacteria in bacterial community was insufficient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  17. Integration of biological method and membrane technology in treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  18. Quantifying Contribution of Synthrophic Acetate Oxidation to Methane Production in Thermophilic Anaerobic Reactors by Membrane Inlet Mass Spectrometry

    DEFF Research Database (Denmark)

    Mulat, Daniel Girma; Ward, Alastair James; Adamsen, Anders Peter S.

    2014-01-01

    A unique method was developed and applied for monitoring methanogenesis pathways based on isotope labeled substrates combined with online membrane inlet quadrupole mass spectrometry (MIMS). In our study, a fermentation sample from a full-scale biogas plant fed with pig and cattle manure, maize...... silage, and deep litter was incubated with 100 mM of [2-13C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days...... a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic...

  19. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.

    Science.gov (United States)

    Dong, Haodi; Tang, Ya-Jie; Ohashi, Ryo; Hamel, Jean-François P

    2005-01-01

    A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.

  20. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  1. Layered inorganic solids

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  2. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  3. Biotransformation of a highly chlorinated PCB mixture in an activated sludge collected from a Membrane Biological Reactor (MBR) subjected to anaerobic digestion

    International Nuclear Information System (INIS)

    Bertin, Lorenzo; Capodicasa, Serena; Fedi, Stefano; Zannoni, Davide; Marchetti, Leonardo; Fava, Fabio

    2011-01-01

    The role of anaerobic digestion (AD) on the decontamination and biomethanization of a PCB-spiked sludge obtained from a Membrane Biological Reactor (MBR) pilot plant was investigated throughout a 10-month batch experiment. The study was carried out under mesophilic (35 deg. C) and thermophilic (55 deg. C) conditions and was monitored by means of an integrated chemical, microbiological and molecular biology strategy. Remarkable PCB depletions (higher than 50% of the overall spiked PCBs) and dechlorinations were achieved under methanogenic conditions. The process was not affected by yeast extract addition. Both acetoclastic and hydrogenotrophic methanogens, together with some fermentative eubacteria, were found to persist in all PCB biodegrading microcosms. This finding, together with those obtained from parallel microcosms where specific populations were selectively inhibited, suggested that native methanogens played a key role in the biodegradation and dechlorination of the spiked PCBs. Taken together, the results of this study indicate that AD is a feasible option for the decontamination and the efficient disposal (with the production of a CH 4 -rich biogas) of contaminated MBR sludge, which can be then employed as a fertilizer for agricultural purposes.

  4. Inorganic and geological materials

    International Nuclear Information System (INIS)

    Dinnin, J.I.

    1975-01-01

    Recently described methods for applied inorganic analysis are reviewed from an interdisciplinary standpoint. Abstracts and periodical literature up to Nov. 1974, are included for consideration. The following areas of interest are covered: general reviews of inorganic analytical techniques; analytical techniques, areas of application, and analysis of individual elements. Selected books, monographs, and review articles on the analytical chemistry of the elements are listed. (416 references.) (U.S.)

  5. Elaboration by tape-casting and co-sintering of multilayer catalytic membrane reactor- performances; Elaboration par coulage en bande et cofrittage de reacteurs catalytiques membranaires multicouches-performances

    Energy Technology Data Exchange (ETDEWEB)

    Julian, A

    2008-12-15

    This research deals with the increasing interest of the conversion of natural gas into liquid fuels (diesel, kerosene) using the Gas To Liquid (GTL) process. Within this context, Catalytic Membrane-based Reactors (CMR) would allow an improvement of the process efficiency and a reduction of investment and production costs with respect to the present technologies. They allow performing the separation of oxygen from air, and the conversion of natural gas into synthesis gas within a single step. After having highlighted the economical and technological advantages of using a ceramic membrane for the production of syngas (H{sub 2} + CO{sub 2}), the author describes the protocols of synthesis of powders selected for the dense membrane and the porous support, and their physical characteristics. The obtained powders are then adapted to the tape-casting forming process. Graded-composition multilayer structures and microstructure are then elaborated by co-sintering. Performances in terms of membrane oxygen flows are presented. Mechanisms limiting the oxygen flow are discussed in order to propose ways of improving membrane performances. The limits of the studied system are defined in terms of elastic properties, and optimization ways are proposed for the dense membrane material composition in terms of mechanical properties and performance in oxygen semi-permeation.

  6. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  7. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  8. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  9. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  10. A review of investigations on wastewater treatment with MSOBR (membrane supported and oxygenated biofilm reactors); Una revision de las investigaciones sobre el tratamiento de aguas residuales con RBSOM (reactores de biopelicula que emplean membranas con material soporte y medio de oxigenacion)

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Garcia, A. L.; Tejero Monzon, I.

    2007-07-01

    MSOBR (membrane supported and oxygenated biofilm reactors) are biological reactors for wastewater treatment in which biofilm support and oxygenation functions are carried out by gas permeable membranes. In these conditions, with oxygen and substratum (carbonaceous, nitroge neous) diffusing into the biofilm from opposite sides, different environments are developed inside the biofilm, allowing simultaneous nitrification, denitrification and carbon removal. Other added advantages, such us the possibility of a high oxygen transfer efficiency or those derived from the absence of bubbles in aeration (minimizing foaming and VOC emissions), have lead numerous research groups to work in the development of different MSOBR systems, with promising results that make possible to consider their practical applicability in the near future. (Author) 69 refs.

  11. Inorganic elements in sugar samples

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de, E-mail: pauladesalles@yahoo.com.br, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k{sub 0} method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  12. Inorganic elements in sugar samples

    International Nuclear Information System (INIS)

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de

    2013-01-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k 0 method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  13. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  14. Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor

    Science.gov (United States)

    Abdurakhman, Yuanita Budiman; Putra, Zulfan Adi; Bilad, Muhammad Roil

    2017-10-01

    Pollution and shortage of clean energy supply are among major problems that are caused by rapid population growth. Due to this growth, waste cooking oil is one of the pollution sources. On the other hand, biodiesel appears to be one of the most promising and feasible energy sources as it emits less toxic pollutants and greenhouse gases than petroleum diesel. Thus, biodiesel production using waste cooking oil offers a two-in-one solution to cater pollution and energy issues. However, the conventional biodiesel production process using homogeneous base catalyst and stirred tank reactor is unable to produce high purity of biodiesel from waste cooking oil. It is due its sensitivity to free fatty acid (FFA) content in waste cooking oil and purification difficulties. Therefore, biodiesel production using heterogeneous acid catalyst in membrane reactor is suggested. The product of this process is fatty acid methyl esters (FAME) or biodiesel with glycerol as by-product. This project is aimed to study techno-economic feasibility of biodiesel production from waste cooking oil via heterogeneous acid catalyst in membrane reactor. Aspen HYSYS is used to accomplish this aim. Several cases, such as considering different residence times and the production of pharmaceutical (USP) grade glycerol, are evaluated and compared. Economic potential of these cases is calculated by considering capital expenditure, utilities cost, product and by-product sales, as well as raw material costs. Waste cooking oil, inorganic pressure-driven membrane and WAl is used as raw material, type of membrane and heterogeneous acid catalyst respectively. Based on literature data, FAME yield formulation is developed and used in the reactor simulation. Simulation results shows that economic potential increases by 30% if pharmaceutical (USP) grade glycerol is produced regardless the residence time of the reactor. In addition, there is no significant effect of residence time on the economic potential.

  15. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  16. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  17. Industrial applications of membrane processes in chemistry and energy generation; Applications industrielles des procedes membranaires en chimie et production d'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    process for the processing of industrial effluents; 6 - membrane reactors: membrane catalytic reactors: extraction, isobutane dehydrogenation and xylenes isomerization; selective oxidation of n-butane, water treatment by gas-liquid processes; selectiveness improvement of the butadiene selective hydrogenation with the use of a membrane reactor; comparison of the efficiency of three catalytic reactors for the destruction of VOCs; 7 - gases and vapors separation: a new generation of particulate filters with catalyst impregnation for DeNox function; use of membranes for uranium enrichment: example of the EURODIF plant; inorganic membranes for integration in power generation cycles and hydrogen production; treatment of natural gas with Air Liquide-MEDAL hollow fiber membranes; 8 - liquids separation: nano-filtration in organic environment: state-of-the-art; recycling of organic compounds by inverse osmosis and seawater sulfate removing by nano-filtration; use of organic and mineral membranes in chemistry; membrane separation in chemicals manufacture; advantages and drawbacks of different membrane systems for the treatment of industrial water; concentration and recovery of organic pigments using ceramic membranes; 9 - membranes, processes and simulation: industrial experience with hybrid distillation - pervaporation or vapor permeation applications; electro-dialysis integration in amines and glycol solutions purification processes; integration of MFI membranes in the light gasoline isomerization process. (J.S.)

  18. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu [Grambling State Univ., LA (United States); Siriwardane, Upali [Louisiana Tech Univ., Ruston, LA (United States)

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  19. Inorganic chemistry and medicine

    International Nuclear Information System (INIS)

    Sadler, P.J.; Guo, Z.

    1999-01-01

    Inorganic chemistry is beginning to have a major impact on medicine. Not only does it offer the prospect of the discovery of truly novel drugs and diagnostic agents, but it promises to make a major contribution to our understanding of the mechanism of action of organic drugs too. Most of this article is concerned with recent developments in medicinal coordination chemistry. The role of metal organic compounds of platinum, titanium, ruthenium, gallium, bismuth, gold, gadolinium, technetium, silver, cobalt in the treatment or diagnosis of common diseases are briefly are examined

  20. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    International Nuclear Information System (INIS)

    Ida, Jun-ichi; Yang, Zhaohui; Lin, Jerry Y.S.

    2002-01-01

    A new CO 2 semi-permeable dense inorganic membrane consisting of a porous metal phase and molten carbonate was proposed. A simple direct infiltration method was used to synthesize the metal-carbonate dual-phase membrane. Hermetic (gas-tight) dual phase membrane was successfully obtained. Permeation data showed that nitrogen or helium is not permeable through the membrane (only CO 2 , with O 2 can permeate through the membrane based on transport mechanism)

  1. An investigation on polymeric blend mixed matrix membranes of ...

    African Journals Online (AJOL)

    Polymeric membranes have been vastly used for gas separation purposes however they have an upper-bound trade off problem which is the reason why this research work is focusing on inorganic filler added to polymer blend membranes to enhance the selectivity and permeability of the resulted membranes. Different ...

  2. New membrane structures with proton conducting properties

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal

    if higher operating temperature is enabled. One approach to obtain improved membranes in the aspects of applicable operating temperature and methanol permeability, which has attracted considerable attention, is the formation of composites by distributing inorganic fillers into Nafion or alternative polymers...... temperature and high relative humidity can cause excessive swelling of the membranes, yielding insufficient mechanical properties and breakdown of membrane function. Moreover, in the case of the Direct Methanol Fuel Cell (DMFC), their significant methanol permeability causes loss of efficiency. Higher...

  3. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  4. Inorganic Halogen Oxidizer Research

    Science.gov (United States)

    1979-02-16

    Inorganic Chemistry. Vol. 14. No. 9. 1975 Karl 0. Christ¢ (21) L. J. Basile . P. LaBonvillk. J. R. Ferraro, and J. M. Williams. J. Claim. (38) K. 0. Chriae. E... basils of a nonplanar structure of symmetry CI, are revised for six fundamental frequencies. Imalredetle either the 1:2 adduct N 2F4.2SbF5 or the 1:3...8217 in mT are 7 2.1 for B, facility. We aba thank L. K. White and R. L. Belford 111.0 for C, 55.0 for N, and 17100 for F, and the atomic aniso- trop’c

  5. Modern Trends in Inorganic Chemistry

    Indian Academy of Sciences (India)

    Administrator

    The series of symposia on 'Modern Trends in Inorganic Chemistry' (MTIC), which began in 1985 at the Indian Association for Cultivation of Science, Calcutta has evolved into a forum for the Inorganic Chemistry fraternity of the country to meet every two years and discuss the current status and future projections of research in.

  6. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  7. Recent advances in membrane materials: introductory remarks

    International Nuclear Information System (INIS)

    Ayral, A.

    2007-01-01

    A lot of separation operations are currently performed using membranes both for production processes and for environmental applications. The main part of the used membranes are organic membranes but for specific conditions of utilization inorganic or organic-inorganic membranes have been also developed. Among the applications for gas separation, some examples are the removal of hydrogen from ammonia synthesis gas, the removal of carbon dioxide from natural gas and air separation. Environmental considerations like massive scale air and water pollution and also the gradual rarefaction of fossil energy resources gave rise to the concept of sustainable growth and to related strategies like process intensification, the reuse of water and solvents at their point of use, hydrogen as energy vector (requiring H 2 production...)..Membranes will have a key part to play in the new technologies associated with these strategies. Intensive efforts of research and development are now engaged everywhere in the world to develop high performance membranes for those emerging applications. Membrane science is a multidisciplinary scientific and technological domain covering mainly materials science, physical chemistry, chemical engineering, modeling. This issue (Annales de chimie - Science des materiaux, 2007 Vol.32 N.2) provides a wide review of recent advances in membrane materials. It is based on the contributions of experts in different fields of membrane materials (organic, organic-inorganic hybrid, composite, carbon, metallic, ceramic; dense, porous, surface modified materials). (O.M.)

  8. A packed bed membrane reactor for the oxidative dehydrogenation of propane on a Ga2O3 / MoO3 based catalyst

    NARCIS (Netherlands)

    Kotanjac, Ž.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2010-01-01

    Oxidative dehydrogenation of propane has been studied over a Ga2O3/MoO3 based catalyst. Using a differentially operated packed bed reactor with premixed oxygen and propane feed, the kinetic parameters for the main reaction and the consecutive and parallel reactions were experimentally determined. It

  9. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  10. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  11. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  12. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Cancer risk from inorganics

    International Nuclear Information System (INIS)

    Swierenga, S.H.; Gilman, J.P.; McLean, J.R.

    1987-01-01

    Inorganic metals and minerals for which there is evidence of carcinogenicity are identified. The risk of cancer from contact with them in the work place, the general environment, and under conditions of clinical (medical) exposure is discussed. The evidence indicates that minerals and metals most often influence cancer development through their action as cocarcinogens. The relationship between the physical form of mineral fibers, smoking and carcinogenic risk is emphasized. Metals are categorized as established (As, Be, Cr, Ni), suspected (Cd, Pb) and possible carcinogens, based on the existing in vitro, animal experimental and human epidemiological data. Cancer risk and possible modes of action of elements in each class are discussed. Views on mechanisms that may be responsible for the carcinogenicity of metals are updated and analysed. Some specific examples of cancer risks associated with the clinical use of potentially carcinogenic metals and from radioactive pharmaceuticals used in therapy and diagnosis are presented. Questions are raised as to the effectiveness of conventional dosimetry in accurately measuring risk from radiopharmaceuticals. 302 references

  14. Experimental study of permeation and selectivity of zeolite membranes for tritium processes

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Olga; Antunes, Rodrigo; Demange, David, E-mail: david.demange@kit.edu

    2015-10-15

    Highlights: • We report about new experimental results on advanced membranes for tritium processing especially for the DEMO breeding blanket. • High permeances are measured on different zeolite MFI membranes made by film deposition or pore plugging. • Selectivity for H{sub 2}/He is limited requiring a multi-stage membrane process. • Selectivity of H{sub 2}O/He seems high enough to operate one single module. - Abstract: Zeolites are known as tritium compatible inorganic materials widely used in packed beds as driers in detritiation systems and are also suggested for tritium removal from helium at cryogenic temperature. The Tritium Laboratory Karlsruhe (TLK) proposed a new fully continuous approach for tritium extraction from the solid breeding blanket of fusion machines that improves the overall tritium management and minimizes both the tritium inventory and processing time. It is based on membrane permeation as a pre-concentration stage upstream of a final tritium recovery stage using a catalytic Pd-based membrane reactor. Zeolite membranes were identified as the most promising candidates for the pre-concentration stage. In the present work the tubular zeolite MFI membrane provided by the Institute for Ceramic Technologies and Systems (IKTS, Hermsdorf, Germany) is studied to consolidate the proposed approach. The permeation measurements for single gases hydrogen (replacing radioactive tritium) and helium, for binary mixtures H{sub 2}/He and H{sub 2}O/He at different concentrations and temperatures are presented. The tested membrane demonstrates a high performance, almost independent from the inlet composition in the case of a gaseous mixture, while the transport in the presence of water vapour is strongly related to the temperature of the mixture and component concentrations.

  15. Two-step treatment of harmful industrial wastewater: an analysis of microbial reactor with integrated membrane retention for benzene and toluene removal

    Directory of Open Access Journals (Sweden)

    Trusek-Holownia Anna

    2015-12-01

    Full Text Available Standards for highly toxic and carcinogenic pollutants impose strict guidelines, requiring values close to zero, regarding the degradation of such pollutants in industrial streams. In many cases, classic bioremoval processes fail. Therefore, we proposed a stream leaving the microbial membrane bioreactor (MBR that is directed to an additional membrane separation mode (NF/RO. Under certain conditions, the integrated process not only benefits the environment but may also increase the profitability of the bioreactor operation. An appropriate model was developed and tested in which the bioremoval of benzene and toluene by Pseudomonas fluorescens was used as an example. This paper presents equations for selecting the operation parameters of the integrated system to achieve the expected degree of industrial wastewater purification.

  16. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  18. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Chiku, Masanobu; Tomita, Shoji; Higuchi, Eiji; Inoue, Hiroshi

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  19. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  20. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  1. Essentials of inorganic materials synthesis

    CERN Document Server

    Rao, C N R

    2015-01-01

    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  2. Experimental study on the hydrodynamic effects of gas permeation through horizontal membrane tubes in fluidized beds

    NARCIS (Netherlands)

    Jong, de J.F.; Sint Annaland, van M.; Kuipers, J.A.M.

    2013-01-01

    Fluidized Bed Membrane Reactors gain worldwide increasing interest for various applications. Nevertheless, fundamental research on the hydrodynamics of these reactors is required in order to improve the predictive capabilities of numerical models and to improve reactor performance. This study

  3. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Directory of Open Access Journals (Sweden)

    Christopher John Davey

    2016-02-01

    Full Text Available Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s, Greater understanding of the compatibility between the polymer and inorganic phase(s, Improved methods for homogeneously dispersing the inorganic phase.

  4. Hybrid and Mixed Matrix Membranes for Separations from Fermentations.

    Science.gov (United States)

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-02-29

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase.

  5. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  6. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  7. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  8. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  9. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  10. Release and Transformation of Inorganic Elements in Combustion of a High-Phosphorus Fuel

    DEFF Research Database (Denmark)

    Wu, Hao; Castro, Maria; Jensen, Peter Arendt

    2011-01-01

    The release and transformation of inorganic elements during grate-firing of bran was studied via experiments in a laboratory-scale reactor, analysis of fly ash from a grate-fired plant, and equilibrium modeling. It was found that K, P, S, and to a lesser extent Cl and Na were released to the gas...

  11. HPLC inorganic arsenic speciation analysis of samples containing high sulfuric acid and iron levels

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.; Gerrits, I.P.A.M.; Weijma, J.; Buisman, C.J.N.

    2011-01-01

    To monitor the oxidation of arsenite to arsenate in oxidizing and bioleaching reactors, speciation analysis of the inorganic arsenic compounds is required. Existing arsenic speciation analysis techniques are based on the use of liquid chromatography columns coupled to detector equipment such as

  12. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  13. Molecular modeling of inorganic compounds

    National Research Council Canada - National Science Library

    Comba, Peter; Hambley, Trevor W; Martin, Bodo

    2009-01-01

    ... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...

  14. Inorganic nanomedicine--part 1.

    Science.gov (United States)

    Sekhon, Bhupinder S; Kamboj, Seema R

    2010-08-01

    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine. 2010 Elsevier Inc. All rights reserved.

  15. James Moir as Inorganic Chemist

    African Journals Online (AJOL)

    NICO

    KEYWORDS. Inorganic chemistry, gold, atomic theory, history of chemistry. .... Figure 2 (a) shows Moir's model for the C atom, where the black circles represent the ..... Na filled the hole in the F atom, both becoming ions even in the crystal state ...

  16. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  17. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  18. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    Science.gov (United States)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  19. Membranes for Environmentally Friendly Energy Processes

    Science.gov (United States)

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  20. Membranes for Environmentally Friendly Energy Processes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2012-10-01

    Full Text Available Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature and the impurities in a gas stream (such as SO2, NOx, H2S, etc.. Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation.

  1. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  2. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Gang, Xiao

    2003-01-01

    Phosphoric acid doped polybenzimidazole (PBI) and PBI composite membranes have been prepared in the present work. The PBI composites contain inorganic proton conductors including zirconium phosphate (ZrP), (Zr(HPO4)2·nH2O), phosphotungstic acid (PWA), (H3PW12O40·nH2O) and silicotungstic acid (Si...

  3. Towards single step production of multi-layer inorganic hollow fibers

    NARCIS (Netherlands)

    de Jong, J.; Benes, Nieck Edwin; Koops, G.H.; Wessling, Matthias

    2004-01-01

    In this work we propose a generic synthesis route for the single step production of multi-layer inorganic hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes with a high surface area per unit volume ratio can be produced, while production time

  4. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  5. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    Science.gov (United States)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  6. Control rod for nuclear reactor

    International Nuclear Information System (INIS)

    Tada, Kaoru; Kawano, Shohei

    1998-01-01

    A guide roller is prepared by forming an oxide membrane on the surface of a molded roller product comprising, as a material, a deposition-reinforced type nickel-based alloy reinforced by deposition of fine particles by applying a heat treatment to a nickel-based alloy. When the guide roller is used in reactor water, since the roller has an oxide membrane on the surface, leaching of nickel to reactor water is reduced, and radioactive corrosive products including cobalt 58 are reduced to decrease an operator's exposure dose upon periodical inspections of a plant. The oxide membrane is formed by applying heat treatment under an oxidative atmosphere. Then, the amount of abrasion of pins and rollers in association with start-up or shut down of a reactor and control of the power can be reduced thereby enabling to suppress increase of radiation dose due to cobalt 60 and cobalt 58. (N.H.)

  7. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  8. Inorganic, coordination and organometallic compounds

    International Nuclear Information System (INIS)

    Jursik, F.

    1978-01-01

    Separation of cations and anions of inorganic, coordination and metalloorganic compounds by the method of liquid column chromatography is considered. Common scheme of multicomponent cation mixture is suggesteed. Separation conditions, adsrbents, eluents, pH value solution concenstration, elution rate are also suggested. Separation of rare earth elements Cs, Be, Cd, Te, Th, U, Mo, Re, V, Ru, Zr, In compounds is considered as an example of liquid column chromatography application. Data on column chromatography application are summarized in a table

  9. Mechanical design of a PERMCAT reactor module

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, S. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy)], E-mail: tosti@frascati.enea.it; Bettinali, L. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Borgognoni, F. [Tesi Sas, Via Bolzano 28, Rome (Italy); Murdoch, D.K. [EFDA CSU, Boltzmannstr. 2, D-85748 Garching bei Munchen (Germany)

    2007-02-15

    The PERMCAT is a membrane reactor proposed for processing fusion reactor plasma exhaust gas: tritium removal is obtained by isotopic swamping operating in counter-current mode. In this work, a membrane reactor using a permeator tube of length about 500 mm produced via diffusion welding of Pd-Ag thin foils is described. An appropriate mechanical design of the membrane module has been developed in order to avoid any significant compressive and bending stresses on the very long and thin wall permeator tube: two expanded bellows have been applied to the Pd-Ag tube, so that it has been pre-tensioned before operating. The elongation of the metal permeator under hydrogenation has been theoretically estimated and experimentally verified for properly designing the membrane reactor.

  10. The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor.

    Science.gov (United States)

    Erkan, Hanife Sari; Engin, Guleda Onkal

    2017-10-01

    The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.

  11. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  13. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  14. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  15. Release of Inorganic Elements during Wood Combustion. Release to the Gas Phase of Inorganic Elements during: Wood Combustion. Part 1: Development and Evaluation of Quantification Methods

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Alonso-Ramírez, Violeta; Jensen, Peter Arendt

    2006-01-01

    During wood combustion, inorganic elements such as alkali metals, sulfur, chlorine, and some heavy metals are partly released to the gas phase, which may cause problems in combustion facilities because of deposit formation and corrosion. Furthermore, it may cause harmful emissions of gases......) in this reactor, whereas methods B and C involved initial pyrolysis and combustion, respectively, of a large fuel sample (~5 kg) in a bench-scale fixed-bed reactor at 500 C. The methods were evaluated by comparing the data on the release of Cl, S, K, Na, Zn, and Pb from fiber board obtained by the three methods...

  16. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  17. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  18. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  19. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  20. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor