WorldWideScience

Sample records for inorganic host matrices

  1. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  2. The influence of inorganic matrices on the decomposition of Eucalyptus litter

    International Nuclear Information System (INIS)

    Skene, T.M.; Oades, J.M.; Clarke, P.J.; Skjemstad, J.O.; Oades, J.M.; Skjemstad, J.O.

    1997-01-01

    The decomposition of Eucalyptus litter (EL) in the presence and absence of inorganic matrices [sad (S), sand+kaolin (S+K), loamy sand (LS)] with and without added N (urea) was followed over 48 weeks using chemical and spectroscopic means. At the end of the incubation, the residual organic matter in different density and particle size fractions was examined. Urea addition inhibited the mineralisation of C from the litter in all treatments except EL+S+N, whereas the inorganic matrices had little influence on mineralisation. Solid state 13 C CP/MAS NMR spectra of the whole samples suggested there were no differences in the treatments, despite significant differences in the amount of C mineralized. The NMR spectra of the whole samples suggest that a reaction between aromatic-C and urea occurred during thr first week of the incubation which may have rendered the N unavailable to microorganisms. The results were quite different from a similar study on the decomposition of straw. these differences suggest that, for high quality substrates, physical protection by inorganic matrices is the limiting factor to decomposition, whereas for low quality substrates, chemical protection is the limiting factor. 13 refs., 2 tabs., 6 figs

  3. Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions

    Directory of Open Access Journals (Sweden)

    Nikolay M. Dobrynkin

    2017-09-01

    Full Text Available Intrinsic catalytic properties of mineral matrices of various kinds (basalts, clays, sandstones were studied, which are of interest for in-situ heavy oil upgrading (i.e., underground to create advanced technologies for enhanced oil recovery. The elemental, surface and phase composition and matrix particle morphology, surface and acidic properties were studied using elemental analysis, X-ray diffraction, adsorption and desorption of nitrogen and ammonia. The data on the catalytic activity of inorganic matrices in ammonium nitrate decomposition (reaction with a large gassing, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltenes into maltenes (the conversion of heavy hydrocarbons into more valuable light hydrocarbons were discussed. In order to check their applicability for the asphaltenes hydrocracking catalytic systems development, basalt and clay matrices were used as supports for iron/basalt, nickel/basalt and iron/clay catalysts. The catalytic activity of the matrices in the reactions of the decomposition of ammonium nitrate, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltens was observed for the first time.

  4. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, Matthew J.; Kellogg, Cyndi M.; Parker, Cyrena M.; Morrison, Samuel S.; Corbey, Jordan F.; Grate, Jay W.

    2017-09-01

    Ammonium bifluoride (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components. It has been more recently applied to the decomposition of inorganic matrices prior to elemental analysis. Herein, a sample decomposition method that employs molten ABF sample treatment in the initial step is systematically evaluated across a range of inorganic sample types: glass, quartz, zircon, soil, and pitchblende ore. Method performance is evaluated across the two variables: duration of molten ABF treatment and ABF reagent mass to sample mass ratio. The degree of solubilization of these sample classes are compared to the fluoride stoichiometry that is theoretically necessary to enact complete fluorination of the sample types. Finally, the sample decomposition method is performed on several soil and pitchblende ore standard reference materials, after which elemental constituent analysis is performed by ICP-OES and ICP-MS. Elemental recoveries are compared to the certified values; results indicate good to excellent recoveries across a range of alkaline earth, rare earth, transition metal, and actinide elements.

  5. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  7. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    Science.gov (United States)

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  8. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    Science.gov (United States)

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Raman fingerprint of plutonium dioxide: Some example applications for the detection of PuO2 in host matrices

    NARCIS (Netherlands)

    Manara, D; Naji, M.; Mastromarino, S.; Elorrieta, J. M.; Magnani, Nicola; Martel, L.; Colle, J-Y

    2018-01-01

    Some example applications are presented, in which the peculiar Raman fingerprint of PuO2 can be used for the detection of crystalline Pu4+ with cubic symmetry in an oxide environment in various host materials, like mixed oxide fuels, inert matrices and corium sub-systems.

  10. Changes in inorganic matrices of dye sensitized solar cells during preparation

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Harald; Baumgaertel, Thomas; Luettich, Franziska; Kehr, Mirko [Institute of Physics, University of Technology Chemnitz (Germany); Maedler, Carsten [Institute of Physics, University of Technology Chemnitz (Germany); Department of Physics, Boston University, Boston, MA (United States); Oekermann, Thorsten [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover (Germany)

    2010-07-01

    Dye-sensitized solar cells (DSSC) containing zinc oxide (ZnO) as the inorganic semiconductor and organic dye molecules as the sensitizer are well known devices with high efficiency. Such DSSC are prepared by electrochemical deposition of an aqueous zinc salt solution including organic molecules as templates. The template is desorbed in a second step to obtain a porous ZnO network. As a final step the sensitizing organic molecules were re-adsorped from solution. Within these different processing steps the structure of the ZnO can be influenced. We will discuss the growth mechanism during film deposition e.g. due to different template molecules. Also the crystal structure changes accompanying the desorption process, which is performed in an alkaline aqueous solution. Different techniques as X-ray investigations, optical absorption and scanning probe methods are used to identify the variations in different cells and within the production process.

  11. The Raman fingerprint of plutonium dioxide: Some example applications for the detection of PuO2 in host matrices

    Science.gov (United States)

    Manara, D.; Naji, M.; Mastromarino, S.; Elorrieta, J. M.; Magnani, N.; Martel, L.; Colle, J.-Y.

    2018-02-01

    Some example applications are presented, in which the peculiar Raman fingerprint of PuO2 can be used for the detection of crystalline Pu4+ with cubic symmetry in an oxide environment in various host materials, like mixed oxide fuels, inert matrices and corium sub-systems. The PuO2 Raman fingerprint was previously observed to consist of one main T2g vibrational mode at 478 cm-1 and two crystal electric field transition lines at 2130 cm-1 and 2610 cm-1. This particular use of Raman spectroscopy is promising for applications in nuclear waste management, safety and safeguard.

  12. Electronic, structural, and optical properties of host materials for inorganic phosphors

    International Nuclear Information System (INIS)

    Alemany, Pere; Moreira, Ibério de P.R.; Castillo, Rodrigo; Llanos, Jaime

    2012-01-01

    Highlights: ► We performed a first-principles DFT study of the electronic structures of several wide band gap insulators (La 2 O 3 , La 2 O 2 S, Y 2 O 3 Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) used as host materials for inorganic phosphors. ► The electronic, structural, and optical properties calculated for these compounds are in good agreement with the available experimental data. ► The electronic structure of the M 2 TeO 6 phases exhibits distinct features that could allow a fine tuning of the optical properties of luminescent materials obtained by doping with rare earth metals. - Abstract: A family of large gap insulators used as host materials for inorganic phosphors (La 2 O 3 , La 2 O 2 S, Y 2 O 3 , Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) have been studied by first-principles DFT based calculations. We have determined electronic, structural, and optical properties for all these compounds both at the LDA and GGA levels obtaining, in general, a good agreement with available experimental data and previous theoretical studies. The electronic structure for the M 2 TeO 6 phases, addressed in this work for the first time, reveals some significant differences with respect to the other compounds, especially in the region of the lower conduction band, where the appearance of a group of four isolated oxygen/tellurium based bands below the main part of the La (Y) centered conduction band is predicted to lead to significant changes in the optical properties of the two tellurium containing compounds with respect to the rest of compounds in the series.

  13. Optical properties of BaTiO3 nanoparticles and silver nanoprisms in polymer host matrices

    Science.gov (United States)

    Requena, Sebastian

    Nanocomposites are materials comprised of a host matrix, such as glass or polymer, with embedded nanoparticles. Embedding nanoparticles into the host makes it possible to create materials with properties that are distinctly unique from those of their host and nanoparticle constituents. Nanocomposites can have superior mechanical, thermal, and optical properties compared to their host materials. We characterized the photoluminescent properties of BaTiO3 polymer nanocomposites and the effects of chemically modifying the nanoparticles surface on said properties. BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at ˜3.0 eV and multiple bands centered at ˜2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the ˜3.0 eV emission at low-temperature. On the other hand, polymer coating of the functionalized nanoparticles significantly enhances ˜3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at ˜2.5 eV. Chemical modification of the surface with 3APTS and PMMA presents a pathway to tune and control the photoluminescent properties of BTO nanoparticles. We also present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at ˜520 nm and the other with a dipole resonance at ˜650 nm, placed in different media. The silver nanoprisms were embedded in a polyvinyl alcohol (PVA) polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon

  14. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  15. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment.

    Science.gov (United States)

    Dalsing, Beth L; Truchon, Alicia N; Gonzalez-Orta, Enid T; Milling, Annett S; Allen, Caitilyn

    2015-03-17

    Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3(-)), nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3(-), corresponding to R. solanacearum's optimal NO3(-) concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3(-) compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3(-) respiration directly enhanced growth, AniA-dependent NO2(-) reduction did not. NO2(-) and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3(-) acts as a TEA, but the resulting NO2(-) and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2(-) reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3(-) to respire, grow, and cause disease. Degradation of NO2(-) and NO is also important for successful infection and depends on denitrification and NO detoxification systems. The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world's most destructive crop diseases. This pathogen's explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show

  16. Cobalt bis(dicarbollides)(1-) covalently attached to the calix[4]arene platform: The first combination of organic bowl-shaped matrices and inorganic metallaborane cluster anions

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Mikulášek, Libor; Báča, Jiří; Císařová, I.; Böhmer, V.; Danila, C.; Reinoso-García, M.M.; Verboom, W.; Reinhoudt, D.N.; Casnati, A.; Ungaro, R.

    -, č. 10 (2005), s. 2022-2039 ISSN 1434-193X R&D Projects: GA MŠk(CZ) LC523; GA AV ČR KSK4050111 Grant - others:EEC(XE) F16W-CT-2003-508854 Institutional research plan: CEZ:AV0Z40320502 Keywords : calixarenes * carboranes * dicarbollides Subject RIV: CA - Inorganic Chemistry Impact factor: 2.548, year: 2005

  17. Building and analyzing models from data by stirred tank experiments for investigation of matrix effects caused by inorganic matrices and selection of internal standards in Inductively Coupled Plasma-Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grotti, Marco [Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova (Italy)], E-mail: grotti@chimica.unige.it; Paredes, Eduardo; Maestre, Salvador; Todoli, Jose Luis [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, 03080, Alicante (Spain)

    2008-05-15

    Interfering effects caused by inorganic matrices (inorganic acids as well as easily ionized elements) in inductively coupled plasma-atomic emission spectroscopy have been modeled by regression analysis of experimental data obtained using the 'stirred tank method'. The main components of the experimental set-up were a magnetically-stirred container and two peristaltic pumps. In this way the matrix composition was gradually and automatically varied, while the analyte concentration remained unchanged throughout the experiment. An inductively coupled plasma spectrometer with multichannel detection based on coupled charge device was used to simultaneously measure the emission signal at several wavelengths when the matrix concentration was modified. Up to 50 different concentrations were evaluated in a period of time of 10 min. Both single interfering species (nitric, hydrochloric and sulphuric acids, sodium and calcium) and different mixtures (aqua regia, sulfonitric mixture, sodium-calcium mixture and sodium-nitric acid mixture) were investigated. The dependence of the emission signal on acid concentration was well-fitted by logarithmic models. Conversely, for the easily ionized elements, 3-order polynomial models were more suitable to describe the trends. Then, the coefficients of these models were used as 'signatures' of the matrix-related signal variations and analyzed by principal component analysis. Similarities and differences among the emission lines were highlighted and discussed, providing a new insight into the interference phenomena, mainly with regards to the combined effect of concomitants. The combination of the huge amount of data obtained by the stirred tank method in a short period of time and the speed of analysis of principal component analysis provided a judicious means for the selection of the optimal internal standard in inductively coupled plasma-atomic emission spectroscopy.

  18. Mesoporous TiO2 powders as host matrices for iron nanoparticles. Effect of the preparation procedure and doping with Hf

    Czech Academy of Sciences Publication Activity Database

    Dimitrov, M.; Ivanova, R.; Velinov, N.; Henych, Jiří; Slušná, Michaela; Štengl, Václav; Tolasz, Jakub; Mitov, I.; Tsoncheva, T.

    2016-01-01

    Roč. 7, JUL (2016), s. 56-63 ISSN 2352-507X Institutional support: RVO:61388980 Keywords : Mesoporous titania * Hafnium doping * Iron modification * Ethyl acetate oxidation * Methanol decomposition Subject RIV: CA - Inorganic Chemistry

  19. Formal matrices

    CERN Document Server

    Krylov, Piotr

    2017-01-01

    This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...

  20. Averaging operations on matrices

    Indian Academy of Sciences (India)

    2014-07-03

    Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...

  1. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  2. Inverse m-matrices and ultrametric matrices

    CERN Document Server

    Dellacherie, Claude; San Martin, Jaime

    2014-01-01

    The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.

  3. Immobilization of plutonium from solutions on porous matrices by the method of high temperature sorption

    Energy Technology Data Exchange (ETDEWEB)

    Nardova, A.K.; Filippov, E.A. [All Research Institute of Chemical Technologies, Moscow (Russian Federation); Glagolenko, Y.B. [and others

    1996-05-01

    This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.

  4. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  5. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  6. Carbonic anhydrase 2-like in the giant clam, Tridacna squamosa: characterization, localization, response to light, and possible role in the transport of inorganic carbon from the host to its symbionts.

    Science.gov (United States)

    Ip, Yuen K; Koh, Clarissa Z Y; Hiong, Kum C; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Neo, Mei L; Chew, Shit F

    2017-12-01

    The fluted giant clam, Tridacna squamosa , lives in symbiosis with zooxanthellae which reside extracellularly inside a tubular system. Zooxanthellae fix inorganic carbon (C i ) during insolation and donate photosynthate to the host. Carbonic anhydrases catalyze the interconversion of CO 2 and HCO3-, of which carbonic anhydrase 2 (CA2) is the most ubiquitous and involved in many biological processes. This study aimed to clone a CA2 homolog ( CA2-like ) from the fleshy and colorful outer mantle as well as the thin and whitish inner mantle of T. squamosa , to determine its cellular and subcellular localization, and to examine the effects of light exposure on its gene and protein expression levels. The cDNA coding sequence of CA2-like from T. squamosa comprised 789 bp, encoding 263 amino acids with an estimated molecular mass of 29.6 kDa. A phenogramic analysis of the deduced CA2-like sequence denoted an animal origin. CA2-like was not detectable in the shell-facing epithelium of the inner mantle adjacent to the extrapallial fluid. Hence, CA2-like is unlikely to participate directly in light-enhanced calcification. By contrast, the outer mantle, which contains the highest density of tertiary tubules and zooxanthellae, displayed high level of CA2-like expression, and CA2-like was localized to the tubule epithelial cells. More importantly, exposure to light induced significant increases in the protein abundance of CA2-like in the outer mantle. Hence, CA2-like could probably take part in the increased supply of inorganic carbon (C i ) from the host clam to the symbiotic zooxanthellae when the latter conduct photosynthesis to fix C i during light exposure. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-02-01

    Full Text Available The two marine inorganic polymers, biosilica (BS, enzymatically synthesized from ortho-silicate, and polyphosphate (polyP, a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC, mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation. Both biosilica and polyP, applied as Ca2+ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2 and alkaline phosphatase (ALP in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that

  8. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E G

    2014-02-21

    The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca²⁺ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate

  9. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  10. Chemical sensors of benzene and toluene based on inorganic and hybrid organic-inorganic polymers elaborated by a sol-gel process

    International Nuclear Information System (INIS)

    Calvo Munoz, Maria Luisa

    2000-01-01

    As mono-cyclic aromatic hydrocarbons (MAH) are a matter of concern in terms of pollution, and are to be monitored due to new regulations regarding air quality control, this research thesis first aims at explaining why these compounds are to be monitored, at recalling their sources, at outlining what we know about their negative impact on health and how this impact is determined, which are the means implemented to monitor these compounds and which are their drawbacks, and at recalling which requirements are defined by European directives. The author then reports a literature survey of the current technology regarding chemical sensors, and identifies the required characteristics of an ideal sensor. The author proposes a review of studied performed on sol-gel process and of inorganic polymer synthesis methods based on sol-gel process. He reports the synthesis and characterization of inorganic or hybrid organic-inorganic host matrices, monolithic or in thin layers, used to produce MAH sensors. A matrix pore local polarity study is reported. Benzene and toluene trapping is studied with respect to the polarity and thickness of the host matrix. Pollutant trapping is directly monitored by their absorption in the near-UV and visible range. The author finally reports the study of interactions between fluorescent probe molecules and pollutants, as well as the effect of an interfering gas (oxygen) on the fluorescence of probe molecules [fr

  11. Realm of Matrices

    Indian Academy of Sciences (India)

    IAS Admin

    harmonic analysis and complex analysis, in ... gebra describes not only the study of linear transforma- tions and .... special case of the Jordan canonical form of matrices. ..... Richard Bronson, Schaum's Outline Series Theory And Problems Of.

  12. Molecular characterization, light-dependent expression, and cellular localization of a host vacuolar-type H+-ATPase (VHA) subunit A in the giant clam, Tridacna squamosa, indicate the involvement of the host VHA in the uptake of inorganic carbon and its supply to the symbiotic zooxanthellae.

    Science.gov (United States)

    Ip, Yuen K; Hiong, Kum C; Lim, Leon J Y; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Neo, Mei L; Chew, Shit F

    2018-06-15

    The giant clam, Tridacna squamosa, represents a clam-zooxanthellae association. In light, the host clam and the symbiotic zooxanthellae conduct light-enhanced calcification and photosynthesis, respectively. We had cloned the cDNA coding sequence of a Vacuolar-type Proton ATPase (VHA) subunit A, ATP6V1A, from T. squamosa, whereby the VHA is an electrogenic transporter that actively 'pumps' H + out of the cell. The ATP6V1A of T. squamosa comprised 1866 bp, encoding a protein of 622 amino acids and 69.9 kDa, and had a host-origin. Its gene expression was strong in the ctenidium and the colorful outer mantle, but weak in the whitish inner mantle, corroborating a previous proposition that VHA might have a trivial role in light-enhanced calcification. Light exposure led to significant increases in the gene and protein expression levels of ATP6V1A/ATP6V1A in the ctenidium and the outer mantle. In the ctenidium, the ATP6V1A was localized in the apical epithelia of the filaments and tertiary water channels, indicating that the VHA could participate in the increased excretion of H + produced during light-enhanced calcification. Additionally, the excreted H + would augment HCO 3 - dehydration in the external medium and facilitate the uptake of CO 2 by the ctenidium during insolation. In the outer mantle, the ATP6V1A was detected in intracellular vesicles in a type of cells, presumably iridocytes, surrounding the zooxanthellal tubules, and in the apical epithelium of zooxanthellal tubules. Hence, the host VHA could participate in the transfer of inorganic carbon from the hemolymph to the luminal fluid of the tubules by increasing the supply of H + for the dehydration of HCO 3 - to CO 2 during insolation to benefit the photosynthesizing zooxanthellae. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  14. Matrices in Engineering Problems

    CERN Document Server

    Tobias, Marvin

    2011-01-01

    This book is intended as an undergraduate text introducing matrix methods as they relate to engineering problems. It begins with the fundamentals of mathematics of matrices and determinants. Matrix inversion is discussed, with an introduction of the well known reduction methods. Equation sets are viewed as vector transformations, and the conditions of their solvability are explored. Orthogonal matrices are introduced with examples showing application to many problems requiring three dimensional thinking. The angular velocity matrix is shown to emerge from the differentiation of the 3-D orthogo

  15. Infinite matrices and sequence spaces

    CERN Document Server

    Cooke, Richard G

    2014-01-01

    This clear and correct summation of basic results from a specialized field focuses on the behavior of infinite matrices in general, rather than on properties of special matrices. Three introductory chapters guide students to the manipulation of infinite matrices, covering definitions and preliminary ideas, reciprocals of infinite matrices, and linear equations involving infinite matrices.From the fourth chapter onward, the author treats the application of infinite matrices to the summability of divergent sequences and series from various points of view. Topics include consistency, mutual consi

  16. Capture Matrices Handbook

    Science.gov (United States)

    2014-04-01

    materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral

  17. Introduction to matrices and vectors

    CERN Document Server

    Schwartz, Jacob T

    2001-01-01

    In this concise undergraduate text, the first three chapters present the basics of matrices - in later chapters the author shows how to use vectors and matrices to solve systems of linear equations. 1961 edition.

  18. Graphs and matrices

    CERN Document Server

    Bapat, Ravindra B

    2014-01-01

    This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...

  19. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  20. Lectures on matrices

    CERN Document Server

    M Wedderburn, J H

    1934-01-01

    It is the organization and presentation of the material, however, which make the peculiar appeal of the book. This is no mere compendium of results-the subject has been completely reworked and the proofs recast with the skill and elegance which come only from years of devotion. -Bulletin of the American Mathematical Society The very clear and simple presentation gives the reader easy access to the more difficult parts of the theory. -Jahrbuch über die Fortschritte der Mathematik In 1937, the theory of matrices was seventy-five years old. However, many results had only recently evolved from sp

  1. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  2. Intermittency and random matrices

    Science.gov (United States)

    Sokoloff, Dmitry; Illarionov, E. A.

    2015-08-01

    A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.

  3. Dimension from covariance matrices.

    Science.gov (United States)

    Carroll, T L; Byers, J M

    2017-02-01

    We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.

  4. Artificial inorganic Biohybrids: the functional combination of microorganisms and cells with inorganic materials.

    Science.gov (United States)

    Holzmeister, Ib; Schamel, Martha; Groll, Jürgen; Gbureck, Uwe; Vorndran, Elke

    2018-04-23

    Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components. Copyright © 2018. Published by Elsevier Ltd.

  5. Complex Wedge-Shaped Matrices: A Generalization of Jacobi Matrices

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Plešinger, M.

    2015-01-01

    Roč. 487, 15 December (2015), s. 203-219 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Keywords : eigenvalues * eigenvector * wedge-shaped matrices * generalized Jacobi matrices * band (or block) Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015

  6. MALDI matrices for low molecular weight compounds: an endless story?

    Science.gov (United States)

    Calvano, Cosima Damiana; Monopoli, Antonio; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-04-23

    Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis. Graphical abstract An ideal Book of matrices for MALDI MS of small molecules.

  7. Generalisations of Fisher Matrices

    Directory of Open Access Journals (Sweden)

    Alan Heavens

    2016-06-01

    Full Text Available Fisher matrices play an important role in experimental design and in data analysis. Their primary role is to make predictions for the inference of model parameters—both their errors and covariances. In this short review, I outline a number of extensions to the simple Fisher matrix formalism, covering a number of recent developments in the field. These are: (a situations where the data (in the form of ( x , y pairs have errors in both x and y; (b modifications to parameter inference in the presence of systematic errors, or through fixing the values of some model parameters; (c Derivative Approximation for LIkelihoods (DALI - higher-order expansions of the likelihood surface, going beyond the Gaussian shape approximation; (d extensions of the Fisher-like formalism, to treat model selection problems with Bayesian evidence.

  8. Random volumes from matrices

    Energy Technology Data Exchange (ETDEWEB)

    Fukuma, Masafumi; Sugishita, Sotaro; Umeda, Naoya [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2015-07-17

    We propose a class of models which generate three-dimensional random volumes, where each configuration consists of triangles glued together along multiple hinges. The models have matrices as the dynamical variables and are characterized by semisimple associative algebras A. Although most of the diagrams represent configurations which are not manifolds, we show that the set of possible diagrams can be drastically reduced such that only (and all of the) three-dimensional manifolds with tetrahedral decompositions appear, by introducing a color structure and taking an appropriate large N limit. We examine the analytic properties when A is a matrix ring or a group ring, and show that the models with matrix ring have a novel strong-weak duality which interchanges the roles of triangles and hinges. We also give a brief comment on the relationship of our models with the colored tensor models.

  9. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  10. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  11. Diagonalization of the mass matrices

    International Nuclear Information System (INIS)

    Rhee, S.S.

    1984-01-01

    It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)

  12. Enhancing Understanding of Transformation Matrices

    Science.gov (United States)

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  13. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  14. Intrinsic character of Stokes matrices

    Science.gov (United States)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  15. Innovative Immobilization Matrices.

    Science.gov (United States)

    Alvarez, Gisela S; Echazu, Maria I A; Bertinatto, Jessica A; Catalano, Paolo N; Copello, Guillermo J; Foglia, Maria L; Gonzalez, Joaquin A; Giorgieri, Sergio A; Iglesias, Silvia L; Mebert, Andrea M; Santo-Orihuela, Pablo L; Tuttolomondo, Maria V; Villanueva, Emilia E; Desimone, Martín F

    2016-01-01

    We present a brief survey of some of the recent work of Professor Luis E. Díaz, performed together with his students and collaborators at the University of Buenos Aires. Dr Luis E. Díaz has been involved in research on biochemical and pharmaceutical sciences solving scientific and industry problems for over 40 years until he passed away. Prof. Díaz scientific interests included various topics from NMR spectroscopy to biomedicine but fundamentally he focused in various aspects of chemistry (analytical, organic, inorganic and environmental). This is not a complete survey but a sampling of prominent projects related to sol-gel chemistry with a focus on some of his recent publications.

  16. Special matrices of mathematical physics stochastic, circulant and Bell matrices

    CERN Document Server

    Aldrovandi, R

    2001-01-01

    This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas co

  17. The invariant theory of matrices

    CERN Document Server

    Concini, Corrado De

    2017-01-01

    This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...

  18. Quantum matrices in two dimensions

    International Nuclear Information System (INIS)

    Ewen, H.; Ogievetsky, O.; Wess, J.

    1991-01-01

    Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)

  19. Manin matrices and Talalaev's formula

    International Nuclear Information System (INIS)

    Chervov, A; Falqui, G

    2008-01-01

    In this paper we study properties of Lax and transfer matrices associated with quantum integrable systems. Our point of view stems from the fact that their elements satisfy special commutation properties, considered by Yu I Manin some 20 years ago at the beginning of quantum group theory. These are the commutation properties of matrix elements of linear homomorphisms between polynomial rings; more explicitly these read: (1) elements of the same column commute; (2) commutators of the cross terms are equal: [M ij , M kl ] [M kj , M il ] (e.g. [M 11 , M 22 ] = [M 21 , M 12 ]). The main aim of this paper is twofold: on the one hand we observe and prove that such matrices (which we call Manin matrices in short) behave almost as well as matrices with commutative elements. Namely, the theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) have a straightforward counterpart in the case of Manin matrices. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation 'RTT=TTR' and the so-called Cartier-Foata matrices. Also, they enter Talalaev's remarkable formulae: det(∂ z -L gaudin (z)), det(1-e -∂z T Yangian (z)) for the 'quantum spectral curve', and appear in the separation of variables problem and Capelli identities. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g. in the construction of new generators in Z(U crit (gl-hat n )) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We propose, in the appendix, a construction of quantum separated variables for the XXX-Heisenberg system

  20. On reflectionless equi-transmitting matrices

    Directory of Open Access Journals (Sweden)

    Pavel Kurasov

    2014-01-01

    Full Text Available Reflectionless equi-transmitting unitary matrices are studied in connection to matching conditions in quantum graphs. All possible such matrices of size 6 are described explicitly. It is shown that such matrices form 30 six-parameter families intersected along 12 five-parameter families closely connected to conference matrices.

  1. Spectra of sparse random matrices

    International Nuclear Information System (INIS)

    Kuehn, Reimer

    2008-01-01

    We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices

  2. Free probability and random matrices

    CERN Document Server

    Mingo, James A

    2017-01-01

    This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

  3. Chequered surfaces and complex matrices

    International Nuclear Information System (INIS)

    Morris, T.R.; Southampton Univ.

    1991-01-01

    We investigate a large-N matrix model involving general complex matrices. It can be reinterpreted as a model of two hermitian matrices with specific couplings, and as a model of positive definite hermitian matrices. Large-N perturbation theory generates dynamical triangulations in which the triangles can be chequered (i.e. coloured so that neighbours are opposite colours). On a sphere there is a simple relation between such triangulations and those generated by the single hermitian matrix model. For the torus (and a quartic potential) we solve the counting problem for the number of triangulations that cannot be quechered. The critical physics of chequered triangulations is the same as that of the hermitian matrix model. We show this explicitly by solving non-perturbatively pure two-dimensional ''chequered'' gravity. The interpretative framework given here applies to a number of other generalisations of the hermitian matrix model. (orig.)

  4. Loop diagrams without γ matrices

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Rebhan, A.

    1993-01-01

    By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions

  5. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  6. Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel Routes

    International Nuclear Information System (INIS)

    Li Haoying; Chen Yunfa; Ruan Chengxiang; Gao Weimin; Xie Yusheng

    2001-01-01

    The inorganic-organic nanocomposite coatings are prepared on poly(methyl methacrylate) (PMMA) substrate by the spinning technique which involves incorporating homogeneously nanosized ZnO particle into the molecular inorganic-organic hybrid matrices. The hybrid matrices are derived from tetraethoxyasilane (TEOS) and 3-glycidoxypropyltrimethoxyailane (GLYMO). To avoid the destruction of the polymer structure caused by ZnO and modify the interface between nanoparticles and organic groups, ZnO was first surface-coated with SiO 2 from hydrolyzed TEOS using ammonia water as catalyst. The coatings thus obtained are dense, flexible, abrasion resistant and UV absorbent

  7. On families of anticommuting matrices

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel

    2016-01-01

    Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum-of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296

  8. On families of anticommuting matrices

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel

    2016-01-01

    Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum -of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296

  9. Layered inorganic solids

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  10. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  11. Inorganic and geological materials

    International Nuclear Information System (INIS)

    Dinnin, J.I.

    1975-01-01

    Recently described methods for applied inorganic analysis are reviewed from an interdisciplinary standpoint. Abstracts and periodical literature up to Nov. 1974, are included for consideration. The following areas of interest are covered: general reviews of inorganic analytical techniques; analytical techniques, areas of application, and analysis of individual elements. Selected books, monographs, and review articles on the analytical chemistry of the elements are listed. (416 references.) (U.S.)

  12. The modified Gauss diagonalization of polynomial matrices

    International Nuclear Information System (INIS)

    Saeed, K.

    1982-10-01

    The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)

  13. Double stochastic matrices in quantum mechanics

    International Nuclear Information System (INIS)

    Louck, J.D.

    1997-01-01

    The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Lande's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical language suitable for application to the subset of quantum mechanical doubly stochastic matrices. Specifically, it is shown that the set of points on the unit sphere in cartesian n'-space is subjective with the set of doubly stochastic matrices of order n. The question is raised, but not answered, as to what is the subset of points of this unit sphere that correspond to the quantum mechanical transition probability matrices, and what is the symmetry group of this subset of matrices

  14. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  15. Transparent bulk-size nanocomposites with high inorganic loading

    International Nuclear Information System (INIS)

    Chen, Shi; Gaume, Romain

    2015-01-01

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF 2 nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications

  16. Phenomenological mass matrices with a democratic warp

    International Nuclear Information System (INIS)

    Kleppe, A.

    2018-01-01

    Taking into account all available data on the mass sector, we obtain unitary rotation matrices that diagonalize the quark matrices by using a specific parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. In this way, we find mass matrices for the up- and down-quark sectors of a specific, symmetric form, with traces of a democratic texture.

  17. S-matrices and integrability

    International Nuclear Information System (INIS)

    Bombardelli, Diego

    2016-01-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU (2), SU (3) chiral Gross–Neveu models. (topical review)

  18. Synthesised standards in natural matrices

    International Nuclear Information System (INIS)

    Olsen, D.G.

    1980-01-01

    The problem of securing the most reliable standards for the accurate analysis of radionuclides is discussed in the paper and in the comment on the paper. It is contended in the paper that the best standards can be created by quantitative addition of accurately known spiking solutions into carefully selected natural matrices. On the other hand it is argued that many natural materials can be successfully standardized for numerous trace constituents. Both points of view are supported with examples. (U.K.)

  19. Sports drug testing using complementary matrices: Advantages and limitations.

    Science.gov (United States)

    Thevis, Mario; Geyer, Hans; Tretzel, Laura; Schänzer, Wilhelm

    2016-10-25

    Today, routine doping controls largely rely on testing whole blood, serum, and urine samples. These matrices allow comprehensively covering inorganic as well as low and high molecular mass organic analytes relevant to doping controls and are collecting and transferring from sampling sites to accredited anti-doping laboratories under standardized conditions. Various aspects including time and cost-effectiveness as well as intrusiveness and invasiveness of the sampling procedure but also analyte stability and breadth of the contained information have been motivation to consider and assess values potentially provided and added to modern sports drug testing programs by alternative matrices. Such alternatives could be dried blood spots (DBS), dried plasma spots (DPS), oral fluid (OF), exhaled breath (EB), and hair. In this review, recent developments and test methods concerning these alternative matrices and expected or proven contributions as well as limitations of these specimens in the context of the international anti-doping fight are presented and discussed, guided by current regulations for prohibited substances and methods of doping as established by the World Anti-Doping Agency (WADA). Focusing on literature published between 2011 and 2015, examples for doping control analytical assays concerning non-approved substances, anabolic agents, peptide hormones/growth factors/related substances and mimetics, β 2 -agonists, hormone and metabolic modulators, diuretics and masking agents, stimulants, narcotics, cannabinoids, glucocorticoids, and beta-blockers were selected to outline the advantages and limitations of the aforementioned alternative matrices as compared to conventional doping control samples (i.e. urine and blood/serum). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  1. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions

    International Nuclear Information System (INIS)

    Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K.

    2016-01-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.

  2. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Archana [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Takkar, Sonam; Kulshreshtha, Ritu [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Nandan, Bhanu [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Srivastava, Rajiv K., E-mail: rajiv@textile.iitd.ac.in [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2016-12-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.

  3. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  4. Inorganic-organic nanocomposites for optical coatings

    Science.gov (United States)

    Schmidt, Helmut K.; Krug, Herbert; Sepeur-Zeitz, Bernhard; Geiter, Elisabeth

    1997-10-01

    The fabrication of nanoparticles by the sol-gel process and their use in polymeric or sol-gel-derived inorganic-organic composite matrices opens up interesting possibilities for designing new optical materials. Two different routes have been chosen for preparing optical nanocomposites: The first is the so-called 'in situ route,' where the nanoparticles are synthesized in a liquid mixture from Zr-alkoxides in a polymerizable system and diffractive gratings were produced by embossing uncured film. The second is the 'separate' preparation route, where a sterically stabilized dry nanoboehmite powder was completely redispersed in an epoxy group-containing matrix and hard coatings with optical quality on polycarbonate were prepared.

  5. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metal complexes

    Science.gov (United States)

    Petkovic, Marijana; Petrovic, Biljana; Savic, Jasmina; Bugarcic, Zivadin D.; Dimitric-Markovic, Jasmina; Momic, Tatjana; Vasic, Vesna

    2010-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a suitable method for the analysis of inorganic and organic compounds and biomolecules. This makes MALDI-TOF MS convenient for monitoring the interaction of metallo-drugs with biomolecules. Results presented in this manuscript demonstrate that flavonoids such as apigenin, kaempferol and luteolin are suitable for MALDI-TOF MS analysis of Pt(II), Pd(II), Pt(IV) and Ru(III) complexes, giving different signal-to-noise ratios of the analyte peak. The MALDI-TOF mass spectra of inorganic complexes acquired with these flavonoid matrices are easy to interpret and have some advantages over the application of other commonly used matrices: a low number of matrix peaks are detectable and the coordinative metal-ligand bond is, in most cases, preserved. On the other hand, flavonoids do not act as typical matrices, as their excess is not required for the acquisition of MALDI-TOF mass spectra of inorganic complexes.

  6. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  7. Sparse Matrices in Frame Theory

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta

    2014-01-01

    Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...

  8. The Inverse of Banded Matrices

    Science.gov (United States)

    2013-01-01

    indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower

  9. Fusion algebra and fusing matrices

    International Nuclear Information System (INIS)

    Gao Yihong; Li Miao; Yu Ming.

    1989-09-01

    We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs

  10. Transfer matrices for multilayer structures

    International Nuclear Information System (INIS)

    Baquero, R.

    1988-08-01

    We consider four of the transfer matrices defined to deal with multilayer structures. We deduce algorithms to calculate them numerically, in a simple and neat way. We illustrate their application to semi-infinite systems using SGFM formulae. These algorithms are of fast convergence and allow a calculation of bulk-, surface- and inner-layers band structure in good agreement with much more sophisticated calculations. Supermatrices, interfaces and multilayer structures can be calculated in this way with a small computational effort. (author). 10 refs

  11. Orthogonal polynomials and random matrices

    CERN Document Server

    Deift, Percy

    2000-01-01

    This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.

  12. Fractionation of chromium(III) compounds in biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Knoechel, A.; Weseloh, G. [Institute of Inorganic and Applied Chemistry, University of Hamburg (Germany)

    1999-03-01

    Many details of the metabolism and biological significance of trivalent inorganic cations have remained obscure up to now, not least because of the lack of appropriate tools for species analysis of these cations in biological matrices. In order to demonstrate the capabilities of reversed-phase ion-pair chromatography, the distribution of chromium species in brewer`s yeast, previously incubated with radiolabelled {sup 51}Cr chloride was investigated. Contradictory to the findings of most other researchers in this area, two low-molecular weight, anionic chromium species were detected in cytosolic yeast extracts. In conclusion, reversed-phase ion-pair chromatography may reveal new details of intracellular metabolism of chromium(III) and, possibly, other trivalent cations. (orig.) With 1 fig., 16 refs.

  13. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hypercyclic Abelian Semigroups of Matrices on Cn

    International Nuclear Information System (INIS)

    Ayadi, Adlene; Marzougui, Habib

    2010-07-01

    We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)

  15. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter; Stark, M; Kahane, J P

    1966-01-01

    Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late

  16. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  17. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  18. Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2013-07-01

    Full Text Available The particle size of sediment is one of the main factors that influence the phosphorus physical adsorption on sediment. In order to eliminate the effect of other components of sediment on the phosphorus physical adsorption the sediment mineral matrices were obtained by removing inorganic matter metal oxides, and organic matter from natural sediments, which were collected from the Nantong reach of the Yangtze River. The results show that an exponential relationship exists between the median particle size (D50 and specific surface area (Sg of the sediment mineral matrices, and the fine sediment mineral matrix sample has a larger specific surface area and pore volume than the coarse sediment particles. The kinetic equations were used to describe the phosphorus adsorption process of the sediment mineral matrices, including the Elovich equation, quasi-first-order adsorption kinetic equation, and quasi-second-order adsorption kinetic equation. The results show that the quasi-second-order adsorption kinetic equation has the best fitting effect. Using the mass conservation and Langmuir adsorption kinetic equations, a formula was deduced to calculate the equilibrium adsorption capacity of the sediment mineral matrices. The results of this study show that the phosphorus adsorption capacity decreases with the increase of D50, indicating that the specific surface area and pore volume are the main factors in determining the phosphorus adsorption capacity of the sediment mineral matrices. This study will help understand the important role of sediment in the transformation of phosphorus in aquatic environments.

  19. Pathological rate matrices: from primates to pathogens

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Continuous-time Markov models allow flexible, parametrically succinct descriptions of sequence divergence. Non-reversible forms of these models are more biologically realistic but are challenging to develop. The instantaneous rate matrices defined for these models are typically transformed into substitution probability matrices using a matrix exponentiation algorithm that employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested whether pathological rate matrices exist in nature, and consider the suitability of different algorithms to their computation. Results We used concatenated protein coding gene alignments from microbial genomes, primate genomes and independent intron alignments from primate genomes. The Taylor series expansion and eigendecomposition matrix exponentiation algorithms were compared to the less widely employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide, codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms respectively. Even using a conservative estimate of matrix error (occurrence of an invalid probability, both Taylor and eigendecomposition algorithms exhibited substantial error rates: ~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10% of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors derived from occurrence of multiple unobserved states. A small number of negative probabilities were detected from the Pad�� algorithm on trinucleotide matrices that were attributable to machine precision. Although the Pad

  20. Wound care matrices for chronic leg ulcers: role in therapy

    Directory of Open Access Journals (Sweden)

    Sano H

    2015-07-01

    Full Text Available Hitomi Sano,1 Sachio Kouraba,2 Rei Ogawa11Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan; 2Sapporo Wound Care and Anti-Aging Laboratory, Sapporo, JapanAbstract: Chronic leg ulcers are a significant health care concern. Although deep wounds are usually treated by flap transfers, the operation is invasive and associates with serious complications. Skin grafts may be a less invasive means of covering wounds. However, skin grafts cannot survive on deep defects unless high-quality granulation tissue can first be generated in the defects. Technologies that generate high-quality granulation tissue are needed. One possibility is to use wound care matrices, which are bioengineered skin and soft tissue substitutes. Because they all support the healing process by providing a premade extracellular matrix material, these matrices can be termed “extracellular matrix replacement therapies”. The matrix promotes wound healing by acting as a scaffold for regeneration, attracting host cytokines to the wound, stimulating wound epithelialization and angiogenesis, and providing the wound bed with bioactive components. This therapy has lasting benefits as it not only helps large skin defects to be closed with thin skin grafts or patch grafts but also restores cosmetic appearance and proper function. In particular, since it acts as a layer that slides over the subcutaneous fascia, it provides skin elasticity, tear resistance, and texture. Several therapies and products employing wound care matrices for wound management have been developed recently. Some of these can be applied in combination with negative pressure wound therapy or beneficial materials that promote wound healing and can be incorporated into the matrix. To date, the clinical studies on these approaches suggest that wound care matrices promote spontaneous wound healing or can be used to facilitate skin grafting, thereby avoiding the need to use

  1. Quantum Hilbert matrices and orthogonal polynomials

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Berg, Christian

    2009-01-01

    Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...

  2. The construction of factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1981-01-01

    We study the relationships between factorized S-matrices given as representations of the Zamolodchikov algebra and exactly solvable models constructed using the Baxter method. Several new examples of symmetric and non-symmetric factorized S-matrices are proposed. (orig.)

  3. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  4. On Investigating GMRES Convergence using Unitary Matrices

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.

    2014-01-01

    Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  5. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  6. Inorganic chemistry and medicine

    International Nuclear Information System (INIS)

    Sadler, P.J.; Guo, Z.

    1999-01-01

    Inorganic chemistry is beginning to have a major impact on medicine. Not only does it offer the prospect of the discovery of truly novel drugs and diagnostic agents, but it promises to make a major contribution to our understanding of the mechanism of action of organic drugs too. Most of this article is concerned with recent developments in medicinal coordination chemistry. The role of metal organic compounds of platinum, titanium, ruthenium, gallium, bismuth, gold, gadolinium, technetium, silver, cobalt in the treatment or diagnosis of common diseases are briefly are examined

  7. Community Detection for Correlation Matrices

    Directory of Open Access Journals (Sweden)

    Mel MacMahon

    2015-04-01

    Full Text Available A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with “hard” cores and “soft” peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect “soft stocks” that alternate between communities; and discuss implications for portfolio optimization and risk management.

  8. Community Detection for Correlation Matrices

    Science.gov (United States)

    MacMahon, Mel; Garlaschelli, Diego

    2015-04-01

    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.

  9. The Antitriangular Factorization of Saddle Point Matrices

    KAUST Repository

    Pestana, J.

    2014-01-01

    Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated into the factorization and give bounds on the eigenvalues of matrices important in saddle point theory. We show the relation of this factorization to constraint preconditioning and how it transforms but preserves the structure of block diagonal and block triangular preconditioners. © 2014 Society for Industrial and Applied Mathematics.

  10. Polynomial sequences generated by infinite Hessenberg matrices

    Directory of Open Access Journals (Sweden)

    Verde-Star Luis

    2017-01-01

    Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

  11. Synchronous correlation matrices and Connes’ embedding conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  12. Discrete canonical transforms that are Hadamard matrices

    International Nuclear Information System (INIS)

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  13. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    Science.gov (United States)

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  14. The Antitriangular Factorization of Saddle Point Matrices

    KAUST Repository

    Pestana, J.; Wathen, A. J.

    2014-01-01

    Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle

  15. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  16. Inorganic Halogen Oxidizer Research

    Science.gov (United States)

    1979-02-16

    Inorganic Chemistry. Vol. 14. No. 9. 1975 Karl 0. Christ¢ (21) L. J. Basile . P. LaBonvillk. J. R. Ferraro, and J. M. Williams. J. Claim. (38) K. 0. Chriae. E... basils of a nonplanar structure of symmetry CI, are revised for six fundamental frequencies. Imalredetle either the 1:2 adduct N 2F4.2SbF5 or the 1:3...8217 in mT are 7 2.1 for B, facility. We aba thank L. K. White and R. L. Belford 111.0 for C, 55.0 for N, and 17100 for F, and the atomic aniso- trop’c

  17. Modern Trends in Inorganic Chemistry

    Indian Academy of Sciences (India)

    Administrator

    The series of symposia on 'Modern Trends in Inorganic Chemistry' (MTIC), which began in 1985 at the Indian Association for Cultivation of Science, Calcutta has evolved into a forum for the Inorganic Chemistry fraternity of the country to meet every two years and discuss the current status and future projections of research in.

  18. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  19. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  20. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    Science.gov (United States)

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  2. Protein matrices for wound dressings =

    Science.gov (United States)

    Vasconcelos, Andreia Joana Costa

    Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was

  3. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and various magnetic powders. • Polymer hybrid membranes with the magnetic powder for air separation. • Experimental studies of transport processes through magnetic hybrid membranes. • Correlation between gas transport and magnetic properties with XRD characteristics. • Positive effect of the remanence growth on separation properties of membranes

  4. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and various magnetic powders. • Polymer hybrid membranes with the magnetic powder for air separation. • Experimental studies of transport processes through magnetic hybrid membranes. • Correlation between gas transport and magnetic properties with XRD characteristics. • Positive effect of the remanence growth on separation properties of membranes.

  5. MERSENNE AND HADAMARD MATRICES CALCULATION BY SCARPIS METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Balonin

    2014-05-01

    Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by

  6. A Brief Historical Introduction to Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  7. Cancer risk from inorganics

    International Nuclear Information System (INIS)

    Swierenga, S.H.; Gilman, J.P.; McLean, J.R.

    1987-01-01

    Inorganic metals and minerals for which there is evidence of carcinogenicity are identified. The risk of cancer from contact with them in the work place, the general environment, and under conditions of clinical (medical) exposure is discussed. The evidence indicates that minerals and metals most often influence cancer development through their action as cocarcinogens. The relationship between the physical form of mineral fibers, smoking and carcinogenic risk is emphasized. Metals are categorized as established (As, Be, Cr, Ni), suspected (Cd, Pb) and possible carcinogens, based on the existing in vitro, animal experimental and human epidemiological data. Cancer risk and possible modes of action of elements in each class are discussed. Views on mechanisms that may be responsible for the carcinogenicity of metals are updated and analysed. Some specific examples of cancer risks associated with the clinical use of potentially carcinogenic metals and from radioactive pharmaceuticals used in therapy and diagnosis are presented. Questions are raised as to the effectiveness of conventional dosimetry in accurately measuring risk from radiopharmaceuticals. 302 references

  8. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    Science.gov (United States)

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

  9. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  10. Essentials of inorganic materials synthesis

    CERN Document Server

    Rao, C N R

    2015-01-01

    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  11. Random matrices and random difference equations

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1975-01-01

    Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models

  12. Quantum Entanglement and Reduced Density Matrices

    Science.gov (United States)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  13. Forecasting Covariance Matrices: A Mixed Frequency Approach

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...

  14. Advanced incomplete factorization algorithms for Stiltijes matrices

    Energy Technology Data Exchange (ETDEWEB)

    Il`in, V.P. [Siberian Division RAS, Novosibirsk (Russian Federation)

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  15. Wishart and anti-Wishart random matrices

    International Nuclear Information System (INIS)

    Janik, Romuald A; Nowak, Maciej A

    2003-01-01

    We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A † A, for any finite number of rows and columns of A, without any large N approximations. In particular, we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure for reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks

  16. Topological expansion of the chain of matrices

    International Nuclear Information System (INIS)

    Eynard, B.; Ferrer, A. Prats

    2009-01-01

    We solve the loop equations to all orders in 1/N 2 , for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of [19]. As a consequence, we find the double scaling limit explicitly, and we discuss modular properties, large N asymptotics. We also briefly discuss the limit of an infinite chain of matrices (matrix quantum mechanics).

  17. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  18. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying

    2015-01-01

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  19. Theoretical origin of quark mass matrices

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1987-01-01

    This paper presents the theoretical origin of specific quark mass matrices in the grand unified theories. The author discusses the first natural derivation of the Stech-type mass matrix in unified gauge theories. A solution to the strong CP-problem is provided

  20. Malware Analysis Using Visualized Image Matrices

    Directory of Open Access Journals (Sweden)

    KyoungSoo Han

    2014-01-01

    Full Text Available This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  1. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)

    2013-01-01

    htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and

  2. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    Lasserre, J.B.; Laurent, M.; Mourrain, B.; Rostalski, P.; Trébuchet, P.

    2013-01-01

    In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming its complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite

  3. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)

    2011-01-01

    htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and

  4. Malware analysis using visualized image matrices.

    Science.gov (United States)

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  5. Generation speed in Raven's Progressive Matrices Test

    NARCIS (Netherlands)

    Verguts, T.; Boeck, P. De; Maris, E.G.G.

    1999-01-01

    In this paper, we investigate the role of response fluency on a well-known intelligence test, Raven's (1962) Advanced Progressive Matrices (APM) test. Critical in solving this test is finding rules that govern the items. Response fluency is conceptualized as generation speed or the speed at which a

  6. Inversion of General Cyclic Heptadiagonal Matrices

    Directory of Open Access Journals (Sweden)

    A. A. Karawia

    2013-01-01

    Full Text Available We describe a reliable symbolic computational algorithm for inverting general cyclic heptadiagonal matrices by using parallel computing along with recursion. The computational cost of it is operations. The algorithm is implementable to the Computer Algebra System (CAS such as MAPLE, MATLAB, and MATHEMATICA. Two examples are presented for the sake of illustration.

  7. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-11-30

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  8. Composites reinforced via mechanical interlocking of surface-roughened microplatelets within ductile and brittle matrices.

    Science.gov (United States)

    Libanori, R; Carnelli, D; Rothfuchs, N; Binelli, M R; Zanini, M; Nicoleau, L; Feichtenschlager, B; Albrecht, G; Studart, A R

    2016-04-12

    Load-bearing reinforcing elements in a continuous matrix allow for improved mechanical properties and can reduce the weight of structural composites. As the mechanical performance of composite systems are heavily affected by the interfacial properties, tailoring the interactions between matrices and reinforcing elements is a crucial problem. Recently, several studies using bio-inspired model systems suggested that interfacial mechanical interlocking is an efficient mechanism for energy dissipation in platelet-reinforced composites. While cheap and effective solutions are available at the macroscale, the modification of surface topography in micron-sized reinforcing elements still represents a challenging task. Here, we report a simple method to create nanoasperities with tailored sizes and densities on the surface of alumina platelets and investigate their micromechanical effect on the energy dissipation mechanisms of nacre-like materials. Composites reinforced with roughened platelets exhibit improved mechanical properties for both organic ductile epoxy and inorganic brittle cement matrices. Mechanical interlocking increases the modulus of toughness (area under the stress-strain curve) by 110% and 56% in epoxy and cement matrices, respectively, as compared to those reinforced with flat platelets. This interlocking mechanism can potentially lead to a significant reduction in the weight of mechanical components while retaining the structural performance required in the application field.

  9. Responsive hybrid inorganic-organic system derived from lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Jiang, Lasheng; Yang, Jinglian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China)

    2016-05-15

    Highlights: • A novel covalent hybrid material was used to detect hemoglobin. • All the recognition experiments were performed in buffer solution. • Porous nano-structures was extensively studied for the recognition. - Abstract: Terbium ions were incorporated into new organic-inorganic matrices to achieve intense green emissions. Hemoglobin (HB) interactions lead to dramatic changes in the luminescence emission intensities. Infrared spectra, morphological studies and photoluminescence give information for the speciation and process of hemoglobin additions. The porous material has a large specific surface area of 351 cm{sup 2}/g and the detection limit for HB (0.7 μM) was much lower than its physical doped material (8 μM). This promising hybrid material will lead to the design of versatile optical probes that are efficiently responding to the external targets.

  10. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  11. On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    inverse matrices of them by constructing the transformation matrices. Furthermore, the maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius norm, and the maximum row sum matrix norm and bounds for the spread of these matrices are given, respectively.

  12. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    Science.gov (United States)

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  13. Evolutionary Games with Randomly Changing Payoff Matrices

    Science.gov (United States)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  14. An algorithmic characterization of P-matricity

    OpenAIRE

    Ben Gharbia , Ibtihel; Gilbert , Jean Charles

    2013-01-01

    International audience; It is shown that a matrix M is a P-matrix if and only if, whatever is the vector q, the Newton-min algorithm does not cycle between two points when it is used to solve the linear complementarity problem 0 ≤ x ⊥ (Mx+q) ≥ 0.; Nous montrons dans cet article qu'une matrice M est une P-matrice si, et seulement si, quel que soit le vecteur q, l'algorithme de Newton-min ne fait pas de cycle de deux points lorsqu'il est utilisé pour résoudre le problème de compl\\émentarité lin...

  15. Introduction to random matrices theory and practice

    CERN Document Server

    Livan, Giacomo; Vivo, Pierpaolo

    2018-01-01

    Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum. The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques  (e.g., Coulomb gas approach, replica theory). Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.

  16. Teaching Fourier optics through ray matrices

    International Nuclear Information System (INIS)

    Moreno, I; Sanchez-Lopez, M M; Ferreira, C; Davis, J A; Mateos, F

    2005-01-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics

  17. The recurrence sequences via Sylvester matrices

    Science.gov (United States)

    Karaduman, Erdal; Deveci, Ömür

    2017-07-01

    In this work, we define the Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by using the Slyvester matrices which are obtained from the characteristic polynomials of the Pell and Jacobsthal sequences and then, we study the sequences defined modulo m. Also, we obtain the cyclic groups and the semigroups from the generating matrices of these sequences when read modulo m and then, we derive the relationships among the orders of the cyclic groups and the periods of the sequences. Furthermore, we redefine Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by means of the elements of the groups and then, we examine them in the finite groups.

  18. Joint Matrices Decompositions and Blind Source Separation

    Czech Academy of Sciences Publication Activity Database

    Chabriel, G.; Kleinsteuber, M.; Moreau, E.; Shen, H.; Tichavský, Petr; Yeredor, A.

    2014-01-01

    Roč. 31, č. 3 (2014), s. 34-43 ISSN 1053-5888 R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : joint matrices decomposition * tensor decomposition * blind source separation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 5.852, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/tichavsky-0427607.pdf

  19. Tensor Permutation Matrices in Finite Dimensions

    OpenAIRE

    Christian, Rakotonirina

    2005-01-01

    We have generalised the properties with the tensor product, of one 4x4 matrix which is a permutation matrix, and we call a tensor commutation matrix. Tensor commutation matrices can be constructed with or without calculus. A formula allows us to construct a tensor permutation matrix, which is a generalisation of tensor commutation matrix, has been established. The expression of an element of a tensor commutation matrix has been generalised in the case of any element of a tensor permutation ma...

  20. Fast Approximate Joint Diagonalization Incorporating Weight Matrices

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Yeredor, A.

    2009-01-01

    Roč. 57, č. 3 (2009), s. 878-891 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : autoregressive processes * blind source separation * nonstationary random processes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.212, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/tichavsky-fast approximate joint diagonalization incorporating weight matrices.pdf

  1. Photoluminescence of nanocrystals embedded in oxide matrices

    International Nuclear Information System (INIS)

    Estrada, C.; Gonzalez, J.A.; Kunold, A.; Reyes-Esqueda, J.A.; Pereyra, P.

    2006-12-01

    We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)

  2. Equiangular tight frames and unistochastic matrices

    Czech Academy of Sciences Publication Activity Database

    Goyeneche, D.; Turek, Ondřej

    2017-01-01

    Roč. 50, č. 24 (2017), č. článku 245304. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : equiangular tight frames * unistochastic matrices * SIC POVM Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  3. Simplifications of rational matrices by using UML

    OpenAIRE

    Tasić, Milan B.; Stanimirović, Ivan P.

    2013-01-01

    The simplification process on rational matrices consists of simplifying each entry represented by a rational function. We follow the classic approach of dividing the numerator and denominator polynomials by their common GCD polynomial, and provide the activity diagram in UML for this process. A rational matrix representation as the quotient of a polynomial matrix and a polynomial is also discussed here and illustrated via activity diagrams. Also, a class diagram giving the links between the c...

  4. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  5. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  6. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  7. Preconditioners for regularized saddle point matrices

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    2011-01-01

    Roč. 19, č. 2 (2011), s. 91-112 ISSN 1570-2820 Institutional research plan: CEZ:AV0Z30860518 Keywords : saddle point matrices * preconditioning * regularization * eigenvalue clustering Subject RIV: BA - General Mathematics Impact factor: 0.533, year: 2011 http://www.degruyter.com/view/j/jnma.2011.19.issue-2/jnum.2011.005/jnum.2011.005. xml

  8. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  9. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  10. Molecular modeling of inorganic compounds

    National Research Council Canada - National Science Library

    Comba, Peter; Hambley, Trevor W; Martin, Bodo

    2009-01-01

    ... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...

  11. Inorganic nanomedicine--part 1.

    Science.gov (United States)

    Sekhon, Bhupinder S; Kamboj, Seema R

    2010-08-01

    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine. 2010 Elsevier Inc. All rights reserved.

  12. James Moir as Inorganic Chemist

    African Journals Online (AJOL)

    NICO

    KEYWORDS. Inorganic chemistry, gold, atomic theory, history of chemistry. .... Figure 2 (a) shows Moir's model for the C atom, where the black circles represent the ..... Na filled the hole in the F atom, both becoming ions even in the crystal state ...

  13. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  14. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2014-09-01

    Full Text Available Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides.

  15. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  16. Group inverses of M-matrices and their applications

    CERN Document Server

    Kirkland, Stephen J

    2013-01-01

    Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix f

  17. Modified gum Arabic hydrogels as matrices for controlled release of curcumin supramolecular complexes

    International Nuclear Information System (INIS)

    Gerola, Adriana P.; Silva, Danielle C.; Rubira, Adley F.; Muniz, Edvani C.

    2015-01-01

    Modified gum Arabic (GA) hydrogels show a pH-responsive behavior making them excellent matrices to be used for oral administration of drugs. Our goal is to study the behavior of those matrices in simulated gastric and intestinal fluids. In this work we will present how the methacrylation degree of GA, by using glycidyl methacrylate, can affect the properties of these hydrogels for controlled release. The drug used in this work is the curcumin (Cur). Cur is associated with numerous pharmacological activities, but their application is limited by the low water solubility. We will present some studies involving the formation of host-guest complexes between Cur and natural cyclodextrins. Both modified GA and hydrogels were characterized by different techniques. The kinetics release of Cur complex-containing modified GA hydrogels was studied to have an insight on the release mechanism and rate constants. Toxicity studies on undifferentiated and differentiated Caco-2 were also carried out. (author)

  18. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  19. Inorganic, coordination and organometallic compounds

    International Nuclear Information System (INIS)

    Jursik, F.

    1978-01-01

    Separation of cations and anions of inorganic, coordination and metalloorganic compounds by the method of liquid column chromatography is considered. Common scheme of multicomponent cation mixture is suggesteed. Separation conditions, adsrbents, eluents, pH value solution concenstration, elution rate are also suggested. Separation of rare earth elements Cs, Be, Cd, Te, Th, U, Mo, Re, V, Ru, Zr, In compounds is considered as an example of liquid column chromatography application. Data on column chromatography application are summarized in a table

  20. Determination of coefficient matrices for ARMA model

    International Nuclear Information System (INIS)

    Tran Dinh Tri.

    1990-10-01

    A new recursive algorithm for determining coefficient matrices of ARMA model from measured data is presented. The Yule-Walker equations for the case of ARMA model are derived from the ARMA innovation equation. The recursive algorithm is based on choosing appropriate form of the operator functions and suitable representation of the (n+1)-th order operator functions according to ones with the lower order. Two cases, when the order of the AR part is equal to one of the MA part, and the optimal case, were considered. (author) 5 refs

  1. Algebraic Graph Theory Morphisms, Monoids and Matrices

    CERN Document Server

    Knauer, Ulrich

    2011-01-01

    This is a highly self-contained book about algebraic graph theory which iswritten with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures -like roads, computers, telephones -instances of abstract data structures -likelists, stacks, trees -and functional or object orient

  2. Coherence and extensions of stochastic matrices

    Directory of Open Access Journals (Sweden)

    Angelo Gilio

    1995-11-01

    Full Text Available In this paper a review of some general results on coherence of conditional probability assessments is given. Then, a necessary and sufficient condition on coherence of two finite families of discrete conditianal probability distributions, represented by two stochastic matrices P and Q, is obtained. Moreover, the possible extensions of the assessment (P,Q to the marginal distributions are examined and explicit formulas for them are given in some special case. Finally, a general algorithm to check coherence of (P,Q and to derive its extensions is proposed.

  3. 2D gravity and random matrices

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1990-01-01

    Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods

  4. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  5. THE EFFECT OF DIFFERENT EXPOSURE CONDITIONS ON THE CHARACTERISTICS OF THE MINERAL MATRICES STABILIZING HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Anna Król

    2016-05-01

    Full Text Available Mineral binders are more and more often used in the difficult process of disposal of inorganic hazardous waste containing heavy metals. Composites solidifying hazardous waste are deposited in the environment, which exposes them to the interaction of many variable factors. The paper presents the effect of different exposure conditions on physical and mechanical properties of concrete stabilizing galvanic sewage sludge (GO. The effect of the cyclic freezing and thawing, carbon dioxide (carbonation and high temperatures (200 °C, 400 °C, 600 °C on the properties of stabilizing matrices has been described. The results, in most cases, show a loss of durability of composites solidifying sewage sludge (GO by the influence of external conditions.

  6. Critical statistics for non-Hermitian matrices

    International Nuclear Information System (INIS)

    Garcia-Garcia, A.M.; Verbaarschot, J.J.M.; Nishigaki, S.M.

    2002-01-01

    We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical statistics: the asymptotic linear behavior of the number variance is already approached for energy differences of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an open disordered system close to an Anderson transition

  7. Tensor Dictionary Learning for Positive Definite Matrices.

    Science.gov (United States)

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2015-11-01

    Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.

  8. Virial expansion for almost diagonal random matrices

    International Nuclear Information System (INIS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E

    2003-01-01

    Energy level statistics of Hermitian random matrices H-circumflex with Gaussian independent random entries H i≥j is studied for a generic ensemble of almost diagonal random matrices with (vertical bar H ii vertical bar 2 ) ∼ 1 and (vertical bar H i≠j vertical bar 2 ) bF(vertical bar i - j vertical bar) parallel 1. We perform a regular expansion of the spectral form-factor K(τ) = 1 + bK 1 (τ) + b 2 K 2 (τ) + c in powers of b parallel 1 with the coefficients K m (τ) that take into account interaction of (m + 1) energy levels. To calculate K m (τ), we develop a diagrammatic technique which is based on the Trotter formula and on the combinatorial problem of graph edges colouring with (m + 1) colours. Expressions for K 1 (τ) and K 2 (τ) in terms of infinite series are found for a generic function F(vertical bar i - j vertical bar ) in the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and in the crossover between them (the almost unitary Gaussian ensemble). The Rosenzweig-Porter and power-law banded matrix ensembles are considered as examples

  9. Generalized Eigenvalues for pairs on heritian matrices

    Science.gov (United States)

    Rublein, George

    1988-01-01

    A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.

  10. Physics-informed machine learning for inorganic scintillator discovery

    Science.gov (United States)

    Pilania, G.; McClellan, K. J.; Stanek, C. R.; Uberuaga, B. P.

    2018-06-01

    Applications of inorganic scintillators—activated with lanthanide dopants, such as Ce and Eu—are found in diverse fields. As a strict requirement to exhibit scintillation, the 4f ground state (with the electronic configuration of [Xe]4fn 5d0) and 5d1 lowest excited state (with the electronic configuration of [Xe]4fn-1 5d1) levels induced by the activator must lie within the host bandgap. Here we introduce a new machine learning (ML) based search strategy for high-throughput chemical space explorations to discover and design novel inorganic scintillators. Building upon well-known physics-based chemical trends for the host dependent electron binding energies within the 4f and 5d1 energy levels of lanthanide ions and available experimental data, the developed ML model—coupled with knowledge of the vacuum referred valence and conduction band edges computed from first principles—can rapidly and reliably estimate the relative positions of the activator's energy levels relative to the valence and conduction band edges of any given host chemistry. Using perovskite oxides and elpasolite halides as examples, the presented approach has been demonstrated to be able to (i) capture systematic chemical trends across host chemistries and (ii) effectively screen promising compounds in a high-throughput manner. While a number of other application-specific performance requirements need to be considered for a viable scintillator, the scheme developed here can be a practically useful tool to systematically down-select the most promising candidate materials in a first line of screening for a subsequent in-depth investigation.

  11. Reclamation of alkaline spent moulding sands of organic and inorganic type and their mixtures

    Directory of Open Access Journals (Sweden)

    R. Dańko

    2011-10-01

    Full Text Available Introduction of modern moulding sands with organic and inorganic binders requires the reclamation treatments in order to be able to reuse the matrices of spent sands. The spent sands, depending on the applied binding agent, are characterised by various abilities of the matrix reclamation. The results of investigations of the reclamation of spent moulding sands with the Rudal binder and spent sands with the Rezolit binder in the system of uniform sands and of mixed ones, are presented in the paper. Investigations were performed by means of the special experimental stands designed and built in the AGH University of Science and Technology, AGH, in Krakow.

  12. Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes

    OpenAIRE

    Mantha, Madhavi; Yeary, Edward; Trent, John; Creed, Patricia A.; Kubachka, Kevin; Hanley, Traci; Shockey, Nohora; Heitkemper, Douglas; Caruso, Joseph; Xue, Jianping; Rice, Glenn; Wymer, Larry; Creed, John T.

    2017-01-01

    Background: Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices. Objectives: Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-b...

  13. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, L.L.; Leal, L.O. [Renewable Energy and Environmental Protection Department, Advanced Materials Research Center (CIMAV), Chihuahua, Chihuahua (Mexico); Ferrer, L.; Cerda, V. [University of the Balearic Islands, Department of Chemistry, Palma de Mallorca (Spain)

    2012-09-15

    A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 {mu}g L{sup -1}, respectively. The repeatability values accomplished were of 2.4 and 1.8 %, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation. (orig.)

  14. Meet and Join Matrices in the Poset of Exponential Divisors

    Indian Academy of Sciences (India)

    ... exponential divisor ( G C E D ) and the least common exponential multiple ( L C E M ) do not always exist. In this paper we embed this poset in a lattice. As an application we study the G C E D and L C E M matrices, analogues of G C D and L C M matrices, which are both special cases of meet and join matrices on lattices.

  15. The 'golden' matrices and a new kind of cryptography

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2007-01-01

    We consider a new class of square matrices called the 'golden' matrices. They are a generalization of the classical Fibonacci Q-matrix for continuous domain. The 'golden' matrices can be used for creation of a new kind of cryptography called the 'golden' cryptography. The method is very fast and simple for technical realization and can be used for cryptographic protection of digital signals (telecommunication and measurement systems)

  16. Generalized Perron--Frobenius Theorem for Nonsquare Matrices

    OpenAIRE

    Avin, Chen; Borokhovich, Michael; Haddad, Yoram; Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David

    2013-01-01

    The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the...

  17. Repeat Sequence Proteins as Matrices for Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Drummy, L.; Koerner, H; Phillips, D; McAuliffe, J; Kumar, M; Farmer, B; Vaia, R; Naik, R

    2009-01-01

    Recombinant protein-inorganic nanocomposites comprised of exfoliated Na+ montmorillonite (MMT) in a recombinant protein matrix based on silk-like and elastin-like amino acid motifs (silk elastin-like protein (SELP)) were formed via a solution blending process. Charged residues along the protein backbone are shown to dominate long-range interactions, whereas the SELP repeat sequence leads to local protein/MMT compatibility. Up to a 50% increase in room temperature modulus and a comparable decrease in high temperature coefficient of thermal expansion occur for cast films containing 2-10 wt.% MMT.

  18. Intrinsic Density Matrices of the Nuclear Shell Model

    International Nuclear Information System (INIS)

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  19. Noisy covariance matrices and portfolio optimization II

    Science.gov (United States)

    Pafka, Szilárd; Kondor, Imre

    2003-03-01

    Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the

  20. Nomenclature on an inorganic compound

    International Nuclear Information System (INIS)

    1998-10-01

    This book contains eleven chapters : which mention nomenclature of an inorganic compound with introduction and general principle on nomenclature of compound. It gives the description of grammar for nomenclature such as brackets, diagonal line, asterisk, and affix, element, atom and groups of atom, chemical formula, naming by stoichiometry, solid, neutral molecule compound, ion, a substituent, radical and name of salt, oxo acid and anion on introduction and definition of oxo acid, coordination compound like symbol of stereochemistry , boron and hydrogen compound and related compound.

  1. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.

    2008-09-20

    Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

  2. Use of inorganic sorbents for treatment of liquid radioactive waste and backfill of underground repositories

    International Nuclear Information System (INIS)

    1992-11-01

    This document presents the results of a four year Co-ordinated Research Programme (CRP) on the ''Use of Inorganic Sorbents for Treatment of Liquid Radioactive Waste and Backfill of Underground Repositories'' (1987-1991). Many countries have research programmes aiming at developing processes which would provide efficient and safe concentration of radionuclides in waste streams into solid materials which could then be reliably immobilized into forms suitable for long term storage or disposal. Use of inorganic sorbents for this purpose is very attractive because of their resistance to radiation and chemical attack, strong affinity for one or more radionuclides, their compatibility with likely immobilization matrices and their availability at low cost. According to the fundamental multibarrier concept for disposal of radioactive waste, backfill material is one of the important engineered barriers. Inorganic materials such as clays, naturally occurring zeolites (clinoptilolite, modenite and chabasite) are promising backfill materials. Research in technical uses of inorganic material applications was covered within the framework of the Co-ordinated Research Programme reported in this technical document. Final contributions by participants at the last Research Co-ordination Meeting held in Rez, Czechoslovakia, from 4 to 8 November 1991, are presented here. Refs, figs and tabs

  3. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Kovalík, Alojz; Filosofov, D. V.; Yushkevich, Yu. V.; Ryšavý, Miloš; Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Zhdanov, V. S.

    2014-01-01

    Roč. 197, DEC (2014), s. 64-71 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Kr-83 * Rb-83 * Sr-83 * electron binding energy * KLL transitions * natural atomic level width * multiconfiguration Dirac-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.436, year: 2014

  4. Equiangular tight frames and unistochastic matrices

    International Nuclear Information System (INIS)

    Goyeneche, Dardo; Turek, Ondřej

    2017-01-01

    We demonstrate that a complex equiangular tight frame composed of N vectors in dimension d , denoted ETF ( d , N ), exists if and only if a certain bistochastic matrix, univocally determined by N and d , belongs to a special class of unistochastic matrices. This connection allows us to find new complex ETFs in infinitely many dimensions and to derive a method to introduce non-trivial free parameters in ETFs. We present an explicit six-parametric family of complex ETF(6,16), which defines a family of symmetric POVMs. Minimal and maximal possible average entanglement of the vectors within this qubit–qutrit family are described. Furthermore, we propose an efficient numerical procedure to compute the unitary matrix underlying a unistochastic matrix, which we apply to find all existing classes of complex ETFs containing up to 20 vectors. (paper)

  5. Colonization of bone matrices by cellular components

    Science.gov (United States)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  6. Computing with linear equations and matrices

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1983-01-01

    Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)

  7. Matrices over runtime systems at exascale

    KAUST Repository

    Agullo, Emmanuel

    2012-11-01

    The goal of Matrices Over Runtime Systems at Exascale (MORSE) project is to design dense and sparse linear algebra methods that achieve the fastest possible time to an accurate solution on large-scale multicore systems with GPU accelerators, using all the processing power that future high end systems can make available. In this poster, we propose a framework for describing linear algebra algorithms at a high level of abstraction and delegating the actual execution to a runtime system in order to design software whose performance is portable accross architectures. We illustrate our methodology on three classes of problems: dense linear algebra, sparse direct methods and fast multipole methods. The resulting codes have been incorporated into Magma, Pastix and ScalFMM solvers, respectively. © 2012 IEEE.

  8. Sparse random matrices: The eigenvalue spectrum revisited

    International Nuclear Information System (INIS)

    Semerjian, Guilhem; Cugliandolo, Leticia F.

    2003-08-01

    We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of states expected to hold exactly in the opposite limit of large but finite concentration. The combination of the two methods yields a very simple geometric interpretation of the tails of the spectrum. We test the analytic results with numerical simulations and we suggest an indirect numerical method to explore the tails of the spectrum. (author)

  9. From Pauli Matrices to Quantum Ito Formula

    International Nuclear Information System (INIS)

    Pautrat, Yan

    2005-01-01

    This paper answers important questions raised by the recent description, by Attal, of a robust and explicit method to approximate basic objects of quantum stochastic calculus on bosonic Fock space by analogues on the state space of quantum spin chains. The existence of that method justifies a detailed investigation of discrete-time quantum stochastic calculus. Here we fully define and study that theory and obtain in particular a discrete-time quantum Ito formula, which one can see as summarizing the commutation relations of Pauli matrices.An apparent flaw in that approximation method is the difference in the quantum Ito formulas, discrete and continuous, which suggests that the discrete quantum stochastic calculus differs fundamentally from the continuous one and is therefore not a suitable object to approximate subtle phenomena. We show that flaw is only apparent by proving that the continuous-time quantum Ito formula is actually a consequence of its discrete-time counterpart

  10. Dirac matrices for Chern-Simons gravity

    Energy Technology Data Exchange (ETDEWEB)

    Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)

    2012-10-06

    A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  11. Viscous hydrophilic injection matrices for serial crystallography

    Directory of Open Access Journals (Sweden)

    Gabriela Kovácsová

    2017-07-01

    Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new

  12. Heat-resistant inorganic binders.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  13. Investigations of inorganic and hybrid inorganic-organic nanostructures

    Science.gov (United States)

    Kam, Kinson Chihang

    This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are

  14. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    OpenAIRE

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan

    2012-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the ...

  15. Binary Positive Semidefinite Matrices and Associated Integer Polytopes

    DEFF Research Database (Denmark)

    Letchford, Adam N.; Sørensen, Michael Malmros

    2012-01-01

    We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...

  16. CONVERGENCE OF POWERS OF CONTROLLABLE INTUITIONISTIC FUZZY MATRICES

    OpenAIRE

    Riyaz Ahmad Padder; P. Murugadas

    2016-01-01

    Convergences of powers of controllable intuitionistic fuzzy matrices have been stud¬ied. It is shown that they oscillate with period equal to 2, in general. Some equalities and sequences of inequalities about powers of controllable intuitionistic fuzzy matrices have been obtained.

  17. Propositional matrices as alternative representation of truth values ...

    African Journals Online (AJOL)

    The paper considered the subject of representation of truth values in symbolic logic. An alternative representation was given based on the rows and columns properties of matrices, with the operations involving the logical connectives subjected to the laws of algebra of propositions. Matrices of various propositions detailing ...

  18. The Modern Origin of Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  19. Abel-grassmann's groupoids of modulo matrices

    International Nuclear Information System (INIS)

    Javaid, Q.; Awan, M.D.; Naqvi, S.H.A.

    2016-01-01

    The binary operation of usual addition is associative in all matrices over R. However, a binary operation of addition in matrices over Z/sub n/ of a nonassociative structures of AG-groupoids and AG-groups are defined and investigated here. It is shown that both these structures exist for every integer n >≥ 3. Various properties of these structures are explored like: (i) Every AG-groupoid of matrices over Z/sub n/ is transitively commutative AG-groupoid and is a cancellative AG-groupoid if n is prime. (ii) Every AG-groupoid of matrices over Z/sub n/ of Type-II is a T/sup 3/-AG-groupoid. (iii) An AG-groupoid of matrices over Z/sub n/ ; G /sub nAG/(t,u), is an AG-band, if t+u=1(mod n). (author)

  20. Medicinal Uses of Inorganic Compounds - 2

    Indian Academy of Sciences (India)

    In the first part of this article, we described medicinal uses of inorganic compounds relating to cancer care, infection and diabetic control, neurological, cardiovascular and in- flammatory diseases. This article contains further infor- mation on the medicinal uses of inorganic compounds as therapeutic and diagnostic in ...

  1. Recent Advances in Bio-inorganic Chemistry

    Indian Academy of Sciences (India)

    Unknown

    Bio-inorganic chemistry has developed rapidly in recent years. A number of laboratories in India have made significant contributions to this area. The motivation in bringing out this special issue on Bio-inorganic. Chemistry is to highlight the recent work emerging from India in this important and fascinating interdisci-.

  2. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  3. Uptake of inorganic contaminants by pteridophytes

    International Nuclear Information System (INIS)

    Zheng Jiemin; Chen Ziyuan; Tang Shirong; Guangzhou Univ., Guangzhou; Ding Bingyang

    2005-01-01

    The review covers results at home and abroad in terms of uptake of inorganic contaminants by pteridophytes, and suggests pteridophytes' significance in phytoremediation; the mechanisms related to uptake of inorganic contaminants by pteridophytes and some methods and means used for research on the mechanism are also introduced; the authors' viewpoints on future development trends are presented in this paper. (authors)

  4. Ultrasound exfoliation of inorganic analogues of graphene

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-01-01

    Roč. 9, APR (2014), s. 1-14 ISSN 1556-276X R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 Keywords : Ultrasound * Exfoliation * Graphene inorganic analogues Subject RIV: CA - Inorganic Chemistry Impact factor: 2.779, year: 2014

  5. Development of cement material using inorganic additives

    International Nuclear Information System (INIS)

    Toyohara, Masumitsu; Satou, Tatsuaki; Wada, Mikio; Ishii, Tomoharu; Matsuo, Kazuaki.

    1997-01-01

    Inorganic admixtures to enhance the fluidity of cement material was developed. These admixtures turned into easy to immobilize the miscellaneous radioactive waste using cement material. It was found that the ζ potential of cement particles was directly proportional to the content of the inorganic admixtures in cement paste and the particles of cement were dispersed at the high ζ potential. The condensed sodium phosphate, which was the main component of the inorganic admixtures, retarded the dissolution of Ca 2+ ion from the cement, and generated the colloids by incorporating dissolved Ca 2+ ion. The cement material containing the inorganic admixtures was found to have the same mechanical strength and adsorption potential of radionuclides in comparison to normal cement materials. It was confirmed that the cement material containing the inorganic admixture was effectively filled gaps of miscellaneous radioactive waste. (author)

  6. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  7. Substituted amylose matrices for oral drug delivery

    International Nuclear Information System (INIS)

    Moghadam, S H; Wang, H W; El-Leithy, E Saddar; Chebli, C; Cartilier, L

    2007-01-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process

  8. LIBS analysis of artificial calcified tissues matrices.

    Science.gov (United States)

    Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A

    2013-04-15

    In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Neutrino mass matrices with vanishing determinant

    International Nuclear Information System (INIS)

    Chauhan, Bhag C.; Pulido, Joao; Picariello, Marco

    2006-01-01

    We investigate the prospects for neutrinoless double beta decay, texture zeros. and equalities between neutrino mass matrix elements in scenarios with vanishing determinant mass matrices for vanishing and finite θ 13 mixing angles in normal and inverse mass hierarchies. For normal hierarchy and both zero and finite θ 13 it is found that neutrinoless double beta decay cannot be observed by any of the present or next generation experiments, while for inverse hierarchy it is, on the contrary, accessible to experiments. Regarding texture zeros and equalities between mass matrix elements, we find that in both normal and inverse hierarchies with θ 13 =0 no texture zeros nor any such equalities can exist apart from the obvious ones. For θ 13 ≠0 some texture zeros become possible. In normal hierarchy two texture zeros occur if 8.1x10 -2 ≤sinθ 13 ≤9.1x10 -2 while in inverse hierarchy three are possible, one with sinθ 13 ≥7x10 -3 and two others with sinθ 13 ≥0.18. All equalities between mass matrix elements are impossible with θ 13 ≠0

  10. Calculating scattering matrices by wave function matching

    International Nuclear Information System (INIS)

    Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.

    2008-01-01

    The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Probing the Topology of Density Matrices

    Directory of Open Access Journals (Sweden)

    Charles-Edouard Bardyn

    2018-02-01

    Full Text Available The mixedness of a quantum state is usually seen as an adversary to topological quantization of observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that certain directly observable many-body correlators preserve the integrity of topological invariants for mixed Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body momentum-translation operator and leads to a physical observable—the “ensemble geometric phase” (EGP—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled spectral singularities (“purity-gap” closing points of density matrices. While we identify the many-body nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly measure the latter in experiments with mesoscopic ensembles of ultracold atoms.

  12. Visualizing complex (hydrological) systems with correlation matrices

    Science.gov (United States)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  13. On some Toeplitz matrices and their inversions

    Directory of Open Access Journals (Sweden)

    S. Dutta

    2014-10-01

    Full Text Available In this article, using the difference operator B(a[m], we introduce a lower triangular Toeplitz matrix T which includes several difference matrices such as Δ(1,Δ(m,B(r,s,B(r,s,t, and B(r̃,s̃,t̃,ũ in different special cases. For any x ∈ w and m∈N0={0,1,2,…}, the difference operator B(a[m] is defined by (B(a[m]xk=ak(0xk+ak-1(1xk-1+ak-2(2xk-2+⋯+ak-m(mxk-m,(k∈N0 where a[m] = {a(0, a(1, …, a(m} and a(i = (ak(i for 0 ⩽ i ⩽ m are convergent sequences of real numbers. We use the convention that any term with negative subscript is equal to zero. The main results of this article relate to the determination and applications of the inverse of the Toeplitz matrix T.

  14. Information geometry of density matrices and state estimation

    International Nuclear Information System (INIS)

    Brody, Dorje C

    2011-01-01

    Given a pure state vector |x) and a density matrix ρ-hat, the function p(x|ρ-hat)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived. (fast track communication)

  15. Chain of matrices, loop equations and topological recursion

    CERN Document Server

    Orantin, Nicolas

    2009-01-01

    Random matrices are used in fields as different as the study of multi-orthogonal polynomials or the enumeration of discrete surfaces. Both of them are based on the study of a matrix integral. However, this term can be confusing since the definition of a matrix integral in these two applications is not the same. These two definitions, perturbative and non-perturbative, are discussed in this chapter as well as their relation. The so-called loop equations satisfied by integrals over random matrices coupled in chain is discussed as well as their recursive solution in the perturbative case when the matrices are Hermitean.

  16. Modular Extracellular Matrices: Solutions for the Puzzle

    Science.gov (United States)

    Serban, Monica A.; Prestwich, Glenn D.

    2008-01-01

    The common technique of growing cells in two-dimensions (2-D) is gradually being replaced by culturing cells on matrices with more appropriate composition and stiffness, or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm has been constrained by the absence of a commercially available, biocompatible material that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. The challenge – the puzzle that needs a solution – is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild and replicate a given tissue. For use in drug discovery, toxicology, cell banking, and ultimately in reparative medicine, the ideal matrix would therefore need to be highly reproducible, manufacturable, approvable, and affordable. Herein we describe the development of a set of modular components that can be assembled into biomimetic materials that meet these requirements. These semi-synthetic ECMs, or sECMs, are based on hyaluronan derivatives that form covalently crosslinked, biodegradable hydrogels suitable for 3-D culture of primary and stem cells in vitro, and for tissue formation in vivo. The sECMs can be engineered to provide appropriate biological cues needed to recapitulate the complexity of a given ECM environment. Specific applications for different sECM compositions include stem cell expansion with control of differentiation, scar-free wound healing, growth factor delivery, cell delivery for osteochondral defect and liver repair, and development of vascularized tumor xenografts for personalized chemotherapy. PMID:18442709

  17. Comparison of eigensolvers for symmetric band matrices.

    Science.gov (United States)

    Moldaschl, Michael; Gansterer, Wilfried N

    2014-09-15

    We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size.

  18. MATXTST, Basic Operations for Covariance Matrices

    International Nuclear Information System (INIS)

    Geraldo, Luiz P.; Smith, Donald

    1989-01-01

    1 - Description of program or function: MATXTST and MATXTST1 perform the following operations for a covariance matrix: - test for singularity; - test for positive definiteness; - compute the inverse if the matrix is non-singular; - compute the determinant; - determine the number of positive, negative, and zero eigenvalues; - examine all possible 3 X 3 cross correlations within a sub-matrix corresponding to a leading principal minor which is non-positive definite. While the two programs utilize the same input, the calculational procedures employed are somewhat different and their functions are complementary. The available input options include: i) the full covariance matrix, ii) the basic variables plus the relative covariance matrix, or iii) uncertainties in the basic variables plus the correlation matrix. 2 - Method of solution: MATXTST employs LINPACK subroutines SPOFA and SPODI to test for positive definiteness and to perform further optional calculations. Subroutine SPOFA factors a symmetric matrix M using the Cholesky algorithm to determine the elements of a matrix R which satisfies the relation M=R'R, where R' is the transposed matrix of R. Each leading principal minor of M is tested until the first one is found which is not positive definite. MATXTST1 uses LINPACK subroutines SSICO, SSIFA, and SSIDI to estimate whether the matrix is near to singularity or not (SSICO), and to perform the matrix diagonalization process (SSIFA). The algorithm used in SSIFA is generalization of the Method of Lagrange Reduction. SSIDI is used to compute the determinant and inertia of the matrix. 3 - Restrictions on the complexity of the problem: Matrices of sizes up to 50 X 50 elements can be treated by present versions of the programs

  19. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  20. Inorganic elements in sugar samples

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de, E-mail: pauladesalles@yahoo.com.br, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k{sub 0} method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  1. Inorganic elements in sugar samples

    International Nuclear Information System (INIS)

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de

    2013-01-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k 0 method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  2. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  3. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  4. Joint Estimation of Multiple Precision Matrices with Common Structures.

    Science.gov (United States)

    Lee, Wonyul; Liu, Yufeng

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.

  5. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  6. Finiteness properties of congruence classes of infinite matrices

    NARCIS (Netherlands)

    Eggermont, R.H.

    2014-01-01

    We look at spaces of infinite-by-infinite matrices, and consider closed subsets that are stable under simultaneous row and column operations. We prove that up to symmetry, any of these closed subsets is defined by finitely many equations.

  7. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak

    2017-01-01

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix

  8. Procrustes Problems for General, Triangular, and Symmetric Toeplitz Matrices

    Directory of Open Access Journals (Sweden)

    Juan Yang

    2013-01-01

    Full Text Available The Toeplitz Procrustes problems are the least squares problems for the matrix equation AX=B over some Toeplitz matrix sets. In this paper the necessary and sufficient conditions are obtained about the existence and uniqueness for the solutions of the Toeplitz Procrustes problems when the unknown matrices are constrained to the general, the triangular, and the symmetric Toeplitz matrices, respectively. The algorithms are designed and the numerical examples show that these algorithms are feasible.

  9. An introduction to the theory of canonical matrices

    CERN Document Server

    Turnbull, H W

    2004-01-01

    Thorough and self-contained, this penetrating study of the theory of canonical matrices presents a detailed consideration of all the theory's principal features. Topics include elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. The final chapters explore several methods of canonical reduction, including those of unitary and orthogonal transformations. 1952 edition. Index. Appendix. Historical notes. Bibliographies. 275 problems.

  10. Dynamical correlations for circular ensembles of random matrices

    International Nuclear Information System (INIS)

    Nagao, Taro; Forrester, Peter

    2003-01-01

    Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric Hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number of Brownian particles at arbitrary number of times are shown to be written in the forms of quaternion determinants, similarly as in the case of Hermitian random matrix models

  11. Complementary Set Matrices Satisfying a Column Correlation Constraint

    OpenAIRE

    Wu, Di; Spasojevic, Predrag

    2006-01-01

    Motivated by the problem of reducing the peak to average power ratio (PAPR) of transmitted signals, we consider a design of complementary set matrices whose column sequences satisfy a correlation constraint. The design algorithm recursively builds a collection of $2^{t+1}$ mutually orthogonal (MO) complementary set matrices starting from a companion pair of sequences. We relate correlation properties of column sequences to that of the companion pair and illustrate how to select an appropriate...

  12. Open vessel microwave digestion of food matrices (T6)

    International Nuclear Information System (INIS)

    Rhodes, L.; LeBlanc, G.

    2002-01-01

    Full text: Advancements in the field of open vessel microwave digestion continue to provide solutions for industries requiring acid digestion of large sample sizes. Those interesting in digesting food matrices are particularly interested in working with large amounts of sample and then diluting small final volumes. This paper will show the advantages of instantaneous regent addition and post-digestion evaporation when performing an open vessel digestion and evaporation methods for various food matrices will be presented along with analyte recovery data. (author)

  13. Quantum Algorithms for Weighing Matrices and Quadratic Residues

    OpenAIRE

    van Dam, Wim

    2000-01-01

    In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to device new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is ignificantly lower than the classical one. It is pointed out that this scheme captures both Bernstein & Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the ar...

  14. Asymptotic Distribution of Eigenvalues of Weakly Dilute Wishart Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Khorunzhy, A. [Institute for Low Temperature Physics (Ukraine)], E-mail: khorunjy@ilt.kharkov.ua; Rodgers, G. J. [Brunel University, Uxbridge, Department of Mathematics and Statistics (United Kingdom)], E-mail: g.j.rodgers@brunel.ac.uk

    2000-03-15

    We study the eigenvalue distribution of large random matrices that are randomly diluted. We consider two random matrix ensembles that in the pure (nondilute) case have a limiting eigenvalue distribution with a singular component at the origin. These include the Wishart random matrix ensemble and Gaussian random matrices with correlated entries. Our results show that the singularity in the eigenvalue distribution is rather unstable under dilution and that even weak dilution destroys it.

  15. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  16. INFLUENCE OF INORGANIC COMPOUNDS ON THE PROCESS OF PHOTOCATALYSIS OF BIOLOGICALLY ACTIVE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek

    2017-07-01

    Full Text Available Constant increase in concentration of organic micropollutants in the water environment influences the development of methods for their effective elimination from various matrices released into aquatic ecosystems. One of widely described in literature processes for the decomposition of hardly-biodegradable pollutants is the process of heterogeneous photocatalysis. The paper presents the influence of inorganic substances on the decomposition of polycyclic aromatic hydrocarbons (anthracene and benzo[a]pyrene, industrial admixtures - octylphenol and pharmaceutical compounds - diclofenac in the photocatalysis process conducted in the presence of TiO2. It has been shown that the presence of Cl- ions did not affect the photochemical reaction of the micropollutant decomposition. Whereas, the presence of CO3(2-, SO4(2- and HPO4(2- ions inhibited the decolonization of octylphenol and diclofenac, while the degradation efficiency of anthracene and benzo[a]pyrene was reduced only by the presence of CO3(2- and HCO3- anions. The photooxidation of micropollutants in solutions containing Al(3+ oraz Fe(3+ cations proceeded with a much lower efficiency than that for solution without inorganic compounds. The analysis of the kinetics of the photocatalytic decomposition of selected micropollutants show a decrease in the reaction rate constant and an increase in their half-life due to the blocking of theactive semiconductor centers by inorganic compounds. In addition,the toxicological analysis inducated the generation of micropollutant oxidation by-products, which aggravate the quality of treated aqueous solutions.

  17. Conditioning of inorganic ion exchangers based on cerium (IV) antimonate in cement matrix. Vol. 3

    International Nuclear Information System (INIS)

    Aly, H.F.; Zakareia, N.; El-Dessouky, M.I.; Abo-Mosallem, N.M.; EL-Naggar, I.M.

    1996-01-01

    The use of inorganic adsorbents for treatment of aqueous radioactive waste has many advantages; namely; better resistance to chemical action, thermal stability, compatibility with immobilization matrices and resistance to radiation. Inorganic ion exchangers process many properties which make them more suitable for rad waste treatment than organic exchange resins. Inorganic ion exchange materials can be immobilized using cement matrix to obtain good solidified waste form. In this work, the removal of radioactive nuclides from radioactive waste is carried out by chemical in-situ precipitation. The addition of cerium (IV) antimonate (cesb) to cement mixture enhances the compressive strength more than plain cement. Waste package containing cesb increased the compressive strength relative to original ordinary portland cement (OPC) matrix for waste products immersed in tap water for one month. The compressive strength increases in the order; st Ce Sb> mix Ce Sb> Na Ce Sb> Co Ce Sb> Cs Ce Sb> OPC> Eu Ce Sb> Ce Sb; (mix refers to all the radionuclides used here). The cumulative leached fractions of 60 Co and 134 Cs decreased for solidified waste products containing Ce Sb in comparison to plain cement. 2 figs., 9 tabs

  18. Conditioning of inorganic ion exchangers based on cerium (IV) antimonate in cement matrix. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Aly, H F; Zakareia, N; El-Dessouky, M I; Abo-Mosallem, N M; EL-Naggar, I M [Hot Laboratory and Waste Management Centre, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    1996-03-01

    The use of inorganic adsorbents for treatment of aqueous radioactive waste has many advantages; namely; better resistance to chemical action, thermal stability, compatibility with immobilization matrices and resistance to radiation. Inorganic ion exchangers process many properties which make them more suitable for rad waste treatment than organic exchange resins. Inorganic ion exchange materials can be immobilized using cement matrix to obtain good solidified waste form. In this work, the removal of radioactive nuclides from radioactive waste is carried out by chemical in-situ precipitation. The addition of cerium (IV) antimonate (cesb) to cement mixture enhances the compressive strength more than plain cement. Waste package containing cesb increased the compressive strength relative to original ordinary portland cement (OPC) matrix for waste products immersed in tap water for one month. The compressive strength increases in the order; st Ce Sb> mix Ce Sb> Na Ce Sb> Co Ce Sb> Cs Ce Sb> OPC> Eu Ce Sb> Ce Sb; (mix refers to all the radionuclides used here). The cumulative leached fractions of {sup 60} Co and {sup 134} Cs decreased for solidified waste products containing Ce Sb in comparison to plain cement. 2 figs., 9 tabs.

  19. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  20. Inference for High-dimensional Differential Correlation Matrices.

    Science.gov (United States)

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  1. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel; Archer, Lynden A.

    2011-01-01

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona

  2. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  3. Estimated correlation matrices and portfolio optimization

    Science.gov (United States)

    Pafka, Szilárd; Kondor, Imre

    2004-11-01

    Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs

  4. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  5. Salicylate-spectrophotometric determination of inorganic monochloramine

    International Nuclear Information System (INIS)

    Tao Hui; Chen Zhonglin; Li Xing; Yang Yanling; Li Guibai

    2008-01-01

    On the basis of classical Berthelot reaction, a simple salicylate-spectrophotometric method was developed for quantitative determination of inorganic monochloramine in water samples. With the catalysis of disodium pentacyanonitrosylferrate(III), inorganic monochloramine reacts with salicylate in equimolar to produce indophenol compound which has an intense absorption at 703 nm. Parameters that influence method performance, such as pH, dosage of salicylate and nitroprussiate and reaction time, were modified to enhance the method performance. By using this method, inorganic monochloramine can be distinguished from organic chloramines and other inorganic chlorine species, such as free chlorine, dichloramine, and trichloramine. The molar absorptivities of the final products formed by these compounds are below ±3% of inorganic monochloramine, because of the α-N in them have only one exchangeable hydrogen atom, and cannot react with salicylate to produce the indophenol compound. The upper concentrations of typical ions that do not interfere with the inorganic monochloramine determination are also tested to be much higher than that mostly encountered in actual water treatment. Case study demonstrates that the results obtained from this method are lower than DPD-titrimetric method because the organic chloramines formed by chlorination of organic nitrogenous compounds give no response in the newly established method. And the result measured by salicylate-spectrophotometric method is coincident with theoretical calculation

  6. Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices

    Science.gov (United States)

    Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.

    2006-11-01

    An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.

  7. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  8. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum

    Science.gov (United States)

    de Lill, Daniel T.; Carraher, Charles E., Jr.

    2017-01-01

    Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…

  9. On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices

    KAUST Repository

    Pestana, Jennifer

    2014-01-01

    Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.

  10. Hamiltonian structure of isospectral deformation equation and semi-classical approximation to factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1980-01-01

    We consider semi-classical approximation to factorized S-matrices. We show that this new class of matrices, called s-matrices, defines Hamiltonian structures for isospectral deformation equations. Concrete examples of factorized s-matrices are constructed and they are used to define Hamiltonian structure for general two-dimensional isospectral deformation systems. (orig.)

  11. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    Directory of Open Access Journals (Sweden)

    Diego Santana Assis

    Full Text Available The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates; sugarcane (3; and pasture (3. At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart. Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  12. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    Science.gov (United States)

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  13. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Science.gov (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  14. Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank

    OpenAIRE

    Zhao, Liang; Liao, Siyu; Wang, Yanzhi; Li, Zhe; Tang, Jian; Pan, Victor; Yuan, Bo

    2017-01-01

    Recently low displacement rank (LDR) matrices, or so-called structured matrices, have been proposed to compress large-scale neural networks. Empirical results have shown that neural networks with weight matrices of LDR matrices, referred as LDR neural networks, can achieve significant reduction in space and computational complexity while retaining high accuracy. We formally study LDR matrices in deep learning. First, we prove the universal approximation property of LDR neural networks with a ...

  15. Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations

    Directory of Open Access Journals (Sweden)

    Han Guo

    2012-01-01

    Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.

  16. Hypersymmetric functions and Pochhammers of 2×2 nonautonomous matrices

    Directory of Open Access Journals (Sweden)

    A. F. Antippa

    2004-01-01

    Full Text Available We introduce the hypersymmetric functions of 2×2 nonautonomous matrices and show that they are related, by simple expressions, to the Pochhammers (factorial polynomials of these matrices. The hypersymmetric functions are generalizations of the associated elementary symmetric functions, and for a specific class of 2×2 matrices, having a high degree of symmetry, they reduce to these latter functions. This class of matrices includes rotations, Lorentz boosts, and discrete time generators for the harmonic oscillators. The hypersymmetric functions are defined over four sets of independent indeterminates using a triplet of interrelated binary partitions. We work out the algebra of this triplet of partitions and then make use of the results in order to simplify the expressions for the hypersymmetric functions for a special class of matrices. In addition to their obvious applications in matrix theory, in coupled difference equations, and in the theory of symmetric functions, the results obtained here also have useful applications in problems involving successive rotations, successive Lorentz transformations, discrete harmonic oscillators, and linear two-state systems.

  17. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  18. Square matrices of order 2 theory, applications, and problems

    CERN Document Server

    Pop, Vasile

    2017-01-01

    This unique and innovative book presents an exciting and complete detail of all the important topics related to the theory of square matrices of order 2. The readers exploring every detailed aspect of matrix theory are gently led toward understanding advanced topics. They will follow every notion of matrix theory with ease, accumulating a thorough understanding of algebraic and geometric aspects of matrices of order 2. The prime jewel of this book is its offering of an unusual collection of problems, theoretically motivated, most of which are new, original, and seeing the light of publication for the first time in the literature. Nearly all of the exercises are presented with detailed solutions and vary in difficulty from easy to more advanced. Many problems are particularly challenging. These, and not only these, invite the reader to unleash their creativity and research capabilities and to discover their own methods of attacking a problem. Matrices have a vast practical importance to mathematics, science, a...

  19. Two-mode Gaussian density matrices and squeezing of photons

    International Nuclear Information System (INIS)

    Tucci, R.R.

    1992-01-01

    In this paper, the authors generalize to 2-mode states the 1-mode state results obtained in a previous paper. The authors study 2-mode Gaussian density matrices. The authors find a linear transformation which maps the two annihilation operators, one for each mode, into two new annihilation operators that are uncorrelated and unsqueezed. This allows the authors to express the density matrix as a product of two 1-mode density matrices. The authors find general conditions under which 2-mode Gaussian density matrices become pure states. Possible pure states include the 2-mode squeezed pure states commonly mentioned in the literature, plus other pure states never mentioned before. The authors discuss the entropy and thermodynamic laws (Second Law, Fundamental Equation, and Gibbs-Duhem Equation) for the 2-mode states being considered

  20. A Workshop on Algebraic Design Theory and Hadamard Matrices

    CERN Document Server

    2015-01-01

    This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important ap...

  1. Asymmetric correlation matrices: an analysis of financial data

    Science.gov (United States)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  2. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices

    Science.gov (United States)

    Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.

    2017-11-01

    Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.

  3. Physical properties of the Schur complement of local covariance matrices

    International Nuclear Information System (INIS)

    Haruna, L F; Oliveira, M C de

    2007-01-01

    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ 12 described by a 4 x 4 covariance matrix V, the Schur complement of a local covariance submatrix V 1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to an n-partite Gaussian state is given, and it is demonstrated that the n - 1 system state conditioned to a partial parity projection is given by a covariance matrix such that its 2 x 2 block elements are Schur complements of special local matrices

  4. Industrial inorganic chemistry. 2. rev. ed.

    International Nuclear Information System (INIS)

    Buechner, W.; Schliebs, R.; Winter, G.; Buechel, K.H.

    1986-01-01

    Inorganic chemistry is a branch of considerable economic and technical importance. Apart from supplying the market with metals, fertilizers, building materials, pigments and glass it is one of the major suppliers of process materials to the organic chemical industry. Many modern products of other industrial sectors (video tapes, optical fibers or silicon chips) could not have been developed and manufactured without the achievements of industrial inorganic chemistry. The publication is the first of its kind to give a compact description of the inorganic chemistry sector. A clearly arranged survey facilitates access to production processes, economic aspects, ecological implications, energy consumption and raw material consumption as well as to many other data and facts. Due to its clear arrangement and the combination of technical and economic facts the book is a valuable source of information. (orig./EF) [de

  5. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  6. Inorganic matter characterization in vegetable biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Garcia, F.; Martinez-Alonso, A.; Fernandez Llorenta, M.; Tascon, J.M.D. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2002-06-01

    A combination of techniques was used to characterize the inorganic constituents of four types of vegetable biomass: apple pulp, olive cake, olive tree pruning and thistle. Two methods were used to selectively eliminate organic matter: low-temperature oxidation in an oxygen plasma, and medium-temperature oxidation in air. Inorganic species present in the residues were identified by X-ray diffraction and FT-IR spectroscopy. The combination of these techniques allowed one to detect SiO{sub 2}, CaCO{sub 3} and various other Ca-, Mg-, Na- and K-containing phases as inorganic constituents of the studied biomass residues. It is concluded that the oxygen plasma treatment produces sulphates and nitrates that were not present in the starting material. Medium-temperature oxidation does not produce these artificial species but induces some thermal transformations in the mineral constituents of biomass, so that each technique has its own advantages and disadvantages. 27 refs., 6 figs., 3 tabs.

  7. Random Matrices for Information Processing – A Democratic Vision

    DEFF Research Database (Denmark)

    Cakmak, Burak

    The thesis studies three important applications of random matrices to information processing. Our main contribution is that we consider probabilistic systems involving more general random matrix ensembles than the classical ensembles with iid entries, i.e. models that account for statistical...... dependence between the entries. Specifically, the involved matrices are invariant or fulfill a certain asymptotic freeness condition as their dimensions grow to infinity. Informally speaking, all latent variables contribute to the system model in a democratic fashion – there are no preferred latent variables...

  8. An algebraic model for quark mass matrices with heavy top

    International Nuclear Information System (INIS)

    Krolikowski, W.; Warsaw Univ.

    1991-01-01

    In terms of an intergeneration U(3) algebra, a numerical model is constructed for quark mass matrices, predicting the top-quark mass around 170 GeV and the CP-violating phase around 75 deg. The CKM matrix is nonsymmetric in moduli with |V ub | being very small. All moduli are consistent with their experimental limits. The model is motivated by the author's previous work on three replicas of the Dirac particle, presumably resulting into three generations of leptons and quarks. The paper may be also viewed as an introduction to a new method of intrinsic dynamical description of lepton and quark mass matrices. (author)

  9. ON MATRICES ARISING IN RETARDED DELAY DIFFERENTIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    S DJEZZAR

    2002-12-01

    Full Text Available Dans cet article, on considère une classe de système différentiels retardés et à laquelle on associe une matrice système sur R[s,z], l'anneau des polynômes à deux indéterminés s et z. Ensuite, en utilisant la notion de la matrice forme de Smith sur R[s,z], on étend un résultat de caractérisation obtenu précédemment [5] sur les formes canoniques, à un cas plus général.

  10. Soft landing of size selected clusters in rare gas matrices

    International Nuclear Information System (INIS)

    Lau, J.T; Wurth, W.; Ehrke, H-U.; Achleitner, A.

    2003-01-01

    Soft landing of mass selected clusters in rare gas matrices is a technique used to preserve mass selection in cluster deposition. To prevent fragmentation upon deposition, the substrate is covered with rare gas matrices to dissipate the cluster kinetic energy upon impact. Theoretical and experimental studies demonstrate the power of this technique. Besides STM, optical absorption, excitation, and fluorescence experiments, x-ray absorption at core levels can be used as a tool to study soft landing conditions, as will be shown here. X-ray absorption spectroscopy is also well suited to follow diffusion and agglomeration of clusters on surfaces via energy shifts in core level absorption

  11. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  12. On the Wigner law in dilute random matrices

    Science.gov (United States)

    Khorunzhy, A.; Rodgers, G. J.

    1998-12-01

    We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.

  13. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  14. Activities of the INCT, Warsaw, in the domain of quality assurance for inorganic analysis

    International Nuclear Information System (INIS)

    Polkowska-Motrenko, H.; Dybczynski, R.

    2006-01-01

    The paper summarizes the work done by the Institute of Nuclear Chemistry and Technology, Warsaw (INCT), in the field of QA/QC with the special emphasis on the role of NAA. This work consists of preparation and certification of CRMs, development of high-accuracy RNAA methods for selected elements in biological matrices and organization of proficiency test rounds (PT). The INCT has been involved in the preparation and certification of CRMs for inorganic trace analysis since 1986. The adopted certification philosophy is presented. Comparison of analytical data on the same material available from interlaboratory comparisons organized in different years is presented. The paper summarizes also the work on the development of high-accuracy RNAA methods. It has been demonstrated that the high-accuracy RNAA methods devised according the concept formulated in INCT can meet requirements of primary ratio method of measurement (PMM). (author)

  15. Prototypes of Newly Conceived Inorganic and Biological Sensors for Health and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Rosanna Spera

    2012-12-01

    Full Text Available This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was paid to detecting substances significant to the environment (such as carbon dioxide and medicine (drug administration, cancer diagnosis and prognosis by means of amperometric, quartz crystal microbalance with frequency (QCM_F and quartz crystal microbalance with dissipation monitoring (QCM_D technologies. The resulting three implemented nanosensors are described here along with proofs of principle and their corresponding applications.

  16. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  17. Separation of fission products using inorganic exchangers

    International Nuclear Information System (INIS)

    Murthy, T.S.; Balasubramanian, K.R.; Rao, K.L.N.; Venkatachalam, R.; Varma, R.N.

    1981-01-01

    This paper describes the separation of long lived fission products like caesium-137, strontium-90 using inorganic exchangers ammonium phosphomolybdate and zirconium antimonate. A revised flow sheet is proposed for the sequential separation of these isotopes using the above two compounds. This is a modification of the earlier scheme developed which involved the use of four inorganic exchangers namely ammonium phosphomolybdate, manganese dioxide, zirconium antimonate and polyantimonic acid. The elution of the adsorbed elements like cerium, strontium, and sodium has been studied and it has been possible to elute these using different eluting agents. (author)

  18. Chronic inorganic mercury induced peripheral neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.-C.; Huang, C.-C.; Ryu, S.-J. [Chang Gung Memorial Hospital and Chang Gung University, Dept. of Neurology, Tapei (Taiwan, Province of China); Wu, T.-N. [Executive Yuan, Dept. of Health, Surveillance and Quarantine Service, Taipei (Taiwan, Province of China)

    1998-12-01

    We report the clinical features, electrophysiological studies, and morphometric analysis of sural nerve pathology in a patient with polyneuropathy due to inorganic mercury intoxication. He developed slowly progressive generalized paralysis of all limbs after 3 months ingestion of herb drugs which contained mercuric sulfate. Electrophysiologic studies revealed axonal polyneuropathy involving both motor and sensory fibers. Sural nerve biopsy demonstrated axonal degeneration with demyelination and a predominant loss of large myelinated fibers. His muscle strength showed only mild improvement after 2 years` follow-up. We concluded that inorganic mercury exposure may induce severe axonal sensorimotor polyneuropathy in humans and that neurological deficits may persist in severe cases. (au) 21 refs.

  19. THE ALGORITHM AND PROGRAM OF M-MATRICES SEARCH AND STUDY

    Directory of Open Access Journals (Sweden)

    Y. N. Balonin

    2013-05-01

    Full Text Available The algorithm and software for search and study of orthogonal bases matrices – minimax matrices (M-matrix are considered. The algorithm scheme is shown, comments on calculation blocks are given, and interface of the MMatrix software system developed with participation of the authors is explained. The results of the universal algorithm work are presented as Hadamard matrices, Belevitch matrices (C-matrices, conference matrices and matrices of even and odd orders complementary and closely related to those ones by their properties, in particular, the matrix of the 22-th order for which there is no C-matrix. Examples of portraits for alternative matrices of the 255-th and the 257-th orders are given corresponding to the sequences of Mersenne and Fermat numbers. A new way to get Hadamard matrices is explained, different from the previously known procedures based on iterative processes and calculations of Lagrange symbols, with theoretical and practical meaning.

  20. "G.P.S Matrices" programme: A method to improve the mastery level of social science students in matrices operations

    Science.gov (United States)

    Lee, Ken Voon

    2013-04-01

    The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.

  1. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Recent developments in inorganically filled carbon nanotubes: successes and challenges

    Directory of Open Access Journals (Sweden)

    Ujjal K Gautam, Pedro M F J Costa, Yoshio Bando, Xiaosheng Fang, Liang Li, Masataka Imura and Dmitri Golberg

    2010-01-01

    Full Text Available Carbon nanotubes (CNTs are a unique class of nanomaterials that can be imagined as rolled graphene sheets. The inner hollow of a CNT provides an extremely small, one-dimensional space for storage of materials. In the last decade, enormous effort has been spent to produce filled CNTs that combine the properties of both the host CNT and the guest filling material. CNTs filled with various inorganic materials such as metals, alloys, semiconductors and insulators have been obtained using different synthesis approaches including capillary filling and chemical vapor deposition. Recently, several potential applications have emerged for these materials, such as the measurement of temperature at the nanoscale, nano-spot welding, and the storage and delivery of extremely small quantities of materials. A clear distinction between this class of materials and other nanostructures is the existence of an enormous interfacial area between the CNT and the filling matter. Theoretical investigations have shown that the lattice mismatch and strong exchange interaction of CNTs with the guest material across the interface should result in reordering of the guest crystal structure and passivation of the surface dangling bonds and thus yielding new and interesting physical properties. Despite preliminary successes, there remain many challenges in realizing applications of CNTs filled with inorganic materials, such as a comprehensive understanding of their growth and physical properties and control of their structural parameters. In this article, we overview research on filled CNT nanomaterials with special emphasis on recent progress and key achievements. We also discuss the future scope and the key challenges emerging out of a decade of intensive research on these fascinating materials.

  3. Schur complements of matrices with acyclic bipartite graphs

    DEFF Research Database (Denmark)

    Britz, Thomas Johann; Olesky, D.D.; van den Driessche, P.

    2005-01-01

    Bipartite graphs are used to describe the generalized Schur complements of real matrices having nos quare submatrix with two or more nonzero diagonals. For any matrix A with this property, including any nearly reducible matrix, the sign pattern of each generalized Schur complement is shown to be ...

  4. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei

    2017-11-08

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix into variance and correlation matrices. The highlight is that the correlations are represented as products of vectors on unit spheres. We propose a variety of distributions on spheres (e.g. the squared-Dirichlet distribution) to induce flexible prior distributions for covariance matrices that go beyond the commonly used inverse-Wishart prior. To handle the intractability of the resulting posterior, we introduce the adaptive $\\\\Delta$-Spherical Hamiltonian Monte Carlo. We also extend our structured framework to dynamic cases and introduce unit-vector Gaussian process priors for modeling the evolution of correlation among multiple time series. Using an example of Normal-Inverse-Wishart problem, a simulated periodic process, and an analysis of local field potential data (collected from the hippocampus of rats performing a complex sequence memory task), we demonstrated the validity and effectiveness of our proposed framework for (dynamic) modeling covariance and correlation matrices.

  5. Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice

    NARCIS (Netherlands)

    Callot, Laurent A.F.; Kock, Anders B.; Medeiros, Marcelo C.

    2017-01-01

    We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso-type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast

  6. BMP-silk composite matrices heal critically sized femoral defects

    NARCIS (Netherlands)

    Kirker-Head, C.; Karageorgiou, V.; Hofmann, S.; Fajardo, R.; Betz, O.; Merkle, H.P.; Hilbe, M.; Rechenberg, von B.; McCool, J.; Abrahamsen, L.; Nazarian, A.; Cory, E.; Curtis, M.; Kaplan, D.L.; Meinel, L.

    2007-01-01

    Clinical drawbacks of bone grafting prompt the search for alternative bone augmentation technologies such as use of growth and differentiation factors, gene therapy, and cell therapy. Osteopromotive matrices are frequently employed for the local delivery and controlled release of these augmentation

  7. Which matrices are immune against the transportation paradox

    NARCIS (Netherlands)

    Deineko, Vladimir G.; Klinz, Bettina; Woeginger, Gerhard

    2003-01-01

    We characterize the m×n cost matrices of the transportation problem for which there exist supplies and demands such that the transportation paradox arises. Our characterization is fairly simple and can be verified within O(mn) computational steps. Moreover, we discuss the corresponding question for

  8. A definition of column reduced proper rational matrices

    Czech Academy of Sciences Publication Activity Database

    Ruiz-León, J. J.; Castellanos, A.; Ramos-Velasco, Luis Enrique

    2002-01-01

    Roč. 75, č. 3 (2002), s. 195-203 ISSN 0020-7179 R&D Projects: GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : linear systems * columm reduced polynomial matrices * decoupling Subject RIV: BC - Control Systems Theory Impact factor: 0.861, year: 2002

  9. Construction of MDS self-dual codes from orthogonal matrices

    OpenAIRE

    Shi, Minjia; Sok, Lin; Solé, Patrick

    2016-01-01

    In this paper, we give algorithms and methods of construction of self-dual codes over finite fields using orthogonal matrices. Randomization in the orthogonal group, and code extension are the main tools. Some optimal, almost MDS, and MDS self-dual codes over both small and large prime fields are constructed.

  10. Designer matrices for intestinal stem cell and organoid culture

    NARCIS (Netherlands)

    Gjorevski, Nikolce; Sachs, Norman; Manfrin, Andrea; Giger, Sonja; Bragina, Maiia E.; Ordóñez-Morán, Paloma; Clevers, Hans; Lutolf, Matthias P.

    2016-01-01

    Epithelial organoids recapitulate multiple aspects of real organs, making them promising models of organ development, function and disease. However, the full potential of organoids in research and therapy has remained unrealized, owing to the poorly defined animal-derived matrices in which they are

  11. Study on vulnerability matrices of masonry buildings of mainland China

    Science.gov (United States)

    Sun, Baitao; Zhang, Guixin

    2018-04-01

    The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.

  12. More about unphysical zeroes in quark mass matrices

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel-Costa, David, E-mail: david.costa@tecnico.ulisboa.pt [Departamento de Física and Centro de Física Teórica de Partículas - CFTP, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); González Felipe, Ricardo, E-mail: ricardo.felipe@tecnico.ulisboa.pt [Departamento de Física and Centro de Física Teórica de Partículas - CFTP, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1959-007 Lisboa (Portugal)

    2017-01-10

    We look for all weak bases that lead to texture zeroes in the quark mass matrices and contain a minimal number of parameters in the framework of the standard model. Since there are ten physical observables, namely, six nonvanishing quark masses, three mixing angles and one CP phase, the maximum number of texture zeroes in both quark sectors is altogether nine. The nine zero entries can only be distributed between the up- and down-quark sectors in matrix pairs with six and three texture zeroes or five and four texture zeroes. In the weak basis where a quark mass matrix is nonsingular and has six zeroes in one sector, we find that there are 54 matrices with three zeroes in the other sector, obtainable through right-handed weak basis transformations. It is also found that all pairs composed of a nonsingular matrix with five zeroes and a nonsingular and nondecoupled matrix with four zeroes simply correspond to a weak basis choice. Without any further assumptions, none of these pairs of up- and down-quark mass matrices has physical content. It is shown that all non-weak-basis pairs of quark mass matrices that contain nine zeroes are not compatible with current experimental data. The particular case of the so-called nearest-neighbour-interaction pattern is also discussed.

  13. Eudragit E100 and Polysaccharide Polymer Blends as Matrices for ...

    African Journals Online (AJOL)

    Purpose: To compare the effects of two states of polymer/polymer blending (dry and aqueous/lyophilized) on the physicomechanical properties of tablets, containing blends of locust bean gum (LB) with Eudragit® E100 (E100) and sodium carboxymethylcellulose (SCMC) as matrices. Methods: LB, SCMC and E100 were ...

  14. On the nonnegative inverse eigenvalue problem of traditional matrices

    Directory of Open Access Journals (Sweden)

    Alimohammad Nazari

    2014-07-01

    Full Text Available In this paper, at first for a given set of real or complex numbers $\\sigma$ with nonnegativesummation, we introduce some special conditions that with them there is no nonnegativetridiagonal matrix in which $\\sigma$ is its spectrum. In continue we present some conditions forexistence such nonnegative tridiagonal matrices.

  15. Dirac Matrices and Feynman’s Rest of the Universe

    Directory of Open Access Journals (Sweden)

    Young S. Kim

    2012-10-01

    Full Text Available There are two sets of four-by-four matrices introduced by Dirac. The first set consists of fifteen Majorana matrices derivable from his four γ matrices. These fifteen matrices can also serve as the generators of the group SL(4, r. The second set consists of ten generators of the Sp(4 group which Dirac derived from two coupled harmonic oscillators. It is shown possible to extend the symmetry of Sp(4 to that of SL(4, r if the area of the phase space of one of the oscillators is allowed to become smaller without a lower limit. While there are no restrictions on the size of phase space in classical mechanics, Feynman’s rest of the universe makes this Sp(4-to-SL(4, r transition possible. The ten generators are for the world where quantum mechanics is valid. The remaining five generators belong to the rest of the universe. It is noted that the groups SL(4, r and Sp(4 are locally isomorphic to the Lorentz groups O(3, 3 and O(3, 2 respectively. This allows us to interpret Feynman’s rest of the universe in terms of space-time symmetry.

  16. REFLECTIONS The Matrices of Race, Class and Gender: how they ...

    African Journals Online (AJOL)

    REFLECTIONS The Matrices of Race, Class and Gender: how they. Nova Smith. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/safere.v3i1.23950 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  17. A Role for M-Matrices in Modelling Population Growth

    Science.gov (United States)

    James, Glyn; Rumchev, Ventsi

    2006-01-01

    Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…

  18. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  19. Variation in Raven's Progressive Matrices Scores across Time and Place

    Science.gov (United States)

    Brouwers, Symen A.; Van de Vijver, Fons J. R.; Van Hemert, Dianne A.

    2009-01-01

    The paper describes a cross-cultural and historical meta-analysis of Raven's Progressive Matrices. Data were analyzed of 798 samples from 45 countries (N = 244,316), which were published between 1944 and 2003. Country-level indicators of educational permeation (which involves a broad set of interrelated educational input and output factors that…

  20. Eudragit E100 and Polysaccharide Polymer Blends as Matrices for ...

    African Journals Online (AJOL)

    Methods: LB, SCMC and E100 were blended in their dry (as purchased) state or modified by aqueous blending and subsequent lyophilization, prior to use as matrices in tablets. ... pullulan from Aureobasidium pullulans, 3-(3,4- .... the frozen polymer before sublimation and drying). Subsequently, milling generated a more.

  1. Higher dimensional unitary braid matrices: Construction, associated structures and entanglements

    International Nuclear Information System (INIS)

    Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.

    2007-03-01

    We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)

  2. The algebraic structure of lax equations for infinite matrices

    NARCIS (Netherlands)

    Helminck, G.F.

    2002-01-01

    In this paper we discuss the algebraic structure of the tower of differential difference equations that one can associate with any commutative subalgebra of $M_k(\\mathbb{C})$. These equations can be formulated conveniently in so-called Lax equations for infinite upper- resp. lowertriangular matrices

  3. Resistant lower rank approximation of matrices by iterative majorization

    NARCIS (Netherlands)

    Verboon, Peter; Heiser, Willem

    2011-01-01

    It is commonly known that many techniques for data analysis based on the least squares criterion are very sensitive to outliers in the data. Gabriel and Odoroff (1984) suggested a resistant approach for lower rank approximation of matrices. In this approach, weights are used to diminish the

  4. Systematics of quark mass matrices in the standard electroweak model

    International Nuclear Information System (INIS)

    Frampton, P.H.; Jarlskog, C.; Stockholm Univ.

    1985-01-01

    It is shown that the quark mass matrices in the standard electroweak model satisfy the empirical relation M = M' + O(lambda 2 ), where M(M') refers to the mass matrix of the charge 2/3 (-1/3) quarks normalized to the largest eigenvalue, msub(t) (msub(b)), and lambda = Vsub(us) approx.= 0.22. (orig.)

  5. Model-independent analysis with BPM correlation matrices

    International Nuclear Information System (INIS)

    Irwin, J.; Wang, C.X.; Yan, Y.T.; Bane, K.; Cai, Y.; Decker, F.; Minty, M.; Stupakov, G.; Zimmermann, F.

    1998-06-01

    The authors discuss techniques for Model-Independent Analysis (MIA) of a beamline using correlation matrices of physical variables and Singular Value Decomposition (SVD) of a beamline BPM matrix. The beamline matrix is formed from BPM readings for a large number of pulses. The method has been applied to the Linear Accelerator of the SLAC Linear Collider (SLC)

  6. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Administrator

    We are interested in obtaining single crystals of metal-opda complexes because their crystal structures would show complex hydrogen bonding network due to the presence of. –NH2 groups in the opda ligand (hydrogen bonding donor sites) and inorganic anions having mostly oxo groups (hydrogen bonding acceptor sites) ...

  7. Medicinal Uses of Inorganic Compounds - 1

    Indian Academy of Sciences (India)

    Worldwide sales of inorganic drugs are growing rapidly. Although about 26 elements in the periodic table are considered essential for mammalian life, both ... Lithium like alcohol can influence mood. Lithium drugs such as lithium carbonate Li2C03. , are used for the treatment of manic-depressive disorders, most likely ...

  8. Corrosion performance of inorganic coatings in seawater

    NARCIS (Netherlands)

    Zhang, X.; Buter, S.J.; Ferrari, G.M.; Westing, E. van; Kowalski, L.

    2011-01-01

    Inorganic coatings are widely used to protect carbon steel hydraulic cylinder rods from wear and corrosion in aggressive offshore environment. Different types of lay-ers such as Ni/Cr, Al2O3, Cr2O3, TiO2, and Inconel 625 layers were applied to the carbon steels by plasma, High Velocity Oxygen Fuel

  9. Inorganic mass spectrometry of solid samples

    International Nuclear Information System (INIS)

    Adams, F.; Vertes, A.

    1990-01-01

    In this review some recent developments in the field of inorganic mass spectrometry of solids are described with special emphasis on the actual state of understanding of the ionization processes. It concentrates on the common characteristics of methods such as spark source-, laser-, secondary ion-, inductively coupled plasma- and glow discharge mass spectrometry. (orig.)

  10. INORGANIC ELEMENTS AND DISTRIBUTION OF EASTERN OYSTERS.

    Science.gov (United States)

    Fisher, William S. In press. Inorganic Elements and Distribution of Eastern Oysters (Abstract). To be presented at the 96th Annual Meeting (Aquaculture 2004) of the National Shellfisheries Association, 1-5 March 2004, Honolulu, HI. 1 p. (ERL,GB R962). For over a century w...

  11. Serum Calcium, Inorganic Phosphates and some Haematological ...

    African Journals Online (AJOL)

    Objectives: Sickle cell disease has long been associated with bone deformities and pain. Mineral salts such as calcium and inorganic phosphate are critical in bone formation and metabolism. This investigation was designed to study the serum concentration of these minerals as well as some haematological parameters in ...

  12. Studies on inorganic exchanger: zirconium antimonate

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.

    1992-01-01

    The inorganic exchanger zirconium antimonate has been prepared and its characteristics evaluated. A method has been developed for the separation of 90 Sr and 144 Ce from fission products solution using this exchanger. (author). 23 refs., 18 f igs., 9 tabs

  13. Phytochemical, inorganic and proximate composition-guided ...

    African Journals Online (AJOL)

    Sterols, glycosides and anthraquinone were absent in all samples. The inorganic composition result showed relatively high concentration of potassium (very high for seed), calcium (for bark and leaf), magnesium and sulphur in Avocado samples. The Avocado seed contained relatively high content of moisture, carbohydrate ...

  14. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and su...

  15. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science.

    Science.gov (United States)

    Prochowicz, Daniel; Kornowicz, Arkadiusz; Lewiński, Janusz

    2017-11-22

    Readily available cyclodextrins (CDs) with an inherent hydrophobic internal cavity and hydrophilic external surface are macrocyclic entities that display a combination of molecular recognition and complexation properties with vital implications for host-guest supramolecular chemistry. While the host-guest chemistry of CDs has been widely recognized and led to their exploitation in a variety of important functions over the last five decades, these naturally occurring macrocyclic systems have emerged only recently as promising macrocyclic molecules to fabricate environmentally benign functional nanomaterials. This review surveys the development in the field paying special attention to the synthesis and emerging uses of various unmodified CD-metal complexes and CD-inorganic nanoparticle systems and identifies possible future directions. The association of a hydrophobic cavity of CDs with metal ions or various inorganic nanoparticles is a very appealing strategy for controlling the inorganic subunits properties in the very competitive water environment. In this review we provide the most prominent examples of unmodified CDs' inclusion complexes with organometallic guests and update the research in this field from the past decade. We discuss also the coordination flexibility of native CDs to metal ions in CD-based metal complexes and summarize the progress in the synthesis and characterization of CD-metal complexes and their use in catalysis and sensing as well as construction of molecular magnets. Then we provide a comprehensive overview of emerging applications of native CDs in materials science and nanotechnology. Remarkably, in the past few years CDs have appeared as attractive building units for the synthesis of carbohydrate metal-organic frameworks (CD-MOFs) in a combination of alkali-metal cations. The preparation of this new class of highly porous materials and their applications in the separation of small molecules, the loading of drug molecules, as well as

  16. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  17. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  18. Applicability of non-invasively collected matrices for human biomonitoring

    Directory of Open Access Journals (Sweden)

    Nickmilder Marc

    2009-03-01

    Full Text Available Abstract With its inclusion under Action 3 in the Environment and Health Action Plan 2004–2010 of the European Commission, human biomonitoring is currently receiving an increasing amount of attention from the scientific community as a tool to better quantify human exposure to, and health effects of, environmental stressors. Despite the policy support, however, there are still several issues that restrict the routine application of human biomonitoring data in environmental health impact assessment. One of the main issues is the obvious need to routinely collect human samples for large-scale surveys. Particularly the collection of invasive samples from susceptible populations may suffer from ethical and practical limitations. Children, pregnant women, elderly, or chronically-ill people are among those that would benefit the most from non-invasive, repeated or routine sampling. Therefore, the use of non-invasively collected matrices for human biomonitoring should be promoted as an ethically appropriate, cost-efficient and toxicologically relevant alternative for many biomarkers that are currently determined in invasively collected matrices. This review illustrates that several non-invasively collected matrices are widely used that can be an valuable addition to, or alternative for, invasively collected matrices such as peripheral blood sampling. Moreover, a well-informed choice of matrix can provide an added value for human biomonitoring, as different non-invasively collected matrices can offer opportunities to study additional aspects of exposure to and effects from environmental contaminants, such as repeated sampling, historical overview of exposure, mother-child transfer of substances, or monitoring of substances with short biological half-lives.

  19. Polymer Percolation Threshold in Multi-Component HPMC Matrices Tablets

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-06-01

    Full Text Available Introduction: The percolation theory studies the critical points or percolation thresholds of the system, where onecomponent of the system undergoes a geometrical phase transition, starting to connect the whole system. The application of this theory to study the release rate of hydrophilic matrices allows toexplain the changes in release kinetics of swellable matrix type system and results in a clear improvement of the design of controlled release dosage forms. Methods: In this study, the percolation theory has been applied to multi-component hydroxypropylmethylcellulose (HPMC hydrophilic matrices. Matrix tablets have been prepared using phenobarbital as drug,magnesium stearate as a lubricant employing different amount of lactose and HPMC K4M as a fillerandmatrix forming material, respectively. Ethylcelullose (EC as a polymeric excipient was also examined. Dissolution studies were carried out using the paddle method. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of HPMC at time zero, was studied. Results: In both HPMC/lactose and HPMC/EC/lactose matrices, from the point of view of the percolation theory, the optimum concentration for HPMC, to obtain a hydrophilic matrix system for the controlled release of phenobarbital is higher than 18.1% (v/v HPMC. Above 18.1% (v/v HPMC, an infinite cluster of HPMC would be formed maintaining integrity of the system and controlling the drug release from the matrices. According to results, EC had no significant influence on the HPMC percolation threshold. Conclusion: This may be related to broad functionality of the swelling hydrophilic matrices.

  20. Influence of Organic and Inorganic Sources of Fertilizer on Growth ...

    African Journals Online (AJOL)

    Influence of Organic and Inorganic Sources of Fertilizer on Growth and Leaf Yield of Kale ... Journal of Agriculture, Science and Technology ... fertilizer gave leaf yields comparable to those applied with exclusively inorganic sources of fertilizer.

  1. Review of progress in soil inorganic carbon research

    Science.gov (United States)

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  2. Quantitative method for determination of body inorganic iodine

    International Nuclear Information System (INIS)

    Filatov, A.A.; Tatsievskij, V.A.

    1991-01-01

    An original method of quantitation of body inorganic iodine, based upon a simultaneous administration of a known dose of stable and radioactive iodine with subsequent radiometry of the thyroid was proposed. The calculation is based upon the principle of the dilution of radiactive iodine in human inorganic iodine space. The method permits quantitation of the amount of inorganic iodine with regard to individual features of inorganic space. The method is characterized by simplicity and is not invasive for a patient

  3. The underexposed role of food matrices in probiotic products: reviewing the relationship between carrier matrices and product parameters

    NARCIS (Netherlands)

    Flach, J.; van der Waal, M.B.; van den Nieuwboer, M.; Claassen, H.J.H.M.; Larsen, O.F.A.

    2017-01-01

     Full Article  Figures & data References  Supplemental  Citations Metrics  Reprints & Permissions  PDF ABSTRACT Probiotic microorganisms are increasingly incorporated into food matrices in order to confer proposed health benefits on the consumer. It is important that the health benefits,

  4. Inorganic nanocrystals as contrast agents in MRI:synthesis, coating and introducing multifunctionality

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L.; Mieszawska, Aneta J.; Fayad, Zahi A.

    2013-01-01

    Inorganic nanocrystals have myriad applications in medicine, which includes their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. For MRI, nanocrystals can produce contrast themselves, of which iron oxides have been most extensively explored, or be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used in imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. Due to these exciting applications, synthesizing and rendering these nanocrystals water-soluble and biocompatible is therefore highly desirable. We will discuss aqueous phase and organic phase methods for synthesizing inorganic nanocrystals such as gold, iron oxides and quantum dots. The pros and cons of the various methods will be highlighted. We explore various methods for making nanocrystals biocompatible, i.e. directly synthesizing nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples will be highlighted and their applications explained. These examples signify that synthesizing biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied for a wide range of applications. Therefore we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. PMID:23303729

  5. Inorganic component of saliva during fasting and after fast break

    OpenAIRE

    Samad, Rasmidar

    2016-01-01

    Oral health is closely related to salivary components. Saliva consists of water, inorganic and organic materials. Fasting changes one???s meal and drinking time that in turn can affect the environment in oral cavity, including inorganic componenet of saliva. The purpose of this study is to determine the inorganic component of saliva during fasting and after fast break.

  6. Efficient linear algebra routines for symmetric matrices stored in packed form.

    Science.gov (United States)

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  7. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate

    NARCIS (Netherlands)

    Pieper, J.S.; Oosterhof, A.; Dijkstra, Pieter J.; Veerkamp, J.H.; van Kuppevelt, T.H.

    1999-01-01

    Porous collagen matrices with defined physical, chemical and biological characteristics are interesting materials for tissue engineering. Attachment of glycosaminoglycans (GAGs) may add to these characteristics and valorize collagen. In this study, porous type I collagen matrices were crosslinked

  8. Switchable host-guest systems on surfaces.

    Science.gov (United States)

    Yang, Ying-Wei; Sun, Yu-Long; Song, Nan

    2014-07-15

    , such as light, pH variations, competitive binding, and enzyme. Rotaxanes have also been assembled onto the surfaces of gold nanodisks and microcantilevers to realize active molecular plasmonics and synthetic molecular actuators for device fabrication and function. Pillararenes have been successfully used to control and aid the synthesis of gold nanoparticles, semiconducting quantum dots, and magnetic nanoparticles. The resulting organic-inorganic hydrid nanomaterials have been successfully used for controlled self-assembly, herbicide sensing and detection, pesticide removal, and so forth, taking advantage of the selective binding of pillarenes toward target molecules. Cyclodextrins have also been successfully functionalized onto the surface of gold nanoparticles to serve as recycling extractors for C60. Many interesting prototypes of nanodevices based on synthetic macrocycles and their host-guest chemistry have been constructed and served for different potential applications. This Account will be a summary of the efforts made mainly by us, and others, on the host-guest chemistry of synthetic macrocyclic compounds on the surfaces of different solid supports.

  9. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  10. Ultrastructural biomarkers in symbiotic algae reflect the availability of dissolved inorganic nutrients and particulate food to the reef coral holobiont

    OpenAIRE

    Sabrina eRosset; Cecilia eD'Angelo; Jörg eWiedenmann; Jörg eWiedenmann

    2015-01-01

    Reef building corals associated with symbiotic algae (zooxanthellae) can access environmental nutrients from different sources, most significantly via the uptake of dissolved inorganic nutrients by the algal symbiont and heterotrophic feeding of the coral host. Climate change is expected to alter the nutrient environment in coral reefs with the potential to benefit or disturb coral reef resilience. At present, the relative importance of the two major nutrient sources is not well understood, m...

  11. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water.

    Science.gov (United States)

    Krystek, Petra; Bäuerlein, Patrick S; Kooij, Pascal J F

    2015-03-15

    For pharmaceutical applications, the use of inorganic engineered nanoparticles is of growing interest while silver (Ag) and gold (Au) are the most relevant elements. A few methods were developed recently but the validation and the application testing were quite limited. Therefore, a routinely suitable multi element method for the identification of nanoparticles of different sizes below 100 nm and elemental composition by applying asymmetric flow field flow fraction (AF4) - inductively coupled plasma mass spectrometry (ICPMS) is developed. A complete validation model of the quantification of releasable pharmaceutical relevant inorganic nanoparticles based on Ag and Au is presented for the most relevant aqueous matrices of tap water and domestic waste water. The samples are originated from locations in the Netherlands and it is of great interest to study the unwanted presence of Ag and Au as nanoparticle residues due to possible health and environmental risks. During method development, instability effects are observed for 60 nm and 70 nm Ag ENPs with different capping agents. These effects are studied more closely in relation to matrix effects. Besides the methodological aspects, the obtained analytical results and relevant performance characteristics (e.g. measuring range, limit of detection, repeatability, reproducibility, trueness, and expanded uncertainty of measurement) are determined and discussed. For the chosen aqueous matrices, the results of the performance characteristics are significantly better for Au ENPs in comparison to Ag ENPs; e.g. repeatability and reproducibility are below 10% for all Au ENPs respectively maximal 27% repeatability for larger Ag ENPs. The method is a promising tool for the simultaneous determination of releasable pharmaceutical relevant inorganic nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Ultrastructural biomarkers in symbiotic algae reflect the availability of dissolved inorganic nutrients and particulate food to the reef coral holobiont

    Directory of Open Access Journals (Sweden)

    Sabrina eRosset

    2015-11-01

    Full Text Available Reef building corals associated with symbiotic algae (zooxanthellae can access environmental nutrients from different sources, most significantly via the uptake of dissolved inorganic nutrients by the algal symbiont and heterotrophic feeding of the coral host. Climate change is expected to alter the nutrient environment in coral reefs with the potential to benefit or disturb coral reef resilience. At present, the relative importance of the two major nutrient sources is not well understood, making predictions of the responses of corals to changes in their nutrient environment difficult. Therefore, we have examined the long-term effects of the availability of different concentrations of dissolved inorganic nutrients and of nutrients in particulate organic form on the model coral Euphyllia paradivisa. Coral and algal biomass showed a significantly stronger increase in response to elevated levels of dissolved inorganic nutrients as compared to the supply with particulate food. Also, changes in the zooxanthellae ultrastructure, determined by transmission electron microscopy (TEM, were mostly driven by the availability of dissolved inorganic nutrients under the present experimental conditions. The larger size of symbiont cells, their increased accumulation of lipid bodies, a higher number of starch granules and the fragmentation of their accumulation body could be established as reliable biomarkers of low availability of dissolved inorganic nutrients to the coral holobiont.

  13. Preservation strategies for inorganic arsenic species in high iron, low-Ehgroundwater from West Bengal, India

    Energy Technology Data Exchange (ETDEWEB)

    Gault, Andrew G.; Polya, David A. [University of Manchester, Department of Earth Sciences and Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); Jana, Joydeb; Chakraborty, Sudipto; Mukherjee, Partha; Sarkar, Mitali; Nath, Bibash; Chatterjee, Debashis [University of Kalyani, Department of Chemistry, Kalyani, (India)

    2005-01-01

    Despite the importance of accurately determining inorganic arsenic speciation in natural waters to predicting bioavailability and environmental and health impacts, there remains considerable debate about the most appropriate species preservation strategies to adopt. In particular, the high-iron, low-Eh(redox potential) shallow groundwaters in West Bengal, Bangladesh and SE Asia, the use of which for drinking and irrigation purposes has led to massive international concerns for human health, are particularly prone to changes in arsenic speciation after sampling. The effectiveness of HCl and EDTA preservation strategies has been compared and used on variably arsenic-rich West Bengali groundwater samples, analysed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Immediate filtration and acidification with HCl followed by refrigerated storage was found to be the most effective strategy for minimizing the oxidation of inorganic As(III) during storage. The use of a PRP-X100 (Hamilton) column with a 20 mmol L{sup -1} NH{sub 4}H{sub 2}PO{sub 4} as mobile phase enabled the separation of Cl{sup -} from As(III), monomethylarsonic acid, dimethylarsinic acid and As(V), thereby eliminating any isobaric interference between {sup 40}Ar{sup 35}Cl{sup +} and {sup 75}As{sup +}. The use of EDTA as a preservative, whose action is impaired by the high calcium concentrations typical of these types of groundwater, resulted in marked oxidation during storage. The use of HCl is therefore indicated for analytical methods in which chloride-rich matrices are not problematical. The groundwaters analysed by IC-ICP-MS were found to contain between 5 and 770 ng As mL{sup -1} exclusively as inorganic arsenic species. As(III)/total-As varied between 0 and 0.94. (orig.)

  14. Polyether matrices for lithium generators; Matrices polyethers pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, F.; Sanchez, J.Y. [Laboratoire d`Electrochimie et de Physicochimie des Materiaux et des Interfaces, 38 - Saint-Martin-d`Heres (France)

    1996-12-31

    The use of solvating polymers of polyether type is an interesting solution for the manufacturing of high capacity lithium batteries with lithium metal anodes and which can operate at T > 50 deg. C. These operating conditions are perfectly compatible with electric-powered vehicle and stationary battery applications. In order to improve the ionic conductivity of polymer electrolytes, new aprotic and amorphous polyether lattices have been synthesized having a good conductivity but also good thermal, mechanical and electrochemical stabilities. Two type of 3-D polyether lattices obtained by reticulation of linear pre-polymers have been selected as host polymers: unsaturated poly-condensate and unsaturated co-polyethers. (J.S.) 18 refs.

  15. Polyether matrices for lithium generators; Matrices polyethers pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, F; Sanchez, J Y [Laboratoire d` Electrochimie et de Physicochimie des Materiaux et des Interfaces, 38 - Saint-Martin-d` Heres (France)

    1997-12-31

    The use of solvating polymers of polyether type is an interesting solution for the manufacturing of high capacity lithium batteries with lithium metal anodes and which can operate at T > 50 deg. C. These operating conditions are perfectly compatible with electric-powered vehicle and stationary battery applications. In order to improve the ionic conductivity of polymer electrolytes, new aprotic and amorphous polyether lattices have been synthesized having a good conductivity but also good thermal, mechanical and electrochemical stabilities. Two type of 3-D polyether lattices obtained by reticulation of linear pre-polymers have been selected as host polymers: unsaturated poly-condensate and unsaturated co-polyethers. (J.S.) 18 refs.

  16. On the norms of r-circulant matrices with generalized Fibonacci numbers

    Directory of Open Access Journals (Sweden)

    Amara Chandoul

    2017-01-01

    Full Text Available In this paper, we obtain a generalization of [6, 8]. Firstly, we consider the so-called r-circulant matrices with generalized Fibonacci numbers and then found lower and upper bounds for the Euclidean and spectral norms of these matrices. Afterwards, we present some bounds for the spectral norms of Hadamard and Kronecker product of these matrices.

  17. Pore ordering in mesoporous matrices induced by different directing agents

    Czech Academy of Sciences Publication Activity Database

    Putz, A.-M.; Cecilia, S.; Ianasi, C.; Dudás, Z.; Székely, N. K.; Plocek, Jiří; Sfarloaga, P.; Sacarescu, L.; Almásy, L.

    2015-01-01

    Roč. 22, č. 2 (2015), s. 321-331 ISSN 1380-2224 Institutional support: RVO:61388980 Keywords : Mesoporous silica * MCM-41 * Dodecyl-trimethyl ammonium bromide * Hexadecyl-trimethylammonium bromide Subject RIV: CA - Inorganic Chemistry Impact factor: 1.385, year: 2015

  18. Radwaste issues belong in the inorganic classroom

    International Nuclear Information System (INIS)

    Williams, D.H.

    1991-01-01

    The safe isolation of high level radioactive wastes is a matter of significant importance. This material is derived primarily from spent nuclear fuel and defense weapon production. Every element on the periodic chart is represented. The majority are metallic elements. Over the thousands of years that they are to be isolated the primary chemistry will be oxidation. The mobility and fate of particular inner and outer transition element ions become very important. For that, one must understand their hydrolytic nature, their complexing tendencies and the solubilities of various compounds. This topic could easily serve as a centerpiece for an inorganic chemistry course. At the very least, it demands the attention of every teacher of inorganic chemistry and consideration by those whose research is directed to tangible problems. The discussion includes notes on the abundance and lifetimes of particular radioisotopes. The positive student responses to this approach are also shared

  19. The quest for the ideal inorganic scintillator

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K.

    2002-01-01

    The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

  20. First-principles studies of Ce and Eu doped inorganic scintillator gamma ray detectors

    Science.gov (United States)

    Canning, Andrew; Chaudhry, Anurag; Boutchko, Rostyslav; Derenzo, Stephen

    2011-03-01

    We have performed DFT based band structure calculations for new Ce and Eu doped wide band gap inorganic materials to determine their potential as candidates for gamma ray scintillator detectors. These calculations are based on determining the 4f ground state level of the Ce and Eu relative to the valence band of the host as well as the position of the Ce and Eu 5d excited state relative to the conduction band of the host. Host hole and electron traps as well as STEs (self trapped excitons) can also limit the transfer of energy from the host to the Ce or Eu site and therefore limit the light output. We also present calculations for host hole traps and STEs to compare the energies to the Ce and Eu excited states. The work was supported by the U.S. Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02- 05CH11231.

  1. Stabilization and solidification of Pb in cement matrices

    International Nuclear Information System (INIS)

    Gollmann, Maria A.C.; Silva, Marcia M. da; Santos, Joao H. Z. dos; Masuero, Angela B.

    2010-01-01

    Pb was incorporated to a series of cement matrices, which were submitted to different cure time and pH. Pb content leached to aqueous solution was monitored by atomic absorption spectroscopy. The block resistance was evaluated by unconfined compressive strength at 7 and 28 ages. Data are discussed in terms of metal mobility along the cement block monitored by X-ray fluorescence (XRF) spectrometry. The Pb incorporated matrices have shown that a long cure time is more suitable for avoiding metal leaching. For a longer cure period the action of the metal is higher and there is a decreasing in the compressive strength. The XRF analyses show that there is a lower Ca concentration in the matrix in which Pb was added. (author)

  2. Multigroup P8 - elastic scattering matrices of main reactor elements

    International Nuclear Information System (INIS)

    Garg, S.B.; Shukla, V.K.

    1979-01-01

    To study the effect of anisotropic scattering phenomenon on shielding and neutronics of nuclear reactors multigroup P8-elastic scattering matrices have been generated for H, D, He, 6 Li, 7 Li, 10 B, C, N, O, Na, Cr, Fe, Ni, 233 U, 235 U, 238 U, 239 Pu, 240 Pu, 241 Pu and 242 Pu using their angular distribution, Legendre coefficient and elastic scattering cross-section data from the basic ENDF/B library. Two computer codes HSCAT and TRANS have been developed to complete this task for BESM-6 and CDC-3600 computers. These scattering matrices can be directly used as input to the transport theory codes ANISN and DOT. (auth.)

  3. Properties of Zero-Free Transfer Function Matrices

    Science.gov (United States)

    D. O. Anderson, Brian; Deistler, Manfred

    Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.

  4. Determination of chromium in biological matrices by neutron activation

    International Nuclear Information System (INIS)

    McClendon, L.T.

    1978-01-01

    Chromium is recognized to be an essential trace element in several biological systems. It exists in many biological materials in a variety of chemical forms and very low concentration levels which cause problems for many analytical techniques. Both instrumental and destructive neutron activation analysis were used to determine the chromium concentration in Orchard Leaves, SRM 1571, Brewers Yeast, SRM 1569, and Bovine Liver, SRM 1577. Some of the problems inherent with determining chromium in certain biological matrices and the data obtained here at the National Bureau of Standards using this technique are discussed. The results obtained from dissolution of brewers yeast in a closed system as described in the DNAA procedure are in good agreement with the INAA results. The same phenomenon existed in the determination of chromium in bovine liver. The radiochemical procedure described for chromium (DNAA) provides the analyst with a simple, rapid and selective technique for chromium determination in a variety of matrices. (T.G.)

  5. NDMA formation kinetics from three pharmaceuticals in four water matrices.

    Science.gov (United States)

    Shen, Ruqiao; Andrews, Susan A

    2011-11-01

    N, N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) that has been widely detected in many drinking water systems and commonly associated with the chloramine disinfection process. Some amine-based pharmaceuticals have been demonstrated to form NDMA during chloramination, but studies regarding the reaction kinetics are largely lacking. This study investigates the NDMA formation kinetics from ranitidine, chlorphenamine, and doxylamine under practical chloramine disinfection conditions. The formation profile was monitored in both lab-grade water and real water matrices, and a statistical model is proposed to describe and predict the NDMA formation from selected pharmaceuticals in various water matrices. The results indicate the significant impact of water matrix components and reaction time on the NDMA formation from selected pharmaceuticals, and provide fresh insights on the estimation of ultimate NDMA formation potential from pharmaceutical precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Quark mass matrices in left-right symmetric gauge theories

    International Nuclear Information System (INIS)

    Ecker, G.; Grimus, W.; Konetschny, W.

    1981-01-01

    The most general left-right symmetry for SU(2)sub(L) x SU(2)sub(R) x U(1) gauge theories with any number of flavours and with at most two scalar multiplets transforming as anti qq bilinears is analyzed. In order to get additional constraints on the structure of quark mass matrices all possible horizontal groups (continuous or discrete) are investigated. A complete classification of physically inequivalent quark mass matrices is given for four and six flavours. It is argued that the methods and results are also applicable in the case of dynamical symmetry breaking. Parity invariance and horizontal symmetry are shown to imply CP conservation on the Lagrangian level. For all non-trivial three-generation models there is spontaneous CP violation which in most cases turns out to be naturally small. (Auth.)

  7. Generalised Wigner surmise for (2 X 2) random matrices

    International Nuclear Information System (INIS)

    Chau Huu-Tai, P.; Van Isacker, P.; Smirnova, N.A.

    2001-01-01

    We present new analytical results concerning the spectral distributions for (2 x 2) random real symmetric matrices which generalize the Wigner surmise. The study of the statistical properties of spectra of realistic many-body Hamiltonians requires consideration of a random matrix ensemble whose elements are not independent or whose distribution is not invariant under orthogonal transformation of a chosen basis. In this letter we have concentrated on the properties of (2 x 2) real symmetric matrices whose elements are independent Gaussian variables with zero means but do not belong to the GOE. We have derived the distribution of eigenvalues for such a matrix, the nearest-neighbour spacing distribution which generalizes the Wigner surmise and we have calculated some important moments. (authors)

  8. Likelihood Approximation With Hierarchical Matrices For Large Spatial Datasets

    KAUST Repository

    Litvinenko, Alexander

    2017-09-03

    We use available measurements to estimate the unknown parameters (variance, smoothness parameter, and covariance length) of a covariance function by maximizing the joint Gaussian log-likelihood function. To overcome cubic complexity in the linear algebra, we approximate the discretized covariance function in the hierarchical (H-) matrix format. The H-matrix format has a log-linear computational cost and storage O(kn log n), where the rank k is a small integer and n is the number of locations. The H-matrix technique allows us to work with general covariance matrices in an efficient way, since H-matrices can approximate inhomogeneous covariance functions, with a fairly general mesh that is not necessarily axes-parallel, and neither the covariance matrix itself nor its inverse have to be sparse. We demonstrate our method with Monte Carlo simulations and an application to soil moisture data. The C, C++ codes and data are freely available.

  9. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  10. Inorganic Materials Division annual report, 1975

    International Nuclear Information System (INIS)

    Duba, A.; Hornady, B.

    1976-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1975 at national and international meetings by members of the Geoscience and Engineering Section, Inorganic Materials Division, Chemistry and Materials Science Department, Lawrence Livermore Laboratory. Titles of talks at university and local meetings are also listed when available. The subjects range from the in situ retorting of coal to the temperature profile of the moon. A subject classification is included

  11. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  12. Inorganic particle analysis of dental impression elastomers.

    Science.gov (United States)

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  13. Guidelines for Hosted Payload Integration

    Science.gov (United States)

    2014-06-06

    reduces risk. Need to consider mass simulator to protect host launch window. Average Payload Power Both BOL and EOL . Host must consider orbit...acceptance testing. Peak Payload Power Both BOL and EOL . Host must consider orbit constraints. Typically driven by Payload operations but must...post-retirement failure might cause damage to the Spacecraft Host or its payloads. Safe conditions at EOL should consider thermal and radiation

  14. Contributions to Large Covariance and Inverse Covariance Matrices Estimation

    OpenAIRE

    Kang, Xiaoning

    2016-01-01

    Estimation of covariance matrix and its inverse is of great importance in multivariate statistics with broad applications such as dimension reduction, portfolio optimization, linear discriminant analysis and gene expression analysis. However, accurate estimation of covariance or inverse covariance matrices is challenging due to the positive definiteness constraint and large number of parameters, especially in the high-dimensional cases. In this thesis, I develop several approaches for estimat...

  15. Limit sets for the discrete spectrum of complex Jacobi matrices

    International Nuclear Information System (INIS)

    Golinskii, L B; Egorova, I E

    2005-01-01

    The discrete spectrum of complex Jacobi matrices that are compact perturbations of the discrete Laplacian is studied. The precise stabilization rate (in the sense of order) of the matrix elements ensuring the finiteness of the discrete spectrum is found. An example of a Jacobi matrix with discrete spectrum having a unique limit point is constructed. These results are discrete analogues of Pavlov's well-known results on Schroedinger operators with complex potential on a half-axis.

  16. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  17. Parallel decompositions of Mueller matrices and polarimetric subtraction

    Directory of Open Access Journals (Sweden)

    Gil J.J.

    2010-06-01

    Full Text Available From a general formulation of the physically realizable parallel decompositions of the Mueller matrix M of a given depolarizing system, a procedure for determining the set of pure Mueller matrices susceptible to be subtracted from M is presented. This procedure provides a way to check if a given pure Mueller matrix N can be subtracted from M or not. If this check is positive, the value of the relative cross section of the subtracted component is also determined.

  18. Von Willebrand protein binds to extracellular matrices independently of collagen.

    OpenAIRE

    Wagner, D D; Urban-Pickering, M; Marder, V J

    1984-01-01

    Von Willebrand protein is present in the extracellular matrix of endothelial cells where it codistributes with fibronectin and types IV and V collagen. Bacterial collagenase digestion of endothelial cells removed fibrillar collagen, but the pattern of fibronectin and of von Willebrand protein remained undisturbed. Exogenous von Willebrand protein bound to matrices of different cells, whether rich or poor in collagen. von Willebrand protein also decorated the matrix of cells grown in the prese...

  19. Procedure for the analysis of americium in complex matrices

    International Nuclear Information System (INIS)

    Knab, D.

    1978-02-01

    A radioanalytical procedure for the analysis of americium in complex matrices has been developed. Clean separations of americium can be obtained from up to 100 g of sample ash, regardless of the starting material. The ability to analyze large masses of material provides the increased sensitivity necessary to detect americium in many environmental samples. The procedure adequately decontaminates from rare earth elements and natural radioactive nuclides that interfere with the alpha spectrometric measurements

  20. Computation of the q -th roots of circulant matrices

    Directory of Open Access Journals (Sweden)

    Pakizeh Mohammadi Khanghah

    2014-05-01

    Full Text Available In this paper‎, ‎we investigate the reduced form of circulant matrices‎ ‎and we show that the problem of computing the $q$-th roots of a‎ ‎nonsingular circulant matrix $A$ can be reduced to that of computing‎ ‎the $q$-th roots of two half size matrices $B-C$ and $B+C$. 

  1. Factoring symmetric indefinite matrices on high-performance architectures

    Science.gov (United States)

    Jones, Mark T.; Patrick, Merrell L.

    1990-01-01

    The Bunch-Kaufman algorithm is the method of choice for factoring symmetric indefinite matrices in many applications. However, the Bunch-Kaufman algorithm does not take advantage of high-performance architectures such as the Cray Y-MP. Three new algorithms, based on Bunch-Kaufman factorization, that take advantage of such architectures are described. Results from an implementation of the third algorithm are presented.

  2. A Robust Incomplete Factorization Preconditioner for Positive Definite Matrices

    Czech Academy of Sciences Publication Activity Database

    Benzi, M.; Tůma, Miroslav

    2003-01-01

    Roč. 10, - (2003), s. 385-400 ISSN 1070-5325 R&D Projects: GA AV ČR IAA2030801; GA AV ČR IAA1030103 Institutional research plan: AV0Z1030915 Keywords : sparse linear systems * positive definite matrices * preconditioned conjugate gradient s * incomplete factorization * A-orthogonalization * SAINV Subject RIV: BA - General Mathematics Impact factor: 1.042, year: 2003

  3. Interactions between Food Additive Silica Nanoparticles and Food Matrices

    Directory of Open Access Journals (Sweden)

    Mi-Ran Go

    2017-06-01

    Full Text Available Nanoparticles (NPs have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials. There have been a number of studies carried out to investigate possible adverse effects of NPs on the gastrointestinal tract. The interactions between NPs and surrounding food matrices should be also taken into account since the interactions can affect their bioavailability, efficacy, and toxicity. In the present study, we investigated the interactions between food additive silica NPs and food matrices, such as saccharides, proteins, lipids, and minerals. Quantitative analysis was performed to determine food component-NP corona using HPLC, fluorescence quenching, GC-MS, and ICP-AES. The results demonstrate that zeta potential and hydrodynamic radius of silica NPs changed in the presence of all food matrices, but their solubility was not affected. However, quantitative analysis on the interactions revealed that a small portion of food matrices interacted with silica NPs and the interactions were highly dependent on the type of food component. Moreover, minor nutrients could also affect the interactions, as evidenced by higher NP interaction with honey rather than with a simple sugar mixture containing an equivalent amount of fructose, glucose, sucrose, and maltose. These findings provide fundamental information to extend our understanding about the interactions between silica NPs and food components and to predict the interaction effect on the safety aspects of food

  4. Discrete ergodic Jacobi matrices: Spectral properties and Quantum dynamical bounds

    OpenAIRE

    Han, Rui

    2017-01-01

    In this thesis we study discrete quasiperiodic Jacobi operators as well as ergodic operators driven by more general zero topological entropy dynamics. Such operators are deeply connected to physics (quantum Hall effect and graphene) and have enjoyed great attention from mathematics (e.g. several of Simon’s problems). The thesis has two main themes. First, to study spectral properties of quasiperiodic Jacobi matrices, in particular when off-diagonal sampling function has non-zero winding numbe...

  5. Non-dense domain operator matrices and Cauchy problems

    International Nuclear Information System (INIS)

    Lalaoui Rhali, S.

    2002-12-01

    In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations. (author)

  6. Updating Stiffness and Hysteretic Damping Matrices Using Measured Modal Data

    Directory of Open Access Journals (Sweden)

    Jiashang Jiang

    2018-01-01

    Full Text Available A new direct method for the finite element (FE matrix updating problem in a hysteretic (or material damping model based on measured incomplete vibration modal data is presented. With this method, the optimally approximated stiffness and hysteretic damping matrices can be easily constructed. The physical connectivity of the original model is preserved and the measured modal data are embedded in the updated model. The numerical results show that the proposed method works well.

  7. Updating Stiffness and Hysteretic Damping Matrices Using Measured Modal Data

    OpenAIRE

    Jiashang Jiang; Yongxin Yuan

    2018-01-01

    A new direct method for the finite element (FE) matrix updating problem in a hysteretic (or material) damping model based on measured incomplete vibration modal data is presented. With this method, the optimally approximated stiffness and hysteretic damping matrices can be easily constructed. The physical connectivity of the original model is preserved and the measured modal data are embedded in the updated model. The numerical results show that the proposed method works well.

  8. Estimating correlation and covariance matrices by weighting of market similarity

    OpenAIRE

    Michael C. M\\"unnix; Rudi Sch\\"afer; Oliver Grothe

    2010-01-01

    We discuss a weighted estimation of correlation and covariance matrices from historical financial data. To this end, we introduce a weighting scheme that accounts for similarity of previous market conditions to the present one. The resulting estimators are less biased and show lower variance than either unweighted or exponentially weighted estimators. The weighting scheme is based on a similarity measure which compares the current correlation structure of the market to the structures at past ...

  9. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a

    2016-10-24

    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  10. Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures

    Directory of Open Access Journals (Sweden)

    Nishchal K. Verma

    2012-01-01

    Full Text Available This paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM. The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its coefficients from the covariance matrices found directly from GMM and the defuzzified output constructed from both the premise and consequent parts of the nonadditive fuzzy rules that takes the form of Choquet integral. The computational burden involved with the solution of λ-measure is minimized using Q-measure. The fuzzy model whose fuzzy measures were computed using covariance matrices found in GMM has been successfully applied on two benchmark problems and one real-time electric load data of Indian utility. The performance of the resulting model for many experimental studies including the above-mentioned application is found to be better and comparable to recent available fuzzy models. The main contribution of this paper is the estimation of fuzzy measures efficiently and directly from covariance matrices found in GMM, avoiding the computational burden greatly while learning them iteratively and solving polynomial equations of order of the number of input-output variables.

  11. Unified triminimal parametrizations of quark and lepton mixing matrices

    International Nuclear Information System (INIS)

    He Xiaogang; Li Shiwen; Ma Boqiang

    2009-01-01

    We present a detailed study on triminimal parametrizations of quark and lepton mixing matrices with different basis matrices. We start with a general discussion on the triminimal expansion of the mixing matrix and on possible unified quark and lepton parametrization using quark-lepton complementarity. We then consider several interesting basis matrices and compare the triminimal parametrizations with the Wolfenstein-like parametrizations. The usual Wolfenstein parametrization for quark mixing is a triminimal expansion around the unit matrix as the basis. The corresponding quark-lepton complementarity lepton mixing matrix is a triminimal expansion around the bimaximal basis. Current neutrino oscillation data show that the lepton mixing matrix is very well represented by the tribimaximal mixing. It is natural to take it as an expanding basis. The corresponding zeroth order basis for quark mixing in this case makes the triminimal expansion converge much faster than the usual Wolfenstein parametrization. The triminimal expansion based on tribimaximal mixing can be converted to the Wolfenstein-like parametrizations discussed in the literature. We thus have a unified description between different kinds of parametrizations for quark and lepton sectors: the standard parametrizations, the Wolfenstein-like parametrizations, and the triminimal parametrizations.

  12. Fabrication of chemically cross-linked porous gelatin matrices.

    Science.gov (United States)

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  13. Likelihood Approximation With Parallel Hierarchical Matrices For Large Spatial Datasets

    KAUST Repository

    Litvinenko, Alexander

    2017-11-01

    The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Matérn covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\\\H$-) matrix format with computational cost $\\\\mathcal{O}(k^2n \\\\log^2 n/p)$ and storage $\\\\mathcal{O}(kn \\\\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.

  14. Study of remobilization polycyclic aromatic hydrocarbons (PAHs) in contaminated matrices

    International Nuclear Information System (INIS)

    Belkessam, L.; Vessigaud, S.; Laboudigue, A.; Vessigaud, S.; Perrin-Ganier, C.; Schiavon, M.; Denys, S.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) originate from many pyrolysis processes. They are widespread environmental pollutants because some of them present toxic and genotoxic properties. In coal pyrolysis sites such as former manufactured gas plants and coke production plants, coal tar is a major source of PAHs. The management of such sites requires better understanding of the mechanisms that control release of PAHs to the biosphere. Determining total PAH concentrations is not sufficient since it does not inform about the pollutants availability to environmental processes. The fate and transport of PAHs in soil are governed by sorption and microbial processes which are well documented. Globally, enhancing retention of the compounds by a solid matrix reduces the risk of pollutant dispersion, but decreases their accessibility to microbial microflora. Conversely, the remobilization of organics from contaminated solid matrices represents a potential hazard since these pollutants can reach groundwater resources. However the available data are often obtained from laboratory experiments in which many field parameters can not be taken into account (long term, temperature, co-pollution, ageing phenomenon, heterogenous distribution of pollution). The present work focuses on the influence assessment and understanding of some of these parameters on PAHs remobilization from heavily polluted matrices in near-field conditions (industrial contaminated matrices, high contact time, ..). Results concerning effects of temperature and physical state of pollution (dispersed among the soil or condensed in small clusters or in coal tar) are presented. (authors)

  15. Linear algebra and matrices topics for a second course

    CERN Document Server

    Shapiro, Helene

    2015-01-01

    Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first c...

  16. Likelihood Approximation With Parallel Hierarchical Matrices For Large Spatial Datasets

    KAUST Repository

    Litvinenko, Alexander; Sun, Ying; Genton, Marc G.; Keyes, David E.

    2017-01-01

    The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Matérn covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\H$-) matrix format with computational cost $\\mathcal{O}(k^2n \\log^2 n/p)$ and storage $\\mathcal{O}(kn \\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.

  17. Raven's matrices and working memory: a dual-task approach.

    Science.gov (United States)

    Rao, K Venkata; Baddeley, Alan

    2013-01-01

    Raven's Matrices Test was developed as a "pure" measure of Spearman's concept of general intelligence, g. Subsequent research has attempted to specify the processes underpinning performance, some relating it to the concept of working memory and proposing a crucial role for the central executive, with the nature of other components currently unclear. Up to this point, virtually all work has been based on correlational analysis of number of correct solutions, sometimes related to possible strategies. We explore the application to this problem of the concurrent task methodology used widely in developing the concept of multicomponent working memory. Participants attempted to solve problems from the matrices under baseline conditions, or accompanied by backward counting or verbal repetition tasks, assumed to disrupt the central executive and phonological loop components of working memory, respectively. As in other uses of this method, number of items correct showed little effect, while solution time measures gave very clear evidence of an important role for the central executive, but no evidence for phonological loop involvement. We conclude that this and related concurrent task techniques hold considerable promise for the analysis of Raven's matrices and potentially for other established psychometric tests.

  18. Consolidity analysis for fully fuzzy functions, matrices, probability and statistics

    Directory of Open Access Journals (Sweden)

    Walaa Ibrahim Gabr

    2015-03-01

    Full Text Available The paper presents a comprehensive review of the know-how for developing the systems consolidity theory for modeling, analysis, optimization and design in fully fuzzy environment. The solving of systems consolidity theory included its development for handling new functions of different dimensionalities, fuzzy analytic geometry, fuzzy vector analysis, functions of fuzzy complex variables, ordinary differentiation of fuzzy functions and partial fraction of fuzzy polynomials. On the other hand, the handling of fuzzy matrices covered determinants of fuzzy matrices, the eigenvalues of fuzzy matrices, and solving least-squares fuzzy linear equations. The approach demonstrated to be also applicable in a systematic way in handling new fuzzy probabilistic and statistical problems. This included extending the conventional probabilistic and statistical analysis for handling fuzzy random data. Application also covered the consolidity of fuzzy optimization problems. Various numerical examples solved have demonstrated that the new consolidity concept is highly effective in solving in a compact form the propagation of fuzziness in linear, nonlinear, multivariable and dynamic problems with different types of complexities. Finally, it is demonstrated that the implementation of the suggested fuzzy mathematics can be easily embedded within normal mathematics through building special fuzzy functions library inside the computational Matlab Toolbox or using other similar software languages.

  19. Large deviations of the maximum eigenvalue in Wishart random matrices

    International Nuclear Information System (INIS)

    Vivo, Pierpaolo; Majumdar, Satya N; Bohigas, Oriol

    2007-01-01

    We analytically compute the probability of large fluctuations to the left of the mean of the largest eigenvalue in the Wishart (Laguerre) ensemble of positive definite random matrices. We show that the probability that all the eigenvalues of a (N x N) Wishart matrix W = X T X (where X is a rectangular M x N matrix with independent Gaussian entries) are smaller than the mean value (λ) = N/c decreases for large N as ∼exp[-β/2 N 2 Φ - (2√c + 1: c)], where β = 1, 2 corresponds respectively to real and complex Wishart matrices, c = N/M ≤ 1 and Φ - (x; c) is a rate (sometimes also called large deviation) function that we compute explicitly. The result for the anti-Wishart case (M < N) simply follows by exchanging M and N. We also analytically determine the average spectral density of an ensemble of Wishart matrices whose eigenvalues are constrained to be smaller than a fixed barrier. Numerical simulations are in excellent agreement with the analytical predictions

  20. Large deviations of the maximum eigenvalue in Wishart random matrices

    Energy Technology Data Exchange (ETDEWEB)

    Vivo, Pierpaolo [School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex, UB8 3PH (United Kingdom) ; Majumdar, Satya N [Laboratoire de Physique Theorique et Modeles Statistiques (UMR 8626 du CNRS), Universite Paris-Sud, Batiment 100, 91405 Orsay Cedex (France); Bohigas, Oriol [Laboratoire de Physique Theorique et Modeles Statistiques (UMR 8626 du CNRS), Universite Paris-Sud, Batiment 100, 91405 Orsay Cedex (France)

    2007-04-20

    We analytically compute the probability of large fluctuations to the left of the mean of the largest eigenvalue in the Wishart (Laguerre) ensemble of positive definite random matrices. We show that the probability that all the eigenvalues of a (N x N) Wishart matrix W = X{sup T}X (where X is a rectangular M x N matrix with independent Gaussian entries) are smaller than the mean value ({lambda}) = N/c decreases for large N as {approx}exp[-{beta}/2 N{sup 2}{phi}{sub -} (2{radical}c + 1: c)], where {beta} = 1, 2 corresponds respectively to real and complex Wishart matrices, c = N/M {<=} 1 and {phi}{sub -}(x; c) is a rate (sometimes also called large deviation) function that we compute explicitly. The result for the anti-Wishart case (M < N) simply follows by exchanging M and N. We also analytically determine the average spectral density of an ensemble of Wishart matrices whose eigenvalues are constrained to be smaller than a fixed barrier. Numerical simulations are in excellent agreement with the analytical predictions.

  1. Geometry and arithmetic of factorized S-matrices

    International Nuclear Information System (INIS)

    Freund, P.G.O.

    1995-01-01

    In realistic four-dimensional quantum field theories integrability is elusive. Relativity, when combined with quantum theory does not permit an infinity of local conservation laws except for free fields, for which the S-matrix is trivial S = 1. In two space-time dimensions, where forward and backward scattering are the only possibilities, nontrivial S-matrices are possible even in integrable theories. Such S-matrices are known to factorize [1]. This means that there is no particle production, so that the 4-point amplitudes determine all higher n-point amplitudes. In our recent work [2, 3, 4, 5, 6] we found that in such integrable two-dimensional theories, even the input 4-point amplitudes are determined by a simple principle. Roughly speaking these amplitudes describe the S-wave scattering which one associates with free motion on certain quantum-symmetric spaces. The trivial S-matrix of free field theory describes the absence of scattering which one associates with free motion on a euclidean space, itself a symmetric space. As is well known [7, 8, 9], for curved symmetric spaces the S-matrices for S-wave scattering are no longer trivial, but rather they are determined by the Harish-Chandra c-functions of these spaces [10]. The quantum deformation of this situation is what appears when one considers excitation scattering in two-dimensional integrable models. (orig.)

  2. Large-deviation theory for diluted Wishart random matrices

    Science.gov (United States)

    Castillo, Isaac Pérez; Metz, Fernando L.

    2018-03-01

    Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.

  3. PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS

    Directory of Open Access Journals (Sweden)

    A. Beletsky

    2014-04-01

    Full Text Available In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell can be in one of the following condition. Let’s call such registers “generalized linear shift register.” The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed.

  4. Threshold partitioning of sparse matrices and applications to Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hwajeong; Szyld, D.B. [Temple Univ., Philadelphia, PA (United States)

    1996-12-31

    It is well known that the order of the variables and equations of a large, sparse linear system influences the performance of classical iterative methods. In particular if, after a symmetric permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse matrices are presented. They are modifications of PABLO. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are taken into account. The matrix resulting after the symmetric permutation has dense blocks along the diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices represent Markov chains, the permuted matrices are well suited for block iterative methods that find the corresponding probability distribution. Applications to three types of methods are explored: (1) Classical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where the partition obtained from the ordering algorithm with certain parameters is used as an aggregation scheme. In all three cases, experiments are presented which illustrate the performance of the methods with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and the order of the matrix, and thus adding little computational effort to the overall solution.

  5. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    Science.gov (United States)

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  7. Some thoughts on positive definiteness in the consideration of nuclear data covariance matrices

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, L.P.; Smith, D.L.

    1988-01-01

    Some basic mathematical features of covariance matrices are reviewed, particularly as they relate to the property of positive difiniteness. Physical implications of positive definiteness are also discussed. Consideration is given to an examination of the origins of non-positive definite matrices, to procedures which encourage the generation of positive definite matrices and to the testing of covariance matrices for positive definiteness. Attention is also given to certain problems associated with the construction of covariance matrices using information which is obtained from evaluated data files recorded in the ENDF format. Examples are provided to illustrate key points pertaining to each of the topic areas covered.

  8. Classification en référence à une matrice stochastique

    OpenAIRE

    Verdun , Stéphane; Cariou , Véronique; Qannari , El Mostafa

    2009-01-01

    International audience; Etant donné un tableau de données X portant sur un ensemble de n objets, et une matrice stochastique S qui peut être assimilée à une matrice de transition d'une chaîne de Markov, nous proposons une méthode de partitionnement consistant à appliquer la matrice S sur X de manière itérative jusqu'à convergence. Les classes formant la partition sont déterminées à partir des états stationnaires de la matrice stochastique. Cette matrice stochastique peut être issue d'une matr...

  9. Some thoughts on positive definiteness in the consideration of nuclear data covariance matrices

    International Nuclear Information System (INIS)

    Geraldo, L.P.; Smith, D.L.

    1988-01-01

    Some basic mathematical features of covariance matrices are reviewed, particularly as they relate to the property of positive difiniteness. Physical implications of positive definiteness are also discussed. Consideration is given to an examination of the origins of non-positive definite matrices, to procedures which encourage the generation of positive definite matrices and to the testing of covariance matrices for positive definiteness. Attention is also given to certain problems associated with the construction of covariance matrices using information which is obtained from evaluated data files recorded in the ENDF format. Examples are provided to illustrate key points pertaining to each of the topic areas covered

  10. Modified gum Arabic hydrogels as matrices for controlled release of curcumin supramolecular complexes; Hidrogeis de goma arabica modificada como matrizes para libertacao controlada de complexos supramoleculares de curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gerola, Adriana P.; Silva, Danielle C., E-mail: avalente@ci.uc.pt [Department of Chemistry, University of Coimbra, Coimbra (Portugal); Rubira, Adley F.; Muniz, Edvani C. [Universidade Estadual de Maringa (GMPC/UEM), PR (Brazil). Grupo de Materiais Polimericos e Compositos; Jesus, Sandra; Borges, Olga [Faculty of Pharmacy, University of Coimbra, Coimbra (Portugal)

    2015-07-01

    Modified gum Arabic (GA) hydrogels show a pH-responsive behavior making them excellent matrices to be used for oral administration of drugs. Our goal is to study the behavior of those matrices in simulated gastric and intestinal fluids. In this work we will present how the methacrylation degree of GA, by using glycidyl methacrylate, can affect the properties of these hydrogels for controlled release. The drug used in this work is the curcumin (Cur). Cur is associated with numerous pharmacological activities, but their application is limited by the low water solubility. We will present some studies involving the formation of host-guest complexes between Cur and natural cyclodextrins. Both modified GA and hydrogels were characterized by different techniques. The kinetics release of Cur complex-containing modified GA hydrogels was studied to have an insight on the release mechanism and rate constants. Toxicity studies on undifferentiated and differentiated Caco-2 were also carried out. (author)

  11. Inorganic Polyphosphate Is Essential for Salmonella Typhimurium Virulence and Survival in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Macarena A. Varas

    2018-01-01

    Full Text Available Inorganic polyphosphate (polyP deficiency in enteric bacterial pathogens reduces their ability to invade and establish systemic infections in different hosts. For instance, inactivation of the polyP kinase gene (ppk encoding the enzyme responsible for polyP biosynthesis reduces invasiveness and intracellular survival of Salmonella enterica serovar Typhimurium (S. Typhimurium in epithelial cells and macrophages in vitro. In addition, the virulence in vivo of a S. Typhimurium Δppk mutant is significantly reduced in a murine infection model. In spite of these observations, the role played by polyP during the Salmonella-host interaction is not well understood. The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In fact, many intracellular pathogens can survive within D. discoideum cells using molecular mechanisms also required to survive within macrophages. Recently, we established that S. Typhimurium is able to survive intracellularly in D. discoideum and identified relevant genes linked to virulence that are crucial for this process. The aim of this study was to determine the effect of a polyP deficiency in S. Typhimurium during its interaction with D. discoideum. To do this, we evaluated the intracellular survival of wild-type and Δppk strains of S. Typhimurium in D. discoideum and the ability of these strains to delay the social development of the amoeba. In contrast to the wild-type strain, the Δppk mutant was unable to survive intracellularly in D. discoideum and enabled the social development of the amoeba. Both phenotypes were complemented using a plasmid carrying a copy of the ppk gene. Next, we simultaneously evaluated the proteomic response of both S. Typhimurium and D. discoideum during host-pathogen interaction via global proteomic profiling. The analysis of our results allowed the identification of novel molecular signatures that give insight into

  12. Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation.

    Science.gov (United States)

    Polking, Mark J; Dibos, Alan M; de Leon, Nathalie P; Park, Hongkun

    2018-01-01

    Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  14. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  15. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  16. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41

    DEFF Research Database (Denmark)

    Fiamegkos, I.; Cordeiro, F.; Robouch, P.

    2016-01-01

    A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow...... (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55 mg kg(-1). The relative standard deviation for repeatability...

  17. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  18. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  19. Studies on inorganic exchangers - polyantimonic acid

    International Nuclear Information System (INIS)

    Murthy, T.S.; Balasubramanian, K.R.; Ananthakrishnan, M.; Ramani, K.S.; Varma, R.N.

    1976-01-01

    From the detailed experimental investigations carried out, it may be mentioned that the inorganic exchanger polyantimonic acid could be used for effectively separating strontium from fission product waste solutions free from caesium and zirconium at acidities of the order of 2M or so. After thorough washing of the column with 2M HNO 3 acid to remove any residual activity unadsorbed, the strontium can be eluted with a mixture of 1M AgNO 3 +6M HNO 3 at room temperature. The column after regeneration and conditioning can be used for further adsorption and elution up to a maximum of 6 cycles without much deterioration in column characteristics. (author)

  20. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  1. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  2. Inorganic pyrophosphatases: structural diversity serving the function

    Science.gov (United States)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  3. Inorganic nitrogen in precipitation and atmospheric sediments

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, D H

    1951-01-01

    In an investigation covering 18 months, daily determinations were made of the inorganic nitrogen contained in precipitation and atmospheric sediments collected at Hamilton, Ont. The nitrogen fall for the whole period averaged 5.8 lb. N per acre per year. Sixty-one per cent of the total nitrogen was collected on 25% of the days when precipitation occurred. The balance, occurring on days without precipitation, is attributable solely to the sedimentation of dust. Ammonia nitrogen averaged 56% of the total, but the proportion for individual days varied widely.

  4. IRIS Toxicological Review of Inorganic Arsenic (Cancer) ...

    Science.gov (United States)

    EPA's Science Advisory Board (SAB) conducted a review of the scientific basis supporting the human health cancer hazard and dose-response assessment of inorganic arsenic that will appear on the Integrated Risk Information System (IRIS) database. EPA revised the assessment and is now returning the assessment to the SAB and releasing the document to the public for a focused review of EPA's responses to the SAB recommendations. This draft IRIS health assessment addresses only cancer human health effects that may result from chronic exposure to this chemical.

  5. Evolution of glycosaminoglycans and their glycosyltransferases: Implications for the extracellular matrices of animals and the capsules of pathogenic bacteria.

    Science.gov (United States)

    DeAngelis, Paul L

    2002-11-01

    Glycosaminoglycans (linear polysaccharides with a repeating disaccharide backbone containing an amino sugar) are essential components of extracellular matrices of animals. These complex molecules play important structural, adhesion, and signaling roles in mammals. Direct detection of glycosaminoglycans has been reported in a variety of organisms, but perhaps more definitive tests for the glycosyltransferase genes should be utilized to clarify the distribution of glycosaminoglycans in metazoans. Recently, glycosyltransferases that form the hyaluronan, heparin/heparan, or chondroitin backbone were identified at the molecular level. The three types of glycosyltransferases appear to have evolved independently based on sequence comparisons and other characteristics. All metazoans appear to possess heparin/heparan. Chondroitin is found in some worms, arthropods, and higher animals. Hyaluronan is found only in two of the three main branches of chordates. The presence of several types of glycosaminoglycans in the body allows multiple communication channels and adhesion systems to operate simultaneously. Certain pathogenic bacteria produce extracellular coatings, called capsules, which are composed of glycosaminoglycans that increase their virulence during infection. The capsule helps shield the microbe from the host defenses and/or modulates host physiology. The bacterial and animal polysaccharides are chemically identical or at least very similar. Therefore, no immune response is generated, in contrast to the vast majority of capsular polymers from other bacteria. In microbial systems, it appears that in most cases functional convergent evolution of glycosaminoglycan glycosyltransferases occurred, rather than direct horizontal gene transfer from their vertebrate hosts. Copyright 2002 Wiley-Liss, Inc.

  6. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  7. Environmental assessment of waste matrices contaminated with arsenic.

    Science.gov (United States)

    Sanchez, F; Garrabrants, A C; Vandecasteele, C; Moszkowicz, P; Kosson, D S

    2003-01-31

    The use of equilibrium-based and mass transfer-based leaching tests has been proposed to provide an integrated assessment of leaching processes from solid wastes. The objectives of the research presented here are to (i) validate this assessment approach for contaminated soils and cement-based matrices, (ii) evaluate the use of diffusion and coupled dissolution-diffusion models for estimating constituent release, and (iii) evaluate model parameterization using results from batch equilibrium leaching tests and physical characterization. The test matrices consisted of (i) a soil contaminated with arsenic from a pesticide production facility, (ii) the same soil subsequently treated by a Portland cement stabilization/solidification (S/S) process, and (iii) a synthetic cement-based matrix spiked with arsenic(III) oxide. Results indicated that a good assessment of contaminant release from contaminated soils and cement-based S/S treated wastes can be obtained by the integrated use of equilibrium-based and mass transfer-based leaching tests in conjunction with the appropriate release model. During the time scale of laboratory testing, the release of arsenic from the contaminated soil matrix was governed by diffusion and the solubility of arsenic in the pore solution while the release of arsenic from the cement-based matrices was mainly controlled by solubilization at the interface between the matrix and the bulk leaching solution. In addition, results indicated that (i) estimation of the activity coefficient within the matrix pore water is necessary for accurate prediction of constituent release rates and (ii) inaccurate representation of the factors controlling release during laboratory testing can result in significant errors in release estimates.

  8. Fano-like resonance and scattering in dielectric(core)–metal(shell) composites embedded in active host matrices

    CSIR Research Space (South Africa)

    Jule, L

    2015-07-01

    Full Text Available We investigate light scattering by core–shell consisting of metal/dielectric composites considering spherical and cylindrical nanoinclusions, within the framework of the conventional Rayleigh approximation. By writing the electric potential...

  9. Invertibility and Explicit Inverses of Circulant-Type Matrices with k-Fibonacci and k-Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices have important applications in solving ordinary differential equations. In this paper, we consider circulant-type matrices with the k-Fibonacci and k-Lucas numbers. We discuss the invertibility of these circulant matrices and present the explicit determinant and inverse matrix by constructing the transformation matrices, which generalizes the results in Shen et al. (2011.

  10. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  11. Texture of fermion mass matrices in partially unified theories

    International Nuclear Information System (INIS)

    Dutta, B.; Texas Univ., Austin, TX; Nandi, S.; Texas Univ., Austin, TX

    1996-01-01

    We investigate the texture of fermion mass matrices in theories with partial unification (for example, SU(2) L x SU(2) R x SU(4) c ) at a scale of ∼ 10 12 GeV. Starting with the low energy values of the masses and the mixing angles, we find only two viable textures with at most four texture zeros. One of these corresponds to a somewhat modified Fritzsch textures. A theoretical derivation of these textures leads to new interesting relations among the masses and the mixing angles. 13 refs

  12. Combustion synthesis of ceramic matrices for immobilization of 14C

    International Nuclear Information System (INIS)

    Bosc-Rouessac, F.; Marin-Ayral, R.M.; Haidoux, A.; Massoni, N.; Bart, F.

    2008-01-01

    In this study, the use of combustion synthesis for immobilization of 14 C was considered. Ceramic matrices have been prepared by this method using two different devices: one non-conventional with preheating of the samples and the other conventional device where ignition was produced thanks to tungsten filament. These two devices gave rise to different mechanisms of reactions involving different amounts of unreacted carbon graphite inside the matrix. The SHS samples were characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD)

  13. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    Science.gov (United States)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  14. On spectral distribution of high dimensional covariation matrices

    DEFF Research Database (Denmark)

    Heinrich, Claudio; Podolskij, Mark

    In this paper we present the asymptotic theory for spectral distributions of high dimensional covariation matrices of Brownian diffusions. More specifically, we consider N-dimensional Itô integrals with time varying matrix-valued integrands. We observe n equidistant high frequency data points...... of the underlying Brownian diffusion and we assume that N/n -> c in (0,oo). We show that under a certain mixed spectral moment condition the spectral distribution of the empirical covariation matrix converges in distribution almost surely. Our proof relies on method of moments and applications of graph theory....

  15. Off-shell T-matrices from inverse scattering

    International Nuclear Information System (INIS)

    Von Geramb, H.V.; Amos, K.A.

    1989-01-01

    Inverse scattering theory is used to determine local, energy independent, coordinate space nucleon-nucleon potentials. Inversions are made of phase shifts obtained by analyzes of data and from meson exchange theory, in particular the Paris and the Bonn parametrizations. Half off-shell T-matrices are generated to compare the exact meson theoretical results with those of inversion and it is found that phase equivalent interactions have essentially the same off-shell behaviour for any physically significant range of momenta. 8 refs., 8 figs

  16. Recommendations on the use and design of risk matrices

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2015-01-01

    of the risk matrix. The objective of this paper is to explore these weaknesses, and provide recommendations for the use and design of risk matrices. The paper reviews the few relevant publications and adds some observations of its own in order to emphasize existing recommendations and add some suggestions...... of its own. The recommendations cover a range of issues, among them: the relation between coloring the risk matrix and the definition of risk and major hazard aversion; the qualitative, subjective assessment of likelihood and consequence; the scaling of the discrete likelihood and consequence categories...

  17. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...... a solution based on Green-Lagrange strain measure. The approach is especially useful in design optimization, because analytical sensitivity analysis then can be performed. The case of a three node triangular ring element for axisymmetric analysis involves small modifications and extension to four node...

  18. 3D Weight Matrices in Modeling Real Estate Prices

    Science.gov (United States)

    Mimis, A.

    2016-10-01

    Central role in spatial econometric models of real estate data has the definition of the weight matrix by which we capture the spatial dependence between the observations. The weight matrices presented in literature so far, treats space in a two dimensional manner leaving out the effect of the third dimension or in our case the difference in height where the property resides. To overcome this, we propose a new definition of the weight matrix including the third dimensional effect by using the Hadamard product. The results illustrated that the level effect can be absorbed into the new weight matrix.

  19. Level density of random matrices for decaying systems

    International Nuclear Information System (INIS)

    Haake, F.; Izrailev, F.; Saher, D.; Sommers, H.-J.

    1991-01-01

    Analytical and numerical results for the level density of a certain class of random non-Hermitian matrices H=H+iΓ are presented. The conservative part H belongs to the Gaussian orthogonal ensemble while the damping piece Γ is quadratic in Gaussian random numbers and may describe the decay of resonances through various channels. In the limit of a large matrix dimension the level density assumes a surprisingly simple dependence on the relative strength of the damping and the number of channels. 18 refs.; 4 figs

  20. Covariance matrices and applications to the field of nuclear data

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-11-01

    A student's introduction to covariance error analysis and least-squares evaluation of data is provided. It is shown that the basic formulas used in error propagation can be derived from a consideration of the geometry of curvilinear coordinates. Procedures for deriving covariances for scaler and vector functions of several variables are presented. Proper methods for reporting experimental errors and for deriving covariance matrices from these errors are indicated. The generalized least-squares method for evaluating experimental data is described. Finally, the use of least-squares techniques in data fitting applications is discussed. Specific examples of the various procedures are presented to clarify the concepts

  1. Elemental Analysis in Biological Matrices Using ICP-MS.

    Science.gov (United States)

    Hansen, Matthew N; Clogston, Jeffrey D

    2018-01-01

    The increasing exploration of metallic nanoparticles for use as cancer therapeutic agents necessitates a sensitive technique to track the clearance and distribution of the material once introduced into a living system. Inductively coupled plasma mass spectrometry (ICP-MS) provides a sensitive and selective tool for tracking the distribution of metal components from these nanotherapeutics. This chapter presents a standardized method for processing biological matrices, ensuring complete homogenization of tissues, and outlines the preparation of appropriate standards and controls. The method described herein utilized gold nanoparticle-treated samples; however, the method can easily be applied to the analysis of other metals.

  2. Interaction Matrices as a Tool for Prioritizing Radioecology Research

    Energy Technology Data Exchange (ETDEWEB)

    Mora, J.C.; Robles, Beatriz [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - CIEMAT (Spain); Bradshaw, Clare; Stark, Karolina [Stockholm University (Sweden); Sweeck, Liev; Vives i Batlle, Jordi [Belgian Nuclear Research Centre SCK-CEN (Belgium); Beresford, Nick [Centre for Ecology and Hydrology - CEH (United Kingdom); Thoerring, Havard; Dowdall, Mark [Norwegian Radiation Protection Authority - NRPA (Norway); Outola, Iisa; Turtiainen, Tuukka; Vetikko, Virve [STUK - Radiation and Nuclear Safety Authority (Finland); Steiner, Martin [Federal Office for Radiation Protection - BfS (Germany); Beaugelin-Seiller, Karine; Fevrier, Laureline; Hurtevent, Pierre; Boyer, Patrick [Institut de Radioprotection et de Surete Nucleaire - IRSN (France)

    2014-07-01

    Interaction Matrices as a Tool for Prioritizing Radioecology Research J.C. Mora CIEMAT In 2010 the Strategy for Allied Radioecology (STAR) was launched with several objectives aimed towards integrating the radioecology research efforts of nine institutions in Europe. One of these objectives was the creation of European Radioecology Observatories. The Chernobyl Exclusion Zone (CEZ) and the Upper Silesian Coal Basin (USCB), a coal mining area in Poland, have been chosen after a selection process. A second objective was to develop a system for improving and validating the capabilities of predicting the behaviour of the main radionuclides existing at these observatories. Interaction Matrices (IM) have been used since the 1990's as a tool for developing ecological conceptual models and have also been used within radioecology. The Interaction Matrix system relies on expert judgement for structuring knowledge of a given ecosystem at the conceptual level and was selected for use in the STAR project. A group of experts, selected from each institution of STAR, designed two matrices with the main compartments for each ecosystem (a forest in CEZ and a lake in USCB). All the features, events and processes (FEPs) which could affect the behaviour of the considered radionuclides, focusing on radiocaesium in the Chernobyl forest and radium in the Rontok-Wielki lake, were also included in each IM. Two new sets of experts were appointed to review, improve and prioritize the processes included in each IM. A first processing of the various candidate interaction matrices produced a single interaction matrix for each ecosystem which incorporated all experts combined knowledge. During the prioritization of processes in the IMs, directed towards developing a whole predictive model of radionuclides behaviour in those ecosystems, raised interesting issues related to the processes and parameters involved, regarding the existing knowledge in them. This exercise revealed several processes

  3. Bimaximal fermion mixing from the quark and leptonic mixing matrices

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2005-01-01

    In this Letter, we show how the mixing angles of the standard parameterization add when multiplying the quark and leptonic mixing matrices, i.e., we derive explicit sum rules for the quark and leptonic mixing angles. In this connection, we also discuss other recently proposed sum rules for the mixing angles assuming bimaximal fermion mixing. In addition, we find that the present experimental and phenomenological data of the mixing angles naturally fulfill our sum rules, and thus, give rise to bilarge or bimaximal fermion mixing

  4. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  5. Accelerating Matrix-Vector Multiplication on Hierarchical Matrices Using Graphical Processing Units

    KAUST Repository

    Boukaram, W.

    2015-03-25

    Large dense matrices arise from the discretization of many physical phenomena in computational sciences. In statistics very large dense covariance matrices are used for describing random fields and processes. One can, for instance, describe distribution of dust particles in the atmosphere, concentration of mineral resources in the earth\\'s crust or uncertain permeability coefficient in reservoir modeling. When the problem size grows, storing and computing with the full dense matrix becomes prohibitively expensive both in terms of computational complexity and physical memory requirements. Fortunately, these matrices can often be approximated by a class of data sparse matrices called hierarchical matrices (H-matrices) where various sub-blocks of the matrix are approximated by low rank matrices. These matrices can be stored in memory that grows linearly with the problem size. In addition, arithmetic operations on these H-matrices, such as matrix-vector multiplication, can be completed in almost linear time. Originally the H-matrix technique was developed for the approximation of stiffness matrices coming from partial differential and integral equations. Parallelizing these arithmetic operations on the GPU has been the focus of this work and we will present work done on the matrix vector operation on the GPU using the KSPARSE library.

  6. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, Karine Modolon [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Petronilho, Fabricia [FICEXP, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Soldi, Valdir [POLIMAT, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Salmoria, Gean Vitor [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Kanis, Luiz Alberto, E-mail: luiz.kanis@unisul.br [TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil)

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes. - Highlights: • Melt extruded bio-based matrices containing silver sulfadiazine was produced. • The silver sulfadiazine is stable during melt-extrusion. • The extrudate matrices shown bacterial growth inhibition. • The matrices obtained have potential to development wound healing membranes.

  7. Fabrication of Aligned Carbon Nanotube/Polycaprolactone/Gelatin Nanofibrous Matrices for Schwann Cell Immobilization

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2014-01-01

    Full Text Available In this study, we utilized a mandrel rotating collector consisting of two parallel, electrically conductive pieces of tape to fabricate aligned electrospun polycaprolactone/gelatin (PG and carbon nanotube/polycaprolactone/gelatin (PGC nanofibrous matrices. Furthermore, we examined the biological performance of the PGC nanofibrous and film matrices using an in vitro culture of RT4-D6P2T rat Schwann cells. Using cell adhesion tests, we found that carbon nanotube inhibited Schwann cell attachment on PGC nanofibrous and film matrices. However, the proliferation rates of Schwann cells were higher when they were immobilized on PGC nanofibrous matrices compared to PGC film matrices. Using western blot analysis, we found that NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PG nanofibrous matrices. However, the carbon nanotube inhibited NRG1 and P0 protein expression in cells immobilized on PGC film matrices. Moreover, the NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PGC film matrices. We found that the matrix topography and composition influenced Schwann cell behavior.

  8. Luminescent properties of composite scintillators based on PPO and o-POPOP doped SiO{sub 2} xerogel matrices

    Energy Technology Data Exchange (ETDEWEB)

    Viagin, O., E-mail: viagin@isma.kharkov.ua [Institute for Scintillation Materials of NAS of Ukraine, 60 Science Ave., 61001 Kharkiv (Ukraine); Masalov, A.; Bespalova, I.; Zelenskaya, O.; Tarasov, V.; Seminko, V.; Voloshina, L. [Institute for Scintillation Materials of NAS of Ukraine, 60 Science Ave., 61001 Kharkiv (Ukraine); Zorenko, Yu. [Institute of Physics of Kazimierz Wielki University of Bydgoszcz, 2 Powstańców Wielkopolskich str., 85-090 Bydgoszcz (Poland); Malyukin, Yu. [Institute for Scintillation Materials of NAS of Ukraine, 60 Science Ave., 61001 Kharkiv (Ukraine)

    2016-11-15

    New composite scintillation detectors were obtained by incorporation of PPO and o-POPOP organic scintillators into porous sol–gel silica matrices. Composites possess high photoluminescence intensity and decay time in nanosecond range. The absolute light yield of composite scintillators at excitation by alpha-radiation is about 4000–5000 photons/MeV and the pulse–height resolution is about 30%. The investigations of time-resolved luminescence of composites performed under excitation by synchrotron radiation in the 3.7–25 eV range have shown that the non-radiative energy transfer between host matrix and dopant molecules occurs via singlet states of SiO{sub 2} oxygen-deficient centers.

  9. Bio-Based Approaches to Inorganic Material Synthesis (Postprint)

    National Research Council Canada - National Science Library

    Slocik, Joseph M; Stone, Morley O; Naik, Rajesh R

    2007-01-01

    .... Marine sponges create silica spicules also using proteins, termed silicateins. In recent years, our group and others have used biomolecules as templates for the deposition of inorganic materials...

  10. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  11. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  12. From stretchable to reconfigurable inorganic electronics

    KAUST Repository

    Nassar, Joanna M.

    2016-05-06

    Today’s state-of-the-art electronics are high performing, energy efficient, multi-functional and cost effective. However, they are also typically rigid and brittle. With the emergence of the Internet of Everything, electronic applications are expanding into previously unexplored areas, like healthcare, smart wearable artifacts, and robotics. One major challenge is the physical asymmetry of target application surfaces, which often cause mechanical stretching, contracting, twisting and other deformations to the application. In this review paper, we explore materials, processes, mechanics and devices that enable physically stretchable and reconfigurable electronics. While the concept of stretchable electronics is commonly used in practice, the notion of physically reconfigurable electronics is still in its infancy. Because organic materials are commonly naturally stretchable and physically deformable, we predominantly focus on electronics made from inorganic materials that have the capacity for physical stretching and reconfiguration while retaining their intended attributes. We emphasize how applications of electronics dictate theory to integration strategy for stretchable and reconfigurable inorganic electronics.

  13. Host Factors in Ebola Infection.

    Science.gov (United States)

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  14. Activated phosphors having matrices of yttrium-transition metal compound

    International Nuclear Information System (INIS)

    De Kalb, E.L.; Fassel, V.A.

    1975-01-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO 4 with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence

  15. HostPhinder: A Phage Host Prediction Tool

    DEFF Research Database (Denmark)

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within...... bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2]....

  16. HOST liner cyclic facilities

    Science.gov (United States)

    Schultz, D.

    1983-01-01

    The HOST Liner Cyclic Program is utilizing two types of test apparatus, rectangular box rigs and a full annular rig. To date two quartz lamp cyclic box rigs have been tested and a third is to begin testing in late October 1983. The box rigs are used to evaluate 5x8 inch rectangular linear samples. A 21 inch diameter outer liner simulator is also being built up for testing beginning in April 1984. All rigs are atmospheric rigs. The first box rig, a three 6-kVA lamp installation, was operated under adverse conditions to determine feasibility of using quartz lamps for cyclic testing. This work was done in December 1981 and looked promising. The second box rig, again using three 6-kVA lamps, was operated to obtain instrumentation durability information and initial data input to a Finite Element Model. This limited test program was conducted in August 1983. Five test plates were run. Instrumentation consisted of strain gages, thermocouples and thermal paint. The strain gages were found to fail at 1200 F as expected though plates were heated to 1700 F. The third box rig, containing four 6-kVA lamps, is in build up for testing to begin in late October 1983. In addition to 33 percent greater power input, this rig has provision for 400 F backside line cooling air and a viewing port suitable for IR camera viewing. The casing is also water cooled for extended durability.

  17. [Tuberculosis in compromised hosts].

    Science.gov (United States)

    2003-11-01

    Recent development of tuberculosis in Japan tends to converge on a specific high risk group. The proportion of tuberculosis developing particularly from the compromised hosts in the high risk group is especially high. At this symposium, therefore, we took up diabetes mellitus, gastrectomy, dialysis, AIDS and the elderly for discussion. Many new findings and useful reports for practical medical treatment are submitted; why these compromised hosts are predisposed to tuberculosis, tuberculosis diagnostic and remedial notes of those compromised hosts etc. It is an important question for the future to study how to prevent tuberculosis from these compromised hosts. 1. Tuberculosis in diabetes mellitus: aggravation and its immunological mechanism: Kazuyoshi KAWAKAMI (Department of Internal Medicine, Division of Infectious Diseases, Graduate School and Faculty of Medicine, University of the Ryukyus). It has been well documented that diabetes mellitus (DM) is a major aggravating factor in tuberculosis. The onset of this disease is more frequent in DM patients than in individuals with any underlying diseases. However, the precise mechanism of this finding remains to be fully understood. Earlier studies reported that the migration, phagocytosis and bactericidal activity of neutrophils are all impaired in DM patients, which is related to their reduced host defense to infection with extracellular bacteria, such as S. aureus and E. colli. Host defense to mycobacterial infection is largely mediated by cellular immunity, and Th1-related cytokines, such as IFN-gamma and IL-12, play a central role in this response. It is reported that serum level of these cytokines and their production by peripheral blood mononuclear cells (PBMC) are reduced in tuberculosis patients with DM, and this is supposed to be involved in the high incidence of tuberculosis in DM. Our study observed similar findings and furthermore indicated that IFN-gamma and IL-12 production by BCG-stimulated PBMC was lower

  18. Permuting sparse rectangular matrices into block-diagonal form

    Energy Technology Data Exchange (ETDEWEB)

    Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.

    2002-12-09

    This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.

  19. Gaussian density matrices: Quantum analogs of classical states

    International Nuclear Information System (INIS)

    Mann, A.; Revzen, M.

    1993-01-01

    We study quantum analogs of clasical situations, i.e. quantum states possessing some specific classical attribute(s). These states seem quite generally, to have the form of gaussian density matrices. Such states can always be parametrized as thermal squeezed states (TSS). We consider the following specific cases: (a) Two beams that are built from initial beams which passed through a beam splitter cannot, classically, be distinguished from (appropriately prepared) two independent beams that did not go through a splitter. The only quantum states possessing this classical attribute are TSS. (b) The classical Cramer's theorem was shown to have a quantum version (Hegerfeldt). Again, the states here are Gaussian density matrices. (c) The special case in the study of the quantum version of Cramer's theorem, viz. when the state obtained after partial tracing is a pure state, leads to the conclusion that all states involved are zero temperature limit TSS. The classical analog here are gaussians of zero width, i.e. all distributions are δ functions in phase space. (orig.)

  20. Graph run-length matrices for histopathological image segmentation.

    Science.gov (United States)

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  1. Diclofenac sodium sustained release hot melt extruded lipid matrices.

    Science.gov (United States)

    Vithani, K; Cuppok, Y; Mostafa, S; Slipper, I J; Snowden, M J; Douroumis, D

    2014-08-01

    Sustained release diclofenac sodium (Df-Na) solid lipid matrices with Compritol® 888 ATO were developed in this study. The drug/lipid powders were processed via cold and hot melt extrusion at various drug loadings. The influence of the processing temperatures, drug loading and the addition of excipients on the obtained dissolution rates was investigated. The physicochemical characterization of the extruded batches showed the existence of crystalline drug in the extrudates with a small amount being solubilized in the lipid matrix. The drug content and uniformity on the tablet surface were also investigated by using energy dispersive X-ray microanalysis. The dissolution rates were found to depend on the actual Df-Na loading and the nature of the added excipients, while the effect of the processing temperatures was negligible. The dissolution mechanism of all extruded formulations followed Peppas-Korsemeyer law, based on the estimated determination coefficients and the dissolution constant rates, indicating drug diffusion from the lipid matrices.

  2. Continuous tone printing in silicone from CNC milled matrices

    Science.gov (United States)

    Hoskins, S.; McCallion, P.

    2014-02-01

    Current research at the Centre for Fine Print Research (CFPR) at the University of the West of England, Bristol, is exploring the potential of creating coloured pictorial imagery from a continuous tone relief surface. To create the printing matrices the research team have been using CNC milled images where the height of the relief image is dictated by creating a tone curve and then milling this curve into a series of relief blocks from which the image is cast in a silicone ink. A translucent image is cast from each of the colour matrices and each colour is assembled - one on top of another - resulting is a colour continuous tone print, where colour tone is created by physical depth of colour. This process is a contemporary method of continuous tone colour printing based upon the Nineteenth Century black and white printing process of Woodburytype as developed by Walter Bentley Woodbury in 1865. Woodburytype is the only true continuous tone printing process invented, and although its delicate and subtle surfaces surpassed all other printing methods at the time. The process died out in the late nineteenth century as more expedient and cost effective methods of printing prevailed. New research at CFPR builds upon previous research that combines 19th Century Photomechanical techniques with digital technology to reappraise the potential of these processes.

  3. Characterization of a New Heat Dissipation Matric Potential Sensor

    Directory of Open Access Journals (Sweden)

    Rolf Krebs

    2013-01-01

    Full Text Available Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to −400 hPa and allows lower sensitivity measurements to −800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration.

  4. Engineered matrices for skeletal muscle satellite cell engraftment and function.

    Science.gov (United States)

    Han, Woojin M; Jang, Young C; García, Andrés J

    2017-07-01

    Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  5. Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis

    Science.gov (United States)

    He, Song; Lin, Feng-Li; Zhang, Jia-ju

    2017-12-01

    We calculate various quantities that characterize the dissimilarity of reduced density matrices for a short interval of length ℓ in a two-dimensional (2D) large central charge conformal field theory (CFT). These quantities include the Rényi entropy, entanglement entropy, relative entropy, Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt the method of operator product expansion of twist operators, and calculate the short interval expansion of these quantities up to order of ℓ9 for the contributions from the vacuum conformal family. The formal forms of these dissimilarity measures and the derived Fisher information metric from contributions of general operators are also given. As an application of the results, we use these dissimilarity measures to compare the excited and thermal states, and examine the eigenstate thermalization hypothesis (ETH) by showing how they behave in high temperature limit. This would help to understand how ETH in 2D CFT can be defined more precisely. We discuss the possibility that all the dissimilarity measures considered here vanish when comparing the reduced density matrices of an excited state and a generalized Gibbs ensemble thermal state. We also discuss ETH for a microcanonical ensemble thermal state in a 2D large central charge CFT, and find that it is approximately satisfied for a small subsystem and violated for a large subsystem.

  6. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    temperature or below. For many spectroscopic measurements, low temperatures have been achieved by co-condensing the actinide vapor in rare gas or inert molecule host matrices. Spectra recorded in matrices are usually considered to be minimally perturbed. Trapping the products from gas-phase reactions that occur when trace quantities of reactants are added to the inert host gas has resulted in the discovery of many new actinide species. Selected aspects of the matrix isolation data were discussed in chapter 17. In the present chapter we review the spectroscopic matrix data in terms of its relationship to gas-phase measurements, and update the description of the new reaction products found in matrices to reflect the developments that have occurred during the past two years. Spectra recorded in matrix environments are usually considered to be minimally perturbed, and this expectation is borne out for many closed shell actinide molecules. However, there is growing evidence that significant perturbations can occur for open shell molecules, resulting in geometric distortions and/or electronic state reordering. Studies of actinide reactions in the gas phase provide an opportunity to probe the relationship between electronic structure and reactivity. Much of this work has focused on the reactions of ionic species, as these may be selected and controlled using various forms of mass spectrometry. As an example of the type of insight derived from reaction studies, it has been established that the reaction barriers for An+ ions are determined by the promotion energies required to achieve the 5fn6d7s configuration. Gas-phase reaction studies also provide fundamental thermodynamic properties such as bond dissociation and ionization energies. In recent years, an increased number of gas-phase ion chemistry studies of bare (atomic) and ligated (molecular) actinide ions have appeared, in which relevant contributions to fundamental actinide chemistry have been made. These studies were initiated

  7. Characterization of Selected Parameters of Organic-Inorganic Hybrid Membranes Based on Various Polymers and Nd-Fe-B Fillers

    Directory of Open Access Journals (Sweden)

    Rybak A.

    2016-12-01

    Full Text Available In this paper magnetic organic-inorganic hybrid membranes based on EC, PPO polymer matrices and various magnetic powder microparticles were synthesized and studied. Constant pressure permeation technique and the Time Lag method were used to obtain the gas transport coefficients. The mechanical, rheological and magnetic parameters of magnetic hybrid membranes were examined. It was found that their separation and gas transport properties (D, P, S and α were improved with the decrease in powder particle size and the increase of membrane’s remanence, saturation magnetization and magnetic particle filling. The increase of the magnetic powder addition and a decrease of its granulation improved also mechanical and rheological parameters of the tested membranes. This improvement also had a positive effect on their gas separation properties and their potential usage in the future.

  8. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    Science.gov (United States)

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V

    2015-01-01

    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well

  9. Characterization of plasma membrane bound inorganic ...

    African Journals Online (AJOL)

    ... N-ethylmaliemide (NEM), phenylarsineoxide, ABC superfamily transport modulator verapamil and was also by F1Fo-ATPase inhibitor quercetin. Conclusion: We conclude that there are significant differences within promastigote, amastigote and mammalian host in cytosolic pH homeostasis to merit the inclusion of PPase ...

  10. Quantification of iodine in porous hydroxyapatite matrices for application as radioactive sources in brachytherapy

    OpenAIRE

    Lacerda, Kássio André; Lameiras, Fernando Soares; Silva, Viviane Viana

    2007-01-01

    In this study, non-radioactive iodine was incorporated in two types of biodegradable hydroxyapatite-based porous matrices (HA and HACL) through impregnation process from sodium iodine aqueous solutions with varying concentrations (0.5 and 1.0 mol/L) . The results revealed that both systems presented a high capacity of incorporating iodine into their matrices. The quantity of incorporated iodine was measured through Neutron Activation Analysis (NAA). The porous ceramic matrices based on hydrox...

  11. A Conceptual Cost Benefit Analysis of Tailings Matrices Use in Construction Applications

    OpenAIRE

    Mahmood Ali A.; Elektorowicz Maria

    2016-01-01

    As part of a comprehensive research program, new tailings matrices are formulated of combinations of tailings and binder materials. The research program encompasses experimental and numerical analysis of the tailings matrices to investigate the feasibility of using them as construction materials in cold climates. This paper discusses a conceptual cost benefit analysis for the use of these new materials. It is shown here that the financial benefits of using the proposed new tailings matrices i...

  12. Host factors in nidovirus replication

    NARCIS (Netherlands)

    Wilde, Adriaan Hugo de

    2013-01-01

    The interplay between nidoviruses and the infected host cell was investigated. Arterivirus RNA-synthesising activity was shown to depend on intact membranes and on a cytosolic host protein which does not cosediment with the RTC. Furthermore, the immunosuppressant drug cyclosporin A (CsA) blocks

  13. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a ...

  14. Host Adaptation of Staphylococcal Leukocidins

    NARCIS (Netherlands)

    Vrieling, M

    2016-01-01

    Staphylococcus aureus is a human and animal pathogen of global importance and has the capacity to cause disease in distinct host populations, using a large arsenal of secreted proteins to evade the host immune response. Amongst the immune evasion proteins of S. aureus, secreted cytotoxins play a

  15. Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices.

    KAUST Repository

    Viger-Gravel, Jasmine; Berruyer, Pierrick; Gajan, David; Basset, Jean-Marie; Lesage, Anne; Tordo, Paul; Ouari, Olivier; Emsley, Lyndon

    2017-01-01

    We show that aqueous acrylamide gels can be used to provide dynamic nuclear polarization (DNP) NMR signal enhancements of around 200 at 9.4 T and 100 K. The enhancements are shown to increase with cross linker concentration and low concentrations of the AMUPol biradical. We show that this DNP matrix can be used in situations where conventional incipient wetness methods fail, such as to obtain DNP surface enhanced NMR spectra from inorganic nanoparticles. In particular, we obtain 113Cd spectra from CdTe-COOH NPs in minutes. The spectra clearly indicate a highly-disordered cadmium rich surface.

  16. Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices.

    KAUST Repository

    Viger-Gravel, Jasmine

    2017-05-24

    We show that aqueous acrylamide gels can be used to provide dynamic nuclear polarization (DNP) NMR signal enhancements of around 200 at 9.4 T and 100 K. The enhancements are shown to increase with cross linker concentration and low concentrations of the AMUPol biradical. We show that this DNP matrix can be used in situations where conventional incipient wetness methods fail, such as to obtain DNP surface enhanced NMR spectra from inorganic nanoparticles. In particular, we obtain 113Cd spectra from CdTe-COOH NPs in minutes. The spectra clearly indicate a highly-disordered cadmium rich surface.

  17. Cellular bone matrices: viable stem cell-containing bone graft substitutes.

    Science.gov (United States)

    Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A

    2014-11-01

    Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery

  18. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  19. Basal Cell Carcinoma With Matrical Differentiation: Clinicopathologic, Immunohistochemical, and Molecular Biological Study of 22 Cases.

    Science.gov (United States)

    Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V

    2017-06-01

    Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas

  20. Investigation of Rho Signaling Pathways in 3-D Collagen Matrices with Multidimensional Microscopy and Visualization Techniques

    National Research Council Canada - National Science Library

    Trier, Steven

    2008-01-01

    .... Recent progress in the development of 3D culture models has provided a more physiologically relevant growth environment, in which breast cancer cells imbedded within floating collagen matrices...

  1. Investigation of Rho Signaling Pathways in 3D Collagen Matrices via Multidimensional Microscopy and Visualization Techniques

    National Research Council Canada - National Science Library

    Trier, Steven

    2007-01-01

    .... Recent progress in the development of 3D culture models has provided a more physiologically relevant growth environment, in which breast cancer cells imbedded within floating collagen matrices...

  2. Matrices Aléatoires Tri-diagonales et Par Blocs.

    OpenAIRE

    MEKKI, Slimane

    2014-01-01

    Dans ce mémoire l'étude porte sur la densité de matrice aléatoire, les densités des valeurs propres d'une matrice pour les trois ensembles G.O.E, G.U.E, G.S.E. Après nous avons explicité les formules des densités de valeurs propres des matrices tri-diagonales dans les cas HERMITE et LAGUERRE Des simulations sur les constantes de normalisations pour les densités des matrices aléatoires ou des valeurs propres sont présentées.

  3. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  4. A basis independent formulation of the connection between quark mass matrices, CP violation and experiment

    International Nuclear Information System (INIS)

    Jarlskog, C.; Stockholm Univ.; Bergen Univ.

    1985-01-01

    In the standard electroweak model, with three families, a one-to-one correspondence between certain determinants involving quark mass matrices (m and m' for charge 2/3 and -1/3 quarks respectively) and the presence/absence of CP violation is given. In an arbitrary basis for mass matrices, the quantity Im det[mm + , m'm' + ] appropriately normalized is introduced as a measure of CP violation. By this measure, CP is not maximally violated in any transition in Nature. Finally, constraints on quark mass matrices are derived from experiment. Any model of mass matrices, with the ambition to explain Nature, must satisfy these conditions. (orig.)

  5. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A Conceptual Cost Benefit Analysis of Tailings Matrices Use in Construction Applications

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2016-01-01

    Full Text Available As part of a comprehensive research program, new tailings matrices are formulated of combinations of tailings and binder materials. The research program encompasses experimental and numerical analysis of the tailings matrices to investigate the feasibility of using them as construction materials in cold climates. This paper discusses a conceptual cost benefit analysis for the use of these new materials. It is shown here that the financial benefits of using the proposed new tailings matrices in terms of environmental sustainability are much higher when compared to normal sand matrices.

  7. Anorthite glass: a potential host matrix for 90Sr pencil

    International Nuclear Information System (INIS)

    Sengupta, Pranesh; Dey, G.K.; Fanara, Sara; Chakraborty, Sumit; Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    With rising global concerns over health hazards, environmental pollution and possible malicious applications of radioactive materials, there is an increasing consciousness among public and Governmental agencies for its better control, accounting and security. Investigations carried out by International Atomic Energy Agency and other monitoring bodies reveal that among various radioactive materials, the easily dispersible ones are high activity sealed sources (generally called radioactive pencils) used for various peaceful applications. Ideally, these sealed sources should be safely secured within specialized facilities, but in practice, it is not always done. Hence, there is a need to take an extra precautionary measure to ensure that the matrices currently used for hosting the radionuclides within sealed sources are durable enough under harsh service conditions and situations arising due to possible mishaps (accidents, misplaced, stolen etc). Among the variety of useful radionuclides, 90 Sr is one which is regularly used to (i) combat bone cancer, (ii) destroy unwanted tissue on the surface of eye/skin, (iii) light up/provide energy to remotely accessible areas etc. However, due to its (i) toxicity, (ii) mobility, (iii) easy incorporation within human body, (iv) considerable half-life (∼ 29 years), (v) emission of beta (β - ) particles along with high energy gamma ( γ)-rays, and (vi) retention of significant toxicity within sources even after service life, release of 90 Sr poses a serious threat to the biosphere. Hence, there is a need to ensure that existing 90 Sr host matrices are capable of withstanding all sorts of adversity that may arise during service and under storage/disposal

  8. Engineering properties of inorganic polymer concretes (IPCs)

    International Nuclear Information System (INIS)

    Sofi, M.; Deventer, J.S.J. van; Mendis, P.A.; Lukey, G.C.

    2007-01-01

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures

  9. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  10. Neutron Diffraction and Inorganic Materials Discovery

    International Nuclear Information System (INIS)

    Rosseinsky, M.J.

    2005-01-01

    Full text: The discovery of complex inorganic materials is an important academic and technological challenge because of the opportunities these systems offer for observation of new phenomena, and the questions they pose for fundamental understanding. This presentation will illustrate the key role of neutron powder diffraction in enabling the discovery of new classes of materials, and in evaluating their properties and the conditions under which they need to be processed to optimise their behaviour in devices for applications. New chemistry is illustrated by the transition metal oxide hydrides, where both structure and ionic mobility required neutron scattering characterisation. The relationship between chemistry, structure and properties will be addressed by considering the difficulties in inducing superconductivity in analogues of magnesium diboride. The role of both neutron and X-ray diffraction in evaluating the processing of microwave dielectric ceramics will be highlighted, with the discovery of new phases shown to be a useful bonus in this type of in-situ study. (author)

  11. Applications of inorganic nanoparticles as therapeutic agents

    Science.gov (United States)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  12. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O

    2012-01-01

    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  13. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  14. Solubility and stability of inorganic carbonates

    International Nuclear Information System (INIS)

    Taylor, P.

    1987-01-01

    The chemistry of inorganic carbonates is reviewed, with emphasis on solubility and hydrolytic stability, in order to identify candidate waste forms for immobilization and disposal of 14 C. At present, CaCO 3 and BaCO 3 are the two most widely favoured wasted forms, primarily because they are the products of proven CO 2 -scrubbing technology. However, they have relatively high solubilities in non-alkaline solutions, necessitating care in selecting and assessing an appropriate disposal environment. Three compounds with better solubility characteristics in near-neutral waters are identified: bismutite, (BiO) 2 CO 3 ; hydrocerussite, Pb 3 (OH) 2 (CO 3 ) 2 ; and rhodochrosite, MnCO 3 . Some of the limitations of each of these alternative waste forms are discussed

  15. Mechanisms of inorganic and organometallic reactions

    CERN Document Server

    The purpose of this series is to provide a continuing critical review of the literature concerned with mechanistic aspects of inorganic and organo­ metallic reactions in solution, with coverage being complete in each volume. The papers discussed are selected on the basis of relevance to the elucidation of reaction mechanisms and many include results of a nonkinetic nature when useful mechanistic information can be deduced. The period of literature covered by this volume is July 1982 through December 1983, and in some instances papers not available for inclusion in the previous volume are also included. Numerical results are usually reported in the units used by the original authors, except where data from different papers are com­ pared and conversion to common units is necessary. As in previous volumes material included covers the major areas of redox processes, reactions of the nonmetallic elements, reaction of inert and labile metal complexes and the reactions of organometallic compounds. While m...

  16. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  18. Effect of Inorganic Fertilizer on the Microbial degradation of Diesel ...

    African Journals Online (AJOL)

    The effect of Inorganic Fertilizer (IF) on the microbial degradation of diesel polluted soil in Abeokuta was assessed by collecting Top soil (0 – 15 cm depth) from diesel polluted site of Information and Communication Centre, Federal University of Agriculture, Abeokuta, Nigeria. Inorganic fertilizer was added to the polluted soil ...

  19. Graphene templated Directional Growth of an Inorganic Nanowire

    Science.gov (United States)

    2015-03-23

    14,23–25 have only formed randomly oriented or poorly aligned inorganic nanostructures. Here, we show that inorganic nanowires of gold(I) cyanide can... complex . TEM image simulation from the crystal structure The TEM image simulations are performed using MacTempas and CrystalKit. The imaging

  20. Computer information resources of inorganic chemistry and materials science

    Energy Technology Data Exchange (ETDEWEB)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S [A.A.Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-02-28

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.