WorldWideScience

Sample records for inoculation plant genotype

  1. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    Science.gov (United States)

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  2. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Directory of Open Access Journals (Sweden)

    Martina Janoušková

    Full Text Available Inoculation with arbuscular mycorrhizal fungi (AMF may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  3. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants

    Science.gov (United States)

    Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation. PMID:28738069

  4. Effects of genotype x bradyrhizobium inoculation or x fertilizer n ...

    African Journals Online (AJOL)

    Genotype x inoculation interaction was significant only for protein and oil content in one year. .... main-plot factor. ... components and expected genetic gains invoiving yield srrnin. ... Combined analysis of the cu ltivar experiment was carried.

  5. Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils

    Science.gov (United States)

    Imran, Asma; Mirza, Muhammad S.; Shah, Tariq M.; Malik, Kauser A.; Hafeez, Fauzia Y.

    2015-01-01

    Pakistan is among top three chickpea producing countries but the crop is usually grown on marginal lands without irrigation and fertilizer application which significantly hampers its yield. Soil fertility and inoculation with beneficial rhizobacteria play a key role in nodulation and yield of legumes. Four kabuli and six desi chickpea genotypes were, therefore, evaluated for inoculation response with IAA-producing Ochrobactrum ciceri Ca-34T and nitrogen fixing Mesorhizobium ciceri TAL-1148 in single and co-inoculation in two soils. The soil type 1 was previously unplanted marginal soil having low organic matter, P and N contents compared to soil type 2 which was a fertile routinely legume-cultivated soil. The effect of soil fertility status was pronounced and fertile soil on average, produced 31% more nodules, 62% more biomass and 111% grain yield than marginal soil. Inoculation either with O. ciceri alone or its co-inoculation with M. ciceri produced on average higher nodules (42%), biomass (31%), grains yield (64%) and harvest index (72%) in both chickpea genotypes over non-inoculated controls in both soils. Soil 1 showed maximum relative effectiveness of Ca-34T inoculation for kabuli genotypes while soil 2 showed for desi genotypes except B8/02. Desi genotype B8/02 in soil type 1 and Pb-2008 in soil type 2 showed significant yield increase as compared to respective un-inoculated controls. Across bacterial inoculation treatments, grain yield was positively correlated to growth and yield contributing parameters (r = 0.294* to 0.838*** for desi and r = 0.388* to 0.857** for kabuli). PCA and CAT-PCA analyses clearly showed a site-specific response of genotype x bacterial inoculation. Furthermore, the inoculated bacterial strains were able to persist in the rhizosphere showing colonization on root and within nodules. Present study shows that plant growth promoting rhizobacteria (PGPR) inoculation should be integrated with national chickpea breading program in

  6. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew.

    Science.gov (United States)

    Mustafa, G; Randoux, B; Tisserant, B; Fontaine, J; Magnin-Robert, M; Lounès-Hadj Sahraoui, A; Reignault, Ph

    2016-10-01

    A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered

  7. Klebsiella pneumoniae inoculants for enhancing plant growth

    Science.gov (United States)

    Triplett, Eric W [Middleton, WI; Kaeppler, Shawn M [Oregon, WI; Chelius, Marisa K [Greeley, CO

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  8. The Physiological Response of Soybean Genotypes to VAM Inoculation on Selected Drought Stress Levels

    Directory of Open Access Journals (Sweden)

    HAPSOH

    2006-06-01

    Full Text Available Present research was aimed to study physiological changes of soybean which were inoculated with vesicular arbuscular mycorrhizal fungi (VAM. Glomus etunicatum was exposed to moderate and severe drought condition. Symbiotic association with VAM improved adaptability as it was shown by the increasing leaf proline content. The MLG 3474 and Sindoro are the more tolerant genotypes while the responses of plant to VAM on improving the adaptability to drought were larger on Lokon.

  9. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum)

    NARCIS (Netherlands)

    Andreote, F.D.; Rocha, da U.N.; Araujo, W.L.; Azevedo, J.L.; Overbeek, van L.S.

    2010-01-01

    Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is

  10. Key factors to inoculate Botrytis cinerea in tomato plants

    OpenAIRE

    Borges,Álefe Vitorino; Saraiva,Rodrigo Moreira; Maffia,Luiz Antonio

    2014-01-01

    Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness...

  11. Effect of plant-growth-promoting rhizobacteria inoculation on plant ...

    African Journals Online (AJOL)

    A field experiment was conducted in a wet season (Kharif) to study the effects of plant growth-promoting rhizobacteria(PGPR) inoculation on agronomic traits and productivity of Basmati rice (cv. 'Pusa Basmati 1401') in a randomized block with twelve treatments. We evaluated one bacterial (Providencia sp. PW5) and one ...

  12. In-vitro vs in-vivo Inoculation: Screening for Resistance of Australian Rice Genotypes Against Blast Fungus

    Directory of Open Access Journals (Sweden)

    Vineela Challagulla

    2015-05-01

    Full Text Available To assist with rapid screening for rice blast resistance as a precursor in a breeding program, the susceptibility to rice blast of 13 rice genotypes from Australia was evaluated in May to June 2013 using three distinct inoculation methods (spot, filter paper and standard methods at seedling, vegetative and reproductive stages. The results revealed that the spot and filter paper inoculation methods were successful in discerning susceptibility to the rice blast disease (P ≤ 0.05. Disease susceptibility declined significantly from the vegetative to reproductive stages. The standard method was conducted at three different stages for pot plants grown inside the mist house. However, low temperatures did not produce disease symptoms except in a few genotypes. Among the 13 rice genotypes screened, AAT9 expressed a highly resistant response, and AAT4, AAT6, AAT10, AAT11, AAT13, AAT17 and AAT18 expressed resistance at various stages. The results will be useful for selecting elite genotypes for disease tolerance where rice blast is prevalent. In addition, the resistant genotypes can serve as a gene pool used in breeding programmes to develop new resistant genotypes.

  13. The effect of inoculation with mycorrhizal arbuscular fungi on expression of limonene synthase in Mentha spicata L. genotypes

    Directory of Open Access Journals (Sweden)

    Leila Shabani

    2015-03-01

    Full Text Available Spearmint (Mentha spicata L. is an important economical and medicinal plant from Lamiaceae family, which has gained research attraction as a model for biosynthesis of essential oils due to its high capability for synthesis of monoterpenes. Limonene is a simple monoterpene and its biosynthesis is catalyzed by limonene synthase a key regulatory enzyme in the biosynthesis pathway of monoterpenes in spearmint plant. This study was concerned with the effect of colonization of roots with Funneliformis mosseae and F. etunicatum fungi on spearmint plant growth indices, leaf essential oils and changes in the expression of limonene synthase (LS gene. This study also explained the application of GADPH gene as the internal standard for real-time quantitative PCR (RTqPCR analysis of LS in spearmints. Our results showed that essential oil content of leaf in spearmint genotype Meybod inoculated with F. etunicatum was higher than that of genotypes from populations Kashan and Bojnourd and was 130% higher than the control. According to the results of this study, increase in transcript accumulation of the LS gene in leaves of spearmint plants inoculated with F. etunicatum was concordant with the increased essential oil contents and was dependent on the plant genotype.

  14. Key factors to inoculate Botrytis cinerea in tomato plants

    Directory of Open Access Journals (Sweden)

    Álefe Vitorino Borges

    2014-09-01

    Full Text Available Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness of gelatin regarding inoculum adhesion. Infection with an isolate from tomato plants that was previously inoculated into petioles and then re-isolated was successful. An isolate from strawberry plants was also aggressive, although less than that from tomato plants. Tomato plants close to flowering, at 65 days after sowing, and younger, middle and apical stem portions were more susceptible. There was positive correlation between lesion length and sporulation and between lesion length and broken stems. Lesion length and the percentage of sporulation sites were reduced by using a moist chamber and were not affected by adding gelatin to the inoculum suspension. This methodology has been adopted in studies of B. cinerea in tomato plants showing reproducible results. The obtained results may assist researchers who study the gray mold.

  15. Response of five lentil (lens culinaris) genotypes to artificial inoculation using /sup 15/N as a tracer

    International Nuclear Information System (INIS)

    Khan, H.; Mahmood, N.H.; Iqbal, M.

    1997-01-01

    Five lentil (lens culinaris) genotypes, viz NARC-3, 20-8, 88522, 89511 and Mansehra-89, were evaluated in the field and pot experiments for natural nodulation and to study the effect of artificial inoculation on their nodulation, yield and grain protein content. Natural nodulation was almost absent in all the tested genotypes. Artificial rhizobial inoculation significantly increased the biological and grain yields in all the genotypes. Maximum increase in yield and nodulation due to inoculation was recorded in case of Mansehra-89. Grain protein was also increased by inoculation but not significantly. (author)

  16. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Martina; Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Roč. 12, č. 7 (2017), s. 1-21, č. článku e0181525. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LH14285 Institutional support: RVO:67985939 ; RVO:61389030 Keywords : inoculation * arbuscular mycorrhiza * community Subject RIV: EH - Ecology, Behaviour; EH - Ecology, Behaviour (UEB-Q) OBOR OECD: Plant sciences, botany; Plant sciences, botany (UEB-Q) Impact factor: 2.806, year: 2016

  17. Responses of potatoes plants inoculated with arbuscular ...

    African Journals Online (AJOL)

    A pot experiment was set to examine the impact of the foliar litter (Hardwickia binata and Azadirachta indica) and an arbuscular mycorrhizal (AM) fungus on the development of two varieties of potato plants (Aida, Atlas). Three litter doses (0, 25 and 50 g) were applied to the pots after bedding plantlets. The plants were ...

  18. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum

    NARCIS (Netherlands)

    Sohn, B.K.; Kim, K.Y.; Chung, S.J.; Kim, W.S.; Park, S.M.; Kang, J.G.; Rim, Y.S.; Cho, J.S.; Kim, T.H.; Lee, J.H.

    2003-01-01

    Plant growth and flower quality of an ornamental plant (Chrysanthemum morifolium Ramat) var. Baekgwang in response to the different timing of arbuscular mycorrhizal fungi (AMF) inoculation were examined. To evaluate the effects of AMF inoculation timing on growth of chrysanthemum cuttings, AMF was

  19. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    Science.gov (United States)

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  20. DEVELOPMENT OF PIGEON PEA INOCULATED WITH RHIZOBIUM ISOLATED FROM COWPEA TRAP HOST PLANTS

    Directory of Open Access Journals (Sweden)

    SALOMÃO LIMA GUIMARÃES

    2016-01-01

    Full Text Available Pigeon pea is an important protein source grown in several tropical and sub - tropical countries, and is considered a multi - purpose plant that is resistant to the conditions of the Brazilian Cerrado. Among the possible uses for cowpea, its use as a green manure, increasing soil nitrogen content through the association with diazotrophic bacteria, generically known as rhizobia, is noteworthy. The present work aimed to evaluate the efficiency of Rhizobium strains isolated from cowpea plants in the development of pigeon peas cultured in Red Latosol. The experiment was conducted in a greenhouse, using a completely randomized design with seven treatments and four replications. Treatments consisted of inoculation with four Rhizobium strains (MT8, MT15, MT16, and MT23 and one commercial inoculant comprising Bradyrhizobium spp. strains BR 2801 and BR 2003. There were two controls, one absolute (without inoculation or nitrogen fertilization and the other with nitrogen fertilization. Each experimental plot consisted of an 8 - dm 3 vase containing three plants. Analyzed variables included plant height, SPAD index, number and dry weight of nodules, and shoot and root dry masses. Pigeon peas responded significantly to inoculation treatment, since all the plants inoculated with Rhizobium strains isolated from cowpea strains showed results similar to plants in the nitrogen control and commercial inoculant treatments. This demonstrates a favorable plant – bacteria interaction, which can be utilized as an alternative nitrogen source for pigeon peas.

  1. Plant genotype, microbial recruitment and nutritional security.

    Science.gov (United States)

    Patel, Jai S; Singh, Akanksha; Singh, Harikesh B; Sarma, Birinchi K

    2015-01-01

    Agricultural food products with high nutritional value should always be preferred over food products with low nutritional value. Efforts are being made to increase nutritional value of food by incorporating dietary supplements to the food products. The same is more desirous if the nutritional value of food is increased under natural environmental conditions especially in agricultural farms. Fragmented researches have demonstrated possibilities in achieving the same. The rhizosphere is vital in this regard for not only health and nutritional status of plants but also for the microorganisms colonizing the rhizosphere. Remarkably robust composition of plant microbiome with respect to other soil environments clearly suggests the role of a plant host in discriminating its colonizers (Zancarini et al., 2012). A large number of biotic and abiotic factors are believed to manipulate the microbial communities in the rhizosphere. However, plant genotype has proven to be the key in giving the final shape of the rhizosphere microbiome (Berendsen et al., 2012; Marques et al., 2014).

  2. Soil inoculation method determines the strength of plant-soil interactions

    NARCIS (Netherlands)

    Voorde, van de T.F.J.; Ruijten, M.; Putten, van der W.H.; Bezemer, T.M.

    2012-01-01

    There is increasing evidence that interactions between plants and biotic components of the soil influence plant productivity and plant community composition. Many plant–soil feedback experiments start from inoculating relatively small amounts of natural soil to sterilized bulk soil. These soil

  3. Effect of Rhizobium and Phosphate Solubilizing Bacterial Inoculants on Symbiotic Traits, Nodule Leghemoglobin, and Yield of Chickpea Genotypes

    Directory of Open Access Journals (Sweden)

    G. S. Tagore

    2013-01-01

    Full Text Available A field experiment was carried out during the rabi season of 2004-05 to find out the effect of Rhizobium and phosphate solubilizing bacterial (PSB inoculants on symbiotic traits, nodule leghemoglobin, and yield of five elite genotypes of chickpea. Among the chickpea genotypes, IG-593 performed better in respect of symbiotic parameters including nodule number, nodule fresh weight, nodule dry weight, shoot dry weight, yield attributes and yield. Leghemoglobin content (2.55 mg g−1 of fresh nodule was also higher under IG-593. Among microbial inoculants, the Rhizobium + PSB was found most effective in terms of nodule number (27.66 nodules plant−1, nodule fresh weight (144.90 mg plant−1, nodule dry weight (74.30 mg plant−1, shoot dry weight (11.76 g plant−1, and leghemoglobin content (2.29 mg g−1 of fresh nodule and also showed its positive effect in enhancing all the yield attributing parameters, grain and straw yields.

  4. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    Science.gov (United States)

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-02

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of rhizobia and plant growth promoting bacteria inoculation ...

    African Journals Online (AJOL)

    Plant growth promoting rhizobacteria (PGPR) stimulate plant growth by producing phytohormone which enhances the growth and physiological activities of the host plant. Recently, legume bacteria (Rhizobium spp.) have been considered as a PGPR for legume as well as non-legumes and have the potential for growth ...

  6. Plant genotypic diversity reduces the rate of consumer resource utilization.

    Science.gov (United States)

    McArt, Scott H; Thaler, Jennifer S

    2013-07-07

    While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore--the Japanese beetle (Popillia japonica)--increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.

  7. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    Full Text Available The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB. A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm. Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1 and produced indole acetic acid (0.48-1.85 mg L-1 in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%, improved shoot length (31%, root length (41% and plant dry weight (60% as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.

  8. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    International Nuclear Information System (INIS)

    Wu, S.C.; Cheung, K.C.; Luo, Y.M.; Wong, M.H.

    2006-01-01

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations

  9. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Cheung, K.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Luo, Y.M. [Institute of Soil Science, Chinese Academy of Sciences, Nanjing (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Wong, M.H. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China) and Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-03-15

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations.

  10. Agrobacterium-mediated inoculation of chrysanthemum (Chrysanthemum morifolium) plants with chrysanthemum stunt viroid.

    Science.gov (United States)

    Nabeshima, Tomoyuki; Doi, Motoaki; Hosokawa, Munetaka

    2016-08-01

    Agroinfiltration was tested as a method of inoculation of chrysanthemum plants with chrysanthemum stunt viroid (CSVd). Binary vectors harboring dimeric CSVd sequences in sense and antisense orientations were constructed, and Agrobacterium transfected with these binary vectors was infiltrated into chrysanthemum leaves. Northern blotting and reverse transcription polymerase chain reaction analysis showed that local infection was established within 7 days and systemic infection within 20 days. CSVd polarities showed no difference in infectivity. This study showed that agroinfiltration of chrysanthemum plants is an easy, rapid, and cost-effective method for CSVd inoculation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  12. Plant yield and nitrogen content of a digitgrass in response to azospirillum inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schank, S.C.; Weier, K.L.; MacRae, I.C.

    1981-02-01

    Two Australian soils, a vertisol (pH 6.8, 0.299% N) and a sandy yellow podzol (pH 6.2, 0.042% N), were used with digitgrass, Digitaria sp. X46-2 (PI 421785), in a growth room experiment. Comparisons were made between plants inoculated with live and autoclaved bacterial suspensions of Australian and Brazilian isolates of Azospirillum brasilense. Seedlings were inoculated on days 10 and 35. Acetylene-reducing activity was measured five times during the experiment. Dry matter yields of the digitgrass on the podzol (low N) inoculated with liver bacteria were 23% higher than those of the controls. On the vertisol (high N), yield increases from inoculation with live bacteria were 8.5%. The higher-yielding plants had significantly lower precent nitrogen, but when total nitrogen of the tops was calculated, the inoculated plants had a higher total N than did the controls (P = 0.04). Acetylene-reducing activity was variable in the experiment, ranging from 0.5 to 11.9 mu mol of C2H2 core -1 day -1. Live bacterial treatment induced a proliferation of roots, possible earlier maturity, higher percent dry matter, and a higher total N in the tops. (Refs. 21).

  13. Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants.

    Science.gov (United States)

    Navarro García, Alejandra; Del Pilar Bañón Árias, Sebastián; Morte, Asunción; Sánchez-Blanco, María Jesús

    2011-01-01

    The influence of a water deficit treatment and mycorrhizal inoculation with Pisolithus tinctorius (Pers.) Coker and Couch on the water relations, gas exchange, and plant growth in Arbutus unedo L. plants was studied in order to evaluate the hardening process during the nursery period. The ability to withstand the adverse conditions after transplantation was also studied. Mycorrhizal and non-mycorrhizal seedlings of A. unedo were pot-grown for 4 months in a greenhouse (nursery period), during which time two irrigation treatments, well watered (100% water holding capacity, leaching 20% of the applied water) and deficit irrigation (50% of the well watered), were applied. Subsequently, the plants were transplanted to the field and well irrigated (transplanting period), after which and until the end of the experiment they received no water (establishment period). At the end of the nursery period, both water deficit and mycorrhizae were seen to have altered the plant morphology. Mycorrhizal plants had lower leaf area and improved leaf color parameters, while the water deficit increased root dry weight and the root/shoot ratio. Mycorrhizal plants had higher leaf water potential values than non-inoculated plants. Mycorrhizae increased stomatal conductance and photosynthesis values, especially in stressed plants. Drought led to an osmotic adjustment and a decrease in the leaf water potential values at turgor loss point in the mycorrhizal plants. Cell wall rigidity, measured as increased bulk modulus of elasticity, was decreased by the mycorrhizae effect. After transplanting, no differences were found in the water relations or gas exchange values between treatments. During the establishment period, the plants that had been exposed to both drought and mycorrhizae showed a better water status (higher leaf water and turgor potential values) and higher gas exchange values. In conclusion, water deficit and mycorrhizal inoculation of A. unedo plants in nursery produced changes in

  14. PLANT GROWTH-PROMOTING MICROBIAL INOCULANT FOR Schizolobium parahyba pv. parahyba

    Directory of Open Access Journals (Sweden)

    Priscila Jane Romano de Oliveira Gonçalves

    2015-08-01

    Full Text Available ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke Barneby (paricá occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800. Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05. Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.

  15. The potential of plant viruses to promote genotypic diversity via genotype x environment interactions

    DEFF Research Database (Denmark)

    van Mölken, Tamara; Stuefer, Josef F.

    2011-01-01

    † Background and Aims Genotype by environment (G × E) interactions are important for the long-term persistence of plant species in heterogeneous environments. It has often been suggested that disease is a key factor for the maintenance of genotypic diversity in plant populations. However, empirical...... and the G × E interactions were examined with respect to genotypespecific plant responses to WClMV infection. Thus, the environment is defined as the presence or absence of the virus. † Key Results WClMV had a negative effect on plant performance as shown by a decrease in biomass and number of ramets...... evidence for this contention is scarce. Here virus infection is proposed as a possible candidate for maintaining genotypic diversity in their host plants. † Methods The effects of White clover mosaic virus (WClMV) on the performance and development of different Trifolium repens genotypes were analysed...

  16. Maize response to inoculation with strains of plant growth-promoting bactéria

    Directory of Open Access Journals (Sweden)

    Janaína Dartora

    Full Text Available ABSTRACT The aim of this study was to evaluate the response of maize to inoculation with strains of plant growth-promoting bacteria (PGPB in two cultivation years. The experiment was set in a randomized block design with four replicates in two cultivation years (2012/13 and 2013/14. The treatments consisted of PGPB inoculation: control (without N and without inoculation; 30 kg of N ha-1 at sowing (N1; 160 kg of N ha-1 (N1 + 130 kg of N ha-1 as top-dressing; N1 + A. brasilense, Ab-V5; N1 + A. brasilense, HM053; N1 + Azospirillum sp. L26; N1 + Azospirillum sp. L27; N1 + Enhydrobacter sp. 4331; N1 + Rhizobium sp. 8121. Basal stem diameter, plant height, leaf area, shoot dry matter and yield were evaluated. The strain of Rhizobium sp. 8121and the isolate Azospirillum sp. L26 associated with 30 kg of N ha-1 at sowing promoted yields equivalent to that of the N fertilization of 160 kg ha-1, demonstrating the potential to be used in the inoculation of maize seeds.

  17. Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment?

    Science.gov (United States)

    Ważny, Rafał; Rozpądek, Piotr; Jędrzejczyk, Roman J; Śliwa, Marta; Stojakowska, Anna; Anielska, Teresa; Turnau, Katarzyna

    2018-04-01

    Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.

  18. Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.L.; Enebak, S.A.; Chappelka, A.H. [Auburn Univ., Auburn, AL (United States). School of Forestry and Wildlife Sciences

    2004-07-01

    The conifer tree species with the greatest economic importance in south eastern United States plantations is Loblolly pine. Plantations require intensive fertilization, pesticide application, and irrigation. In these cases growth-promoting rhizobacteria are useful in pest control. While it was once thought that ozone in the troposphere was limited to urban areas, it is now known that it is transported far from its place of origin. Ozone is known to impact plant growth negatively. There have been no previous studies on whether growth-promoting rhizobacteria can decrease the negative effects of ozone. In this study seedlings of Loblolly pine were inoculated with either Bacillus subtilis (Ehrenberg) Cohn or Paenibacillus macerans (Schardinger) Ash. These were exposed to controlled amounts of ozone for 8-12 weeks. All plants showed decreased biomass and increased foliar damage compared to plants that were not exposed to ozone. B. subtilis inoculated plants showed less foliar damage than un-inoculated ones and root dimensions were increased. The use of growth-promoting rhizobacteria is not ready for large-scale commercial application in forestry, but this demonstration of the possible beneficial effects on ozone exposure warrants further investigation. 44 refs., 3 tabs., 2 figs.

  19. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  20. Effect of seed inoculation with Azospirillum brasilense and nitrogen fertilization rates on maize plant yield and silage quality

    Directory of Open Access Journals (Sweden)

    Fernando Reimann Skonieski

    Full Text Available ABSTRACT The objective of this study was to determine the effect of Azospirillum brasilense inoculation and different nitrogen (N rates applied as topdressing on the productivity of a maize crop and the nutritional value of maize silage. Two experiments were conducted in the 2012/2013 and 2013/2014 harvests. Treatments were distributed in a randomized block design in a factorial arrangement, which consisted of two maize hybrids (AS 1572 and Defender coupled with nitrogen rates (0, 60, 120, 240, and 480 kg ha-1, inoculated or uninoculated with A. brasilense. Inoculated seeds were treated with the A. brasilense strains Ab-V5 and Ab-V6. Inoculation with A. brasilense showed interaction with the hybrids, agricultural years, and nitrogen rates for the maize plant yield. In the 2012/2013 agricultural year, inoculation increased the AS 1572 hybrid silage yield by 6.16% and, in the 2013/2014 harvest, A. brasilense inoculation produced an increase of 16.15% for the Defender hybrid. Nitrogen fertilization applied at 0, 60, and 120 kg ha-1 N benefited the plants inoculated with A. brasilense. The statistical equations revealed that N rates between 0 and 184 kg ha-1 in A. brasilense inoculated plants raised the plant productivity for silage when compared with the control plants. Regarding the nutritional value of the silage, inoculation with A. brasilense increased the ether extract levels and total digestible nutrients and reduced the amount of acid detergent fiber. For all this, positive results with inoculation for silage yield are dependent on nitrogen fertilization rate. Inoculation with A. brasilense can promote changes in the maize silage quality, but with obtained results it is not possible to definitely conclude upon nutritive value of maize silage.

  1. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... in human has been paralleled by the simultaneous develop- ment of ... In crop plants, the development of large genotyping arrays started much ..... via deep resequencing of reduced representation libraries with the Illumina ...

  2. Response of rice to inoculation with plant growth promoting rhizobacteria in control lab environment and field experiment

    International Nuclear Information System (INIS)

    Ahmed, B.

    2014-01-01

    The present study was conducted to evaluate the effects of bacterial inoculation on different growth parameters of rice variety JP-5. Three bacterial strains (Azospirillum brasilense R1, Azospirillum lipoferum RSWT1 and Pseudomonas Ky1) were used to inoculate rice varietyJP-5 at control lab environment and field. Plant growth promotion was observed in all inoculated treatments over non-inoculated, which was evident from increase in root area, root length, number of tillers, straw and grain yields and total weight of plant. Azospirillum brasilense R1 was more effective in plant growth promotion than other strains and showed 19% increase in the straw weight and 39.5% increase in grain weight. Inoculation with Azospirillum lipoferum RSWT1 and Pseudomonas Ky1 increased grain weight by 18.5% and 13.8% respectively. The study revealed that beneficial strains of PGPR can be used as biofertilizer for rice. (author)

  3. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    Directory of Open Access Journals (Sweden)

    Ruth eSchmidt

    2014-02-01

    Full Text Available Plant-associated bacteria fulfil important functions for plant growth and health of their host. However, our knowledge about the impact of bacterial treatments on the host’s microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L. Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14 from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18 already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as with the plant metabolome.

  4. Cowpea Nodules Harbor Non-rhizobial Bacterial Communities that Are Shaped by Soil Type Rather than Plant Genotype

    OpenAIRE

    Leite, Jakson; Fischer, Doreen; Rouws, Luc F. M.; Fernandes-J?nior, Paulo I.; Hofmann, Andreas; Kublik, Susanne; Schloter, Michael; Xavier, Gustavo R.; Radl, Viviane

    2017-01-01

    Many studies have been pointing to a high diversity of bacteria associated to legume root nodules. Even though most of these bacteria do not form nodules with legumes themselves, it was shown that they might enter infection threads when co-inoculated with rhizobial strains. The aim of this work was to describe the diversity of bacterial communities associated with cowpea (Vigna unguiculata L. Walp) root nodules using 16S rRNA gene amplicon sequencing, regarding the factors plant genotype and ...

  5. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  6. Response of lupine plants irrigated with saline water to rhizobium inoculation using 15N-isotope dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; El-Ghandour, I.A.; Abdel Aziz, H.A.; Hamdy, A.; Aly, M.M.

    2002-01-01

    The lupine Rhizobium symbiosis and contribution of N 2 fixation under different levels of irrigation water salinity were examined. Lysimeter experiment was established under greenhouse conditions during the year 2002-2003. In this experiment, inoculated plants were imposed to different salinity levels of irrigation water and N-fertilizer treatment. Plant height was decreased under different salinity levels, nitrogen treatments and bacterial inoculation. Similar trend was noticed with leaf area. The highest leaf area was recorded with salt tolerant bacterial inoculation (SBI) and splitting N-treatment. Highest values of N-uptake occurred after 100 day intervals under the tested factors. Relative decrease in N-uptake did not exceed 40% of those recorded with the fresh water treatment as affected by experimental factors. Nitrogen uptake by the whole plant reflected an increase at 3 dS/m salinity level of irrigation water. Relative increases were 5% and 15% for normal bacteria inoculation under single dose (NI) and splitting

  7. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil

    Directory of Open Access Journals (Sweden)

    Graziella S Gattai

    2011-09-01

    Full Text Available The goals of this study were to evaluate the microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants (Caesalpinia ferrea, Mimosa tenuiflora and Erythrina velutina in lead contaminated soil from the semi-arid region of northeastern of Brazil (Belo Jardim, Pernambuco. Dilutions were prepared by adding lead contaminated soil (270 mg Kg-1 to uncontaminated soil (37 mg Pb Kg soil-1 in the proportions of 7.5%, 15%, and 30% (v:v. The increase of lead contamination in the soil negatively influenced the amount of carbon in the microbial biomass of the samples from both the dry and rainy seasons and the metabolic quotient only differed between the collection seasons in the 30% contaminated soil. The average value of the acid phosphatase activity in the dry season was 2.3 times higher than observed during the rainy season. There was no significant difference in the number of glomerospores observed between soils and periods studied. The most probable number of infective propagules was reduced for both seasons due to the excess lead in soil. The mycorrhizal colonization rate was reduced for the three plant species assayed. The inoculation with arbuscular mycorrhizal fungi benefited the growth of Erythrina velutina in lead contaminated soil.

  8. Influence of the genotype and density of inoculation on the differentiation of somatic embryos of Coffea arabica L. cv. Red Caturra and Coffea canephora cv. Robusta

    Directory of Open Access Journals (Sweden)

    Raúl Barbón

    2003-07-01

    Full Text Available The conditions were established for the differentiation of somatic embryos from cell suspensions in the genotype Caturra rojo (Coffea arabica and Robusta (Coffea canephora. Cell suspensions with high embryogenic potentials and stable coefficients of multiplication were used. While studying the density of inoculation, for the phase of differentiation for both varieties, differences appeared in the embryogenic capacity among them, being reached a whole of 556 500 ES.l-1 for the variety Caturra rojo and 298 670 SE.l-1 for the variety Robusta. The biggest number of embryos in torpedo state, were obtained with a density of inoculation of 0.5 gFW.l-1 for the variety Caturra rojo and 5.0 gMF.l-1 for the variety Robusta. Key Words: cell suspensions, embryogenic potential, somatic Embryogenesis, embryogenic cells

  9. Identification of plant compounds involved in the microbe-plant communication during the co-inoculation of soybean with Bradyrhizobium elkanii and Delftia sp. JD2.

    Science.gov (United States)

    Cagide, Celica; Riviezzi, Braulio; Minteguiaga, Manuel; Morel, Maria; Castro-Sowinski, Susana

    2018-05-30

    Delftia sp. JD2 is a Betaproteobacterium characterized as a plant growth-promoting bacterium with a "helper" function, enhancing the performance of rhizobial inoculant strains during the co-inoculation of alfalfa and clover. In this work we analyzed: (i) the effect of the co-inoculation with Bradyrhizobium elkanii and Delftia sp. JD2 strains on the performance of soybean plants and, (ii) the production of a few secondary plant metabolites that would explain the positive effect of co-inoculation on the growth and development of soybean plants. The results showed a beneficial effect of co-inoculation on soybean growth, nodulation rate and pulse yield, with the concomitant benefit for the agricultural economy. In addition, based on a metabolomics approach, we demonstrated that a different pattern of plant metabolites is being produced at different stages of plant growth. The new information suggests that the co-inoculation of soybean changes the primary and secondary metabolism of the plant, including changes in the metabolic status of main and secondary nodules within the plant. The relevance of producing a different pattern of photosynthetic and photoprotective pigments, flavonoids, organic acids and carbohydrates are discussed. Finally, we propose that JD2 could be used, together with bradyrhizobia, to manipulate the chemical composition of plant tissues, promoting the nutritional benefits and health of soybean.

  10. Estimation of Nitrogenase Enzyme Activities and Plant Growth of Legume and Non-legume Inoculated with Diazotrophic Bacteria

    Directory of Open Access Journals (Sweden)

    Salwani S.

    2012-06-01

    Full Text Available Biological Nitrogen Fixation (BNF process benefits the agriculture sector especially for reducing cost of nitrogenfertilizer. In the process, the diazotrophs convert N2 into ammonia (NH3 which is useable by plants. The BNF process iscatalysed by nitrogenase enzyme that involved protons and electrons together with evolution of H2 therefore, theassessment of N2 fixation is also available via H2 production and electron allocation analysis. Thus, the aims of thisexperiment were to estimate the nitrogenase enzyme activities and observe the influence of diazothrophs on growth oflegume (soybean and non legume (rice plants. Host plants were inoculated with respective inocula; Bradyrhizobiumjaponicum (strain 532C for soybean while Azospirillum brasilense (Sp7 and locally isolated diazotroph (isolate 5 forrice. At harvest, the plants were observed for plant growth parameters, H2 evolution, N2 fixation and electron allocationcoefficient (EAC values. The experiment recorded N2 fixation activities of inoculated soybean plants at 141.2 μmol N2 h-1g-1 dry weight nodule, and the evolution of H2 at 144.4 μmol H2 h-1 g-1 dry weight nodule. The electron allocationcoefficient (EAC of soybean was recorded at 0.982. For inoculated rice plants, none of the observations was successfully recorded. However, results for chlorophyll contents and plant dry weight of both plants inoculated with respective inocula were similar to the control treatments supplied with full nitrogen fertilization (+N. The experiment clearly showed that inoculation of diazotrophic bacteria could enhance growth of the host plants similar to plants treated with nitrogenous fertilizer due to efficient N2 fixation process

  11. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many ...

  12. Leaf anatomy of genotypes of banana plant grown under coloured ...

    African Journals Online (AJOL)

    This study aimed to evaluate the effect of spectral light quality on different anatomical features of banana tree plantlets grown under coloured shade nets. Banana plants of five genotypes obtained from micropropagation, were grown under white, blue, red and black nets, with shade of 50%, in a completely randomized ...

  13. Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping

    Directory of Open Access Journals (Sweden)

    Gregory W. Peterson

    2014-10-01

    Full Text Available Genotyping-by-sequencing (GBS has recently emerged as a promising genomic approach for exploring plant genetic diversity on a genome-wide scale. However, many uncertainties and challenges remain in the application of GBS, particularly in non-model species. Here, we present a GBS protocol we developed and use for plant genetic diversity analysis. It uses two restriction enzymes to reduce genome complexity, applies Illumina multiplexing indexes for barcoding and has a custom bioinformatics pipeline for genotyping. This genetic diversity-focused GBS (gd-GBS protocol can serve as an easy-to-follow lab guide to assist a researcher through every step of a GBS application with five main components: sample preparation, library assembly, sequencing, SNP calling and diversity analysis. Specifically, in this presentation, we provide a brief overview of the GBS approach, describe the gd-GBS procedures, illustrate it with an application to analyze genetic diversity in 20 flax (Linum usitatissimum L. accessions and discuss related issues in GBS application. Following these lab bench procedures and using the custom bioinformatics pipeline, one could generate genome-wide SNP genotype data for a conventional genetic diversity analysis of a non-model plant species.

  14. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  15. Linear-motion tattoo machine and prefabricated needle sets for the delivery of plant viruses by vascular puncture inoculation

    Science.gov (United States)

    Vascular puncture inoculation (VPI) of plant viruses previously has been conducted either manually or by use of a commercial engraving tool and laboratory-fabricated needle arrays. In an effort to improve this technique, a linear-motion tattoo machine driving industry-standard needle arrays was tes...

  16. Inoculation of Loblolly Pine Seedlings at Planting with Basidiospores of Ectomycorrhizal Fungi in Chip Form

    Science.gov (United States)

    Peter R. Beckjord; Marla S. McIntosh; Edward Hacskaylo; John H. Jr. Melhuish; John H. Jr. Melhuish

    1984-01-01

    Basidiospores of the ectomycorrhizae-forming fungi Pisolithus tinctorius and Scleroderma auranteum incorporated into an organic hydrocolloid can be used successfully in field inoculation. Containerized loblolly pine seedlings were inoculated during outplanting by this method. This study showed that basidiospore chips were effective inocula in this investigation.

  17. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input.

    Science.gov (United States)

    Wong, Wai-Tak; Tseng, Ching-Han; Hsu, Shu-Hua; Lur, Huu-Sheng; Mo, Chia-Wei; Huang, Chu-Ning; Hsu, Shu-Chiung; Lee, Kung-Ta; Liu, Chi-Te

    2014-09-17

    Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10(6) CFU g(-1) soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.

  18. Health monitoring of plants by their emitted volatiles: A temporary increase in the concentration of nethyl salicylate after pathogen inoculation of tomato plants at greenhouse scale

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Verstappen, F.W.A.; Bouwmeester, H.J.; Posthumus, M.A.; Henten, van E.J.

    2011-01-01

    This paper describes a method to alert growers of the presence of a pathogen infection in their greenhouse based on the detection of pathogen-induced emissions of volatile organic compounds (VOCs) from plants. Greenhouse-grown plants were inoculated with spores of a fungus to learn more about this

  19. INOCULATION AND ISOLATION OF PLANT GROWTH-PROMOTING BACTERIA IN MAIZE GROWN IN VITÓRIA DA CONQUISTA, BAHIA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Joelma da Silva Santos

    2015-02-01

    Full Text Available Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94 and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N. After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.

  20. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    Science.gov (United States)

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Directory of Open Access Journals (Sweden)

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  2. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense

    Science.gov (United States)

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J.; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  3. Metabolic profiling of two maize (Zea mays L. inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Liziane Cristina Brusamarello-Santos

    Full Text Available Maize roots can be colonized by free-living atmospheric nitrogen (N2-fixing bacteria (diazotrophs. However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2, already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+. The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts

  4. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    Science.gov (United States)

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  5. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  6. Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-11-01

    Full Text Available Schizolobium parahyba var. amazonicum (Huber ex Ducke occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce and Acaulospora sp. (Ac; two native strains of Rhizobium sp. (Rh1 and Rh2; and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2 in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1 were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  7. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    Science.gov (United States)

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  8. Using common mycorrhizal networks for controlled inoculation of Quercus spp. with Tuber melanosporum: the nurse plant method.

    Science.gov (United States)

    Pereira, Guillermo; Palfner, Götz; Chávez, Daniel; Suz, Laura M; Machuca, Angela; Honrubia, Mario

    2013-07-01

    The high cost and restricted availability of black truffle spore inoculum for controlled mycorrhiza formation of host trees produced for truffle orchards worldwide encourage the search for more efficient and sustainable inoculation methods that can be applied globally. In this study, we evaluated the potential of the nurse plant method for the controlled inoculation of Quercus cerris and Quercus robur with Tuber melanosporum by mycorrhizal networks in pot cultures. Pine bark compost, adjusted to pH 7.8 by liming, was used as substrate for all assays. Initially, Q. robur seedlings were inoculated with truffle spores and cultured for 12 months. After this period, the plants presenting 74 % mycorrhizal fine roots were transferred to larger containers. Nurse plants were used for two treatments of two different nursling species: five sterilized acorns or five 45-day-old, axenically grown Q. robur or Q. cerris seedlings, planted in containers around the nurse plant. After 6 months, colonized nursling plant root tips showed that mycorrhiza formation by T. melanosporum was higher than 45 % in the seedlings tested, with the most successful nursling combination being Q. cerris seedlings, reaching 81 % colonization. Bulk identification of T. melanosporum mycorrhizae was based on morphological and anatomical features and confirmed by sequencing of the internal transcribed spacer region of the ribosomal DNA of selected root tips. Our results show that the nurse plant method yields attractive rates of mycorrhiza formation by the Périgord black truffle and suggest that establishing and maintaining common mycorrhizal networks in pot cultures enables sustained use of the initial spore inoculum.

  9. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense.

    Science.gov (United States)

    Mooney, Kailen A; Agrawal, Anurag A

    2008-06-01

    Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.

  10. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Science.gov (United States)

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  11. Intensity of Ground Cover Crop Arachis pintoi, Rhizobium Inoculation and Phosphorus Application and Their Effects on Field Growth and Nutrient Status of Cocoa Plants

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2006-08-01

    Full Text Available Arachis pintoiis potentially as a cover crop for cocoa (Theobroma cacaoL. farm, however information regarding its effect on the growth of cocoa plants in the field is very limited. The objective of this experiment is to investigate the combined influence of ground cover crop A. pintoi, rhizobial bacterial inoculation and phosphorus (P fertilizer on the growth of cocoa in the field and nutrient status. This experiment laid out in split-split plot design consisted of three levels of cover crop (without, A. pintoiand Calopogonium caeruleum, two levels of rhizobium inoculation (not inoculated and inoculated and two levels of phosphorus application (no P added and P added. The results showed that in field condition the presence of A. pintoias cover crop did not affect the growth of cocoa. On the other hand, C. caeruleumas cover crop tended to restrict cocoa growth compared to A. pintoi. Application of P increased leaf number of cocoa plant. Biomass production of A. pintoiwas 40% higher than C. caeruleum. Soil organic carbon and nitrogen contents were not affected by ground cover crops, though higher value (0.235% N and 1.63% organic C was obtained from combined treatments of inoculation and P addition or neither inoculation nor P addition. In the case of no rhizobium inoculation, soil N content in cocoa farm with A. pintoicover crop was lower than that of without cover crop or with C. caeruleum. Cover crop increased plant N content when there was no inoculation, on the other hand rhizobium inoculation decreased N content of cocoa tissue. Tissue P content of cocoa plant was not influenced by A. Pintoicover crop or by rhizobium inoculation, except that the P tissue content of cocoa was 28% higher when the cover crop was C. caeruleumand inoculated. Key words : Arachis pintoi, Theobroma cacao, Calopogonium caeruleum, rhizobium, nitrogen, phosphorus.

  12. Histochemical response of `Grande naine' plants inoculated with M. fijiensis and Bacillus pumilus CCIBP-C5 cell free filtrate

    Directory of Open Access Journals (Sweden)

    Eilyn Mena

    2015-04-01

    Full Text Available In recent years, interest has won biocontrol Mycosphaerella fijiensis with the use of microorganisms or their products. Nevertheless, the knowledge of the biochemical events involved in Musa- M. fijiensis-microorganism interaction, is still limited. The objective was to determine the histochemical response of `Grande naine' (Musa AAA plants inoculated or not with the pathogen in the presence of culture filtrate of Bacillus pumilus CCIBP-C5. For this, techniques that allow visualization of callose, superoxide anion, lignin and phenolic compounds in the early days post inoculation (dpi were used. As a result, at 6 dpi callose deposition were observed within the stomata in plants where the culture filtrate was applied regardless of the presence or absence of the pathogen. Furthermore, a blue halo was observed around stomas, indicative of the presence of superoxide anion. It was not possible to detect accumulation of lignin or phenolic compounds with the technique used. It was demonstrated the accumulation of biochemical compounds related to defense response of `Grande naine' plants to pathogen infection. Furthermore, it was shown that the plant responds in early infection with the use of bacterial culture filtrates. These results demonstrate the possible mechanism of induction of defense response in plants of Musa sp. in the presence of bacterial culture filtrate. Key words: Black Sigatoka, callose, lignin, phenols, superoxide anion

  13. Does mycorrhizal inoculation benefit plant survival, plant development and small-scale soil fixation? Results from a perennial eco-engineering field experiment in the Swiss Alps.

    Science.gov (United States)

    Bast, Alexander; Grimm, Maria; Graf, Frank; Baumhauer, Roland; Gärtner, Holger

    2015-04-01

    In mountain environments superficial slope failures on coarse grained, vegetation-free slopes are common processes and entail a certain risk for humans and socio-economic structures. Eco-engineering measures can be applied to mitigate slope instabilities. In this regard, limited plant survival and growth can be supported by mycorrhizal inoculation, which was successfully tested in laboratory studies. However, related studies on a field scale are lacking. Furthermore, mycorrhizae are known to enhance soil aggregation, which is linked to soil physics such as shear strength, and hence it is a useful indicator for near-surface soil/slope stability. The overall objective of our contribution was to test whether mycorrhizal inoculation can be used to promote eco-engineering measures in steep alpine environments based on a five-year field experiment. We hypothesized that mycorrhizal inoculation (i) enhances soil aggregation, (ii) stimulate plant survival and fine root development, (iii) effects plant performance, (iv) the stimulated root development in turn influences aggregate stability, and (v) that climatic variations play a major role in fine-root development. We established mycorrhizal and non-mycorrhizal treated eco-engineered research plots (hedge layers mainly consisting of Alnus spp. and Salix spp.) on a field experimental scale. The experimental site is in the eastern Swiss Alps at an erosion-prone slope where many environmental conditions can be seen as homogeneous. Soil aggregation, fine root development and plant survival was quantified at the end of four growing seasons (2010, '11, '12, '14). Additionally, growth properties of Alnus spp. and Salix spp. were measured and their biomass estimated. Meteorological conditions, soil temperature and soil water content were recorded. (i) The introduced eco-engineering measures enhanced aggregate stability significantly. In contrast to published greenhouse and laboratory studies, mycorrhizal inoculation delayed soil

  14. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Development of alginate-based aggregate inoculants of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth.

    Science.gov (United States)

    Joe, M M; Saravanan, V S; Islam, M R; Sa, T

    2014-02-01

    To develop co-aggregated bacterial inoculant comprising of Methylobacterium oryzae CBMB20/Methylobacterium suomiense CBMB120 strains with Azospirillum brasilense (CW903) strain and testing their efficiency as inoculants for plant growth promotion (PGP). Biofilm formation and co-aggregation efficiency was studied between A. brasilense CW903 and methylobacterial strains M. oryzae CBMB20 and M. suomiense CBMB120. Survival and release of these co-aggregated bacterial strains entrapped in alginate beads were assessed. PGP attributes of the co-aggregated bacterial inoculant were tested in tomato plants under water-stressed conditions. Results suggest that the biofilm formation efficiency of the CBMB20 and CBMB120 strains increased by 15 and 34%, respectively, when co-cultivated with CW903. Co-aggregation with CW903 enhanced the survivability of CBMB20 strain in alginate beads. Water stress index score showed least stress index in plants inoculated with CW903 and CBMB20 strains maintained as a co-aggregated inoculant. This study reports the development of co-aggregated cell inoculants containing M. oryzae CBMB20 and A. brasilense CW903 strains conferred better shelf life and stress abatement in inoculated tomato plants. These findings could be extended to other PGP bacterial species to develop multigeneric bioinoculants with multiple benefits for various crops. © 2013 The Society for Applied Microbiology.

  16. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants.

    Science.gov (United States)

    Islam, Md Rashedul; Madhaiyan, M; Deka Boruah, Hari P; Yim, Woojong; Lee, Gillseung; Saravanan, V S; Fu, Qingling; Hu, Hongqing; Sa, Tongmin

    2009-10-01

    The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1- aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia (NH3). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

  17. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  18. Light response of sunflower and canola as affected by plant density, plant genotype and N fertilization.

    Science.gov (United States)

    Soleymani, A

    2017-08-01

    Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genotypic comparison of Pantoea agglomerans plant and clinical strains

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2009-09-01

    Full Text Available Abstract Background Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2 organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP fingerprinting. Results Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P

  20. Cowpea Nodules Harbor Non-rhizobial Bacterial Communities that Are Shaped by Soil Type Rather than Plant Genotype.

    Science.gov (United States)

    Leite, Jakson; Fischer, Doreen; Rouws, Luc F M; Fernandes-Júnior, Paulo I; Hofmann, Andreas; Kublik, Susanne; Schloter, Michael; Xavier, Gustavo R; Radl, Viviane

    2016-01-01

    Many studies have been pointing to a high diversity of bacteria associated to legume root nodules. Even though most of these bacteria do not form nodules with legumes themselves, it was shown that they might enter infection threads when co-inoculated with rhizobial strains. The aim of this work was to describe the diversity of bacterial communities associated with cowpea ( Vigna unguiculata L. Walp) root nodules using 16S rRNA gene amplicon sequencing, regarding the factors plant genotype and soil type. As expected, Bradyrhizobium was the most abundant genus of the detected genera. Furthermore, we found a high bacterial diversity associated to cowpea nodules; OTUs related to the genera Enterobacter, Chryseobacterium, Sphingobacterium , and unclassified Enterobacteriacea were the most abundant. The presence of these groups was significantly influenced by the soil type and, to a lesser extent, plant genotype. Interestingly, OTUs assigned to Chryseobacterium were highly abundant, particularly in samples obtained from an Ultisol soil. We confirmed their presence in root nodules and assessed their diversity using a target isolation approach. Though their functional role still needs to be addressed, we postulate that Chryseobacterium strains might help cowpea plant to cope with salt stress in semi-arid regions.

  1. Cowpea Nodules Harbor Non-rhizobial Bacterial Communities that Are Shaped by Soil Type Rather than Plant Genotype

    Science.gov (United States)

    Leite, Jakson; Fischer, Doreen; Rouws, Luc F. M.; Fernandes-Júnior, Paulo I.; Hofmann, Andreas; Kublik, Susanne; Schloter, Michael; Xavier, Gustavo R.; Radl, Viviane

    2017-01-01

    Many studies have been pointing to a high diversity of bacteria associated to legume root nodules. Even though most of these bacteria do not form nodules with legumes themselves, it was shown that they might enter infection threads when co-inoculated with rhizobial strains. The aim of this work was to describe the diversity of bacterial communities associated with cowpea (Vigna unguiculata L. Walp) root nodules using 16S rRNA gene amplicon sequencing, regarding the factors plant genotype and soil type. As expected, Bradyrhizobium was the most abundant genus of the detected genera. Furthermore, we found a high bacterial diversity associated to cowpea nodules; OTUs related to the genera Enterobacter, Chryseobacterium, Sphingobacterium, and unclassified Enterobacteriacea were the most abundant. The presence of these groups was significantly influenced by the soil type and, to a lesser extent, plant genotype. Interestingly, OTUs assigned to Chryseobacterium were highly abundant, particularly in samples obtained from an Ultisol soil. We confirmed their presence in root nodules and assessed their diversity using a target isolation approach. Though their functional role still needs to be addressed, we postulate that Chryseobacterium strains might help cowpea plant to cope with salt stress in semi-arid regions. PMID:28163711

  2. Influence of photoperiod duration and phloem disruption through scoring on growth, disease symptoms and bacterial titer in citrus graft-inoculated with Candidatus Liberibacter asiaticus

    Science.gov (United States)

    Plants inoculated with the huanglongbing (HLB)-associated bacterium, Candidatus Liberibacter asiaticus (CLas) are typically monitored for 8-10 months to identify differences in susceptibility between genotypes. A previous report indicated that continuous light accelerated development of HLB symptoms...

  3. Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi

    Science.gov (United States)

    Four cultivars of basil (Ocimum basilicum ‘Cinnamon’, ‘Siam Queen’, ‘Sweet Dani’, and ‘Red Rubin’) were inoculated or not with the arbuscular mycorrhizal fungus (AMF), Rhizophagus intraradices, and grown with a fertilizer containing either 64 mg/l P (low-P) or 128 mg/l P (high-P) to assess whether (...

  4. Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants.

    Science.gov (United States)

    Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia

    2018-05-01

    Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.

  5. Immunity to potato mop-top virus in Nicotiana benthamiana plants expressing the coat protein gene is effective against fungal inoculation of the virus.

    Science.gov (United States)

    Reavy, B; Arif, M; Kashiwazaki, S; Webster, K D; Barker, H

    1995-01-01

    Nicotiana benthamiana stem tissue was transformed with Agrobacterium tumefaciens harboring a binary vector containing the potato mop-top virus (PMTV) coat protein (CP) gene. PMTV CP was expressed in large amounts in some of the primary transformants. The five transgenic lines which produced the most CP were selected for resistance testing. Flowers on transformed plants were allowed to self-fertilize. Transgenic seedlings selected from the T1 seed were mechanically inoculated with two strains of PMTV. Virus multiplication, assayed by infectivity, was detected in only one transgenic plant of 98 inoculated. T1 plants were also highly resistant to graft inoculation; PMTV multiplied in only one plant of 45 inoculated. Transgenic T1 seedlings were challenged in a bait test in which they were grown in soil containing viruliferous spores of the vector fungus Spongospora subterranea. In these tests only two plants out of 99 became infected. Of the five transgenic lines tested, plants of three lines were immune to infection following manual, graft, or fungal inoculation.

  6. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass

    International Nuclear Information System (INIS)

    Munier-Lamy, C.; Deneux-Mustin, S.; Mustin, C.; Merlet, D.; Berthelin, J.; Leyval, C.

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil

  7. Efficient genome-wide genotyping strategies and data integration in crop plants.

    Science.gov (United States)

    Torkamaneh, Davoud; Boyle, Brian; Belzile, François

    2018-03-01

    Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

  8. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    Science.gov (United States)

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Soybean red crown rot is a major soil-borne disease all over the world, which severely affects soybean production. Efficient and sustainable methods are strongly desired to control the soil-borne diseases.We firstly investigated the disease incidence and index of soybean red crown rot under different phosphorus (P additions in field and found that the natural inoculation of rhizobia and arbuscular mycorrhizal fungi (AMF could affect soybean red crown rot, particularly without P addition. Further studies in sand culture experiments showed that inoculation with rhizobia or AMF significantly decreased severity and incidence of soybean red crown rot, especially for co-inoculation with rhizobia and AMF at low P. The root colony forming unit (CFU decreased over 50% when inoculated by rhizobia and/or AMF at low P. However, P addition only enhanced CFU when inoculated with AMF. Furthermore, root exudates of soybean inoculated with rhizobia and/or AMF significantly inhibited pathogen growth and reproduction. Quantitative RT-PCR results indicated that the transcripts of the most tested pathogen defense-related (PR genes in roots were significantly increased by rhizobium and/or AMF inoculation. Among them, PR2, PR3, PR4 and PR10 reached the highest level with co-inoculation of rhizobium and AMF.Our results indicated that inoculation with rhizobia and AMF could directly inhibit pathogen growth and reproduction, and activate the plant overall defense system through increasing PR gene expressions. Combined with optimal P fertilization, inoculation with rhizobia and AMF could be considered as an efficient method to control soybean red crown rot in acid soils.

  10. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    Science.gov (United States)

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  11. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions.

    Science.gov (United States)

    Yim, Woojong; Seshadri, Sundaram; Kim, Kiyoon; Lee, Gillseung; Sa, Tongmin

    2013-06-01

    Bacteria of genus Methylobacterium have been found to promote plant growth and regulate the level of ethylene in crop plants. This work is aimed to test the induction of defense responses in tomato against bacterial wilt by stress ethylene level reduction mediated by the ACC deaminase activity of Methylobacterium strains. Under greenhouse conditions, the disease index value in Methylobacterium sp. inoculated tomato plants was lower than control plants. Plants treated with Methylobacterium sp. challenge inoculated with Ralstonia solanacearum (RS) showed significantly reduced disease symptoms and lowered ethylene emission under greenhouse condition. The ACC and ACO (1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves were significantly reduced with Methylobacterium strains inoculation. While ACC oxidase gene expression was found higher in plants treated with R. solanacearum than Methylobacterium sp. treatment, PR proteins related to induced systemic resistance like β-1,3-glucanase, PAL, PO and PPO were increased in Methylobacterium sp. inoculated plants. A significant increase in β-1,3-glucanase and PAL gene expression was found in all the Methylobacterium spp. treatments compared to the R. solanacearum treatment. This study confirms the activity of Methylobacterium sp. in increasing the defense enzymes by modulating the ethylene biosynthesis pathway and suggests the use of methylotrophic bacteria as potential biocontrol agents in tomato cultivation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species.

    Science.gov (United States)

    Fernández, D A; Roldán, A; Azcón, R; Caravaca, F; Bååth, E

    2012-05-01

    Our aim was to examine the effect of water stress on plant growth and development of two native plant species (Tetraclinis articulata and Crithmum maritimum) and on microbial community composition and activity in the rhizosphere soil, following the addition of an organic amendment, namely sugar beet residue (SBR), and/or the inoculation with an arbuscular mycorrhizal (AM) fungus, namely Glomus mosseae, in a non-sterile heavy metal-polluted soil. The AM inoculation did not have any significant effect on plant growth of both species. In T. articulata, SBR increased shoot growth, foliar P, total phospholipid fatty acids (PLFA), fungi-related PLFA, AM fungi-related neutral lipid fatty acid, bacterial gram-positive/gram-negative PLFA ratio and the β-glucosidase and dehydrogenase activities. SBR and AM inoculation increased phosphatase activity in T. articulata plants grown under drought conditions. In both plants, there was a synergistic effect between AM inoculation and SBR on mycorrhizal colonisation under drought conditions. In C. maritimum, the increase produced by the SBR on total amounts of PLFA, bacterial gram-positive-related PLFA and bacterial gram-negative-related PLFA was considerably higher under drought conditions. Our results suggest that the effectiveness of the amendment with regard to stimulating microbial communities and plant growth was largely limited by drought, particularly for plant species with a low degree of mycorrhizal colonisation.

  13. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat(Triticum aestivum L. ) plants grown in a salt-affected soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Hasnain, S.; Berge, O.

    2006-01-01

    Effect of soil salinity on physico-chemical and biological properties renders the salt-affected soils unsuitable for soil microbial processes and growth of the crop plants. Soil aggregation around roots of the plants is a function of the bacterial exo-polysaccharides, however, such a role of the EPS-producing bacteria in the saline environments has rarely been investigated. Pot experiments were conducted to observe the effects of inoculating six strains of exo-polysaccharides-producing bacteria on growth of primary (seminal) roots and its relationship with saccharides, cations (Ca 2+, Na +, K +) contents and mass of rhizosheath soils of roots of the wheat plants grown in a salt-affected soil. A strong positive relationship of RS with different root growth parameters indicated that an integrated influence of various biotic and abiotic RS factors would have controlled and promoted growth of roots of the inoculated wheat plants. The increase in root growth in turn could help inoculated wheat plants to withstand the negative effects of soil salinity through an enhanced soil water uptake, a restricted Na +i nflux in the plants and the accelerated soil microbial process involved in cycling and availability of the soil nutrients to the plants. It was concluded that inoculation of the exo- polysaccharides producing would be a valuable tool for amelioration and increasing crop productivity of the salt-affected soils

  14. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    R. Seyed Sharifi

    2016-02-01

    Full Text Available Introduction Utilizing biological fertilizer is a proper and cheap method for crop production. Potentially, soybean can be used as biological fertilizers and seed inoculation. Zinc is an essential element that have positive effects on plant growth and its development. Canola, sunflower, soybean and safflower are the main cultivated oilseeds in Iran. Soybean production in Iran is very low as compared to other countries. One of the most effective factor in increasing the soybean yield is seed inoculation with plant growth promoting rhizobacteria (PGPR and application of Zinc fertilizer. Some of the benefits provided by PGPR are the ability to produce gibberellic acid, cytokinins and ethylene, N2 fixation, solubilization of mineral phosphates and other nutrients (56. Numerous studies have shown a substantial increase in dry matter accumulation and seed yield following inoculation with PGPR. Seyed Sharifi (45 reported that seed inoculation with Azotobacter chroococcum strain 5 increased all of the growth indices such as total dry matter, crop growth rate and relative growth rate. Increasing and extending the role of biofertilizers such as Rhizobium can reduce the need for chemical fertilizers and decrease adverse environmental effects. Therefore, in the development and implementation of sustainable agricultural techniques, biofertilization has great importance in alleviating environmental pollution and deterioration of the nature. As a legume, soybean can obtain a significant portion (4-85% of its nitrogen requirement through symbiotic N2 fixation when grown in association with effective and compatible Rhizobium strains. Since there is little available information on nano-zinc oxide and seed inoculation by plant growth promoting rhizobacteria (PGPR on yield in the agro-ecological growing zones of Ardabil province of Iran. Therefore, this research was conducted to investigate the effects of nano-zinc oxide and seed inoculation with plant growth

  15. Effect of planting date on yield of wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, Z.; Hussain, I.

    2010-01-01

    Due to reduction in tillering period and increased risk of hot weather during grain filling, late planting results in linear reduction in wheat grain yield. A study was undertaken to determine the effects of planting dates on growth and yield of different wheat genotypes in Sindh. The trial was laid out in RCBD with split plot arrangement having four replications during 2000-01 and 2001-02 at Sakrand, Sindh. Four sowing dates i.e. November 1 and 15, December 1 and 15 were in main plots, whereas six wheat genotypes (V-7001, V-7002, V-7004, MPT-6, Abadgar-93, and Anmol-91) were in sub plots. Because of better tillering, plant growth, growth period, number of grain per unit area and grain weight, November 15 planted wheat had maximum grain yield of 5904 kg ha/sup -1/, followed by November 1 and December 1 which gave 5302 and 4948 kg ha/sup -1 /respectively. Wheat planted on December 15 resulted in minimum grain yield of 4756 kg ha/sup -1/. Wheat genotype, V-7002 had significantly (P<0.05) higher grain yield of 5578 kg ha/sup -1/ in comparison with other genotypes. Whereas genotype MPT-6 had grain yield of 5366 kg ha-1 that was also significantly higher than other genotypes. However, V-7004 had minimum grain yield of 4716 kg ha/sup -1/ in comparison with other genotypes. While evaluating performance of different genotypes on different sowing dates, V-7002 resulted in maximum yield on November 15 and late planting. On the other hand, V-7004 had lower yield on all planting dates. Results from the study revealed that maximum grain yield could be achieved with wheat planted in first fortnight of November and any delay in wheat planting might reduce wheat yield. (author)

  16. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.

    Science.gov (United States)

    Jankong, P; Visoottiviseth, P

    2008-07-01

    Arbuscular mycorrhizal fungi (AMF) may play an important role in phytoremediation of As-contaminated soil. In this study the effects of AMF (Glomus mosseae, Glomus intraradices and Glomus etunicatum) on biomass production and arsenic accumulation in Pityrogramma calomelanos, Tagetes erecta and Melastoma malabathricum were investigated. Soil (243 +/- 13 microg As g(-1)) collected from Ron Phibun District, an As-contaminated area in Thailand, was used in a greenhouse experiment. The results showed different effects of AMF on phytoremediation of As-contaminated soil by different plant species. For P. calomelanos and T. erecta, AMF reduced only arsenic accumulation in plants but had no significant effect on plant growth. In contrast, AMF improved growth and arsenic accumulation in M. malabathricum. These findings show the importance of understanding different interactions between AMF and their host plants for enhancing phytoremediation of As-contaminated soils.

  17. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting Rhizobacteria

    NARCIS (Netherlands)

    Naqqash, Tahir; Hameed, Sohail; Imran, Asma; Hanif, Muhammad Kashif; Majeed, Afshan; van Elsas, Jan Dirk

    2016-01-01

    Rhizosphere engineering with beneficial plant growth promoting bacteria offers great promise for sustainable crop yield. Potato is an important food commodity that needs large inputs of nitrogen and phosphorus fertilizers. To overcome high fertilizer demand (especially nitrogen), five bacteria,

  18. In situ stimulation vs. bioaugmentation: Can microbial inoculation of plant roots enhance biodegradation of organic compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, M.T.; Metting, F.B. Jr.; Fredrickson, J.K. [Pacific Northwest Lab., Richland, WA (United States); Seidler, R.J. [Environmental Protection Agency, Corvallis, OR (United States). Environmental Research Lab.

    1993-06-01

    The use of plant roots and their associated rhizosphere bacteria for biocontainment and biorestoration offers several advantages for treating soil-dispersed contaminants and for application to large land areas. Plant roots function as effective delivery systems, since root growth transports bacteria vertically and laterally along the root in the soil column (see [ 1,2]). Movement of microbes along roots and downward in the soil column can be enhanced via irrigation [1-4]. For example, Ciafardini et al. [3] increased the nodulation and the final yield of soybeans during pod filling by including Bradyrhizobium japonicum in the irrigation water. Using rhizosphere microorganisms is advantageous for biodegradation of compounds that are degraded mainly by cometabolic processes, e.g., trichloroethylene (TCE). The energy source for bacterial growth and metabolism is supplied by the plant in the form of root exudates and other sloughed organic material. Plants are inexpensive, and by careful choice of species that possess either tap or fibrous root growth patterns, they can be used to influence mass transport of soil contaminants to the root surface via the transpiration stream [5]. Cropping of plants to remove heavy metals from contaminated soils has been proposed as a viable, low-cost, low-input treatment option [6]. The interest in use of plants as a remediation strategy has even reached the popular press [7], where the use of ragweed for the reclamation of sites contaminated with tetraethyl lead and other heavy metals was discussed.

  19. Genotype x environment interaction QTL mapping in plants: lessons from Arabidopsis

    NARCIS (Netherlands)

    El-Soda, M.; Malosetti, M.; Zwaan, B.J.; Koornneef, M.; Aarts, M.G.M.

    2014-01-01

    Plant growth and development are influenced by the genetic composition of the plant (G), the environment (E), and the interaction between them (G × E). To produce suitable genotypes for multiple environments, G × E should be accounted for and assessed in plant-breeding programs. Here, we review the

  20. Genotype-specific responses to light stress in eelgrass Zostera marina, a marine foundation plant

    DEFF Research Database (Denmark)

    Salo, Tiina Elina; Reusch, Thorsten B. H.

    2015-01-01

    , and their performance during light limitation and 4 wk of recovery was compared to non-shaded controls. In addition to growth and biomass, we investigated storage carbohydrates and quantified the expression of genes involved in carbohydrate metabolism, photosynthesis and control of oxidative stress. Plants showed......Within mono-specific meadows of clonal plants, genotypic diversity may functionally replace species diversity. Little is known about the variability in performance and plasticity of different genotypes towards anthropogenically induced stressors. In this field experiment we compared light......-limitation stress responses and recovery of different eelgrass Zostera marina genotypes to assess the variability in phenotypic plasticity and gene expression between different genotypes. Replicated monoculture plots of 4 genotypes were subjected to a simulated turbidity period of 4 wk using shading screens...

  1. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil

    International Nuclear Information System (INIS)

    Sheng Xiafang; He Linyan; Wang Qingya; Ye Hesong; Jiang Chunyu

    2008-01-01

    A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50 mg kg -1 ). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p -1 , increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation

  2. The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens.

    Science.gov (United States)

    Calvo, Pamela; Watts, Dexter B; Kloepper, Joseph W; Torbert, H Allen

    2016-12-01

    Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future

  3. Between and beyond additivity and non-additivity : the statistical modelling of genotype by environment interaction in plant breeding

    OpenAIRE

    Eeuwijk, van, F.A.

    1996-01-01

    In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model. Genotype by environment interaction is then taken to be equivalent to non-additivity. This thesis criticizes the analysis of variance approach. Modelling genotype by environment interaction by non-addit...

  4. Inoculation of plant growth promoting rhizobia in Sudan grass (Sorghum × sudanense (Piper Stapf cv. Sudanense and millet (Pennisetum glaucum (L. R.Br. cv. BRS1501

    Directory of Open Access Journals (Sweden)

    Rafael Goulart Machado

    2018-01-01

    Full Text Available Rhizobia are able to increase yield of non-leguminous species through production of phyto-stimulating substances. This study aimed to evaluate the inoculation effect of rhizobia UFRGS Lc348 and VP16 on millet and Sudan grass yield and germination, and verify the enrichment effect of culture medium with tryptophan, which leads on the rhizobium/plant interaction. Experiments in vitro and greenhouse conditions were conducted. In millet, the inoculation with VP16 grown in culture medium with or without tryptophan induces greater length of hypocotyl and epicotyl under in vitro conditions. UFRGS Lc348 treatment induces longer hypocotyls of millet under in vitro conditions. No effects were observed with the millet inoculation in greenhouse. In Sudan grass, inoculation with VP16 enriched with tryptophan increased dry matter in shoots of adult plants. In millet seedlings had achieved an increasing in elongation in vitro conditions, which could represent an adaptive advantage in the search for water and nutrients in the rhizospheric environment during the initial growth of millet. Similarly, if verified in field conditions, Sudan grass had achieved an increasing in greenhouse conditions with the inoculation of tryptophan-enriched VP16, which could be correlated with a significant gain in crop yield. Therefore, these relationships between tryptophan-enriched VP16 and Sudan grass should be verified in subsequent studies under field conditions.

  5. The damage caused by Callosobruchus maculatus on cowpea grains is dependent on the plant genotype.

    Science.gov (United States)

    Torres, Elida Barros; Nóbrega, Rafaela S A; Fernandes-Júnior, Paulo Ivan; Silva, Luciana Barboza; Dos Santos Carvalho, Gabriel; Marinho, Rita de Cassia Nunes; Pavan, Bruno E

    2016-09-01

    Beans from cowpea cultivars fertilized with mineral N or inoculated with various rhizobium strains may contain different nitrogen concentrations and nitrogen metabolite composition, which affects the beans' defense mechanisms against pests. In this study, the population growth of Callosobruchus maculatus reared on beans from four cowpea cultivars fertilized with different nitrogen sources was evaluated. The factors tested were beans from four cowpea cultivars and seven different nitrogen sources: mineral N fertilization, inoculation with five strains of symbiotic diazotrophic bacteria, and soil nitrogen (absolute control). BRS Tapaihum and BRS Acauã cultivars had lower cumulative emergence and instantaneous rate of population growth of the insects compared with other cultivars, indicating antixenosis resistance against C. maculatus. Inoculation of BRS Acauã cultivar with the diazotrophic bacteria strain BR 3299 resulted in higher mortality of C. maculatus. For BRS Tapaihum cultivar, inoculation with diazotrophic bacteria strains BR3267, BR 3262 and BR 3299, and nitrogen fertilization resulted in higher mortality among C. maculatus. BRS Tapaihum and BRS Acauã cultivars showed the lowest cumulative insect emergence and instantaneous rates of population growth, and the highest insect mortality, mainly when the grains were obtained from plants inoculated with rhizobial strains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower

    Directory of Open Access Journals (Sweden)

    Luciano Velázquez

    2017-11-01

    Full Text Available Increased transpiration efficiency (the ratio of biomass to water transpired, TE could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  7. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower.

    Science.gov (United States)

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis; Pereyra Irujo, Gustavo

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  8. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis.

    Science.gov (United States)

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Díaz-Ricci, J C; Pedraza, R O

    2014-07-01

    The elemental composition of strawberry plants (Fragaria ananassa cv. Macarena) inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, and non-inoculated controls, was studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. This allowed simultaneous semi-quantification of different elements in a small, solid sample. Plants were inoculated and grown hydroponically in 50% or 100% Hoagland solution, corresponding to limited or optimum nutrient medium, respectively. Bacteria-inoculated plants increased the growth index 45% and 80% compared to controls when grown in 100% and 50% Hoagland solution, respectively. Thus, inoculation with A. brasilense REC3 in a nutrient-limited medium had the strongest effect in terms of increasing both shoot and root biomass and growth index, as already described for Azospirillum inoculated into nutrient-poor soils. SEM-EDS spectra and maps showed the elemental composition and relative distribution of nutrients in strawberry tissues. Leaves contained C, O, N, Na, P, K, Ca and Cu, while roots also had Si and Cl. The organic fraction (C, O and N) accounted for over 96.3% of the total chemical composition; of the mineral fraction, Na had higher accumulation in both leaves and roots. Azospirillum-inoculated and control plants had similar elemental quantities; however, in bacteria-inoculated roots, P was significantly increased (34.33%), which constitutes a major benefit for plant nutrition, while Cu content decreased (35.16%). © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  10. Salt and genotype impact on plant physiology and root proteome variations in tomato.

    Science.gov (United States)

    Manaa, Arafet; Ben Ahmed, Hela; Valot, Benoît; Bouchet, Jean-Paul; Aschi-Smiti, Samira; Causse, Mathilde; Faurobert, Mireille

    2011-05-01

    To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.

  11. Callus induction and plant regeneration by Brazilian new elite wheat genotypes

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Gruszka Vendruscolo

    2008-01-01

    Full Text Available The distinction of genotypes responsive to tissue culture and the development of an efficient regenerationsystem are the first steps towards transgenic plant production. Nine Brazilian wheat (Triticum aestivum L. genotypes werecultivated in vitro to evaluate the embryogenetic capacity. The explants (immature zygotic embryos were tested in twodifferent culture media, MS (Murashige and Skoog 1962 and modified MS - MMS (Zhou et al. 1995 with decreasing dosagesof hormone regulators. Three distinct phases were observed in each medium: induction, maintenance and regeneration. Afterinduction, the somatic embryogenesis of calli was evaluated every 21 days. Genotypes responded differently to the differentculture media. The embryogenic response of genotype CD104 was best in both culture media tested. On MMS, the values ofcallus induction, plant regeneration and ratio of regenerated plantlets per rescued embryo of this genotype were 100%, 99.5%and 1.1%, respectively. Genotypes CD104, CD200126 and CDFAPA 2001129 were most responsive on MS (regenerationcapacity of 37.5%, 33.5% and 33% respectively, and therefore interesting for genetic transformation in plant breedingprograms that develop new elite cultivars with a commercial purpose.

  12. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant.

    Science.gov (United States)

    Tripti; Kumar, Adarsh; Usmani, Zeba; Kumar, Vipin; Anshumali

    2017-04-01

    Overuse of agrochemical fertilizers alarmingly causes deterioration in soil health and soil-flora. Persistence of these agrochemicals exerts detrimental effects on environment, potentially inducing toxic effects on human health, thus pronouncing an urgent need for a safer substitute. The present study investigates the potential use of agricultural and industrial wastes as carrier materials, viz. biochar and flyash, respectively, for preparation of bioformulations (or biofertilizers) using two plant growth promoting rhizobacteria, Bacillus sp. strain A30 and Burkholderia sp. strain L2, and its effect on growth of Lycopersicon esculentum Mill. (tomato). The viability of strains was determined based on colony forming units (cfu) count of each bioformulation at an interval of 60 days for a period of 240 days. Seeds were coated with different carrier based bioformulations and pot experiment(s) were carried out to access its effects on plant growth parameters. Biochar based bioformulations showed higher cfu count and maximum viability for strain L2 (10 7  cfu g -1 ) at 240 days of storage. Maximum percentage of seed germination was also observed in biochar inoculated with strain L2. Significant (p < 0.05) increase in plant growth parameters (dry and fresh biomass, length, number of flowers) were ascertained from the pot experiment and amongst all bioformulations, biochar inoculated with strain L2 performed consistently thriving results for tomato yield. Furthermore, post-harvest study of this bioformulation treated soil improved physico-chemical properties and dehydrogenase activity as compared to pre-plantation soil status. Overall, we show that prepared biochar based bioformulation using Burkholderia sp. L2 as inoculum can tremendously enhance the productivity of tomato, soil fertility, and can also act as a sustainable substitute for chemical fertilizers. In addition, mixture of biochar and flyash inoculated with strain L2 also showed noteworthy results for the

  13. Growth of cowpea plants inoculated with Rhizobium in a saline-sodic soil after application of gypsum

    Directory of Open Access Journals (Sweden)

    Angela Jessyka Pereira Brito Fontenele

    Full Text Available Two experiments were carried out with the aim of evaluating the growth of cowpea cultivated in saline-sodic soils corrected with gypsum: one experiment in the laboratory, to identify the best level of gypsum for the correction of the saline-sodic soils of the state of Pernambuco, Brazil; and the other in a greenhouse, after correction of the soils. As the test plant, the cowpea cultivar pele de moça, inoculated with Rhizobium strain BR3267 was used. The experiments were arranged in a randomised block design in a 2 x 5 factorial arrangement, two soils and five levels of the gypsum requirement (GR, equivalent to 50, 100, 150, 200 and 250% of the GR of the soil, as determined by the Schoonover M-1 method, with five replications. The following were evaluated: electrical conductivity of the soil saturation extract (EC, soil exchangeable sodium and percentage of soil exchangeable sodium (ESP, number of nodules (NN, nodule dry weight (NDW, shoot dry weight (SDW, shoot height (PH and nitrogen concentration (N in the shoots. Application of 100% of the GR, followed by the enough water for leaching, was effective for the correction of soil sodicity. The application of increasing levels of soil GR resulted in an increase in the number of nodules, dry weight of the nodules and shoots, and the height and levels of N absorbed by the plants in soil S2. In soil S1, the use of levels of 200 and 250% of soil the GR caused a decrease in all the variables under study.

  14. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth.

    Science.gov (United States)

    Fukami, Josiane; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2017-12-01

    Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth-a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on

  15. Between and beyond additivity and non-additivity : the statistical modelling of genotype by environment interaction in plant breeding

    NARCIS (Netherlands)

    Eeuwijk, van F.A.

    1996-01-01

    In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model.

  16. Influence of the season in the development of symptoms in plants of ‘Grande naine’ artificially inoculated with Mycosphaerella fijiensis in greenhouse

    Directory of Open Access Journals (Sweden)

    Michel Leiva-Mora

    2011-01-01

    Full Text Available Plant pathogen fungi required favorable conditions to invade and colonize plant tissues, which may change according to the season of the year. This work is aimed to evaluate the influence of different seasons (June-August and August-October in the development of symptoms in ‘Grande naine’ artificially inoculated with Mycosphaerella fijiensis in greenhouse. Inoculation assays were done during three consecutive years (2005, 2006 and 2007. None differences in attack intensity between different seasons were observed, at 14, 21, 35, 49 y 63 days post inoculation (dpi. This shows that the development of symptoms in greenhouse was similar in the period from June to October. Temperature and humidity have not been controlled by all laboratories that conduct studies related to M. fijiensis. Then, to choose the appropriate season for artificial inoculations is a prerequisite for effective development of M. fijiensis infective cycle and to avoid masking in the phenotype of resistance. Key words: attack intensity, Black Sigatoka, mycelia

  17. Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes.

    Science.gov (United States)

    Wang, Xiao-Yan; Miao, Yuan; Yu, Shuo; Chen, Xiao-Yong; Schmid, Bernhard

    2014-03-01

    Following studies that showed negative effects of species loss on ecosystem functioning, newer studies have started to investigate if similar consequences could result from reductions of genetic diversity within species. We tested the influence of genotypic richness and dissimilarity (plots containing one, three, six or 12 genotypes) in stands of the invasive plant Solidago canadensis in China on the decomposition of its leaf litter and associated soil animals over five monthly time intervals. We found that the logarithm of genotypic richness was positively linearly related to mass loss of C, N and P from the litter and to richness and abundance of soil animals on the litter samples. The mixing proportion of litter from two sites, but not genotypic dissimilarity of mixtures, had additional effects on measured variables. The litter diversity effects on soil animals were particularly strong under the most stressful conditions of hot weather in July: at this time richness and abundance of soil animals were higher in 12-genotype litter mixtures than even in the highest corresponding one-genotype litter. The litter diversity effects on decomposition were in part mediated by soil animals: the abundance of Acarina, when used as covariate in the analysis, fully explained the litter diversity effects on mass loss of N and P. Overall, our study shows that high genotypic richness of S. canadensis leaf litter positively affects richness and abundance of soil animals, which in turn accelerate litter decomposition and P release from litter.

  18. Effect of salinization, Rbizobium inoculation, genotypic variation and P-application on drymatter yield and utilization of P by pea (Pisum sativum L.) and lentil (Lens Culinaris Medic)

    International Nuclear Information System (INIS)

    Dravid, M.S.

    1990-01-01

    Irrigation with saline water significantly reduced the drymatter production and uptake of phosphorus in both pea and lentil crops. Between the two crops pea was found relativley more tolerant to a given level of salinity. Soil application of phosphate in association with rbizobium inoculated seeds enhanced drymatter production, total P uptake, P derived from fertilizer and its utilization in both the crops. Amongst the cultivars tested, KPSD-5 of pea and PL-639 of lentil extracted native soil phosphorus more efficiently while cultivar Pusa-10 of pea and cultivar PL-406 of lentil showed more affinity towards applied phosphorus. (author). 8 refs., 2 tabs

  19. Response of Different Genotypes of Faba Bean Plant to Drought Stress

    Directory of Open Access Journals (Sweden)

    Manzer H. Siddiqui

    2015-05-01

    Full Text Available Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853 under drought stress. We studied the effect of different levels of drought stress i.e., (i normal irrigation (ii mild stress (iii moderate stress, and (iv severe stress on plant height (PH plant−1, fresh weight (FW and dry weight (DW plant−1, area leaf−1, leaf relative water content (RWC, proline (Pro content, total chlorophyll (Total Chl content, electrolyte leakage (EL, malondialdehyde (MDA, hydrogen peroxide (H2O2 content, and activities of catalase (CAT, peroxidase (POD and superoxide dismutase (SOD of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD, and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress.

  20. Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR for inducing salinity tolerance in mung bean under field condition of semi arid climate

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2013-04-01

    Full Text Available Salinity stress severely affects the growth, nodulation and yield of mung bean (Vigna radiata L.. However, its growth can be improved under salinity stress by inoculation/co-inoculation with rhizobia and plant growth promoting rhizobacteria (PGPR containing 1-Aminocyclopropane-1-carboxylic acid (ACC deaminase enzyme. ACC-deaminase containing bacteria regulate the stress induced ethylene production by hydrolyzing the ACC (immediate precursor of ethylene into ammonia and ketobutyric acid, thus improve plant growth by lowering the ethylene level. A study was conducted under salt affected field conditions where pre-isolated strains of Rhizobium and PGPR were used alone as well as in combination for mitigating the salinity stress on growth, nodulation and yield of mung bean by following the randomized complete block design (RCBD. The data were recorded and analyzed statistically to see the difference among treatments.

  1. Infestation of the banana root borer among different banana plant genotypes

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira de Oliveira

    Full Text Available ABSTRACT: In this study, we aimed to investigate Cosmopolites sordidus (Coleoptera: Dryophthoridae infestation among different banana genotypes in a commercial banana orchard over the course of 30 months. Banana root borer infestation was compared in 20 banana genotypes, including five varieties and 15 hybrids. Overall, we observed that 94.17% of pest infestation cases occurred in the cortex region, and only 5.83% occurred in the central cylinder. Genotypes least sensitive to infestation were the Prata Anã (AAB and Pacovan (AAB varieties, where no damage was recorded. Among the hybrid genotypes, PV 9401 and BRS Fhia 18 showed intermediate levels of sensitivity, while BRS Tropical hybrids (AAAB, PA 9401 (AAAB, BRS Vitoria (AAAB, YB 4203 (AAAB, and Bucaneiro (AAAA were the most sensitive to attack by banana root borer. This study demonstrated that the infestation of the banana root borer varies according banana plant genotype, and the utilization of less susceptible genotypes could reduce infestation rates of C. sordidus.

  2. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Science.gov (United States)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  3. Effect of Planting Date on Cold Tolerance of Winter and Spring Barley Genotypes

    Directory of Open Access Journals (Sweden)

    A. R. Eivazi

    2015-01-01

    Full Text Available In order to evaluate cold tolerance of twenty barley genotypes under field conditions, an experiment was carried out in a randomized complete block design at 3 sowing dates of October 5, November 5, and December 5 in Saatlu Agricultural Research Station, West Azarbaijan, Iran, during 2010-11 seasons. Also, another experiment was conducted on the same genotypes based on a completely randomized design under greenhouse conditions. in wich Cold stress was applied up to -25°C at two, four and six leaf development stages. LT50, ion leakage and dry matter were measured and apex photographed. Field experiment results showed the lowest significant differences at p≤0.05 between different levels of sowing date, genotype, and interaction between them for plant height, spike/m2, kernel per spike, 1000-kernel weight, grain yield and total dry matter. Genotypes of winter growth type had higher grain yield (4250kg/ha than those with spring growth type (4190kg/ha. There were significant differences for ion leakage and dry matter at 4 and 6 leaf development stages under greenhouse conditions. Genotype 1 (winter growth type with lowest values of range and standard deviation for grain yield, total dry matter and LT50 = -38 °C showed a relatively low ion leakage. In contrast, genotypes 5, 10 and 14 (spring growth type were identified sensitive to cold stress due to having more values of range, standard deviation for grain yield and total dry matter, LT50 = -18 to -27 °C and ion leakage from 25 to 33µS/m. Regression analysis showed 1000-kernel weight and total dry matter to remain at final model. Cluster analysis indicated that genotypes 2, 18, 1, 17 and 19 were superior genotypes. In principal component analysis, four components showed 80% of total variations, and the first component with 26% of variation was an important yield component for improving grain yield of barley genotypes. In conclusion, grain yields of winter and spring barley genotypes were

  4. Genotyping by sequencing (GBS, an ultimate marker-assisted selection (MAS tool to accelerate plant breeding

    Directory of Open Access Journals (Sweden)

    Jiangfeng eHe

    2014-09-01

    Full Text Available Marker-assisted selection (MAS refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP, have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping by sequencing (GBS has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS, genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection (GS under a large scale of plant breeding programs.

  5. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa.

    Science.gov (United States)

    Krugner, Rodrigo; Backus, Elaine A

    2014-02-01

    ABSTRACT The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa Wells et al., a plant-infecting bacterium that causes several plant diseases in the Americas. Although the role of plant water stress on the population density and dispersal ofH. vitripennis has been studied, nothing is known about the effects of plant water stress on the transmission of X. fastidiosa by H. vitripennis. A laboratory study was conducted to determine the influence of plant water stress on the sharpshooter stylet probing behaviors associated with the acquisition and inoculation of X. fastidiosa. Electrical penetration graph was used to monitor H. vitripennis feeding behaviors for 20-h periods on citrus [Citrus sinensis (L.) Osbeck] and almond [Prunus dulcis (Miller) D.A. Webb] plants subjected to levels of water stress. Adult H. vitripennis successfully located xylem vessels, then performed behaviors related to the evaluation of the xylem cell and fluid, and finally ingested xylem fluid from citrus and almond plants under the tested fluid tensions ranging from -5.5 to -33.0 bars and -6.0 to -24.5 bars, respectively. In general, long and frequent feeding events associated with the acquisition and inoculation of X. fastidiosa were observed only in fully irrigated plants (i.e., >-10 bars), which suggests that even low levels of plant water stress may reduce the spread of X. fastidiosa. Results provided insights to disease epidemiology and support the hypothesis that application of regulated deficit irrigation has the potential to reduce the incidence of diseases caused by X.fastidiosa by reducing the number of vectors and by decreasing pathogen transmission efficiency.

  6. Survival of Bemisia tabaci and activity of plant defense-related enzymes in genotypes of Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Luis Latournerie-Moreno

    2015-03-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius, 1889 is a major plant pest of horticultural crops from the families Solanaceae, Fabaceae and Cucurbitaceae in Neotropical areas. The exploration of host plant resistance and their biochemical mechanisms offers an excellent alternative to better understand factors affecting the interaction between phytophagous insect and host plant. We evaluated the survival of B. tabaci in landrace genotypes of Capsicum annuum L., and the activity of plant defense-related enzymes (chitinase, polyphenoloxidase, and peroxidase. The landrace genotypes Amaxito, Tabaquero, and Simojovel showed resistance to B. tabaci, as we observed more than 50% nymphal mortality, while in the commercial susceptible genotype Jalapeño mortality of B. tabaci nymphs was not higher than 20%. The activities of plant defense-related enzymes were significantly different among pepper genotypes (P < 0.05. Basal activities of chitinase, polyphenoloxidase and peroxidase were significantly lower or equal in landrace genotypes than that of the commercial genotype Jalapeño. The activity of plant enzymes was differential among pepper genotypes (P < 0.05. For example, the activity of chitinase enzyme generally was higher in non-infested plants with B. tabaci than those infested. Instead polyphenoloxidase ('Amaxito' and 'Simojovel' and peroxidase enzymes activities ('Tabaquero' increased in infested plants (P < 0.05. We conclude that basal activities of plant defense-related enzymes could be act through other mechanism plant induction, since plant defense-related enzymes showed a different induction response to B. tabaci. We underlined the role of polyphenoloxidase as plant defense in the pepper genotype Simojovel related to B. tabaci.

  7. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Energy Technology Data Exchange (ETDEWEB)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan, E-mail: yjin@udel.edu [University of Delaware, Department of Plant and Soil Sciences (United States)

    2016-10-15

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant–bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant–bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.Graphical Abstract.

  8. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    International Nuclear Information System (INIS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-01-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant–bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant–bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.Graphical Abstract

  9. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas.

    Science.gov (United States)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-06-01

    The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant's lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant-plant interactions was analysed. Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant-plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in

  10. Root phosphatase activity, plant growth and phosphorus accumulation of maize genotypes

    Directory of Open Access Journals (Sweden)

    Machado Cynthia Torres de Toledo

    2004-01-01

    Full Text Available The activity of the enzyme phosphatase (P-ase is a physiological characteristic related to plant efficiency in relation to P acquisition and utilization, and is genetically variable. As part of a study on maize genotype characterization in relation to phosphorus (P uptake and utilization efficiency, two experiments were set up to measure phosphatase (P-ase activity in intact roots of six local and improved maize varieties and two sub-populations. Plants were grown at one P level in nutrient solution (4 mg L-1 and the P-ase activity assay was run using 17-day-old plants for varieties and 24-day-old plants for subpopulations. Shoot and root dry matter yields and P concentrations and contents in plant parts were determined, as well as P-efficiency indexes. Root P-ase activity differed among varieties, and highest enzimatic activities were observed in two local varieties -'Catetão' and 'Caiano' -and three improved varieties -'Sol da Manhã', 'Nitrodente' and 'BR 106'. 'Carioca', a local variety, had the lowest activity. Between subpopulations, 'ND2', with low yielding and poorly P-efficient plants, presented higher root P-ase activity as compared to 'ND10', high yielding and highly P-efficient plants. In general, subpopulations presented lower P-ase activities as compared to varieties. Positive and/or negative correlations were obtained between P-ase activity and P-efficiency characteristics, specific for the genotypes, not allowing inference on a general and clear association between root-secreted phosphatase and dry matter production or P acquisition. Genotypic variability must be known and considered before using P-ase activity as an indicator of P nutritional status, or P tolerance, adaptation and efficiency under low P conditions.

  11. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination

    International Nuclear Information System (INIS)

    Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin

    2011-01-01

    Highlights: ► Elevated CO 2 and microbial inoculation, alone or in combination, significantly promoted growth of P. americana, and A. cruentus. ► Total tissue Cs in plants was significantly increased. ► A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana. ► The two plants had slightly different contents of antioxidant enzymes. ► Combined effects of elevated CO 2 and microbial inoculation can be explored for CO 2 - and microbe-assisted phytoextraction technology. - Abstract: Growth and cesium uptake responses of plants to elevated CO 2 and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO 2 (860 μL L −1 ) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0–1000 mg kg −1 ). Elevated CO 2 and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO 2 than for the control treatment in most cases. Regardless of CO 2 concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO 2 and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO 2 - and microbe-assisted phytoextraction technology.

  12. Salinity tolerance of Dodonaea viscosa L. inoculated with plant growth-promoting rhizobacteria: assessed based on seed germination and seedling growth characteristics

    Directory of Open Access Journals (Sweden)

    Yousefi Sonia

    2017-06-01

    Full Text Available The study was conducted to evaluate the potential of different strains of plant growth-promoting rhizobacteria (PGPR to reduce the effects of salinity stress on the medicinal hopbush plant. The bacterium factor was applied at five levels (non-inoculated, inoculated by Pseudomonas putida, Azospirillum lipoferum + Pseudomonas putida, Azotobacter chroococcum + Pseudomonas putida, and Azospirillum lipoferum + Azotobacter chroococcum + Pseudomonas putida, and the salinity stress at six levels: 0, 5, 10, 15, 20, and 50 dS m-1. The results revealed that Pseudomonas putida showed maximal germination percentage and rate at 20 dS m-1 (18.33% and 0.35 seed per day, respectively. The strongest effect among the treatments was obtained with the treatment combining the given 3 bacteria at 15 dS m-1 salinity stress. This treatment increased the root fresh and dry weights by 31% and 87.5%, respectively (compared to the control. Our results indicate that these bacteria applied on hopbush affected positively both its germination and root growth. The plant compatibility with the three bacteria was found good, and the treatments combining Pseudomonas putida with the other one or two bacteria discussed in this study can be applied in nurseries in order to restore and extend the area of hopbush forests and akin dry stands.

  13. ANALYSIS OF INTERACTION OF PLANT GENOTYPE AND STRAIN AGROBACTERIUM TUMEFACIENS IN BREEDING OF POTATO RESISTANCE TO COLORADO POTATO BEETLE

    Directory of Open Access Journals (Sweden)

    Denis I Bogomaz

    2005-03-01

    Full Text Available Efficiency of potato transformation depends on plant genotype and bacterial strain. Genotypes with high regeneration ability have high transformation ability. It is shown, that transgenosis of Bt gene increases potato resistance to collorado potato beetle, transgenosis of ipt gene does not influence on resistance.

  14. Epifluorescence and stereomicroscopy of trichomes associated with resistant and susceptible host plant genotypes of the Asian citrus psyllid (Hemiptera: Liviidae)

    Science.gov (United States)

    Epifluorescence, light and stereo-microscopy were used to characterize foliar trichomes associated with young flush leaves and stems of six plant genotypes that are hosts of the Asian citrus psyllid, Diaphorina citri, vector of the economically important citrus greening disease. These genotypes incl...

  15. Phenology and yield of strawberry as influenced by planting time and genotypes in a sub tropical region

    International Nuclear Information System (INIS)

    Rahman, M.M.; Islam, N.

    2016-01-01

    Effects of planting time on phenology of five strawberry genotypes Sweet Charlie, Festival, Camarosa, FA 008, and BARI strawberry-1 were evaluated at Bangladesh Agricultural Research Institute in two consecutive years 2009-2010 and 2010-2011. Sweet Charlie took the shorter time to begin flowering, followed by BARI Strawberry-1 and Festival when planted in 1st October. Genotype FA 008 took longer time to flower when planted in 1st December. Days to flowering of all the varieties was found to decrease with the increase in air temperature. Regardless of planting year, the genotype FA 005 followed by Camarosa and Festival, planted on 1st September, exhibited the longest harvest duration, while Sweet Charlie planted on 1st December exhibited the shortest harvest duration in both years. Genotype Festival planted on October yielded fruit with the greatest fruit weight, followed by Sweet Charlie and Camarosa planted on the same date. Plants of FA 008 and BARI Strawberry-1 planted in December produced minimum fruit weight. Maximum number of fruits/plant as well as yield/plant obtained from Sweet Charlie planted in October, while BARI Strawberry-1 planted in December yielded the least. With the use of quadratic equation it was estimated that maximum yield was obtained at ambient temperature 18.5 degree C then it was decreased with the increase of temperature. Strawberry planted in early October was found to be the most suitable in Bangladesh. Among the studied genotypes, Sweet Charlie was found to be superior in yield and early planting, and Camarosa was suitable for late planting. Festival was found less sensitive to planting date. (author)

  16. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination.

    Science.gov (United States)

    Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin

    2011-12-30

    Growth and cesium uptake responses of plants to elevated CO(2) and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO(2) (860 μL L(-1)) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg(-1)). Elevated CO(2) and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO(2) than for the control treatment in most cases. Regardless of CO(2) concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO(2) and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO(2)- and microbe-assisted phytoextraction technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees

    Directory of Open Access Journals (Sweden)

    Henry eMueller

    2015-03-01

    Full Text Available Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in Eastern and Western areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant-microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated.

  18. Genotypic variation in the sulfur assimilation and metabolism of onion (Allium cepa L.) I. Plant composition and transcript accumulation

    KAUST Repository

    McCallum, John A.; Thomas, Ludivine; Shaw, Martin L.; Pither-Joyce, Meeghan D.; Leung, Susanna; Cumming, Mathew; McManus, Michael T.

    2011-01-01

    Organosulfur compounds are major sinks for assimilated sulfate in onion (Allium cepa L.) and accumulation varies widely due to plant genotype and sulfur nutrition. In order to better characterise sulfur metabolism phenotypes and identify potential

  19. Resposta de genótipos de trigo à inoculação de bactérias diazotróficas em condições de campo Wheat genotypes response to inoculation of diazotrophic bacteria in field conditions

    Directory of Open Access Journals (Sweden)

    Valéria Marino Rodrigues Sala

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar, em condições de campo, o efeito e a viabilidade econômica da inoculação de novos isolados homólogos de bactérias diazotróficas endofíticas, sob diferentes doses de nitrogênio, em dois genótipos de trigo, em duas localidades. Foram utilizados: três isolados de bactérias diazotróficas endofíticas (IAC-AT-8, Azospirillum brasilense; IAC-HT-11, Achromobacter insolitus; IAC-HT-12, Zoogloea ramigera, dois genótipos de trigo (ITD-19 e IAC-370 e três doses de N, na forma de uréia (0, 60 e 120 kg ha-1. No estádio de quatro folhas e no perfilhamento, foram avaliados a massa de matéria seca e o N acumulado na parte aérea. Na colheita, foram avaliados o teor de N, a massa de 1.000 sementes e a produtividade de grãos. A inoculação promoveu maior massa de matéria seca e N acumulado e aumentou a produtividade de grãos, principalmente na presença de adubo nitrogenado, com lucro para o agricultor. Entretanto, o maior aumento na produtividade de grãos foi obtido nas plantas do genótipo IAC-370, com o emprego do isolado IAC-HT-12, na ausência de N, que superou em 45% o tratamento testemunha. As respostas variaram em relação ao local de cultivo, o que sugere expressiva interação planta-bactéria-ambiente.The aim of this work was to evaluate, in field conditions, the effect and the economic viability of inoculation of new homologous strains endophytic diazotrophic bacteria, under different nitrogen doses on two wheat genotypes. Three strains of diazotrophic bacteria (IAC-AT-8, Azospirillum brasilense; IAC-HT-11, Achromobacter insolitus; IAC-HT-12, Zoogloea ramigera, two wheat genotypes (ITD-19 and IAC-370, and three levels of nitrogen fertilizer as urea (0, 60 e 120 kg ha-1 were tested. Shoot dry matter and total shoot nitrogen were evaluated, at four leaves and at tillering stages. Nitrogen concentration in the grain, 1,000 grains weight and yield were evaluated at harvest. Plants with

  20. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.).

    Science.gov (United States)

    Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent

    2016-12-01

    Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2  m -2 . The slightly higher prediction in India and slightly lower prediction in

  1. Comparative studies about fungal colonization and deoxynivalenol translocation in barley plants inoculated at the base with Fusarium graminearum, Fusarium culmorum and Fusarium pseudograminearum

    Directory of Open Access Journals (Sweden)

    Francesco Pecoraro

    2018-03-01

    Full Text Available Fusarium crown rot (FCR, an important disease of wheat and barley, is mainly caused by Fusarium graminearum, F. culmorum and F. pseudograminearum, which are also responsible for mycotoxin production. This is the first comparative investigation of their colonization on barley plants after stem base inoculation. At plant maturity, FCR symptoms were visually evaluated, fungal biomass was quantified by Real-Time quantitative PCR and deoxynivalenol (DON was detected by enzyme-linked immunosorbent assay (ELISA. All the inoculated strains caused the typical FCR necrotic symptoms. Real-Time PCR analysis showed that F. graminearum and F. culmorum were present in the head tissues, while F. pseudograminearum colonized only up to the area including the second node of the stem. Conversely, DON was detected up to the head for all the three species. This study shows that, as already demonstrated in previous research for wheat, DON may be detected up to the head as a consequence of stem base infection by the three FCR agents

  2. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    Science.gov (United States)

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  3. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  4. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Cozzolino, V; De Martino, A; Nebbioso, A; Di Meo, V; Salluzzo, A; Piccolo, A

    2016-06-01

    In a greenhouse pot experiment, lettuce plants (Lactuca sativa L.) were grown in a Hg-contaminated sandy soil with and without inoculation with arbuscular mycorrhizal fungi (AMF) (a commercial inoculum containing infective propagules of Rhizophagus irregularis and Funneliformis mosseae) amended with different rates of a humic acid (0, 1, and 2 g kg(-1) of soil), with the objective of verifying the synergistic effects of the two soil treatments on the Hg tolerance of lettuce plants. Our results indicated that the plant biomass was significantly increased by the combined effect of AMF and humic acid treatments. Addition of humic matter to soil boosted the AMF effect on improving the nutritional plant status, enhancing the pigment content in plant leaves, and inhibiting both Hg uptake and Hg translocation from the roots to the shoots. This was attributed not only to the Hg immobilization by stable complexes with HA and with extraradical mycorrhizal mycelium in soil and root surfaces but also to an improved mineral nutrition promoted by AMF. This work indicates that the combined use of AMF and humic acids may become a useful practice in Hg-contaminated soils to reduce Hg toxicity to crops.

  5. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Dry matter and root colonization of plants by indigenous arbuscular mycorrhizal fungi with physical fractions of dry olive mill residue inoculated with saprophytic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, E.; Sampredro, I.; Diaz, R.; Garcia-Sanchez, M.; Siles, J. A.; Ocampo, J. A.; Garcia-Romera, I.

    2010-07-01

    We studied the influence of indigenous arbuscular mycorrhizal (AM) and saprobe fungi on the phytotoxicity of the physical fractions of dry olive mill residue (DOR). The physical extractions of DOR gave an aqueous (ADOR) and an exhausted (SDOR) fraction with less phytotoxicity for tomato than the original samples. The indigenous AM were able to decrease the phytotoxicity of SDOR inoculated with Trametes versicolor and Pycnoporus cinnabarinus on tomato. However, incubation of ADOR with both saprophytic fungi did not decrease its phytotoxicity in presence of the indigenous AM fungi. The percentage of root length colonized by indigenous AM strongly decreased in presence of DOR, around 80% of decrease at dose of 25 g kg-1of DOR, but the level of mycorrhization was higher in presence of ADOR or SDOR (38% and 44% of decrease respectively at the same dose). There were no relationships between the effects of the physical fractions of DOR incubated with the saprobe fungi on AM colonization and on plant dry weight of tomato. Our results suggest that the phytotoxicity of the olive residues can be eliminated by the combination of physical extraction and by saprobe fungal inoculation and the use of this agrowaste as organic amendment in agricultural soil may be possible. (Author) 33 refs.

  7. Comparative Susceptibility of Plants Native to the Appalachian Range of the United States to Inoculation With Phytophthora ramorum

    Science.gov (United States)

    R.G. Linderman; Patricia B. de Sá; E.A. Davis

    2008-01-01

    Phytophthora ramorum, cause of sudden oak death of trees or ramorum blight of other plant species, has many hosts. Some geographic regions, such as the Appalachian range of the eastern United States, are considered high risk of becoming infested with the pathogen because known susceptible plants occur there and climatic characteristics appear...

  8. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO

    NARCIS (Netherlands)

    Loon, Van Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P.R.

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated

  9. Rice Blast Control and Polyvarietal Planting in the Philippines: A Study in Genotype by Environment Biogeography

    Directory of Open Access Journals (Sweden)

    Daniel J. Falvo

    2001-06-01

    Full Text Available Current approaches to biogeography are based on organismic biology. Certain biogeographical phenomena, however, cannot be fully understood using organismic approaches to biogeography. I employed an approach based on molecular biology and biochemistry that I call genotype by environment biogeography in order to provide a more complete understanding of why the dispersal of rice blast disease is less efficient in fields planted with mixtures of rice varieties. In a case study of an upland ricefield in the Philippines, I found that planting varietal mixtures results in a form of effective blast control that I call intrafield gene deployment. I suggest that intrafield gene deployment be used to design more effective methods of blast control in intensive rice agriculture.

  10. "Mancha-cafe" em soja: seleção para resistência e interação entre genótipos e épocas de inoculação Seedcoat mottling in soybeans: selection for resistance and interaction between genotypes and inoculation date

    Directory of Open Access Journals (Sweden)

    André Luiz Lourençao

    1996-01-01

    infectadas no estádio vegetativo. Esses resultados fortalecem a diretriz utilizada no programa de melhoramento da Seção de Leguminosas do IAC: a de eliminar plantas e/ou linhagens com incidência de "mancha-café".The soybean mosaic virus (SMV is widespread in all soybean production areas. The mottled brown seed is the most characteristic symptom under our conditions, so in Brazil the disease was called "mancha-café" (coffee-spot. The mottling was the main limiting factor to the seed production in the certification system. The present paper had two objetives: screenning lines with different levels of mottled seeds, and to verify the interaction between selected genotypes and inoculation dates. During 1987, 131 F4:5 experimental lines from the cross IAC78-2318 x Santa Rosa, both susceptible to SMV, were evaluated under field conditions in Campinas (SP, Brazil. In the next year, seventeen selected lines plus the cultivars Santa Rosa, representing the five levels of mottling were planted again under field conditions in randomized complete-block design, with six replications. The results showed that the screenning realized in the field was efficient to identify the lines with different levels of mottled seeds. It was also observed that this characteristic was not much influenced by environmental effects as indicated by the positive and high correlation between diseases notes of both years, as well as the low value of the coefficient of variation. An additional study was carried out under greenhouse conditions to evaluate genotypes in distinct growth stages when mechanically inoculated with the virus. It consisted of a factorial experiment, involving a non-inoculated control, three inoculation times, and five lines representing notes from 1 to 5, plus the cultivars Santa Rosa, IAC-Santa Rosa PC and IAC-Santa Rosa DF. The genotypes were sowed in plastic bags and at the maturity, the following evaluations were made: the mottled seed rate, seed production (g/3 plants, mass (g of

  11. Enhanced Pb Absorption by Hordeum vulgare L. and Helianthus annuus L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium.

    Science.gov (United States)

    Arias, Milton Senen Barcos; Peña-Cabriales, Juan José; Alarcón, Alejandro; Maldonado Vega, María

    2015-01-01

    The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and (32)P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg(-1) substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg(-1)) shoot dry weight than non-colonized controls (26.5 mg Pb kg(-1)) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg(-1) root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants.

  12. Expressed sequence tags related to nitrogen metabolism in maize inoculated with Azospirillum brasilense.

    Science.gov (United States)

    Pereira-Defilippi, L; Pereira, E M; Silva, F M; Moro, G V

    2017-05-31

    The relative quantitative real-time expression of two expressed sequence tags (ESTs) codifying for key enzymes in nitrogen metabolism in maize, nitrate reductase (ZmNR), and glutamine synthetase (ZmGln1-3) was performed for genotypes inoculated with Azospirillum brasilense. Two commercial single-cross hybrids (AG7098 and 2B707) and two experimental synthetic varieties (V2 and V4) were raised under controlled greenhouse conditions, in six treatment groups corresponding to different forms of inoculation and different levels of nitrogen application by top-dressing. The genotypes presented distinct responses to inoculation with A. brasilense. Increases in the expression of ZmNR were observed for the hybrids, while V4 only displayed a greater level of expression when the plants received nitrogenous fertilization by top-dressing and there was no inoculation. The expression of the ZmGln1-3EST was induced by A. brasilense in the hybrids and the variety V4. In contrast, the variety V2 did not respond to inoculation.

  13. Growth and {sup 137}Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Aung, Han Phyo [United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Djedidi, Salem; Oo, Aung Zaw [Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Aye, Yi Swe [Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Yokoyama, Tadashi; Suzuki, Sohzoh [Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Sekimoto, Hitoshi [Faculty of Agriculture, Utsunomiya University, 321-8505 (Japan); Bellingrath-Kimura, Sonoko Dorothea, E-mail: skimura@cc.tuat.ac.jp [Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan)

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ({sup 137}Cs) uptake was evaluated in four Brassica species grown on different {sup 137}Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of {sup 137}Cs concentration and higher {sup 137}Cs transfer from the soil to plants. The Brassica species exhibited different {sup 137}Cs uptake abilities in the order Komatsuna > turnip > mustard > radish. TF values of {sup 137}Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher {sup 137}Cs concentration in plant tissue and higher {sup 137}Cs TF values (0.060) than the other vegetables. Higher {sup 137}Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. - Highlights: • PGPR inoculation did not enhance plant biomass of tested plants. • PGPR inoculation resulted in higher {sup 137}Cs concentration in plants. • Komatsuna that had larger root volume showed higher {sup 137}Cs TF from soil to plants. • Soil with high SOM and Al-vermiculite caused larger {sup 137}Cs transfer to plants.

  14. Bacterial diversity on the surface of potato tubers in soil and the influence of the plant genotype.

    Science.gov (United States)

    Weinert, Nicole; Meincke, Remo; Gottwald, Christine; Heuer, Holger; Schloter, Michael; Berg, Gabriele; Smalla, Kornelia

    2010-10-01

    The surface of tubers might be a reservoir for bacteria that are disseminated with seed potatoes or that affect postharvest damage. The numbers of culturable bacteria and their antagonistic potential, as well as bacterial community fingerprints were analysed from tubers of seven field-grown potato genotypes, including two lines with tuber-accumulated zeaxanthin. The plant genotype significantly affected the number of culturable bacteria only at one field site. Zeaxanthin had no effect on the bacterial plate counts. In dual culture, 72 of 700 bacterial isolates inhibited at least one of the potato pathogens Rhizoctonia solani, Verticillium dahliae or Phytophthora infestans, 12 of them suppressing all three. Most of these antagonists were identified as Bacillus or Streptomyces. From tubers of two plant genotypes, including one zeaxanthin line, higher numbers of antagonists were isolated. Most antagonists showed glucanase, cellulase and protease activity, which could represent mechanisms for pathogen suppression. PCR-DGGE fingerprints of the 16S rRNA genes of bacterial communities from the tuber surfaces revealed that the potato genotype significantly affected the Pseudomonas community structure at one site. However, the genotypes showed nearly identical fingerprints for Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Bacillus and Streptomycetaceae. In conclusion, tuber-associated bacteria were only weakly affected by the plant genotype. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.

    Science.gov (United States)

    Koeck, Daniela E; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2014-07-01

    Clostridium thermocellum is among the most prevalent of known anaerobic cellulolytic bacteria. In this study, genetic and phenotypic variations among C. thermocellum strains isolated from different biogas plants were determined and different genotyping methods were evaluated on these isolates. At least two C. thermocellum strains were isolated independently from each of nine different biogas plants via enrichment on cellulose. Various DNA-based genotyping methods such as ribotyping, RAPD (Random Amplified Polymorphic DNA) and VNTR (Variable Number of Tandem Repeats) were applied to these isolates. One novel approach - the amplification of unknown target sequences between copies of a previously discovered Random Inserted Mobile Element (RIME) - was also tested. The genotyping method with the highest discriminatory power was found to be the amplification of the sequences between the insertion elements, where isolates from each biogas plant yielded a different band pattern. Cellulolytic potentials, optimal growth conditions and substrate spectra of all isolates were characterized to help identify phenotypic variations. Irrespective of the genotyping method used, the isolates from each individual biogas plant always exhibited identical patterns. This is suggestive of a single C. thermocellum strain exhibiting dominance in each biogas plant. The genotypic groups reflect the results of the physiological characterization of the isolates like substrate diversity and cellulase activity. Conversely, strains isolated across a range of biogas plants differed in their genotyping results and physiological properties. Both strains isolated from one biogas plant had the best specific cellulose-degrading properties and might therefore achieve superior substrate utilization yields in biogas fermenters. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-01-01

    Full Text Available Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant activity and photosynthetic pigments were studied in basil plants. A field experiment was conducted at the University of Zabol in Iran during 2010 growing season. The experiment laid out as split plot based on randomized complete block design with three replications. Three levels of water stress W1 = 80 (control, W2 = 60 and W3 = 40% of the field capacity (FC as main plots and four levels of bacterial species consisting of S1 = Pseudomonades sp., S2 = Bacillus lentus, S3 = Azospirillum brasilens, S4 = combination of three bacterial species and S5 = control (without use of bacterial as sub plots. The results revealed that water stress caused a significant change in the antioxidant activity. The highest concentration CAT and GPX activity were in W3 treatments. By increasing water stress from control to W3, chlorophyll content in leaves was increased but Fv/Fm and APX activity decreased. Application of rhizobacteria under water stress improved the antioxidant and photosynthetic pigments in basil plants. S1 = Pseudomonades sp. under water stress, significantly increased the CAT enzyme activity, but the highest GPX and APX activity and chlorophyll content in leaves under water stress were in S4 = combination of three bacterial species.

  17. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    Directory of Open Access Journals (Sweden)

    S. A. Ibrahim

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

  18. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO{sub 2} or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shirong, E-mail: tangshir@hotmail.com [Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191 (China); Key Laboratory of Production Environment and Agro-product Safety of Ministry of Agriculture, Tianjin (China); Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang [Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191 (China); Key Laboratory of Production Environment and Agro-product Safety of Ministry of Agriculture, Tianjin (China); Zhou, Xiaomin [Plant Science Department, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9 (Canada)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Elevated CO{sub 2} and microbial inoculation, alone or in combination, significantly promoted growth of P. americana, and A. cruentus. Black-Right-Pointing-Pointer Total tissue Cs in plants was significantly increased. Black-Right-Pointing-Pointer A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana. Black-Right-Pointing-Pointer The two plants had slightly different contents of antioxidant enzymes. Black-Right-Pointing-Pointer Combined effects of elevated CO{sub 2} and microbial inoculation can be explored for CO{sub 2}- and microbe-assisted phytoextraction technology. - Abstract: Growth and cesium uptake responses of plants to elevated CO{sub 2} and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO{sub 2} (860 {mu}L L{sup -1}) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg{sup -1}). Elevated CO{sub 2} and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO{sub 2} than for the control treatment in most cases. Regardless of CO{sub 2} concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO{sub 2} and microbial inoculation with

  19. Can mycorrhizal inoculation stimulate the growth and flowering of peat-grown ornamental plants under standard or reduced watering?

    Czech Academy of Sciences Publication Activity Database

    Püschel, David; Rydlová, Jana; Vosátka, Miroslav

    2014-01-01

    Roč. 80, Aug 2014 (2014), s. 93-99 ISSN 0929-1393 R&D Projects: GA MŠk 1M0571 Institutional support: RVO:67985939 Keywords : ornamental plants * arbuscular mycorrhizal fungi * beat-based substrate Subject RIV: EF - Botanics Impact factor: 2.644, year: 2014

  20. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    International Nuclear Information System (INIS)

    Rodriguez-Dorantes, A.; Labra-Cardon, D.; Guerrero-Zuniga, A.; Montes-Villafan, S.

    2009-01-01

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  1. Genotypic variation in the sulfur assimilation and metabolism of onion (Allium cepa L.) I. Plant composition and transcript accumulation

    KAUST Repository

    McCallum, John A.

    2011-06-01

    Organosulfur compounds are major sinks for assimilated sulfate in onion (Allium cepa L.) and accumulation varies widely due to plant genotype and sulfur nutrition. In order to better characterise sulfur metabolism phenotypes and identify potential control points we compared plant composition and transcript accumulation of the primary sulfur assimilation pathway in the high pungency genotype \\'W202A\\' and the low pungency genotype \\'Texas Grano 438\\' grown hydroponically under S deficient (S-) and S-sufficient (S+) conditions. Accumulation of total S and alk(en)yl cysteine sulfoxide flavour precursors was significantly higher under S+ conditions and in \\'W202A\\' in agreement with previous studies. Leaf sulfate and cysteine levels were significantly higher in \\'W202A\\' and under S+. Glutathione levels were reduced by S- treatment but were not affected by genotype, suggesting that thiol pool sizes are regulated differently in mild and pungent onions. The only significant treatment effect observed on transcript accumulation in leaves was an elevated accumulation of O-acetyl serine thiol-lyase under S-. By contrast, transcript accumulation of all genes in roots was influenced by one or more treatments. APS reductase transcript level was not affected by genotype but was strongly increased by S-. Significant genotype × S treatment effects were observed in a root high affinity-sulfur transporter and ferredoxin-sulfite reductase. ATP sulfurylase transcript levels were significantly higher under S+ and in \\'W202A\\'. © 2011 Elsevier Ltd. All rights reserved.

  2. Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste

    Directory of Open Access Journals (Sweden)

    Chartone-Souza Edmar

    2008-10-01

    Full Text Available Abstract Background Molecular studies of Bacillus diversity in various environments have been reported. However, there have been few investigations concerning Bacillus in steel plant environments. In this study, genotypic and phenotypic diversity and phylogenetic relationships among 40 bacterial isolates recovered from steel plant waste were investigated using classical and molecular methods. Results 16S rDNA partial sequencing assigned all the isolates to the Bacillus genus, with close genetic relatedness to the Bacillus subtilis and Bacillus cereus groups, and to the species Bacillus sphaericus. tDNA-intergenic spacer length polymorphisms and the 16S–23S intergenic transcribed spacer region failed to identify the isolates at the species level. Genomic diversity was investigated by molecular typing with rep (repetitive sequence based PCR using the primer sets ERIC2 (enterobacterial repetitive intergenic consensus, (GTG5, and BOXAIR. Genotypic fingerprinting of the isolates reflected high intraspecies and interspecies diversity. Clustering of the isolates using ERIC-PCR fingerprinting was similar to that obtained from the 16S rRNA gene phylogenetic tree, indicating the potential of the former technique as a simple and useful tool for examining relationships among unknown Bacillus spp. Physiological, biochemical and heavy metal susceptibility profiles also indicated considerable phenotypic diversity. Among the heavy metal compounds tested Zn, Pb and Cu were least toxic to the bacterial isolates, whereas Ag inhibited all isolates at 0.001 mM. Conclusion Isolates with identical 16S rRNA gene sequences had different genomic fingerprints and differed considerably in their physiological capabilities, so the high levels of phenotypic diversity found in this study are likely to have ecological relevance.

  3. Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities.

    Science.gov (United States)

    Florio, Alessandro; Pommier, Thomas; Gervaix, Jonathan; Bérard, Annette; Le Roux, Xavier

    2017-08-21

    Maize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms. We quantified (de)nitrifiers abundance and activity in the rhizosphere of inoculated and non-inoculated maize on 4 sites over 2 years, and ancillary soil variables. Inoculation effects on nitrification and nitrifiers (AOA, AOB) were not consistent between the three sampling dates. Inoculation influenced denitrifiers abundance (nirK, nirS) differently among sites. In sites with high C limitation for denitrifiers (i.e. limitation of denitrification by C > 66%), inoculation increased nirS-denitrifier abundance (up to 56%) and gross N 2 O production (up to 84%), likely due to increased root C exudation. Conversely, in sites with low C limitation (<47%), inoculation decreased nirS-denitrifier abundance (down to -23%) and gross N 2 O production (down to -18%) likely due to an increased roots-denitrifiers competition for nitrate.

  4. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Désirée, Merkur and transgenic Désirée line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  5. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    van Overbeek, Leo; van Elsas, Jan Dirk

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Desiree, Merkur and transgenic Desiree line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  6. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding

    OpenAIRE

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broad...

  7. Assessment of Methylobacterium oryzae CBMB20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development.

    Science.gov (United States)

    Chanratana, Mak; Han, Gwang Hyun; Roy Choudhury, Aritra; Sundaram, Seshadri; Halim, Md Abdul; Krishnamoorthy, Ramasamy; Kang, Yeongyeong; Sa, Tongmin

    2017-11-21

    Salinity is one of the major factors contributing to the loss of crop productivity and thereby impacting livelihood of people in more than 100 countries of the world and the area of land affected by salinity is increasing day by day. This will worsen due to various factors such as drought that might result in high soil salinity. Use of plant growth promoting rhizobacteria is one of the promising eco-friendly strategies for salinity stress management as part of sustainable agricultural practices. However, it requires selecting rhizobacteria with good survivability and adaptation to salt stress. In this study we report aggregation of Methylobacterium oryzae CBMB20 cells grown in media containing high C/N ratio (30:1) than in media containing low C/N ratio (7:1). Aggregated Methylobacterium oryzae CBMB20 cells exhibited enhanced tolerance to UV irradiation, heat, desiccation, different temperature regimes, oxidative stress, starvation and supported higher population in media. Poly-β-hydroxybutyrate accumulation, exopolysaccharide production, proline accumulation and biofilm formation were good at 100 mM salt concentration with good microbial cell hydrophobicity at both 50 and 100 mM than other concentrations. Both the aggregated and non-aggregated cells grown under 0-200 mM salt concentrations produced IAA even at 200 mM salt concentration with a peak at 100 mM concentration with aggregated cells producing significantly higher quantities. ACC deaminase activity was observed in all NaCl concentrations studied with gradual and drastic reduction in aggregated and non-aggregated cells over increased salt concentrations.

  8. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes.

    Science.gov (United States)

    Gutierrez, Mario; Reynolds, Matthew P; Klatt, Arthur R

    2010-07-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r(2) >0.6-0.8) with leaf water potential (psi(leaf)) across a broad range of values (-2.0 to -4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (psi(soil)) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision

  9. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies

    International Nuclear Information System (INIS)

    Condon, A.G.; Farquhar, G.D.; Richards, R.A.

    1990-01-01

    The relationship between carbon isotope discrimination, Δ, measured in plant dry matter and the ratio of intercellular to atmospheric partial pressures of CO 2 ,p i /p a , in leaves was examined in two glasshouse experiments using 14 wheat genotypes selected on the basis of variation in Δ of dry matter. Genotypic variation in Δ was similar in both experiments, with an average range of 1.8 x 10 -3 . Δ measured in dry matter and p i /p a measured in flag leaves were positively correlated. Variation among genotypes in p i /p a was attributed, approximately equally, to variation in leaf conductance and in photosynthetic capacity. The relationship between plant transpiration efficiency, W * (the amount of above-ground dry matter produced per unit water transpired) and Δ was was also examined. The results indicate that genotypic variation in Δ, measured in dry matter, should provide a reasonable measure of genotypic variation in long-term mean leaf p i /p a in wheat. 42 refs., 2 tabs., 5 figs

  10. Potential of biofertilisers to improve performance of local genotype tomatoes

    Directory of Open Access Journals (Sweden)

    Carmen Puia

    2017-09-01

    Full Text Available Complex microbial communities in the plant rhizosphere are responsible for their success in ecosystems. Supplementary inoculation of soil with mycorrhizal fungi and rhizospheric bacteria may act as a plant growth-promoting factor. The present study aims to assess the potential use of biofertilisers on tomato as a way of increasing yield and stability of root exploration area. The experiment was set up in greenhouse, regarding the evaluation of growing dynamics of plants, mycorrhization level and obtained yield. The identification of effective inoculation variants can lead to a standardisation of technologies of growing for local plant genotypes. Data analysis was performed based on the ANOVA test, followed by Tukey HSD, principal component analysis and cluster analysis in order to identify the potential of bioproducts to stimulate the development of tomato plants. Application of bacterial biofertilisers does not stimulate enough the aboveground development of plants. An antagonistic reaction is visible between exogenous mycorrhizas and those specific in soil, acting slightly different for each genotype. Mycorrhizal level in root systems is more dependent on applied biofertilisers than on analyzed genotypes. For the variants without additional fertilisers, a high level of mycorrhization is visible only after 75 days from the transplantation. Based on results we can conclude that microbial active fertilisers may represent viable solutions to increase yield capacity and root exploration area for local tomato genotypes.

  11. Plant–plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas

    Science.gov (United States)

    van Loon, Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P. R.

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant’s lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant–plant interactions was analysed. Methods Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. Key Results It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. Conclusion The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant–plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly

  12. Inoculation of sugarcane with diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Nivaldo Schultz

    2014-04-01

    Full Text Available The sugarcane industry, a strategic crop in Brazil, requires technological improvements in production efficiency to increase the crop energy balance. Among the various currently studied alternatives, inoculation with diazotrophic bacteria proved to be a technology with great potential. In this context, the efficiency of a mixture of bacterial inoculant was evaluated with regard to the agronomic performance and N nutrition of sugarcane. The experiment was carried out on an experimental field of Embrapa Agrobiologia, in Seropédica, Rio de Janeiro, using a randomized block, 2 × 3 factorial design (two varieties and three treatments with four replications, totaling 24 plots. The varieties RB867515 and RB72454 were tested in treatments consisting of: inoculation with diazotrophic bacteria, N-fertilized control with 120 kg ha-1 N and absolute control (no inoculation and no N fertilizer. The inoculum was composed of five strains of five diazotrophic species. The yield, dry matter accumulation, total N in the shoot dry matter and the contribution of N by biological fixation were evaluated, using the natural 15N abundance in non-inoculated sugarcane as reference. The bacterial inoculant increased the stalk yield of variety RB72454 similarly to fertilization with 120 kg ha-1 N in the harvests of plant-cane and first ratoon crops, however the contribution of biological N fixation was unchanged by inoculation, indicating that the benefits of the inoculant in sugarcane may have resulted from plant growth promotion.

  13. Effect of genotype, Cr(III and Cr(VI on plant growth and micronutrient status in Silene vulgaris (Moench

    Directory of Open Access Journals (Sweden)

    A. E. Pradas-del-Real

    2013-06-01

    Full Text Available Chromium released into the environment from industrial activities has become an important environmental concern. Silene vulgaris has been proven to be tolerant to many heavy metals, so it is considered an interesting species in the revegetation and restoration of polluted soils, but no information is available about its response to Cr. The objective of this work was to study uptake and influence on plant growth of Cr(III and Cr(VI in six genotypes (four hermaphrodites and two females of S. vulgaris from different sites of Madrid (Spain. Plants were treated for 12 days with 60 µM of Cr(III or Cr(VI in semihydroponics. Dry weights, soil-plant analysis development values (SPAD reading with chlorophylls and micronutrient and total Cr concentrations were determined. Metal uptake was higher in presence of Cr(VI than of Cr(III and poorly translocated to the shoots. In both cases S. vulgaris did not show visual toxicity symptoms, biomass reduction, or differences among SPAD values as consequence of Cr additions. However genotypes SV36 and SV38 showed Fe and Mn imbalance. This is the first report on the relatively good performance of hermaphrodite and female S. vulgaris genotypes in Cr uptake and physiological traits, but further studies will be necessary to elucidate the mechanisms by which the gender may influence these variables. S. vulgaris presented high diversity at genotypic level; the treatment with hexavalent Cr increased the differences among genotypes so the use of cuttings from an homogeneous genotype seems to be an adequate method for the study of this species.

  14. Micropropagation of six Paulownia genotypes through tissue culture

    Directory of Open Access Journals (Sweden)

    Lydia Shtereva

    2014-12-01

    Full Text Available We investigated the effect of genotype and culture medium on the in vitro germination and development of plantlets from seeds of 6 different Paulownia genotypes (P. tomentosa, hybrid lines P. tomentosa P. fortunei (Mega, Ganter and Caroline, P. elongata and hybrid line P. elongata P. fortunei. Nodal and shoot tip explants were used for micropropagation of Paulownia genotypes by manipulating plant growth regulators. The highest germination percentage for all genotypes was obtained for seeds inoculated on medium supplemented with 50 mg*L GA3 (MSG2. On Thidiazuron containing media, the explants of hybrid line P. elongata P. fortunei exhibited the highest frequency of axillary shoot proliferation following by P. tomentosa P. fortunei. The results are discussed with the perspective of applying an improved protocol for in vitro seed germination and plantlet formation in several economically valuable Paulownia genotypes.

  15. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding.

    Science.gov (United States)

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping-by-sequencing (GBS) has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS), genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection under a large scale of plant breeding programs.

  16. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    Science.gov (United States)

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Physiological responses of genotypes soybean to simulated drought stress

    Directory of Open Access Journals (Sweden)

    Eleonóra Krivosudská

    2016-12-01

    Full Text Available The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. The work confirmed that the selected physiological characteristics (RWC, osmotic potential, stress index and created nodules on roots are good evaluating parameters for the determination of water stress in plant. In the floricultural year 2014 an experiment with four genetic resources of soybean was launched. Sowing of Maverick (USA, Drina (HRV, Nigra (SVK and Polanka (CZK genotypes was carried out in the containers of 15 l capacity. This stress had a negative impact on the physiological parameters. By comparing the RWC values, the decrease was more significant at the end of dehydration, which was monitored in Maverick and Drina genotypes using the Nitrazon inoculants and water stress effect. Inoculated stressed Nigra and Polanka genotypes have kept higher water content till the end of dehydration period. Also the proline accumulation was monitored during the water stress, whilst higher content of free proline reached of Maverick. More remarkable decrease of osmotic potential was again registered in a foreign Drina and Maverick genotypes in the inoculated variations. Nigra and Polanka genotypes responses not so significant in the given conditions.

  18. Biological Inoculants in Forage Conservation

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2011-05-01

    Full Text Available 3rd generation biological inoculants –containing lactic acid bacteria and enzymes – are prefered nowadays in order to coordinate the fermentation in such a way that they increase lactic acid production by leaps and bounds at the beginning of the fermentation and improve the quality and stability of silage during the fermentation and feeding. The quality of raw material (maturity of plant, chop lenght, spreading of inoculant uniformly and the proper filling, compacting, covering and wrapping have a great influence on the effectiveness of the inoculant. The mycotoxin content of malfermented silages is an undesirable risk factor. The authors established, that the Lactobacillus buchneri and enzymes containing inoculant protected better the carotene content of low, medium- and high wilteed lucerne haylages (P<0,05 compare to untreated ones Aerobic stability experiment by Honnig 1990 method was carried out with medium wilted (36 % DM lucerne haylage which was treatedtreated before ensilage with , the dosage of 105 CFU/g Pediococcus acidilactici, 1,5x105 CFU/g Lactobacillus buchneri and cellulase and hemicellulase enzimes (20 000 CMC /g remained stabyle, unspoiled after 9 days exposure to the air, while the untreated haylages spoiled after 2;4;or 7days on aerobic condition. The different Lactobacillus plantarum strains (50.000 CFU of Lactobacillus plantarum DSM 16568 + 50.000 CFU of Lactobacillus plantarum DSM 4784/ g FM of maize applied together were able to improve the aerobic stability of silomaize silage.

  19. INFLUENCE OF ELEMENTAL SULFUR AND/OR INOCULATION WITH SULFUR OXIDIZING BACTERIA ON GROWTH, AND NUTRIENT CONTENT OF SORGHUM PLANTS GROWN ON DIFFERENT SOILS

    Directory of Open Access Journals (Sweden)

    Hala Kandil

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur(E.S rates (300 and 600 ppm and/or sulfur oxidizing bacteria (S.O.B. ATCC 8158 on growth and nutrients content of sorghum plants grown on different soils (sandy soils(I & II and clay loam soil.The obtained results could be summarized in the followings:Sorghum plants:Significant increases over the control were observed in fresh and dry weights of sorghum plant as well as its content of SO4=, N, P, K, Fe, Mn, Zn and Cu by using all the sulfur and/or the oxidizing bacteria treatments. Addition of E.S (300 & 600 ppm in combination with S.O.B. ATCC 8158 significantly increased both fresh and dry weights as well as SO4=, N, P, K, Fe, Mn, Zn and Cu contents of sorghum plants grown on the used soils as compared with either of them alone.E.S rates (300 & 600 ppm significantly increased the fresh and dry weights as well as all the studied nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the different soils as compared with S.O.B. ATCC 8158 treatment alone. The highest rate of E.S (600 ppm significantly increased all the previous parameters under study as compared with the lower rate (300 ppm. The highest values of fresh and dry weights as well as nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the used soils were obtained by 600 ppm E.S + S.O.B. ATCC 8158 treatment followed by 600 ppm E.S; 300 ppm E.S + S.O.B. ATCC 8158; 300 ppm E.S; S.O.B. ATCC 8158 and control treatments in decreasing order.The used soils:E.S rates (300 & 600 ppm and/or S.O.B. ATCC 8158 decreased pH values of the used soils after 3, 6 and 9 weeks from sowing as compared with their corresponding control treatments. The values of pH of sand soil (I and clay loam soil slightly decreased by time i.e they decreased from 3 weeks to 9 weeks from plantation. E.S rates (300 & 600 ppm with or without inoculation the used soils with S.O.B. ATCC 8158 significantly

  20. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil.

    Science.gov (United States)

    Afzal, Muhammad; Yousaf, Sohail; Reichenauer, Thomas G; Sessitsch, Angela

    2012-01-01

    Plants in combination with microorganisms can remediate soils, which are contaminated with organic pollutants such as petroleum hydrocarbons. Inoculation of plants with degrading bacteria is one approach to improve remediation processes, but is often not successful due to the competition with resident microorganisms. It is therefore of high importance to address the persistence and colonization behavior of inoculant strains. The objective of this study was to determine whether the inoculation method (seed imbibement and soil inoculation) influences bacterial colonization, plant growth promotion and hydrocarbon degradation. Italian ryegrass was grown in non-sterilized soil polluted with diesel and inoculated with different alkane-degrading strains Pantoea sp. ITSI10, Pantoea sp. BTRH79 and Pseudomonas sp. MixRI75 individually as well as in combination. Inoculation generally had a beneficial effect on plant biomass production and hydrocarbon degradation, however, strains inoculated in soil performed better than applied by seed imbibement. Performance correlated with the colonization efficiency of the inoculated strains. The highest hydrocarbon degradation was observed in the treatment, in which all three strains were inoculated in combination into soil. Our study revealed that besides the degradation potential and competitive ability of inoculant strains the inoculation method plays an important role in determining the success of microbial inoculation.

  1. GENOTYPIC AND PLASTIC VARIATION IN PLANT SIZE - EFFECTS ON FECUNDITY AND ALLOCATION PATTERNS IN LYCHNIS-FLOS-CUCULI ALONG A GRADIENT OF NATURAL SOIL FERTILITY

    NARCIS (Netherlands)

    BIERE, A

    1 Genotypic and plastic variation in plant size, and trade-offs among components of reproduction were studied using cloned individuals from 24 parental plants of the perennial hay-meadow species Lychnis-flos-cuculi, planted in four sites along a gradient of natural soil fertility. 2 Plant biomass,

  2. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.

    Science.gov (United States)

    Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T

    2015-10-01

    Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.

  3. Effects of soil water deficits on three genotypes of potted Campanula medium plants during bud formation stage

    DEFF Research Database (Denmark)

    Mao, Hongyu; Sun, Yanqi; Müller, Renate

    2014-01-01

    Potted ornamental plants are often exposed to drought stress during shipping and retailing, which decreases the value and postharvest quality. Thus, selection of genotypes which can better withstand soil water deficits is essential for sustainable production. Here, the response of three genotypes...

  4. Accessing inoculation methods of maize and wheat with Azospirillum brasilense.

    Science.gov (United States)

    Fukami, Josiane; Nogueira, Marco Antonio; Araujo, Ricardo Silva; Hungria, Mariangela

    2016-03-01

    The utilization of inoculants containing Azospirillum is becoming more popular due to increasing reports of expressive gains in grain yields. However, incompatibility with pesticides used in seed treatments represents a main limitation for a successful inoculation. Therefore, in this study we searched for alternatives methods for seed inoculation of maize and wheat, aiming to avoid the direct contact of bacteria with pesticides. Different doses of inoculants containing Azospirillum brasilense were employed to perform inoculation in-furrow, via soil spray at sowing and via leaf spray after seedlings had emerged, in comparison to seed inoculation. Experiments were conducted first under greenhouse controlled conditions and then confirmed in the field at different locations in Brazil. In the greenhouse, most parameters measured responded positively to the largest inoculant dose used in foliar sprays, but benefits could also be observed from both in-furrow and soil spray inoculation. However, our results present evidence that field inoculation with plant-growth promoting bacteria must consider inoculant doses, and point to the need of fine adjustments to avoid crossing the threshold of growth stimulation and inhibition. All inoculation techniques increased the abundance of diazotrophic bacteria in plant tissues, and foliar spray improved colonization of leaves, while soil inoculations favored root and rhizosphere colonization. In field experiments, inoculation with A. brasilense allowed for a 25 % reduction in the need for N fertilizers. Our results have identified alternative methods of inoculation that were as effective as the standard seed inoculation that may represent an important strategy to avoid the incompatibility between inoculant bacteria and pesticides employed for seed treatment.

  5. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  6. In vitro plant regeneration of two cucumber (Cucumis sativum L. genotypes: Effects of explant types and culture medium

    Directory of Open Access Journals (Sweden)

    Grozeva Stanislava

    2014-01-01

    Full Text Available The effect of different phytohormone concentrations on callusogenesis and organogenesis in two cucumber genotypes were studied. It was established that the rate of plant regeneration depends on genotype, explant type and culture medium. Hypocotyls were found to be more responsive than cotyledons in morphogenesis. In vitro planlet-regenerants have been obtained in hypocotyls explants on culture medium with 1.0 and 2.0 mgL-1 BA for cultivar Gergana and in 1.0 and 3.0 mgL-1K-line 15B. Induction of regeneration in cotyledons were established only in cultivar Gergana on culture medium supplemented with 3.0 mgL-1 BA and in combination of 0.5 mgL-1IAA.

  7. DAMPAK FASILITATIF TUMBUHAN LEGUM PENUTUP TANAH DAN TANAMAN BERMIKORIZA PADA SUKSESI PRIMER DI LAHAN BEKAS TAMBANG KAPUR (Facilitative Impacts of Legume Cover-crop and Mycorrhizal-inoculated Plant on Primary Succession of Limestone Quarries

    Directory of Open Access Journals (Sweden)

    Retno Prayudyaningsih

    2015-11-01

    melalui peningkatkan kerapatan individu dan keanekaragaman jenis pada semua tingkatan habitus, meskipun untuk tingkat herba dan semak, kerapatan individu dan keanekaragaman jenis terendah pada areal pertanaman tanpa mikoriza. ABSTRACT Limestone mining using open pit mining method that involves vegetation removal and soil drilling and blasting in accessing limestone material has caused ecosystem damages. Natural recovery of such a harsh site is a slow process as the site condition in the successional process do not favor the natural vegetation development. Plants Establishment could facilitate other plants by ameliorating harsh environmental characteristics and/or increasing the availability of nutrient resources. Facilitation impact of legume cover crop (Centrosema pubescens and mycorrhizal-inoculated plantation (Vitex cofassus was studied on primary succession of TNS limestone mining quarry. The emergence of natural plants is measured using individual density, diversity and number of species by quadrat systematic plot method base on their habitus. Site conditions measured by litterfall thickness and biomass, soil organic matter content and soil organic carbon levels. The study was conducted in four types of areas on limestone postmining lands are open areas/natural conditions without planting, legume cover crop area, non mycorrhizal-inoculated plant area and mycorrhizal-inoculated plant area. The results indicated, establishment of legume cover crops and mycorrhizal-inoculated plants improved site conditions of limestone quarry. Legume cover crops establishment produced a large amount of litters with 1.08 cm of a thickness and 188.96 g/m2 of biomass, and it’s subsequent decomposition increased soil organic matter of 3.80% and the organic carbon content of 2.20%. Plantation formation gave similar impact as well, particulary those inoculated with Arbuscula Mycorrhizae Fungi (AMF produced amount of litters with 1.32 cm of a thickness and 220.48 g/m2 of biomass, with 3

  8. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth. © 2014 John Wiley & Sons Ltd.

  9. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis

    NARCIS (Netherlands)

    He, H.; Souza Vidigal, De D.; Snoek, L.B.; Schnabel, S.K.; Nijveen, H.; Hilhorst, H.; Bentsink, L.

    2014-01-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We

  10. Aumento da eficiência nutricional de tomateiros inoculados com bactérias endofíticas promotoras de crescimento Increased nutritional efficiency of tomato plants inoculated with growth-promoting endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Patrícia Baston Barretti

    2008-08-01

    Clara. Fifty five days after transplanting the upper portion of the cut seedlings, the plants were collected to determine the dry matter of the aerial parts and concentration of macro and micro nutrients. The concentration of N, P, K, Ca, Mg, Cu and Zn in the shoot and N, P, Mg and Mn in roots of inoculated plants differed from non-inoculated controls. Endophytic bacteria Micrococcus sp. (UFLA 11-LS and Brevundimonas sp. (UFV-E49 were identified by sequencing of the 16S ribosomal DNA. The P uptake in plants inoculated with these isolates was higher than in the non-inoculated controls. Plants treated with the first isolate were more efficient in the use of N, P, K, Ca, Mg, S, Cu, Fe, and Zn. The highest concentration of N, P, K, Mg, and Zn were found in the shoot of plants inoculated with Brevundimonas sp. The results of this study indicate that these endophytic bacteria isolates may be employed to increase the nutritional efficiency of tomato plants.

  11. Necessity of mycorrhizal re-inoculation in the transplantation of banana in areas with precedent of inoculated canavalia with AMF

    Directory of Open Access Journals (Sweden)

    Jaime Enrique Simó González

    2016-07-01

    Full Text Available From being the banana, a mycotrophic crop and previous results on the potential of green manure inoculated as a way to mycorrhizal economic crops, this work was developed in order to assess whether a precedent Canavalia ensiformis cultivation, inoculated with efficient strains of arbuscular mycorrhizal fungi (AMF inoculation, it is necessary the banana inoculation, ‘FHIA-18’ (AAAB cultivar in the transplant field. Four treatments were evaluated: a control without application of fertilizers and other organic-mineral fertilizers (100% FOM, both without canavalia and two other treatments that are used above canavalia inoculated AMF and half also received organic-mineral fertilizer applications: (50% FOM, one of which, the banana was reinoculated in the transplant field and the other one not. The experimental design used, was randomized blocks, with four replications. The experiment ended after three productive cycles (mother plant, stems 1 and 2. Canavalia inoculated treatments and 50 % of FOM, guaranteed high yields and satisfactory nutritional content similar to that received 100 % of FOM and significantly higher than those obtained with the control treatment. This together with the values of colonization percentages and pores at both high and inoculated treatments were no significant differences between them, indicated not only the effectiveness of mycorrhizal inoculation but rather green manure inoculation was successful to inoculate bananas and re-inoculation of the same was not needed on the transplant.

  12. The use of 32P dilution techniques to evaluate the effect of mycorrhizal inoculation on plant uptake of P from products of fermentation mixtures including agrowastes, Aspergillus niger and rock phosphate

    International Nuclear Information System (INIS)

    Vassilev, N.; Vassileva, M.; Azcon, R.; Barea, J.-M.

    2002-01-01

    Some microorganisms, such as filamentous fungi, are capable of solubilizing rock phosphate products, which are a less costly alternative to conventional P fertilizers used so far in agriculture. However, metabolizable C compounds must be supplied to the microbes to solubilize rock phosphate (RP). On another hand, huge quantities of organic materials are produced by cultivated plants every year and their residues became agrowastes, which may often pose significant environmental problems. An attractive approach to solubilize RP would therefore, be the application of microorganisms possessing a high acid-producing activity in fermentation processes based on agrowastes. In this context, Aspergillus niger was successfully cultivated on sugar beet (SB) waste material supplemented with 3.0 g/l RP acidifying the medium by releasing citric acid and thus decreasing the pH to 3.0-3.5. At the end of the solid-state fermentation process, the product contained mineralized (69%) organic matter, RP solubilized to 224 μg/ml and fungal mycelium. A series of microcosms greenhouse experiments were then carried out aimed at evaluating the effectiveness of such product, added at a rate of 5% (v/v), to a neutral, calcareous, P-deficient soil. Clover (Trifolium repens) inoculated or not with an arbuscular mycorrhizal fungus, was the test plant. It was shown that the product improved plant growth and P acquisition. Mycorrhizal inoculation further enhanced the effectiveness of the fermentation product. The use of the isotopic 32 P dilution technique showed a lowering of the specific activity of the treated plants, thus indicating that plants benefited from P solublilized from RP by the microbial treatments applied in this experiment. The reported biotechnological approach offers a potential application for sustainability purposes. (author)

  13. Cd Toxicity and Accumulation in Rice Plants Vary with Soil Nitrogen Status and Their Genotypic Difference can be Partly Attributed to Nitrogen Uptake Capacity

    Directory of Open Access Journals (Sweden)

    Qin DU

    2009-12-01

    Full Text Available Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 µmol/L and three N levels (23.2, 116.0 and 232.0 mg/L to study the effects of nitrogen status and nitrogen uptake capacity on Cd accumulation and tolerance in rice plants. N-efficient rice genotype, Zhenshan 97B, accumulated less Cd and showed higher Cd tolerance than N-inefficient rice genotype, Milyang 46. There was consistency between nitrogen uptake capacity and Cd tolerance in rice plants. Increase of N level in solution slightly increased Cd concentration in shoots but significantly increased in roots of both genotypes. Compared with the control at low N level, Cd tolerance in both rice genotypes could be significantly enhanced under normal N level, but no significant difference was observed between the Cd tolerances under normal N (116.0 mg/L and high N (232.0 mg/L conditions. The result proved that genotypic differences in Cd accumulation and toxicity could be, at least in part, attributed to N uptake capacity in rice plants.

  14. Digest: Plants adapt under attack: genotypic selection and phenotypic plasticity under herbivore pressure.

    Science.gov (United States)

    Hawkins, Nichola J

    2018-03-31

    Plant species adapt to changing environmental conditions through phenotypic plasticity and natural selection. Agrawal et al. (2018) found that dandelions responded to the presence of insect pests by producing higher levels of defensive compounds. This defensive response resulted both from phenotypic plasticity, with individual plants' defenses triggered by insect attack, and from evolution by natural selection acting on genetic variation in the plant population. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  15. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment.

    Science.gov (United States)

    Curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; Caravaca, Fuensanta; Roldán, Antonio

    2014-06-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM + 0% COW, AM + 1% COW, and AM + 3% COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60%, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.

  16. The need of Liversity of gaeden plants genotypes enrichment in Ukraine

    Directory of Open Access Journals (Sweden)

    А. І. Опалко

    2012-12-01

    Full Text Available The main reasons hindering expansion of assortment of horticultural crops and negatively affecting the provision of Ukraine’s population with horticultural production were discussed. The trend towards global unification of genotypes with parallel reduction of potential to andropoadaptability of chief horticultural crops is recognized as one of the main causes for instability in domestic horticulture crops production. Appropriate measures are proposed, including intensification of zonal specialization and intensification of the state protectionism over both domestic fruit farming and research developments, first of all in breeding and genetics, aimed at the ability to meet various requirements of producers, processors and consumers of fruits and berries to new cultivars.

  17. Genotype and planting density effects on rooting traits and yield in cotton (Gossypium hirsutum L.)

    NARCIS (Netherlands)

    Zhang, L.Z.; Li, B.G.; Yan, G.T.; Werf, van der W.; Spiertz, J.H.J.; Zhang, S.P.

    2006-01-01

    Root density distribution of plants is a major indicator of competition between plants and determines resource capture from the soil. This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossypium hirsutum L.) cultivars were

  18. Study of phytoaccumulation of selenium by two different genotypes of chickpea plant using INAA

    International Nuclear Information System (INIS)

    Srivastava, Alok; Prerna, Agarwal; Pathania, D.; Nayyar, H.; Swain, K.K.; Ajith, Nicy; Reddy, A.V.R.; Acharya, R.

    2011-01-01

    The phytoaccumulation efficacy of two geno types of chickpea plant member of the legume family has been studied using instrumental neutron activation analysis. The present work shows that both the desi as well as the kabuli variety of the chickpea plant have potential for application as a bioremediator as well as fortifier. The kabuli variety seems to be a better bioremediator. (author)

  19. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  20. [Design of SCM inoculation device].

    Science.gov (United States)

    Qian, Mingli; Xie, Haiyuan

    2014-01-01

    The first step of bacilli culture is inoculation bacteria on culture medium. Designing a device to increase efficiency of inoculation is significative. The new device is controlled by SCM. The stepper motor can drive the culture medium rotating, accelerating, decelerating, overturn and suspending. The device is high practicability and efficient, let inoculation easy for operator.

  1. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation.

    Science.gov (United States)

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan

    2017-11-01

    The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Desmanthus GENOTYPES

    Directory of Open Access Journals (Sweden)

    JOSÉ HENRIQUE DE ALBUQUERQUE RANGEL

    2015-01-01

    Full Text Available Desmanthus is a genus of forage legumes with potential to improve pastures and livestock produc-tion on clay soils of dry tropical and subtropical regions such as the existing in Brazil and Australia. Despite this patterns of natural or enforced after-ripening of Desmanthus seeds have not been well established. Four year old seed banks of nine Desmanthus genotypes at James Cook University were accessed for their patterns of seed softe-ning in response to a range of temperatures. Persistent seed banks were found to exist under all of the studied ge-notypes. The largest seeds banks were found in the genotypes CPI 78373 and CPI 78382 and the smallest in the genotypes CPI’s 37143, 67643, and 83563. An increase in the percentage of softened seeds was correlated with higher temperatures, in two patterns of response: in some accessions seeds were not significantly affected by tempe-ratures below 80º C; and in others, seeds become soft when temperature rose to as little as 60 ºC. At 80 °C the heat started to depress germination. High seed production of Desmanthus associated with dependence of seeds on eleva-ted temperatures to softening can be a very important strategy for plants to survive in dry tropical regions.

  3. Growth and (137)Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan.

    Science.gov (United States)

    Aung, Han Phyo; Djedidi, Salem; Oo, Aung Zaw; Aye, Yi Swe; Yokoyama, Tadashi; Suzuki, Sohzoh; Sekimoto, Hitoshi; Bellingrath-Kimura, Sonoko Dorothea

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ((137)Cs) uptake was evaluated in four Brassica species grown on different (137)Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of (137)Cs concentration and higher (137)Cs transfer from the soil to plants. The Brassica species exhibited different (137)Cs uptake abilities in the order Komatsuna>turnip>mustard>radish. TF values of (137)Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher (137)Cs concentration in plant tissue and higher (137)Cs TF values (0.060) than the other vegetables. Higher (137)Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of plant growth regulators and genotype on the micropropagation of adult trees of Arbutus unedo L. (strawberry tree).

    Science.gov (United States)

    Gomes, Filomena; Simões, Mafalda; Lopes, Maria L; Canhoto, Jorge M

    2010-12-31

    Arbutus unedo grows spontaneously around the Mediterranean basin. The species is tolerant to drought and has a strong regeneration capacity following fires making it interesting for Mediterranean forestation programs. Considering the sparse information about the potential of this fruit tree to be propagated in vitro, a project to clone selected trees based on their fruit production was initiated a few years ago. The role of several factors on A. unedo propagation was evaluated. The results showed that 8.9 μm kinetin gave the best results although not significantly different from those obtained with benzyladenine or zeatin. The inclusion of thidiazuron or 1-naphthaleneacetic acid promoted callus growth and had deleterious effects on the multiplication rate. The genotype of the donor plants is also a factor interfering with the multiplication. The results also indicated that the conditions used for multiplication influenced the behavior of shoots during the rooting phase. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Fernández, Juan Olivares; Rosenqvist, Eva

    2014-01-01

    The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat...... to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment........ The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20°C at all durations tested), indicating that the detachment itself did not affect...

  6. Hepatitis E Virus Genotype 4 Sequences Detected in Sewage from Treatment Plants of China

    OpenAIRE

    Li, Heng; Li, Wei; She, Ruiping; Yu, Liang; Wu, Qiaoxing; Yang, Jingling; Hu, Fengjiao; Soomro, Majid Hussain; Shi, Ruihan; Hao, Wenzhuo; Zhao, Yue; Mao, Jingjing

    2017-01-01

    The aim of this study was to investigate the occurrence of hepatitis E virus (HEV) in sewage samples in Shen Zhen, China. Sewage samples were collected from 152 sewage plants including livestock sewage, domestic sewage and treated sewage from May to July of 2015. Two of 152 samples were HEV positive (1.32%) from the livestock sewage plants. Partial ORF2 fragments of HEV were sequenced and a phylogenetic tree was constructed using MEGA5.1. Blast and phylogenetic analyses showed that both of th...

  7. Effects of Rhizobuim leguminosarum inoculation on the growth and ...

    African Journals Online (AJOL)

    g per plant in 2008 and 2009 seasons, respectively. The findings suggested that inoculation of Mucuna flagellipies with Rhizobium is beneficial and produced high seed yield and could be use as biofertilizer an alternative to nitrogen fertilizer.

  8. effects of rhizobuim leguminosarum inoculation on the growth and ...

    African Journals Online (AJOL)

    user

    beneficial symbiotic microorganisms into the plant. Rhizosphere ... Rhizobium strains in the yeast manitol broth were ... inoculants contained sixteen (16) colonies of Rhizobium leguminosarum bacterial cells per milliliter (ml) of the yeast ...

  9. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa

    Science.gov (United States)

    The glassy-winged sharpshooter, Homalodisca vitripennis, is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa, the causal agent of several plant diseases in the Americas. While the role of plant water stress on the population density and dispersal of H. vitripennis has been studie...

  10. Antioxidant properties of soybean seedlings inoculated with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Manojlović Ana S.

    2017-01-01

    Full Text Available This study was conducted in order to assess the effect of inoculation of soybean (Glycine max L. seeds with Trichoderma asperellum, followed by mites (Tetranychus urticae exposure on lipid peroxidation (LP process and the activity of antioxidant enzymes. T. urticae is an occasional pest of soybean that causes biotic stress. Biotic stress leads to overproduction of reactive oxygen species (ROS which may cause damage to vital biomolecules. Enzymatic antioxidant defense systems protect plants against oxidative stress. T. asperellum is commonly used as biocontrol agent against plant pathogens. It has been suggested that previous inoculation of seeds with T. asperellum may cause induced resistance against biotic stress. The aim of this study was to determine LP intensity and antioxidant enzymes activity in inoculated and non-inoculated soybean seedlings with and without exposure to mites. Noticeably higher LP intensity was detected in non-inoculated group treated with mites compared to control group. Inoculated soybean seedlings treated with mites had lower LP intensity compared to noninoculated group. Also, it has been noticed that inoculation with Trichoderma asperellum itself, produced mild stress in plants. In addition, positive correlation between enzymes activity and LP was noticed. The level of oxidative stress in plants was followed by the change of LP intensity. According to results obtained, it was concluded that the greatest oxidative stress occurred in non-inoculated group treated with mites and that inoculation successfully reduced oxidative stress. The results indicate that inoculation of soybean seeds with T. asperellum improves resistance of soybean seedlings against mites attack. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31022

  11. Genotype and plant trait effects on soil CO2 efflux responses to altered precipitation in switchgrass

    Science.gov (United States)

    Background/Question/Methods Global climate change models predict increasing drought during the growing season, which will alter many ecosystem processes including soil CO2 efflux (JCO2), with potential consequences for carbon retention in soils. Soil moisture, soil temperature and plant traits such...

  12. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  13. Co-occurrence and genotypic distribution of Phytophthora species recovered from watersheds and plant nurseries of eastern Tennessee.

    Science.gov (United States)

    Hulvey, Jon; Gobena, Daniel; Finley, Ledare; Lamour, Kurt

    2010-01-01

    In 2008 statewide surveys of symptomatic foliage of nursery plants from Tennessee resulted in isolation of 43 isolates of Phytophthora spp. This sample set includes four described species (P. citrophthora, P. citricola, P. nicotianae, P. syringae), and a provisional species of Phytophthora ('P. hydropathica'). At the same time a stream-baiting survey was initiated to recover Phytophthora from eight watersheds in eastern Tennessee, some of which are near plant nurseries. Baiting was accomplished by submerging healthy Rhododendron leaves approximately 1 wk and isolation onto selective media. Six baiting periods were completed, and in total 98 Phytophthora isolates and 45 isolates of Pythium spp. were recovered. Three described species (P. citrophthora, P. citricola and P. irrigata) and the provisional species 'P. hydropathica' were obtained as well as three undescribed Phytophthora taxa and Pythium litorale. Isolates from both surveys were identified to species with morphology and the internal transcribed spacer (ITS) sequence. Isolates from species co-occurring in streams and nurseries (P. citricola, P. citrophthora and 'P. hydropathica') were characterized further with amplified fragment length polymorphism (AFLP) analyses and mefenoxam tolerance assays. Isolates representing a putative clonal genotype of P. citricola were obtained from both environmental and nursery sample sets.

  14. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; Svensgaard, Jesper; Christensen, Svend

    2015-01-01

    Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non-invasive ph......Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non......-invasive phenotyping, the large-scale analyses of the underlying physiological mechanisms lag behind. The external phenotype is determined by the sum of the complex interactions of metabolic pathways and intracellular regulatory networks that is reflected in an internal, physiological, and biochemical phenotype......, ultimately enabling the in silico assessment of responses under defined environments with advanced crop models. This will allow generation of robust physiological predictors also for complex traits to bridge the knowledge gap between genotype and phenotype for applications in breeding, precision farming...

  15. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.

    Science.gov (United States)

    Swarupa, V; Ravishankar, K V; Rekha, A

    2014-04-01

    Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.

  16. Optimized Use of Low-Depth Genotyping-by-Sequencing for Genomic Prediction Among Multi-Parental Family Pools and Single Plants in Perennial Ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Fabio Cericola

    2018-03-01

    Full Text Available Ryegrass single plants, bi-parental family pools, and multi-parental family pools are often genotyped, based on allele-frequencies using genotyping-by-sequencing (GBS assays. GBS assays can be performed at low-coverage depth to reduce costs. However, reducing the coverage depth leads to a higher proportion of missing data, and leads to a reduction in accuracy when identifying the allele-frequency at each locus. As a consequence of the latter, genomic relationship matrices (GRMs will be biased. This bias in GRMs affects variance estimates and the accuracy of GBLUP for genomic prediction (GBLUP-GP. We derived equations that describe the bias from low-coverage sequencing as an effect of binomial sampling of sequence reads, and allowed for any ploidy level of the sample considered. This allowed us to combine individual and pool genotypes in one GRM, treating pool-genotypes as a polyploid genotype, equal to the total ploidy-level of the parents of the pool. Using simulated data, we verified the magnitude of the GRM bias at different coverage depths for three different kinds of ryegrass breeding material: individual genotypes from single plants, pool-genotypes from F2 families, and pool-genotypes from synthetic varieties. To better handle missing data, we also tested imputation procedures, which are suited for analyzing allele-frequency genomic data. The relative advantages of the bias-correction and the imputation of missing data were evaluated using real data. We examined a large dataset, including single plants, F2 families, and synthetic varieties genotyped in three GBS assays, each with a different coverage depth, and evaluated them for heading date, crown rust resistance, and seed yield. Cross validations were used to test the accuracy using GBLUP approaches, demonstrating the feasibility of predicting among different breeding material. Bias-corrected GRMs proved to increase predictive accuracies when compared with standard approaches to

  17. Inoculation, colonization and distribution of fungal endophytes in ...

    African Journals Online (AJOL)

    Mo

    and for a part or whole of their life cycle live symptomlessly within the plant. ... inoculated in tissue culture banana plants, must occur at high frequencies in the plant and be able to persist in ... For instance, the influence of fungal endophytes.

  18. Response of Various Tomato Genotypes to Begomovirus Infection and Its Improved Diagnostic

    Directory of Open Access Journals (Sweden)

    NOOR AIDAWATI

    2007-09-01

    Full Text Available Begomovirus infection was identified from tomato growing areas in West Java (Bogor, Central Java (Boyolali, and D.I. Yogyakarta (Kaliurang. Efforts to reduce the infection among others are planting resistance varieties. This research was undertaken to evaluate 14 tomato genotypes for their response to the infection. Dot blot hybridization using nonradioactive (digoxigenin DNA probe was employed to determine the presence of begomovirus in inoculated plants. Polymerase chain reaction-amplified product of DNA clone of tobacco leaf curl virus –Indonesia was used as a source of DNA probe. All of tomato genotypes evaluated in this study was infected separately by three strain of begomovirus (GVPSlm, GVABy, GVCBgr. Tomato genotypes Bonanza, Jelita, Safira, Permata, Presto, PSPT 8, PSPT 5B, Apel-Belgia, Karibia, Mitra, PSPT 9, Marta, and PSPT 2, showed susceptible or highly susceptible response to the three strains of begomovirus. Exception to those was shown by cv. Intan which resulted in moderate resistance when inoculated with GVCBgr although it resulted susceptible response with the other two strains. Dot-blot hybridization technique was proved to be a powerful tool to detect begomovirus infection in plants showing symptom as well as symptom-less plants. Accumulation of the virus in those plants was relatively high, except in cv. Bonanza and Apel-Belgia. Dot-blot hybridization technique using DIG-labeled DNA probe was able to detect begomovirus DNA in infected tissue up to 10−2 dilution factor.

  19. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation.

    Science.gov (United States)

    Li, Changyan; Luo, Chao; Zhou, Zaihui; Wang, Rui; Ling, Fei; Xiao, Langtao; Lin, Yongjun; Chen, Hao

    2017-02-28

    The brown planthopper (BPH; Nilaparvata lugens Stål) is a destructive piercing-sucking insect pest of rice. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play important roles in plant-pest interactions. Many isolated rice genes that modulate BPH resistance are involved in the metabolism or signaling pathways of SA, JA and ethylene. 'Rathu Heenati' (RH) is a rice cultivar with a high-level, broad-spectrum resistance to all BPH biotypes. Here, RH was used as the research material, while a BPH-susceptible rice cultivar 'Taichung Native 1' (TN1) was the control. A cDNA microarray analysis illuminated the resistance response at the genome level of RH under BPH infestation. The levels of SA and JA in RH and TN1 seedlings after BPH infestation were also determined. The expression pattern clustering indicated that 1467 differential probe sets may be associated with constitutive resistance and 67 with the BPH infestation-responsive resistance of RH. A Venn diagram analysis revealed 192 RH-specific and BPH-inducible probe sets. Finally, 23 BPH resistance-related gene candidates were selected based on the expression pattern clustering and Venn diagram analysis. In RH, the SA content significantly increased and the JA content significantly decreased after BPH infestation, with the former occurring prior to the latter. In RH, the differential genes in the SA pathway were synthesis-related and were up-regulated after BPH infestation. The differential genes in the JA pathway were also up-regulated. They were jasmonate ZIM-domain transcription factors, which are important negative regulators of the JA pathway. Comparatively, genes involved in the ET pathway were less affected by a BPH infestation in RH. DNA sequence analysis revealed that most BPH infestation-inducible genes may be regulated by the genetic background in a trans-acting manner, instead of by their promoters. We profiled the analysis of the global gene expression in RH and TN1 under BPH infestation

  20. Inoculation Technique for Fungus Cultures

    Science.gov (United States)

    Fusaro, Ramon M.

    1972-01-01

    A plastic straw and wood applicator stick serve as a simple, inexpensive, and disposable inoculation unit for fungal studies. The method gives a uniform and intact inoculum. The technique is especially useful because a large number of agar plates can be inoculated rapidly. Images PMID:5059618

  1. Low overlap between carbapenem resistant Pseudomonas aeruginosa genotypes isolated from hospitalized patients and wastewater treatment plants.

    Directory of Open Access Journals (Sweden)

    Andrej Golle

    Full Text Available The variability of carbapenem-resistant Pseudomonas aeruginosa strains (CRPA isolated from urine and respiratory samples in a large microbiological laboratory, serving several health care settings, and from effluents of two wastewater treatment plants (WWTP from the same region was assessed by PFGE typing and by resistance to 10 antibiotics. During the 12-month period altogether 213 carbapenem-resistant P. aeruginosa isolates were cultured and distributed into 65 pulsotypes and ten resistance profiles. For representatives of all 65 pulsotypes 49 different MLSTs were determined. Variability of clinical and environmental strains was comparable, 130 carbapenem-resistant P. aeruginosa obtained from 109 patients were distributed into 38 pulsotypes, while 83 isolates from WWTPs were classified into 31 pulsotypes. Only 9 pulsotypes were shared between two or more settings (hospital or WWTP. Ten MLST were determined for those prevalent pulsotypes, two of them (ST111 and ST235 are among most successful CRPA types worldwide. Clinical and environmental carbapenem-resistant P. aeruginosa strains differed in antibiotic resistance. The highest proportion of clinical isolates was resistant to piperacillin/tazobactam (52.3% and ceftazidime (42.3%. The highest proportion of environmental isolates was resistant to ceftazidime (37.1% and ciprofloxacin (35.5%. The majority of isolates was resistant only to imipenem and/or meropenem. Strains with additional resistances were distributed into nine different patterns. All of them included clinically relevant strains, while environmental strains showed only four additional different patterns.

  2. The soil sulphate effect and maize plant (Zea mays L.) growth of sulphate reducing bacteria (SRB) inoculation in acid sulfate soils with the different soil water condition

    Science.gov (United States)

    Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.

    2018-02-01

    The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).

  3. Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus.

    Science.gov (United States)

    Buti, Matteo; Sargent, Daniel J; Mhelembe, Khethani G; Delfino, Pietro; Tobutt, Kenneth R; Velasco, Riccardo

    2016-05-11

    The Rosaceae family encompasses numerous genera exhibiting morphological diversification in fruit types and plant habit as well as a wide variety of chromosome numbers. Comparative genomics between various Rosaceous genera has led to the hypothesis that the ancestral genome of the family contained nine chromosomes, however, the synteny studies performed in the Rosaceae to date encompass species with base chromosome numbers x = 7 (Fragaria), x = 8 (Prunus), and x = 17 (Malus), and no study has included species from one of the many Rosaceous genera containing a base chromosome number of x = 9. A genetic linkage map of the species Physocarpus opulifolius (x = 9) was populated with sequence characterised SNP markers using genotyping by sequencing. This allowed for the first time, the extent of the genome diversification of a Rosaceous genus with a base chromosome number of x = 9 to be performed. Orthologous loci distributed throughout the nine chromosomes of Physocarpus and the eight chromosomes of Prunus were identified which permitted a meaningful comparison of the genomes of these two genera to be made. The study revealed a high level of macro-synteny between the two genomes, and relatively few chromosomal rearrangements, as has been observed in studies of other Rosaceous genomes, lending further support for a relatively simple model of genomic evolution in Rosaceae.

  4. Importance of new winter pea genotyp in production of the milk on family farms

    Directory of Open Access Journals (Sweden)

    Gordana Županac

    2009-12-01

    Full Text Available Forage pea (Pisum sativum L. is becoming more represented gorage leguminoza on the fields Republic of Croatia. Three year field trials (2003-2005 were carried out to determine the effect of seed winter pea inoculation and nitrogen top-dressing on productivity of new winter pea genotype G3 in production of milk on family farms. Just before sowing the inoculation of pea seed was performed by the variety of Rhizobium leguminosarum bv. viciae 1001 which is part of the microbiological collection of the Department of Microbiology at the Faculty of Agriculture University of Zagreb. The results of the research showed that the highest total nodule number on pea root (39.7 nodule/plant as well as nodule dry matter weight (0.203 g/plant was determined on the inoculated variant. Average highest yield of winter pea dry matter was, once more, determined on the inoculated variant (4.33 t ha-1. Total dry matter yield of winter pea and wheat mixture were ranging from 8.92 t ha-1 (control up to 10.64 t ha-1 (nitrogen top-dressing. Average highest yield of winter pea crude protein was, once more, determined on the inoculated variant (266 kg ha-1 in 2003, (672 kg ha-1 in 2004 and (853 kg ha-1 in 2005. The conclusion of this research is that the highest dry matter yield (4.33 t ha-1 and crude protein yield was obtained with the inoculation of new genotype winter pea G3.

  5. Sunflower growth according to seed inoculation with endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Juliana Fernandes dos Santos

    2014-06-01

    Full Text Available The sunflower crop has a great importance worldwide, due to the oil of excellent quality extracted from its seeds and in natura grains that are consumed in various ways. However, drought is one of the main environmental factors that limit its yield. An experiment was carried out under controlled greenhouse conditions, in a completely randomized experimental design, in order to determine the effect of endophytic bacteria inoculation (Bacillus sp. and Enterobacter cloacae on the growth and contents of nutrients and organic solutes, in sunflower leaves and roots under water deficit. Plant height, stem diameter, fresh and dry biomass of shoot and roots, as well as contents of N, P, K, soluble carbohydrates, free proline, free amino acids and soluble proteins, were determined at 35 days after the plant emergence. The water deficit reduced plant growth regardless inoculation. However, under optimum conditions of soil moisture, the combination of both endophytic bacteria increased the sunflower growth. The water deficit also increased the N and K contents in leaves, as well as the organic solutes content in shoots, especially in inoculated plants. These results suggest that the inoculation of endophytic bacteria may increase the capacity of drought stressed plants to perform the osmotic adjustment through a higher accumulation of organic solutes, when compared to plants not inoculated.

  6. Chlorophyll fluorescence is a rigorous, high throughput tool to analyze the impacts of genotype, species, and stress on plant and ecosystem productivity

    Science.gov (United States)

    Ewers, B. E.; Pleban, J. R.; Aston, T.; Beverly, D.; Speckman, H. N.; Hosseini, A.; Bretfeld, M.; Edwards, C.; Yarkhunova, Y.; Weinig, C.; Mackay, D. S.

    2017-12-01

    Abiotic and biotic stresses reduce plant productivity, yet high-throughput characterization of plant responses across genotypes, species and stress conditions are limited by both instrumentation and data analysis techniques. Recent developments in chlorophyll a fluorescence measurement at leaf to landscape scales could improve our predictive understanding of plants response to stressors. We analyzed the interaction of species and stress across two crop types, five gymnosperm and two angiosperm tree species from boreal and montane forests, grasses, forbs and shrubs from sagebrush steppe, and 30 tree species from seasonally wet tropical forest. We also analyzed chlorophyll fluorescence and gas exchange data from twelve Brassica rapa crop accessions and 120 recombinant inbred lines to investigate phenotypic responses to drought. These data represent more than 10,000 measurements of fluorescence and allow us to answer two questions 1) are the measurements from high-throughput, hand held and drone-mounted instruments quantitatively similar to lower throughput camera and gas exchange mounted instruments and 2) do the measurements find differences in genotypic, species and environmental stress on plants? We found through regression that the high and low throughput instruments agreed across both individual chlorophyll fluorescence components and calculated ratios and were not different from a 1:1 relationship with correlation greater than 0.9. We used hierarchical Bayesian modeling to test the second question. We found a linear relationship between the fluorescence-derived quantum yield of PSII and the quantum yield of CO2 assimilation from gas-exchange, with a slope of ca. 0.1 indicating that the efficiency of the entire photosynthetic process was about 10% of PSII across genotypes, species and drought stress. Posterior estimates of quantum yield revealed that drought-treatment, genotype and species differences were preserved when accounting for measurement uncertainty

  7. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2 : an experiment with plant populations from naturally high CO2 areas

    NARCIS (Netherlands)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may

  8. Rotavirus Genotypes in Sewage Treatment Plants and in Children Hospitalized with Acute Diarrhea in Italy in 2010 and 2011

    Science.gov (United States)

    Ruggeri, Franco M.; Bonomo, Paolo; Ianiro, Giovanni; Battistone, Andrea; Delogu, Roberto; Germinario, Cinzia; Chironna, Maria; Triassi, Maria; Campagnuolo, Rosalba; Cicala, Antonella; Giammanco, Giovanni M.; Castiglia, Paolo; Serra, Caterina; Gaggioli, Andrea

    2014-01-01

    Although the molecular surveillance network RotaNet-Italy provides useful nationwide data on rotaviruses causing severe acute gastroenteritis in children in Italy, scarce information is available on rotavirus circulation in the general Italian population, including adults with mild or asymptomatic infection. We investigated the genotypes of rotaviruses present in urban wastewaters and compared them with those of viral strains from clinical pediatric cases. During 2010 and 2011, 285 sewage samples from 4 Italian cities were tested by reverse transcription-PCRs (RT-PCRs) specific for rotavirus VP7 and VP4 genes. Rotavirus was detected in 172 (60.4%) samples, 26 of which contained multiple rotavirus G (VP7 gene) genotypes, for a total of 198 G types. Thirty-two samples also contained multiple P (VP4 gene) genotypes, yielding 204 P types in 172 samples. Genotype G1 accounted for 65.6% of rotaviruses typed, followed by genotypes G2 (20.2%), G9 (7.6%), G4 (4.6%), G6 (1.0%), G3 (0.5%), and G26 (0.5%). VP4 genotype P[8] accounted for 75.0% of strains, genotype P[4] accounted for 23.0% of strains, and the uncommon genotypes P[6], P[9], P[14], and P[19] accounted for 2.0% of strains altogether. These rotavirus genotypes were also found in pediatric patients hospitalized in the same areas and years but in different proportions. Specifically, genotypes G2, G9, and P[4] were more prevalent in sewage samples than among samples from patients, which suggests either a larger circulation of the latter strains through the general population not requiring medical care or their greater survival in wastewaters. A high level of nucleotide identity in the G1, G2, and G6 VP7 sequences was observed between strains from the environment and those from patients. PMID:25344240

  9. Inoculation Expedition of Agar wood

    International Nuclear Information System (INIS)

    Peng, C.S.; Mohd Fajri Osman; Rusli Zakaria

    2015-01-01

    Inoculation expedition of agar wood is a main field works for researcher in Nuclear Malaysia to prove the real inoculation of agar wood in real jungle. These expeditions was conducted fourth times in the jungles of Malaysia including Gunung Tebu in Terengganu, Murum in Belaga, Sarawak, Kampung Timbang in Kota Belud, Sabah and Nuclear Malaysia itself. This expedition starts from preparation of samples and equipment, transportation into the jungle, searching and recognition of agar wood and lastly, inoculation of the agar wood. Safety aspects precedence set out in the preparation and implementation of this expedition. (author)

  10. Genotype, explant, medium, light and radiation effects on the in vitro plant regeneration in alfalfa (Medicago Sativa L.)

    International Nuclear Information System (INIS)

    El-Fiki, A.A.; Abdel-Hameed, A.A.M.; Sayed, A.I.H.

    2005-01-01

    The relative importance of genotype, explants, radiation, medium and light and their interactions for in vitro plant regeneration via somatic embryogenesis in alfalfa (Medicago sativa L.) has been studied. Shoot and leaf explants of two commercially grown Egyptian cultivars, Al-Wadi Al-Gadid and Siwa Tarkibi, were used in the study. The effect of gamma radiation doses 40, 80, 120 and 160 Gy were negative on plant regeneration, in spite of increase with some treatments. The best results of plant regeneration were obtained with dose 40 Gy with control light regime (16 h) on MS + 0.5 mg NAA + 1.5 mg BAP in both shoot and leaf explants of cv. Al-Wadi. The shoot explant of cv. Siwa was sensitive for gamma radiation dose 40 Gy while affirmative effect was obtained in leaf explant on MS + 1.0 mg NAA + 0.5 mg BAP with control light regime. However, dose 80 Gy showed the best results on MS + 0.5 mg NAA + 0.5 mg BAP in shoot and leaf explants of both cultivars, with control light regime in shoot explant and dark/light (DL) and dark/dark (DD) in leaf explant of cv. Al-Wadi, while with light/dark (LD) in shoot explant and control light regime in leaf explant of cv. Siwa. On the other hand, the highest plant regeneration ratio observed with dose 120 Gy were on 1.5 mg NAA + 0.5 mg BAP with control light regime in shoot and leaf explants of cv. Al-Wadi but on 0.5 mg NAA + 0.5 mg BAP with control and dark/light (DL) light regime in shoot and leaf explants of cv. Siwa. Whereas, the radiation dose 160 Gy showed severe effect on plant regeneration in both cultivars but highest percentage was observed on MS + 0.5 mg NAA + 0.5 mg BAP with dark/light (DL) in shoot explant, MS + 0.5 mg NAA + 1.5 mg BAP with control light regime in leaf explant of cv. Al-Wadi, MS + 0.5 mg NAA + 1.5 mg BAP in shoot explant and MS + 0.5 mg NAA + 0.5 mg BAP in leaf explant with dark/light (DL) in cv. Siwa. However, the effects of the same doses on callus growth showed that the highest callus weight was

  11. Inoculation in Political Campaign Communication.

    Science.gov (United States)

    Pfau, Michael; Burgoon, Michael

    1988-01-01

    Posits a strategy of resistance to the influence of attack messages in political campaigns. Finds that political campaign messages can be designed to inoculate supporters of candidates against subsequent attack messages of opposing candidates. (MS)

  12. Growth and physiological responses of melon plants inoculated with mycorrhizal fungi under salt stressCrescimento e respostas fisiológicas do meloeiro inoculado com fungos micorrízicos arbusculares sob estresse salino

    Directory of Open Access Journals (Sweden)

    Wilber da Silveira Lúcio

    2013-09-01

    Full Text Available The accumulation of salts in the soil is a common problem of arid and semi-arid regions, that cause reduction in plant growth and yield. In this context, the arbuscular mycorrhizal fungi (AMF have been studied in recent years, with results indicating that their associations with the plant roots minimize some effects of salt stress. The objective of this work was to evaluate the influence of increasing levels of salinity of the irrigation water in the melon plants mycorrhized with AMF. The experiment design was completely randomized in factorial 2 x 4 corresponding to two mycorrhiza treatments (inoculated and not inoculated plants x 4 levels of salinity (ECw = 0.5, 1.5, 3.0 and 4.5 dS m-1, with 4 replicates.The mycorhizal colonization, plant growth, leaf gas exchange and the concentrations and contents of ions (N, P, K+, Na+ e Cl- were measured. The mycorrhized plants showed higher production of shoot dry matter and leaf area, in relation to non-inoculated plants, mainly in the 0.5 dS m-1 treatment. However, this beneficial effect decreased with salinity levels increasing. Stomatal conductance, transpiration rate and photosynthetic rate were positively influenced by AMF, the values being higher in mycorrhized plants. The results showed a peak of colonization in treatment with EC of 1.36 dS m-1 with a tendency to decrease in higher salt concentrations. The symbiotic association between AMF and melon roots increased the contents of N, P and K, at low and medium salinity, and reduced the absorption of potentially toxic ions (Na, Cl from the salinity caused by irrigation water with 3.0 dS m – 1. Nas regiões áridas e semiáridas é comum a acumulação de sais no solo em quantidades prejudiciais ao crescimento e rendimento das plantas. Neste contexto, os fungos micorrízicos arbusculares (FMA vem sendo estudados nos últimos anos, havendo resultados que indicam que as associações micorrízicas com as plantas minimizam alguns efeitos do estresse

  13. Mycorrhizal inoculation affects the phytochemical content in strawberry fruits

    Directory of Open Access Journals (Sweden)

    Ana Paula Cecatto

    2016-04-01

    Full Text Available The aim of this research was to evaluate the effect of the inoculation date of arbuscular mycorrhizal fungi on the fruit quality and the content of phytochemicals in a strawberry soilless growing system. The experiment was performed in Huelva (Spain and was conducted in a greenhouse on the La Rábida Campus of Huelva University under natural light and temperature from October 2013 to June 2014. Three short-day strawberry cultivars (‘Splendor’, ‘Sabrina’ and ‘Fortuna’ were grown in polyethylene bags filled with coconut fibres. Randomized block design, with 3 repetitions and factorial arrangement (3 cultivars x 3 treatments, was established. Each replicate consisted of one bag with 12 plants supporting structures at 40 cm height. The treatments were: T1 = mycorrhizal inoculation in the transplantation; T2 = mycorrhizal inoculation 30 days after transplantation (DAT; and T0 = control treatment, without inoculation. Arbuscular mycorrhizal fungi inoculation significantly affected the contents of anthocyanin and phenolics. When the inoculation is performed in the transplantation, the fruits showed a high content of anthocyanin and total phenolics. The mycorrhizal inoculation influences decreasing the acidity in fruit throughout the growing season and increase firmness only during the early stage of production.

  14. Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus × H. argophyllus).

    Science.gov (United States)

    Doncheva, Snezhana; Moustakas, Michael; Ananieva, Kalina; Chavdarova, Martina; Gesheva, Emiliya; Vassilevska, Rumyana; Mateev, Plamen

    2013-02-01

    The aim of the present work was to study the response of two sunflower genotypes (cultivated sunflower Helianthus annuus cv. 1114 and newly developed genotype H. annuus × Helianthus argophyllus) to Pb medium-term stress and the role of exogenously applied EDTA in alleviating Pb toxicity in hydroponics. Plant growth, morpho-anatomical characteristics of the leaf tissues, electrolyte leakage, total antioxidant activity, free radical scavenging capacity, total flavonoid content, and superoxide dismutase isoenzyme profile were studied by conventional methods. Differential responses of both genotypes to Pb supplied in the nutrient solution were recorded. Pb treatment induced a decrease in the relative growth rate, disturbance of plasma membrane integrity, and changes in the morpho-anatomical characteristics of the leaf tissues and in the antioxidant capacity, which were more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype demonstrated higher tolerance to Pb when compared with the cultivar. This was mainly due to increased photosynthetically active area, maintenance of plasma membrane integrity, permanently high total antioxidant activity, and free radical scavenging capacity as well as total flavonoid content. The addition of EDTA into the nutrient solution led to limitation of the negative impact of Pb ions on the above parameters in both genotypes. This could be related to the reduced content of Pb in the roots, stems, and leaves, suggesting that the presence of EDTA limited the uptake of Pb. The comparative analysis of the responses to Pb treatment showed that the deleterious effect of Pb was more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype H. annuus × H. argophyllus was more productive and demonstrated higher tolerance to Pb medium-term stress, which could indicate that it may possess certain mechanisms to tolerate high Pb concentrations. This character could be inherited from the wild parent used in the

  15. Genotype-dependent variation in the transpiration efficiency of plants and photosynthetic activity of flag leaves in spring barley under varied nutrition.

    Science.gov (United States)

    Krzemińska, Anetta; Górny, Andrzej G

    2003-01-01

    In the study, spring barley genotypes of various origin and breeding history were found to show a broad genetic variation in the vegetative and generative measures of the whole-plant transpiration efficiency (TE), photosynthesis (A) and transpiration (E) rates of flag leaves, leaf efficiency of gas exchange (A/E) and stress tolerance (T) when grown till maturity in soil-pots under high and reduced NPK supplies. Broad-sense heritabilities for the characteristics ranged from 0.61 to 0.87. Significant genotype-nutrition interactions were noticed, constituting 19-23% of the total variance in TE measures. The results suggest that at least some 'exotic' accessions from Ethiopia, Syria, Morocco and/or Tibet may serve as attractive genetic sources of novel variations in TE, T and A for the breeding of barleys of improved adaptation to less favourable fertilisation.

  16. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Pepper (Capsicum annuum L.) is an economically important agricultural crop and an excellent dietary source of natural colors and antioxidant compounds. The levels of these compounds can vary according to agricultural practices, like inoculation with plant growth-promoting rhizobacteria. In this work we evaluated for the first time the effect of the inoculation of two Rhizobium strains on C. annuum metabolites and bioactivity. The results revealed a decrease of organic acids and no effect on phenolics and capsaicinoids of leaves from inoculated plants. In the fruits from inoculated plants organic acids and phenolic compounds decreased, showing that fruits from inoculated plants present a higher ripeness stage than those from uninoculated ones. In general, the inoculation with Rhizobium did not improve the antioxidant activity of pepper fruits and leaves. Considering the positive effect on fruit ripening, the inoculation of C. annuum with Rhizobium is a beneficious agricultural practice for this nonlegume.

  17. Growth and Yield Responses of Cowpea to Inoculation and Phosphorus Fertilization in Different Environments

    Science.gov (United States)

    Kyei-Boahen, Stephen; Savala, Canon E. N.; Chikoye, David; Abaidoo, Robert

    2017-01-01

    Cowpea (Vigna unguiculata) is a major source of dietary protein and essential component of the cropping systems in semi-arid regions of Sub-Saharan Africa. However, yields are very low due to lack of improved cultivars, poor management practices, and limited inputs use. The objectives of this study were to assess the effects of rhizobia inoculant and P on nodulation, N accumulation and yield of two cowpea cultivars in Mozambique. Field study was conducted in three contrasting environments during the 2013/2014 and 2014/2015 seasons using randomized complete block design with four replications and four treatments. Treatments consisted of seed inoculation, application of 40 kg P2O5 ha-1, inoculation + P, and a non-inoculated control. The most probable number (MPN) technique was used to estimate the indigenous bradyrhizobia populations at the experimental sites. The rhizobia numbers at the sites varied from 5.27 × 102 to 1.07 × 103 cells g-1 soil. Inoculation increased nodule number by 34–76% and doubled nodule dry weight (78 to 160 mg plant-1). P application improved nodulation and interacted positively with the inoculant. Inoculation, P, and inoculant + P increased shoot dry weight, and shoot and grain N content across locations but increases in number of pods plant-1, seeds pod-1, and 100-seed weight were not consistent among treatments across locations. Shoot N content was consistently high for the inoculated plants and also for the inoculated + P fertilized plants, whereas the non-inoculated control plants had the lowest tissue N content. P uptake in shoot ranged from 1.72 to 3.77 g kg-1 and was higher for plants that received P fertilizer alone. Inoculation and P either alone or in combination consistently increased cowpea grain yield across locations with yields ranging from 1097 kg ha-1 for the non-inoculated control to 1674 kg ha-1 for the inoculant + P treatment. Grain protein concentration followed a similar trend as grain yield and ranged from 223 to

  18. Evaluation of tomato genotypes against tomato mosaic virus (ToMV) and its effect on yield contributing parameters

    International Nuclear Information System (INIS)

    Ullah, N.; Ali, A.; Ahmad, M.; Din, N.; Ahmad, F.; Fahim, M.

    2017-01-01

    The use of resistant varieties is an effective, economic and environment friendly management of plant diseases particularly those caused by viruses. This paper reports, evaluation of 21 different tomato genotypes to find out resistance sources against Tomato mosaic virus (ToMV) and to study effect of the virus on yield contributing parameters. The virus identity was confirmed both by Direct Antibody Coating Enzyme Linked Immunoassay (DAC-ELISA) and differential host assay. Characteristic necrotic lesions were observed on differential hosts viz., Nicotiana tabacum var. White burly and Chenopodium amaranticolor after 10 and 3-4 days of inoculation, respectively. Upon ToMV inoculation, plants of accession No. 017902 developed no symptoms and were rated as highly resistant. Its resistance was further confirmed by both DAC-ELISA and indicator host assay, while the remaining genotypes displayed a range of symptoms. Plants of accession No. 017883 showed lowest percent disease index (PDI) and were rated as resistant, while plants of cultivar Red jumbo showed maximum PDI (44.97%) and were rated as susceptible. In susceptible genotypes average ELISA absorbance A405 value (2.19) was found higher than resistant one (1.05), while in control healthy plants ELISA absorbance A405 was 0.18. Maximum virus titre 2.73 and 0.91 were found in leaf and root tissues of cultivar Red jumbo, respectively. Among tested genotypes, one was highly resistant, one resistant, four moderately susceptible and 15 were susceptible. The virus significantly (p<=0.05) reduced the yield contributing parameters i.e. plant height, fresh shoot and root weight, dry shoot and root weight in susceptible genotypes. (author)

  19. Development of a rapid multiplex SSR genotyping method to study populations of the fun-gal plant pathogen Zymoseptoria tritici

    NARCIS (Netherlands)

    Gautier, A.; Marcel, T.C.; Confais, J.; Crane, C.; Kema, G.H.J.; Suffert, F.; Walker, A.S.

    2014-01-01

    Background Zymoseptoria tritici is a hemibiotrophic ascomycete fungus causing leaf blotch of wheat that often decreases yield severely. Populations of the fungus are known to be highly diverse and poorly differentiated from each other. However, a genotyping tool is needed to address further

  20. Soil and Rhizosphere Populations of Fluorescent Pseudomonas spp. Associated with Field-grown Plants are Affected by Sorghum Genotype

    Science.gov (United States)

    Sorghum [Sorghum bicolor (L.) Moench] is valued for bioenergy, feed and food. Potential of sorghum genotypes to support differing populations of root- and soil-associated fluorescent Pseudomonas spp. or Fusarium spp., in two soils, was assessed. Pseudomonads and Fusarium spp. were assessed from root...

  1. Colonização radicular de plantas cultivadas por Ralstonia solanacearum biovares 1, 2 e 3 Root colonization of cultivated plants inoculated with Ralstonia solanacearum biovar 1, 2 and 3

    Directory of Open Access Journals (Sweden)

    José Magno Martins Bringel

    2001-09-01

    . Root colonization was evaluated 45 days after inoculation by counting bacteria in root extracts of culture media with antibiotics. Pea plants hosted all six isolates, but only the isolate biovar 3 was pathogenic to this species. High populations of four isolates of the three biovars were found on soybean, and cucumber hosted high population of only two isolates (biovars 1 and 3. Pea was a non-susceptible host for Rs, except for one pathogenic isolate. Rice hosted very low populations of all isolates, while lettuce and spring onion did not host any isolates. These results showed the ability of Rs to colonize and survive on different plant roots as rhizobacteria.

  2. Effect of water salinity on wheat inoculated with N fixing bacteria using 15N tracer technique

    International Nuclear Information System (INIS)

    Al-Sayed, M. A.; Soliman, S. M.; Galal, Y. G. M.; El-Hadidi, E. M.

    2012-12-01

    A pot experiment was carried out under greenhouse controlled conditions to investigate the effect of water salinity and bacterial inoculation on growth parameters and nutrient uptake by wheat ( Triticum aestivum, L. seda 6). Dry matter yield of shoots was gradually increased with increasing water salinity levels under dual inoculation (Rh + Az). This phenomenon was more pronounced with 6 ds m -1 rather than 3 ds m -1 water salinity level. This holds true with all inoculation treatments. Similar trend was noticed with root dry matter yield. N uptake by shoots was positively affected by water salinity levels under bacterial inoculation especially the dual treatments where N uptake tended to increase with increasing water salinity levels. N uptake by roots was severely affected by increasing water salinity levels as compared to fresh water treatment. N uptake by shoots was enhanced by inoculation under different water salinity levels as compared to the un inoculated treatment. Nitrogen uptake roots was dramatically affected by inoculation. It was only increased by inoculation when plants were irrigated with fresh water. Portions of Ndff were frequently affected by both water salinity levels and microbial inoculation. wheat plant as representative of cereal crops was more dependent on the portion of nitrogen up taken from fertilizer rather than those fixed from the air. Therefore, the plant-bacteria association was not efficient enough. Inoculated treatments compensated considerable amounts of its N demand from air beside those derived from fertilizer, therefore the remained N from fertilizer in soil was higher than those of un inoculated control which is more dependable on Ndff as well as Ndf s. 1 5N recovery by wheat plants was enhanced by bacterial inoculation as well as water salinity levels did. (Author)

  3. Influence of arbuscular mycorrhizal fungi, rhizobium inoculation and rock phosphate on growth and quality of lentil

    International Nuclear Information System (INIS)

    Yaseen, T.; Ali, K.

    2016-01-01

    Effective inoculation of legumes has the ability not only to ensure nutrients availability to plants particularly in N and P-limiting (due to improvement in nutrients fixation) environments but also can manipulate the environmental hazards associated with over inorganic fertilization. To support this view, the current experiment was conducted to study the influence of rock phosphorus fertilization, Arbuscular Mycorrhizae (AM) and Rhizobium inoculation on growth and yield parameters of Lens culinaris (NARC.2008-4). In addition, the current experiments aimed to evaluate the effect of different inoculation practices on crop quality in comparison with control (no inoculation).The experiment was laid out in randomized complete block design with four replications during winter (2010-11 and 2012-13) at the Department of Botany University of Peshawar Pakistan. Overall, inoculated plant performed superior in terms of plant growth and quality over control. All plants measured parameters (Leaf chlorophyll content, seed protein, fiber and ash content, plant height, number of seed pod-1, leaves plant-1, flowers plant-1, pods plant-1, pod length and thousand seed weight) were highest in plant samples inoculated with VAM and Rhizobium in combination as compared to sole application of VAM or Rhizobium. Combined inoculation of VAM and Rhizobium caused 10, 24, 17, 21 and 14% increase in seed protein content, leaf chlorophyll content, seed fiber content, seed ash content and number of seed pod-1 over sole application of VAM and Rhizobium when averaged over two years. Combined application of Rhizobium + VAM enhanced seed yield plant-1 by 45% over control and 24% and 28% over sole inoculation of VAM and Rhizobium respectively. It is therefore concluded that dual inoculation of VAM + Rhizobium and rock phosphate may be of only limited consequence in high input agricultural systems. (author)

  4. Effect of salinity and inoculation with Azosprillium on carbohydrate ...

    African Journals Online (AJOL)

    The measured parameters were chlorophyll fluorescence, photosynthesis (Ps) rates, carbohydrates, nitrate, ammonium and protein content, nitrogenase activity, yield and yield components. The results showed that salinity decreased plant height and grain yield (GY) in all levels. GY reduction in the inoculated treatment was ...

  5. Effects of bacterial inoculation on the fermentation characteristics ...

    African Journals Online (AJOL)

    The effect of bacterial inoculation on the fermentation and aerobic stability of two ensiled whole plant soybean (WPSB) cultivars was determined in a 2 x 2 factorial design. Two WPSB cultivars, Link LF6466 and Pannar 522 RR, were harvested at their R6 growth stage, chopped to 25 mm and ensiled in 1.5 L anaerobic jars.

  6. Response of a Habitat-Forming Marine Plant to a Simulated Warming Event Is Delayed, Genotype Specific, and Varies with Phenology.

    Directory of Open Access Journals (Sweden)

    Laura K Reynolds

    Full Text Available Growing evidence shows that increasing global temperature causes population declines and latitudinal shifts in geographical distribution for plants living near their thermal limits. Yet, even populations living well within established thermal limits of a species may suffer as the frequency and intensity of warming events increase with climate change. Adaptive response to this stress at the population level depends on the presence of genetic variation in thermal tolerance in the populations in question, yet few data exist to evaluate this. In this study, we examined the immediate effects of a moderate warming event of 4.5°C lasting 5 weeks and the legacy effects after a 5 week recovery on different genotypes of the marine plant Zostera marina (eelgrass. We conducted the experiment in Bodega Bay, CA USA, where average summer water temperatures are 14-15°C, but extended warming periods of 17-18°C occur episodically. Experimental warming increased shoot production by 14% compared to controls held at ambient temperature. However, after returning temperature to ambient levels, we found strongly negative, delayed effects of warming on production: shoot production declined by 27% and total biomass decreased by 50% relative to individuals that had not been warmed. While all genotypes' production decreased in the recovery phase, genotypes that grew the most rapidly under benign thermal conditions (control were the most susceptible to the detrimental effects of warming. This suggests a potential tradeoff in relative performance at normal vs. elevated temperatures. Modest short-term increases in water temperature have potentially prolonged negative effects within the species' thermal envelope, but genetic variation within these populations may allow for population persistence and adaptation. Further, intraspecific variation in phenology can result in maintenance of population diversity and lead to enhanced production in diverse stands given sufficient

  7. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  8. Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil. II. Alleviation of drought stress

    NARCIS (Netherlands)

    Quilambo, OA; Weissenhorn, I.; Doddema, H; Kuiper, PJC; Stulen, I.

    2005-01-01

    The effect of drought stress and inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on root colonization and plant growth and yield was studied in two peanut (Arachis hypogaea L.) cultivars-a traditional, low-yielding Mozambican landrace (Local) and a

  9. The resistance response of sunflower genotypes to black stem disease under controlled conditions

    Directory of Open Access Journals (Sweden)

    Reza DARVISHZADEH

    2010-09-01

    Full Text Available Phoma black stem, caused by Phoma macdonaldii, is one of the most important diseases of sunflower in the world. The sources of resistance to Phoma black stem were investigated. A total of 184 genotypes, including some recombinant inbred lines (RILs, several M6 mutant lines obtained by gamma irradiation of seed of the genotype AS 613, and other genotypes from different countries, were evaluated against an aggressive French isolate (MP6 in controlled conditions. The study was carried out in a randomized complete block design with three replicates. Each replicate consisted of 10–12 seedlings. Twenty μL of spore suspension (106 pycnidiospores mL-1 were deposited on the intersection of the cotyledon petiole and the hypocotyl of sunflower plantlets at the two-leaf stage. The percentage of the area exhibiting disease symptoms was scored on the two cotyledon petioles of each of the plantlets three, five and seven days after inoculation. The disease progress rate (rd, as the slope of the regression line for disease severity against time, was also calculated. Analysis of variance detected significant differences among sunflower genotypes for disease severity 7 days after inoculation,as well as for the disease progress rate. A strong correlation (r=0.96, P<0.01 was found between disease severity 7 days after inoculation and the disease progress rate. The inbred lines F1250/03 (origin: Hungary, M5-54-1, M6-862-1 (mutant lines, SDR 18 (origin: USA and two wild Helianthus accessions, 1012 Nebraska and 211 Illinois, (wild type were highly resistant to Phoma black stem. These findings will assist breeders in choosing parent plants for breeding durable resistance to Phoma black stem.

  10. The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: Enhancing sustainability through plant-microbial partnership

    Science.gov (United States)

    The role of arbuscular mycorrhizal (AM) fungi and fertilization in sorghum grain production and quality was assessed for 3 hybrid genotypes, 2 open-pollinated African genotypes, and 1 open-pollinated Latin American genotype. The open-pollinated genotypes produced an average of 206% more vegetative b...

  11. Growth response and nutrient uptake of blue pine (Pinus wallichiana seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions

    Directory of Open Access Journals (Sweden)

    M.A. Ahangar

    2012-11-01

    Full Text Available Microbial inoculants (Trichoderma harzianum, Pseudomonas fluorescens,Laccaria laccata inoculated either individually or in combinationsignificantly improved the growth and biomass of blue pine seedlings. The ECM fungus Laccaria laccata, when inoculated individually, showed significantly higher plant growth, followed by Pseudomonas fluorescens and Trichoderma harzianum. The combined inoculation of rhizosphere microorganisms showed synergistic growth promoting action and proved superior in enhancing the growth of blue pine than individual inoculation. Co-inoculation of L. laccata with P. fluorescens resulted in higher ectomycorrhizal root colonization. Uptake of nutrients (N, P, K was significantly improved by microbial inoculants, tested individually or in combination. Combined inoculation of L. laccata with T. harzianum and P. fluorescens significantly increased in N, P and K contents in blue pine seedlings as compared to control. Acid phosphatase activity in the rhizosphere of blue pine seedlings was also enhanced by these microorganisms. L. laccata exhibited higher acid phosphatase activity followed by P. fluorescens.

  12. Effects of Plant Genotype and Growth Stage on the Betaproteobacterial Communities Associated with Different Potato Cultivars in Two Fields

    NARCIS (Netherlands)

    Inceoglu, O.; Salles, J.F.; Overbeek, van L.S.; Elsas, van J.D.

    2010-01-01

    Bacterial communities in the rhizosphere are dynamic and susceptible to changes in plant conditions. Among the bacteria, the betaproteobacteria play key roles in nutrient cycling and plant growth promotion, and hence the dynamics of their community structures in the rhizosphere should be

  13. Evaluation of the biological nitrogen fixation contribution in sugarcane plants originated from seeds and inoculated with nitrogen-fixing endophytes Avaliação da contribuição da fixação biológica de nitrogênio em cana-de-açúcar originada de sementes e inoculada com endófitos fixadores de nitrogênio

    Directory of Open Access Journals (Sweden)

    Erineudo de Lima Canuto

    2003-11-01

    Full Text Available The inoculation technique with endophytic diazotrophic bacteria in sugarcane has been shown as an alternative practice to plant growth promotion. The aim of this work was to evaluate the biological nitrogen fixation (BNF contribution by different strains of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus in sugarcane plant inoculated from seeds. The seeds were planted in pots filled with non-sterile soil, inoculated with the bacterial strains and grown 10 months outside of the greenhouse. The BNF contribution of the inoculated bacteria varied depending on the plant species used as a control. The highest BNF contribution as well as the highest populations of reisolated bacteria was observed with inoculation of H. seropedicae strains. The roots appeared to be the preferential tissues for the establishment of the inoculated species.A técnica de inoculação com bactérias diazotróficas endofíticas na cana-de-açúcar apresenta-se como uma prática alternativa para promover o crescimento vegetal menos dependente da adubação nitrogenada. Este trabalho teve como objetivo avaliar a contribuição da fixação biológica de nitrogênio (FBN por diferentes estirpes de Herbaspirillum seropedicae e Gluconacetobacter diazotrophicus inoculadas em plantas de cana-de-açúcar originadas de semente. As sementes foram plantadas em vasos com solo não estéril, inoculadas com as diferentes bactérias e mantidas por 10 meses ao ar livre. As maiores contribuições da FBN ocorreram com a inoculação de estirpes Herbaspirillum seropedicae, e dependeram da espécie vegetal utilizada como testemunha. As raízes apresentaram-se como o órgão vegetal preferencial para o estabelecimento das espécies inoculadas.

  14. Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid Populus deltoides x nigra.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Montpied, Pierre; Le Thiec, Didier

    2013-01-01

    (13) C discrimination between atmosphere and bulk leaf matter (Δ(13) C(lb) ) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole-plant TE (i.e. accumulated biomass/water transpired). Net CO(2) assimilation rates (A) and stomatal conductance (g(s) ) were recorded in parallel to: (1) (13) C in leaf bulk material (δ(13) C(lb) ) and in soluble sugars (δ(13) C(ss) ) and (2) (18) O in leaf water and bulk leaf material. Genotypic means of δ(13) C(lb) and δ(13) C(ss) were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/g(s) ), and with whole-plant TE. Finally, g(s) was positively correlated to (18) O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ(13) C(lb) captures efficiently the genetic variability of whole-plant TE in poplar. Nevertheless, scaling from leaf level to whole-plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented. © 2012 Blackwell Publishing Ltd.

  15. insect antagonistic bio-inoculants for natural control of leaf-mining

    African Journals Online (AJOL)

    ACSS

    to planting, if leaf mining damages and associated yield losses in French beans are to ... inoculants, constituent ainsi de grands potentiels agents protecteurs de cultures et pourraient être utilisés de ... in sustaining food security and soil health.

  16. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes.

    Science.gov (United States)

    Hart, Miranda; Ehret, David L; Krumbein, Angelika; Leung, Connie; Murch, Susan; Turi, Christina; Franken, Philipp

    2015-07-01

    Arbuscular mycorrhizal (AM) fungi can affect many different micronutrients and macronutrients in plants and also influence host volatile compound synthesis. Their effect on the edible portions of plants is less clear. Two separate studies were performed to investigate whether inoculation by AM fungi (Rhizophagus irregularis, Funneliformis mosseae, or both) can affect the food quality of tomato fruits, in particular common minerals, antioxidants, carotenoids, a suite of vitamins, and flavor compounds (sugars, titratable acids, volatile compounds). It was found that AM fungal inoculation increased the nutrient quality of tomato fruits for most nutrients except vitamins. Fruit mineral concentration increased with inoculation (particularly N, P, and Cu). Similarly, inoculated plants had fruit with higher antioxidant capacity and more carotenoids. Furthermore, five volatile compounds were significantly higher in AM plants compared with non-AM controls. Taken together, these results show that AM fungi represent a promising resource for improving both sustainable food production and human nutritional needs.

  17. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  18. Effects of Rhizobium inoculation on Trifolium resupinatum antioxidant system under sulfur dioxide pollution

    Directory of Open Access Journals (Sweden)

    Ladan Bayat

    2014-01-01

    Full Text Available Introduction: Plant growth stimulating rhizobacteria are beneficial bacteria that can cause resistance to various stresses in plants. One of these stresses is SO2 air pollution. SO2 is known as a strong damaging air pollutant that limits growth of plants. The aim of this study is evaluation of the effects of bacterial inoculation with native and standard Rhizobium on Persian clover root growth and antioxidants activity and capacity under air SO2 pollution. Materials and methods: In this study, 31 days plants (no-inoculated and inoculated with two strains of Rhizobium exposed to the different concentrations of SO2 (0 as a control, 0.5, 1, 1.5 and 2 ppm for 5 consecutive days and 2 hours per day. Results: Results showed different concentrations of SO2 had a significant effect on Persian clover root weight and antioxidant system. Increasing SO2 stress decreased root fresh and dry weight and antioxidant capacities (IC50 and increased antioxidant activities (I% of Persian clover leaves significantly in comparison to the control plants (under 0 ppm and increased SOD, CAT and GPX activity. Inoculation of Persian clover plants with native and standard Rhizobium increased root weight and did not show a significant effect on antioxidants activity and capacity, but interaction between Rhizobium inoculation and SO2 treatment reduced significantly the stress effects of high concentration of SO2 on root growth and antioxidants activity and capacity. In fact, level of this change of root growth and antioxidant system under SO2 pollution stress in inoculated plants was lower than in the non-inoculated plants. Discussion and conclusion: As a result, an increase in SO2 concentration caused a decrease in root weight, increase in antioxidants activity and capacity of Persian clover. Inoculation with Rhizobium strains could alleviate the effect of SO2 pollution on antioxidant system by effects on root growth.

  19. Produção de mudas de goiabeira (Psidium guajava L., inoculadas com o fungo micorrízico arbuscular Glomus clarum, em substrato agro-industrial Production of guava ( Psidium guajava L. plants inoculated with arbuscular mycorrhizal fungi Glomus clarum, in agro-industrial substrate

    Directory of Open Access Journals (Sweden)

    JOLIMAR ANTONIO SCHIAVO

    2002-08-01

    Full Text Available Conduziu-se um experimento em casa de vegetação, com o objetivo de avaliar o crescimento de mudas de goiabeira (Psidium guajava L., produzidas em blocos prensados, confeccionados com resíduos agro-industriais, e inoculadas com o fungo micorrízico arbuscular (FMA Glomus clarum Nicolson & Schenck. O delineamento experimental utilizado foi o inteiramente casualizado, em esquema fatorial 2 x 2, sendo 2 tratamentos microbiológicos: controle e FMA; e 2 sistemas de produção de mudas: blocos prensados (nova metodologia e tubetes plásticos (tradicional, com 5 repetições. O substrato utilizado para a confecção dos blocos prensados e enchimento dos tubetes foi constituído por uma mistura de bagaço de cana-de-açúcar e torta de filtro (3:1 v/v. O FMA proporcionou aumentos significativos na produção de matéria seca, conteúdo de N e P da parte aérea da goiabeira, apenas no sistema de produção das mudas em blocos prensados. Mudas produzidas e inoculadas em blocos prensados mostraram um aumento de 88% na matéria seca da parte aérea, 82% e 89% para os conteúdos de nitrogênio e fósforo da parte aérea, respectivamente, em relação ao tratamento-controle.A greenhouse experiment was carried out to evaluate the growth of guava plant seedlings, inoculated with arbuscular mycorrhizal fungi (AMF, Glomus clarum Nicolson & Schenck, produced in pressed blocks made with agro-industrial residues. The experimental design utilized was a completely randomized in factorial 2x2, having two microbiological treatments: control and inoculated; two systems of production: pressed blocks (new methodology and plastic tubes (traditional, with 5 repetitions. The substrate utilized to make the pressed blocks and to fill the plastic tubes was constituted by a mixture of sugarcane bagasse and filter cake (3:1 v/v. The AMF inoculation led to a significant increase in dry matter yield and nutrients content of shoot plants, only in pressed blocks. Plants produced in

  20. Crescimento, parâmetros biofísicos e aspectos anatômicos de plantas jovens de seringueira inoculadas com fungo micorrízico arbuscular Glomus clarum Growth, biophysical parameters and anatomical aspects of young rubber tree plants inoculated with arbuscular mycorrhizal fungi Glomus clarum

    Directory of Open Access Journals (Sweden)

    Patrícia Fabian de Araújo Diniz

    2010-03-01

    Full Text Available Fungos micorrízicos são reconhecidamente benéficos quando em associação às plantas por favorecerem seu crescimento e desenvolvimento. Apesar de pouco comum para a seringueira, a inoculação artificial de fungos micorrízicos arbusculares (FMAs tem se mostrado uma alternativa para a redução no uso de fertilizantes e pesticidas nas culturas, bem como para a formação de mudas, visando obtenção de porta-enxertos precoces e bem nutridos. O estudo objetivou avaliar o efeito da inoculação do FMA Glomus clarum no crescimento e características biofísicas e anatômicas de plantas jovens de seringueira. Os tratamentos consistiram de plantas inoculadas com o fungo Glomus clarum adubadas com 50 ppm de fósforo (mic+50P, plantas não inoculadas adubadas com 50 ppm de fósforo (s/mic+50P e plantas não inoculadas adubadas com 500 ppm de fósforo (s/mic+500P. Constatou-se que as plantas micorrizadas apresentaram altura e diâmetro dos caules, matéria seca da parte aérea, densidade estomática e área foliar, semelhantes às plantas s/mic+500P. Maior acúmulo de matéria seca de raiz, maior taxa de transpiração, menor resistência estomática e menor temperatura foliar foram observadas para as plantas micorrizadas. As análises anatômicas das raízes evidenciam a ocorrência de alterações no tecido vascular, com aumento no número de pólos de xilema das raízes das plantas micorrizadas.Mycorrhizal fungi are beneficial when associated with plants because they favor growth and develop. Although infrequent, artificial inoculation of arbuscular mycorrhizal fungi (AMF has become an alternative to reduce the use of fertilizers and pesticides in crops, as well as for the formation of seedlings, to obtain precocious and well fed rootstocks. The objective of the study was to evaluate the effect of inoculation of AMF Glomus clarum on growth and biophysical and anatomical characteristics of young rubber trees. The treatments consist of plants

  1. Cultivar Differences in Plant Transpiration Rate at High Relative Air Humidity Are Not Related to Genotypic Variation in Stomatal Responsiveness

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    Plants grown at high relative air humidity (RH) often show disturbed water relations due to less responsive stomata. The attenuation of stomatal responsiveness as a result of high RH during leaf expansion depends on the cultivar. We hypothesized that tolerant cultivars to high RH experience a low...

  2. Genotype-environment interactions affect flower and fruit herbivory and plant chemistry of Arabidopsis thaliana in a transplant experiment

    NARCIS (Netherlands)

    Mosleh Arany, A.; de Jong, T.; Kim, H.K.; Van Dam, N.M.; Choi, Y.L.; van Mil, H.G.J.; Verpoorte, R.; van der Meijden, E.

    2009-01-01

    Large differences exist in flower and fruit herbivory between dune and inland populations of plants of Arabidopsis thaliana (Brassicaceae). Two specialist weevils Ceutorhynchus atomus and C. contractus (Curculionidae) and their larvae are responsible for this pattern in herbivory. We test, by means

  3. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    Czech Academy of Sciences Publication Activity Database

    Grosskinsky, D. K.; Svensgaard, J.; Christensen, S.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5429-5440 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : External phenotype * genome–environment–management interaction * genome–phenome map * internal phenotype * phenomics * physiological traits * physiology * plant phenotyping * predictors Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  4. Co-inoculation of arbusculr mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions

    International Nuclear Information System (INIS)

    Zhu, R.; Tang, F.; Liu, F.; Chen, J.

    2016-01-01

    The study was to investigate the effects of combined inoculation of Glomus mosseae (arbusculr mycorrhizae fungi, AMF) and Sinorhizobium meliloti (nitrogen-fixing bacteria, i.e., an Rhizobium meliloti, RM) on yield, nutrient contents, nodulation and mycorrhizal colonization of different alfalfa cultivars under saline conditions. An experiment was conducted to test the efficacy of AMF and RM inoculation in development of salt tolerance in alfalfa cultivars (Zhaodong, Nongjing and Longmu) under different salinity levels (0, 60, 120 and 180 mM NaCl). We found that under non stress condition, double inoculation of alfalfa with rhizobium and AM increased the alfalfa yield, nodule weight and number, as well as shoot proline contents, the most when plants were double inoculated followed by AM and rhizobium inoculation, respectively. Whereas under salinity condition, double inoculation of alfalfa with rhizobium and AM increased alfalfa yield, mycorrhizal infection, nodule weight and number as well as increased in shoot proline content, the most followed by AM and rhizobium inoculation, respectively. The Results suggest that growth of alfalfa may be improved by combined inoculation of alfalfa with AM and rhizobium under salt and non-stress conditions. Alleviation of alfalfa growth under saline condition was perhaps due to an increase in mycorrhizal infection and nodule weight and number as well as an increased in shoot proline content by dual inoculation. (author)

  5. Drought response of Mucuna pruriens (L. DC. inoculated with ACC deaminase and IAA producing rhizobacteria.

    Directory of Open Access Journals (Sweden)

    Aansa Rukya Saleem

    Full Text Available Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a photosynthetic performance and biomass; b ACC content and ethylene emission from leaves and roots; c leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants.

  6. Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria.

    Science.gov (United States)

    Saleem, Aansa Rukya; Brunetti, Cecilia; Khalid, Azeem; Della Rocca, Gianni; Raio, Aida; Emiliani, Giovanni; De Carlo, Anna; Mahmood, Tariq; Centritto, Mauro

    2018-01-01

    Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR) could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase) activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a) photosynthetic performance and biomass; b) ACC content and ethylene emission from leaves and roots; c) leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants.

  7. Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress.

    Science.gov (United States)

    Curá, José Alfredo; Franz, Diego Reinaldo; Filosofía, Julián Ezequiel; Balestrasse, Karina Beatríz; Burgueño, Lautaro Exequiel

    2017-07-26

    Stress drought is an important abiotic factor that leads to immense losses in crop yields around the world. Strategies are urgently needed to help plants adapt to drought in order to mitigate crop losses. Here we investigated the bioprotective effects of inoculating corn grown under drought conditions with two types of plant growth-promoting rhizobacteria (PGPR), A. brasilense , strain SP-7, and H. seropedicae , strain Z-152. Plants inoculated with the bacteria were grown in a greenhouse with perlite as a substrate. Two hydric conditions were tested: normal well-watered conditions and drought conditions. Compared to control non-inoculated plants, those that were inoculated with PGPR bacteria showed a higher tolerance to the negative effects of water stress in drought conditions, with higher biomass production; higher carbon, nitrogen, and chlorophyll levels; and lower levels of abscisic acid and ethylene, which are plant hormones that affect the stress response. The oxidative stress levels of these plants were similar to those of non-inoculated plants grown in well-watered conditions, showing fewer injuries to the cell membrane. We also noted higher relative water content in the vegetal tissue and better osmoregulation in drought conditions in inoculated plants, as reflected by significantly lower proline content. Finally, we observed lower gene expression of ZmVP14 in the inoculated plants; notably, ZmVP14 is involved in the biosynthesis of abscisic acid. Taken together, these results demonstrate that these bacteria could be used to help plants cope with the negative effects of drought stress conditions.

  8. [Inoculation experiments of Cistanche tubulosa on 8 introduced Tamarix species].

    Science.gov (United States)

    Yang, Tai-Xin; Lu, Yue-Xia; Zhang, Xi-Huan; Cai, Jing-Zhu; Zhao, Yu-Xin

    2007-10-01

    To analyze the inoculation ratio and echinacoside content of Cistanche tubulosa and provide theoretical basis for Tamarix introduction, resource protection and screening of C. tubulosa. 8 Tamarix species were introduced in the North China Plain and inoculation of C. tubulosa was conducted on all species. Phenylethanoid glycosides fingerprinting and echinacoside content of C. tubulosa were analyzed by using HPLC. The adaptability of 8 Tamarix species were significantly different, phenylethanoid glycosides component of C. tubulosa on T. gansuensis and T. austromongolica were basically identical in contrast to T. chinensis, echinacoside content showed no obvious difference in C. tubulosa plant growing 4 months. T. gansuensis and T. Austromongolica are suitable for the host introduction plant of C. tubulosa resource protection and screening in North China Plain.

  9. Estabelecimento de plantas herbáceas em solo com contaminação de metais pesados e inoculação de fungos micorrízicos arbusculares Establishment of herbaceous plants in heavy metal contaminated soils inoculated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carbone Carneiro

    2001-12-01

    Full Text Available Neste trabalho estudou-se o estabelecimento de plantas herbáceas em solo com contaminação de metais pesados (MP e inoculação de fungos micorrízicos arbusculares (FMAs. O experimento foi realizado em bandejas, em esquema fatorial 5 x 2, sendo cinco proporções de solo contaminado com MP na ausência e presença de FMAs. Sementes de oito espécies de gramíneas e uma crucífera (mostarda -- Brassica sp. foram plantadas e cultivadas por 120 dias e avaliadas em dois cortes. No primeiro corte, as gramíneas foram severamente afetadas pela contaminação, e a mostarda foi pouco afetada, mostrando alta tolerância. No segundo corte, o efeito da contaminação foi negligível para as gramíneas, e a inoculação dos FMAs aumentou em 24% a matéria seca destas em relação ao controle sem inoculação. A inoculação teve também efeito positivo na matéria seca das raízes e na colonização micorrízica. Os teores de Cd, Zn e Pb na parte aérea foram maiores na mostarda do que nas gramíneas em ambos os cortes. Apesar de a inoculação não ter efeito no crescimento das gramíneas do primeiro corte, as plantas com inoculação apresentaram maior acúmulo de Zn, Cd e Pb no segundo corte. A maior tolerância da mostarda aos metais pesados permitiu seu crescimento e conseqüente acúmulo de Zn, Cd e Pb do solo contaminado. A extração destes elementos do solo pode ter contribuído para o melhor desenvolvimento subseqüente das gramíneas, favorecendo o estabelecimento das plantas.The establishment of herbaceous plants in soil contaminated by heavy metals (HM and inoculated with arbuscular mycorrhizal fungi (AMF was evaluated in the present study. The experiment was conducted in trays, in a 5 x 2 factorial, being five proportions of contaminated soil with or without inoculation with arbuscular mycorrhizal fungi (AMF. Seeds of eight grass species and a mustard (Brassica sp. were planted and allowed to grow for 120 days under greenhouse conditions

  10. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak.

    Science.gov (United States)

    Sebastiana, Mónica; da Silva, Anabela Bernardes; Matos, Ana Rita; Alcântara, André; Silvestre, Susana; Malhó, Rui

    2018-04-01

    We investigated whether the performance of cork oak under drought could be improved by colonization with the ectomycorrhizal fungus Pisolithus tinctorius. Results show that inoculation alone had a positive effect on plant height, shoot biomass, shoot basal diameter, and root growth. Under drought, root growth of mycorrhizal plants was significantly increased showing that inoculation was effective in increasing tolerance to drought. In accordance, mycorrhizal plants subjected to drought showed less symptoms of stress when compared to non-mycorrhizal plants, such as lower concentration of soluble sugars and starch, increased ability to maintain fatty acid content and composition, and increased unsaturation level of membrane lipids. After testing some of the mechanisms suggested to contribute to the enhanced tolerance of mycorrhizal plants to drought, we could not find any by which Pisolithus tinctorius could benefit cork oak, at least under the drought conditions imposed in our experiment. Inoculation did not increase photosynthesis under drought, suggesting no effect in sustaining stomatal opening at low soil water content. Similarly, plant water status was not affected by inoculation suggesting that P. tinctorius does not contribute to an increased plant water uptake during drought. Inoculation did increase nitrogen concentration in plants but it was independent of the water status. Furthermore, no significant mycorrhizal effect on drought-induced ROS production or osmotic adjustment was detected, suggesting that these factors are not important for the improved drought tolerance triggered by P. tinctorius.

  11. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Sahrawat, K.L.; Jones, M.P.; Diatta, S.

    2000-01-01

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  12. Effect of urdbean leaf crinkle virus infection on total soluble protein and antioxidant enzymes in blackgram plants

    International Nuclear Information System (INIS)

    Ashfaq, M.; Mughal, S.M.; Khan, A.; Javed, N.; Sahi, S.T.; Shahid, M.

    2010-01-01

    Urdbean leaf crinkle virus (ULCV) is a common, wide spread, destructive and economically important disease causing systemic infection in blackgram (Vigna mungo (L.) Hepper), resulting in extreme crinkling, curling, puckering and rugosity of leaves, and yield reductions. Effect of viral infection was investigated on total soluble proteins and antioxidant enzymes activity in two genotypes viz., Mash-88-susceptible and CM-2002-resistant, at different growth stages under both the inoculated and un-inoculated conditions. ULCV infection resulted in significant increase in total soluble protein contents of the leaves in both genotypes. In healthy plant, super oxide dismutase (SOD), catalase (CAT) and peroxidase (PO) showed similar activity levels. In inoculated plants of Mash-88, SOD and PO activities decreased and increased non-significantly at all growth stages, respectively. The activities of PO and SOD increased and decreased significantly after 15 and 30 days of inoculation in resistant genotype, respectively. No significant changes in catalase (CAT) activity were detected in ULCV-infected leaves over the control. It was concluded that the super oxide dismutase and peroxidases might be associated with resistance/susceptibility to ULCV infection. (author)

  13. Biological Nitrogen Fixation Efficiency in Brazilian Common Bean Genotypes as Measured by {sup 15}N Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Franzini, V. I.; Mendes, F. L. [Brazilian Agricultural Research Corporation, EMBRAPA-Amazonia Oriental, Belem, PA (Brazil); Muraoka, T.; Trevisam, A. R. [Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP (Brazil); Adu-Gyamfi, J. J. [Soil and Water Management and Crop Nutrition Laboratory, International Atomic Energy Agency, Seibersdorf (Austria)

    2013-11-15

    Common bean (Phaseolus vulgaris L.) represents the main source of protein for the Brazilian and other Latin-American populations. Unlike soybean, which is very efficient in fixing atmospheric N{sub 2} symbiotically, common bean does not dispense with the need for N fertilizer application, as the biologically fixed N (BNF) seems incapable to supplement the total N required by the crop. A experiment under controlled conditions was conducted in Piracicaba, Brazil, to assess N{sub 2} fixation of 25 genotypes of common bean (Phaseolus vulgaris L.). BNF was measured by {sup 15}N isotope dilution using a non-N{sub 2} fixing bean genotype as a reference crop. The common bean genotypes were grown in low (2.2 mg N kg{sup -1} soil) or high N content soil (200 mg N kg{sup -1} soil), through N fertilizer application, as urea-{sup 15}N (31.20 and 1.4 atom % {sup 15}N, respectively). The bean seeds were inoculated with Rhizobium tropici CIAT 899 strain and the plants were harvested at grain maturity stage. The contribution of BNF was on average 75% of total plant N content, and there were differences in N fixing capacity among the bean genotypes. The most efficient genotypes were Horizonte, Roxo 90, Grafite, Apore and Vereda, when grown in high N soil. None of the genotypes grown in low N soil was efficient in producing grains compared to those grown in high N soil, and therefore the BNF was not able to supply the total N demand of the bean crop. (author)

  14. Seeding Stress Resilience through Inoculation

    Directory of Open Access Journals (Sweden)

    Archana Ashokan

    2016-01-01

    Full Text Available Stress is a generalized set of physiological and psychological responses observed when an organism is placed under challenging circumstances. The stress response allows organisms to reattain the equilibrium in face of perturbations. Unfortunately, chronic and/or traumatic exposure to stress frequently overwhelms coping ability of an individual. This is manifested as symptoms affecting emotions and cognition in stress-related mental disorders. Thus environmental interventions that promote resilience in face of stress have much clinical relevance. Focus of the bulk of relevant neurobiological research at present remains on negative aspects of health and psychological outcomes of stress exposure. Yet exposure to the stress itself can promote resilience to subsequent stressful episodes later in the life. This is especially true if the prior stress occurs early in life, is mild in its magnitude, and is controllable by the individual. This articulation has been referred to as “stress inoculation,” reminiscent of resilience to the pathology generated through vaccination by attenuated pathogen itself. Using experimental evidence from animal models, this review explores relationship between nature of the “inoculum” stress and subsequent psychological resilience.

  15. Quality assessment of truffle-inoculated seedlings in Italy: proposing revised parameters for certification

    Directory of Open Access Journals (Sweden)

    Domizia Donnini

    2014-08-01

    Full Text Available Aim of study: the main aims of this study were to evaluate the quality of truffle-inoculated seedlings produced by commercial nurseries in Italy and to identify their minimum requisites in terms of plant age, health, homogeneity, and cut-off percentage of inoculated Tuber and non-Tuber ectomycorrhizae, based on the analysis of an extensive sample of seedlings subjected to quality control and certification.Area of study: truffle-inoculated seedlings produced by Italian commercial nurseries.Material and Methods: analysis of truffle-inoculated seedlings for health and quality standards; recording of presence of inoculated Tuber spp. and other concurrent fungi according to the official Italian method for certification; selective amplification of ectomycorrhizal DNA by PCR species-specific primers.Main results: We showed that mycorrhization levels in truffle-inoculated seedlings increased with time after truffle-spore inoculation. The highest mean percentage of the inoculated Tuber spp., but also the highest presence of contaminants, were recorded after three years. The mycorrhization level of Tuber melanosporum and T. aestivum was higher in Corylus and Ostrya seedlings than in Q. ilex and Q. pubescens, but the latter two host species showed the lowest presence of other ectomycorrhizal fungi. Mycorrhization level distribution in truffle-inoculated seedlings of suitable batches differed very little from the distribution in only all suitable seedlings. Truffle seedlings with other Tuber spp. were very few and even absent after three years. The general quality of Italian truffle-inoculated seedlings is high but can be improved even further by revising the parameters used for their certification.Research highlights: Mycorrhization assessment in truffle-inoculated seedlings produced by commercial nurseries and a revision of the parameters of quality standards following several years of certification in Italy.Keywords: Truffle cultivation; truffle

  16. Multivariate analysis and determination of the best indirect selection criteria to genetic improvement the biological nitrogen fixation ability in common bean genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Golparvar Reza Ahmad

    2012-01-01

    Full Text Available In order to determine the best indirect selection criteria for genetic improvement of biological nitrogen fixation, sixty four common bean genotypes were cultivated in two randomized complete block design. Genotypes were inoculated with bacteria Rhizobium legominosarum biovar Phaseoli isolate L-109 only in one of the experiments. The second experiment was considered as check for the first. Correlation analysis showed positive and highly significant correlation of majority of the traits with percent of nitrogen fixation. Step-wise regression designated that traits percent of total nitrogen of shoot, number of nodule per plant and biological yield accounted for 92.3 percent of variation exist in percent of nitrogen fixation. Path analysis indicated that these traits have direct and positive effect on percent of nitrogen fixation. Hence, these traits are promising indirect selection criteria for genetic improvement of nitrogen fixation capability in common bean genotypes especially in early generations.

  17. Nitrogen translocation in wheat inoculated with Azospirillum and fertilized with nitrogen

    Directory of Open Access Journals (Sweden)

    RODRIGUES OSMAR

    2000-01-01

    Full Text Available The productivity and the translocation of assimilates and nitrogen (N were compared after inoculation of wheat (Triticum aestivum L., cv. BR-23 seeds with two strains of Azospirillum brasilense (strains 245 and JA 04 under field conditions. The inoculation of wheat seeds was done with a peat inoculant at sowing time. Plant material for evaluations were collected at anthesis and maturity. No differences in grain yield and in the translocation of assimilates resulting from inoculation were detected. Differences were observed in relation to N rates (0, 15, and 60 kg ha-1. N content in the grain increased significantly in the bacteria-inoculated treatments in which N was not added. This increase in N content in the grain with inoculation was probably due to higher N uptake after anthesis without any significant contribution on the grain yield. Such increment was of 8.4 kg ha-1 of N representing 66% more N than in no inoculated treatment. Regardless of the inoculation and the rate of N applied, it was observed that about 70% of the N accumulated at anthesis was translocated from vegetative parts to the grain.

  18. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.

    Science.gov (United States)

    Köhl, Luise; Lukasiewicz, Catherine E; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant. © 2015 John Wiley & Sons Ltd.

  19. Genotypic Variation in Phosphorus Use Efficiency for Symbiotic Nitrogen Fixation in Voandzou (Vigna Subterranea)

    Energy Technology Data Exchange (ETDEWEB)

    Andriamananjara, A.; Rabeharisoa, L. [Laboratoire des Radio-isotopes, Universite d' Antananarivo, Antananarivo (Madagascar); Abdou, M. Malam [Laboratoire Banques de genes CERRA / KOLLO, Institut National de Recherche Agronomique du Niger (INRAN), Niamey (Niger); Masse, D. [Institut de Recherche pour le Developpement, UMR Eco and Sols, Montpellier, (France); Amenc, L.; Pernot, C.; Drevon, J. J. [Institut National de la Recherche Agronomique, UMR Eco and Sols, Montpellier (France)

    2013-11-15

    Vigna subterranea, known as voandzou or Bambara groundnut as an African indigenous crop which is often neglected or under-used in African subsistence agriculture. Preliminary research and country perceptions have shown its agronomic and nutritional properties, in particular under atypical climates of arid and tropical areas, and in saline soils. There is a high potential to increase the production by optimizing symbiotic nitrogen fixation (SNF) through effective inoculation even in nitrate-rich environments. In this study, Vigna subterranea inoculated with the reference strain of Bradyrhizobium sp. Vigna CB756 was studied in order to assess the symbiotic fixation potential of different cultivars and landraces of Madagascar, Niger and Mali under low-P and sufficient-P conditions. Six voandzou cultivars inoculated with Bradyrhizobium sp. Vigna CB756, were grown under hydroaeroponic culture for 6 weeks supplied with four phosphorus levels of 15, 30, 75 and 250 {mu}mol plant{sup -1} week{sup -1} in order to establish the response curve of voandzou to P supply, and to induce P deficient and sufficient levels. In another experiment five tolerant cultivars with high SNF and five sensitive cultivars with low SNF were chosen after a preliminary screening of 54 voandzou genotypes, including 50 landraces from Madagascar, Niger and Mali supplied with 2 P levels as P deficient and P sufficient (30 and 75 {mu}mol plant{sup -1} week{sup -1} ) under hydroaeroponic conditions. Genotypic variation in SFN for the high phosphorus use efficiency (PUE) was observed among the 54 cultivars and landraces. Variability was especially related to the nodule and shoot biomass, nodule permeability, nodule respiration and gene phytase expression. Contrasting cultivars and landraces in terms of PUE for SNF were selected for further evaluation under field conditions. (author)

  20. Rhizobial Inoculation, Alone or Coinoculated with Azospirillum brasilense, Promotes Growth of Wetland Rice

    Directory of Open Access Journals (Sweden)

    Leandro Hahn

    Full Text Available ABSTRACT Rhizobia and associative bacteria promote growth in rice plants (Oryza sativa L. through a series of mechanisms, but most studies on inoculation have been performed based on inoculation with these bacteria in a separate or singular manner. The objective of this study was to assess the efficiency of single/isolated inoculation and inoculation combined with symbiotic rhizobia from forage legume and with Azospirillum brasilense on promoting growth and the root colonization process in wetland rice. Two rhizobia among four isolates from a greenhouse and a laboratory experiment were selected that efficiently promoted seed germination and rice plant growth in a sterilized substrate and in soil. The two most efficient isolates (UFRGS Vp16 and UFRGS Lc348 were inoculated alone or in combination with a commercial product containing A. brasilense in two field experiments using two wetland rice cultivars over two growing seasons. In the field experiments, these isolates coinoculated with A. brasilense promoted larger increases in the agronomic variables of wetland rice compared to the control without inoculation. Confocal laser microscopy confirmed the presence of inoculated bacteria tagged with gfp (UFRGS Vp16, UFRGS Lc348, and A. brasilense colonizing the root surface of the rice seedlings, mainly in the root hairs and lateral roots.

  1. Inoculation of maize with Azospirillum brasilense in the seed furrow

    Directory of Open Access Journals (Sweden)

    Tâmara Prado de Morais

    2016-06-01

    Full Text Available ABSTRACT Several studies addressing the inoculation of cereals with diazotrophic microorganisms can be found in the literature. However, in many experiments, investigators have overlooked the feasibility of applying these microorganisms to the furrow together with the seed, and the effect of bacterial concentration on phytostimulation. The aim of this work was to evaluate the effect of doses of an inoculant based on Azospirillum brasilense, applied to the seed furrow when planting maize, combined with different doses of nitrogen fertiliser. The experiment was carried out in the field, in soil of the cerrado region of Brazil. An experimental design of randomised blocks in bands was adopted, comprising nitrogen (40, 100, 200 and 300 kg ha-1 and doses of an A. brasilense-based liquid inoculant applied to the seed furrow (0, 100, 200, 300 and 400 mL ha-1. The dose of 200 mL ha-1Azospirillum was noteworthy for grain production. This is the first report of the effective application of Azospirillum in the seed furrow when planting maize in the cerrado region of Brazil.

  2. Inoculant production in developing countries - Problems, potentials and success

    International Nuclear Information System (INIS)

    Kannaiyan, S.

    2001-01-01

    Sustainable agriculture is a long-term goal that seeks to overcome some of problems and constraints that confront the economic viability, environmental soundness and social acceptance of agricultural production systems. In this context, bio-fertilizers assume special significance particularly because they are 'eco-friendly', but also since their alternative, chemical fertilizers are expensive. Undoubtedly, the most commonly used bio-fertilizers are soil bacteria of the genus Rhizobium, but others like Azolla, Azospirillum, various cyanobacteria also contribute significant amounts of N to e.g. rice. Other bacteria like Frankia and Acetobacter contribute N to trees of the genus Casuarina and sugarcane, respectively. Furthermore, although they are rarely used as inoculants, vesicular arbuscular mycorrhizae (VAM) and phosphobacteria help countless plants solubilise and assimilate soil phosphorus. Despite these advantages, bio-fertilizers could be more widely used in developing countries. Contingent upon greater use is improved quality of the inoculants, and all aspects of their production are discussed here. (author)

  3. Acquisition of Xyllela fastidiosa causes changes to the inoculation behavior (EPG X wave) of an efficient sharpshooter vector

    Science.gov (United States)

    Xylella fastidiosa (Xf) is a foregut-borne bacterium that is inoculated into xylem cells of a healthy plant during feeding by sharpshooter vectors. Inoculation occurs during salivation and egestion behaviors that are likely represented by the sharpshooter X wave. The objective of this study was to t...

  4. Welcome to the neighbourhood: interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities.

    Science.gov (United States)

    Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A

    2012-01-01

    Intra- and interspecific plant-plant interactions are fundamental to patterns of community assembly and to the mixture effects observed in biodiversity studies. Although much research has been conducted at the species level, very little is understood about how genetic variation within and among interacting species may drive these processes. Using clones of both Solidago altissima and Solidago gigantea, we found that genotypic variation in a plant's neighbours affected both above- and belowground plant traits, and that genotype by genotype interactions between neighbouring plants impacted associated pollinator communities. The traits for which focal plant genotypic variation explained the most variation varied by plant species, whereas neighbour genotypic variation explained the most variation in coarse root biomass. Our results provide new insight into genotypic and species diversity effects in plant-neighbour interactions, the extended consequences of diversity effects, and the potential for evolution in response to competitive or to facilitative plant-neighbour interactions. © 2011 Blackwell Publishing Ltd/CNRS.

  5. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541.

    Science.gov (United States)

    El Aafi, N; Brhada, F; Dary, M; Maltouf, A Filali; Pajuelo, E

    2012-03-01

    The aim of this work was to test Lupinus luteus plants, inoculated with metal resistant rhizobacteria, in order to phytostabilise metals in contaminated soils. The resistance to heavy metals of strains isolated from nodules of Lupinus plants was evaluated. The strain MSMC541 showed multi-resistance to several metals (up to 13.3 mM As, 2.2 mM Cd, 2.3 mM Cu, 9 mM Pb and 30 mM Zn), and it was selected for further characterization. Furthermore, this strain was able to biosorb great amounts of metals in cell biomass. 16S rDNA sequencing positioned this strain within the genus Serratia. The presence of arsenic resistance genes was confirmed by southern blot and PCR amplification. A rhizoremediation pot experiment was conducted using Lupinus luteus grown on sand supplemented with heavy metals and inoculated with MSMC541. Plant growth parameters and metal accumulation were determined in inoculated vs. non-inoculated Lupinus luteus plants. The results showed that inoculation with MSMC541 improved the plant tolerance to metals. At the same time, metal translocation to the shoot was significantly reduced upon inoculation. These results suggest that Lupinus luteus plants, inoculated with the metal resistant strain Serratia sp. MSMC541, have a great potential for phytostabilization of metal contaminated soils.

  6. Quantitative Simulation of Damage Roots on Inoculated Alfalfa by Arbuscular Mycorrhiza Fungi

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-12-01

    Full Text Available Underground mining would cause ground subsidence damage and large amounts of cracks, which would result a loss of surface moisture and nutrient and intensifying drought. There are a few reports about damage to plant roots caused by coal mining. The irregular distribution of plant roots in soil and the different forces generated in process of surface subsidence are difficult to study comprehensively. The technologies to repair damaged plant roots have not been completely perfected yet. Based on quantitative simulation of alfalfa root cut-repair experiment, this paper discusses the influences of inoculated Arbuscular Mycorrhiza Fungi on alfalfa root and the mitigation effects of an inoculation on the growth of alfalfa. Root injured alfalfa were investigated by soil pot experiments. The result indicated that at the same cut degree, the growth situation of inoculated alfalfa is better than the contrast. Compared with the Olsen-P content, at cut level of 0 and 1/3, the sand of inoculated alfalfa has less Olsen-P than contrast, at cut degree of 1/2 and 2/3, the sand of inoculated alfalfa has more Olsen-P than contrast, at degree of 3/4, the sand of inoculated alfalfa has less Olsen-P than contrast, the change trend of Olsen-P content is concerned with the relative strength size of absorb Olsen-P by alfalfa root and dissolve Olsen-P by root exudates and hyphae interstate.

  7. Effects of pre- and post-transplant inoculation with commercial arbuscular mycorrhizal (AM fungi on pelargonium (Pelargonium hortorum and its microorganism community

    Directory of Open Access Journals (Sweden)

    Gergely Csima

    2012-03-01

    Full Text Available Rooted cuttings of geranium were grown with and without a slow release fertilizer and inoculated or not with a commercial inoculum containing AM fungi. After six weeks plants were transplanted into larger containers and one-half of the plants were inoculated with AM. Inoculation increased pelargonium growth along with nitrogen, phosphorous and potassium concentrations in shoot than caused a slight decrease in shoot growth and enhanced N concentration. Colony forming units of total fungi and bacteria in the rhizosphere were not influenced by AM;  although RFLP profiles of DNA isolated from bacteria living in rhizosphere showed a more diverse community in AM-inoculated than non-inoculated plants at low nutrient supply. Our results suggest that mycorrhizal inoculation not only has an effect on plant growth and uptake of elements but it also influences directly or indirectly the bacterial community of the rhizosphere.

  8. Inoculating wheat (Triticum aestivum L.) with the endophytic bacterium Serratia sp. PW7 to reduce pyrene contamination.

    Science.gov (United States)

    Zhu, Xuezhu; Wang, Wanqing; Sun, Kai; Lin, Xianghao; Li, Shuang; Waigi, Michael Gatheru; Ling, Wanting

    2017-08-03

    This research was conducted to find an optimal inoculation way for a pyrene-degrading endophytic Serratia sp. PW7 to colonize wheat for reducing pyrene contamination. Three inoculation ways, which are soaking seeds in inocula (TS), dipping roots of seedlings in inocula (TR), and spraying inocula on leaves of seedlings (TL), were used in this study. Inoculated seedlings and noninoculated seedlings (CK) were, respectively, cultivated in Hoagland solutions supplemented with pyrene in a growth chamber. The results showed that strain PW7 successfully colonized the inoculated seedlings in high numbers, and significantly promoted the growth of seedlings (TS and TR). More importantly, strain PW7 reduced pyrene levels in the seedlings and the Hoagland solutions. Compared to the noninoculated seedlings, the pyrene contents of the inoculated seedlings were decreased by 35.7-86.3% in the shoots and by 26.8-60.1% in the roots after 8-day cultivation. By comparing the efficiencies of decreasing pyrene residues, it can be concluded that TR was an optimal inoculation way for endophytic strains to colonize the inoculated plants and to reduce the pyrene contamination. Our findings provide an optimized inoculation way to reduce organic contamination in crops by inoculating plants with functional endophytic bacteria.

  9. 32P uptake and translocation in chickpea (Cicer arietinum L.) inoculated with vesicular-arbuscular mycorrhiza

    International Nuclear Information System (INIS)

    Chaturvedi, C.; Singh, Renu

    1990-01-01

    32 P uptake in chickpea (Cicer arietinum L.) cultivars L-550 and C-235 as affected by vesicualr-arbuscular mycorrhiza (G. caledonicum) and Rhizobium was investigated in P deficient soils. Test plants coinoculated with the above two symbionts exhibited higher 32 P uptake than inoculated with either symbiont alone. Uninoculated plants showed minimum level of 32 P uptake. (author). 1 tab., 7 refs

  10. Selection individual on mutant genotype of soybean (Glycine maxl.merrill) in m5 generation based on resistance of stem rot disease Athelia rolfsii (curzi)

    Science.gov (United States)

    Rahmah, M.; Hanafiah, D. S.; Siregar, L. A. M.; Safni, I.

    2018-02-01

    This study was aimed to obtain selected individuals on soybean plant Glycine max L. (Merrill) in M5 generation based on high production character and tolerance of stem rot disease Athelia rolfsii (Curzi). This research was conducted in Plant Disease Laboratory and experimental field Faculty of Agriculture Universitas Sumatera Utara Medan, Indonesia. This research was conducted from December 2016 to June 2017. The treatments were 15 mutant lines genotypes and Anjasmoro variety. The results showed that some lines mutant genotypes can gave the good agronomic appearance character than Anjasmoro variety on inoculation treatment of stem rot disease. Selection performed on population M5 producesselected individuals with tolerance of stem rot disease from 100 and 200 Gy population.

  11. New inoculants on maize silage fermentation

    Directory of Open Access Journals (Sweden)

    Fábia Giovana do Val de Assis

    2014-08-01

    Full Text Available The objective of this study was to evaluate the effect of bacterial inoculants at two inoculation rates on chemical and biological characteristics of maize silage. The treatments consisted of two inoculating rates (5 and 6 log cfu g-1 of forage for each strain of lactic acid bacteria (LAB identified as Lactobacillus buchneri, L. hilgardii, or L. plantarum. The maize was ensiled in experimental PVC silos. Samples were taken for the determination of the contents of dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, water-soluble carbohydrates (WSC, organic acids and alcohols, for the evaluation of the populations of lactic acid bacteria, yeasts, filamentous fungi, and for the determination of pH values during ensilage and after 30 or 90 days of fermentation. The doses of inoculants did not promote significant differences on the evaluated characteristics. There was effect of inoculants on acetic acid, 1.2-propanediol, LAB population, filamentous fungi, and pH value. No significant influence of the treatments with inoculants was observed in the variables DM, WSC, CP, lactic acid concentrations, or ethanol. The maximum temperature, i.e., the time to achieve the maximum temperature (TMT and aerobic stability (AS, was not influencied by treatments. However, a decrease in maximum temperature, an increase in TMT, and improvement in the AS were observed after 90 days of fermentation. These results proved the advantage of microbial inoculation. The treatments influenced LAB populations and filamentous fungi, but no effect was observed on the yeast population. The best inoculation dose is 6 cfu g-1 of forage because it provides higher reduction of filamentous fungi in maize silage, thereby decreasing the aerobic deterioration by these microorganisms.

  12. Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing

    Directory of Open Access Journals (Sweden)

    Glauber Monçon Fipke

    Full Text Available ABSTRACT Increased grain yield can be obtained via an interaction between plants and growth-promoting microorganisms. The Bradyrhizobium spp. are capable of fixing atmospheric nitrogen in soybeans [Glycine max (L. Merril], and Azospirillum spp. induce the synthesis of phytohormones. The aim of this study was to evaluate inoculation with Bradyrhizobium and co-inoculation with Bradyrhizobium + Azospirillum brasilense in soybeans in combination with the application a topdressing of 0, 75 or 150 kg of N ha-1 of urea during the reproductive stage. Three soybean cultivars (BMX Ativa, TEC 6029 and BMX Potência, were tested in field experiments in Santa Maria, RS, Brazil, during two agricultural years (2013/2014 and 2014/2015 and two sowing times. Morphological, nodulation and yield components were evaluated. Co-inoculation increased the grain yield by 240 kg ha-1 compared with conventional inoculation. When co-inoculated, cultivars BMX Ativa, TEC 6029 and BMX Potência showed increased grain yields of 6, 4 and 12%, respectively. The application of 150 kg ha-1 of N as a topdressing increased the grain yield by 300 kg ha-1 in the co-inoculated cultivars TEC 6029 and BMX Potência, but without a financial return. When inoculated only with Bradyrhizobium, the cultivars did not respond positively to the application of urea.

  13. Combination of inoculation methods of Azospirilum brasilense with broadcasting of nitrogen fertilizer increases corn yield

    Directory of Open Access Journals (Sweden)

    Tânia Maria Müller

    2015-01-01

    Full Text Available Nitrogen (N is the most limiting nutrient for corn production. Thereby, the goal of the paper was to evaluate inoculation methods of Azospirillum brasilense in order to partially supply N required by the crop. The experiment was carried out in Guarapuava, PR, Brasil, in 2011/2012 growing season. Randomized blocks with factorial 3 inoculation methods (seed treatment, planting furrow and non-inoculated control x 5 doses of nitrogen (0, 75, 150, 225 and 300kg ha-1 x 8 replications was used as the experimental design. Leaf are index, foliar nitrogen content, total chlorophyll, grains per ear and yield were evaluated. There was significant interaction between inoculation methods and nitrogen fertilization to leaf area index, but not for yield. Inoculation with the diazotrophic bacteria provided yield increase of 702kg ha-1 for inoculation in seeding furrow and 432kg ha-1 for inoculation in seed treatment compared to the control, but both treatments did not differ between each other. Furthermore, total chlorophyll, grains per ear and yield were positively affected, with quadratic response, by the nitrogen fertilization in broadcasting

  14. Root Proteomic Analysis of Grapevine Rootstocks Inoculated with Rhizophagus irregularis and Fusarium oxysporum f. sp. herbemontis

    Directory of Open Access Journals (Sweden)

    Elisa Vilvert

    Full Text Available ABSTRACT Grapevine decline and death caused by the pathogenic fungus Fusarium oxysporum f. sp. herbemontis is among the main phytosanitary problem for viticulture in southern Brazil. The eradication of infected plants is presently the most common procedure for disease control in vineyards. Inoculation with arbuscular mycorrhizal fungi is an option to reduce or neutralize the negative impacts of soil pathogenic microorganisms, but the mechanisms of plant response involved in this process are not yet completely elucidated. In order to better understand these mechanisms, an experiment was carried out to identify proteins related to plant defence induced by the mycorrhizal fungus after infection with the pathogenic fungus. We used the grapevine rootstocks SO4 and R110 (susceptible and resistant to the pathogenic fungus, respectively inoculated or not inoculated with the mycorrhizal fungus Rhizophagus irregularis, and inoculated or not inoculated with Fusarium oxysporum f. sp. herbemontis. Growth of the rootstocks’ shoot and root and presence of pathogenic symptoms were evaluated. The protein profiles of roots were characterized by two-dimensional electrophoresis and proteins were identified using mass spectrometry. The grapevine rootstocks inoculated with R. irregularis had higher biomass production and lower level of pathogenic symptoms. The R110 rootstock differentially accumulated 73 proteins, while SO4 accumulated 59 proteins. Nine plant-defence proteins were expressed by SO4 rootstock, and six were expressed by R110 rootstock plants. The results confirm the effect of mycorrhizal fungi in plant growth promotion and their potential for biological control against soil pathogenic fungus. Protein expression is dependent on rootstock characteristics and on the combination of plant material with the fungi.

  15. Effect of arbuscular mycorrhizal fungal inoculation in combination with different organic fertilizers on maize crop in eroded soils

    International Nuclear Information System (INIS)

    Sharif, M.; Saud, S.; Khan, F.

    2012-01-01

    A pot experiment was conducted to study the effect of inoculating maize (Zea mays L. Azam) with Arbuscular mycorrhizal (AM) fungi in 2 different series of North West Pakistan during the year 2007. Data showed significant increase in shoots and roots yield of maize with the inoculation of AM fungi alone and in combination with farm yard manure (FYM), poultry manure (PM) and humic acid (HA) over control and N-P-K treatments. Accumulation of N by maize shoots increased significantly by the addition of HA, PM and FYM plus N-P-K with or without inoculation of AM fungi over the treatments of N-P-K and control. Plants P accumulation increased significantly over control and N-P-K treatments with the inoculation of AM fungi alone and in combination with FYM, PM and HA in missa soil series. In missa gullied soil series, significantly increased plants P accumulation was noted by the treatments of AM inoculation with PM followed by HA. Accumulation of Mn by maize shoots increased significantly with AM inoculation with HA and PM over all other treatments, Fe increased with PM, HA and FYM. Plants Cu accumulation in missa series increased significantly over control and N-P-K treatments by AM alone and in combination with PM, FYM and HA and by AM fungi with PM, FYM and HA in missa gullied series. Maximum Mycorrhizal root infection rate of 51 % was recorded in the treatment of AM fungal inoculation with HA followed by the treatment inoculated with AM fungi with FYM. In missa gullied soil series, Maximum (59 %) and significantly increased roots infection rates over all treatments were observed in the treatment of AM fungal inoculation with HA followed by PM. Spores concentrations of AM fungi increased significantly with AM inoculation alone and with FYM, PM and HA. Maximum spores numbers of 50 in 20 g soil were recorded by the inoculation of AM fungi alone and with HA. (author)

  16. The utilization of microbial inoculants based on irradiated compost in dryland remediation to increase the growth of king grass and maize

    International Nuclear Information System (INIS)

    TRD Larasati; N Mulyana; D Sudradjat

    2016-01-01

    This research was conducted to evaluate the capability of functional microbial inoculants to remediate drylands. The microbial inoculants used consist of hydrocarbon-degrading microbial inoculants and plant-growth-promoting microbial inoculants. Compost-based carrier was sterilized by a gamma irradiation dose of 25 kGy to prepare seed inoculants. The irradiated-compost-based hydrocarbon-degrading microbial inoculants and king grass (Pennisetum purpureum Schumach.) were used to remediate oil-sludge-contaminated soil using in-situ composting for 60 days. The results showed that they could reduce THP (total petroleum hydrocarbons) by up to 82.23%. Plant-growth-promoting microbial inoculants were able to increase the dry weight of king grass from 47.39 to 100.66 g/plant, N uptake from 415.53 to 913.67 mg/plant, and P uptake from 76.52 to 178.33 mg/plant. Cow dung and irradiated-compost-based plant-growth-promoting microbial inoculants were able to increase the dry weight of maize (Zea mays L.) from 5.75 to 6.63 ton/ha (12.54%) and dry weight of grain potential from 5.30 to 7.15 ton/ha (35.03%). The results indicate that irradiated-compost-based microbial inoculants are suitable for remediating a dryland and therefore increase potential resources and improve the quality of the environment. (author)

  17. AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Astrit Balliu

    2015-12-01

    Full Text Available The study aimed to investigate the effects of commercially available AMF inoculate (Glomus sp. mixture on the growth and the nutrient acquisition in tomato (Solanumlycopersicum L. plants directly after transplanting and under different levels of salinity. Inoculated (AMF+ and non-inoculated (AMF− tomato plants were subjected to three levels of NaCl salinity (0, 50, and 100 mM·NaCl. Seven days after transplanting, plants were analyzed for dry matter and RGR of whole plants and root systems. Leaf tissue was analyzed for mineral concentration before and after transplanting; leaf nutrient content and relative uptake rates (RUR were calculated. AMF inoculation did not affect plant dry matter or RGR under fresh water-irrigation. The growth rate of AMF−plants did significantly decline under both moderate (77% and severe (61% salt stress compared to the fresh water-irrigated controls, while the decline was much less (88% and 75%,respectivelyand statistically non-significant in salt-stressed AMF+ plants. Interestingly, root system dry matter of AMF+ plants (0.098 g plant–1 remained significantly greater under severe soil salinity compared to non-inoculated seedlings (0.082 g plant–1. The relative uptake rates of N, P, Mg, Ca, Mn, and Fe were enhanced in inoculated tomato seedlings and remained higher under (moderate salt stress compared to AMF− plants This study suggests that inoculation with commercial AMF during nursery establishment contributes to alleviation of salt stress by maintaining a favorable nutrient profile. Therefore, nursery inoculation seems to be a viable solution to attenuate the effects of increasing soil salinity levels, especially in greenhouses with low natural abundance of AMF spores.

  18. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [Agricultural College, Henan University of Science and Technology, 70 Tianjin Road, Luoyang, Henan Province 471003 (China) and Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)]. E-mail: wfy1975@163.com; Lin Xiangui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China); Yin Rui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)

    2007-05-15

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens.

  19. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    International Nuclear Information System (INIS)

    Wang Fayuan; Lin Xiangui; Yin Rui

    2007-01-01

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens

  20. EFFECT OF MYCORRHIZAL INOCULANTS IN THE DEVELOPMENT OF MEXICAN LANDRACE AVOCADO ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    Edgar Castro Alvarado

    2013-12-01

    Full Text Available The aim of this work was to assess the effect of two arbuscular mycorrhizal fungi (AMF inoculants in the development of avocado rootstocks. Seeds of Mexican landrace avocado (Persea americana Mill. var. drymifolia were used, with two commercial inoculants: T1 containing Glomus fasciculatum, G. constrictum, G. tortuosum, G. geosporum,and Acaulospora scrobiculata, and T2, containing G. mosseae and G. cubense.  The plants inoculated with AMF showed more rapid growth than the no inoculant control as measured by plant height (50% and 54%, stem diameter (35% and 36%, leaf number (48% and 37% and length (31% and 40%, and root fresh weight (85% and 59%; however, no significant differences were observed between T1 and T2. The chlorophyll concentration in the leaves from T1 was 16.4% and T2 was 19% higher than the control suggesting a higher photosynthetic capacity in T1 and T2. Finally the shoot/root ratio, as indicator of the potential development of plantations, was 79% and 50% higher in mycorrhizal plants than in the control. In conclusion both T1 and T2 inoculants improved growth rate and vigor of avocado nursery rootstocks producing higher quality plants.

  1. Cropping systems sustainability: Inoculation and fertilisation effect on sulla performances in a new cultivation area

    Directory of Open Access Journals (Sweden)

    Leonardo Sulas

    2017-12-01

    Full Text Available To assess the feasibility of the sulla [Sulla coronaria (L. Medik] forage legume in a new agroecosystem, its host-specific symbiotic interaction needs to be taken into account. This study aimed to investigate the effects of inoculation and nitrogen (N fertiliser on productive performances and N-fixation ability of sulla established in a new habitat within a Mediterranean agropastoral area. Sulla plants, previously inoculated (with peat-based, liquid inoculants, and using soil from an existing sulla field and unfertilised or N fertilised were evaluated in Sardinia (Italy. During 2013-2014, sulla plants were sampled at four growing stages, from vegetative stage to seed set, and shoot length, shoot dry matter (DM yield and N content were monitored. Moreover, atom% 15N isotopic excess, proportion of N derived from the atmosphere and fixed N of sulla shoots were quantified. Inoculation and N fertilisation both affected growth, DM and N yields, and N-fixation of sulla. Compared to the best inoculated treatment, the DM yield and fixed N of the control only represented 10 to 22% and 2 to 11%, respectively. Nitrogen fertilisation caused temporary decreases in the N fixing ability of sulla. Results pointed out that rhizobial inoculation is essential for the exploitation of sulla outside its traditional cropping area.

  2. Adoption of Calliandra calothyrsus for fodder and it's Inoculation Potential on Farms in Kenya

    International Nuclear Information System (INIS)

    Kiptot, E; Wanjiku, J; Obonyo, E; Odee, D.W

    2007-01-01

    In Kenya, productivity of dairy animals is mostly limited by inadequate nutrition especially proteins. To improve feed quality, the use of fodder trees is a preferred option. One of the most widely used fodder tree is calliandra calothyrsus (calliandra) whose productivity can be improved through rhizobia inoculation. A study was initiated to assess farmers' management practices and utilization of calliandra as well as to elicit their knowledge on it's inoculation. Survey sites were identified were identified in areas where calliandra had been previously introduced in central and western regions of Kenya. Results indicated that, for the first establishment of calliandra trees (NGOs) 68.3% of the farmers acquired seedlings from research institutions as well as Non-Governmental Organizations (NGOs) working within the research area. During subsequent establishments, reported only in central region a reverse trend was observed with 73% of farmers acquiring seedlings from private and individual nurseries. A majority of farmers (56%) planted calliandra on contours and 78% used it for fodder, while 22% had no knowledge of food potential. About 41% of farmers from central region had planted inoculated seedlings and only 1.6% from the western region had inoculants. Though the inoculant had been provided free, 47% of the farmers were willing to purchase it if made available. In central region calliandra was highly utilized for dairy animals consequently motivating farmers to expand planting. Contour planting was preferred niche due to the perceived low competition with associate crops for space and growth parameters. The study concluded that though calliandra was accepted as a fodder tree, a knowledge gap existed on farms on the role of rhizobia inoculation in productivity. There is therefore an urgent need to sensitize on the benefits of inoculation

  3. Development and nitrate reductase activity of sugarcane inoculated with five diazotrophic strains.

    Science.gov (United States)

    Dos Santos, Silvana Gomes; da Silva Ribeiro, Flaviane; da Fonseca, Camila Sousa; Pereira, Willian; Santos, Leandro Azevedo; Reis, Veronica Massena

    2017-08-01

    Diazotrophs are able to stimulate plant growth. This study aimed at evaluating the effect of inoculation of five diazotrophic strains on growth promotion and nitrate reductase (NR, EC 1.7.1.1) activity in sugarcane. An experiment was carried out from three stages of cultivation: sprouting, tubes, and in hydroponics. On the first two stages, seven treatments were adopted: uninoculated control; mixed inoculation with five strains; and individual inoculation with Gluconacetobacter diazotrophicus (Gd), Herbaspirillum rubrisubalbicans (Hr), Herbaspirillum seropedicae (Hs), Nitrospirillum amazonense (Na), and Paraburkholderia tropica (Pt). The four treatments showing the best performance were transferred to the hydroponic system for analysis of NR activity. Hs, Pt, and the mixture of all strains led to the highest seedling biomass in tubes, followed by Hr. In hydroponics, the mixture and the strain Hr had the highest growth-promoting effect. NR activity was influenced by inoculation only under low N supply conditions, with positive effect of Hr, Pt, and the mixture.

  4. growth and yield parameters of sorghum genotypes as affected

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. Field trial was conducted at Bayero University, Kano research farm with the aim of determining the effect of stem injection artificial inoculation technique on the growth and yield parameters of one hundred and four sorghum genotypes against head smut. The trial was laid on a randomized complete block design ...

  5. Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal.

    Science.gov (United States)

    Franco, Albina R; Sousa, Nadine R; Ramos, Miguel A; Oliveira, Rui S; Castro, Paula M L

    2014-11-01

    Ectomycorrhizal fungi (ECMF) play an important role in forest ecosystems, often mitigating stress factors and increasing seedling performance. The aim of this study was to investigate the effects of a nursery inoculation on Pinus pinaster growth and on the fungal communities established when reforesting burned areas. Inoculated P. pinaster saplings showed 1.5-fold higher stem height than the non-inoculated controls after a 5 year growth period, suggesting that fungal inoculation could potentiate tree growth in the field. Ordination analysis revealed the presence of different ECMF communities on both plots. Among the nursery-inoculated fungi, Laccaria sp., Rhizopogon sp., Suillus bovinus and Pisolithus sp. were detected on inoculated Pinus saplings on both sampling periods, indicating that they persisted after field establishment. Other fungi were also detected in the inoculated plants. Phialocephala sp. was found on the first assessment, while Terfezia sp. was detected on both sampling periods. Laccaria sp. and Rhizopogon sp. were identified in the control saplings, belonging however to different species than those found in the inoculated plot. Inocybe sp., Thelephora sp. and Paxillus involutus were present on both sampling periods in the non-inoculated plots. The results suggest that ECMF inoculation at nursery stage can benefit plant growth after transplantation to a post-fire site and that the inoculated fungi can persist in the field. This approach has great potential as a biotechnological tool to aid in the reforestation of burned areas.

  6. La inoculación de plantas con Pantoea sp., bacteria solubilizadora de fosfatos, incrementa la concentración de P en los tejidos foliares Plant inoculation with Pantoea sp., phosphate solubilising-bacteria increases P concentration in leaf tissues

    Directory of Open Access Journals (Sweden)

    Ortega-Rodés Patricia

    2008-07-01

    inoculants for crops is a biotechnological alternative to increasing its availability. Pantoea sp. (9C strain is an endophytic nitrogen-fixing bacterium isolated from the inside of sugarcane stems (Loiret et ál., 2004. The microorganism is able to produce 6 mm solubilisation halo in plate assays after 7 days at 30ºC, and also solubilise Ca3(PO42 in NBRI-P liquid medium, producing values of 1,128 μg P mL-1. It is also able to survive for at least 35 days in a substrate mixture prepared with Vermiculite and Red Ferralitic (Ferralic Cambisol, rhodic soil, producing populations of 3.2 x 1,015 cells g-1. Fast growth and high demanding P radish plants (Raphanus sativus, L. var. Scarlet Globe used as model plants cultivated in soil inoculated with the microorganism absorbed more P than the non-inoculated plants, reaching ≥ 3,500 ppm Pdry weight in foliar tissue. Key words: Endophytic bacteria; phosphate solubilization; radish (Raphanus sativus, L.; sugarcane (Saccharum hybrid.

  7. Genotypes of Brassica rapa respond differently to plant-induced variation in air CO2 concentration in growth chambers with standard and enhanced venting.

    Science.gov (United States)

    Edwards, Christine E; Haselhorst, Monia S H; McKnite, Autumn M; Ewers, Brent E; Williams, David G; Weinig, Cynthia

    2009-10-01

    Growth chambers allow measurement of phenotypic differences among genotypes under controlled environment conditions. However, unintended variation in growth chamber air CO2 concentration ([CO2]) may affect the expression of diverse phenotypic traits, and genotypes may differ in their response to variation in [CO2]. We monitored [CO2] and quantified phenotypic responses of 22 Brassica rapa genotypes in growth chambers with either standard or enhanced venting. [CO2] in chambers with standard venting dropped to 280 micromol mol(-1) during the period of maximum canopy development, approximately 80 micromol mol(-1) lower than in chambers with enhanced venting. The stable carbon isotope ratio of CO2 in chamber air (delta13C(air)) was negatively correlated with [CO2], suggesting that photosynthesis caused observed [CO2] decreases. Significant genotype x chamber-venting interactions were detected for 12 of 20 traits, likely due to differences in the extent to which [CO2] changed in relation to genotypes' phenology or differential sensitivity of genotypes to low [CO2]. One trait, 13C discrimination (delta13C), was particularly influenced by unaccounted-for fluctuations in delta13C(air) and [CO2]. Observed responses to [CO2] suggest that genetic variance components estimated in poorly vented growth chambers may be influenced by the expression of genes involved in CO2 stress responses; genotypic values estimated in these chambers may likewise be misleading such that some mapped quantitative trait loci may regulate responses to CO2 stress rather than a response to the environmental factor of interest. These results underscore the importance of monitoring, and where possible, controlling [CO2].

  8. Single and mixed formulations of inoculants with diazotrophic bacteria, under different nitrogen rates and on the paddy rice crop

    Directory of Open Access Journals (Sweden)

    Paula Bianchet

    2013-12-01

    Full Text Available The use of diazotrophic bacteria as a biological input for the production of paddy rice can reduce nitrogen fertilizer applications and contribute to plant development. The use of mixed inoculants’ formulations can increase the efficiency of nitrogen fixation biological process. The objective of this study was to evaluate the effect of single and mixed formulations of inoculants with diazotrophic bacteria on the initial growth of paddy rice plants under different levels of N. The experiment was set in a greenhouse. Treatments consisted of four types of inoculation (no inoculation, inoculation with the isolated AI UDESC 27, inoculation with the isolated FE UDESC 22, and inoculation with the mixed formulation of isolated AI UDESC UDESC 27 and FE UDESC 22; and two levels of mineral nitrogen (30 and 60 mg kg-1 of N. The cultivar used was Epagri 109, which presents late maturity (over 140 days and high yield potential. Treatments were arranged in a factorial design (4 x 2 with five replicates. The experimental design was completely randomized. Inoculation with diazotrophic bacteria reduced by 18% and 26% shoot and root dry matter of rice plants, respectively. Plants also presented lower root area and volume when they were inoculated. There was no significant effect of inoculation and nitrogen rates on the number of leaves and tillers produced per plant or shoot nitrogen accumulation. The results showed that the isolated used in this work were not effective to stimulate shoot and root growth of cv Epagri 109, regardless of formulation type and rate of N.

  9. Comparison of Inoculation with the InoqulA and WASP Automated Systems with Manual Inoculation

    Science.gov (United States)

    Croxatto, Antony; Dijkstra, Klaas; Prod'hom, Guy

    2015-01-01

    The quality of sample inoculation is critical for achieving an optimal yield of discrete colonies in both monomicrobial and polymicrobial samples to perform identification and antibiotic susceptibility testing. Consequently, we compared the performance between the InoqulA (BD Kiestra), the WASP (Copan), and manual inoculation methods. Defined mono- and polymicrobial samples of 4 bacterial species and cloudy urine specimens were inoculated on chromogenic agar by the InoqulA, the WASP, and manual methods. Images taken with ImagA (BD Kiestra) were analyzed with the VisionLab version 3.43 image analysis software to assess the quality of growth and to prevent subjective interpretation of the data. A 3- to 10-fold higher yield of discrete colonies was observed following automated inoculation with both the InoqulA and WASP systems than that with manual inoculation. The difference in performance between automated and manual inoculation was mainly observed at concentrations of >106 bacteria/ml. Inoculation with the InoqulA system allowed us to obtain significantly more discrete colonies than the WASP system at concentrations of >107 bacteria/ml. However, the level of difference observed was bacterial species dependent. Discrete colonies of bacteria present in 100- to 1,000-fold lower concentrations than the most concentrated populations in defined polymicrobial samples were not reproducibly recovered, even with the automated systems. The analysis of cloudy urine specimens showed that InoqulA inoculation provided a statistically significantly higher number of discrete colonies than that with WASP and manual inoculation. Consequently, the automated InoqulA inoculation greatly decreased the requirement for bacterial subculture and thus resulted in a significant reduction in the time to results, laboratory workload, and laboratory costs. PMID:25972424

  10. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes.

    Science.gov (United States)

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H; Cavallini, Andrea; Natali, Lucia

    2015-11-24

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Science.gov (United States)

    Greenfield, Melinda; Gómez-Jiménez, María I.; Ortiz, Viviana; Vega, Fernando E.; Kramer, Matthew; Parsa, Soroush

    2016-01-01

    We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cassava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cassava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7–9 days post-inoculation (84%) compared to 47–49 days post-inoculation (40%). In contrast, the colonization levels of M. anisopliae remained constant from 7–9 days post-inoculation (80%) to 47–49 days post-inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte in cassava roots over time. Differences in colonization success and plant growth were found among the fungal entomopathogen treatments. PMID:27103778

  12. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect.

    Science.gov (United States)

    Khalid, Muhammad; Bilal, Muhammad; Hassani, Danial; Iqbal, Hafiz M N; Wang, Hang; Huang, Danfeng

    2017-12-01

    Salinity is one of the increasingly serious environmental problems worldwide for cultivating agricultural crops. The present study was aimed to ascertain the potential of beneficial soil bacterium Azospirillum brasilense to alleviate saline stress in Trifolium repens. Experimental plants (white clover) were grown from seeds and inoculated with or without A. brasilense bacterial strain supplemented with 0, 40, 80, or 120 mM NaCl into soil. The growth attributes including, shoot heights, root lengths, fresh and dry weights, leaf area and chlorophyll content were significantly enhanced in T. repens plants grown in A. brasilense inoculated soil than un-inoculated controls, particularly under elevated salinity conditions (40, 80 and 120 mM NaCl). Malondialdehyde content of leaf was recorded to be declined under saline conditions. Moreover, the K + /Na + ratio was also improved in bacterium-inoculated plants, since A. brasilense significantly reduced the root and shoot Na + level under high salty environment. Results revealed that soil inoculation with A. brasilense could significantly promote T. repens growth under both non-saline and saline environments, and this study might be extended to other vegetables and crops for the germination and growth enhancement.

  13. Paenibacillus lentimorbus Inoculation Enhances Tobacco Growth and Extenuates the Virulence of Cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Susheel Kumar

    Full Text Available Previous studies with Paenibacillus lentimorbus B-30488" (hereafter referred as B-30488, a plant growth promoting rhizobacteria (PGPR isolated from cow's milk, revealed its capabilities to improve plant quality under normal and stress conditions. Present study investigates its potential as a biocontrol agent against an economically important virus, Cucumber mosaic virus (CMV, in Nicotiana tabacum cv. White Burley plants and delineates the physical, biophysical, biochemical and molecular perturbations due to the trilateral interactions of PGPR-host-CMV. Soil inoculation of B-30488 enhanced the plant vigor while significantly decreased the virulence and virus RNA accumulation by ~12 fold (91% in systemic leaves of CMV infected tobacco plants as compared to the control ones. Histology of these leaves revealed the improved tissue's health and least aging signs in B-30488 inoculated tobacco plants, with or without CMV infection, and showed lesser intercellular spaces between collenchyma cells, reduced amount of xyloglucans and pectins in connecting primary cells, and higher polyphenol accumulation in hypodermis layer extending to collenchyma cells. B-30488 inoculation has favorably maneuvered the essential biophysical (ion leakage and photosynthetic efficiency and biochemical (sugar, proline, chlorophyll, malondialdehyde, acid phosphatase and alkaline phosphatase attributes of tobacco plants to positively regulate and release the virus stress. Moreover, activities of defense related enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and catalase induced due to CMV-infection were ameliorated with inoculation of B-30488, suggesting systemic induced resistance mediated protection against CMV in tobacco. The quantitative RT-PCR analyses of the genes related to normal plant development, stress and pathogenesis also corroborate well with the biochemical data and revealed the regulation (either up or down of these genes in favor of

  14. PCR-based analysis of disease in tomato singly or mixed inoculated with Fusarium oxysporum f. sp. lycopersici races 1 and 2

    Directory of Open Access Journals (Sweden)

    OLUSEGUN SAMUEL BALOGUN

    2008-07-01

    Full Text Available The pathogenic response of two tomato cultivars to races of Fusarium oxysporum f. sp.. lycopersici (cv. Momotaro, insensitive to race 1 of the pathogen, and cv. Ponderosa sensitive to race 1, was studied in greenhouse and laboratory experiments by inoculating the cultivars singly with race 1 or race 2, and in mixed inoculation with the two races of the pathogen. A pre-symptom PCR assay two weeks after inoculation showed that a fragment of the intergenic spacer region (IGS of ribosomal DNA was amplifi ed by DNA templates from leaf samples of cv. Momotaro tomato plants inoculated with only race 2, or with race 1+2, but in the cv. Ponderosa the fragment was amplifi ed only in plants inoculated with race 1+2. Race-specifi c analysis using the sp13 and sp23 primers confi rmed that the amplifi ed fragment was from race 2 in cv. Momotaro and from races 1+2 in cv. Ponderosa. Later wilt symptoms mirrored the pre-symptom and post-symptom molecular analytical results: cv. Momotaro plants inoculated with only race 1 remained symptomless, while the ‘Momotaro’ plants inoculated with both races (1+2 did not manifest more severe wilt symptoms than plants inoculated with race 2 alone; cv. Ponderosa plants that were mixed-inoculated with race 1+2 manifested more severe symptoms, and at an earlier date than plants inoculated with only race 2. Growth parameters such as number of leaves and plant height showed the race 1+2 infected cv. Ponderosa were significantly retarded in growth, suggesting that significant synergism between the fungal races in tomato pathosystem can occur only when the host cultivar is sensitive to both races. An additional important finding is that pre-symptom leaf sampling of apparently healthy plants is useful in PCR diagnostic analysis to predict impending fusarial wilt outbreaks in tomato especially in infested soil.

  15. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus increase yield of soybean and cotton under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-05-01

    Full Text Available Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF enhance plant nutrition by providing especially phosphorus (P, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for P supply in soybean (Glycine max L. and cotton (Gossypium hirsutum L.. The experiments were carried out in plots and the treatments were: Fertilizer; AMF, AMF + Fertilizer and AMF + ½ Fertilizer; non-inoculated and non-fertilized plants were considered the control. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth and yield under a field conditions. The results showed that AMF inoculation increased the effect of fertilizer application in soybean, and that in cotton R. clarus was more effective than chemical fertilizer

  16. Relationships between mycorrhizas and antioxidant enzymes in citrus (citrus tangerina) seedlings inoculated with glomus mosseae

    International Nuclear Information System (INIS)

    Liu, C.Y.; Wu, Q.S.

    2014-01-01

    A potted experiment was conducted to evaluate the effects of an arbuscular mycorrhizal fungus (AMF), Glomus mosseae, on growth performance and superoxide dismutase (SOD) and catalase (CAT) activities of citrus (Citrus tangerina) seedlings. After five months of AMF inoculation, mycorrhizal colonization and vesicles, but not arbuscules and entry points, increased with the increase of inoculated mycorrhizal dosages among 5-40 g (32 spores/g dosage). Mycorrhizal inoculation with 10-40 g dosages significantly increased plant growth traits, including plant height, stem diameter, and shoot, root and total fresh weights. Higher leaf chlorophyll content was found in all the mycorrhizal plants, compared with the non-mycorrhizal plants. Inoculation with G. mosseae markedly decreased SOD and CAT activities of leaf and root, except an increase of either root CAT with the 20 g mycorrhizal treatment or root SOD with the 20 and 40 g mycorrhizal treatments. In addition, mycorrhizal colonization and vesicles significantly positively correlated with root SOD and without root CAT. We also discussed the relationships between mycorrhizal effects on antioxidant enzymes and growth environment of host plants. (author)

  17. The effect of Piriformospora indica inoculation on salt and drought stress tolerance in Stevia rebaudiana under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Fahimeh Seraj

    2016-09-01

    Full Text Available In order to investigate the effect of Piriformospora indica under salt and drought stresses on some vegetative characteristics and physiological parameters of stevia (Stevia rebaudiana Bertoni medicinal plant, an experiment was conducted in factorial arrangement based on completely randomized design with three replicates at Genetics and Agricultural Biotechnology Institute in Sari Agricultural Sciences and Natural Resources University. Factors include three levels of osmatic potential (0, -5, and -10 bar and with three osmotic sources including NaCl (Na, Mannitol (M and NaCl+Mannitol (N+M and inoculation of mycorrhizae like fungi at two levels (non-inoculated and inoculation with fungi. The plantlets were treated for 30 days and then some morphological and physiological parameters were measured. Results of ANOVA showed that there was a significant interaction between osmatic source and levels with fungi inoculation for the most determined parameters. Inoculation of stevia plantlets with P. indica at osmatic level of -5 bar caused either by M or M+Na markedly improved dry weight of leaf (112 and 156%, respectively and aerial parts (49 and 144%, respectively as compared to the uninoculated control. Fungi inoculation positively improved vegetative parameters of stevia plant under most osmatic levels and sources. The most ameliorate effect, however, was observed where M as drought stress or M+Na were adjusted to -5 bar. Therefore, the results of this study represented a positive effect of P. indica inoculation in inproving osmotic tolerance of stevia medicinal plant.

  18. Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition.

    Science.gov (United States)

    Facelli, Evelina; Smith, Sally E; Facelli, José M; Christophersen, Helle M; Andrew Smith, F

    2010-03-01

    *We studied the effects of two arbuscular mycorrhizal (AM) fungi, singly or together, on the outcome of competition between a host (tomato cultivar, wild-type (WT)) and a surrogate nonhost (rmc, a mycorrhiza-defective mutant of WT) as influenced by the contributions of the direct and AM phosphorus (P) uptake pathways to plant P. *We grew plants singly or in pairs of the same or different genotypes (inoculated or not) in pots containing a small compartment with (32)P-labelled soil accessible to AM fungal hyphae and determined expression of orthophosphate (P(i)) transporter genes involved in both AM and direct P uptake. *Gigaspora margarita increased WT competitive effects on rmc. WT and rmc inoculated with Glomus intraradices both showed growth depressions, which were mitigated when G. margarita was present. Orthophosphate transporter gene expression and (32)P transfer showed that the AM pathway operated in single inoculated WT, but not in rmc. *Effects of AM fungi on plant competition depended on the relative contributions of AM and direct pathways of P uptake. Glomus intraradices reduced the efficiency of direct uptake in both WT and rmc. The two-fungus combination showed that interactions between fungi are important in determining outcomes of plant competition.

  19. FTIR Analysis of Phenolic Compound as Pancreatic Lipase Inhibitor from Inoculated Aquilaria Malaccensis

    International Nuclear Information System (INIS)

    Nur Fahana Jamahseri; Miradatul Najwa Mohd Rodhi; Nur Hidayah Zulkarnain; Nursyuhada Che Husain; Ahmad Fakhri Syahmi Masruddin

    2014-01-01

    This research aimed to discover the potential of inoculated Aquilaria malaccensis extract as a new and safe lipase inhibitor. The phenolic compounds in this plant are expected to promote inhibitory activity towards pancreatic lipase enzyme. Inoculated Aquilaria malaccensis was selected for this research, wherein the parts of this species (bark and leaves) were extracted via hydro distillation process. The extracts of this plant which are hydrosol, oil, and leaves were analyzed for phyto chemical compound via Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis of the extracts of inoculated Aquilaria malccensis revealed the presence of hydroxyl functional group in both leaves and hydrosol extracts but absence in oil. This validate the presence of phenolic compound in hydrosol and leaves extract. Therefore, the leaves and hydrosol extracts have potential as an anti-obesity agent by inhibiting pancreatic lipase. (author)

  20. Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus

    Science.gov (United States)

    Clavijo, Gabriel; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo; López-Ferber, Miguel

    2010-01-01

    An insect nucleopolyhedrovirus naturally survives as a mixture of at least nine genotypes. Infection by multiple genotypes results in the production of virus occlusion bodies (OBs) with greater pathogenicity than those of any genotype alone. We tested the hypothesis that each OB contains a genotypically diverse population of virions. Few insects died following inoculation with an experimental two-genotype mixture at a dose of one OB per insect, but a high proportion of multiple infections were observed (50%), which differed significantly from the frequencies predicted by a non-associated transmission model in which genotypes are segregated into distinct OBs. By contrast, insects that consumed multiple OBs experienced higher mortality and infection frequencies did not differ significantly from those of the non-associated model. Inoculation with genotypically complex wild-type OBs indicated that genotypes tend to be transmitted in association, rather than as independent entities, irrespective of dose. To examine the hypothesis that virions may themselves be genotypically heterogeneous, cell culture plaques derived from individual virions were analysed to reveal that one-third of virions was of mixed genotype, irrespective of the genotypic composition of the OBs. We conclude that co-occlusion of genotypically distinct virions in each OB is an adaptive mechanism that favours the maintenance of virus diversity during insect-to-insect transmission. PMID:19939845

  1. Differential expression of jasmonate biosynthesis genes in cacao genotypes contrasting for resistance against Moniliophthora perniciosa.

    Science.gov (United States)

    Litholdo, Celso G; Leal, Gildemberg A; Albuquerque, Paulo S B; Figueira, Antonio

    2015-10-01

    The resistance mechanism of cacao against M. perniciosa is likely to be mediated by JA/ET-signaling pathways due to the preferential TcAOS and TcSAM induction in a resistant genotype. The basidiomycete Moniliophthora perniciosa causes a serious disease in cacao (Theobroma cacao L.), and the use of resistant varieties is the only sustainable long-term solution. Cacao resistance against M. perniciosa is characterized by pathogen growth inhibition with reduced colonization and an attenuation of disease symptoms, suggesting a regulation by jasmonate (JA)/ethylene (ET) signaling pathways. The hypothesis that genes involved in JA biosynthesis would be active in the interaction of T. cacao and M. perniciosa was tested here. The cacao JA-related genes were evaluated for their relative quantitative expression in susceptible and resistant genotypes upon the exogenous application of ET, methyl-jasmonate (MJ), and salicylic acid (SA), or after M. perniciosa inoculation. MJ treatment triggered changes in the expression of genes involved in JA biosynthesis, indicating that the mechanism of positive regulation by exogenous MJ application occurs in cacao. However, a higher induction of these genes was observed in the susceptible genotype. Further, a contrast in JA-related transcriptional expression was detected between susceptible and resistant plants under M. perniciosa infection, with the induction of the allene oxide synthase gene (TcAOS), which encodes a key enzyme in the JA biosynthesis pathway in the resistant genotype. Altogether, this work provides additional evidences that the JA-dependent signaling pathway is modulating the defense response against M. perniciosa in a cacao-resistant genotype.

  2. Variations in early response of grapevine wood depending on wound and inoculation combinations with Phaeoacremonium aleophilum and Phaeomoniella chlamydospora

    Directory of Open Access Journals (Sweden)

    Romain J. G. PIERRON

    2016-03-01

    Full Text Available Defense mechanisms in woody tissue are poorly understood, especially in vine colonized by trunk pathogens. However, several investigations suggest that molecular mechanisms in the central tissue of Vitis vinifera L. may be involved in trunk-defense reactions. In this work, the perception of Phaeoacremonium aleophilum and Phaeomoniella chlamydospora alone or together were investigated in cuttings of Cabernet Sauvignon trunks. Plant responses were analyzed at the tissue level via optical microscopy and at the cellular level via plant-gene expression. The microscopy results revealed that, six weeks after pathogen inoculation, newly formed vascular tissue is less developed in plants inoculated with P. chlamydospora than in plants inoculated with P. aleophilum. Co-inoculation with both pathogens resulted in an intermediate phenotype. Further analysis showed the relative expression of the following grapevine genes: PAL, PR10.3, TL, TLb, Vv17.3, STS, STS8, CWinv, PIN, CAM, LOX at 10, 24, 48, and 120 h post-inoculation (hpi. The gene set was induced by wounding before inoculation with the different pathogens, except for the genes CAM and LOX. This response generated significant noise, but the expression of the grapevine genes (PAL, PR10.3, TL, TLb, Vv17.3, STS, STS8, CWinv, and PIN still differed due to perception of mycelium by the plant. Furthermore, at 48 hpi, the induction of PAL and STS8 differs depending on the pathogen, and a specific pattern emerges from the different inductions associated with the different treatments. Based on these results, we conclude that Vitis vinifera L. trunk perceives the presence of pathogens differently depending on the inoculated pathogen or even on the combination of co-inoculated pathogens, suggesting a defense orchestration in the perennial organs of woody plants.

  3. ( Rosa damascena Mill.) by microbial inoculation

    African Journals Online (AJOL)

    This study was carried out to determine the effects of microbial inoculation in breaking seed dormancy and on the germination of Rosa damascena Mill. Seeds of R. damascena Mill. are the most used scented rose species in rose oil production. The most important production centers around the world are Turkey and ...

  4. Coping With Pain: Studies in Stress Inoculation.

    Science.gov (United States)

    Horan, John J.; And Others

    The stress-inoculation paradigm for helping clients deal with pain consists of education about the psychological dimensions of pain, training in a number of coping skills relevant to each dimension, and practice in applying these skills to the noxious stimulus. Presented are two studies, the first of which represents a component analysis of stress…

  5. Dual inoculation with an Aarbuscular Mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wu, F.Y.; Bi, Y.L.; Wong, M.H. [China University of Mining & Technology, Beijing (China)

    2009-07-01

    A pot experiment was conducted to investigate the effects of Glomus mosseae and Rhizobium on Medicago sativa grown on three types of coal mine substrates, namely a mixture of coal wastes and sands (CS), coal wastes and fly ash (CF), and fly ash (FA). Inoculation with Rhizobium alone did not result in any growth response but G. mosseae alone displayed a significant effect on plant growth. G. mosseae markedly increased the survival rate of M. sativa in CS substrate. In CF and FA substrates the respective oven dry weights of M. sativa inoculated with G. mosseae were 1.8 and 5.1 times higher than those without inoculation. Based on nitrogen (N), phosphorus (P) and potassium (K) uptake and legume growth, the results also show that dual inoculation in CS and CF substrates elicited a synergistic effect. This indicates that inoculation with arbuscular mycorrhizal (AM) fungi may be a promising approach for revegetation of coal mine substrates.

  6. Soil and Rhizosphere Populations of Fusarium and Fluorescent Pseudomonas spp. Associated with Field-Grown Plants are Affected by Sorghum Genotype

    Science.gov (United States)

    Sorghum [Sorghum bicolor (L.) Moench] is valued for bioenergy, feed and food. Potential of sorghum genotypes to support differing populations of root- and soil-associated fluorescent Pseudomonas spp. or Fusarium spp., in two soils, was assessed. Pseudomonad and Fusarium numbers were assessed from ro...

  7. Soil and Root Populations of Fluorescent Pseudomonas spp. Associated with Seedlings and Field-grown Plants are Affected by Sorghum Genotype

    Science.gov (United States)

    Sorghum [Sorghum bicolor (L.) Moench] is valued for bioenergy, feed and food. Aims: Potential of sorghum genotypes to support differing populations of root- and soil-associated fluorescent Pseudomonas spp. or Fusarium spp., in two soils, was assessed. Methods: Culturable pseudomonads were enumerated...

  8. Season, Irrigation, Leaf Age, and Escherichia coli Inoculation Influence the Bacterial Diversity in the Lettuce Phyllosphere

    Science.gov (United States)

    Williams, Thomas R.; Moyne, Anne-Laure; Harris, Linda J.; Marco, Maria L.

    2013-01-01

    The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, CA, USA from four plantings performed over 2 years and including two irrigation methods and inoculations with an attenuated strain of Escherichia coli O157:H7. High-throughput DNA pyrosequencing of the V5 to V9 variable regions of bacterial 16S rRNA genes recovered in lettuce leaf washes revealed that the bacterial diversity in the phyllosphere was distinct for each field trial but was also strongly correlated with the season of planting. Firmicutes were generally most abundant in early season (June) plantings and Proteobacteria comprised the majority of bacteria recovered later in the year (August and October). Comparisons within individual field trials showed that bacterial diversity differed between sprinkler (overhead) and drip (surface) irrigated lettuce and increased over time as the plants grew. The microbiota were also distinct between control and E. coli O157:H7-inoculated plants and between E. coli O157:H7-inoculated plants with and without surviving pathogen cells. The bacterial inhabitants of the phyllosphere therefore appear to be affected by seasonal, irrigation, and biological factors in ways that are relevant for assessments of fresh produce food safety. PMID:23844230

  9. Resistance of solanum species to phytophthora infestans evaluated in the detached-leaf and whole-plant assays

    International Nuclear Information System (INIS)

    Akhtar, K.P.; Saleem, M.Y.; Asghar, M.

    2012-01-01

    The reaction of 82 tomato genotypes belonging to 8 Solanum and a Lycopersicon species against Phytophthora infestans causing late blight was determined using detached-leaf and whole-plant assays. None of the test genotypes was immune or highly resistant. Of the 82 commercial and wild genotypes only TMS-2 (male-sterile and characterized by indeterminate growth) belonging to Lycopersicon esculentum was resistant with severity index of 2.4 in the detached-leaf assay on 0-5 scale (where 5 was highly susceptible) and percent disease index (%DI) of 23.3% under the whole-plant assay. Among the remaining genotypes, 41 were susceptible and 40 were highly susceptible under the detached-leaf assay, while 18 were susceptible and 63 were highly susceptible under the whole-plant assay. However, there was a significant difference in %DI for genotypes under the whole-plant assay. The response of whole-plants to inoculation with P. infestans in the detached-leaf assay was similar in all cases. The overall screening results indicate that TMS-2 is a good source of resistance and it can be useful for the development of tomato hybrid cultivars resistant to late blight. (author)

  10. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    Science.gov (United States)

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  11. Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    N. Krishnakumar

    2012-11-01

    Full Text Available Open cast mining for bauxite at Yercaud hills (India resulted indegradation of forest ecosystem and production of large quantities of waste rocks (called mine spoils. To ameliorate mine spoils, topsoil is used to spread over before the planting of tree species, conventional method as the topsoil has a good structure, water holding capacity and beneficial microbes like Arbuscular Mycorrhizal (AM fungi essential for plant growth.However, the use of top soil is expensive and in this study bauxite mine spoils were reforestated with AM fungi instead of it. The beneficial microbes AM fungi (Glomus aggregatum Schenck & Smith, G. fasciculatum(Thatcher Gerd. & Trappe emend. Walker & Koske, G. geosporum(Nicol. & Gerd. Walker were isolated, cultured and inoculated into the seedlings of Eucalyptus tereticornis Sm. and grown in bauxite mine spoils as potting medium under nursery conditions. Then, the biomass improved seedlings of E. tereticornis with inoculation of AM fungi were directly transplanted at bauxite mine spoils. After transplantation of the seedlings at bauxite mine spoils, the growth and survival rate were monitored for two years. The AM fungi inoculated seedlings of E. tereticornis showed 95% survival over the control seedlings and their growth was also significantlyhigher. Tissue nutrients (N, P, K were also found higher inAM fungi inoculated E. tereticornis than un inoculated control seedlings.

  12. Reforestation of Bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with Arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    A. Karthikeyan

    2012-12-01

    Full Text Available Open cast mining for bauxite at Yercaud hills (India resulted in degradation of forest ecosystem and production of large quantities of waste rocks (called mine spoils. To ameliorate mine spoils, topsoil is used to spread over before the planting of tree species, conventional method as the topsoil has a good structure, water holding capacity and beneficial microbes like Arbuscular Mycorrhizal (AM fungi essential for plant growth. However, the use of top soil is expensive and in this study bauxite mine spoils were reforestated with AM fungi instead of it. The beneficial microbes AM fungi (Glomus aggregatum Schenck & Smith, G. fasciculatum (Thatcher Gerd. & Trappe emend. Walker & Koske, G. geosporum (Nicol. & Gerd. Walker were isolated, cultured and inoculated into the seedlings ofEucalyptus tereticornis Sm. and grown in bauxite mine spoils as potting medium under nursery conditions. Then, the biomass improved seedlings of E. tereticornis with inoculation of AM fungi were directly transplanted at bauxite mine spoils. After transplantation of the seedlings at bauxite mine spoils, the growth and survival rate were monitored for two years. The AM fungi inoculated seedlings ofE. tereticornis showed 95% survival over the control seedlings and their growth was also significantly higher. Tissue nutrients (N, P, K were also found higher in AM fungi inoculated E. tereticornis than un inoculated control seedlings. 

  13. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities.

    Science.gov (United States)

    Lan, Shubin; Zhang, Qingyi; Wu, Li; Liu, Yongding; Zhang, Delu; Hu, Chunxiang

    2014-01-01

    Desertification has been recognized as a global environmental problem, and one region experiencing ongoing desertification is the eastern edge of Qubqi Desert (Inner Mongolia). To investigate the facilitating effects of cyanobacterial inoculation technology on the desertification control along this steppe-desert transition region, artificial cyanobacterial crusts were constructed with two filamentous cyanobacteria 3 and 8 years ago combined with Salix planting. The results showed that no crusts formed after 3 years of fixation only with Salix planting, whereas after cyanobacterial inoculation, the crusts formed quickly and gradually succeed to moss crusts. During that course, topsoil environments were gradually improved, providing the necessary material basis for the regeneration of vascular plants. In this investigation, total 27 species of vascular plants had regenerated in the experimental region, mainly belonging to Asteraceae, Poaceae, Chenopodiaceae and Leguminosae. Using space time substitution, the dominant species along with the application of cyanobacterial inoculation technology succeeded from Agriophyllum squarrosum ultimately to Leymus chinensis. In addition, it was found that the shady side of the dunes is more conducive to crust development and succession of vegetation communities. Conclusively, our results indicate artificial cyanobacterial inoculation technology is an effective and desirable path for desertification control.

  14. Effects of inoculating Lachnum and Cadophora isolates on the growth of Vaccinium corymbosum.

    Science.gov (United States)

    Bizabani, Christine; Dames, Joanna

    2015-12-01

    The roots of ericaceous plants harbour a diversity of fungal taxa, which confer eco-physiological benefits to the host. Some of the fungi have been established to form ericoid mycorrhizal (ERM) associations and enhance plant growth in certain ericaceous genera. Although, Lachnum and Cadophora isolates have frequently been identified from the roots of this family, the status of their association and functional roles is still vague. The aims of this study were to identify Lachnum and Cadophora isolates; determine the root-fungal interactive structures formed in associations with Vaccinium corymbosum L. (blueberry) hosts and to examine inoculation effects of the fungal associates using several varieties of the blueberry. Lachnum and Cadophora were isolated and identified from Erica cerinthoides L. and Erica demmissa Klotzsch ex Benth using morphological and molecular techniques. Micropropagated blueberry varieties (Bluecrop, Elliott, Spartan, Chandler and Brightwell) were inoculated with respective fungi and plant growth evaluated. Both fungi colonised the roots and did not have any pathogenic effect. Lachnum isolate did not form any particular mycorrhizal structures whereas; Cadophora inoculated plants showed typical ericoid mycorrhizal coils. Inoculation with both fungi enhanced the shoot growth of Brightwell and Elliott varieties. However neutral effects were observed in the remaining varieties. In conclusion, Cadophora and Lachnum isolates have potential to promote growth of selected blueberry varieties. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Effect of Bio-inoculants Applied to M 5 Mulberry Under Rain-fed ...

    African Journals Online (AJOL)

    The present investigation was carried out at the department of sericulture, GKVK, UAS, Bangalore, India in 2007 with an objective to determine the effect of three bio-inoculants application to M5 mulberry plant on silkworm (PM x CSR2) growth, development and coocoon traits. The feeding experiment was laid-out in ...

  16. Response of butternut selections to inoculation with Sirococcus clavigignenti-juglandacearum

    Science.gov (United States)

    M.E. Ostry; M. Moore

    2008-01-01

    Butternut trees (Juglans cinerea) clonally propagated via grafting from source trees with putative resistance to butternut canker were inoculated monthly with two isolates of Sirococcus clavigignenti-juglandacearum in a field planting in Minnesota. Significant differences in resulting canker length were found among (i) month of...

  17. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    Science.gov (United States)

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in

  18. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    Directory of Open Access Journals (Sweden)

    Roberta Paradiso

    2017-05-01

    Full Text Available The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs. However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L. Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT. Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2, thicker palisade parenchyma (95.0 vs. 85.8 μm, and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%, compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering. These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control; conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area and seed yield (+36.9% compared to control. Our results confirm that PGPMs may confer benefits in

  19. Evaluation of Pure Aluminium Inoculated with Varying Grain Sizes of an Agro-waste based Inoculant

    Directory of Open Access Journals (Sweden)

    Adeyemi I. Olabisi

    2017-04-01

    Full Text Available Pure Aluminium and its alloy are widely utilized in Engineering and Industrial applications due to certain significant properties such as softness, ductility, corrosion resistance, and high electrical conductivity which it possesses. Addition of an agro-waste based grain refiner to the melt can alter the characteristics positively or negatively. Therefore, the aim of this paper is to investigate the inoculating capability of an agro-waste based inoculant and the effect of adding varying sizes of its grains on some of the properties of pure aluminium after solidification. The beneficial outcome of this investigation would enhance the economic value of the selected agro-waste and also broaden the applications of aluminium in Engineering. The assessed properties include; microstructure, micro hardness, ductility, and tensile strength. The agro-waste used as the grain refiner is pulverised cocoa bean shells (CBS. Three sets of test samples were produced using dry sand moulding process, with each melt having a specified grain size of the inoculant added to it (150, 225 and 300microns respectively. Ladle inoculation method was adopted. The cast samples after solidification were machined to obtain various shapes/sizes for the different analysis. The microstructural examination showed that the mechanical properties are dependent on the matrix as the aluminium grains became more refined with increasing grain size of the inoculant. I.e. Due to increasing grain size of the inoculant, the micro hardness increased (56, 61, 72HB as the aluminium crystal size became finer. Meanwhile, the tensile strength (284, 251, 223N/mm2 and ductility (1.82, 0.91, 0.45%E decreased as grain size of the inoculant increased. The overall results showed that the used agro-waste based inoculant has the capability of refining the crystal size of pure aluminium as its grain size increases. This will make the resulting aluminium alloy applicable in areas where hardness is of

  20. Effect of inoculation with arbuscular mycorrhizas on rooting, weaning and subsequent growth of micropropagated Malus (L. Moench

    Directory of Open Access Journals (Sweden)

    Marjatta Uosukainen

    1994-05-01

    Full Text Available The importance of different rooting methods and the effects of arbuscular mycorrhizal (AMF inoculation on the rooting rate, weaning survival and subsequent growth of microcuttings of Malus rootstock YP and the Finnish crab apple cultivars Hanna and Marjatta were studied in four experiments conducted at the Laukaa Research and Elite Plant Unit, Finland. Sucrose in the in vitro rooting medium gave the best support to weaning survival in comparision with glucose and fructose. Directly rooted microcuttings had a higher survival rate than in vitro rooted microcuttings. AMF inoculation did not improve the rooting rate in direct rooting. However, the Glomus hoi strain V98 caused severe rotting of microcuttings and thus lowered the rooting rate of cv. Hanna, AMF inoculation increased the mean shoot height of established plants, particularly inoculation with G. hoi V98, G. claroideum V43a or G. fistulosum V128. This effect, however, varied considerably in different host-fungus combinations. Some AMF strains, e.g. G. hoi V1O4, caused strong growth retardation. After the rooting and weaning stage, many uninoculated plants lapsed into arrest of growth. This phenomenon was less frequent in AMF inoculated plants. Optimal timing of AMF inoculation and nutritional level of rooting and weaning substrate are discussed.

  1. EFFECT OF DIESEL AND BIODIESEL ON THE GROWTH OF Brachiaria decumbens INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Dora Trejo

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi have been found to be associated with plants useful in soil phytoremediation. The aim of this study was to compare the effects of diesel and biodiesel in soil and sand on the growth of Brachiaria decumbens inoculated with mycorrhizae. Two experiments were carried out: one experiment in soil and another in sand. A two-level- factorial design with three factors was used (one on sterile and another on non-sterile soil, with and without mycorrhizae; and one with diesel and another with biodiesel. In sand, a two-factor design with two levels was used (with and without mycorrhizae and with diesel and biodiesel, both with three replications. NOVADIESEL, biodiesel and PEMEX diesel were use as contaminants, both at 7%. The fresh and dry weight of the plants and percentage of mycorrhizal colonization, were assessed 30 days after planting. In soil, biodiesel was more toxic and reduced the fresh and dry weights of plants, especially in non-sterile soil. Biodiesel yielded greater mycorrhizal colonization values that doubled those of the control. In sand, diesel was found to reduce three times the fresh and dry weights of plants, compared to the biodiesel. In sand diesel presented high values of mycorrhizal colonization in comparison with biodiesel.  Plants inoculated with mycorrhizal fungi exhibited better development than non-inoculated plants, even in the presence of contaminants.

  2. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    Directory of Open Access Journals (Sweden)

    Neyser De La Torre-Ruiz

    Full Text Available ABSTRACT The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA, solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p < 0.05 on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.

  3. A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Sanghyun Shin

    2014-03-01

    Full Text Available Fusarium head blight (FHB; scab caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05. Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry and FHB resistance (Type I and Type II, respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

  4. Plant growth regulators ameliorate or exacerbate abiotic and biotic stress effects on Zea mays kernel weight in a genotype-specific manner

    OpenAIRE

    Wang, Yishi; Stutts, Lauren; Stapleton, Ann

    2016-01-01

    Plant growth regulators have documented roles in plant responses to single stresses. In combined-stress environments, plants display novel genetic architecture for growth traits and the response to growth regulators is unclear. We investigated the role of plant growth regulators in combined-stress responses in Zea mays. Twelve maize inbreds were exposed to all combinations of the following stressors: drought, nitrogen, and density stress. Chemical treatments were utilized to alter balances of...

  5. Effect of Microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays.

    Science.gov (United States)

    Arora, P; Singh, G; Tiwari, A

    2017-07-31

    The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil. This aluminium is rapidly soluble in soil water and hence absorbed by plant roots under conditions where soil pH is below 5. This toxicity leads to severe root growth inhibition, thereby limiting the production of maize crops. It was observed that use of microbial inoculums can be helpful in elimination of these toxic compounds and prevent the inhibition of root growth . It was found that the soils contaminated with aluminium toxicity decreased the root length of maize plant significantly by 65% but Bacillus and Burkholderia inoculation increased this root length significantly by 1.4- folds and 2- folds respectively thereby combating the effect of aluminium toxicity. Aluminium concentration was found maximum in roots of plants which were grown under aluminium stress condition. But this aluminium accumulation decreased ̴ 2-folds when Burkholderia was used as seed inoculants under aluminium stress conditions. Also, at 60mM aluminium accumulation, phosphorus solubilisation in roots was found to be increased upto 30% on Burkholderia inoculation. However, Bacillus inoculation didn't show any significant difference in either of the case. Thus, the inoculation of seeds with Burkholderia isolates could prove to be a boon in sequestering aluminium toxicity in Zea mays.

  6. Nitrogen uptake by Azospirillum brasilense inoculated barley (Hordeum vulgare L.) as influenced by N and P fertilization

    International Nuclear Information System (INIS)

    Negi, Mahima; Tilak, K.V.B.R.; Sachdev, M.S.

    1991-01-01

    Response of barley (Hordeum vulgare L.) in a sandy-loam soil under potted conditions revealed that application of nitrogen and phosphorus increased the population of Azospirillium in the barley rhizosphere. A two fold increase was observed in the Azospirillium population at 80 days compared to that at 40 days of plant growth. The unsterilized inoculated roots had more population than the surface sterilized inoculated roots. Increased drymatter production of barley was obtained in A. brasilense inoculated N 0 P 1 (0 kg N and 30 kg P 2 O 5 ha -1 ) treatment than uninoculated control. Also N and P uptake was higher in A. brasilense inoculated plants in the presence of both N and P fertilizers. The 15 N data revealed that at harvest nearly 36 per cent of the total N uptake was from the nitrogen fixed by A. brasilense irrespective of P treatment. (author). 16 refs., 4 tabs

  7. Growth and nutritional status of Brazilian wood species Cedrella fissilis and Anadenanthera peregrina in bauxite spoil in response to arbuscular mycorrhizal inoculation and substrate amendment

    Directory of Open Access Journals (Sweden)

    Tótola Marcos Rogério

    2000-01-01

    Full Text Available The growth of Cedrella fissilis Vell. (Cedro Rosa and of Anadenanthera peregrina Benth (Angico Vermelho in bauxite spoil was studied to evaluate their response to substrate amendment or to inoculation with arbuscular mycorrhizal fungi (AMF. The plants were grown in bauxite spoil, topsoil or spoil amended with either topsoil or compost, and inoculated with the AMF Acaulospora scrobiculata, Gigaspora margarita or Glomus etunicatum. Root colonization was highly dependent on the interaction plant-fungus-substrate. In C. fissilis, root colonization by Gigaspora margarita dropped from 75% in bauxite spoil to only 4% in topsoil. Contrarily, root colonization of A. peregrina by the same fungus increased from 48% in spoil to 60% in topsoil. Root colonization of C. fissilis in topsoil was lower than in the three other substrates. The opposite was observed for A. peregrina. Inoculation of the plants with Acaulospora scrobiculata or Glomus etunicatum was very effective in promoting plant growth. Plants of both C. fissilis and A. peregrina did not respond to amendments of bauxite spoil unless they were mycorrhizal. Also, a preferential partitioning of photosynthates to the shoots of A. peregrina inoculated with G. etunicatum or A. scrobiculata, and of C. fissilis inoculated with any of the three species of AMF was observed. C. fissilis showed a greater response to mycorrhizal inoculation than A. peregrina. The mean mycorrhizal efficiency (ME for dry matter production by C. fissilis was 1,847% for A. scrobiculata, 1,922% for G. etunicatum, and 119% for G. margarita. In A. peregrina, the ME was 249% for A. scrobiculata, 540% for G. etunicatum, and 50% for G. margarita. The effect of mycorrhizal inoculation on plant growth seems to be related in part to an enhanced phosphorus absorption by inoculated plants. Moreover, the efficiency with which the absorbed nutrients were used to produce plant biomass was much greater in plants inoculated with A. scrobiculata or

  8. Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis.

    Science.gov (United States)

    Rúa, Megan A; Antoninka, Anita; Antunes, Pedro M; Chaudhary, V Bala; Gehring, Catherine; Lamit, Louis J; Piculell, Bridget J; Bever, James D; Zabinski, Cathy; Meadow, James F; Lajeunesse, Marc J; Milligan, Brook G; Karst, Justine; Hoeksema, Jason D

    2016-06-10

    Local adaptation, the differential success of genotypes in their native versus foreign environment, arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly important for plants, as they associate with microbial symbionts that can significantly affect their fitness and may enable rapid evolution. The arbuscular mycorrhizal (AM) symbiosis is ideal for investigations of local adaptation because it is globally widespread among most plant taxa and can significantly affect plant growth and fitness. Using meta-analysis on 1170 studies (from 139 papers), we investigated the potential for local adaptation to shape plant growth responses to arbuscular mycorrhizal inoculation. The magnitude and direction for mean effect size of mycorrhizal inoculation on host biomass depended on the geographic origin of the soil and symbiotic partners. Sympatric combinations of plants, AM fungi, and soil yielded large increases in host biomass compared to when all three components were allopatric. The origin of either the fungi or the plant relative to the soil was important for explaining the effect of AM inoculation on plant biomass. If plant and soil were sympatric but allopatric to the fungus, the positive effect of AM inoculation was much greater than when all three components were allopatric, suggesting potential local adaptation of the plant to the soil; however, if fungus and soil were sympatric (but allopatric to the plant) the effect of AM inoculation was indistinct from that of any allopatric combinations, indicating maladaptation of the fungus to the soil. This study underscores the potential to detect local adaptation for mycorrhizal relationships across a broad swath of the literature. Geographic origin of plants relative to the origin of AM fungal communities and soil is important for describing the

  9. Inoculation stress hypothesis of environmental enrichment.

    Science.gov (United States)

    Crofton, Elizabeth J; Zhang, Yafang; Green, Thomas A

    2015-02-01

    One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Inoculation methods and aggressiveness of five Fusarium species against peach palm

    Directory of Open Access Journals (Sweden)

    Tiago Miguel Jarek

    2018-04-01

    Full Text Available ABSTRACT: Fusarium wilt is a major disease which affects peach palm (Bactris gasipaes Kunth.var gasipaes Henderson. This study aimed to evaluate inoculation methods and aggressiveness of isolates of five Fusarium species on peach palm. Fusarium proliferatum can infect the leaves, stem, and roots of peach palm. F. proliferatum, F. oxysporum species complex (FOSC, F. verticillioides, F. solani species complex (FSSC, and Gibberella fujikuroi species complex (GFSC are pathogenic to peach palm. The use of Fusarium-colonized ground corn for root inoculation was effective and reduced the level of damage to plants.

  11. 90SR uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Emmingham, W.H.; Rygiewicz, P.T.

    1994-01-01

    Strontium-90 ( 90 Sr) is a radionuclide characteristic of fallout from nuclear reactor accidents and nuclear weapons testing. Prior studies have shown that Pinus ponderosa and P. radiata seedlings can remove appreciable quantities of 90 Sr from soil and store it in plant tissue. In this study, we inoculated P. ponderosa and P. radiata seedlings with one of five isolates of ectomycorrhizal fungi. Inoculated and noninoculated (control) seedlings were compared for their ability to remove 90 Sr from an organic growth medium. Ectomycorrhizal P. ponderosa and P. radiata seedlings are able to remove 3-5 times more 90 Sr from contaminated soil than seedlings without ectomycorrhizae. (Author)

  12. Correlations of Glomalin Contents and PAHs Removal in Alfalfa-vegetated Soils with Inoculation of Arbuscular Mycorrhizal Fungi

    OpenAIRE

    YANG Zhen-ya; ZONG Jiong; ZHU Xue-zhu; LING Wan-ting

    2016-01-01

    The correlations of glomalin contents and removal of phenanthrene and pyrene as representative polycyclic aromatic hydrocarbons (PAHs) in soils with inoculation of arbuscular mycorrhizal fungi(AMF) were investigated. The test AMF included Glomus etunicatum(Ge), Glomus mosseae(Gm), and Glomus lamellosum(Gla), and the host plant was alfalfa(Medicago sativa L.). The AMF hyphal density and contents of easily extractable glomalin and total glomalin in AMF-inoculated soils were observed to increase...

  13. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245.

    Science.gov (United States)

    Yegorenkova, Irina V; Tregubova, Kristina V; Burygin, Gennady L; Matora, Larisa Y; Ignatov, Vladimir V

    2016-03-01

    Co-inoculation of associative bacteria, which have high nitrogen-fixing activity, tolerance for environmental conditions, and the ability to compete with the natural microflora, is used widely to enhance the growth and yields of agricultural plants. We evaluated the ability of 2 co-inoculated plant-growth-promoting rhizobacteria, Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245, to colonize roots of wheat (Triticum aestivum L. 'Saratovskaya 29') seedlings, and we assessed the morphometric parameters of wheat early in its development. Analysis by ELISA with polyclonal antibodies raised against the exopolysaccharide of P. polymyxa 1465 and the lipopolysaccharide of A. brasilense Sp245 demonstrated that the root-colonizing activity of A. brasilense was higher when the bacterium was co-inoculated with P. polymyxa than when it was inoculated singly. Immunofluorescence microscopy with Alexa Fluor 532-labeled antibodies revealed sites of attachment of co-inoculated P. polymyxa and A. brasilense and showed that the 2 bacteria colonized similar regions of the roots. Co-inoculation exerted a negative effect on wheat seedling development, inhibiting root length by 17.6%, total root weight by 11%, and total shoot weight by 12%. Under certain conditions, dual inoculation of wheat may prove ineffective, apparently owing to the competition between the rhizobacteria for colonization sites on the plant roots. The findings from this study may aid in developing techniques for mixed bacterial inoculation of cultivated plants.

  14. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  15. Efficacy of organic matter and some bio-inoculants for the management of root-knot nematode infesting tomato

    Directory of Open Access Journals (Sweden)

    Neha Khan

    2015-06-01

    Full Text Available Efficiency of an organic matter like Tagetes erecta and bioinoculants Azotobacter chroococcum and Glomus fasciculatum was investigated in tomato cultivar ‘Pusa Ruby’ when inoculated individually as well as concomitantly for the management of the root-knot nematode, Meloidogyne incognita in terms of growth parameters such as plant length, fresh and dry weights, chlorophyll content, per cent pollen fertility and mycorrhization. Greatest reduction in the numbers of second-stage juveniles in soil, number of root-galls, egg-masses and nematode multiplication was recorded with combined application of T. erecta and bio-inoculants A. chroococcum and G. fasciculatum as compared to untreated control and other treatments. Similarly, the greatest improvement in the plant growth and biomass of tomato was noted in the same treatments. However, individual inoculation of these bio-inoculants and organic fertilizers also showed significant enhancement but was less as compared to combined treatment. A. chroococcum was found most effective against disease incidence followed by G. fasciculatum and T. erecta. Parameters like NP and K contents were significantly enhanced in those plants which received combined treatments of organic matter and bio-inoculants. Azotobacter was found more efficacious against nematodes than Glomus fasciculatum. Organic matter also influenced the activity of bio-inoculants, more with the Azotobacter than G. fasciculatum. DOI: http://dx.doi.org/10.3126/ije.v4i2.12643 International Journal of Environment Vol.4(2 2015: 206-220

  16. Improvement of Canola (Brassica napus L.) Inoculated with Rhizobium, Azospirillum and/or Mycorrhizal Fungi Under Salinity Stress

    International Nuclear Information System (INIS)

    El-Ghandour, I. A.; Galal, Y.G; Ebraheem, Rabab M.M.; Yousef, Khayria A.

    2004-01-01

    Bio fertilization technology was applied for improving canola plant growth and nutrient acquisition in sandy saline soil ,as a biological mean used to develop plant growth and nutrient uptake under salinity stress. Canola was cultivated in pots packed at rate of 7 kg saline sandy soil pot -1 , and inoculated with Rhizobium leguminosarum biovar viceae, Azospirillum brasilense strain no. 40 and arbuscular mycorrhizal fungi either solely or in combinations of them. Nitrogen fertilizer was added in form ( 15 NH 4 ) 2 SO 4 with 5% 15 N atom excess at rate of 0.99 g N pot -1 . Maximum dry matter accumulation induced by composite inoculation (Rh + Azo + AM). Na concentrations were frequently affected by Rhizobium and /or mycorrhizae while K was affected by Azospirillum and /or mycorrhizae. Azospirillum enhanced Ca uptake whereas Mg content was responded well to composite inoculants of Rh + Azo + AM. Dual inoculation with Rh + Azo resulted in the highest values of N uptake by plant. Similar effect was noticed with P uptake when dual inoculums of Azo + AM were applied. Data of 15 N isotope showed that the highest portion and value of N 2 -fixed was recorded with composite inoculums followed by dual inoculations. On the other hand, the infection with AM fungi gave the highest proportion of N derived from fertilizer as compared to other inoculants or uninoculated control. In the same trend, the fertilizer use efficiency (FUE%) was enhanced by AM infection. Dual inoculums of Rh + Azo induced highest content of proline in leaves. (Authors)

  17. Comparison of bedside inoculation of culture media with ...

    African Journals Online (AJOL)

    Background: The yield of bacterial cultures from cerebrospinal fluid (CSF) at Kenyatta National Hospital (KNH) is very low. Bedside inoculation of culture media with CSF may improve yields. Objective: To compare the culture yield of CSF inoculated onto culture medium at the bedside to that of CSF inoculated onto culture ...

  18. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    Science.gov (United States)

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.

  19. Phosphorus use efficiency of tomato as influenced by phosphorus and vesicular arbuscular mycorrhizal (VAM) fungi inoculation

    International Nuclear Information System (INIS)

    Dhinakaran, R.; Savithri, P.

    1997-01-01

    A pot experiment was conducted on tomato (Lycopersicon esculentum L.var. CO3) grown in red non-calcareous soil (Paralythic Ustochrept) to study the effect of different P treatments involving single superphosphate (SSP) and Mussoorie rock phosphate (MRP) added at different levels, viz. 100 and 75 kg P 2 O 5 /ha along with and without vesicular arbuscular mycorrhizal (VAM) fungi inoculation. The results revealed that the P application as superphosphate at 100 kg P 2 O 5 /ha significantly increased the yield of tomato but the application of VAM fungi did not have any pronounced effect on tomato yield. The 32 P studies confirmed the increased uptake of P by the plants at higher level of P application. P content and its uptake by tomato fruit increased with the increasing levels of P application and VAM inoculation. The VAM fungi inoculation was also helpful in increasing the fertilizer use efficiency and also per cent P derived from fertilizer. (author)

  20. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  1. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  2. Plant survival of barbados cherry genotypes after frost injury in northern Parana State/ Recuperação de plantas de genótipos de aceroleira afetadas por geada no norte do Paraná

    Directory of Open Access Journals (Sweden)

    Inês Cristina de Batista Fonseca

    2002-05-01

    Full Text Available Barbados cherry is a tropical fruit that when cultivated in subtropical areas is exposed to frosts which cause considerable damages to the leaves and can kill plants. The frosts of July 2000 in Northern Paraná State made possible the evaluation of 19 Barbados cherry genotypes propagated through cuttings. A minimum air temperature of –1,3°C was recorded on 17 July at the meteorological station; the minimum ground temperature was around –5,4°C. All plants were severely injured in 100% of leaves. The evaluation was made the following year to the frost, through sprouts status. It was observed that Barbados cherry genotypes present differences in cold hardiness. Some genotypes were killed and others survived, with good vegetation on the next year. The following genotypes presented the best recovery: ‘Cícero’, ‘Roseli’, ‘Carolina’ and ‘Lígia.’ The findings are discussed in relation to temperature limits reported in the literature.A aceroleira é uma planta de clima tropical que também tem sido cultivada em áreas subtropicais, ficando com isso sujeita à ocorrência de geadas, que causam danos consideráveis à folhagem e podem levar as plantas à morte. As geadas de julho de 2000 no Norte do Paraná possibilitaram a avaliação de 19 genótipos de acerola, propagados vegetativamente. A temperatura mínima foi de –1,3° C no abrigo meteorológico em 17 de julho, que corresponde a – 5,4 °C na relva. Todas as plantas tiveram danos em 100% das folhas. No ano seguinte à geada, avaliou-se a recuperação das plantas com base na brotação apresentada. Com os resultados obtidos, conclui-se que os genótipos de aceroleira apresentam respostas diferentes à geada, sendo que alguns são levados à morte e outros conseguem se recuperar na estação de crescimento seguinte. Os genótipos que apresentaram melhor recuperação foram: ‘Cícero’, ‘Roseli’, ‘Carolina’ e ‘Lígia’. Os resultados são discutidos em rela

  3. Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil

    International Nuclear Information System (INIS)

    Achakzai, A.K.K.; Liasu, M.O.; Popoola, O.J.

    2011-01-01

    Pot experiments were conducted to investigate the effect of AM (Glomus mosseae ) fungi inoculation (M) on the growth of maize and phyto extraction of selected heavy metals from a soil contaminated with crude oil (C). Four soil treatments, each with three replicates i.e., C/sup +/M/sup +/, M/sup +/, C/sup +/ and control (without oil and inoculum) were conducted. Half of the pots with the soil treatments were planted with singly sown (SS) and the other half with densely sown i.e., four maize seedlings (DS). Various plant growth attributes were measured at weekly intervals Cu/sup 2+/, Ni/sup 2+/, Pb/sup 2+/ and Cd/sup 2+/ in the soil, root and shoot of maize plants were determined separately. Inoculation by AM promoted the vegetative growth attributes in both treatments viz., C/sup +/M/sup +/ and M/+. AM inoculation also promoted the hyper extraction of heavy metals from C/sup +/M/sup +/ soils, but inhibited by soils treated with M/sup +/. High planting density i.e., DS also promoted phyto extraction of heavy metals from uncontaminated (M/sup +/) soils, but had minimal effect on phyto extraction from oil contaminated soils (C/sup +/). Planting density complemented the promotive effect of AM inoculation on phyto extraction of heavy metals from C/sup +/ soils. The hyper extraction of selected metals from soil is more favored by planting density in C/sup +/ soils, whereas AM inoculation tends to exclude heavy metals from potted plants. However, in case of C/sup +/M/sup +/ soils, AM inoculation promotes the hyper extraction of metals more than planting density. While the combination of the two phenomena act synergistically to promote metal hyper extraction from C/sup +/M/sup +/ as well as M/sup +/ soils. (author)

  4. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes

    Science.gov (United States)

    2012-01-01

    Background Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39) can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq) approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control. Results More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms. Conclusions The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers for selecting novel

  5. Effect of Azospirillum brasilense inoculation on urease activity in soil and gamma-sterilized soil

    International Nuclear Information System (INIS)

    Perotti, E.B.R.; Pidello, A.

    1999-01-01

    Azospirillum spp. is considered a PGPR (plant growth promoting rhyzobacteria) bacterium, besides this interest, there is little information about its effects on other functional microbial groups or on soil enzymes. In this paper, the impact that Azospirillum brasilense 7001 inoculation has on urease activity expression in a Typic Argiudoll was studied. Evolution of urease activity of soil and of gamma irradiation (25 KGy) sterilized soil, and the inoculated strain survival were tested. The relation between soil urease activity and soil NH 4 +-N was also determined. In γ-sterilized soil, urease activity of inoculated soil increased with time, showing significant differences with regard to the control soil without inoculum at day 15. In non-sterile soil, urease activity decreased during the studied period in all treatments; in inoculated soil, it showed higher or lower values than the control depending on sampling time. Azospirillum survival was important and different according to soil condition conditions. The negative relation between NH 4 +-N concentration and soil urease activity (r 2 = 0.62) was observed in inoculated soil. The role of the addition of autoclaved inoculum in the urease activity expression is discussed. The research proves that in both studied situations Azospirillum modified soil urease activity, and that the competition with native microorganisms and soil NH 4 +-N may affect this bacterium capacity. (author)

  6. SEED INOCULATION WITH Azospirillum brasilense, ASSOCIATED WITH THE USE OF BIOREGULATORS IN MAIZE

    Directory of Open Access Journals (Sweden)

    ALESSANDRO DE LUCCA E BRACCINI

    2012-01-01

    Full Text Available The inoculation of seeds with the bacterium Azospirillum has been carried out in maize culture and other grasses. The application of growth bio-regulators is another technology whose results in maize culture have yet to become more widespread. Current study evaluates the agronomic effectiveness of seed inoculation with Azospirillum brasilense in maize, associated with the use of the growth regulator Stimulate ®. Triple hybrid maize CD 304 underwent the following treatments: 1 - control without nitrogen and without Azospirillum brasilense; 2 - Treatment without nitrogen but with Azospirillum brasilense; 3 - Treatment without nitrogen but with Azospirillum brasilense + Stimulate ®; 4 - Treatment with 50% of nitrogen dose recommended for maize culture; 5 - Treatment with 50% of nitrogen dose and inoculation with Azospirillum brasilense; 6 - Same as 5 but with Stimulate ®; 7 - Total N recommended; 8 - Total N recommended + Azospirillum brasilense ; 9 - Total N recommended + Azospirillum brasilense + Stimulate ®. The inoculation of maize seeds with Azospirillum brasilense increases plant height and grain yield when compared with rates in control. The use of 50% of N dose in sowing, associated with the inoculation of maize seeds with Azospirillum brasilense at 200 mL ha-1 (mixed to the seeds and associated with Stimulate ® (in foliar application, is viable.

  7. Comparison of inoculant and indigenous rhizobial dinitrogen fixation in cowpeas by direct nitrogen-15 analyses

    International Nuclear Information System (INIS)

    ElHassan, G.A.; Focht, D.D.

    1986-01-01

    Soil that contained 15 N enriched organic matter (0.461 % 15 N) was used to determine competitiveness of six strains at different logarithmic inoculum densities against indigenous rhizobia and against a previous surviving inoculant (strain P132). Analyses of N content of plant tissues by direct 15 N technique showed that cowpeas (Vigna unguiculata L. Walp.) were capable of deriving 60 to 98% of shoot N from N 2 fixation. The two fast-growing strains (176A26 and 176A28) were poorer competitors and fixed less N 2 compared to the other slow-growing strains. Inoculum density had no effect upon yield response of cowpeas, but inoculation with strains P132, 401, and 22A1 effected greater seed yield, shoot dry matter, total N, and percentage of N derived from fixation (86-98%) than other strains and the uninoculated control (60-73%). By contrast, N 2 fixation and yield parameters in inoculated cowpeas were not significantly different from inoculated controls that contained residual P132 from a previous inoculum study. The higher hydrogen uptake (Hup) efficiency of nodules containing residual P132 (98 ± 2%) facilitated presumptive identification of P132 (100% ± 0 Hup efficiency axenically) as the surviving and infecting inoculant strain since nodules infected by indigenous rhizobia had lower Hup efficiencies (88 ± 2%)

  8. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  9. Comparative analysis of tannery-effluent contaminated soil and mixed culture bacterial inoculation on helianthus annuus L. growth

    International Nuclear Information System (INIS)

    Yasin, M.; Faisal, M.

    2012-01-01

    Here we reported the effect of four strains Bacillus pumilus-CrK08, Cellulosimicrobium cellulans-CrK16, Exiguobacterium-CrK19 and Bacillus cereus-CrK20 and tannery contaminated soil on Helianthus annuus L. var Hysun-33 growth parameters. Plants growing in tannery effluent contaminated soil have shown slowed leaf growth, reduced shoot length, burning of leaf margins and tips compared to plants growing in normal garden soil. The inoculated plants had shown overall increase in root length (15%), shoot length (33%) and fresh weight shoot (135%) compared to un-inoculated plants growing in stress conditions. Plants growing in tannery contaminated soil have shown increase in soluble proteins contents (9%), acid phosphatase activity (200%), peroxidase activity (203%) and decrease in chlorophyll a (39%), chlorophyll b (23%) and carotenoids contents (28%) compare to plants growing in normal control soil. Inoculated plants grown in contaminated soil have shown an increased in peroxidase activity, soluble proteins contents, acid phosphatase activity, chlorophyll a, b and carotenoid contents compare to respective un-inoculated plants. (author)

  10. Development of a greenhouse-based inoculation protocol for the fungus Colletotrichum cereale pathogenic to annual bluegrass (Poa annua

    Directory of Open Access Journals (Sweden)

    Lisa A. Beirn

    2015-08-01

    Full Text Available The fungus Colletotrichum cereale incites anthracnose disease on Poa annua (annual bluegrass turfgrass. Anthracnose disease is geographically widespread throughout the world and highly destructive to cool-season turfgrasses, with infections by C. cereale resulting in extensive turf loss. Comprehensive research aimed at controlling turfgrass anthracnose has been performed in the field, but knowledge of the causal organism and its basic biology is still needed. In particular, the lack of a reliable greenhouse-based inoculation protocol performed under controlled environmental conditions is an obstacle to the study of C. cereale and anthracnose disease. Our objective was to develop a consistent and reproducible inoculation protocol for the two major genetic lineages of C. cereale. By adapting previously successful field-based protocols and combining with components of existing inoculation procedures, the method we developed consistently produced C. cereale infection on two susceptible P. annua biotypes. Approximately 7 to 10 days post-inoculation, plants exhibited chlorosis and thinning consistent with anthracnose disease symptomology. Morphological inspection of inoculated plants revealed visual signs of the fungus (appressoria and acervuli, although acervuli were not always present. After stringent surface sterilization of inoculated host tissue, C. cereale was consistently re-isolated from symptomatic tissue. Real-time PCR detection analysis based on the Apn2 marker confirmed the presence of the pathogen in host tissue, with both lineages of C. cereale detected from all inoculated plants. When a humidifier was not used, no infection developed for any biotypes or fungal isolates tested. The inoculation protocol described here marks significant progress for in planta studies of C. cereale, and will enable scientifically reproducible investigations of the biology, infectivity and lifestyle of this important grass pathogen.

  11. Plantago lanceolata growth and Cr uptake after mycorrhizal inoculation in a Cr amended substrate

    Directory of Open Access Journals (Sweden)

    Amaia Nogales

    2012-03-01

    Full Text Available Arbuscular mycorrhizal fungi from two chromium contaminated sites, one with 275 mg kg-1 of Cr (zone A and the other with 550 mg kg-1 Cr (zone B, were multiplied and tentatively identified. The effect of both fungal consortia on Plantago lanceolata plant growth in a substrate amended with 200 mg kg-1 of Cr and with 400 mg kg-1 Cr was assessed and compared with the growth of plants inoculated with Glomus intraradices BEG72. Only the plants inoculated with G. intraradices BEG72 and with the fungal consortia obtained from the area with a high Cr contamination (zone B grew in the soil with 400 mg kg-1 of Cr. The consortia of fungi from zone B, decreased the plant’s uptake/translocation of the heavy metal compared with G. intraradices BEG72. These results underscore the differential effect of AM fungi in conferring bioprotection in Cr contaminated soils.

  12. The effect of inoculation with plant growth rhizobacteria (PGPR) on ...

    African Journals Online (AJOL)

    This study was conducted both in field and greenhouse conditions at Atatürk University, College of Agriculture, Erzurum, Turkey, during 2004 and 2006. The objective of this study was to determine the effect of some bacteria isolates on root formation, root length and dry matter content of roots of mint (Mentha piperita L.).

  13. Significance of Herbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using 15N-dilution method.

    Science.gov (United States)

    el-Komy, H M; Saad, O A; Hetta, A M

    2003-01-01

    The effect of Herbaspirillum seropedicae inoculation and/or maize straw (0, 5 and 10 Mg/hm2) amendment on the growth and N2 fixation of wheat was determined in pot experiments using 15N-dilution method. Inoculation resulted in accumulation of fixed nitrogen, and % N from atmosphere being 24.6 and 26.5% in wheat shoot and grain, respectively. Straw amendment reduced % Natm to 16.1 and 20.2% at high straw level (10 Mg/hm2). Rational nitrogen fertilization (180 kg N/hm2) completely inhibited N2 fixation by H. seropedicae inoculation. Bacterial inoculation increased dry shoot and grain yield up to 23 and 31%, respectively. The highest levels of shoot and grain dry mass (46.5 and 42.4%) were obtained by N-fertilization in both inoculated and uninoculated plants. Total shoot and grain N-yield increased irrespective of organic matter amendment by inoculation up to 9 and 25%, respectively. N-fertilized plants recorded a maximum increase in N-yield (57 and 51%). H. seropedicae was reisolated from inoculated wheat histosphere after harvesting (90 d from sowing). Neither organic matter nor mineral nitrogen applications had any marked effect on bacterial total counts colonizing wheat histosphere. Moreover, no symptoms of mottled stripe disease were observed on leaves and stems of inoculated plants.

  14. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    Science.gov (United States)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Study of qualitative and quantitative yield and some agronomic characteristics of sunflower (Helianthus annus L. in response of seed inoculation with PGPR in various levels of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    H. Nazarly

    2016-05-01

    Full Text Available In order to study the qualitative and quantitative yield and some agronomic characteristics of sunflower (Helianthus annus L. in response to seed inoculation with PGPR under various levels of nitrogen fertilizer, a factorial experiment was conducted based on a randomized complete block design with three replications in field experimental University of Mohaghegh Ardabili during growing season of 2009-2010. Factors were nitrogen fertilizer in three levels (0, 80 and 160 kg N ha-1 as urea and seed inoculation with plant growth promoting rhizobacteria in four levels containing, without inoculation (as control, seed inoculation with Azotobacter chroococcum strain 5, Azospirillum lipoferum strain OF, Psedomunas strain 186. Results indicated that nitrogen levels and seed inoculation with Plant Growth Promoting Rhizobacteria (PGPR had significant effects on all of characteristics studied (except grain 1000 weight and stem diameter. Grain yield, plant height, head diameter, seed number per head, , yield and oil percentage, yield and protein percentage increased with increasing of nitrogen fertilizer and application of seed inoculation with PGPR. Response of grain yield wasn't the same for various levels of nitrogen fertilizer and seed inoculation with PGPR. The highest grain yield belonged to application of 160 kg N ha-1 and seed inoculation with Azotobacter. Means comparison showed that treatment compounds N160 × without inoculation with PGPR and N80 × seed inoculation with PGPR Azotobacter had similar grain yields. Thus, it can be suggested that in order to increasing of grain yield seed should be inoculated with Azotobacter bacteria × 80 kg N/ha in conditions of Ardabil region.

  16. [Nutrient transfer and growth of Pinus greggii Engelm. inoculated with edible ectomycorrhizal mushrooms in two substrates].

    Science.gov (United States)

    Rentería-Chávez, María C; Pérez-Moreno, Jesús; Cetina-Alcalá, Víctor M; Ferrera-Cerrato, Ronald; Xoconostle-Cázares, Beatriz

    An ectomycorrhiza is a mutualistic symbiosis of paramount importance in forestry and tree production. One of the selection criteria of ectomycorrhizal fungi that has currently gained importance is their edibility due to the economic, ecological and cultural relevance of edible ectomycorrhizal mushrooms as a non-timber forest product. The effect of the inoculation with three edible ectomycorrhizal mushrooms: Laccaria laccata, Laccaria bicolor y Hebeloma leucosarx, which are widely sold in Mexico, on the growth and nutrient contents of Pinus greggii grown in an experimental substrate and a commercial substrate enriched with a slow-release fertilizer, was evaluated. Two years after sowing, differences in terms of shoot and root biomass and macro and micronutrient contents between inoculated and non-inoculated plants, were recorded independently of the fungal species and the substrate. Despite the fact that plants grown in the commercial substrate had higher growth and nutrient contents, their ectomycorrhizal colonization percentages were smaller than those of the plants grown in the experimental substrate. The differences in the nutrient transfer to the inoculated plant shoots among the evaluated fungal species were recorded. Ca mobilization by L. laccata, Na by L. bicolor and Mn by H. leucosarx were observed in the plants growing in the experimental substrate. It has been demonstrated that the selection of substrates constitutes an important factor in the production of ectomycorrhizal plants and that the three evaluated species of edible ectomycorrhizal mushrooms have an enormous potential in the controlled mycorrhization of P. greggii. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Genotypic characterization of Azotobacteria isolated from Argentinean soils and plant-growth-promoting traits of selected strains with prospects for biofertilizer production.

    Science.gov (United States)

    Rubio, Esteban Julián; Montecchia, Marcela Susana; Tosi, Micaela; Cassán, Fabricio Darío; Perticari, Alejandro; Correa, Olga Susana

    2013-01-01

    The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA), gibberellin (GA3) and zeatin (Z) biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2-18.2 μ g IAA mL(-1), 0.3-0.7 μ g GA3 mL(-1), and 0.5-1.2 μ g Z mL(-1). Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  18. Genotypic Characterization of Azotobacteria Isolated from Argentinean Soils and Plant-Growth-Promoting Traits of Selected Strains with Prospects for Biofertilizer Production

    Directory of Open Access Journals (Sweden)

    Esteban Julián Rubio

    2013-01-01

    Full Text Available The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA, gibberellin (GA3 and zeatin (Z biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2–18.2 μg IAA mL−1, 0.3–0.7 μg GA3 mL−1, and 0.5–1.2 μg Z mL−1. Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  19. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings

    Directory of Open Access Journals (Sweden)

    Shuangchen Chen

    2017-12-01

    Full Text Available Mycorrhizal inoculation stimulates growth, photosynthesis and nutrient uptake in a wide range of host plants. However, the ultimate effects of arbuscular mycorrhyzal (AM symbiosis vary with the plants and fungal species involved in the association. Therefore, identification of the appropriate combinations of AM fungi (AMF that interact synergistically to improve their benefits is of high significance. Here, three AM fungal compositions namely VT (Claroideoglomus sp., Funneliformis sp., Diversispora sp., Glomus sp., and Rhizophagus sp. and BF (Glomus intraradices, G. microageregatum BEG and G. Claroideum BEG 210, and Funneliformis mosseae (Fm were investigated with respect to the growth, gas exchange parameters, enzymes activities in Calvin cycles and related gene expression in cucumber seedlings. The results showed that VT, BF and Fm could successfully colonize cucumber root to a different degree with the colonization rates 82.38, 74.65, and 70.32% at 46 days post inoculation, respectively. The plant height, stem diameter, dry weight, root to shoot ratio of cucumber seedlings inoculated with AMF increased significantly compared with the non-inoculated control. Moreover, AMF colonization greatly increased the root activity, chlorophyll content, net photosynthetic rate, light saturated rate of the CO2 assimilation (Asat, maximum carboxylation rate (Vcmax and maximum ribulose-1,5-bis-phosphate (RuBP regeneration rate (Jmax, which were increased by 52.81, 30.75, 58.76, 47.00, 69.15, and 65.53% when inoculated with VT, respectively. The activities of some key enzymes such RuBP carboxylase/oxygenase (RuBisCO, D-fructose-1,6-bisphosphatase (FBPase, D-fructose-6-phosphatase (F6P and ribulose-5-phosphate kinase (Ru5PK, and related gene expression involved in the Calvin cycle including RCA, FBPase, FBPA, SBPase, rbcS and rbcL were upregulated by AMF colonization. AMF inoculation also improved macro- and micro nutrient contents such as N, P, K, S, Ca, Cu

  20. Characterization of genotypic variability associated to the phosphorus bioavailability in peanut (Arachis hypogaea L.

    Directory of Open Access Journals (Sweden)

    Mohamed Kraimat

    2017-06-01

    Full Text Available In order to assess genotypic variability in some peanut genotypes depending on phosphorus availability, both effects of tri-calcium phosphate (TCP and inoculation by Bradyrhizobium strain (BR on morphological and physiological parameters were studied in five peanut genotypes (Arachis hypogaea L., originated from two Algerian areas (Northern and Southern. The results obtained during the flowering stage of crop development, confirmed the positive effect of the contribution of tri-calcium phosphate (TCP with Bradyrhizobium strains on the morphological characters (shoot biomass, root biomass, nodular biomass and leaf and the physiological (nitrogenase activity, phosphorus absorption efficiency by roots (RPAE and phosphorus use efficiency (PUE for the peanut genotypes cultivated in this experiment. Among five genotypes tested, it was noted that the Southern genotypes were more efficient to use TCP in the presence of Bradyrhizobium strain after a screening of these local genotypes, in particular, with phosphorus use efficiency (PUE and shoot biomass production.

  1. Evaluating phytoextraction efficiency of two high-biomass crops after soil amendment and inoculation with rhizobacterial strains.

    Science.gov (United States)

    Vanessa, Álvarez-López; Ángeles, Prieto-Fernández; Sergio, Roiloa; Beatriz, Rodríguez-Garrido; Rolf, Herzig; Markus, Puschenreiter; Susan, Kidd Petra

    2017-03-01

    We evaluated the effect of compost amendment and/or bacterial inoculants on the growth and metal accumulation of Salix caprea (clone BOKU 01 AT-004) and Nicotiana tabacum (in vitro-bred clone NBCu10-8). Soil was collected from an abandoned Pb/Zn mine and rhizobacterial inoculants were previously isolated from plants growing at the same site. Plants were grown in untreated or compost-amended (5% w/w) soil and were inoculated with five rhizobacterial strains. Non-inoculated plants were also established as a control. Compost addition increased the shoot DW yield of N. tabacum but not S. caprea, while it decreased soil metal availability and lowered shoot Cd/Zn concentrations in tobacco plants. Compost amendment enhanced the shoot Cd/Zn removal due to the growth promotion of N. tabacum or to the increase in metal concentration in S. caprea leaves. Bacterial inoculants increased photosynthetic efficiency (particularly in N. tabacum) and sometimes modified soil metal availability, but this did not lead to a significant increase in Cd/Zn removal. Compost amendment was more effective in improving the Cd and Zn phytoextraction efficiency than bioaugmentation.

  2. Morphological, nutraceutical and sensorial properties of cultivated Fragaria vesca L. berries: influence of genotype, plant age, fertilization treatment on the overall fruit quality

    Directory of Open Access Journals (Sweden)

    Massimo Del Bubba

    2016-11-01

    Full Text Available Sucrose, glucose, fructose, citric, malic, ascorbic (AA and dehydroascorbic (DHAA acids, total polyphenols (TP, radical scavenging activity (RSA, physicochemical and sensorial properties were determined on F. vesca Alpine (ALP and Regina delle Valli (RDV berries in relation to plant age and fertilisation treatment (Effective Microorganism Technology, EMT vs. traditional fertilization, TFT. ALP berries had a sum of AA and DHAA about 20% lower and TPs about 30% higher than RDV. Plant age affected most physicochemical parameters, sugars and organic acids, as well as sensorial appreciation, being them generally higher in berries produced in the second year. TPs were not affected by plant age. EMT produced an increase of 50%, 70% and 20% for TP, organic acids and RSA, respectively. Although changes in berry quality are expected with plant age, EMT cultivation of ALP should be preferred to the growth of RDV under TFT, to obtain fruits more valuable from the nutraceutical viewpoint.

  3. Influence of inoculation levels and processing parameters on the survival of Campylobacter jejuni in German style fermented turkey sausages.

    Science.gov (United States)

    Alter, Thomas; Bori, Anouchka; Hamedi, Ahmad; Ellerbroek, Lüppo; Fehlhaber, Karsten

    2006-10-01

    This study investigated the influence of inoculum levels and manufacturing methods on the survival of Campylobacter (C.) jejuni in raw fermented turkey sausages. Sausages were prepared and inoculated with C. jejuni. After inoculation, these sausages were processed and ripened for 8 days. Samples were taken throughout the ripening process. The presence of C. jejuni was established bacteriologically. Additionally, lactic acid bacteria were enumerated, pH values and water activity were measured to verify the ripening process. To detect changes in genotype and verify the identity of the recovered clones, AFLP analysis was carried out on the re-isolated strains. Whereas no C. jejuni were detectable when inoculating the sausages with the lowest inoculum (0.08-0.44 log(10) cfu/g sausage emulsion), C. jejuni were detectable for 12-24h by enrichment when inoculated with approximately 2 log(10) cfu/g. After inoculation with 4 and 6 log(10) cfu/g respectively, C. jejuni were detectable without enrichment for 12-48 h and by enrichment for 144 h at the most. The greatest decrease of the C. jejuni population occurred during the first 4 h of ripening. Only a very high inoculum level allowed the survival of the organism during a fermentation process and during ripening to pose a potential risk for consumers. Lower initial Campylobacter inoculums will be eliminated during proper ripening of the sausages, if sufficient decrease in water activity and pH-value is ensured.

  4. Lack of prion accumulation in lymphoid tissues of PRNP ARQ/ARR sheep intracranially inoculated with the agent of scrapie.

    Science.gov (United States)

    Greenlee, Justin J; Kunkle, Robert A; Richt, Jürgen A; Nicholson, Eric M; Hamir, Amir N

    2014-01-01

    Sheep scrapie is a transmissible spongiform encephalopathy that can be transmitted horizontally. The prion protein gene (PRNP) profoundly influences the susceptibility of sheep to the scrapie agent and the tissue levels and distribution of PrPSc in affected sheep. The purpose of this study was to compare the survival time and PrPSc tissue distribution in sheep with highly resistant and highly susceptible PRNP genotypes after intracranial inoculation of the agent of scrapie. Five sheep each of genotype VRQ/VRQ, VRQ/ARR or ARQ/ARR were inoculated. Sheep were euthanized when clinical signs of scrapie became severe. Clinical signs, microscopic lesions, and western blot profiles were uniform across genotypes and consistent with manifestations of classical scrapie. Mean survival time differences were associated with the 171 polymorphic site with VRQ/VRQ sheep surviving 18 months, whereas VRQ/ARR and ARQ/ARR sheep survived 60 and 56 months, respectively. Labeling of PrPSc by immunohistochemistry revealed similar accumulations in central nervous system tissues regardless of host genotype. Immunoreactivity for PrPSc in lymphoid tissue was consistently abundant in VRQ/VRQ, present but confined to tonsil or retropharyngeal lymph node in 4/5 VRQ/ARR, and totally absent in ARQ/ARR sheep. The results of this study demonstrate the susceptibility of sheep with the ARQ/ARR genotype to scrapie by the intracranial inoculation route with PrPSc accumulation in CNS tissues, but prolonged incubation times and lack of PrPSc in lymphoid tissue.

  5. The Effects of Seed Inoculation with Rhizobium and Nitrogen Application on Yield and some Agronomi Characterstics of Soybean (Glycine max L. under Ardabil Condition

    Directory of Open Access Journals (Sweden)

    M.N Seiedi

    2014-03-01

    Full Text Available In order to study the effects of seed inoculation with rhizobium and nitrogen application on yield and some agronomic characterstics of soybean (Glycine max L., a spilt plot experiment based on randomized complete block design with three replications was conducted in 2011 at the research farm of the Islamic Azad University, Ardabil Branch. Factors were inorganic nitrogen fertilizer urea at four levels (0, 30, 60 and 90 kg urea/ha in the main plot and two levels of inoculation with Rhizobium japanicum bacteria (with and without inoculation assigned to the sub plots. Study the growth indices showed that the maximum total dry matter (435.4 gr/m2 , crop growth rate (6.75 gr/m2.day and relative growth rate (0.1003 gr/gr.day were obtained from compound of treatments high levels of urea application × inoculation with rhizobium while, the minimum values of these indices recorded in without nitrogen application×non inoculation with rhizobium. The highest plant height, number of pod per plant and grain yield were obtained from the highest level of nitrogen fertilizer (90 kg/ha urea and seed inoculation with rhizobium. Number and dry weight of nodules per plant increased significantly with increasing nitrogen application till 60 kg/ha in seed inoculation with rhizobium. The lowest values of these traits recorded in non application of urea×non inoculation with rhizobium. Inoculation with rhizobium bacteria increased the number and dry weight of nodules per plant. Thus, it can be suggested that in order to increasing of grain yield, seed can be inoculated with rhizobium bacteria × application of 60 kg urea/ha in conditions of Ardabil region.

  6. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  7. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil

    International Nuclear Information System (INIS)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-01-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. - Highlights: • Phytoremediation of aged-hydrocarbon polluted soils may be improved using arbuscular mycorrhizal fungi. • Inoculation of wheat with R. irregularis improved dissipation of PAH and alkanes. • Dissipation resulted from adsorption and bioaccumulation in wheat and mainly from biodegradation in soil. • Biodegradation was due to a stimulation of rhizosphere bacteria and an induction of root peroxidase. - Inoculation of wheat by an arbuscular mycorrhizal fungus improves biodegradation of alkanes and polycyclic aromatic hydrocarbons in an aged

  8. Plant-associated fluorescent Pseudomonas from red lateritic soil: Beneficial characteristics and their impact on lettuce growth.

    Science.gov (United States)

    Maroniche, Guillermo A; Rubio, Esteban J; Consiglio, Adrián; Perticari, Alejandro

    2016-11-25

    Fluorescent Pseudomonas are ubiquitous soil bacteria that usually establish mutualistic associations with plants, promoting their growth and health by several mechanisms. This makes them interesting candidates for the development of crop bio-inoculants. In this work, we isolated phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere and inner tissues of different plant species growing in red soil from Misiones, Argentina. Seven isolates displaying strong phosphate solubilization were selected for further studies. Molecular identification by rpoD genotyping indicated that they belong to different species within the P. fluorescens and P. putida phylogenetic groups. Screening for in vitro traits such as phosphate solubilization, growth regulators synthesis or degradation, motility and antagonism against phytopathogens or other bacteria, revealed a unique profile of characteristics for each strain. Their plant growth-promoting potential was assayed using lettuce as a model for inoculation under controlled and greenhouse conditions. Five of the strains increased the growth of lettuce plants. Overall, the strongest lettuce growth promoter under both conditions was strain ZME4, isolated from inner tissues of maize. No clear association between lettuce growth promotion and in vitro beneficial traits was detected. In conclusion, several phosphate solubilizing pseudomonads from red soil were isolated that display a rich array of plant growth promotion traits, thus showing a potential for the development of new inoculants.

  9. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    Directory of Open Access Journals (Sweden)

    Benoît eDrogue

    2014-11-01

    Full Text Available Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defence and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyses of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post inoculation with A. lipoferum 4B (isolated from Cigalon or Azospirillum sp. B510 (isolated from Nipponbare and compared to the respective non-inoculated condition. A total of 7,384 genes were significantly regulated, which represent about 16 % of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83 % of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defence, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signalling highlight the complexity of hormone signalling networks in the Azospirillum

  10. Intercropping Urochloa brizantha and sorghum inoculated with Azospirillum brasilense for silage

    Directory of Open Access Journals (Sweden)

    Allan Hisashi Nakao

    Full Text Available ABSTRACT Livestock performance in the Brazilian Cerrado has been limited by the low availability of good quality fodder, especially during periods of low rainfall. The aim of this study was to evaluate growth and dry matter production in two cultivars of sorghum, inoculated or not with diazotrophic bacteria, and as a monocrop or intercropped with palisade grass under a system of crop-livestock integration. The experiments were carried out in the field in the Cerrado region during the autumn-winter period of 2015 and 2016, on the experimental farm of the Faculty of Engineering at Ilha Solteira, UNESP, in Selvíria, in the State of Mato Groso do Sul, Brazil (MS. A randomised complete block experimental design was used in a 2 x 2 x 2 factorial scheme with four replications. The treatments corresponded to two agricultural years (2015 and 2016; the cultivation of dual-purpose grain sorghum, alone or intercropped with palisade grass; with or without inoculation of the sorghum seeds with the bacterium Azospirillum brasilense. The dry matter production of the plant components and plant growth were evaluated for the preparation of silage. Inoculation of sorghum seeds with the bacterium Azospirillum brasilense increases the production of plant dry matter for silage, irrespective of the cultivar or intercrop. Dual-purpose grain sorghum intercropped with palisade grass is a viable agronomic system for producing plant matter for silage during the autumn season.

  11. Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica.

    Science.gov (United States)

    Medina, A; Vassileva, M; Caravaca, F; Roldán, A; Azcón, R

    2004-08-01

    The effectiveness of two microbiologically treated agrowastes [dry olive cake (DOC) and/or sugar beet (SB)] on plant growth, soil enzymatic activities and other soil characteristics was determined in a natural soil from a desertified area. Dorycnium pentaphyllum, a legume plant adapted to stress situations, was the test plant to evaluate the effect of inoculation of native arbuscular mycorrhizal (AM) fungi and/or Yarowia lipolytica (a dry soil adapted yeast) on amended and non-amended soils. Plant growth and nutrition, symbiotic developments and soil enzymatic activities were limited in non-amended soil where microbial inoculations did not improve plant development. The lack of nodules formation and AM colonization can explain the limited plant growth in this natural soil. The effectiveness and performance of inocula applied was only evident in amended soils. AM colonization and spores number in natural soil were increased by amendments and the inoculation with Y. lipolytica promoted this value. The effect of the inoculations on plant N-acquisition was only important in AM-inoculated plants growing in SB medium. Enzymatic activities as urease and protease activities were particularly increased in DOC amended soil meanwhile dehydrogenase activity was greatest in treatments inoculated with Y. lipolytica in SB added soil. The biological activities in rhizosphere of agrowaste amended soil, used as indices of changes in soil properties and fertility, were affected not only by the nature of amendments but also by the inoculant applied. All these results show that the lignocellulosic agrowastes treated with a selected microorganism and its further interaction with beneficial microbial groups (native AM fungi and/or Y. lipolytica) is a useful tool to modify soil physico-chemical, biological and fertility properties that enhance the plant performance probably by making nutrients more available to plants.

  12. Mutational analyses of molecularly cloned satellite tobacco mosaic virus during serial passage in plants: Evidence for hotspots of genetic change

    Science.gov (United States)

    Kurath, G.; Dodds, J.A.

    1995-01-01

    The high level of genetic diversity and rapid evolution of viral RNA genomes are well documented, but few studies have characterized the rate and nature of ongoing genetic change over time under controlled experimental conditions, especially in plant hosts. The RNA genome of satellite tobacco mosaic virus (STMV) was used as an effective model for such studies because of advantageous features of its genome structure and because the extant genetic heterogeneity of STMV has been characterized previously. In the present study, the process of genetic change over time was studied by monitoring multiple serial passage lines of STMV populations for changes in their consensus sequences. A total of 42 passage lines were initiated by inoculation of tobacco plants with a helper tobamovirus and one of four STMV RNA inocula that were transcribed from full-length infectious STMV clones or extracted from purified STMV type strain virions. Ten serial passages were carried out for each line and the consensus genotypes of progeny STMV populations were assessed for genetic change by RNase protection analyses of the entire 1,059-nt STMV genome. Three different types of genetic change were observed, including the fixation of novel mutations in 9 of 42 lines, mutation at the major heterogeneity site near nt 751 in 5 of the 19 lines inoculated with a single genotype, and selection of a single major genotype in 6 of the 23 lines inoculated with mixed genotypes. Sequence analyses showed that the majority of mutations were single base substitutions. The distribution of mutation sites included three clusters in which mutations occurred at or very near the same site, suggesting hot spots of genetic change in the STMV genome. The diversity of genetic changes in sibling lines is clear evidence for the important role of chance and random sampling events in the process of genetic diversification of STMV virus populations.

  13. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region

    International Nuclear Information System (INIS)

    Vinichuk, M.; Mårtensson, A.; Rosén, K.

    2013-01-01

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve 137 Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009–2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with 137 Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with 137 Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to 137 Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of 137 Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of 137 Cs could not be recommended. -- Highlights: • Effect of mycorrhization on 137 Cs uptake by crops was studied in a field experiment. • AM fungi did not enhance radionuclide plant uptake or biomass. • Plants growing on inoculated and non-inoculated soil accumulate 137 Cs equally

  14. The effect of gamma radiation on seeds and plants of different genotypes of Pisum arvense (L.s.s.) in the M1 generation

    International Nuclear Information System (INIS)

    Jaranowski, J.K.

    1976-01-01

    This paper presents results concerning radiosensitivity of seeds of field pea (Pisum arvense L.s.s.) and the analysis of the M 1 generation plants. For the present studies seeds of seven established (homozygous) lines, derived from crosses between forms and varieties of different agriculturo-geographical regions of Europe, were chosen. These lines differed by a number of morphological and physiological characters. The seeds were exposed to gamma radiation at the doses of: 1 kR/5 hrs, 6 kR/25 hrs, 12 kR/100 hrs, 25 kR/100 hrs and 50 kR/100 hrs. While analysing after the irradiation such phenomena as germinating and emergence capacity, survival of plants after emergence, morphological changes of plants, fertility and chromosome aberrations, it has been found that the radiosensitivity of various lines is convincingly different. Attempts to find certain correlations between the presence of definite genes in the lines, the size and structure of chromosomes, the structure of seeds (size, shape, coloration) gave negative results. Results obtained by the author and those of the literature indicate that radiosensitivity of pea seeds and characters of the M 1 generation plants are very complicated phenomena and it is difficult to establish definite regularities. (author)

  15. Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation.

    Science.gov (United States)

    Rai, U N; Pandey, K; Sinha, S; Singh, A; Saxena, R; Gupta, D K

    2004-05-01

    A revegetation trial was conducted to evaluate the feasibility of growing a legume species, Prosopis juliflora L., on fly ash ameliorated with combination of various organic amendments, blue-green algal biofertilizer and Rhizobium inoculation. Significant enhancements in plant biomass, photosynthetic pigments, protein content and in vivo nitrate reductase activity were found in the plants grown on ameliorated fly ash in comparison to the plants growing in unamended fly ash or garden soil. Higher growth was obtained in fly ash amended with blue-green algae (BGA) than farmyard manure or press mud (PM), a waste from sugar-processing industry, due to the greater contribution of plant nutrients, supply of fixed nitrogen and increased availability of phosphorus. Nodulation was suppressed in different amendments of fly ash with soil in a concentration-duration-dependent manner, but not with other amendments. Plants accumulated higher amounts of Fe, Mn, Cu, Zn and Cr in various fly ash amendments than in garden soil. Further, inoculation of the plant with a fly ash tolerant Rhizobium strain conferred tolerance for the plant to grow under fly ash stress conditions with more translocation of metals to the above ground parts. The results showed the potential of P. juliflora to grow in plantations on fly ash landfills and to reduce the metal contents of fly ash by bioaccumulation in its tissues.

  16. Co-inoculation effects of Bradyrhizobium japonicum and ...

    African Journals Online (AJOL)

    Co-inoculation effects of Bradyrhizobium japonicum and Azospirillum sp. on competitive nodulation and rhizosphere eubacterial community structures of soybean under rhizobia-established soil conditions.

  17. Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorhizal

    NARCIS (Netherlands)

    Gao, X.; Kuyper, T.W.; Zou, C.; Zhang, F.; Hoffland, E.

    2007-01-01

    Plant Zn uptake from low Zn soils can be increased by Zn-mobilizing chemical rhizosphere processes. We studied whether inoculation with arbuscular mycorrhizal fungi (AMF) can be an additional or an alternative strategy. We determined the effect of AMF inoculation on growth performance and Zn uptake

  18. Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines.

    OpenAIRE

    Nogales, A. (Amaia); Aguirreolea, J. (Jone); Santa-Maria, E. (Eva); Camprubi, A. (Amalia); Calvet, C. (Cinta)

    2009-01-01

    A study was conducted with the vine rootstock Richter 110 (Vitis berlandieri Planch. x Vitis rupestris L.) in order to assess whether the colonisation by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices (BEG 72) can delay the disease development in plants inoculated with the root-rot fungus Armillaria mellea (Vahl:Fr) Kummer, and to elucidate if the levels of polyamines (PAs) are modified in response to G. intraradices, A. mellea or by the dual infection. Four treatments were consi...

  19. Joint use of fungicides, insecticides and inoculants in the treatment of soybean seeds

    Directory of Open Access Journals (Sweden)

    Yara Cristiane Buhl Gomes

    Full Text Available ABSTRACT The interference of the joint application of pesticides with seed inoculation on the survival of Bradyrhizobium has been reported in the last years. So, the objective of this study was to evaluate the joint use of fungicides, insecticides and inoculant in the treatment of soybean seeds on various parameters of Bradyrhizobium nodulation in soybean as well as on crop productivity parameters. The experiment was conducted during the 2013/2014 crop in the experimental field of the Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - Campo Novo do Parecis Campus. The seeds of TMG 133 RR variety were sown in pots. It was used a randomized block design in a 4 x 4 + 1 factorial, four fungicides (1: fludioxonil + metalaxyl-M, 2: carboxine + thiram, 3: difeconazole and 4: carbendazim + thiram, four insecticides (1: fipronil 250 SC, 2: thiamethoxam, 3: imidacloprid + thiodicarpe and 4: imodacloprid 600 FC and an inoculant (SEMIA 5079 and SEMIA 5080, common to all treatments, with three replications. The experiment was not repeated. The joint application of fungicide and insecticide with inoculant does not affect nodulation, foliar N content and vegetative growth of the plants as well as the masses of grains per plant and 100-grain mass. The use of the carbendazim + thiram mixed with fipronil and carbendazim + thiram mixed with imidacloprid provides less number of pods per plant and grains per plant, reflecting in reductions in the production of soybean grains. In this way, the fungicide carbendazim + thiram, regardless of the combined applied insecticide, is the most harmful to Bradyrhizobium spp.

  20. Genotypic Variation of Early Maturing Soybean Genotypes for Phosphorus Utilization Efficiency under Field Grown Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abaidoo, R. C. [Kwame Nkrumah University of Technology, Kumasi (Ghana); International Institute of Tropical Agriculture, Ibadan (Nigeria); Opoku, A.; Boahen, S. [Kwame Nkrumah University of Technology, Kumasi (Ghana); Dare, M. O. [Federal University of Agriculture, Abeokuta (Nigeria)

    2013-11-15

    Variability in the utilization of phosphorus (P) by 64 early-maturing soybean (Glycine max L. Merr.) genotypes under low-P soil conditions were evaluated in 2009 and 2010 at Shika, Nigeria. Fifteen phenotypic variables; number of nodules, nodule dry weight, grain yield, plant biomass, total biomass, biomass N and P content, Phosphorus Utilization Index (PUI), shoot P Utilization efficiency (PUIS), grain P Utilization efficiency (PUIG), Harvest Index (HI), Biological N fixed (BNF), total N fixed and N and P uptake were measured. The four clusters revealed by cluster analysis were basically divided along (1) plant biomass and uptake, (2) nutrient acquisition and utilization and (3) nodulation components. Three early maturing genotypes, TGx1842-14E, TGx1912-11F and TGx1913-5F, were identified as having high P utilization index and low P uptake. These genotypes could be a potential source for breeding for P use efficiency in early maturing soybean genotypes. (author)

  1. Caracteres da planta e do cacho de genótipos de bananeira, em quatro ciclos de produção, em Belmonte, Bahia Plant and branch characteristics of banana genotypes in four production cycles in Belmonte, Bahia state

    Directory of Open Access Journals (Sweden)

    José Basilio Vieira Leite

    2003-12-01

    Full Text Available Foram avaliados, no ecossistema de Mata Atlântica, em condições de sequeiro de Belmonte - BA, 15 genótipos de bananeira, contemplando variedades e híbridos obtidos no programa de melhoramento genético de bananeira da Embrapa Mandioca e Fruticultura. Os genótipos foram: 'Mysore', 'Thap Maeo', 'Caipira', 'Nam', PV03-76, PV03-44, JV03-15, PA03-22, 'Pioneira', 'Prata Anã', 'Ouro da Mata', 'Prata, 'Pacovan', 'Maçã' e 'Grande Naine'. Os caracteres avaliados foram: altura da planta (cm na roseta foliar e diâmetro do pseudocaule (cm a 30 cm do solo, no florescimento; número de dias do plantio à colheita; peso do cacho em kg; número de frutos por cacho e comprimento do fruto em cm. O espaçamento utilizado foi de 3,0 m x 2,0 m. O delineamento experimental foi de blocos ao acaso, sendo cada parcela constituída de 49 plantas com 25 úteis em três repetições. Os tratos culturais foram os preconizados para a cultura. Não foi realizado controle da Sigatoca-amarela. A análise revelou que a avaliação de genótipos permite a identificação de variedades e cultivares promissoras para recomendação aos produtores, tendo se destacado, no cômputo das características avaliadas: 'Thap Maeo', 'Caipira', 'Nam' e PV03-76.Fifteen genotypes of banana were evaluated for their performance in the Mata Atlântica ecosystem, at Belmonte city, BA, with no irrigation system. The genotypes, including varieties and hybrids from Embrapa Mandioca e Fruticultura Banana Breeding Program, were as follow: Mysore, Thap Maeo, Caipira, Nam, PV03-76, PV03-44, JV03-15, PA03-22, Pioneira, Prata Anã, Ouro da Mata, Prata, Pacovan, Maçã and Grande Naine. The agronomic traits evaluated in the experiments were: plant height (cm and diameter of pseudostem (measure at 30 cm above ground during flowering; number of days from planting to harvest, weight of bunch (kg, number of hands and fingers to bunch and fingers length (cm. The plant spacing was 3,0 m between rows and 2

  2. Effects of Different Ectomycorrhizal Fungal Inoculates on the Growth of Pinus tabulaeformis Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2016-12-01

    Full Text Available The tree species Pinus tabulaeformis Carr. (P. tabulaeformis is commonly planted in China due to its economic and ecological value. In order to identify one or more ectomycorrhizal (ECM fungal species for future P. tabulaeformis afforestation, we investigated the effects of five ECM fungal species: Laccaria laccata, Boletus edulis, Gomphidius viscidus, Suillus grevillei, and Suillus luteus on the growth of P. tabulaeformis seedlings under greenhouse conditions. The growth parameters of P. tabulaeformis seedlings were evaluated 90 days following fungal colonisation. The majority of seedlings were significantly affected by ECM inoculation. Mycorrhizal inoculated seedlings were taller, had more lateral roots, and a greater biomass compared with the non-mycorrhizal (CK seedlings. With the exception of G. viscidus, inoculated seedlings exhibited higher phosphorus, potassium, and nitrogen content compared with the CK seedlings. In addition, ECM colonisation increased the enzymatic activity of catalase, acidic phosphatase, protease, and the urease content in the rhizosphere soil. Our study showed that Laccaria laccata, Suillus grevillei, and Suillus luteus may be useful for improving the growth and cultivation of P. tabulaeformis seedlings. Furthermore, we observed that S. luteus inoculation increased the gas exchange parameters of P. tabulaeformis seedlings under field conditions.

  3. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation.

    Science.gov (United States)

    Sanchez-Zabala, Joseba; Majada, Juan; Martín-Rodrigues, Noemí; Gonzalez-Murua, Carmen; Ortega, Unai; Alonso-Graña, Manuel; Arana, Orats; Duñabeitia, Miren K

    2013-11-01

    Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance. All inoculated seedlings showed a significant increase in growth at the end of the nursery stage and these differences remained after 3 years of growth in the field. Differences observed in the content of malondialdehyde, total chlorophyll, carotenoids, anthocyanins, and phenolic compounds from needles of mycorrhizal and control seedlings may reflect a different sensitivity to photo-oxidative damage. We conclude that ectomycorrhizal inoculation improves adaptability to changeable growing conditions of an outdoor nursery and produces a higher quality nursery stock, thereby enhancing seedling performance after planting.

  4. Effect of different substrates on growth of Mimosa bimucronata seedlings inoculate with rhizobium

    Directory of Open Access Journals (Sweden)

    Juliana Müller Freire

    2017-06-01

    Full Text Available The objective of this study was to evaluate the growth response of Mimosa bimucronata (DC O. Kuntze seedlings in nursery conditions to inoculation with rhizobium strains previously selected using different substrates. An experimental design of randomized blocks with split plots was used, testing three substrates (pure organic-containing clay, sand and manure in 1: 1: 1 v: v: v ratio; organomineral mixed with 30% straw and sand with vermiculite in 1: 1 v: v and four N sources (inoculation with strains BR 3461 and BR 3470, control with N fertilization and control without fertilization, totalizing 12 treatments. Height and stem diameter were evaluate after 90 days and shoot, root and nodules dry mass were evaluate after 120 days. Organomineral substrates provided better seedling growth. However, only organic-substrate with straw and sand with vermiculite showed positive responses of plants inoculated with BR3470 strain. The performance of the inoculated seedlings was not higher than that of seedlings fertilized with N. The rate of N applied stimulated nodulation rather than inhibit it.

  5. INOCULATION OF DIAZOTROPHIC BACTERIA AND NITROGEN FERTILIZATION IN TOPDRESSING IN IRRIGATED CORN

    Directory of Open Access Journals (Sweden)

    VANESSA ZIRONDI LONGHINI

    2016-01-01

    Full Text Available Corn is a nitrogen-intensive crop, and the use of management practices such as inoculation of the seed with diazotrophic bacteria, which can maximize crop productivity and reduce the need of nitrogen fertilizers, may result in lower production costs. The present study aimed to evaluate the effect of inoculation of corn seed with Azospirillum brasilense and controlled addition of nitrogen to topdressing on the nutrition, production components, and productivity of crop grain. The experimental design was a randomized block design, with four replications in a 2 × 5 factorial scheme. The treatments consisted of inoculation or not of corn seed with A. brasilense (at 100 mL per 25 kg of seed and five nitrogen (N levels in topdressing (0, 30, 60, 90, and 120 kg N ha-1 from urea [45% N] were applied when the corn was in the phenological growth stage V6. Foliar macronutrients, foliar chlorophyll index (FCI, production components, and yield of corn grain were valuated. Inoculation of corn seeds with A. brasilense increased plant height and grain yield. Fertilization in topdressing, with N levels up to 120 kg ha-1, linearly increased the foliar nutrients and productivity of corn cultivated in the spring/summer in the low-altitude Cerrado region of Brazil.

  6. Ectopic accumulation of linalool confers resistance to Xanthomonas citri subsp. citri in transgenic sweet orange plants.

    Science.gov (United States)

    Shimada, Takehiko; Endo, Tomoko; Rodríguez, Ana; Fujii, Hiroshi; Goto, Shingo; Matsuura, Takakazu; Hojo, Yuko; Ikeda, Yoko; Mori, Izumi C; Fujikawa, Takashi; Peña, Leandro; Omura, Mitsuo

    2017-05-01

    In order to clarify whether high linalool content in citrus leaves alone induces strong field resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), and to assess whether this trait can be transferred to a citrus type highly sensitive to the bacterium, transgenic 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) plants over-expressing a linalool synthase gene (CuSTS3-1) were generated. Transgenic lines (LIL) with the highest linalool content showed strong resistance to citrus canker when spray inoculated with the bacterium. In LIL plants inoculated by wounding (multiple-needle inoculation), the linalool level was correlated with the repression of the bacterial titer and up-regulation of defense-related genes. The exogenous application of salicylic acid, methyl jasmonate or linalool triggered responses similar to those constitutively induced in LIL plants. The linalool content in Ponkan mandarin leaves was significantly higher than that of leaves from six other representative citrus genotypes with different susceptibilities to Xcc. We propose that linalool-mediated resistance might be unique to citrus tissues accumulating large amounts of volatile organic compounds in oil cells. Linalool might act not only as a direct antibacterial agent, but also as a signal molecule involved in triggering a non-host resistance response against Xcc. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Solubilisation of inorganic phosphates by inoculant strains from tropical legumes

    Directory of Open Access Journals (Sweden)

    Leandro Marciano Marra

    2011-10-01

    Full Text Available Microbial solubilisation of low soluble inorganic phosphates is an important process contributing for the phosphorus available to plants in tropical soils. This study evaluates the ability of inoculant strains for tropical legumes to solubilise inorganic phosphates of low solubility that are found in tropical soils. Seven strains of Leguminosae nodulating bacteria (LNB were compared with one another and with a non-nodulating positive control, Burkholderia cepacia (LMG 1222T. Four of the strains are used as inoculants for cowpeas (Vigna unguiculata (Bradyrhizobium sp. UFLA 03-84; Bradyrhizobium elkani INPA 03-11B and Bradyrhizobium japonicum BR3267 or for common beans (Phaseolus vulgaris (Rhizobium tropici CIAT 899T. Rhizobium etli UFLA 02-100 and Rhizobium leguminosarum 316C10a are also efficient nodulators of beans and Cupriavidus taiwanensis LMG 19424T nodulates on Mimosa pudica. Two experiments, with solid and liquid media, were performed to determine whether the strains were able to solubilise CaHPO4, Al(H2PO43 or FePO4.2H2O. On solid GELP medium none of the strains dissolved FePO4.2H2O, but LMG 1222, UFLA 03-84 and CIAT 899 solubilised CaHPO4 particularly well. These strains, along with LMG 19424 and BR 3267, were also able to increase the solubility of Al(H2PO43. In liquid GELP medium, LMG 1222 solubilised all phosphate sources, but no legume nodulating strain could increase the solubility of Al(H2PO43. The strains CIAT 899 and UFLA 02-100 were the only legume nodulating bacteria able to solubilise the other phosphate sources in liquid media, dissolving both CaHPO4 and FePO4.2H2O. There was a negative correlation between the pH of the culture medium and the concentration of soluble phosphate when the phosphorus source was CaHPO4 or FePO4.2H2O. The contribution of these strains to increasing the phosphorus nutrition of legumes and non-legume plant species should be investigated further by in vivo experiments.

  8. Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner

    Directory of Open Access Journals (Sweden)

    Saskia Windisch

    2017-06-01

    Full Text Available Previous studies conducted on a unique field site comprising three contrasting soils (diluvial sand DS, alluvial loam AL, loess loam LL under identical cropping history, demonstrated soil type-dependent differences in biocontrol efficiency against Rhizoctonia solani-induced bottom rot disease in lettuce by two bacterial inoculants (Pseudomonas jessenii RU47 and Serratia plymuthica 3Re-4-18. Disease severity declined in the order DS > AL > LL. These differences were confirmed under controlled conditions, using the same soils in minirhizotron experiments. Gas chromatography-mass spectrometry (GC-MS profiling of rhizosphere soil solutions revealed benzoic and lauric acids as antifungal compounds; previously identified in root exudates of lettuce. Pathogen inoculation and pre-inoculation with bacterial inoculants significantly increased the release of antifungal root exudates in a soil type-specific manner; with the highest absolute levels detected on the least-affected LL soil. Soil type-dependent differences were also recorded for the biocontrol effects of the two bacterial inoculants; showing the highest efficiency after double-inoculation on the AL soil. However, this was associated with a reduction of shoot growth and root hair development and a limited micronutrient status of the host plants. Obviously, disease severity and the expression of biocontrol effects are influenced by soil properties with potential impact on reproducibility of practical applications.

  9. Evaluation of North American isolates of Soybean mosaic virus for gain of virulence on Rsv-genotype soybeans with special emphasis on resistance-breaking determinants on Rsv4.

    Science.gov (United States)

    Khatabi, B; Fajolu, O L; Wen, R-H; Hajimorad, M R

    2012-12-01

    Resistance to Soybean mosaic virus (SMV) in soybean is conferred by three dominant genes: Rsv1, Rsv3 and Rsv4. Over the years, scientists in the USA have utilized a set of standard pathotypes, SMV-G1 to SMV-G7, to study interaction with Rsv-genotype soybeans. However, these pathotypes were isolated from a collection of imported soybean germplasm over 30 years ago. In this study, 35 SMV field isolates collected in recent years from 11 states were evaluated for gain of virulence on soybean genotypes containing individual Rsv genes. All isolates were avirulent on L78-379 (Rsv1), whereas 19 were virulent on L29 (Rsv3). On PI88788 (Rsv4), 14 of 15 isolates tested were virulent; however, only one was capable of systemically infecting all of the inoculated V94-5152 (Rsv4). Nevertheless, virulent variants from 11 other field isolates were rapidly selected on initial inoculation onto V94-5152 (Rsv4). The P3 cistrons of the original isolates and their variants on Rsv4-genotype soybeans were sequenced. Analysis showed that virulence on PI88788 (Rsv4) was not associated, in general, with selection of any new amino acid, whereas Q1033K and G1054R substitutions were consistently selected on V94-5152 (Rsv4). The role of Q1033K and G1054R substitutions, individually or in combination, in virulence on V94-5152 (Rsv4) was confirmed on reconstruction in the P3 cistron of avirulent SMV-N, followed by biolistic inoculation. Collectively, our data demonstrate that SMV has evolved virulence towards Rsv3 and Rsv4, but not Rsv1, in the USA. Furthermore, they confirm that SMV virulence determinants on V94-5152 (Rsv4) reside on P3. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  10. Intrauterine inoculation of minipigs with Chlamydia trachomatis during diestrus establishes a longer lasting infection compared to vaginal inoculation during estrus.

    Science.gov (United States)

    Lorenzen, Emma; Follmann, Frank; Secher, Jan O; Goericke-Pesch, Sandra; Hansen, Mette S; Zakariassen, Hannah; Olsen, Anja W; Andersen, Peter; Jungersen, Gregers; Agerholm, Jørgen S

    2017-06-01

    Advanced animal models, such as minipigs, are needed for the development of a globally requested human Chlamydia vaccine. Previous studies have shown that vaginal inoculation of sexually mature Göttingen minipigs with Chlamydia trachomatis resulted in an infection lasting only 3-5 days. The aim of this study was to evaluate the effect of targeting the upper porcine genital tract by transcervical and transabdominal intrauterine inoculation, compared to previously performed vaginal inoculation. Furthermore, we investigated the effect of the hormonal cycle, estrus vs. diestrus, on the establishment of a C. trachomatis infection in the minipig. Targeting the upper genital tract (transcervical inoculation) resulted in a longer lasting infection (at least 7 days) compared to vaginal inoculation (3-5 days). When comparing intrauterine inoculation during estrus and diestrus, inoculation during diestrus resulted in a longer lasting infection (at least 10 days) compared to estrus (3-5 days). Furthermore, we found a significant C. trachomatis specific IFN-γ response in pigs inoculated during estrus correlating with the accelerated clearance of infection in these pigs. These findings suggest that for implementation of an optimal model of C. trachomatis in minipigs, inoculation should bypass the cervix and preferable be performed during diestrus. Copyright © 2017 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  11. Differential induction of chitinase in Piper colubrinum in response to inoculation with Phytophthora capsici, the cause of foot rot in black pepper

    Science.gov (United States)

    Sandeep Varma, R.; Johnson George, K.; Balaji, S.; Parthasarathy, V.A.

    2009-01-01

    Plant chitinases have been of particular interest since they are known to be induced upon pathogen invasion. Inoculation of Piper colubrinum leaves with the foot rot fungus, Phytophthora capsici leads to increase in chitinase activity. A marked increase in chitinase activity in the inoculated leaves was observed, with the maximum activity after 60 h of inoculation and gradually decreased thereafter. Older leaves showed more chitinase activity than young leaves. The level of chitinase in black pepper (Piper nigrum L.) upon inoculation was found to be substantially high when compared to P. colubrinum. RT–PCR using chitinase specific primers revealed differential accumulation of mRNA in P. colubrinum leaves inoculated with P. capsici. However, hyphal extension assays revealed no obvious differences in the ability of the protein extracts to inhibit growth of P. capsici in vitro. PMID:23961037

  12. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L.

    Science.gov (United States)

    Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi

    2017-12-01

    Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.

  13. Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Watrud, L.S.; Reeves, M.

    1999-01-01

    The use of plants to accumulate low level radioactive waste from soil, followed by incineration of plant material to concentrate radionuclides may prove to be a viable and economical method of remediating contaminated areas. We tested the influence of arbuscular mycorrhizae on 137 Cs and 90 Sr uptake by bahia grass (Paspalum notatum), johnson grass (Sorghum halpense) and switchgrass (Panicum virginatum) for the effectiveness on three different contaminated soil types. Exposure to 137 Cs or 90 Sr over the course of the experiment did not affect above ground biomass of the three grasses. The above ground biomass of bahia, johnson and switchgrass plants accumulated from 26.3 to 71.7% of the total amount of the 137 Cs and from 23.8 to 88.7% of the total amount of the 90 Sr added to the soil after three harvests. In each of the three grass species tested, plants inoculated with Glomus mosseae or Glomus intraradices had greater aboveground plant biomass, higher concentrations of 137 Cs or 90 Sr in plant tissue, % accumulation of 137 Cs or 90 Sr from soil and plant bioconcentration ratios at each harvest than those that did not receive mycorrhizal inoculation. Johnson grass had greater aboveground plant biomass, greater accumulation of 137 Cs or 90 Sr from soil and plant higher bioconcentration ratios with arbuscular mycorrhizal fungi than bahia grass and switchgrass. The greatest accumulation of 137 Cs and 90 Sr was observed in johnson grass inoculated with G. mosseae. Grasses can grow in wide geographical ranges that include a broad variety of edaphic conditions. The highly efficient removal of these radionuclides by these grass species after inoculation with arbuscular mycorrhizae supports the concept that remediation of radionuclide contaminated soils using mycorrhizal plants may present a viable strategy to remediate and reclaim sites contaminated with radionuclides

  14. Genotype-specific interactions and the trade-off between host and parasite fitness

    Directory of Open Access Journals (Sweden)

    Shykoff Jacqui A

    2007-10-01

    Full Text Available Abstract Background Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica, a natural pathogen of the Brassicaceae Arabidopsis thaliana. Results We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb, although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant. Conclusion These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions

  15. Evaluation and Selection of Maize (Zea Mays L.) Genotypes Tolerant to Low N Soil

    Energy Technology Data Exchange (ETDEWEB)

    The, C. [West Africa Centre for Crop Improvement (WACCI), Legon, Accra (Ghana); Ngonkeu, M. L.; Zonkeng, C.; Apala, H. M. [Institute of Agricultural Research for Development (IRAD), Yaounde (Cameroon)

    2013-11-15

    The identification and/or the development of germplasm with traits which enhance N uptake and N use efficiency in low N soil could significantly sustain maize production on stress environments. The use of secondary traits highly correlated with grain yield and high heritability, could speed up the development of genotypes adapted to low N environments. Arbuscular mycorrhiza fungi are known to enhance P uptake, but its role on plant N nutrition has not been extensively studied. The study aimed to (i) identify tolerant and/or low N responsive genotypes (ii) measure the correlated response of grain yield with some agronomic plant characteristic under low N and under mycorrhiza inoculation (iii) measure the combining ability and the gene effects of the lines under low and high N and (iv) to identify stable and high yielding hybrids adapted to low and high N condition. Initial screening of 99 genotypes for two years identified 30 inbred lines that were evaluated in split plots for: grain yield, root volume, chlorophyll content, leaf area index, and mycorrhizal colonization. Significant genotype x soil N level interactions were obtained among the tested inbreds for all measured traits, except for chlorophyll content which exhibited similar ranking from one soil N level to another. In addition to selection for grain yield, 5 lines were retained for their good root volume, 4 for their chlorophyll content and stay green traits, 3 for their leaf area index and the last 3 for their mycorrhizal colonization. Diallel crosses among the 15 selected lines yielded 105 F1 hybrids evaluated in split plots, with 3 soil treatment levels (20 kg-N ha{sup -1}, 20 kg-N ha{sup -1} + mycorrhiza and 100 kg-N h{sup a-1}). Significant differences were detected among the 3 soil treatments as well as for genotypes x soil interaction for all measured traits. On 20 N plots, 10 hybrids yielded at least as good as the check hybrid: Expl{sub 24} x 87036 (3.0 t ha{sup -1}). Among the 20 parents

  16. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    Directory of Open Access Journals (Sweden)

    Georg Leufen

    2014-06-01

    Full Text Available In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis or leaf rust (Puccinia hordei. Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of

  17. effect of tillage, rhizobium inoculation in maize-soybean- based ...

    African Journals Online (AJOL)

    main plot, four rhizobium inoculation in soybean-maize-based cropping systems ... production systems, such as cropping systems, ... of commercial inoculants. Studies ... and distributed by IITA business incubation ... sowing, while the remaining part (2/3) was done as ...... biological nitrogen fixation potential and grain yield.

  18. Effects of single and combined inoculations of selected Trichoderma ...

    African Journals Online (AJOL)

    Effects of single and combined inoculations of selected Trichoderma and Bacillus isolates on growth of dry bean and biological control of Rhizoctonia solani damping-off. ... Greenhouse trials showed that combined inoculations of T. atroviride strain 6 and B. subtilis B69 gave the highest growth promotion of bean in terms of ...

  19. Lactating cow response to lucerne silage inoculated with Lactobacillus plantarum

    Science.gov (United States)

    It is unclear why bacterial silage inoculants improve milk production in lactating dairy cattle. However, recent in vitro results suggest that inoculated silage effects on milk production may be tied to greater production of rumen microorganisms. Our objective was to determine if alfalfa silage trea...

  20. Response of chickpea ( Cicer arietinum L.) to inoculation with native ...

    African Journals Online (AJOL)

    The results from the field and pot experiments indicated that chickpea crop yield can be improved using proper Mesorhizobium inoculation. Inoculation had a pronounced effect on grain yield, yield component, total N uptake, grain protein content, percentage N derived from the atmosphere (%Ndfa) for the seed, and amount ...

  1. smallholder farmers' use and profitability of legume inoculants

    African Journals Online (AJOL)

    ACSS

    Rhizobia inoculant, a product of Kenya, and its profitability in smallholder farms. Data were collected from ... of the inoculants use and gross margin analysis to examine profitability. The area under the .... the effects of various factors on the extent of. BIOFIX® use. ..... little information, resulting in reduced adoption of legume ...

  2. Characterization of Novel Di-, Tri-, and Tetranucleotide Microsatellite Primers Suitable for Genotyping Various Plant Pathogenic Fungi with Special Emphasis on Fusaria and Mycospherella graminicola

    Directory of Open Access Journals (Sweden)

    Joseph-Alexander Verreet

    2012-03-01

    Full Text Available The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG4, (TCC5 and (CA7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi.

  3. New Native Rhizobia Strains for Inoculation of Common Bean in the Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Fábio Martins Mercante

    Full Text Available ABSTRACT Maximization of biological nitrogen fixation in the common bean (Phaseolus vulgaris L. crop depends on the genetic characteristics related to the plant, the symbiotic efficiency of rhizobia, and environmental factors. The objective of this study was to evaluate the performance of rhizobia selected beforehand from Cerrado (Brazilian tropical savanna soils in Mato Grosso do Sul. The experiments were conducted in 2007 in the municipalities of Aquidauana, Anaurilândia, Campo Grande, and Dourados, all located in the state of Mato Grosso do Sul. All procedures established followed the current recommendations of the Brazilian Ministry of Agriculture (Ministério de Agricultura, Pecuária e Abastecimento – MAPA, in accordance with the “official protocol for assessing the feasibility and agronomic efficiency of strains, and inoculant technologies linked to the process of biological nitrogen fixation in legumes”. The program for selection of rhizobia for inoculation in bean plants resulted in identification of different strains with high symbiotic efficiency, competitiveness, and genetic stability, based on the Embrapa Agropecuária Oeste collection of multifunctional microorganism cultures. In previous studies, 630 isolates of Rhizobium were evaluated. They were obtained from nodules of leucaena (380 or dry beans (250 from 87 locations, including 34 municipalities in Mato Grosso do Sul. Three of them stood out from the others: CPAO 12.5 L2, CPAO 17.5 L2, and CPAO 56.4 L2. Inoculation of these strains in bean plants demonstrated economic viability and high potential for obtaining a more effective inoculant suitable for trading purposes.

  4. Resistance evaluation of Pera (Citrus sinensis) genotypes to citrus canker in greenhouse conditions

    Science.gov (United States)

    Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri results in serious yield losses and phytoregulation penalties. The use of resistant genotypes is recognized as an important tool to facilitate control of the pathogen. Studies have show that artificial inoculation results in typic...

  5. Breeding of a Tomato Genotype Readily Accessible to Genetic Manipulation

    NARCIS (Netherlands)

    Koornneef, Maarten; Hanhart, Corrie; Jongsma, Maarten; Toma, Ingrid; Weide, Rob; Zabel, Pim; Hille, Jacques

    1986-01-01

    A tomato genotype, superior in regenerating plants from cell cultures, was obtained by transferring regeneration capacity from Lycopersicon peruvianum into L. esculentum by classical breeding. This genotype, MsK93, greatly facilitates genetic manipulation of tomato, as was demonstrated by successful

  6. The influence of temperature on photosynthesis of different tomato genotypes

    NARCIS (Netherlands)

    Gosiewski, W.; Nilwik, H.J.M.; Bierhuizen, J.F.

    1982-01-01

    Net photosynthesis and dark respiration from whole plants of various tomato genotypes were measured in a closed system. At low irradiance (27 W m−2) and low external CO2 concentration (550 mg m−3), net photosynthesis of 10 genotypes was found to vary between 0.122 and 0.209 mg CO2 m−2 s−1.

  7. Integrated analysis for genotypic adaptation in rice | Das | African ...

    African Journals Online (AJOL)

    Integrated analysis for genotypic adaptation in rice. S Das, RC Misra, MC Pattnaik, SK Sinha. Abstract. Development of varieties with high yield potential coupled with wide adaptability is an important plant breeding objective. The presence of genotype by environment (GxE) interaction plays a crucial role in determining the ...

  8. Genotype dependent callus induction and shoot regeneration in ...

    African Journals Online (AJOL)

    This study aims to observe the effect of genotype, hormone and culture conditions on sunflower (Helianthus annuus L.) callus induction and indirect plant regeneration. Calli were obtained from hypocotyl and cotyledon explants of five different sunflower genotypes; Trakya 80, Trakya 129, Trakya 259, Trakya 2098 and ...

  9. Efficiency and response of conilon coffee genotypes to nitrogen supply

    African Journals Online (AJOL)

    The objective of the study was to differentiate genotypes with higher efficiency and responsiveness to nitrogen supply, to understand how the nitrogen supply can impact the dry matter allocation and the accumulation of this nutrient in the different plant compartments of genotypes of conilon coffee, cultivated under ...

  10. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  11. Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil

    Directory of Open Access Journals (Sweden)

    Sameh H. Youseif

    2017-01-01

    Full Text Available Soil fertility is one of the major limiting factors for crop’s productivity in Egypt and the world in general. Biological nitrogen fixation (BNF has a great importance as a non-polluting and a cost-effective way to improve soil fertility through supplying N to different agricultural systems. Faba bean (Vicia faba L. is one of the most efficient nitrogen-fixing legumes that can meet all of their N needs through BNF. Therefore, understanding the impact of rhizobial inoculation and contrasting soil rhizobia on nodulation and N2 fixation in faba bean is crucial to optimize the crop yield, particularly under low fertility soil conditions. This study investigated the symbiotic effectiveness of 17 Rhizobium/Agrobacterium strains previously isolated from different Egyptian governorates in improving the nodulation and N2 fixation in faba bean cv. Giza 843 under controlled greenhouse conditions. Five strains that had a high nitrogen-fixing capacity under greenhouse conditions were subsequently tested in field trials as faba bean inoculants at Ismaillia Governorate in northeast Egypt in comparison with the chemical N-fertilization treatment (96 kg N·ha−1. A starter N-dose (48 kg N·ha−1 was applied in combination with different Rhizobium inoculants. The field experiments were established at sites without a background of inoculation under low fertility sandy soil conditions over two successive winter growing seasons, 2012/2013 and 2013/2014. Under greenhouse conditions, inoculated plants produced significantly higher nodules dry weight, plant biomass, and shoot N-uptake than non-inoculated ones. In the first season (2012/2013, inoculation of field-grown faba bean showed significant improvements in seed yield (3.73–4.36 ton·ha−1 and seed N-yield (138–153 Kg N·ha−1, which were higher than the uninoculated control (48 kg N·ha−1 that produced 2.97 Kg·ha−1 and 95 kg N·ha−1, respectively. Similarly, in the second season (2013

  12. Genotypic diversity of root and shoot characteristics of

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available Root and shoot characteristics of chickpea (Cicer arietinum L. genotypes are believed to be important in drought tolerance. There is a little information about the response of genotypes root growth in hydroponics and greenhouse culture, also the relationships between root size and drought tolerance. This study was conducted to observe whether genotypes differ in root size, and to see that root size is associated with drought tolerance during early vegetative growth. We found significant differences (p0.01 in root dry weight, total root length, tap root length, root area, leaf dry weight, leaf area and shoot biomass per plant among 30 genotypes of chickpea grown in hydroponics culture for three weeks. Each of these parameters correlated with all others, positively. Among 30 genotypes, 10 genotypes with different root sizes were selected and were grown in a greenhouse in sand culture experiment under drought stress (FC %30 for three weeks. There were not linear or non-linear significant correlations between root characters in hydroponics and greenhouse environments. It seems that environmental factors are dominant on genetic factors in seedling stage and so, the expression of genotypics potential for root growth characteristics of genotypes are different in hydroponic and greenhouse conditions. In this study, the selection of genotypes with vigorous roots system in hydroponic condition did not lead to genotypes with the same root characters in greenhouse environment. The genotype×drought interactions for root characters of chickpea seedlings in 30 days were not significant (p

  13. Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation

    Science.gov (United States)

    Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina

    This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.

  14. The ability of the biological control agent Bacillus subtilis, strain BB, to colonise vegetable brassicas endophytically following seed inoculation

    NARCIS (Netherlands)

    Wulff, E.G.; Vuurde, van J.W.L.; Hockenhull, J.

    2003-01-01

    The ability of Bacillus subtilis, strain BB, to colonise cabbage seedlings endophytically was examined following seed inoculation. Strain BB was recovered from different plant parts including leaves (cotyledons), stem (hypocotyl) and roots. While high bacterial populations persisted in the roots and

  15. Effects of Pseudomonas putida and Glomusintraradices Inoculations on Morphological and Biochemical Traitsin Trigonellafoenum-graecum L.

    Directory of Open Access Journals (Sweden)

    simin irankhah

    2017-02-01

    Full Text Available Introduction: Fenugreek (Trigonellafoenum-graecum L. is a traditional medicinal plant belonging to the legume family Fabaceae. Diverse groups of microorganisms are symbiotic with Fenugreek roots system. This integration leads to significant increases in the development and production by increasing nitrogen fixation, phytohormones production, siderophores and phosphate solubilization. Plant growth-promoting bacteria increase plant growth byimproving nutrientuptake and phytohormones production. In addition, the beneficial effect of these bacteria could be due totheirinteractionwithArbuscularMycorrhizal fungi(VAM. Drought is one of the major limiting factors for crop production in many parts of the world including Iran. Symbiotic microorganisms can enhance plant tolerance to drought. This experiment was carried out to investigate the effect of Vesicular ArbuscularMycorrhiza (VAM and Plant Growth Promoting Rhizobacteria (PGPR on morphological and biochemical characteristics of Fenugreek in drought stress conditions. Materials and Methods: The experiment was carried out in completely random design with 3 replications.There were four treatments including inoculation with Pseudomonas putida, inoculation with Glomusintraradices, combined association of Pseudomonas putida and Glomusintraradices and untreated as a check under drought stress (40% of field capacity and non-stress conditions (80% of field capacity. In this experiment fiveseeds were sowninplastic pots. Before sowing, seeds were inoculated with microorganisms. In order to inoculation ofseed with Mycorrhizal fungi, for each kilogram of soil, 100 grams of powder containing 10 to 15 thousand spores of fungal soil (produced by the biotech company Toos was added to three centimeters of soil in the pot. For seed inoculation with Plant Growth Promoting Rhizobacteria, the growth curve of the bacteria was drawn at first and then the best time for the growth of bacteria was determined. The bacteria at

  16. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input

    Science.gov (United States)

    Oliveira, André L. M.; Santos, Odair J. A. P.; Marcelino, Paulo R. F.; Milani, Karina M. L.; Zuluaga, Mónica Y. A.; Zucareli, Claudemir; Gonçalves, Leandro S. A.

    2017-01-01

    Although Azospirillum strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of Azospirillum inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of Azospirillum inoculants when used as substitute of N-fertilizers, biomass of A. brasilense strain Ab-V5 enriched in exopolysaccharides (EPS) and polyhydroxybutirate (PHB) was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions. The culture medium formulation extended the log phase of A. brasilense cultures, which presented higher cell counts and increased EPS and PHB contents than observed in the cultures grown in the OAB medium used as control. An inoculation trial with maize conducted under greenhouse conditions and using the biopolymers-enriched Ab-V5 cells demonstrated the importance of EPS and PHB to the long term bacterial viability in soil and to the effectiveness of inoculation. The effectiveness of liquid and peat inoculants prepared with Ab-V5 cells enriched with EPS and PHB was also evaluated under field conditions, using maize as target crop along different seasons, with the inoculants applied directly over seeds or at topdressing under limiting levels of N-fertilization. No additive effect on yield resulted from inoculation under high N fertilizer input, while inoculated plants grown under 80% reduction in N fertilizer

  18. Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input

    Directory of Open Access Journals (Sweden)

    André L. M. Oliveira

    2017-09-01

    Full Text Available Although Azospirillum strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of Azospirillum inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of Azospirillum inoculants when used as substitute of N-fertilizers, biomass of A. brasilense strain Ab-V5 enriched in exopolysaccharides (EPS and polyhydroxybutirate (PHB was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions. The culture medium formulation extended the log phase of A. brasilense cultures, which presented higher cell counts and increased EPS and PHB contents than observed in the cultures grown in the OAB medium used as control. An inoculation trial with maize conducted under greenhouse conditions and using the biopolymers-enriched Ab-V5 cells demonstrated the importance of EPS and PHB to the long term bacterial viability in soil and to the effectiveness of inoculation. The effectiveness of liquid and peat inoculants prepared with Ab-V5 cells enriched with EPS and PHB was also evaluated under field conditions, using maize as target crop along different seasons, with the inoculants applied directly over seeds or at topdressing under limiting levels of N-fertilization. No additive effect on yield resulted from inoculation under high N fertilizer input, while inoculated plants grown under 80% reduction in

  19. Genetic diversity of some chili (Capsicum annuum L. genotypes

    Directory of Open Access Journals (Sweden)

    M.J. Hasan

    2014-06-01

    Full Text Available A study on genetic diversity was conducted with 54 Chili (Capsicum annuum L. genotypes through Mohalanobis’s D2 and principal component analysis for twelve quantitative characters viz. plant height, number of secondary branch/plant, canopy breadth , days to first flowering, days to 50% flowering, fruits/plant, 5 fruits weight, fruit length, fruit diameter, seeds/fruit, 1000 seed weight and yield/plant were taken into consideration. Cluster analysis was used for grouping of 54 chili genotypes and the genotypes were fallen into seven clusters. Cluster II had maximum (13 and cluster III had the minimum number (1 of genotypes. The highest inter-cluster distance was observed between cluster I and III and the lowest between cluster II and VII. The characters yield/plant, canopy breadth, secondary branches/plant, plant height and seeds/fruit contributed most for divergence in the studied genotypes. Considering group distance, mean performance and variability the inter genotypic crosses between cluster I and cluster III, cluster III and cluster VI, cluster II and cluster III and cluster III and cluster VII may be suggested to use for future hybridization program.

  20. Effects of silicon treatment and inoculation with Fusarium oxysporum f. sp. vasinfectum on cellular defences in root tissues of two cotton cultivars.

    Science.gov (United States)

    Whan, Jennifer A; Dann, Elizabeth K; Aitken, Elizabeth A B

    2016-08-01

    Silicon has been shown to enhance the resistance of plants to fungal and bacterial pathogens. Here, the effect of potassium silicate was assessed on two cotton (Gossypium hirsutum) cultivars subsequently inoculated with Fusarium oxysporum f. sp. vasinfectum (Fov). Sicot 189 is moderately resistant whilst Sicot F-1 is the second most resistant commercial cultivar presently available in Australia. Transmission and light microscopy were used to compare cellular modifications in root cells after these different treatments. The accumulation of phenolic compounds and lignin was measured. Cellular alterations including the deposition of electron-dense material, degradation of fungal hyphae and occlusion of endodermal cells were more rapidly induced and more intense in endodermal and vascular regions of Sicot F-1 plants supplied with potassium silicate followed by inoculation with Fov than in similarly treated Sicot 189 plants or in silicate-treated plants of either cultivar not inoculated with Fov. Significantly more phenolic compounds were present at 7 d post-infection (dpi) in root extracts of Sicot F-1 plants treated with potassium silicate followed by inoculation with Fov compared with plants from all other treatments. The lignin concentration at 3 dpi in root material from Sicot F-1 treated with potassium silicate and inoculated with Fov was significantly higher than that from water-treated and inoculated plants. This study demonstrates that silicon treatment can affect cellular defence responses in cotton roots subsequently inoculated with Fov, particularly in Sicot F-1, a cultivar with greater inherent resistance to this pathogen. This suggests that silicon may interact with or initiate defence pathways faster in this cultivar than in the less resistant cultivar. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces IRT1-mediated cadmium uptake of roots.

    Science.gov (United States)

    Xu, Qianru; Pan, Wei; Zhang, Ranran; Lu, Qi; Xue, Wanlei; Wu, Cainan; Song, Bixiu; Du, Shaoting

    2018-05-08

    Cadmium (Cd) contamination of agricultural soils represents a serious risk to crop safety. A new strategy using abscisic acid (ABA)-generating bacteria, Bacillus subtilis or Azospirillum brasilense, was developed to reduce the Cd accumulation in plants grown in Cd-contaminated soil. Inoculation with either bacterium resulted in a pronounced increase in the ABA level in wild-type Arabidopsis Col-0 plants, accompanied by a decrease in Cd levels in plant tissues, which mitigated the Cd toxicity. As a consequence, the growth of plants exposed to Cd was improved. Nevertheless, B. subtilis and A. brasilense inoculation had little effect on Cd levels and toxicity in the ABA-insensitive mutant snrk 2.2/2.3, indicating that the action of ABA is required for these bacteria to reduce Cd accumulation in plants. Furthermore, inoculation with either B. subtilis or A. brasilense down-regulated the expression of IRT1 (IRON-REGULATED TRANSPORTER 1) in the roots of wild-type plants and had little effect on Cd levels in the IRT1-knockout mutants irt1-1 and irt1-2. In summary, we conclude that B. subtilis and A. brasilense can reduce Cd levels in plants via an IRT1-dependent ABA-mediated mechanism.

  2. Irrigated wheat subjected to inoculation with Azospirillum brasilense and nitrogen doses as top-dressing

    Directory of Open Access Journals (Sweden)

    Cleiton J. Alves

    Full Text Available ABSTRACT The use of Azospirillum brasilense in the wheat crop still presents contradictory results; thus, it is necessary to identify ideal conditions to obtain satisfactory results. The objective of this study was to investigate the interaction between Azospirillum brasilense and nitrogen doses in a wheat cultivar, conducted with irrigation in the Cerrado region of Mato Grosso do Sul. The experimental design was randomized blocks with a 4 x 2 factorial scheme, four nitrogen doses (0, 40, 80 and 120 kg ha-1 applied as top-dressing, associated or not with inoculation of wheat seeds with Azospirillum brasilense. The results show that there was no interaction between N and inoculation. The isolated effect of Azospirillum brasilense promotes an increase in plant height and number of grains per spike. Nitrogen doses promotes significant increases in leaf N content, plant height, number of grains per spike, number of spikes per square meter and grain yield. The conditions under which the experiment was conducted favored the development of the crop, not interfering with grain yield due the inoculation with Azospirillum brasilense.

  3. Cell viability of mycorrhiza helper bacteria solid inoculant in different carrier material

    Science.gov (United States)

    Asyiah, Iis Nur; Hindersah, Reginawanti; Harni, Rita

    2018-02-01

    Roots of food crops are colonized by nonpathogenic mycorrhizal fungi which show natural ability to control plant pathogen. Mycorrhizal establishment in plant roots is affected by rhizobacteria, known as mycorrhiza helper bacteria (MHB), which has synergetic effects on mycorrhizal associations. Laboratory experiment has been conducted to assess the best carrier material to develop well-qualified MHB of Pseudomonas diminuta and Bacillus subtilis solid inoculant. Carrier materials were 100 mesh organic matter of agricultural waste. Different spore concentration of both bacterial liquid inoculants were grown on three kinds of 100-mesh organic matter and stored at room temperature up to 90 days. Cell viability of both MHB were counted by serial dilution plate method by using specific medium. The results showed that sugar cane baggase ash was the best carrier material to maintain cell viability for both MHB. However, the population of Pseudomonas diminuta and Bacillus subtilis in sugar cane baggase ash were slightly decreased after 90 days. The use of sugarcane baggase ash for solid MHB inoculant development could be suggested.

  4. Components of corn crop yield under inoculation with Azospirillum brasilense using integrated crop-livestock system

    Directory of Open Access Journals (Sweden)

    Marcos da Silva Brum

    2016-09-01

    Full Text Available The objective of this study was to evaluate the agronomic characteristics of corn seed inoculated with Azospirillum brasilense, grown on black oat and ryegrass straw, and managed under different grazing strategies and doses of nitrogen. The experiment was conducted in Santa Maria, Rio Grande do Sul State, Brazil, during two agricultural seasons (2012/2013 and 2013/2014 in a randomized, complete block design with three replications. In the winter period, black oat and ryegrass straw were managed at different grazing heights by sheep (0.30, 0.20, 0.10 m, conventional grazing, and no grazing with three doses of nitrogen (0, 50, and 100 kg ha-1, with or without inoculation by A. brasilense. We used the hybrid Pioneer (P1630H® in 2012 and the hybrid Agroeste (AS 1551® in 2013. The height of corn plants was greater when they were grown on black oat and ryegrass straw, and the absence of grazing favored productivity. Under drought conditions, the application of nitrogen to the pasture favored corn development, increasing plant height, ear height, and stem diameter. Inoculation with A. brasilense had a positive effect on the characteristics of yield and productivity of corn, independent of growing season and hybrid used.

  5. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  6. APOE Genotyping, Cardiovascular Disease

    Science.gov (United States)

    ... Resources For Health Professionals Subscribe Search APOE Genotyping, Cardiovascular Disease Send Us Your Feedback Choose Topic At a ... help understand the role of genetic factors in cardiovascular disease . However, the testing is sometimes used in clinical ...

  7. Radiosensitivity of fingermillet genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Raveendran, T S; Nagarajan, C; Appadurai, R; Prasad, M N; Sundaresan, N [Tamil Nadu Agricultural Univ., Coimbatore (India)

    1984-07-01

    Varietal differences in radiosensitivity were observed in a study involving 4 genotypes of fingermillet (Eleusine coracana (Linn.) Gaertn.) subjected to gamma-irradiation. Harder seeds were found to tolerate a higher dose of the mutagen.

  8. Association nitrogen fixation of rice inoculated with ammonia resistant engineering strain (alcaligenes faecalis)

    International Nuclear Information System (INIS)

    Chen Ming; Zhang Wei; Lin Min

    1999-01-01

    It showed that Alcaligenes faecalis could produce plant hormone (IAA) in LW medium. The pot experiment results showed that inoculation with A1501 and A1513 could promote the growth and grain yield of rice. Comparison with the non-inoculation, the grain yield of rice treated with A1501 and A1513 increased by 8.5% and 10.3% respectively. And %Ndfa of rice shoot and grain estimated by 15 N-isotope dilution method was 9.00% and 11.5%, respectively, which was consistent with the increment of the total N(8.5% and 11.6%, respectively). The study indicated that ammonia resistant engineering strain A1513 had more stimulative effect on the growth of rice and grain yield than A1501

  9. Inoculation message treatments for curbing noncommunicable disease development.

    Science.gov (United States)

    Mason, Alicia M; Miller, Claude H

    2013-07-01

    To study the effect of various types of inoculation message treatments on resistance to persuasive and potentially deceptive health- and nutrition-related (HNR) content claims of commercial food advertisers. A three-phase experiment was conducted among 145 students from a Midwestern U.S. university. Quantitative statistical analyses were used to interpret the results. RESULTS provide clear evidence that integrating regulatory focus/fit considerations enhances the treatment effectiveness of inoculation messages. Inoculation messages that employed a preventative, outcome focus with concrete language were most effective at countering HNR advertising claims. The findings indicate that inoculation fosters resistance equally across the most common types of commercially advertised HNR product claims (e.g., absolute, general, and structure/function claims). As the drive to refine the inoculation process model continues, further testing and application of this strategy in a public health context is needed to counter ongoing efforts by commercial food advertisers to avoid government regulations against deceptive practices such as dubious health/nutrition claims. This research advances inoculation theory by providing evidence that 1) good regulatory fit strengthens the effect of refutational preemption and 2) an inoculation approach is highly effective at fostering resistance to commercial advertisers' HNR content claims. This macro approach appears far superior to education or information-based promotional health campaigns targeted solely at specific populations demonstrating rising rates of noncommunicable disease.

  10. Inoculation message treatments for curbing noncommunicable disease development

    Directory of Open Access Journals (Sweden)

    Alicia M. Mason

    2013-07-01

    Full Text Available OBJECTIVE: To study the effect of various types of inoculation message treatments on resistance to persuasive and potentially deceptive health- and nutrition-related (HNR content claims of commercial food advertisers. METHODS: A three-phase experiment was conducted among 145 students from a Midwestern U.S. university. Quantitative statistical analyses were used to interpret the results. Results: Results provide clear evidence that integrating regulatory focus/fit considerations enhances the treatment effectiveness of inoculation messages. Inoculation messages that employed a preventative, outcome focus with concrete language were most effective at countering HNR advertising claims. The findings indicate that inoculation fosters resistance equally across the most common types of commercially advertised HNR product claims (e.g., absolute, general, and structure/function claims. CONCLUSIONS: As the drive to refine the inoculation process model continues, further testing and application of this strategy in a public health context is needed to counter ongoing efforts by commercial food advertisers to avoid government regulations against deceptive practices such as dubious health/nutrition claims. This research advances inoculation theory by providing evidence that 1 good regulatory fit strengthens the effect of refutational preemption and 2 an inoculation approach is highly effective at fostering resistance to commercial advertisers' HNR content claims. This macro approach appears far superior to education or information-based promotional health campaigns targeted solely at specific populations demonstrating rising rates of noncommunicable disease.

  11. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  12. Phosphorus use efficiency in pima cotton (Gossypium barbadense L. genotypes

    Directory of Open Access Journals (Sweden)

    Elcio Santos

    2015-06-01

    Full Text Available In the Brazilian Cerrado, P deficiency restricts cotton production, which requires large amounts of phosphate fertilizer. To improve the yield of cotton crops, genotypes with high P use efficiency must be identified and used. The present study evaluated P uptake and use efficiency of different Gossypium barbadense L. genotypes grown in the Cerrado. The experiment was carried out in a greenhouse with a completely randomized design, 15 x 2 factorial treatment structure (15 genotypes x 2 P levels, and four replicates. The genotypes were MT 69, MT 70, MT 87, MT 91, MT 92, MT 94, MT 101, MT 102, MT 103, MT 105, MT 106, MT 110, MT 112, MT 124, and MT 125; P levels were sufficient (1000 mg pot-1, PS treatment or deficient (PD treatment. Dry matter (DM and P levels were determined in cotton plant parts and used to calculate plant P content and use efficiency. In general, DM and P content were higher in the PS than in the PD treatment, with the exception of root DM and total DM in some genotypes. Genotypes also differed in terms of P uptake and use capacity. In the PS treatment, genotypes MT 92 and MT 102 had the highest response to phosphate fertilization. Genotype MT 69 exhibited the most efficient P uptake in the PD treatment. Genotype MT 124 showed the best shoot physiological efficiency, apparent recovery efficiency, and utilization efficiency, whereas MT 110 exhibited the highest root physiological efficiency.

  13. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line.

    Science.gov (United States)

    Krishnan, Hari B; Kim, Won-Seok; Oehrle, Nathan W; Alaswad, Alaa A; Baxter, Ivan; Wiebold, William J; Nelson, Randall L

    2015-03-25

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.

  14. Comparison of artificial inoculation methods for studying ...

    African Journals Online (AJOL)

    divya

    2013-05-01

    May 1, 2013 ... atomizer; injection of spore suspension into the plants surface or into the intercellular air spaces of a ... Seeds of brown mustard B. juncea were sown in plastic inserts. (7.5 x 5 cm; 2 seeds per insert) containing ... system of the leaf should be avoided for injection. Detached leaves were kept in sealed Petri ...

  15. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region.

    Science.gov (United States)

    Vinichuk, M; Mårtensson, A; Rosén, K

    2013-12-01

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve (137)Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009-2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with (137)Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with (137)Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to (137)Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of (137)Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of (137)Cs could not be recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Relationship of some upland rice genotype after gamma irradiation

    Science.gov (United States)

    Suliartini, N. W. S.; Wijayanto, T.; Madiki, A.; Boer, D.; Muhidin; Juniawan

    2018-02-01

    The objective of the research was to group local upland rice genotypes after being treated with gamma irradiation. The research materials were upland rice genotypes resulted from mutation of the second generation and two parents: Pae Loilo (K3D0) and Pae Pongasi (K2D0) Cultivars. The research was conducted at the Indonesian Sweetener and Fiber Crops Research Institute, Malang Regency, and used the augmented design method. Research data were analyzed with R Program. Eight hundred and seventy one genotypes were selected with the selection criteria were based on yields on the average parents added 1.5 standard deviation. Based on the selection, eighty genotypes were analyzed with cluster analyses. Nine observation variables were used to develop cluster dendrogram using average linked method. Genetic distance was measured by euclidean distance. The results of cluster dendrogram showed that tested genotypes were divided into eight groups. Group 1, 2, 7, and 8 each had one genotype, group 3 and 6 each had two genotypes, group 4 had 25 genotypes, and group 5 had 51 genotypes. Check genotypes formed a separate group. Group 6 had the highest yield per plant of 126.11 gram, followed by groups 5 and 4 of 97.63 and 94.08 gram, respectively.

  17. Effects of bradyrhiziobium and vesicular arbuscular mycorrhizal (VAM) inoculation on symbiotic properties, yield and seed quality of groundnut

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedzein, Ekhlas Mohamedzein M [Department of Biochemistry and Soil Science, Faculty of agriculture, University of Khartoum, Khartoum (Sudan)

    1996-11-01

    A local and introduced Bradyrhizobium strains and a locally-isolated VAM fungi were used to study their effects on groundnut in clay (Shambat) and sandy (El-Rwakeeb) soil in a pot experiment. A field experiment was carried out at El-Rwakeeb to study the effect of urea, superphosphate and chicken manure on inoculated or uninoculated groundnut. Inoculation significantly increased number of nodules, dry weight of shoot, root and nodules, plant N and P content, number and dry weight of pods, yield and seed composition and quality in both pot and field experiments. Introduced strain (TAL 1000) was more effective than locally- isolated strain (ENRRI 16). All fertilizers added to inoculated or uninoculated groundnut significantly increased all measured parameters. Chiken manure reflected good results than rea and superphosphate, which showed comparable results. All treatents significantly improved the seed composition especially protein and oil content. (Author) 89 refs. , 25 tabs.