WorldWideScience

Sample records for injury multiple protective

  1. Rotator Cuff Injuries - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...

  2. Stanniocalcin-1 Protects a Mouse Model from Renal Ischemia-Reperfusion Injury by Affecting ROS-Mediated Multiple Signaling Pathways.

    Science.gov (United States)

    Liu, Dajun; Shang, Huiping; Liu, Ying

    2016-07-12

    Stanniocalcin-1 (STC-1) protects against renal ischemia-reperfusion injury (RIRI). However, the molecular mechanisms remain widely unknown. STC-1 inhibits reactive oxygen species (ROS), whereas most ROS-mediated pathways are associated with ischemic injury. Therefore, to explore the mechanism, the effects of STC-1 on ROS-medicated pathways were studied. Non-traumatic vascular clamps were used to establish RIRI mouse models. The serum levels of STC-1, interleukin-6 (IL-6), interferon (IFN) γ, P53, and capase-3 were measured by ELISA kits. Superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by fluorescence spectrofluorometer. All these molecules changed significantly in a RIRI model mouse when compared with those in a sham control. Kidney cells were isolated from sham and model mice. STC-1 was overexpressed or knockout in these kidney cells. The molecules in ROS-medicated pathways were measured by real-time quantitative PCR and Western blot. The results showed that STC-1 is an effective ROS scavenger. The serum levels of STC-1, MDA and SOD activity were increased while the serum levels of IL-6, iIFN-γ, P53, and capase-3 were decreased in a model group when compared with a sham control (p ROS-mediated molecules. Therefore, STC-1 maybe improve anti-inflammation, anti-oxidant and anti-apoptosis activities by affecting ROS-mediated pathways, especially the phospho-modifications of the respective proteins, resulting in the increase of SOD and reduce of capase-3, p53, IL-6 and IFN-γ.

  3. Urinary and Serum Metabolomics Analyses Uncover That Total Glucosides of Paeony Protect Liver against Acute Injury Potentially via Reprogramming of Multiple Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Haojie Li

    2017-01-01

    Full Text Available Total glucosides of paeony (TGP have been confirmed to be hepatoprotective. However, the underlying mechanism is largely unclear. In this study, we investigated the metabolic profiles of urine and serum in rats with carbon tetrachloride- (CCl4- induced experimental liver injury and TGP administration by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS. The vehicle or a single dose of TGP was intragastrically administered to Wistar rats once a day for 14 consecutive days. To induce ALI, 50% CCl4 was injected intraperitoneally into these rats 2 hours after the last time administration of saline of TGP at the 14th day. The results indicated that TGP administration could protect rats from CCl4-induced ALI and alanine aminotransferase (ALT and aspartate aminotransferase (AST elevation, as well as hepatocyte apoptosis and inflammation. Furthermore, metabolomics analysis showed that TGP treatment significantly attenuated CCl4-triggered deregulation of multiple metabolites in both urine and serum, including glycine, alanine, proline, and glutamine. Metabolite set enrichment and pathway analyses demonstrated that amino acid cycling and glutathione metabolism were two main pathways involved in CCl4-induced experimental liver injury and TGP administration. Taken together, these findings revealed that regulation of metabolites potentially plays a pivotal role in the protective effect of TGP on ALI.

  4. Motorcycle protective clothing: protection from injury or just the weather?

    Science.gov (United States)

    de Rome, Liz; Ivers, Rebecca; Fitzharris, Michael; Du, Wei; Haworth, Narelle; Heritier, Stephane; Richardson, Drew

    2011-11-01

    Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Cross-sectional analytic study. Crashed motorcyclists (n=212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR=0.79, 95% CI: 0.69-0.91), pants (RR=0.49, 95% CI: 0.25-0.94), or gloves (RR=0.41, 95% CI: 0.26-0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR=0.77, 95% CI: 0.66-0.89), hands and wrists (RR=0.55, 95% CI: 0.38-0.81), legs (RR=0.60, 95% CI: 0.40-0.90), feet and ankles (RR=0.54, 95% CI: 0.35-0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR=0.46, 95% CI: 0.28-0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety

  5. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  6. Decoy receptor 3 analogous supplement protects steatotic rat liver from ischemia–reperfusion injury

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Li

    2017-07-01

    Conclusion: Using multimodal in vivo and in vitro approaches, we found that DcR3a analogue was a potential agent to protect steatotic liver against IR injury by simultaneous blockade of the multiple IR injury-related pathogenic changes.

  7. Multiple subfailures characterize blunt aortic injury.

    Science.gov (United States)

    Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Brasel, Karen J

    2007-05-01

    Blunt aortic injuries result from rapid deceleration of the thorax as may occur during automotive impacts and falls from extreme heights. Pathological findings can range from failure of specific vessel layers to immediate vessel wall rupture. The purpose of this investigation was to determine the sequence of local structural events that may lead to aortic wall disruption. Fourteen porcine aorta specimens were opened to expose the intima and longitudinally distracted until rupture. Longitudinal mechanics were quantified and subfailures were identified. Histology was used to examine internal layer subfailure. Videography demonstrated that subfailures propagated into complete vessel wall rupture. Subfailures occurred before complete vessel rupture in 93% of specimens. Intimal and medial subfailures were present at 74% of the stress and 82% of the strain to rupture. Multiple subfailures were evident in 79% of specimens. Present results supported the clinical theory that nonimmediate death as a result of blunt aortic injury is commonly caused by propagation of lesser lesions, initiating on the intimal layer, into complete vessel rupture including the adventitial layer. This finding, along with histologic evidence of subfailure pathological findings, confirms the presence of an acute window during which recognition and initiation of permissive hypotension may be lifesaving.

  8. Serum Iron Protects from Renal Postischemic Injury.

    Science.gov (United States)

    Vaugier, Céline; Amano, Mariane T; Chemouny, Jonathan M; Dussiot, Michael; Berrou, Claire; Matignon, Marie; Ben Mkaddem, Sanae; Wang, Pamella H M; Fricot, Aurélie; Maciel, Thiago T; Grapton, Damien; Mathieu, Jacques R R; Beaumont, Carole; Peraldi, Marie-Noëlle; Peyssonnaux, Carole; Mesnard, Laurent; Daugas, Eric; Vrtovsnik, François; Monteiro, Renato C; Hermine, Olivier; Ginzburg, Yelena Z; Benhamou, Marc; Camara, Niels O S; Flamant, Martin; Moura, Ivan C

    2017-12-01

    Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients ( n =169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF- κ B and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants. Copyright © 2017 by the American Society of Nephrology.

  9. Multiple floating metatarsals: a unique injury

    Directory of Open Access Journals (Sweden)

    Trikha Vivek

    2013-04-01

    Full Text Available 【Abstract】Concomitant dislocation of the tar-sometatarsal and metatarsophalangeal joints of foot is an extremely rare injury. Such injuries presenting in a single or adjacent dual rays have been described in few cases previously. We describe such an injury in adjacent three metatarsals of a polytrauma patient. These injuries are likely to be missed in the initial assessment of a polytrauma patient. These patients are at risk of an overlooked diagnosis but the consequences of missing this type of injury may be Vivek Trikha*, Tarun Goyal, Amit K Agarwal quite severe. This case is presented in view of its unique-ness along with possible mechanism of injury, the sequence of reduction and follow-up. Knowledge of such injury and its proper management may be useful to the trauma surgeons. Key words: Metatarsal bones; Metatarsophalangeal joint; Wounds and injuries

  10. Privacy Protection on Multiple Sensitive Attributes

    Science.gov (United States)

    Li, Zhen; Ye, Xiaojun

    In recent years, a privacy model called k-anonymity has gained popularity in the microdata releasing. As the microdata may contain multiple sensitive attributes about an individual, the protection of multiple sensitive attributes has become an important problem. Different from the existing models of single sensitive attribute, extra associations among multiple sensitive attributes should be invested. Two kinds of disclosure scenarios may happen because of logical associations. The Q&S Diversity is checked to prevent the foregoing disclosure risks, with an α Requirement definition used to ensure the diversity requirement. At last, a two-step greedy generalization algorithm is used to carry out the multiple sensitive attributes processing which deal with quasi-identifiers and sensitive attributes respectively. We reduce the overall distortion by the measure of Masking SA.

  11. Accidents, injuries and the use of personal protective equipment ...

    African Journals Online (AJOL)

    They are often neglected and their health and safety are generally overlooked. This study ... respondents had an accident at the workplace while 4% had injury, 60% had burns/scald injury while 72% had falls. In all, 6(54.5%) who ... Key words: Hospital cleaners, personal protective equipment, accidents, injuries, workplace.

  12. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2014-04-14

    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.

  13. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.

    Science.gov (United States)

    Siu, Woen Ping; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.

  14. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    International Nuclear Information System (INIS)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A.

    2008-01-01

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 μM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 μM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca 2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca 2+ -Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury

  15. Protect the Ones You Love: Child Injuries Are Preventable

    Centers for Disease Control (CDC) Podcasts

    This CDC podcast series discusses steps parents can take to help protect their children from some of the leading causes of child injury, including burns, drownings, falls, poisonings, and road traffic.

  16. protecting miners against occupational injuries and diseases

    African Journals Online (AJOL)

    user

    lungs, destroying the breathing ability of people who suffer from it. 4 ... the right of mineworkers to recover damages for occupational injury sustained or ..... Employees who suffer permanent disability for the purposes of COIDA as a result of.

  17. Single Versus Multiple Solid Organ Injuries Following Blunt Abdominal Trauma.

    Science.gov (United States)

    El-Menyar, Ayman; Abdelrahman, Husham; Al-Hassani, Ammar; Peralta, Ruben; AbdelAziz, Hiba; Latifi, Rifat; Al-Thani, Hassan

    2017-11-01

    We aimed to describe the pattern of solid organ injuries (SOIs) and analyze the characteristics, management and outcomes based on the multiplicity of SOIs. A retrospective study in a Level 1 trauma center was conducted and included patients admitted with blunt abdominal trauma between 2011 and 2014. Data were analyzed and compared for patients with single versus multiple SOIs. A total of 504 patients with SOIs were identified with a mean age of 28 ± 13 years. The most frequently injured organ was liver (45%) followed by spleen (30%) and kidney (18%). One-fifth of patients had multiple SOIs, of that 87% had two injured organs. Patients with multiple SOIs had higher frequency of head injury and injury severity scores (p hepatic injuries (13%) than the other SOIs. SOIs represent one-tenth of trauma admissions in Qatar. Although liver was the most frequently injured organ, the rate of mortality was higher in pancreatic injury. Patients with multiple SOIs had higher morbidity which required frequent operative management. Further prospective studies are needed to develop management algorithm based on the multiplicity of SOIs.

  18. Sodium 4-phenylbutyrate protects against cerebral ischemic injury.

    Science.gov (United States)

    Qi, Xin; Hosoi, Toru; Okuma, Yasunobu; Kaneko, Masayuki; Nomura, Yasuyuki

    2004-10-01

    Sodium 4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid that has been used for treatment of urea cycle disorders in children, sickle cell disease, and thalassemia. It has been demonstrated recently that 4-PBA can act as a chemical chaperone by reducing the load of mutant or mislocated proteins retained in the endoplasmic reticulum (ER) under conditions associated with cystic fibrosis and liver injury. In the present study, we evaluated the neuroprotective effect of 4-PBA on cerebral ischemic injury. Pre- or post-treatment with 4-PBA at therapeutic doses attenuated infarction volume, hemispheric swelling, and apoptosis and improved neurological status in a mouse model of hypoxia-ischemia. Moreover, 4-PBA suppressed ER-mediated apoptosis by inhibiting eukaryotic initiation factor 2alpha phosphorylation, CCAAT/enhancer-binding protein homologous protein induction, and caspase-12 activation. In neuroblastoma neuro2a cells, 4-PBA reduced caspase-12 activation, DNA fragmentation, and cell death induced by hypoxia/reoxygenation. It protected against ER stress-induced but not mitochondria-mediated cell death. Additionally, 4-PBA inhibited the expression of inducible nitric-oxide synthase and tumor necrosis factor-alpha in primary cultured glial cells under hypoxia/reoxygenation. These results indicate that 4-PBA could protect against cerebral ischemia through inhibition of ER stress-mediated apoptosis and inflammation. Therefore, the multiple actions of 4-PBA may provide a strong effect in treatment of cerebral ischemia, and its use as a chemical chaperone would provide a novel approach for the treatment of stroke.

  19. Retinal protection from solar photic injury

    International Nuclear Information System (INIS)

    Chou, B.R.

    1981-01-01

    Samples of protective filters commonly used to observed the partially eclipsed sun were obtained and subjected to spectrophotometric analysis over the wavelength interval 330 to 2500 nm. Performance of these filters was compared with criteria for adequate ocular protection which have appeared in the literature. It appears that the greatest safety is provided by those devices incorporating a monatomic metallic coating as the filtering agent

  20. Induced hypernatraemia is protective in acute lung injury.

    Science.gov (United States)

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Protective effects of incensole acetate on cerebral ischemic injury.

    Science.gov (United States)

    Moussaieff, Arieh; Yu, Jin; Zhu, Hong; Gattoni-Celli, Sebastiano; Shohami, Esther; Kindy, Mark S

    2012-03-14

    The resin of Boswellia species is a major anti-inflammatory agent that has been used for centuries to treat various conditions including injuries and inflammatory conditions. Incensole acetate (IA), a major constituent of this resin, has been shown to inhibit NF-κB activation and concomitant inflammation, as well as the neurological deficit following head trauma. Here, we show that IA protects against ischemic neuronal damage and reperfusion injury in mice, attenuating the inflammatory nature of ischemic damage. IA given post-ischemia, reduced infarct volumes and improved neurological activities in the mouse model of ischemic injury in a dose dependent fashion. The protection from damage was accompanied by inhibition of TNF-α, IL-1β and TGF-β expression, as well as NF-κB activation following injury. In addition, IA is shown to have a therapeutic window of treatment up to 6h after ischemic injury. Finally, the protective effects of IA were partially mediated by TRPV3 channels as determined by the TRPV3 deficient mice and channel blocker studies. This study suggests that the anti-inflammatory and neuroprotective activities of IA may serve as a novel therapeutic treatment for ischemic and reperfusion injury, and as a tool in the ongoing research of mechanisms for neurological damage. Published by Elsevier B.V.

  2. Reporting Multiple Individual Injuries in Studies of Team Ball Sports: A Systematic Review of Current Practice

    OpenAIRE

    Fortington, Lauren V; van der Worp, Henk; van den Akker-Scheek, Inge; Finch, Caroline F

    2017-01-01

    Background To identify and prioritise targets for injury prevention efforts, injury incidence studies are widely reported. The accuracy and consistency in calculation and reporting of injury incidence is crucial. Many individuals experience more than one injury but multiple injuries are not consistently reported in sport injury incidence studies. Objective The aim of this systematic review was to evaluate current practice of how multiple injuries within individuals have been defined and repor...

  3. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  4. Reporting Multiple Individual Injuries in Studies of Team Ball Sports: A Systematic Review of Current Practice.

    Science.gov (United States)

    Fortington, Lauren V; van der Worp, Henk; van den Akker-Scheek, Inge; Finch, Caroline F

    2017-06-01

    To identify and prioritise targets for injury prevention efforts, injury incidence studies are widely reported. The accuracy and consistency in calculation and reporting of injury incidence is crucial. Many individuals experience more than one injury but multiple injuries are not consistently reported in sport injury incidence studies. The aim of this systematic review was to evaluate current practice of how multiple injuries within individuals have been defined and reported in prospective, long-term, injury studies in team ball sports. A systematic search of three online databases for articles published before 2016. Publications were included if (1) they collected prospective data on musculoskeletal injuries in individual participants; (2) the study duration was >1 consecutive calendar year/season; and (3) individuals were the unit of analysis. Key study features were summarised, including definitions of injury, how multiple individual injuries were reported and results relating to multiple injuries. Of the 71 publications included, half did not specifically indicate multiple individual injuries; those that did were largely limited to reporting recurrent injuries. Eight studies reported the number/proportion of athletes with more than one injury, and 11 studies presented the mean/number of injuries per athlete. Despite it being relatively common to collect data on individuals across more than one season, the reporting of multiple injuries within individuals is much more limited. Ultimately, better addressing of multiple injuries will improve the accuracy of injury incidence studies and enable more precise targeting and monitoring of the effectiveness of preventive interventions.

  5. Does vagotomy protect against multiple sclerosis?

    Science.gov (United States)

    Sundbøll, Jens; Horváth-Puhó, Erzsébet; Adelborg, Kasper; Svensson, Elisabeth

    2017-07-01

    To examine the association between vagotomy and multiple sclerosis. We conducted a matched cohort study of all patients who underwent truncal or super-selective vagotomy and a comparison cohort, by linking Danish population-based medical registries (1977-1995). Hazard ratios (HRs) for multiple sclerosis, adjusting for potential confounders were computed by means of Cox regression analysis. Median age of multiple sclerosis onset corresponded to late onset multiple sclerosis. No association with multiple sclerosis was observed for truncal vagotomy (0-37 year adjusted HR=0.91, 95% confidence interval [CI]: 0.48-1.74) or super-selective vagotomy (0-37 year adjusted HR=1.28, 95% CI: 0.79-2.09) compared with the general population. We found no association between vagotomy and later risk of late onset multiple sclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Differential protective effects of motorcycle helmets against head injury.

    Science.gov (United States)

    Singleton, Michael D

    2017-05-19

    Although numerous observational studies have demonstrated a protective effect of motorcycle helmets against head injury, the degree of protection against specific head injury types remains unclear. Experimental biomechanics studies involving cadavers, animals, and computer models have established that head injuries have varying etiologies. This retrospective cross-sectional study compared helmet protection against skull fracture, cerebral contusion, intracranial hemorrhage, and cerebral concussion in a consecutive series of motorcycle operators involved in recent traffic crashes in Kentucky. Police collision reports linked to hospital inpatient and emergency department (ED) claims were analyzed for the period 2008 to 2012. Motorcycle operators with known helmet use who were not killed at the crash scene were included in the study. Helmet use was ascertained from the police report. Skull fracture, cerebral contusion, intracranial hemorrhage, and cerebral concussion were identified from International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes on the claims records. The relative risks of each type of head injury for helmeted versus unprotected operators were estimated using generalized estimating equations. Helmets offer substantial protection against skull fracture (relative risk [RR] = 0.31, 95% confidence interval [CI], 0.23, 0.34), cerebral contusion (RR = 0.29, 95% CI, 0.16, 0.53), and intracranial hemorrhage (RR = 0.47, 95% CI, 0.35, 0.63). The findings pertaining to uncomplicated concussion (RR = 0.80, 95% CI, 0.64, 1.01) were inconclusive. A modest protective effect (20% risk reduction) was suggested by the relative risk estimate, but the 95% confidence interval included the null value. Motorcycle helmets were associated with a 69% reduction in skull fractures, 71% reduction in cerebral contusion, and 53% reduction in intracranial hemorrhage. This study finds that current motorcycle helmets do not protect equally against

  7. Pediatric craniomaxillofacial injuries after road traffic crashes: characteristics of injuries and protective equipment use.

    Science.gov (United States)

    Yunus, Siti Salmiah Mohd; Ngeow, Wei Cheong; Ramli, Roszalina

    2015-09-01

    A cross-sectional study to determine the pattern of craniomaxillofacial (CMF) injuries among children involved in road traffic crashes was performed. The association of protective equipment use with the CMF injuries was evaluated. Retrospective records of children treated in the University Malaya Medical Centre, Kuala Lumpur, Malaysia, after road traffic crashes between January 1, 2008 and December 31, 2012 were reviewed, and, after that, telephone interviews were made. Seventy-one children were included in this study. Fifty-two (73.6%) were involved in a motorcycle injury and 19 (23.4%) in a car crash. Their mean age was 6.02 years; SD, 3.46 (range between 0 to 13 years old). More male children were observed (52.1%) compared with females (47.9%). Thirty-nine point four percent of the children sustained CMF injuries, 33.8% body injuries, and 23.9% had both CMF and other body parts injuries. The highest injury severity score was 26, whereas the lowest was 0. Many children did not use protective equipment during traveling, 44.2% of children among motorcycle pillion riders, and 78.9% among car passengers. The association between helmet use and CMF injuries was shown to be statistically significant (P belt. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Reporting Multiple Individual Injuries in Studies of Team Ball Sports : A Systematic Review of Current Practice

    NARCIS (Netherlands)

    Fortington, Lauren V; van der Worp, Henk; van den Akker-Scheek, Inge; Finch, Caroline F

    Background To identify and prioritise targets for injury prevention efforts, injury incidence studies are widely reported. The accuracy and consistency in calculation and reporting of injury incidence is crucial. Many individuals experience more than one injury but multiple injuries are not

  9. Suramin protects from cisplatin-induced acute kidney injury

    Science.gov (United States)

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  10. Protect the Ones You Love From Sports and Recreation-Related Injuries

    Centers for Disease Control (CDC) Podcasts

    This podcast, developed as part of the Protect the Ones You Love initiative, discusses steps parents can take to help protect their children from sports injuries, one of the leading causes of child injury.

  11. Protein S Protects against Podocyte Injury in Diabetic Nephropathy.

    Science.gov (United States)

    Zhong, Fang; Chen, Haibing; Xie, Yifan; Azeloglu, Evren U; Wei, Chengguo; Zhang, Weijia; Li, Zhengzhe; Chuang, Peter Y; Jim, Belinda; Li, Hong; Elmastour, Firas; Riyad, Jalish M; Weber, Thomas; Chen, Hongyu; Wang, Yongjun; Zhang, Aihua; Jia, Weiping; Lee, Kyung; He, John C

    2018-05-01

    Background Diabetic nephropathy (DN) is a leading cause of ESRD in the United States, but the molecular mechanisms mediating the early stages of DN are unclear. Methods To assess global changes that occur in early diabetic kidneys and to identify proteins potentially involved in pathogenic pathways in DN progression, we performed proteomic analysis of diabetic and nondiabetic rat glomeruli. Protein S (PS) among the highly upregulated proteins in the diabetic glomeruli. PS exerts multiple biologic effects through the Tyro3, Axl, and Mer (TAM) receptors. Because increased activation of Axl by the PS homolog Gas6 has been implicated in DN progression, we further examined the role of PS in DN. Results In human kidneys, glomerular PS expression was elevated in early DN but suppressed in advanced DN. However, plasma PS concentrations did not differ between patients with DN and healthy controls. A prominent increase of PS expression also colocalized with the expression of podocyte markers in early diabetic kidneys. In cultured podocytes, high-glucose treatment elevated PS expression, and PS knockdown further enhanced the high-glucose-induced apoptosis. Conversely, PS overexpression in cultured podocytes dampened the high-glucose- and TNF- α -induced expression of proinflammatory mediators. Tyro3 receptor was upregulated in response to high glucose and mediated the anti-inflammatory response of PS. Podocyte-specific PS loss resulted in accelerated DN in streptozotocin-induced diabetic mice, whereas the transient induction of PS expression in glomerular cells in vivo attenuated albuminuria and podocyte loss in diabetic OVE26 mice. Conclusions Our results support a protective role of PS against glomerular injury in DN progression. Copyright © 2018 by the American Society of Nephrology.

  12. [Bony injuries of the thoracic cage in multiple trauma : Incidence, concomitant injuries, course and outcome].

    Science.gov (United States)

    Schulz-Drost, S; Oppel, P; Grupp, S; Krinner, S; Langenbach, A; Lefering, R; Mauerer, A

    2016-12-01

    Thoracic trauma is considered to be responsible for 25 % of fatalities in multiple trauma and is a frequent injury with an incidence of 50 %. In addition to organ injuries, severe injuries to the bony parts of the thorax also occur and these injuries are described very differently mostly based on single center data. The focus of this study was on a holistic presentation of the prevalence and the incidence of thoracic trauma in patients with multiple trauma from the data of the large collective of the TraumaRegister DGU® (TR-DGU) with the objective of an analysis of concomitant injuries, therapy options and outcome parameters. A retrospective analysis was carried out based on the data set of the TR-DGU from the years 2009-2013. Inclusion criteria were an injury severity scale (ISS) score ≥ 16 and primary admission to a trauma center but isolated craniocerebral injury was an exclusion criterium. Patients were separated into two groups: those with rib fractures (RF) and those with flail chest (FC). A total of 21,741 patients met the inclusion criteria including 10,474 (48.2 %) suffering from either RF or FC. The mean age was 49.8 ± 19.9 years in the RF group and 54.1 ± 18.2 years in the FC group. Approximately 25 % were female in both groups, 98.1 % were blunt force injuries and the median ISS was 28.0 ± 11.2 in RF and 35.1 ± 14.2 in FC. Shock, insertion of a chest tube, (multi) organ failure and fatality rates were significantly higher in the FC group as were concomitant thoracic injuries, such as pneumothorax and hemothorax. Sternal fractures without rib fractures were less common (3.8 %) than concomitant in the RF (10.1 %) and FC (14 %) groups, as were concomitant fractures of the clavicle and the scapula. Out of all patients 32.6 % showed fractures of the thoracolumbar spine, 26.5 % without rib fractures, 36.6-38.6 % with rib fractures or monolateral FC and 48.6 % concomitant to bilateral FC. Thoracotomy was carried

  13. Spirituality/Religiosity, Life Satisfaction, and Life Meaning as Protective Factors for Nonsuicidal Self-Injury in College Students

    Science.gov (United States)

    Kress, Victoria E.; Newgent, Rebecca A.; Whitlock, Janis; Mease, Laura

    2015-01-01

    The purpose of this study was to identify factors that may protect or insulate people from engaging in nonsuicidal self-injury (NSSI). College students (N = 14,385) from 8 universities participated in a web-based survey. Results of bivariate correlations and multiple regression revealed that spirituality/religiosity, life satisfaction, and life…

  14. Analysis and protective measures of sharp instrument injury causes of sterilization and supply center

    Directory of Open Access Journals (Sweden)

    Hua YANG

    2014-11-01

    Full Text Available Objective: To analyze the causes of sharp injury in the sterilization and supply center, take protective measures, effectively avoid sharp instrument injury, and guarantee staff safety. Methods: Adopt a retrospective survey method, summarize sharp instrument injury data of sterilization and supply center in 2013, analyze the reasons of the occurrence of sharp instrument injury, and make protective countermeasures. Results: Sharp instrument injuries occurred mainly in the device classification, manual cleaning and device packaging process. Conclusion: Poor consciousness of occupational protection of the staff in the sterilization and supply center, nonstandard operation, and lack of training and supervision in place are the main reasons of occurrence of sharp instrument injury.

  15. Strong dietary restrictions protect Drosophila against anoxia/reoxygenation injuries.

    Directory of Open Access Journals (Sweden)

    Paul Vigne

    Full Text Available Reoxygenation of ischemic tissues is a major factor that determines the severity of cardiovascular diseases. This paper describes the consequences of anoxia/reoxygenation (A/R stresses on Drosophila, a useful, anoxia tolerant, model organism.Newly emerged adult male flies were exposed to anoxic conditions (<1% O2 for 1 to 6 hours, reoxygenated and their survival was monitored.A/R stresses induced a transient increase in mortality which peaked at the time of reoxygenation. Then flies recovered low mortality rates similar to those of control flies. A/R induced mortality was strongly dependent on dietary conditions during the 48 h that preceded anoxia. Well fed flies were anoxia sensitive. Strong dietary restrictions and starvation conditions protected flies against A/R injuries. The tolerance to anoxia was associated to large decreases in glycogen, protein, and ATP contents. During anoxia, anoxia tolerant flies produced more lactate, less phosphate and they maintained more stable ATP levels than anoxia sensitive flies. Moderate dietary restrictions, which increased the longevity of normoxic flies, did not promote resistance to A/R stresses. Diet dependent A/R injuries were still observed in sigma loss of function mutants and they were insensitive to dietary rapamycin or resveratrol. AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribose-furanoside, an activator AMP kinase decreased A/R injuries. Mutants in the insulin signalling pathway were more anoxia tolerant in a fed state.Long A/R stresses induce a transient increase in mortality in Drosophila. This mortality is highly dependent on dietary conditions prior to the stress. Strong dietary restrictions and starvation conditions protect flies against A/R injuries, probably by inducing a major remodelling of energy metabolism. The results also indicate that mechanistically different responses develop in response to dietary restrictions of different strengths. AMP kinase and the insulin signalling

  16. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Kim, Jin Yong; Lee, Dong Yun; Kang, Sukmo; Miao, Wenjun; Kim, Hyungjun; Lee, Yonghyun; Jon, Sangyong

    2017-07-01

    Hepatic ischemia-reperfusion injury (IRI) remains a major concern in liver transplantation and resection, despite continuing efforts to prevent it. Accumulating evidence suggests that bilirubin possesses antioxidant, anti-inflammatory and anti-apoptotic properties. However, despite obvious potential health benefits of bilirubin, its clinical applications are limited by its poor solubility. We recently developed bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol (PEG)-conjugated bilirubin. Here, we sought to investigate whether BRNPs protect against IRI in the liver by preventing oxidative stress. BRNPs exerted potent antioxidant and anti-apoptotic activity in primary hepatocytes exposed to hydrogen peroxide, a precursor of reactive oxygen species (ROS). In a model of hepatic IRI in mice, BRNP preconditioning exerted profound protective effects against hepatocellular injury by reducing oxidative stress, pro-inflammatory cytokine production, and recruitment of neutrophils. They also preferentially accumulated in IRI-induced inflammatory lesions. Collectively, our findings indicate that BRNP preconditioning provides a simple and safe approach that can be easily monitored in the blood like endogenous bilirubin, and could be a promising strategy to protect against IRI in a clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dynamic activity of NF-κB in multiple trauma patients and protective effects of ulinastain

    Directory of Open Access Journals (Sweden)

    LI Jun

    2012-02-01

    Full Text Available 【Abstract】Objective: To investigate the dynamic activity of NF-κB at the early stage of injury in multiple trauma patients and the protective effects of ulinastain. Methods: From January 2008 to May 2010, patients with multiple traumas admitted to our emergency department were enrolled in this study. Their age varied from 20-55 years. All enrolled patients were assigned randomly into control group (26 cases of multiple injury without ulinastain treatment, ulinastain group (25 cases of multiple injury with ulinastain treatment, and mild injury group (20 cases for basic control. The inclusion criteria for mild injury group were AIS-2005≤3, single wound, previously healthy inhospital patients without the history of surgical intervention. In addition to routine treatment, patients in ulinastain group were intravenously injected 200 000 IU of ulinastain dissolved in 100 ml of normal saline within 12 hours after injury and subsequently injected at the interval of every 8 hours for 7 days. NF-κB activity in monocytes and the level of TNF? IL-1, IL? in serum on admission (day 0, day 1, 2, 3, 4, and 7 were measured. Data were compared and analyzed between different groups. Results: NF-κB activity in monocytes and TNF? IL-1 and IL? of these patients reached peak levels at 24 hour after trauma, with gradual decrease to normal at 72 hour after trauma. NF-κB activity and levels of TNF? IL-1 and IL? were lower in ulinastain group than control one, without any significant difference between the two groups. The mean duration for systemic inflammatory response syndrome and multiple organ dysfunction syndrome was 7 d?.1 d and 10 d?.5 d in ulinastain group and control group respectively, and showed a significant difference. Conclusions: NF-κB activity in monocytes and the levels of inflammatory cytokines in multiply injured patients increased transiently at the early stage of trauma. Ulinastain may shorten the duration of systemic inflammatory

  18. Protect the Ones You Love From Sports and Recreation-Related Injuries

    Centers for Disease Control (CDC) Podcasts

    2010-01-14

    This podcast, developed as part of the Protect the Ones You Love initiative, discusses steps parents can take to help protect their children from sports injuries, one of the leading causes of child injury.  Created: 1/14/2010 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 1/14/2010.

  19. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    Science.gov (United States)

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  20. [Septic complications after multilocal fractures and multiple traumatic injury].

    Science.gov (United States)

    Okapa, Robert; Rak, Stanisław; Wenda, Jarosław; Marczyński, Wojciech; Walczak, Piotr; Macias, Julia

    2011-01-01

    The increase of the number of the multiple traumatic injuries is related to social factors, such as: the development of industry, the change of life style and the conditions of work, the manner and the speed of relocation and the biological factors related with the elongation of life time. According to the World Health Organization data the injuries are one of the main health problems in the world. The clinical analysis of multitrauma patients treated due to the septic complications of the fractures. The material consists of 34 multitrauma patients treated in The Osteomyelitis and Septic Complications Unit in Prof. A. Gruca Orthopedic and Trauma Hospital in Otwock, Poland between 2005 and 2010. The cause of trauma, the timing of arrival to our unit, the number of the days of treatment, the number and the specificity of bone and internal injuries, the bacteriology of bone infections and operative techniques and pharmacologic treatment were analyzed. The causes of the injuries were: road accident (79%), fall from the height (8.8%), others (12.2%). The first stay in our unit was 21 months after the injury on average (1-129 months), the number of stays in the unit was 2,8 on average (1-6), the length of stay was 25.7 days on average (4-108 days). In analyzed group of 34 patients, we found: 12 opened fractures of single bone, 11 opened fractures of more than one bone, 22 closed fractures of single bone, 12 closed fracture of more than one bone. Central nervous system (55.9%), abdominal organs (35.3%) and thorax (29.4%) were the most common internal organs ocuppied with the injury. Osteomyelitis was the most frequently diagnosed in femur (50%) and tibia (41.2%). The main reasons of bone infection were: Methycylin-Sensitive Staphylococcus Aureus (35,3%), Methycylin-Resistant Staphylococcus Aureus (17,3%), Pseudomonas aeruginosa (23,5%), Escherichia coli, Acinetobacter baumani, Enterococcus faecalis. The following treatment was undertaken: the debridement of septic bone

  1. FANCD2 protects against bone marrow injury from ferroptosis

    International Nuclear Information System (INIS)

    Song, Xinxin; Xie, Yangchun; Kang, Rui; Hou, Wen; Sun, Xiaofang; Epperly, Michael W.; Greenberger, Joel S.; Tang, Daolin

    2016-01-01

    Bone marrow injury remains a serious concern in traditional cancer treatment. Ferroptosis is an iron- and oxidative-dependent form of regulated cell death that has become part of an emerging strategy for chemotherapy. However, the key regulator of ferroptosis in bone marrow injury remains unknown. Here, we show that Fanconi anemia complementation group D2 (FANCD2), a nuclear protein involved in DNA damage repair, protects against ferroptosis-mediated injury in bone marrow stromal cells (BMSCs). The classical ferroptosis inducer erastin remarkably increased the levels of monoubiquitinated FANCD2, which in turn limited DNA damage in BMSCs. FANCD2-deficient BMSCs were more sensitive to erastin-induced ferroptosis (but not autophagy) than FANCD2 wild-type cells. Knockout of FANCD2 increased ferroptosis-associated biochemical events (e.g., ferrous iron accumulation, glutathione depletion, and malondialdehyde production). Mechanically, FANCD2 regulated genes and/or expression of proteins involved in iron metabolism (e.g., FTH1, TF, TFRC, HAMP, HSPB1, SLC40A1, and STEAP3) and lipid peroxidation (e.g., GPX4). Collectively, these findings indicate that FANCD2 plays a novel role in the negative regulation of ferroptosis. FANCD2 could represent an amenable target for the development of novel anticancer therapies aiming to reduce the side effects of ferroptosis inducers.

  2. Blast mines: physics, injury mechanisms and vehicle protection.

    Science.gov (United States)

    Ramasamy, A; Hill, A M; Hepper, A E; Bull, A M J; Clasper, J C

    2009-12-01

    Since World War II, more vehicles have been lost to land mines than all other threats combined. Anti-vehicular (AV) mines are capable of disabling a heavy vehicle, or completely destroying a lighter vehicle. The most common form of AV mine is the blast mine, which uses a large amount of explosive to directly damage the target. In a conventional military setting, landmines are used as a defensive force-multiplier and to restrict the movements of the opposing force. They are relatively cheap to purchase and easy to acquire, hence landmines are also potent weapons in the insurgents' armamentarium. The stand-offnature of its design has allowed insurgents to cause significant injuries to security forces in current conflicts with little personal risk. As a result, AV mines and improvised explosive devices (IEDs) have become the most common cause of death and injury to Coalition and local security forces operating in Iraq and Afghanistan. Detonation of an AV mine causes an explosive, exothermic reaction which results in the formation of a shockwave followed by a rapid expansion of gases. The shockwave is mainly reflected by the soillair interface and fractures the soil cap overthe mine. The detonation products then vent through the voids in the soil, resulting in a hollow inverse cone which consists of the detonation gases surrounded by the soil ejecta. It is the combination of the detonation products and soil ejecta that interact with the target vehicle and cause injury to the vehicle occupants. A number of different strategies are required to mitigate the blast effects of an explosion. Primary blast effects can be reduced by increasing the standoff distance between the seat of the explosion and the crew compartment. Enhancement of armour on the base of the vehicle, as well as improvements in personal protection can prevent penetration of fragments. Mitigating tertiary effects can be achieved by altering the vehicle geometry and structure, increasing vehicle mass, as

  3. Melatonin Protective Effects against Liver Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Abbas Khonakdar-Tarsi

    2016-02-01

    Full Text Available Hepatic ischemia-reperfusion (I/R is a common phenomenon during liver surgery, transplantation, infection and trauma which results in damage and necrosis of the hepatic tissue through different pathways. Mechanisms involved in I/R damage are very intricate and cover several aspects. Several factors are involved in I/R-induced damages; briefly, decrease in sinusoidal perfusion and ATP generation because of low or no O2 supply, increase in production of reactive oxygen species (ROS and inflammatory factors and destruction of parenchymal cells resulted by these molecules are of the main causes of liver tissue injury during reperfusion. Melatonin’s antioxidant effect, and regulatory roles in the expression of different genes in the I/R insulted liver have been investigated by several studies. Melatonin and its metabolites are of the powerful direct scavengers of free radicals and ROS, so it can directly protect liver cell impairment from oxidative stress following I/R. In addition, this bioactive molecule up-regulates anti-oxidant enzyme genes like superoxide dismutase (SOD, glutathione peroxidase (GSH-Px and catalase (CAT. Tumor necrosis factors (TNF-α and interleukin-1 (IL-1, as potent pro-inflammatory factors, are generated in huge amounts during reperfusion. Melatonin is able to alleviate TNF-α generation and has hepatoprotective effect during I/R. It reduces the production of pro-inflammatory cytokines and chemokines via reducing the binding of NF-κB to DNA. Imbalance between vasodilators (nitric oxide, NO and vasoconstrictors (endothelin, ET during I/R was shown to be the primary cause of liver microcirculation disturbance. Melatonin helps maintaining the stability of liver circulation and reduces hepatic injury during I/R through preventing alteration of the normal balance between ET and NO. The aim of this review was to explore the mechanisms of liver I/R injuries and the protective effects of melatonin against them.

  4. Protective effect of plant polysaccharides against radiation injury

    International Nuclear Information System (INIS)

    Wang Bingji; Huang Shafei; Cheng Lurong

    1989-01-01

    A series of polysaccharides have been isolated from Chinese traditional medicinal herbs and tested in mice subjected to ionizing radiation for their protective action. The polysaccharides from different origins showed various degrees of radioprotection. Those isolated from Hericium erinaceus and Armillaria mellea showed a higher radioprotective effect than some other polysaccharides. They could increase the survival rate of irradiated mice to 60%. But the polysaccheride separated from Apocynum venetum has negligible effect. In general, most of these polysaccharides are effective only on administration before irradiation. No apparent protection was observed when given post irradiation. The polysaccharide isolated from Armillaria venetum could raise the survival rate of mice irradiated by lethal dose of γ-rays to 58%. It is effective even when administered after irradiation. Some work has been carried out to clarify the mechanism of radioprotective action of polysaccharides. Protection of hemapoietic organs, regulation of immunological system, induction of release of some endogeneous bioactive substances in the organism and reduction of oxygen tension in some vital tissues may be correlated with the protection of organism against radiation injury

  5. NRF2 Protection against Liver Injury Produced by Various Hepatotoxicants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2013-01-01

    Full Text Available To investigate the role of Nrf2 as a master defense against the hepatotoxicity produced by various chemicals, Nrf2-null, wild-type, Keap1-knock down (Keap1-Kd and Keap1-hepatocyte knockout (Keap1-HKO mice were used as a “graded Nrf2 activation” model. Mice were treated with 14 hepatotoxicants at appropriate doses, and blood and liver samples were collected thereafter (6 h to 7 days depending on the hepatotoxicant. Graded activation of Nrf2 offered a Nrf2-dependent protection against the hepatotoxicity produced by carbon tetrachloride, acetaminophen, microcystin, phalloidin, furosemide, cadmium, and lithocholic acid, as evidenced by serum alanine aminotransferase (ALT activities and by histopathology. Nrf2 activation also offered moderate protection against liver injury produced by ethanol, arsenic, bromobenzene, and allyl alcohol but had no effects on the hepatotoxicity produced by D-galactosamine/endotoxin and the Fas ligand antibody Jo-2. Graded Nrf2 activation reduced the expression of inflammatory genes (MIP-2, mKC, IL-1β, IL-6, and TNFα, oxidative stress genes (Ho-1, Egr1, ER stress genes (Gadd45 and Gadd153, and genes encoding cell death (Noxa, Bax, Bad, and caspase3. Thus, this study demonstrates that Nrf2 prevents the liver from many, but not all, hepatotoxicants. The Nrf2-mediated protection is accompanied by induction of antioxidant genes, suppression of inflammatory responses, and attenuation of oxidative stress.

  6. Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2015-01-01

    Full Text Available Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.

  7. Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury

    DEFF Research Database (Denmark)

    Owen, Michael C; Kulig, Waldemar; Rog, Tomasz

    2018-01-01

    In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC...... in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also...... resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does...

  8. Application of a stent splint to protect intraoral organs from radiation injury to a 97 year-old patient with multiple oral cancers who survived over 100 year-old

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Shigetaka; Kawamura, Tetsuo; Shimizu, Masatsugu; Aoki, Hirooki; Mizuki, Harumi; Ashizawa, Akira [Oita Medical Coll., Hasama (Japan)

    1989-06-01

    Radiation therapy had been used with increasing frequency in recent years in the management of oral cancers of advanced ages. In those cases we have to take good care to maintain the oral health of patients undergoing cancerocidal dose of radiation therapy. Using splints, as a tissue displacer, during radiation, we could treat a 99-year-old female patient without serious radiation sequelae, successfully she survived over 100 year-old. As she visited us at 97 year-old, the primary lesions located on the left upper lip, nose, upper and lower gums were diagnosed as multiple verrucous carcinoma histologically. Seventeen months after the first radiotherapy to the lip, nose and upper jaw, we planned again radiotherapy to the recurrent tumor of the lower gum. In order to eliminate and minimize side effects of the second irradiation for the contigenous intraoral organs, we devised a splint to exclude the tongue and upper gum apart from a radiation field. The splint, as tissue displacer, was made of heat-cured acrylic resin and divided into two pieces which were formed like full denture without artificial teeth. They were applied to the upper and lower jaws. The lower one had a large wing to exclude the tongue from irradiation field. After setting of the splint, she had been clenched slightly with an aid of chin cap. Then we could finish successfully the radiotherapy with 10 MV X-ray 40 Gy as scheduled without serious troubles. (author).

  9. Application of a stent splint to protect intraoral organs from radiation injury to a 97 year-old patient with multiple oral cancers who survived over 100 year-old

    International Nuclear Information System (INIS)

    Yanagisawa, Shigetaka; Kawamura, Tetsuo; Shimizu, Masatsugu; Aoki, Hirooki; Mizuki, Harumi; Ashizawa, Akira

    1989-01-01

    Radiation therapy had been used with increasing frequency in recent years in the management of oral cancers of advanced ages. In those cases we have to take good care to maintain the oral health of patients undergoing cancerocidal dose of radiation therapy. Using splints, as a tissue displacer, during radiation, we could treat a 99-year-old female patient without serious radiation sequelae, successfully she survived over 100 year-old. As she visited us at 97 year-old, the primary lesions located on the left upper lip, nose, upper and lower gums were diagnosed as multiple verrucous carcinoma histologically. Seventeen months after the first radiotherapy to the lip, nose and upper jaw, we planned again radiotherapy to the recurrent tumor of the lower gum. In order to eliminate and minimize side effects of the second irradiation for the contigenous intraoral organs, we devised a splint to exclude the tongue and upper gum apart from a radiation field. The splint, as tissue displacer, was made of heat-cured acrylic resin and divided into two pieces which were formed like full denture without artificial teeth. They were applied to the upper and lower jaws. The lower one had a large wing to exclude the tongue from irradiation field. After setting of the splint, she had been clenched slightly with an aid of chin cap. Then we could finish successfully the radiotherapy with 10 MV X-ray 40 Gy as scheduled without serious troubles. (author)

  10. Protection Orders Protect Against Assault and Injury: A Longitudinal Study of Police-Involved Women Victims of Intimate Partner Violence

    Science.gov (United States)

    Kothari, Catherine L.; Rhodes, Karin V.; Wiley, James A.; Fink, Jeffrey; Overholt, Scott; Dichter, Melissa E.; Marcus, Steven C.; Cerulli, Catherine

    2014-01-01

    Objective To measure the efficacy of protection orders (POs) in reducing assault and injury-related outcomes using a matched comparison group and tracking outcomes over time. Methods This study was a retrospective review of police, emergency department, family court and prosecutor administrative records for a cohort of police-involved female IPV victims; all events over a four-year study period were abstracted. Victims who obtained protection orders (POs) were compared to a propensity-score-based match group without POs over three time periods: Before, during, and after the issuance of a PO. Results Having a PO in place was associated with significantly more calls to police for non-assaultive incidents, and more police charging requests that were multiple-count and felony-level. Comparing outcomes, PO victims had police incident rates that were more than double the matched group prior to the PO, but dropped to the level of the matched group during and after the order. ED visits dropped over time for both groups. Conclusion This study confirmed the protective effect of POs, which are associated with reduced police incidents and emergency department visits both during and after the order, and reduced police incidents compared to a matched comparison group. PMID:22491224

  11. Emergency CT in blunt abdominal trauma of multiple injury patients

    International Nuclear Information System (INIS)

    Kinnunen, J.; Kivioja, A.; Poussa, K.; Laasonen, E.M.

    1994-01-01

    Multiple injury patients with blunt abdominal trauma (n = 110) were examined by abdominal CT. An i.v., but not peroral, contrast medium was used, thereby eliminating the delay caused by administering peroral contrast medium and any subsequent delay in making the diagnoses and beginning operative treatment. Eighteen patients underwent emergency laparotomy after the initial CT examination. The preoperative CT findings were compared to the laparotomy findings. CT revealed all but one of the severe parenchymal organ lesions requiring surgery. The one liver laceration that went undetected had caused hemoperitoneum, which was diagnosed by CT. The bowel and mesenteric lesions presented as intra-abdominal blood, and the hemoperitoneum was discovered in every patient with these lesions. Fourteen patients also initially had positive abdominal CT findings; 10 of them underwent an additional abdominal CT within 3 days, but the repeat studies did not reveal any lesions in need of surgery. Omission of the oral contrast medium did not jeopardize making the essential diagnoses, but it did save time. (orig.)

  12. Bicycle-Related Shoulder Injuries: Etiology and the Need for Protective Gear.

    Science.gov (United States)

    Goldstein, Yariv; Dolkart, Oleg; Kaufman, Ehud; Amar, Eyal; Sharfman, Zachary T; Rath, Ehud; Mozes, Gavriel; Maman, Eran

    2016-01-01

    The popularity of bicycle riding for recreation, exercise and transportation has grown enormously in recent years, which has led to an increased incidence of bicycle-related injuries. While these injuries involve mainly the musculoskeletal system, data on shoulder-specific injuries incurred while bike riding are lacking. Classifying these shoulder injuries may provide insight and assistance in the creation and implementation of effective protective gear and measures. To investigate the types and mechanisms of shoulder injuries among cyclists. This study retrospectively examined all cyclists who incurred shoulder injuries while riding and were admitted to the emergency department and shoulder clinic between January 2008 and November 2013. The study included 157 subjects with various bicycle-related shoulder injuries treated with either conservative or surgical measures. Eighty-four percent of injuries were caused by a direct blow to the shoulder, 7% by falling on an outstretched hand, 6% were traction injuries, and 3% were due to hyperabduction. Nine different clinical types of injury were observed; the most common injuries were clavicle fractures (32%), followed by acromioclavicular joint dislocations (22%), rotator cuff tears (22%), and humeral fractures (8%). Fifty-one percent of subjects were managed with conservative care and the remaining patients required surgical interventions. Shoulder injuries incurred while riding a bicycle span the entire spectrum of shoulder injuries and often result in debilitating conditions. Although the use of helmets is increasing, there is currently no effective protective gear or measures to prevent riders from suffering shoulder injuries.

  13. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.

  14. The normalized administration of hybrid operating room: its practical application in managing multiple injuries

    International Nuclear Information System (INIS)

    Li Xue; Zhang Weiguo; Zhang Lianyang; Chen Tingjing; Chen Jinhua

    2011-01-01

    Objective: Through carrying out the normalized administration of hybrid operating room the application of the operating room is expanded to the performing of multiple injuries, and, in this way, the operative management become standardized and programmed, the cooperation and efficiency of hybrid operations for multiple injuries are improved and the surgeries can be ensured. Methods: According to the characteristics of hybrid interventional operation for multiple injuries, the basic construction of the hybrid operating room improved, the hybrid operation team was organized, and the administrative system as well as the working program were established. The green channel for rescuing patients with multiple injuries was set up. The cooperative behavior during interventional treatment for multiple injuries was specified. Results: The coordination and working efficiency of physicians, nurses, technicians and anesthetists were well improved. The qualified rate of lamina flow administration reached 100%. The success rate of the rescue of multiple injuries was increased. Conclusion: As one-stop complex interventional operation for multiple injuries is a new technique, there is no integrated administration system. Therefore, the establishment of standardized management of one-stop complex interventional operation is of great significance in guiding clinical practice. (authors)

  15. Circulating Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury.

    Science.gov (United States)

    Kawai, Chihiro; Kotani, Hirokazu; Miyao, Masashi; Ishida, Tokiko; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-04-01

    Extracellular histones are a damage-associated molecular pattern (DAMP) involved in the pathogenesis of various diseases. The mechanisms of histone-mediated injury in certain organs have been extensively studied, but an understanding of the pathophysiological role of histone-mediated injury in multiple organ injury remains elusive. To elucidate this role, we systemically subjected C57BL/6 mice to various doses of histones and performed a chronological evaluation of the morphological and functional changes in the lungs, liver, and kidneys. Notably, histone administration ultimately led to death after a dose-dependent aggravation of multiple organ injury. In chronological studies, pulmonary and hepatic injuries occurred within 15 minutes, whereas renal injuries presented at a later phase, suggesting that susceptibility to extracellular histones varies among organs. Histones bound to pulmonary and hepatic endothelial cells immediately after administration, leading to endothelial damage, which could be ameliorated by pretreatment with heparin. Furthermore, release of another DAMP, high-mobility group protein box 1, followed the histone-induced tissue damage, and an antibody against the molecule ameliorated hepatic and renal failure in a late phase. These findings indicate that extracellular histones induce multiple organ injury in two progressive stages-direct injury to endothelial cells and the subsequent release of other DAMPs-and that combination therapies against extracellular histones and high-mobility group protein box 1 may be a promising strategy for treating multiple organ injury. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury

    Science.gov (United States)

    Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.

    2011-01-01

    The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063

  17. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury

    Directory of Open Access Journals (Sweden)

    Amadou K.S. Camara

    2011-04-01

    Full Text Available The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g. ischemic heart disease, alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.

  18. Protection of toroidal field coils using multiple circuits

    International Nuclear Information System (INIS)

    Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.

    1983-01-01

    The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits

  19. Penetrating injury of the lungs and multiple injuries of lower extremities caused by aircraft bombs splinters

    Directory of Open Access Journals (Sweden)

    Golubović Zoran

    2010-01-01

    Full Text Available Introduction. Injuries caused by aircraft bombs cause severe damages to the human body. They are characterized by massive destruction of injured tissues and organs, primary contamination by polymorph bacterial flora and modified reactivity of the body. Upon being wounded by aircraft bombs projectiles a victim simultaneously sustains severe damages of many organs and organ systems due to the fact that a large number of projectiles at the same time injure the chest, stomach, head and extremities. Case report. We presented a patient, 41 years of age, injured by aircraft bomb with hemo-pneumothorax and destruction of the bone and soft tissue structures of the foot, as well as the treatment result of such heavy injuries. After receiving thoracocentesis and short reanimation, the patient underwent surgical procedure. The team performed thoracotomy, primary treatment of the wound and atypical resection of the left lung. Thoracic drains were placed. The wounds on the lower leg and feet were treated primarily. Due to massive destruction of bone tissue of the right foot by cluster bomb splinters, and impossibility of reconstruction of the foot, guillotine amputation of the right lower leg was performed. Twelve days after the wounding caused by cluster bomb splinters, soft tissue of the left lower leg was covered by Tirsch free transplantant and the defect in the area of the left foot was covered by dorsalis pedis flap. The transplant and flap were accepted and the donor sites were epithelized. Twenty-six days following the wounding reamputation was performed and amputation stump of the right lower leg was closed. The patient was given a lower leg prosthesis with which he could move. Conclusion. Upon being wounded by aircraft bomb splinters, the injured person sustains severe wounds of multiple organs and organ systems due to simultaneous injuries caused by a large number of projectiles. It is necessary to take care of the vital organs first because they

  20. Andrographolide protects against radiation-induced lung injury in mice

    International Nuclear Information System (INIS)

    Kang Yahui; Wang Jinfeng; Zhang Qu; Huang Guanhong; Ma Jianxin; Yang Baixia; He Xiangfeng; Wang Zhongming

    2014-01-01

    Objective: To investigate the protective effect of andrographolide against radiation-induced lung injury (RILI) in C57BL/6 mice. Methods: Eighty C57BL mice were randomly divided into four groups: un-irradiated and normal saline-treated group (n = 20, control group), un-irradiated and andrographolide-treated group (n = 20, drug group), radiation plus normal saline-treated group (n = 20, radiation group) and radiation plus andrographolide-treated group (n = 20, treatment group). Before radiation, the mice in drug group and treatment group were administered daily via gavage with andrographolide (20 mg·kg -1 ·d -1 )) for 30 d, while the same volume of normal saline solution was given daily in the control and radiation groups. The model of RILI in C57BL mice was established by irradiating whole mouse chest with a single dose of 15 Gy of 6 MV X-rays. The pathological changes of the lung stained with HE/Masson were observed with a light microscope. The transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in serum were examined by enzyme-linked immunosorbent assay. The activities of malondialdehyde (MDA) and superoxide dismutase (SOD) and the content of hydroxyproline in lung tissues were examined by corresponding kits. Results: Compared with radiation group, there was an obvious amelioration in pathological injury of lung tissue in the treatment group. The lung coefficient, the activities of lung tissue MDA, the content of Hyp, the serum content of hydroxide free radical, and the serum levels of TGF-β1 and TNF-α in the treatment group were significantly lower than those in radiation group at 24 th week, (t lung coefficient = 1.60, t MDA = 7.06, t Hyp = 17.44, t TGF-β1 = 16.67, t TNF-α = 14.03, P < 0.05), while slightly higher than those in control group. The activity of SOD was significantly higher in the treatment group than that in radiation group (t = 60.81, P < 0.05), while lower than those in control group and drug group. There were no

  1. Hamstring Injury After Swimming in a Patient With Multiple Hereditary Osteochondromatosis.

    Science.gov (United States)

    Dönmez, Gürhan; Özçakar, Levent; Korkusuz, Feza

    2016-09-01

    Reported here is a 20-year-old male suffered a hamstring strain after a prolonged bout of swimming. After ultrasound imaging, the patient's injury was considered to be the result of nearby osteochondromas. Case reports have been previously published concerning anterior cruciate ligament injury, rotator cuff tears, subacromial impingement, or femoroacetabular impingement in multiple osteochondromatosis. However, to the best of our knowledge, this is the first reported case of a hamstring injury secondary to an osteochondroma.

  2. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  3. Possible Causes of Ileal Injury in Two Models of Microbial Sepsis and Protective Effect of Phytic Acid

    Directory of Open Access Journals (Sweden)

    Rasha Rashad Ahmed

    2010-03-01

    Full Text Available Background: Sepsis related-multiple organ dysfunction is associatedwith ileum injury. We aimed to determine the causes ofileal injury in two models of microbial sepsis resulted from infectionwith Aeromonas hydrophila or its endotoxin. We alsoevaluated the protective effect of phytic acid.Methods: Thin sections of ileum from 60 Swiss male mice incontrol, bacteria-infected or lipopolysaccharides (LPS andbacteria-infected or LPS-infected co-administered with phyticacid were subjected to histopathological and TdT-mediateddUTP nick-end labeling (TUNEL assay for apoptotic cellsdetection while ultra thin sections were stained with uranylacetate and lead citrate for cytological changes examination.Also, ileum images were exposed to the image analysis softwareto determine some related morphometric measures.Results: Necrosis and apoptosis were observed in ileum injuryin both examined sepsis models. The ileum injury was moresevere in LPS model. Phytic acid showed the ability to attenuateileum injury in Aeromonas hydrophila and its endotoxinmodels of sepsis after four weeks administration where itssupplementation significantly minimized the histopathologicaland cytological complications and morphometric alterationsresulted from the injury.Conclusion: The protective effects of phytic acid may becaused by increased mucous secretion, decreased apoptoticindex, attenuating the inflammatory and lymphocytic cellscount or increasing the renewal of the crypt cells and villousepithelial cells proliferation.

  4. Protective effects of edaravone combined puerarin on inhalation lung injury induced by black gunpowder smog.

    Science.gov (United States)

    Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin

    2015-05-01

    The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all pedaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Notch signaling inhibitor DAPT provides protection against acute craniocerebral injury.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Zhang

    Full Text Available Notch signaling pathway is involved in many physiological and pathological processes. The γ-secretase inhibitor DAPT inhibits Notch signaling pathway and promotes nerve regeneration after cerebral ischemia. However, neuroprotective effects of DAPT against acute craniocerebral injury remain unclear. In this study, we established rat model of acute craniocerebral injury, and found that with the increase of damage grade, the expression of Notch and downstream protein Hes1 and Hes5 expression gradually increased. After the administration of DAPT, the expression of Notch, Hes1 and Hes5 was inhibited, apoptosis and oxidative stress decreased, neurological function and cognitive function improved. These results suggest that Notch signaling can be used as an indicator to assess the severity of post-traumatic brain injury. Notch inhibitor DAPT can reduce oxidative stress and apoptosis after acute craniocerebral injury, and is a potential drug for the treatment of acute craniocerebral injury.

  6. Multiple fractures in infancy: scurvy or nonaccidental injury?

    Directory of Open Access Journals (Sweden)

    Colin R Paterson

    2010-09-01

    Full Text Available Colin R PatersonFormerly of Department of Medicine, University of Dundee, Dundee, Scotland, UKAbstract: The child with unexplained fractures has a differential diagnosis that includes nonaccidental injury but also a number of bone disorders including osteogenesis imperfecta and rickets. This paper reports a 14-month-old girl who was found to have seven fractures, several hematomas and widespread sub-periosteal reactions. She was found to have biochemical evidence of vitamin C deficiency. While nonaccidental injury could not be excluded, it seemed likely that the major cause of the fractures was scurvy. It is important to consider the whole differential diagnosis in a child with unexplained fractures.Keywords: scurvy, vitamin C deficiency, nonaccidental injury, fractures, ascorbic acid

  7. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb.

    Science.gov (United States)

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi

    2016-09-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.

  8. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    Science.gov (United States)

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial

  9. Resisting rape: the effects of victim self-protection on rape completion and injury.

    Science.gov (United States)

    Tark, Jongyeon; Kleck, Gary

    2014-03-01

    The impact of victim resistance on rape completion and injury was examined utilizing a large probability sample of sexual assault incidents, derived from the National Crime Victimization Survey (1992-2002), and taking into account whether harm to the victim followed or preceded self-protection (SP) actions. Additional injuries besides rape, particularly serious injuries, following victim resistance are rare. Results indicate that most SP actions, both forceful and nonforceful, reduce the risk of rape completion, and do not significantly affect the risk of additional injury.

  10. Pelvic fracture in the patient with multiple injuries: factors and lesions associated with mortality.

    Science.gov (United States)

    Martínez, Fernando; Alegret, Núria; Carol, Federico; Laso, M Jesús; Zancajo, Juanjo; García, Esteban; Ros, Vanesa

    2018-01-01

    The main objective of this study was to identify demographic, clinical, analytical factors or injuries associated with 30-day mortality in patients with pelvic fractures. Prospective observational study of patients with multiple injuries including pelvic fractures between January 2009 and January 2017. We recorded demographic, clinical, and laboratory data on arrival at the emergency department; type of pelvic fracture; treatments; associated lesions; and 30-day mortality. Univariable and multivariable models were used to analyze the data. A total of 2061 multiple-injury patients were attended; 118 had pelvic fractures. Fifteen of the patients with pelvic fractures (12.7%) died within 30 days. Arterial blood pressure on admission was less than 90 mm Hg in 23.7%, heart rate was over 100 beats per minute in 41.52%, lactic acid level was 20 mg/dL or higher in 67.6%, and base excess of -6 or less was recorded for 26.3%. The mean Injury Severity Score was 20 points. Angiographic embolization was required in 80.6% and preperitoneal packing in 3.4%. The main associated lesions were rib fractures (35.6%), hemo-pneumothorax (31.3%), spinal injuries (35.6%), and head injuries (30%). The 6 independent variables associated with risk of death in multiple-injury patients with pelvic fractures are age, female sex, complex fractures (Tile type C), lactic acid level of 20 mg/dL or more, base excess of -6 or less, and bowel perforation.

  11. Do helmets worn for hurling fail to protect the ear? Identification of an emerging injury pattern.

    LENUS (Irish Health Repository)

    Martin-Smith, James D

    2012-12-01

    Hurling is an Irish national game of stick and ball known for its ferocity, played by 190 000 players. Facial injuries were common but have been significantly reduced by legislation enforcing compulsory helmet wearing. Current standard helmets worn by hurlers do not offer protection to the external ear. Here we describe an emerging pattern of ear injuries and demonstrate the risk of external ear injuries in hurlers complying with current helmet safety standards. A 6-month retrospective analysis was carried out of patients attending Cork University Hospital (CUH) with ear lacerations sustained while hurling. Patient notes were reviewed and helmet manufacturers were interviewed. Seven patients were identified, all of whom sustained complex through ear lacerations while wearing helmets complying with current safety standards. Current helmet design fails to protect the external ear placing it at an increased risk of injury, a potential solution is to include ear protection in the helmet design.

  12. Injury and violence prevention policy: celebrating our successes, protecting our future.

    Science.gov (United States)

    Koné, Rebecca Greco; Zurick, Elizabeth; Patterson, Sara; Peeples, Amy

    2012-09-01

    Policy strategies for injury and violence prevention influence systems development, organizational change, social norms, and individual behavior to improve the health and safety of a population. Injury and violence prevention professionals should consider how their issues resonate with various audiences, including policy makers, the public, and other decision makers. As the cost of healthcare continues to rise and greater demands are placed on the healthcare system, the use of public health policy becomes increasingly critical to protect the public's health and prevent injury and violence and its related morbidities and disabilities (Degutis, 2011). This article highlights some impactful policy successes from the field, allows us to reflect on the Injury Center's 20th anniversary, and describes steps to address injuries and violence into the future. The purpose of this paper is to discuss policy as a public health strategy and the critical role it plays in injury and violence prevention. Published by Elsevier Ltd.

  13. 76 FR 75458 - Servicemembers' Group Life Insurance Traumatic Injury Protection Program-Genitourinary Losses

    Science.gov (United States)

    2011-12-02

    ... Traumatic Injury Protection Program--Genitourinary Losses AGENCY: Department of Veterans Affairs. ACTION... Protection (TSGLI) program by adding certain genitourinary (GU) system losses to the TSGLI Schedule of Losses and defining terms relevant to these new losses. This amendment is necessary to make qualifying GU...

  14. Protection for Thorax Injury Severity in 90° Lateral Collision

    Directory of Open Access Journals (Sweden)

    Dimitrios Kallieris

    1996-01-01

    Full Text Available The thoracic trauma index (TTI and the viscous criterion (VC are injury criteria intended for the prediction of torso injury severity. The criteria were assessed in two series of experiments: 90° (lateral car to car collisions and controlled left trunk impacts against either a rigid or padded wall. Forty-two belt restrained human cadavers in the age range 18–65 years, located in the near-side front passenger seat, were used. The impact velocity was between 40 and 60 km/h. Left and right side impacts were simulated using standard or modified car side structures. With the second series of experiments, the left side of each subject was impacted under one of two different test conditions: 24 km/h rigid wall or 32 km/h padded wall. The thorax deformation was evaluated through the double integration of the accelerated difference at the fourth and eight ribs, near and far side. Deformation maxima of 6–138 mm (mean 69 mm, VC values of 0.3–4.7 m/s (mean 1.6 m/s, and TTI values of 85–252 (mean 63 occurred. Torso abbreviated injury severity (AIS values were between 0 and 5. Statistical analyses showed a stronger influence of age on injury severity than the injury criteria or biomechanical responses in the two series of experiments. The TTI showed the highest correlation with thoracic AIS and the number of rib fractures, while VC was the better predictor of abdominal AIS. The results are discussed critically and the strength and robustness of the injury criteria analyzed.

  15. Estrogen protects the liver and intestines against sepsis-induced injury in rats.

    Science.gov (United States)

    Sener, Göksel; Arbak, Serap; Kurtaran, Pelin; Gedik, Nursal; Yeğen, Berrak C

    2005-09-01

    Sepsis is commonly associated with enhanced generation of reactive oxygen metabolites, leading to multiple organ dysfunctions. The aim of this study was to examine the putative protective role of estradiol against sepsis-induced oxidative organ damage. Sepsis was induced by cecal ligation and puncture method in Wistar albino rats. Sham-operated (control) and sepsis groups received saline or estradiol propionate (10 mg/kg) intraperitoneally immediately after the operation and at 12 h. Twenty-four hours after the surgery, rats were decapitated and malondialdehyde, glutathione levels, and myeloperoxidase activity were determined in the liver and ileum, while oxidant-induced tissue fibrosis was determined by collagen contents. Tissues were also examined microscopically. Serum aspartate aminotransferase, alanine aminotransferase levels, and lactate dehydrogenase were measured for the evaluation of liver functions and tissue damage, respectively. Tumor necrosis factor-alpha was also assayed in serum samples. In the saline-treated sepsis group, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity, and collagen content were increased in the tissues (P Liver function tests and tumor necrosis factor-alpha levels, which were increased significantly (P < 0.001) following sepsis, were decreased (P < 0.05 to P < 0.001) with estradiol treatment. The results demonstrate the role of oxidative mechanisms in sepsis-induced tissue damage, and estradiol, by its antioxidant properties, ameliorates oxidative organ injury, implicating that treatment with estrogens might be applicable in clinical situations to ameliorate multiple organ damage induced by sepsis.

  16. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Background: The gap junction plays an important role in spreading of apoptotic and necrotic signals from injured and stressed cells to the neighboring viable cells. The present study was performed to investigate the important role of gap junction communication on rabbits' explosive brain injury. Methods: Explosion of paper ...

  17. Ethyl pyruvate protects colonic anastomosis from ischemia-reperfusion injury.

    Science.gov (United States)

    Unal, B; Karabeyoglu, M; Huner, T; Canbay, E; Eroglu, A; Yildirim, O; Dolapci, M; Bilgihan, A; Cengiz, O

    2009-03-01

    Ethyl pyruvate is a simple derivative in Ca(+2)- and K(+)-containing balanced salt solution of pyruvate to avoid the problems associated with the instability of pyruvate in solution. It has been shown to ameliorate the effects of ischemia-reperfusion (I/R) injury in many organs. It has also been shown that I/R injury delays the healing of colonic anastomosis. In this study, the effect of ethyl pyruvate on the healing of colon anastomosis and anastomotic strength after I/R injury was investigated. Anastomosis of the colon was performed in 32 adult male Wistar albino rats divided into 4 groups of 8 individuals: (1) sham-operated control group (group 1); (2) 30 minutes of intestinal I/R by superior mesenteric artery occlusion (group 2); (3) I/R+ ethyl pyruvate (group 3), ethyl pyruvate was administered as a 50-mg/kg/d single dose; and (4) I/R+ ethyl pyruvate (group 4), ethyl pyruvate administration was repeatedly (every 6 hours) at the same dose (50 mg/kg). On the fifth postoperative day, animals were killed. Perianastomotic tissue hydroxyproline contents and anastomotic bursting pressures were measured in all groups. When the anastomotic bursting pressures and tissue hydroxyproline contents were compared, it was found that they were decreased in group 2 when compared with groups 1, 3, and 4 (P .05). Ethyl pyruvate significantly prevents the delaying effect of I/R injury on anastomotic strength and healing independent from doses of administration.

  18. Multiple factors explain injury risk in adolescent elite athletes: Applying a biopsychosocial perspective.

    Science.gov (United States)

    von Rosen, P; Frohm, A; Kottorp, A; Fridén, C; Heijne, A

    2017-12-01

    Many risk factors for injury are presented in the literature, few of those are however consistent and the majority is associated with adult and not adolescent elite athletes. The aim was to identify risk factors for injury in adolescent elite athletes, by applying a biopsychosocial approach. A total of 496 adolescent elite athletes (age range 15-19), participating in 16 different sports, were monitored repeatedly over 52 weeks using a valid questionnaire about injuries, training exposure, sleep, stress, nutrition, and competence-based self-esteem. Univariate and multiple Cox regression analyses were used to calculate hazard ratios (HR) for risk factors for first reported injury. The main finding was that an increase in training load, training intensity, and at the same time decreasing the sleep volume resulted in a higher risk for injury compared to no change in these variables (HR 2.25, 95% CI, 1.46-3.45, Pself-esteem increased the hazard for injury with 1.02 (HR 95% CI, 1.00-1.04, P=.01). Based on the multiple Cox regression analysis, an athlete having the identified risk factors (Risk Index, competence-based self-esteem), with an average competence-based self-esteem score, had more than a threefold increased risk for injury (HR 3.35), compared to an athlete with a low competence-based self-esteem and no change in sleep or training volume. Our findings confirm injury occurrence as a result of multiple risk factors interacting in complex ways. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mechanisms of injury and protection in cells and tissues at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1976-06-01

    The survival of frozen-thawed cells is importantly influenced by the cooling rate. In general, cells exhibit maximum survival at an intermediate cooling rate, the numerical value of which depends on the type of cell, the additive present, and the warming rate. Theory and experiment now strongly indicate that death at supraoptimal cooling rates is the result of the formation of intracellular ice crystals during cooling and their growth to damaging size during warming. The causes of death in cells cooled at suboptimal rates, on the other hand, are more complex and more uncertain. Although additives like glycerol and dimethyl sulfoxide do not protect against injury at supraoptimal rates, they are generally essential for the survival of slowly frozen mammalian cells. The two major theories of slow freezing injury predict that protection is chiefly a colligative effect and that it requires the presence of additive inside the cell as well as outside. The evidence of the colligative aspects of protection is conflicting. The evidence on the requirement for permeation is increasingly negative, a fact which suggests that to protect the whole cell it may be sufficient to protect the cell surface. Slow freezing injury appears due to a number of sequential events. The first may well be high electrolyte concentrations. Additives protect against these, but may themselves introduce other forms of injury, the most likely of which is osmotic shock.

  20. Brachial artery protected by wrapped latissimus dorsi muscle flap in high voltage electrical injury

    Science.gov (United States)

    Gencel, E.; Eser, C.; Kokacya, O.; Kesiktas, E.; Yavuz, M.

    2016-01-01

    Summary High voltage electrical injury can disrupt the vascular system and lead to extremity amputations. It is important to protect main vessels from progressive burn necrosis in order to salvage a limb. The brachial artery should be totally isolated from the burned area by a muscle flap to prevent vessel disruption. In this study, we report the use of a wrap-around latissimus dorsi muscle flap to protect a skeletonized brachial artery in a high voltage electrical injury in order to salvage the upper extremity and restore function. The flap wrapped around the exposed brachial artery segment and luminal status of the artery was assessed using magnetic resonance angiography. No vascular intervention was required. The flap survived completely with good elbow function. Extremity amputation was not encountered. This method using a latissimus dorsi flap allows the surgeon to protect the main upper extremity artery and reconstruct arm defects, which contributes to restoring arm function in high voltage electrical injury. PMID:28149236

  1. Fructose and tagatose protect against oxidative cell injury by iron chelation.

    Science.gov (United States)

    Valeri, F; Boess, F; Wolf, A; Göldlin, C; Boelsterli, U A

    1997-01-01

    To further investigate the mechanism by which fructose affords protection against oxidative cell injury, cultured rat hepatocytes were exposed to cocaine (300 microM) or nitrofurantoin (400 microM). Both drugs elicited massively increased lactate dehydrogenase release. The addition of the ketohexoses D-fructose (metabolized via glycolysis) or D-tagatose (poor glycolytic substrate) significantly attenuated cocaine- and nitrofurantoin-induced cell injury, although both fructose and tagatose caused a rapid depletion of ATP and compromised the cellular energy charge. Furthermore, fructose, tagatose, and sorbose all inhibited in a concentration-dependent manner (0-16 mM) luminolenhanced chemiluminescence (CL) in cell homogenates, indicating that these compounds inhibit the iron-dependent reactive oxygen species (ROS)-mediated peroxidation of luminol. Indeed, both Fe2+ and Fe3+ further increased cocaine-stimulated CL, which was markedly quenched following addition of the ketohexoses. The iron-independent formation of superoxide anion radicals (acetylated cytochrome c reduction) induced by the prooxidant drugs remained unaffected by fructose or tagatose. The iron-chelator deferoxamine similarly protected against prooxidant-induced cell injury. In contrast, the nonchelating aldohexoses D-glucose and D-galactose did not inhibit luminol CL nor did they protect against oxidative cell injury. These data indicate that ketohexoses can effectively protect against prooxidant-induced cell injury, independent of their glycolytic metabolism, by suppressing the iron-catalyzed formation of ROS.

  2. Do head-restraints protect the neck from whiplash injuries?

    Science.gov (United States)

    Morris, F

    1989-01-01

    Over an 11-month period a study was made of all patients presenting to an accident and emergency department who had sustained whiplash as a result of rear-bumper impacts. The patients were analysed with respect to the presence of head-restraints in their vehicles. A significant increase in the incidence of whiplash was found in patients whose vehicles did not have head-restraints fitted. Legislation requiring all passenger cars to have head-restraints fitted as standard would have a major impact in reducing the number of whiplash injuries sustained in rear bumper impacts. PMID:2712983

  3. DL-2-amino-3-phosphonopropionic acid protects primary neurons from oxygen-glucose deprivation induced injury

    Directory of Open Access Journals (Sweden)

    Di Cui

    2017-02-01

    Full Text Available Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3 in treating oxygen-glucose deprivation (OGD-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1 a control group that was not treated; (2 DL-AP3 group treated with 10 μM of DL-AP3; (3 OGD group, in which neurons were cultured under OGD conditions; and (4 OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1 and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05. In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p < 0.001, and reduced OGD induced apoptosis (p < 0.01. Additionally, the down-regulation of p-Akt1 and up-regulation of cytochrome c, induced by OGD, were recovered to some extent after DL-AP3 treatment (p < 0.05 or p < 0.001. Overall, DL-AP3 could protect primary neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.

  4. Multiple injuries after earthquakes: a retrospective analysis on 1,871 injured patients from the 2008 Wenchuan earthquake.

    Science.gov (United States)

    Lu-Ping, Zhao; Rodriguez-Llanes, Jose Manuel; Qi, Wu; van den Oever, Barbara; Westman, Lina; Albela, Manuel; Liang, Pan; Gao, Chen; De-Sheng, Zhang; Hughes, Melany; von Schreeb, Johan; Guha-Sapir, Debarati

    2012-05-17

    Multiple injuries have been highlighted as an important clinical dimension of the injury profile following earthquakes, but studies are scarce. We investigated the pattern and combination of injuries among patients with two injuries following the 2008 Wenchuan earthquake. We also described the general injury profile, causes of injury and socio-demographic characteristics of the injured patients. A retrospective hospital-based analysis of 1,871 earthquake injured patients, totaling 3,177 injuries, admitted between 12 and 31 May 2008 to the People's Hospital of Deyang city (PHDC). An electronic, webserver-based database with International Classification of Diseases (ICD)-10-based classification of earthquake-related injury diagnoses (IDs), anatomical sites and additional background variables of the inpatients was used. We analyzed this dataset for injury profile and number of injuries per patient. We then included all patients (856) with two injuries for more in-depth analysis. Possible spatial anatomical associations were determined a priori. Cross-tabulation and more complex frequency matrices for combination analyses were used to investigate the injury profile. Out of the 1,871 injured patients, 810 (43.3%) presented with a single injury. The rest had multiple injuries; 856 (45.8%) had two, 169 (9.0%) patients had three, 32 (1.7%) presented with four injuries, while only 4 (0.2%) were diagnosed with five injuries. The injury diagnoses of patients presenting with two-injuries showed important anatomical intra-site or neighboring clustering, which explained 49.1% of the combinations. For fractures, the result was even more marked as spatial clustering explained 57.9% of the association pattern. The most frequent combination of IDs was a double-fracture, affecting 20.7% of the two-injury patients (n = 177). Another 108 patients (12.6%) presented with fractures associated with crush injury and organ-soft tissue injury. Of the 3,177 injuries, 1,476 (46.5%) were

  5. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2018-01-01

    Full Text Available Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right and received the higher inflow (left among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.

  6. Spectacle-related eye injuries, spectacle-impact performance and eye protection.

    Science.gov (United States)

    Hoskin, Annette K; Philip, Swetha; Dain, Stephen J; Mackey, David A

    2015-05-01

    The aim was to review the prevalence of spectacle-related ocular trauma and the performance of currently available spectacle materials and to identify the risk factors associated with spectacle-related ocular trauma. A literature review was conducted using Medline, Embase and Google with the keywords 'eyeglasses' OR 'spectacles' AND 'ocular injury' / 'eye injury'/ 'eye trauma' / 'ocular trauma'. Articles published prior to 1975 were excluded from this review because of advances in spectacle lens technology and Food and Drug Administration legislative changes requiring impact resistance of all prescription spectacle lenses in the United States. Six hundred and ninety-five individual ocular traumas, for which spectacles contributed to or were the main cause of injury, were identified in the literature. Eye injuries occurred when spectacles were worn in sports, in which medium- to high-impact energies were exerted from balls, racquets or bats and/or as a result of a collision with another player. Frame, lens design and product material choice were found to be associated with ocular injury, with polycarbonate lenses cited as the material of choice in the literature. International, regional and national standards for spectacle lenses had a wide range of impact requirements for prescription spectacle lenses, sports eye protection and occupational eye protection. Spectacle-related injury represents a small but preventable cause of ocular injury. With the increasing numbers of spectacle wearers and calls to spend more time outdoors to reduce myopia, spectacle wearers need to be made aware of the potential risks associated with wearing spectacles during medium- to high-risk activities. At particular risk are those prone to falls, the functionally one-eyed, those who have corneal thinning or have had previous eye surgery or injury. With increased understanding of specific risk factors, performance guidelines can be developed for prescription spectacle eye-protection

  7. [Intensive care treatment of traumatic brain injury in multiple trauma patients : Decision making for complex pathophysiology].

    Science.gov (United States)

    Trimmel, H; Herzer, G; Schöchl, H; Voelckel, W G

    2017-09-01

    Traumatic brain injury (TBI) and hemorrhagic shock due to uncontrolled bleeding are the major causes of death after severe trauma. Mortality rates are threefold higher in patients suffering from multiple injuries and additionally TBI. Factors known to impair outcome after TBI, namely hypotension, hypoxia, hypercapnia, acidosis, coagulopathy and hypothermia are aggravated by the extent and severity of extracerebral injuries. The mainstays of TBI intensive care may be, at least temporarily, contradictory to the trauma care concept for multiple trauma patients. In particular, achieving normotension in uncontrolled bleeding situations, maintenance of normocapnia in traumatic lung injury and thromboembolic prophylaxis are prone to discussion. Due to an ongoing uncertainty about the definition of normotensive blood pressure values, a cerebral perfusion pressure-guided cardiovascular management is of key importance. In contrast, there is no doubt that early goal directed coagulation management improves outcome in patients with TBI and multiple trauma. The timing of subsequent surgical interventions must be based on the development of TBI pathology; therefore, intensive care of multiple trauma patients with TBI requires an ongoing and close cooperation between intensivists and trauma surgeons in order to individualize patient care.

  8. Hesperidin Protects against Acute Alcoholic Injury through Improving Lipid Metabolism and Cell Damage in Zebrafish Larvae

    Directory of Open Access Journals (Sweden)

    Zhenting Zhou

    2017-01-01

    Full Text Available Alcoholic liver disease (ALD is a series of abnormalities of liver function, including alcoholic steatosis, steatohepatitis, and cirrhosis. Hesperidin, the major constituent of flavanone in grapefruit, is proved to play a role in antioxidation, anti-inflammation, and reducing multiple organs damage in various animal experiments. However, the underlying mechanism of resistance to alcoholic liver injury is still unclear. Thus, we aimed to investigate the protective effects of hesperidin against ALD and its molecular mechanism in this study. We established an ALD zebrafish larvae model induced by 350 mM ethanol for 32 hours, using wild-type and transgenic line with liver-specific eGFP expression Tg (lfabp10α:eGFP zebrafish larvae (4 dpf. The results revealed that hesperidin dramatically reduced the hepatic morphological damage and the expressions of alcohol and lipid metabolism related genes, including cyp2y3, cyp3a65, hmgcra, hmgcrb, fasn, and fads2 compared with ALD model. Moreover, the findings demonstrated that hesperidin alleviated hepatic damage as well, which is reflected by the expressions of endoplasmic reticulum stress and DNA damage related genes (chop, gadd45αa, and edem1. In conclusion, this study revealed that hesperidin can inhibit alcoholic damage to liver of zebrafish larvae by reducing endoplasmic reticulum stress and DNA damage, regulating alcohol and lipid metabolism.

  9. Decay Accelerating Factor (CD55) Protects Neuronal Cells from Chemical Hypoxia-Induced Injury

    Science.gov (United States)

    2010-04-09

    Pavlakovic G, Isom GE: Dopaminergic neurotoxicity of cyanide: neurochemical, histological and behavioral characterization. Toxicol Appl Pharmacol...provided the original work is properly cited. ResearchDecay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury...deposition of C3a/C5a and membrane attack complex (MAC or C5b-9) production. The present study investigates the ability of DAF to protect primary cultured

  10. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  11. Hypercholesterolemic myocardium is vulnerable to ischemia-reperfusion injury and refractory to sevoflurane-induced protection.

    Directory of Open Access Journals (Sweden)

    Yong Xu

    Full Text Available Recent studies have demonstrated that volatile anesthetic postconditioning confers myocardial protection against ischemia-reperfusion (IR injury through activation of the reperfusion injury salvage kinase (RISK pathway. As RISK has been shown to be impaired in hypercholesterolemia. Therefore, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. In the present study, normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane for 5 min or 3 cycles of 10-s ischemia/10-s reperfusion. The hemodynamic parameters, including left ventricular developed pressure, left ventricular end-diastolic pressure and heart rate, were continuously monitored. The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. We found that both sevoflurane and ischemic postconditioning significantly improved heart pump function, reduced infarct size and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β in the healthy rats. In the hypercholesterolemic rats, neither sevoflurane nor ischemic postconditioning improved left ventricular hemodynamics, reduced infarct size and increased the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. In conclusions, hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.

  12. Preparing the radiation protection worker to meet multiple needs

    International Nuclear Information System (INIS)

    Abercrombie, J.S.; Thorpe, B.C.

    1987-01-01

    At the Oak Ridge National Laboratory (ORNL) the radiation protection worker aids in protecting personnel and their surrounding environment from the hazards of radiation. These individuals use their technical knowledge, skills, and abilities to survey and monitor various project-related activities. They must also provide guidance in project design, development, and implementation. These combined efforts assure that protective measures are taken in accordance with applicable standards. The ORNL performance-based training program enhances the skills of the worker. The program incorporates job specific information on the diverse facilities and activities monitored with basic fundamentals of radiation protection. Successful completion of this program includes passing both a qualification exam and an on-the-job skills review. This paper details the structure of such a program and explains the strategies taken to reach the program's goals. 4 refs., 2 tabs

  13. The Protective Effect of Kevlar ® Socks Against Hockey Skate Blade Injuries: A Biomechanical Study

    Science.gov (United States)

    Nauth, Aaron; Aziz, Mina; Tsuji, Matthew; Whelan, Daniel B.; Theodoropoulos, John S.; Zdero, Rad

    2014-01-01

    Objectives: Several recent high profile injuries to elite players in the National Hockey League (NHL) secondary to skate blade lacerations have generated significant interest in these injuries and possible methods to protect against them. These injuries are typically due to direct contact of the skate blade of another player with posterior aspect of the calf resulting in a range of potential injuries to tendons or neurovascular structures. The Achilles tendon is most commonly involved. Kevlar® reinforced socks have recently become available for hockey players to wear and are cited as providing possible protection against such injuries. However, there has been no investigation of the possible protective effects of Kevlar® reinforced socks against skate blade injuries, and it is currently unknown what protective effects, if any, that these socks provide against these injuries. The proposed study sought to address this by conducting a biomechanical investigation of the protective effects of Kevlar® reinforced socks against Achilles tendon injuries in a simulated model of skate blade injury using human cadaver limbs. This novel investigation is the first to address the possible benefits to hockey players of wearing Kevlar® reinforced socks. Methods: Seven matched pairs of human cadaver lower limbs were fitted with a Kevlar ® reinforced sock comprised of 60% Kevlar®/20% Coolmax® polyester/18 % Nylon/12% Spandex (Bauer Elite Performance Skate Sock) on one limb and a standard synthetic sock comprised of 51% polyester/47% nylon/2% spandex (Bauer Premium Performance Skate Sock) on the contralateral limb as a control. Each limb was then mounted on a Materials Testing System (MTS) with the ankle dorsiflexed to 90° and the knee held in full extension using a custom designed jig. Specimens were then impacted with a hockey skate blade directed at the posterior calf, 12 cm above the heel, at an angle of 45° and a speed of 31m/s, to a penetration depth of 4.3 cm, to

  14. Is motivation for marathon a protective factor or a risk factor of injury?

    Science.gov (United States)

    Chalabaev, A; Radel, R; Ben Mahmoud, I; Massiera, B; Deroche, T; d'Arripe-Longueville, F

    2017-12-01

    This research investigated whether and how self-determined motivation predicts perceived susceptibility to injury during competition (marathon). Two correlational studies including 378 (Study 1) and 339 (Study 2) marathon runners were conducted. Participants filled out a questionnaire the day before the race measuring self-determined motivation, perceived susceptibilities to marathon-related injury and to keep running through pain, and control variables. Study 1 showed that self-determined motivation was negatively related to perceived susceptibility to marathon-related injury. Study 2 replicated this finding and showed that this relationship was partially mediated by perceived susceptibility to keep running through pain during the race. Moreover, results indicated that the predictive role of self-determination was mostly driven by controlled forms of motivation, and more particularly external regulation. These results suggest that self-determined motivation for sport is a protective factor of injury. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Protective effect of grifolin against brain injury in an acute cerebral ...

    African Journals Online (AJOL)

    Purpose: To evaluate the protective effects of grifolin against brain injury in an acute cerebral ischemia rat model. Methods: Rats were assigned to five groups: control, negative control, and grifolin (50, 100, and 200 mg/kg, p.o.) treated groups, which received the drug for 2 weeks. All the animals were sacrificed at the end of ...

  16. Self-Injurious Behavior and Functional Analysis: Where Are the Descriptions of Participant Protections?

    Science.gov (United States)

    Weeden, Marc; Mahoney, Amanda; Poling, Alan

    2010-01-01

    This study examined the reporting of participant protections in studies involving functional analysis and self-injurious behavior and published from 1994 through 2008. Results indicated that session termination criteria were rarely reported and other specific participant safeguards were seldom described. The absence of such information in no way…

  17. 77 FR 32397 - Servicemembers' Group Life Insurance Traumatic Injury Protection Program-Genitourinary Losses

    Science.gov (United States)

    2012-06-01

    ... payable. The additional GU losses are being added to the TSGLI program in response to the increase in the... Traumatic Injury Protection Program--Genitourinary Losses AGENCY: Department of Veterans Affairs. ACTION... adding certain genitourinary (GU) system losses to the TSGLI Schedule of Losses and defining terms...

  18. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    International Nuclear Information System (INIS)

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15 ml/kg). In CCl 4 + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl 4 -induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl 4 -induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  19. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Gang [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Wang, Jun-Xian [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Lu, Yan; Tao, Li; Wang, Jian-Qing [Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei 230032 (China)

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  20. Multiple-Projectile Penetrating Neck Injury from a Modified Nail-Containing Gas Pistol

    Directory of Open Access Journals (Sweden)

    Dimitar Dimitrov Pazardzhikliev

    2014-09-01

    Full Text Available Background: Penetrating neck injuries result from missiles and stab wounds. A gas pistol is a non-lethal weapon for self-defence. Case Report: We present a case where the use of a modified gun led to multiple injuries in a single shot. Four projectiles were embedded in the neck, one in the larynx and three in the cervical spine. The first was removed via a combined external and endoscopic approach, while the rest were put on follow-up. Conclusion: The reported case shows that damage from modified gas pistols, although rarely life threatening, may cause long term discomfort and diminished quality of life.

  1. [Protective effect and mechanism of compound Ginkgo biloba granules on oxidative stress injury of HUVEC].

    Science.gov (United States)

    Li, Qi; Chen, Xi; Kan, Xiao-Xi; Li, Yu-Jie; Yang, Qing; Wang, Ya-Jie; Chen, Ying; Weng, Xiao-Gang; Cai, Wei-Yan; Huang, He-Fei; Zhu, Xiao-Xin

    2016-02-01

    To reveal the protective and anti-apoptosis effect of compound Ginkgo biloba granules on oxidative stress injury of human umbilical vein endothelial cells (HUVEC). Negative control group, H2O2 model group and 4 drug pretreatment groups (80, 160, 320, 640 mg• L⁻¹) were established. The cell proliferation, morphological changes in each group after oxidative stress injury was detected by MTT assay and through microscope observation respectively. The content of LDH, MDA, SOD and NO and SOD activity in supernatant were detected to judge the protection effect of the drugs on endothelial cells. The protective effect on HUVEC apoptosis was analyzed by Caspase-3 activity test and Annexin V-FITC/PI staining. Western blot was used to observe the expression of apoptosis-related proteins Bcl-2 and Bax. Results showed that 1 200 μmol• L⁻¹ H2O2 can induce oxidative stress injury in endothelial cells and reduce the cell survival rate; cell proliferation inhibition degree is positively correlated with the effect time of H2O2. Besides, 80, 160, 320 640 mg•L⁻¹ compound Ginkgo biloba granules can protect HUVEC from oxidative stress injury, recover the normal proliferation level of cells, improve their state, prohibit cell apoptosis, and can up-regulate and down-regulate the expression level of Bcl-2 and Bax respectively. In conclusion, compound G. biloba granules can protect HUVEC from the oxidative stress injury induced by H2O2, its mechanism may be correlated with inhibition of the mitochondrial apoptotic pathway in HUVEC. Copyright© by the Chinese Pharmaceutical Association.

  2. Estimating under-reporting of road crash injuries to police using multiple linked data collections.

    Science.gov (United States)

    Watson, Angela; Watson, Barry; Vallmuur, Kirsten

    2015-10-01

    The reliance on police data for the counting of road crash injuries can be problematic, as it is well known that not all road crash injuries are reported to police which under-estimates the overall burden of road crash injuries. The aim of this study was to use multiple linked data sources to estimate the extent of under-reporting of road crash injuries to police in the Australian state of Queensland. Data from the Queensland Road Crash Database (QRCD), the Queensland Hospital Admitted Patients Data Collection (QHAPDC), Emergency Department Information System (EDIS), and the Queensland Injury Surveillance Unit (QISU) for the year 2009 were linked. The completeness of road crash cases reported to police was examined via discordance rates between the police data (QRCD) and the hospital data collections. In addition, the potential bias of this discordance (under-reporting) was assessed based on gender, age, road user group, and regional location. Results showed that the level of under-reporting varied depending on the data set with which the police data was compared. When all hospital data collections are examined together the estimated population of road crash injuries was approximately 28,000, with around two-thirds not linking to any record in the police data. The results also showed that the under-reporting was more likely for motorcyclists, cyclists, males, young people, and injuries occurring in Remote and Inner Regional areas. These results have important implications for road safety research and policy in terms of: prioritising funding and resources; targeting road safety interventions into areas of higher risk; and estimating the burden of road crash injuries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    Science.gov (United States)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  4. Neural Responses to Injury: Prevention, Protection and Repair; Volume 7: Role Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury

    National Research Council Canada - National Science Library

    Bazan, Nicolas

    1996-01-01

    ...: Prevention, Protection, and Repair, Subproject: Role of Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury, are as follows: Species Rat(Albino Wistar), Number Allowed...

  5. [Management of hepatic injuries with multiple trauma in the emergency unit. Report of three cases].

    Science.gov (United States)

    Qamouss, Y; Belyamani, L; Azendour, H; Balkhi, H; Haimeur, C; Atmani, M

    2006-01-01

    The problems put by the blunt hepatic injuries at the multiple traumas are discussed after the exposition of three observations. 60% of the blunt hepatic injuries are due to the accidents of the public way. The strategy diagnosis and therapeutic facing a hepatic lesion remains guided by the patient's state haemodynamic. The exam essential to the arrival in the sieve of the emergencies is the abdominal scan that searches for one extrusion intra and possibly retroperitoneal and analyze the hepatic parenchyrma. However, it depends extensively on the experience of the echographist. The city scan stood to the first plan of the medical imagery: it permits a precise diagnosis of the parenchymateuses hepatic lesions, specify the abundance of the hemoperitoine, facilitate the therapeutic conduct in presence of associated lesions and the surveillance of the blunt hepatic injuries.

  6. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  7. N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy.

    Science.gov (United States)

    Wang, Bin; Zhong, Shuping; Zheng, Fuchun; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Lu, Binger; Xu, Han; Shi, Ganggang

    2015-09-22

    N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to H/R in H9c2 cell was characterized by monodansylcadaverine, transmission electron microscopy, and expression of autophagy marker protein LC3. Our results indicated that treatment with F2 inhibited autophagy in H9c2 cells exposed to H/R. 3-methyladenine, an inhibitor of autophagy, suppressed H/R-induced autophagy, and decreased apoptosis, whereas rapamycin, a classical autophagy sensitizer, increased autophagy and apoptosis. Mechanistically, macrophage migration inhibitory factor (MIF) was inhibited by F2 treatment after H/R. Accordingly, small interfering RNA (siRNA)-mediated MIF knockdown decreased H/R-induced autophagy. In summary, F2 protects cardiomyocytes during H/R injury through suppressing autophagy activation. Our results provide a new mechanistic insight into a functional role of F2 against H/R-induced cardiomyocyte injury and death.

  8. Total Flavonoids from Mimosa Pudica Protects Carbon Tetrachloride -Induced Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Zhen-qin QIU

    2015-03-01

    Full Text Available Objective: To observe the protective effect of total flavonoids from Mimosa pudica on carbon tetrachloride (CCl4-induced acute liver injury in mice. Methods: CCl4-induced acute liver injury model in mice was established. The activity of ALT and AST, the content of serum albumin (Alb and total antioxidant capacity (T-AOC were determined. The content of malondiadehyde (MDA was measured and the activity of superoxide dismutase (SOD was determined. The histopathological changes of liver were observed.Results: Compared with CCl4 modle group, each dose group of total flavonouida from Mimosa pudica couldreduced the activity of ALT and AST in mice obviously (P<0.01, indicating they had remarkably protective effect on CCl4-induced acute liver injury in mice. high and middle dose groups of total flavonouida from Mimosa pudica couldincrease the content of Alb in mice (P<0.01. Each dose group of total flavonouida from Mimosa pudica could enhance the level of T-AOC (P<0.01. each dose group of total flavonouida from Mimosa pudica could lower the content of liver homogenate MDA but enhance the activity of SOD in a dose-depended manner (P<0.01. Conclusion: Total flavones from Mimosa Pudica have obvious protective effect on CCl4-induced acute liver injury in mice.

  9. Finding suspects in multiple cameras for improved railway protection

    NARCIS (Netherlands)

    Marck, J.W.; Bouma, H.; Baan, J; Oliveira Filho, J. de; Brink, M. van der

    2014-01-01

    The capability to find individuals using CCTV cameras is important for surveillance applications at large areas such as railway stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras post incident. In this paper, we describe the live

  10. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    2015-07-01

    Full Text Available Background/Aims: Ischemia/reperfusion (I/R injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC, a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. Methods: C57Bl Mice were studied in in vivo model of hepatic segmental (70% ischemia for 60min followed by reperfusion for 6 hours. Results: THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway, the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation. This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. Conclusion: A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.

  11. Protective Effect of Urtica dioica on Liver Injury Induced By Hepatic Ischemia Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alpaslan TERZİ

    2010-05-01

    Full Text Available Background: This study was designed to investigate the effects of Urtica dioica on liverischemia reperfusion injury in rats. Methods: Thirty male Wistar-albino rats were used in this experimental study. Animals weredivided into three groups as sham operated (group 1, control (group 2, and Urtica dioicatreatment group (group 3. Urtica dioica 2ml/kg were administered intraperitoneally beforeischemia and immediately after the reperfusion. The levels of total antioxidant capacity, totalfree sulfidril group, Total oxidant status, Oxidative stress index, and myeloperoxidase in livertissues were measured. The serum levels of ALT, AST and LDH were also measuredResults: Total antioxidant capacity and total free sulfidril group in liver tissue were significantlyhigher in group 3 than in group 2. Oxidative stress index and myeloperoxidase in liver tissuewere significantly lower in group 3 than the group 2. The levels of liver enzymes in treatmentgroup were significantly lower than those in the control group. Histological tissue damage wasmilder in the treatment group than that in the control group.Conclusion: It is concluded that Urtica dioica increase the antioxidant capacity and decreaseoxidative stress and liver enzymes in the hepatic ischemi reperfusion injury of rats.

  12. Effect of Endogenous Androgens on 17β-Estradiol-Mediated Protection after Spinal Cord Injury in Male Rats

    OpenAIRE

    Kachadroka, Supatra; Hall, Alicia M.; Niedzielko, Tracy L.; Chongthammakun, Sukumal; Floyd, Candace L.

    2010-01-01

    Several groups have recently shown that 17β-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17β-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17β-estradiol-mediated protection by evaluating a delayed administration over a clinically relevan...

  13. Trampoline-related injuries in children: a preliminary biomechanical model of multiple users.

    Science.gov (United States)

    Menelaws, Simon; Bogacz, Andrew R; Drew, Tim; Paterson, Brodie C

    2011-07-01

    The recent popularity of domestic trampolines has seen a corresponding increase in injured children. Most injuries happen on the trampoline mat when there are multiple users present. This study sought to examine and simulate the forces and energy transferred to a child's limbs when trampolining with another person of greater mass. The study used a computational biomechanical model. The simulation demonstrated that when two masses bounce out of phase on a trampoline, a transfer of kinetic energy from the larger mass to the smaller mass is likely to occur. It predicted that when an 80 kg adult is on a trampoline with a 25 kg child, the energy transfer is equivalent to the child falling 2.8 m onto a solid surface. Additionally, the rate of loading on the child's bones and ligaments is greater than that on the accompanying adult. Current guidelines are clear that more than one user on a trampoline at a time is a risk factor for serious injury; however, the majority of injuries happen in this scenario. The model predicted that there are high energy transfers resulting in serious fracture and ligamentous injuries to children and that this could be equated to equivalent fall heights. This provides a clear take-home message, which can be conveyed to parents to reduce the incidence of trampoline-related injuries.

  14. Successful Mitigation of Delayed Intestinal Radiation Injury Using Pravastatin is not Associated with Acute Injury Improvement or Tumor Protection

    International Nuclear Information System (INIS)

    Haydont, Valerie; Gilliot, Olivier; Rivera, Sofia; Bourgier, Celine; Francois, Agnes; Aigueperse, Jocelyne; Bourhis, Jean; Vozenin-Brotons, Marie-Catherine

    2007-01-01

    Purpose: To investigate whether pravastatin mitigates delayed radiation-induced enteropathy in rats, by focusing on the effects of pravastatin on acute cell death and fibrosis according to connective tissue growth factor (CTGF) expression and collagen inhibition. Methods and Materials: Mitigation of delayed radiation-induced enteropathy was investigated in rats using pravastatin administered in drinking water (30 mg/kg/day) 3 days before and 14 days after irradiation. The ileum was irradiated locally after surgical exteriorization (X-rays, 19 Gy). Acute apoptosis, acute and late histologic alterations, and late CTGF and collagen deposition were monitored by semiquantitative immunohistochemistry and colorimetric staining (6 h, 3 days, 14 days, 15 weeks, and 26 weeks after irradiation). Pravastatin antitumor action was studied in HT-29, HeLa, and PC-3 cells by clonogenic cell survival assays and tumor growth delay experiments. Results: Pravastatin improved delayed radiation enteropathy in rats, whereas its benefit in acute and subacute injury remained limited (6 h, 3 days, and 14 days after irradiation). Delayed structural improvement was associated with decreased CTGF and collagen deposition but seemed unrelated to acute damage. Indeed, the early apoptotic index increased, and severe subacute structural damage occurred. Pravastatin elicited a differential effect, protecting normal intestine but not tumors from radiation injury. Conclusion: Pravastatin provides effective protection against delayed radiation enteropathy without interfering with the primary antitumor action of radiotherapy, suggesting that clinical transfer is feasible

  15. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury.

    Science.gov (United States)

    Bei, Yihua; Xu, Tianzhao; Lv, Dongchao; Yu, Pujiao; Xu, Jiahong; Che, Lin; Das, Avash; Tigges, John; Toxavidis, Vassilios; Ghiran, Ionita; Shah, Ravi; Li, Yongqin; Zhang, Yuhui; Das, Saumya; Xiao, Junjie

    2017-07-01

    Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.

  16. Intrathecal baclofen in multiple sclerosis and spinal cord injury: complications and long-term dosage evolution.

    Science.gov (United States)

    Draulans, Nathalie; Vermeersch, Kristof; Degraeuwe, Bart; Meurrens, Tom; Peers, Koen; Nuttin, Bart; Kiekens, Carlotte

    2013-12-01

    To investigate the long-term dosage evolution and complication rate of intrathecal baclofen use in multiple sclerosis and spinal cord injury patients, based on a large population with a long follow-up. Retrospective data analysis. Academic hospital. Patients with multiple sclerosis (n = 81) or spinal cord injury (n = 49) having an intrathecal baclofen pump implanted at the University Hospitals Leuven between 1988 and 2009. Medical records review of included patients in August 2010. Complications linked to intrathecal baclofen therapy. Daily baclofen dosage after 3 and 6 months, and yearly thereafter. Data on dosage evolution were analysed using a mixed-effect linear model. In 130 patients with a mean follow-up of 63 months, comprising 797 pump years, 104 complications were recorded. This corresponds to a complication rate of 0.011 per month, equally divided among both groups. Seventy-eight of these complications were catheter related. The mean dosage of baclofen stabilizes two years after implantation at 323 µg/day in the multiple sclerosis population. In spinal cord injury patients the daily dose only stabilizes after five years at a significantly higher dosage (504 µg/day). No significant increase in dosage is seen in the long term. In multiple sclerosis and spinal cord injury patients, intrathecal baclofen therapy has a complication rate of 1% per month. Complications are mainly due to catheter-related problems (74%). The intrathecal baclofen dosage stabilizes in the long term, indicating that long-term tolerance, defined as progressive diminution of the susceptibility to the effects of a drug, is not present.

  17. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    Science.gov (United States)

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  18. Dietary Fisetin Supplementation Protects Against Alcohol-Induced Liver Injury in Mice.

    Science.gov (United States)

    Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang

    2016-10-01

    Overproduction of reactive oxygen species is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary interventions for multiple diseases including ALD. The objective of this study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol (EtOH) diet for 4 weeks with or without fisetin supplementation at 10 mg/kg/d. Alcohol feeding induced lipid accumulation in the liver and increased plasma alanine aminotransferase and aspartate aminotransferase activities, which were attenuated by fisetin supplementation. The EtOH concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin supplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin supplementation remarkably reduced hepatic NADPH oxidase 4 levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal levels after alcohol exposure. Alcohol-induced apoptosis and up-regulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin supplementation attenuated alcohol-induced hepatic steatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. This study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating EtOH clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. Copyright © 2016 by the Research Society on Alcoholism.

  19. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Directory of Open Access Journals (Sweden)

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  20. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation

    Directory of Open Access Journals (Sweden)

    Spencer Dunaway

    2018-04-01

    Full Text Available Human skin exposed to solar ultraviolet radiation (UVR results in a dramatic increase in the production of reactive oxygen species (ROS. The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs. Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.

  2. Injuries of the head from backface deformation of ballistic protective helmets under ballistic impact.

    Science.gov (United States)

    Rafaels, Karin A; Cutcliffe, Hattie C; Salzar, Robert S; Davis, Martin; Boggess, Brian; Bush, Bryan; Harris, Robert; Rountree, Mark Steve; Sanderson, Ellory; Campman, Steven; Koch, Spencer; Dale Bass, Cameron R

    2015-01-01

    Modern ballistic helmets defeat penetrating bullets by energy transfer from the projectile to the helmet, producing helmet deformation. This deformation may cause severe injuries without completely perforating the helmet, termed "behind armor blunt trauma" (BABT). As helmets become lighter, the likelihood of larger helmet backface deformation under ballistic impact increases. To characterize the potential for BABT, seven postmortem human head/neck specimens wearing a ballistic protective helmet were exposed to nonperforating impact, using a 9 mm, full metal jacket, 124 grain bullet with velocities of 400-460 m/s. An increasing trend of injury severity was observed, ranging from simple linear fractures to combinations of linear and depressed fractures. Overall, the ability to identify skull fractures resulting from BABT can be used in forensic investigations. Our results demonstrate a high risk of skull fracture due to BABT and necessitate the prevention of BABT as a design factor in future generations of protective gear. © 2014 American Academy of Forensic Sciences.

  3. Protective Effect of Extract of Folium Ginkgo on Repeated Cerebral Ischemia-Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the protective effect of extract of Folium Ginkgo (FGE) on repeated cerebral ischemia-reperfusion injury. Methods: The model in waking mice induced by repeated cerebral ischemia-reperfusion were used in the experiment to observe the effect of FGE on behavior, oxygen free radical metabolism and prostaglandin E2 (PGE2) content by step-through experiment, diving stand and colorimetric method. Results: FGE could obviously improve the learning ability and memory of model animals, and could lower obviously the content of malonyldialdehyde, nitric oxide and PGE2, restore the lowered activity of superoxide dismutase and catalase in cerebral tissue. Conclusion: FGE has highly protective effect against repeated ischemia-reperfusion injury, the mechanism might be related with its action on anti-lipid oxidatin, improve the activity of antioxidase and inhibit the producing of PGE2.

  4. The protective effects of resveratral on acute radiation injury in mice

    International Nuclear Information System (INIS)

    Yan Hao; Wang Hui; Zhang Heng

    2014-01-01

    Objective: To study the protective function of resveratrol on radiation-induced small intestine injury and lethal effect in mice. Methods: Mice were randomly divided into three groups: irradiation (IR) control, IR only, and IR+ resveratrol. 15 mice each group were irradiated on abdomen with 7.2 Gy γ-rays for cell lethal assay and 8 mice each group were irradiated with 6.5 Gy for small intestine injury assay. For the IR+ resveratrol group, the mouse was given resveratrol by intragastric administration 24 h before irradiation and then was fed with resveratrol daily for 5 days. The control and IR alone groups were fed with placebo. After 30 days of IR, mouse survival rate was detected. For small intestine injury experiments, 24 h after IR, the mice were terminated and the small intestines were treated with HE and immunohistochemical staining. Results: Compared with the irradiation group, resveratrol increased mouse survival by 33.3%, decreased apoptosis in intestinal crypt cells (t = 17.35, P < 0.05), and increased Ki67 expression (t = 13.62, P < 0.05). Conclusion: Resveratrol could protect small intestine injury from ionizing irradiation. (authors)

  5. An older worker's decision to "push or protect self" following a work-related injury.

    Science.gov (United States)

    Stikeleather, Jill

    2004-01-01

    This study highlights the return-to-work experience of older workers on worker's compensation as there is a dearth of research in this area. Qualitative research methods delineated the experience of four older workers who had sustained work-related musculoskeletal injuries. "Push or Protect Self" emerged as the core category with three themes, including the level of employer support and degree of flexibility in work; continued health problems; and financial distress. These themes influenced each worker's decision to either "push self" to meet their pre-injury work demands, or "protect self" and accept a job post-injury that was less physically demanding, but was at a lower pay level. The four workers sustained financial difficulties subsequent to being off work, and reported continued health problems related to their injuries after being discharged from the worker's compensation system. Degree of employer support in providing flexibility in work demands varied, where low support and inflexibility in job tasks contributed to difficulty in returning to work or in sustaining the work demands of the job.

  6. Protective effect of Hongxue tea mixture against radiation injury in mice

    International Nuclear Information System (INIS)

    Zhao Chun; Zhang Xuehui; Wang Qi

    2005-01-01

    Objective: To develop health food of anti-radiation among biological source in Yunnan. Methods: Screening test was done of the health food of biological source of anti-radiation injury in mice. It is indicated that Hong-Xue Tea Mixture among the biological source has the effect against radiation injury, observing experiment of dose-effect of Hong-Xue Tea Mixture was done. Micronuclei in the bone marrow polychromatophilic erythrocytes in each dose group of mice were examined, leucocytes number and 30 day survival rate of mice following whole-body 5.0 Gy γ irradiation were also determined. Results: Research showed that Hong-Xue Tea Mixture and Spirulina Platensis Mixture among the biological source have protective effect against radiation injury in mice. Observing experiment of dose-effect of Hong-Xue Tea Mixture show that low, medium and high dose of Hong-Xue Tea Mixture can significantly decrease bone marrow PECMN rate of mice, increase leucocytes number and 30 day survival rate. Conclusion: Hong-Xue Tea Mixture has potent protective effects against radiation injury in mice. (authors)

  7. Neurogenic bowel dysfunction in patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Richard A Awad

    2011-01-01

    Exciting new features have been described concerning neurogenic bowel dysfunction, including interactions between the central nervous system, the enteric nervous system, axonal injury, neuronal loss, neurotransmission of noxious and non-noxious stimuli, and the fields of gastroenterology and neurology. Patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson's disease present with serious upper and lower bowel dysfunctions characterized by constipation, incontinence, gastrointestinal motor dysfunction and altered visceral sensitivity. Spinal cord injury is associated with severe autonomic dysfunction, and bowel dysfunction is a major physical and psychological burden for these patients. An adult myelomeningocele patient commonly has multiple problems reflecting the multisystemic nature of the disease. Multiple sclerosis is a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system can lead to permanent neurological damage and clinical disability. Parkinson's disease is a multisystem disorder involving dopaminergic, noradrenergic, serotoninergic and cholinergic systems, characterized by motor and non-motor symptoms. Parkinson's disease affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Recent reports have shown that the lesions in the enteric nervous system occur in very early stages of the disease, even before the involvement of the central nervous system. This has led to the postulation that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent the point of entry for a putative environmental factor to initiate the pathological process. This review covers the data related to the etiology, epidemiology, clinical expression, pathophysiology, genetic aspects, gastrointestinal motor dysfunction, visceral sensitivity, management, prevention and prognosis of neurogenic bowel

  8. Resveratrol, an antioxidant, protects spinal cord injury in rats by suppressing MAPK pathway

    Directory of Open Access Journals (Sweden)

    Song Fu

    2018-02-01

    Full Text Available Resveratrol, a polyphenol found in various plants, including grapes, plums and peanuts has shown various medIRInal properties, including antioxidant, protection of cardiovascular disease and cancer risk. However, the effects of resveratrol on spinal cord reperfusion injury have not been investigated. Hence, the present study was designed to evaluate the effect of resveratrol on nitric oxide synthase (iNOS/p38MAPK signaling pathway and to elucidate its regulating effect on the protection of spinal cord injury. Spinal cord ischemia–reperfusion injury (IRI was performed by the infrarenal abdominal aorta with mini aneurysm clip model. The expressions of iNOS and p38MAPK and the levels of biochemical parameters, including nitrite/nitrate, malondialdehyde (MDA, advanced oxidation products (AOPP, reduced glutathione (GSH, superoxide dismutase (SOD and catalase (CAT were measured in control and experimental groups. IRI-induced rats treated with 10 mg/kg resveratrol protected spinal cord from ischemia injury as supported by improved biological parameters measured in spinal cord tissue homogenates. The resveratrol treatment significantly decreased the levels of plasma nitrite/nitrate, iNOS mRNA and protein expressions and phosphorylation of p38MAPK in IRI-induced rats. Further, IRI-produced free radicals were reduced by resveratrol treatment by increasing enzymatic and non-enzymatic antioxidant levels such as GSH, SOD and CAT. Taken together, administration of resveratrol protects the damage caused by spinal cord ischemia with potential mechanism of suppressing the activation of iNOS/p38MAPK pathway and subsequent reduction of oxidative stress due to IRI.

  9. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    International Nuclear Information System (INIS)

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E.

    2006-01-01

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of γ-glutamylcysteine synthetase-heavy subunit (γ-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis

  10. Protection of Momordica charantia polysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway.

    Science.gov (United States)

    Duan, Zhen-Zhen; Zhou, Xiao-Ling; Li, Yi-Hang; Zhang, Feng; Li, Feng-Ying; Su-Hua, Qi

    2015-01-01

    It has been well documented that Momordica charantia polysaccharide (MCP) has multiple biological effects such as immune enhancement, anti-oxidation and anti-cancer. However, the potential protective effects of MCP on stroke damage and its relative mechanisms remain unclear. Our present study demonstrated that MCP could scavenge reactive oxygen species (ROS) in intra-cerebral hemorrhage damage, significantly attenuating the neuronal death induced by thrombin in primary hippocampal neurons. Furthermore, we found that MCP prevented the activation of the c-Jun N-terminal protein kinase (JNK3), c-Jun and caspase-3, which was caused by the intra-cerebral hemorrhage injury. Taken together, our study demonstrated that MCP had a neuroprotective effect in response to intra-cerebral hemorrhage and its mechanisms involved the inhibition of JNK3 signaling pathway.

  11. The primary study on protective effects of vallinin derivative on cell injury induced by radiation

    International Nuclear Information System (INIS)

    Zheng Hong; Wang Siying; Yan Yuqian; Wang Lin; Xu Qinzhi; Cong Jianbo; Zhou Pingkun

    2008-01-01

    In this paper, the protective effects of vallinin derivative VND3207 on cell injury induced by radiation were studied by the methods of methyl thiazolyl tetrazolium colorimetric assay (MTT) and electron spin resonance (ESR). At first, MTF method was used to evaluate the cytotoxicity of vallinin derivatives (VND3202-VND3209) in HFS cells. Then, MTT method was used to measure the proliferation activity of HeLa cells with 2 Gy irradiation treated with vallinin derivatives and measure the proliferation of AHH-1 cells treated with VND3207 before exposed to 4 Gy irradiation. And ESR detected the antioxidation activity of vallinin and VND3207. The results showed that VND3207 and VND3206 presented no toxin within 50 panol/L, and VND3207 and VND3209 had no proliferous effects on HeLa cells while VND3206 could expedite the tumor cell proliferation at 30 μmol/L, and by comrades VND3208 showed increased radiosensitivity of the HeLa cells. For the AHH1 cells exposed to 4 Gy irradiation, VND3207 presented the protective effects against radiation injury. ESR results also suggested that VND3207 could clean out free radicals. Its effect was far more potent than that of vanillin. From this study we primarily screened out the vallinin derivative VND3207 which has protective effects on cell injury induced by radiation and provided data for future research work. (authors)

  12. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat.

    Science.gov (United States)

    Sayhan, Mustafa Burak; Kanter, Mehmet; Oguz, Serhat; Erboga, Mustafa

    2012-12-01

    Renal ischemia-reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague-Dawley rats were divided into four groups: control, UD alone, I/R and I/R + UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3 days before I/R, UD (2 ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.

  13. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    International Nuclear Information System (INIS)

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-01-01

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury

  14. Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury.

    Science.gov (United States)

    Penna, Claudia; Brancaccio, Mara; Tullio, Francesca; Rubinetto, Cristina; Perrelli, Maria-Giulia; Angotti, Carmelina; Pagliaro, Pasquale; Tarone, Guido

    2014-07-01

    Melusin is a muscle-specific protein which interacts with β1 integrin cytoplasmic domain and acts as chaperone protein. Its overexpression induces improved resistance to cardiac overload delaying left ventricle dilation and reducing the occurrence of heart failure. Here, we investigated possible protective effect of melusin overexpression against acute ischemia/reperfusion (I/R) injury with or without Postconditioning cardioprotective maneuvers. Melusin transgenic (Mel-TG) mice hearts were subjected to 30-min global ischemia followed by 60-min reperfusion. Interestingly, infarct size was reduced in Mel-TG mice hearts compared to wild-type (WT) hearts (40.3 ± 3.5 % Mel-TG vs. 59.5 ± 3.8 % WT hearts; n = 11 animals/group; P level of AKT, ERK1/2 and GSK3β phosphorylation, and displayed increased phospho-kinases level after I/R compared to WT mice. Post-ischemic Mel-TG hearts displayed also increased levels of the anti-apoptotic factor phospho-BAD. Importantly, pharmacological inhibition of PI3K/AKT (Wortmannin) and ERK1/2 (U0126) pathways abrogated the melusin protective effect. Notably, HSP90, a chaperone known to protect heart from I/R injury, showed high levels of expression in the heart of Mel-TG mice suggesting a possible collaboration of this molecule with AKT/ERK/GSK3β pathways in the melusin-induced protection. Postconditioning, known to activate AKT/ERK/GSK3β pathways, significantly reduced IS and LDH release in WT hearts, but had no additive protective effects in Mel-TG hearts. These findings implicate melusin as an enhancer of AKT and ERK pathways and as a novel player in cardioprotection from I/R injury.

  15. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Xu [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Ren, Dongmei [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China); Wei, Xinbing; Shi, Huanying; Zhang, Xiumei [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Perez, Ruth G. [Health Science Center, Paul L. Foster School of Medicine, Texas Tech University, El Paso, TX, 79905 (United States); Lou, Haiyan, E-mail: louhaiyan@sdu.edu.cn [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Lou, Hongxiang [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China)

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  16. Protective effects of Tribulus terrestris L extract against acute kidney injury induced by reperfusion injury in rats.

    Science.gov (United States)

    Najafi, Houshang; Firouzifar, Mohammad Reza; Shafaat, Omid; Changizi Ashtiyani, Saeed; Hosseini, Nasser

    2014-07-01

    This study aimed to investigate the protective effect of aerial parts of the Tribulus terrestris L extract on acute kidney injury (AKI) induced by ischemia for 30 minutes and reperfusion for 24 hours in rats. Ten male Sprague-Dawley rats in the AKI and 10 in the Tribulus terrestris groups received the extract solvent and extract of the plant (11 mg/kg), respectively, for 13 days (oral administration). On day 14, ischemia for 30 minutes and reperfusion for 24 hours were induced on the rats. In the last 6 hours of the reperfusion period (24 hours), urine samples were collected in metabolic cages. At the end of this period, blood samples were also taken to determine plasma urea nitrogen, creatinine, and electrolyte concentrations. The kidney tissues were collected for measuring the level of oxidative stress and histological studies. They were compared with the sham operation group and a control group with normal diet and no operation. In the Tribulus terrestris group, the increase in plasma creatinine and urea nitrogen concentrations was significantly less following reperfusion, and their values reached the same level as that in the sham group. Creatinine clearance and urine osmolarity in the Tribulus terrestris group was higher in comparison with the AKI group, whereas sodium absolute excretion, fractional excretion of potassium, oxidative stress, and cellular damages were less. Oral administration of Tribulus terrestris extract for 2 weeks can decrease kidney functional disturbance, oxidative stress, and cellular damages following reperfusion injury in rats.

  17. Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Alireza; Navidbakhsh, Mahdi, E-mail: mnavid@iust.ac.ir; Razaghi, Reza

    2014-09-01

    There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load. - Highlights: • The ability of PVA sponge to control the injury to the human mandible is computed. • A hexahedral FE model for gunshot wounds to the human mandible is established. • The kinetic energy and injury severity of the mandible is minimized by the sponge. • The highest energy loss (170 J) is observed for the impact at entry angle of 70°. • PVA suggests as an alternative

  18. Preseason Workload Volume and High-Risk Periods for Noncontact Injury Across Multiple Australian Football League Seasons.

    Science.gov (United States)

    Colby, Marcus J; Dawson, Brian; Heasman, Jarryd; Rogalski, Brent; Rosenberg, Michael; Lester, Leanne; Peeling, Peter

    2017-07-01

    Colby, MJ, Dawson, B, Heasman, J, Rogalski, B, Rosenberg, M, Lester, L, and Peeling, P. Preseason workload volume and high-risk periods for noncontact injury across multiple Australian Football League seasons. J Strength Cond Res 31(7): 1821-1829, 2017-The purpose of this study was to assess the association between preseason workloads and noncontact injury risk in Australian football players. Individual player injury data were recorded over 4 full seasons (2012-15) from one professional club. Noncontact injury incidence (per 1,000 "on legs" field training and game hours) was compared across the preseason, precompetition, and in-season phases to determine relative noncontact injury risk. Preseason workloads (global positioning system-derived total distance run and sprint distance) and individual (fixed) injury risk factors (age, previous injury history) were incorporated into the analysis. A generalized estimating equation with a binary logistic function modeled potential risk factors with noncontact injury for selected periods across the annual cycle. Odds ratios were calculated to determine the relative injury risk. The (preseason) precompetition phase (19.1 injuries per 1,000 hours) and (in-season) rounds 12-17 (16.0 injuries per 1,000 hours) resulted in the highest injury incidence. Low cumulative total distances in late preseason (<108 km) and precompetition (76-88 km) periods were associated with significantly (p ≤ 0.05) greater injury risk during the in-season phase. In conclusion, these results suggest players are at the greatest injury risk during the precompetition period, with low preseason cumulative workloads associated with increased in-season injury risk. Therefore, strength and conditioning staff should place particular emphasis on achieving at least moderate training loads during and leading into this phase, where competitive game play is first introduced.

  19. Artesunate Protects Against the Organ Injury and Dysfunction Induced by Severe Hemorrhage and Resuscitation.

    Science.gov (United States)

    Sordi, Regina; Nandra, Kiran K; Chiazza, Fausto; Johnson, Florence L; Cabrera, Claudia P; Torrance, Hew D; Yamada, Noriaki; Patel, Nimesh S A; Barnes, Michael R; Brohi, Karim; Collino, Massimo; Thiemermann, Christoph

    2017-02-01

    To evaluate the effects of artesunate on organ injury and dysfunction associated with hemorrhagic shock (HS) in the rat. HS is still a common cause of death in severely injured patients and is characterized by impairment of organ perfusion, systemic inflammatory response, and multiple organ failure. There is no specific therapy that reduces organ injury/dysfunction. Artesunate exhibits pharmacological actions beyond its antimalarial activity, such as anticancer, antiviral, and anti-inflammatory effects. Rats were submitted to HS. Mean arterial pressure was reduced to 30 mm Hg for 90 minutes, followed by resuscitation. Rats were randomly treated with artesunate (2.4 or 4.8 mg/kg i.v.) or vehicle upon resuscitation. Four hours later, parameters of organ injury and dysfunction were assessed. Artesunate attenuated the multiple organ injury and dysfunction caused by HS. Pathway analysis of RNA sequencing provided good evidence to support an effect of artesunate on the Akt-survival pathway, leading to downregulation of interleukin-1 receptor-associated kinase 1. Using Western blot analysis, we confirmed that treatment of HS rats with artesunate enhanced the phosphorylation (activation) of Protein kinase B (Akt) and endothelial nitric oxide synthase and the phosphorylation (inhibition) of glycogen synthase kinase-3β (GSK-3β). Moreover, artesunate attenuated the HS-induced activation of nuclear factor kappa B and reduced the expression of proinflammatory proteins (inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin 6). Artesunate attenuated the organ injury/dysfunction associated with HS by a mechanism that involves the activation of the Akt-endothelial nitric oxide synthase survival pathway, and the inhibition of glycogen synthase kinase-3β and nuclear factor kappa B. A phase II clinical trial evaluating the effects of good manufacturing practice-artesunate in patients with trauma and severe hemorrhage is planned.

  20. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    2016-08-01

    Full Text Available The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β. Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  1. Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Veronica L. [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Stocke, Kendall S. [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Schmidt, Robin H.; Tan, Min [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Ajami, Nadim [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (United States); Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX (United States); Neal, Rachel E. [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Petrosino, Joseph F. [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (United States); Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX (United States); Barve, Shirish [Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Arteel, Gavin E., E-mail: gavin.arteel@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States)

    2015-05-01

    Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD. Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria.

  2. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    Science.gov (United States)

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and

  3. Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction

    International Nuclear Information System (INIS)

    Massey, Veronica L.; Stocke, Kendall S.; Schmidt, Robin H.; Tan, Min; Ajami, Nadim; Neal, Rachel E.; Petrosino, Joseph F.; Barve, Shirish; Arteel, Gavin E.

    2015-01-01

    Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD. Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria

  4. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway.

    Science.gov (United States)

    Wu, Guozhen; Zhu, Lili; Yuan, Xing; Chen, Hao; Xiong, Rui; Zhang, Shoude; Cheng, Hao; Shen, Yunheng; An, Huazhang; Li, Tiejun; Li, Honglin; Zhang, Weidong

    2017-10-10

    Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.

  5. Dexmedetomidine May Produce Extra Protective Effects on Sepsis-induced Diaphragm Injury

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2015-01-01

    Full Text Available Objective: The objective was to evaluate the protective effects of dexmedetomidine (DEX, a selective agonist of α2-adrenergic receptor, on sepsis-induced diaphragm injury and the underlying molecular mechanisms. Data Sources: The data used in this review were mainly from PubMed articles published in English from 1990 to 2015. Study Selection: Clinical or basic research articles were selected mainly according to their level of relevance to this topic. Results: Sepsis could induce severe diaphragm dysfunction and exacerbate respiratory weakness. The mechanism of sepsis-induced diaphragm injury includes the increased inflammatory cytokines and excessive oxidative stress and superfluous production of nitric oxide (NO. DEX can reduce inflammatory cytokines, inhibit nuclear factor-kappaB signaling pathways, suppress the activation of caspase-3, furthermore decrease oxidative stress and inhibit NO synthase. On the basis of these mechanisms, DEX may result in a shorter period of mechanical ventilation in septic patients in clinical practice. Conclusions: Based on this current available evidence, DEX may produce extra protective effects on sepsis-induced diaphragm injury. Further direct evidence and more specific studies are still required to confirm these beneficial effects.

  6. Proteomic analysis of protective effects of polysaccharides from Salvia miltiorrhiza against immunological liver injury in mice.

    Science.gov (United States)

    Sun, Xue-Gang; Fu, Xiu-Qiong; Cai, Hong-Bing; Liu, Qiang; Li, Chun-Hua; Liu, Ya-Wei; Li, Ying-Jia; Liu, Zhi-Feng; Song, Yu-Hong; Lv, Zhi-Ping

    2011-07-01

    This study was designed to investigate mechanisms of the protective effects of Salvia miltiorrhiza polysaccharide (SMPS) against lipopolysaccharide (LPS)-induced immunological liver injury (ILI) in Bacille Calmette-Guérin (BCG)-primed mice. Two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis showed that three proteins are down-regulated and six proteins are up-regulated by SMPS. SMPS reduces the degree of liver injury by up-regulating the enzymes of the citric acid cycle, namely malate dehydrogenase (MDH) and 2-oxoglutarate dehydrogenase complex. LPS significantly increases nuclear factor kappa B (NF-κB) activation, inducible nitric oxide synthase (iNOS) expression and MDA level in BCG primed mice liver, whereas SMPS treatment protects against the immunological liver injury through inhibition of the NF-κB activation by up-regulation of PRDX6 and the subsequent attenuation of lipid peroxidation, iNOS expression and inflammation. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    2017-01-01

    Full Text Available Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT, aspartate transaminase (AST, hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.

  8. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad

    2018-03-01

    Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.

  9. The protection of meloxicam against chronic aluminium overload-induced liver injury in rats.

    Science.gov (United States)

    Yang, Yang; He, Qin; Wang, Hong; Hu, Xinyue; Luo, Ying; Liang, Guojuan; Kuang, Shengnan; Mai, Shaoshan; Ma, Jie; Tian, Xiaoyan; Chen, Qi; Yang, Junqing

    2017-04-04

    The present study was designed to observe the protective effect and mechanisms of meloxicam on liver injury caused by chronic aluminium exposure in rats. The histopathology was detected by hematoxylin-eosin staining. The levels of prostaglandin E2, cyclic adenosine monophosphate and inflammatory cytokines were detected by enzyme linked immunosorbent assay. The expressions of cyclooxygenases-2, prostaglandin E2 receptors and protein kinase A were measured by western blotting and immunohistochemistry. Our experimental results showed that aluminium overload significantly damaged the liver. Aluminium also significantly increased the expressions of cyclooxygenases-2, prostaglandin E2, cyclic adenosine monophosphate, protein kinase A and the prostaglandin E2 receptors (EP1,2,4) and the levels of inflammation and oxidative stress, while significantly decreased the EP3 expression in liver. The administration of meloxicam significantly improved the impairment of liver. The contents of prostaglandin E2 and cyclic adenosine monophosphate were significantly decreased by administration of meloxicam. The administration of meloxicam also significantly decreased the expressions of cyclooxygenases-2 and protein kinase A and the levels of inflammation and oxidative stress, while significantly increased the EP1,2,3,4 expressions in rat liver. Our results suggested that the imbalance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway is involved in the injury of chronic aluminium-overload rat liver. The protective mechanism of meloxicam on aluminium-overload liver injury is attributed to reconstruct the balance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway.

  10. Innovative Solutions Shockproof Protection In Occupations Associated With An Increased Risk Of Injury

    Science.gov (United States)

    Denisov, O. V.; Buligin, Y. I.; Ponomarev, A. E.; Ponomareva, I. A.; Lebedeva, V. V.

    2017-01-01

    An important direction in the development of the shockproof devices for occupations associated with an increased risk of injury is reducing their overall size with the preservation the ability of energy absorption. The fixture protection of large joints, with the brace in the coils of an elastic-plastic material with shape memory effect, can effectively protect people from injury and can be used in the domain of occupational safety to reduce injuries by shocks or jolts. In innovative anti-shock device as elastic-plastic material applied equiatomic Titanium-Nickel alloy which has acceptable temperature phase transitions that is necessary to restore shape. As an experienced model first approximation was adopted shockproof device, having in its composition a bandage in coils of elastic-plastic material with shape memory effect and with electric contacts at the ends. This solution allows the punches to plastically deform with the absorption of the impact energy, and then recover the original shape, including at the expense of electric heating.

  11. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells.

    Science.gov (United States)

    Zhang, Chao; Zheng, Long; Li, Long; Wang, Lingyan; Li, Liping; Huang, Shang; Gu, Chenli; Zhang, Lexi; Yang, Cheng; Zhu, Tongyu; Rong, Ruiming

    2014-08-19

    NKT cells play a protective role in ischemia reperfusion (IR) injury, of which the trafficking in the body and recruitment in injured organs can be influenced by immunosuppressive therapy. Therefore, we investigated the effects of rapamycin on kidneys exposed to IR injury in early stage and on trafficking of NKT cells in a murine model. Balb/c mice were subjected to kidney 30 min ischemia followed by 24 h reperfusion. Rapamycin (2.5 ml/kg) was administered by gavage daily, starting 1 day before the operation. Renal function and histological changes were assessed. The proportion of NKT cells in peripheral blood, spleen and kidney was detected by flow cytometry. The chemokines and corresponding receptor involved in NKT cell trafficking were determined by RT-PCR and flow cytometry respectively. Rapamycin significantly improved renal function and ameliorated histological injury. In rapamycin-treated group, the proportion of NKT cells in spleen was significantly decreased but increased in peripheral blood and kidney. In addition, the CXCR3+ NKT cell in the kidney increased remarkably in the rapamycin-treated group. The chemokines, CXCL9 and CXCL10, as the ligands of CXCR3, were also increased in the rapamycin-treated kidney. Rapamycin may recruit NKT cells from spleen to the IR-induced kidney to ameliorate renal IR injury in the early stage.

  12. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model

    Directory of Open Access Journals (Sweden)

    Mehmet Salih Aydin

    2015-02-01

    Full Text Available Introduction: Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. Objective: We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Methods: Thirty rats were divided into three groups as sham (n=10, control (n=10 and thymoquinone (TQ treatment group (n=10. Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS, and oxidative stress index (OSI in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Results: Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI. Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons. Conclusion: Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.

  13. The protective effects of tadalafil on renal damage following ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Bulent Erol

    2015-09-01

    Full Text Available Ischemia-reperfusion injury can cause renal damage, and phosphodiesterase inhibitors are reported to regulate antioxidant activity. We investigated the prevention of renal damage using tadalafil after renal ischemia reperfusion (I/R injury in rats. A total of 21 adult male Wistar albino rats were randomly divided into three groups of seven, including Group 1-control, Group 2-I/R, and Group 3-tadalafil + I/R group (I/R-T group received tadalafil intraperitoneally at 30 minutes before ischemia. Inducible nitric oxide synthase, endothelial nitric oxide synthase, malondialdehyde, and total antioxidant capacity levels were evaluated, and histopathological changes and apoptosis in the groups were examined. Tadalafil decreased malondialdehyde levels in the I/R group and increased the total antioxidant capacity level. Histopathological and immunohistochemical findings revealed that tadalafil decreased renal injury scores and the ratios of injured cells, as measured through apoptotic protease activating factor 1, inducible nitric oxide synthase, and endothelial nitric oxide synthase levels. We suggest that tadalafil has protective effects against I/R-related renal tissue injury.

  14. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M

    2006-03-01

    Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after

  15. Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation.

    Science.gov (United States)

    Manitsopoulos, Nikolaos; Orfanos, Stylianos E; Kotanidou, Anastasia; Nikitopoulou, Ioanna; Siempos, Ilias; Magkou, Christina; Dimopoulou, Ioanna; Zakynthinos, Spyros G; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2015-02-14

    Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for four hours. Three doses of simvastatin (20 mg/kg) or saline were injected intraperitoneally on days -2, -1 and 0 of the experiment. Lung mechanics, (respiratory system elastance, tissue damping and airway resistance), were evaluated by forced oscillation technique, while respiratory system compliance was measured with quasi-static pressure-volume curves. A pathologist blinded to treatment allocation scored hematoxylin-eosin-stained lung sections for the presence of lung injury. Pulmonary endothelial dysfunction was ascertained by bronchoalveolar lavage protein content and lung tissue expression of endothelial junctional protein Vascular Endothelial cadherin by immunoblotting. To assess the inflammatory response in the lung, we determined bronchoalveolar lavage fluid total cell content and neutrophil fraction by microscopy and staining in addition to Matrix-Metalloprotease-9 by ELISA. For the systemic response, we obtained plasma levels of Tumor Necrosis Factor-α, Interleukin-6 and Matrix-Metalloprotease-9 by ELISA. Statistical hypothesis testing was undertaken using one-way analysis of variance and Tukey's post hoc tests. Ventilation with high tidal volume (HVt) resulted in significantly increased lung elastance by 3-fold and decreased lung compliance by 45% compared to low tidal volume (LVt) but simvastatin abrogated lung mechanical alterations of HVt. Histologic lung injury score increased four-fold by HVt but not in simvastatin-pretreated mice. Lavage pleocytosis and neutrophilia were

  16. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    Science.gov (United States)

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  18. Face, neck, and eye protection: adapting body armour to counter the changing patterns of injuries on the battlefield.

    Science.gov (United States)

    Breeze, J; Horsfall, I; Hepper, A; Clasper, J

    2011-12-01

    Recent international papers have suggested an urgent need for new methods of protecting the face, neck, and eyes in battle. We made a systematic analysis to identify all papers that reported the incidence and mortality of combat wounds to the face, eyes, or neck in the 21st century, and any papers that described methods of protecting the face, neck, or eyes. Neck wounds were found in 2-11% of injuries in battle, and associated with high mortality, but no new methods of protecting the neck were identified. Facial wounds were found in 6-30% of injuries in battle, but despite the psychological effects of this type of injury only one paper suggested methods for protection. If soldiers wore existing eye protection they potentially reduced the mean incidence of eye injuries in combat from the 4.5% found in this analysis to 0.5%. Given the need to balance protection with the functional requirements of the individual soldier, a multidisciplinary approach is required. Military surgeons are well placed to work with material scientists and biomechanical engineers to suggest modifications to the design of both personal and vehicle-mounted protection. Further research needs is needed to find out how effective current methods of protecting the neck are, and to develop innovative methods of protecting the vulnerable regions of the neck and face. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  19. Radiological diagnosis in patients with head injury alone or in combination with multiple trauma

    International Nuclear Information System (INIS)

    Rieger, J.; Linsenmaier, U.; Pfeifer, K.J.; Reiser, M.

    2002-01-01

    Purpose. Head injury alone or in combination with multiple trauma is the main cause of death and severe disability in individuals under 45 years old. This review is intended to describe the relevant imaging modalities, to analyze their specific value and limitations and to illustrate the most important radiologic findings. The indications for diagnostic imaging within the context of an interdisciplinary linkage of diagnostic and therapeutic measures are discussed.Material and methods. Recent publications are analyzed and compared to the experiences of our own hospital. In terms of a critical synoptic assessment the currently best standard of care is described in consideration of an interdisciplinary care concept.Results. Radiologic imaging modalities crucially contribute to the complete injury assessment and provide an indispensable basis for any therapeutic decision. Comprehensive neuromonitoring and reliable demonstration of delayed or secondary brain damage is impossible without modern imaging technology. Computed tomography (CT) further continues to be the most important imaging modality, while magnetic resonance imaging despite it's partly superior diagnostic informations remains reserved to particular diagnostic problems.Conclusions. Suitable constructive prerequisites, an interdisciplinary care concept and integration of the radiologist in hospital-adapted diagnostic and therapeutic algorithms significantly improves the outcome of patients with acute head injury. Beside the correct diagnosis itself the time to establish a diagnosis above all has a crucial impact on successful management and good outcome of these patients. (orig.) [de

  20. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues

    Science.gov (United States)

    Faber, James E.; Zhang, Hua; Lassance-Soares, Roberta M.; Prabhakar, Pranay; Najafi, Amir H.; Burnett, Mary Susan; Epstein, Stephen E.

    2011-01-01

    Objective Aging is a major risk factor for increased ischemic tissue injury. Whether collateral rarefaction and impaired remodeling contribute to this is unknown. We quantified the number and diameter of native collaterals, and their remodeling in 3-, 16-, 24-, and 31-months-old mice. Methods and Results Aging caused an “age-dose-dependent” greater drop in perfusion immediately after femoral artery ligation, followed by a diminished recovery of flow and increase in tissue injury. These effects were associated with a decline in collateral number, diameter and remodeling. Angiogenesis was also impaired. Mechanistically, these changes were not accompanied by reduced recruitment of T-cells or macrophages to remodeling collaterals. However, eNOS signaling was dysfunctional, as indicated by increased protein nitrosylation and less phosphorylated eNOS and VASP in collateral wall cells. The cerebral circulation exhibited a similar age-dose-dependent loss of collateral number and diameter and increased tortuosity, resulting in an increase in collateral resistance and infarct volume (e.g., 6- and 3-fold, respectively, in 24-months-old mice) after artery occlusion. This was not associated with rarefaction of similarly-sized arterioles. Collateral remodeling was also reduced. Conclusions Our findings demonstrate that aging causes rarefaction and insufficiency of the collateral circulation in multiple tissues, resulting in more severe ischemic tissue injury. PMID:21617137

  1. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    Science.gov (United States)

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  2. Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.

    Science.gov (United States)

    Jiang, Yue-Hua; Guo, Jin-Hao; Wu, Sai; Yang, Chuan-Hua

    2017-08-01

    Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg -1 ·d -1 ) for 6 weeks, using valsartan (13.5 mg·kg -1 ·d -1 ) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 -6 mol·L -1 Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  3. Management of multiple intrusive luxative injuries: A case report with 7-year follow-up

    Directory of Open Access Journals (Sweden)

    Seema Thakur

    2014-01-01

    Full Text Available This report presents a case of severe intrusive luxation of multiple anterior teeth in an 11-year-old girl. The teeth were repositioned successfully by endodontic and orthodontic management. The case was monitored for 7 years. Depending on the severity of the injury, different clinical approaches for treatment of intrusive luxation may be used. Despite the variety of treatment modalities, rehabilitation of intruded teeth is always a challenge and a multidisciplinary approach is important to achieve a successful result. In this case, intruded teeth were endodontically treated with multiple calcium hydroxide dressings and repositioned orthodontically. The follow-up of such cases is very important as the repair process after intrusion is complex. After 7 years, no clinical or radiographic pathology was detected.

  4. Protective factors associated with fewer multiple problem behaviors among homeless/runaway youth.

    Science.gov (United States)

    Lightfoot, Marguerita; Stein, Judith A; Tevendale, Heather; Preston, Kathleen

    2011-01-01

    Although homeless youth exhibit numerous problem behaviors, protective factors that can be targeted and modified by prevention programs to decrease the likelihood of involvement in risky behaviors are less apparent. The current study tested a model of protective factors for multiple problem behavior in a sample of 474 homeless youth (42% girls; 83% minority) ages 12 to 24 years. Higher levels of problem solving and planning skills were strongly related to lower levels of multiple problem behaviors in homeless youth, suggesting both the positive impact of preexisting personal assets of these youth and important programmatic targets for further building their resilience and decreasing problem behaviors. Indirect relationships between the background factors of self-esteem and social support and multiple problem behaviors were significantly mediated through protective skills. The model suggests that helping youth enhance their skills in goal setting, decision making, and self-reliant coping could lessen a variety of problem behaviors commonly found among homeless youth.

  5. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    Science.gov (United States)

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  6. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  7. Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits

    Directory of Open Access Journals (Sweden)

    Shan Le-qun

    2010-08-01

    Full Text Available Abstract Background Hydroxysafflor Yellow A (HSYA, which is one of the most important active ingredients of the Chinese herb Carthamus tinctorius L, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R injury is still unknown. Methods Thirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6 were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL staining. Results Neurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA level and increased superoxide dismutase (SOD activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits. Conclusions These findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.

  8. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    Science.gov (United States)

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  9. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.

    Science.gov (United States)

    Li, Dan; Liu, Nan; Zhao, Liang; Tong, Lei; Kawano, Hitoshi; Yan, Hong-Jing; Li, Hong-Peng

    2017-01-01

    Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Suv39h1 Protects from Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2014-04-01

    Full Text Available Background: Patients with diabetes are at increased risk of ischemic events. Suv39h1 is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9, which is associated with the suppression of inflammatory genes in diabetes. However, the role of Suv39h1 in myocardial ischemia/reperfusion (I/R injury under diabetic condition has not been evaluated. Methods: To generate diabetic model, male SD rats were fed with 60% fat diet followed by intraperitoneal injection with 40mg/kg streptozotocin. Adenovirus encoding Suv39h1 gene was used for Suv39h1 overexpression. Each rat received injections of adenovirus at five myocardial sites. Three days after gene transfection, each rat was subjected to left main coronary artery occlusion and reperfusion. After 30 min ischemia and reperfusion for 4 h, the rats were euthanized for real-time PCR, Western blot, immunohistochemical staining, and morphometric analysis. Results: Delivery of Ad-Suv39h1 into the hearts of diabetic rats could markedly increase Suv39h1 expression. Up-regulation of Suv39h1 significantly reduced infarct size and tissue damage after I/R injury, which was associated with protection from apoptosis of cardiac myocytes and reduction of inflammatory response. In addition, compared with injury group, Ad-Suv39h1 led to a decreased activity of mitogen-activated protein kinase family and its down-steam transcriptional factor NF-κB. Conclusion: Overexpression of Suv39h1 results in the de-activation of proinflammatory pathways and reduced apoptosis and myocardial injury. Therefore, Suv39h1 might represent a novel therapeutic strategy to reduce I/R injury under diabetic condition.

  11. Selective blockade of protein kinase B protects the rat and human myocardium against ischaemic injury

    Science.gov (United States)

    Linares-Palomino, José; Husainy, Muhammad A; Lai, Vien K; Dickenson, John M; Galiñanes, Manuel

    2010-01-01

    Protein kinase B (PKB/Akt) plays a critical role in cell survival but the investigation of its involvement has been limited by the lack of specific pharmacological agents. In this study, using novel PKB inhibitors (VIII and XI), we investigated the role of PKB in cardioprotection of the rat and human myocardium, the location of PKB in relation to mitoKATP channels and p38 mitogen-activated protein kinase (p38 MAPK), and whether the manipulation of PKB can overcome the unresponsiveness to protection of the diabetic myocardium. Myocardial slices from rat left ventricle and from the right atrial appendage of patients undergoing elective cardiac surgery were subjected to 90 min ischaemia/120 min reoxygenation at 37°C. Tissue injury was assessed by creatine kinase (CK) released and determination of cell necrosis and apoptosis. The results showed that blockade of PKB activity caused significant reduction of CK release and cell death, a benefit that was as potent as ischaemic preconditioning and could be reproduced by blockade of phosphatidylinositol 3-kinase (PI-3K) with wortmannin and LY 294002. The protection was time dependent with maximal benefit seen when PKB and PI-3K were inhibited before ischaemia or during both ischaemia and reoxygenation. In addition, it was revealed that PKB is located downstream of mitoKATP channels but upstream of p38 MAPK. PKB inhibition induced a similar degree of protection in the human and rat myocardium and, importantly, it reversed the unresponsiveness to protection of the diabetic myocardium. In conclusion, inhibition of PKB plays a critical role in protection of the mammalian myocardium and may represent a clinical target for the reduction of ischaemic injury. PMID:20403980

  12. Crash protectiveness to occupant injury and vehicle damage: An investigation on major car brands.

    Science.gov (United States)

    Huang, Helai; Li, Chunyang; Zeng, Qiang

    2016-01-01

    This study sets out to investigate vehicles' crash protectiveness on occupant injury and vehicle damage, which can be deemed as an extension of the traditional crash worthiness. A Bayesian bivariate hierarchical ordered logistic (BVHOL) model is developed to estimate the occupant protectiveness (OP) and vehicle protectiveness (VP) of 23 major car brands in Florida, with considering vehicles' crash aggressivity and controlling external factors. The proposed model not only takes over the strength of the existing hierarchical ordered logistic (HOL) model, i.e. specifying the order characteristics of crash outcomes and cross-crash heterogeneities, but also accounts for the correlation between the two crash responses, driver injury and vehicle damage. A total of 7335 two-vehicle-crash records with 14,670 cars involved in Florida are used for the investigation. From the estimation results, it's found that most of the luxury cars such as Cadillac, Volvo and Lexus possess excellent OP and VP while some brands such as KIA and Saturn perform very badly in both aspects. The ranks of the estimated safety performance indices are even compared to the counterparts in Huang et al. study [Huang, H., Hu, S., Abdel-Aty, M., 2014. Indexing crash worthiness and crash aggressivity by major car brands. Safety Science 62, 339-347]. The results show that the rank of occupant protectiveness index (OPI) is relatively coherent with that of crash worthiness index, but the ranks of crash aggressivity index in both studies is more different from each other. Meanwhile, a great discrepancy between the OPI rank and that of vehicle protectiveness index is found. What's more, the results of control variables and hyper-parameters estimation as well as comparison to HOL models with separate or identical threshold errors, demonstrate the validity and advancement of the proposed model and the robustness of the estimated OP and VP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Protection by deferoxamine from endothelial injury: A possible link with inhibition of intracellular xanthine oxidase

    International Nuclear Information System (INIS)

    Rinaldo, J.E.; Gorry, M.

    1990-01-01

    Hydroxyl radical scavengers and xanthine oxidase inhibitors protect cultured bovine pulmonary endothelial cells (BPAEC) from lytic injury by the endotoxin lipopolysaccharide (LPS). We hypothesized that exposure of BPAEC to cytotoxic concentrations of LPS activated intracellular xanthine oxidase, and that intracellular iron-dependent hydroxyl radical formation (a Fenton reaction) ensued, resulting in cell lysis. To test this, the protective effects of deferoxamine against H2O2 and LPS-induced cytotoxicity to BPAEC was assessed by 51Cr release. Preincubation with 0.4 mM deferoxamine conferred 67 +/- 15% (mean +/- SE) protection from LPS-induced cytotoxicity but 48 h of preincubation were required to induce significant protection. Significant protection form a classical Fenton reaction model, injury by 50 microM H2O2, could be induced by a 1-h preincubation with a 0.4 mM deferoxamine. The dissociated time course suggested that deferoxamine might work by different mechanisms in these models. The effects of LPS and deferoxamine on BPAEC-associated xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity were assessed using a spectrofluorophotometric measurement of the conversion of pterin to isoxanthopterin. BPAEC had 106 +/- 7 microU/mg XD+XO activity; XO activity constituted 48 +/- 1% of total XO+XD activity. LPS at a cytotoxic concentration did not alter XO, XD, or percent XO. Deferoxamine had striking proportional inhibitory effects on XO and XD in intact cells. XO+XD activity fell to 6 +/- 1% of control levels during a 48-h exposure of BPAEC to deferoxamine. Deferoxamine did not inhibit XO+XD ex vivo

  14. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats

    Directory of Open Access Journals (Sweden)

    Sayed M. Mizar

    2015-03-01

    Full Text Available Oxidative stress plays a key role in the pathogenesis of hepatic ischemia/reperfusion (I/R-induced injury, one of the leading causes of liver damage post-surgical intervention, trauma and transplantation. This study aimed to evaluate the protective effect of nebivolol and chrysin against I/R-induced liver injury via their vasodilator and antioxidant effects, respectively. Adult male Wister rats received nebivolol (5 mg/kg and/or chrysin (25 mg/kg by oral gavage daily for one week then subjected to ischemia via clamping the portal triad for 30 min then reperfusion for 30 min. Liver function enzymes, alanine transaminase (ALT and aspartate transaminase (AST, as well as hepatic Myeloperoxidase (MPO, total nitrate (NOx, glutathione (GSH and liver malondialdehyde (MDA were measured at the end of the experiment. Liver tissue damage was examined by histopathology. In addition, the expression levels of nitric oxide synthase (NOS subtypes, endothelial (eNOS and inducible (iNOS in liver samples were assessed by Western blotting and confirmed by immunohistochemical analysis. Both chrysin and nebivolol significantly counteracted I/R-induced oxidative stress and tissue damage biomarkers. The combination of these agents caused additive liver protective effect against I/R-induced damage via the up regulation of nitric oxide expression and the suppression of oxidative stress. Chrysin and nebivolol combination showed a promising protective effect against I/R-induced liver injury, at least in part, via decreasing oxidative stress and increasing nitric oxide levels.

  15. Improvement of biological decontamination, protective and repair activity against radiation injury

    International Nuclear Information System (INIS)

    Kagawa, Yasuo

    2013-01-01

    Because the protection of human subject from late radiation injury is the final goal of remediation of radioactive contamination of 137 Cs in environment, improvement of DNA-repairing ability and 137 Cs-removal from human body is important. In order to reduce environmental radioactivity in areas exceeding 5 mSv/year in Fukushima prefecture, the cost is estimated to be 118 trillion yen, and there are difficulties in finding place to store 137 Cs-contaminated soils and in 137 Cs-recontamination. The radiation damage of DNA molecule takes place stochastically following linear no threshold model (LNT), but the cancer risk and other late radiation injury from long-term low dose radiation do not follow LNT model if we improve DNA repair and the cell regeneration systems. Indirect effects of radiation damage on DNA mediated by reactive oxygen species (ROS) are prevented by vitamin C, E, carotenoids including lycopene and phytochemicals. ROS is also removed by superoxide dismutases containing Cu, Mn and Z. Direct effects of radiation damage on DNA are repaired by enzyme systems using folic acid, vitamins B 6 and B 12 . In addition, before the radiation injury, absorption of 137 Cs is prevented by taking pectin etc. and excretion of 137 Cs is accelerated by ingesting more K. Finally, early detection of cancer and its removal by detailed health check of radiation-exposed people is needed. Radiation-protecting diet developed to protect astronauts from about 1 mSv per day, will be useful for many workers of atomic power plant as well as people living in the 137 Cs-contaminated areas. (author)

  16. The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing

    2011-10-01

    Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.

  17. A 5-year follow-up case of multiple intrusive luxative injuries

    Directory of Open Access Journals (Sweden)

    Seema Thakur

    2012-01-01

    Full Text Available Introduction: Traumatic intrusive luxation is one of the most severe forms of dental injuries, usually affecting the maxillary incisors. The consequence of such an occurrence is a high risk of healing complications such as pulp necrosis, external inflammatory resorption, and external replacement resorption (ankylosis. Case Report: This report presents a case of severe intrusive luxation of multiple anterior teeth in an 11-year-old girl. The teeth were repositioned successfully by endodontic and orthodontic management. The case was monitored for 5 years. Discussion: Depending on the severity of the injury, different clinical approaches for treatment of intrusive luxation may be used. Despite the variety of treatment modalities, rehabilitation of intruded teeth is always a challenge and a multidisciplinary approach is important to achieve a successful result. In this case, intruded teeth were endodontically treated with multiple calcium hydroxide dressings and repositioned orthodontically. The follow-up of such cases is very important as the repair process after intrusion is complex. After 5 years, no clinical or radiographic pathology was detected.

  18. Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism

    International Nuclear Information System (INIS)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-01-01

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury. - Highlights: → We investigated the anti-apoptotic effect of melittin on TGF-β1-induced hepatocyte. → TGF-β1 induces hepatocyte apoptosis. → TGF-β1-treated hepatocytes were exposed to low doses and high dose of melittin. → Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  19. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    OpenAIRE

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Ramsey, Frederick V.; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.; Feldman, Arthur M.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expre...

  20. Protective effect of astrocyte-conditioned medium on neurons following hypoxia and mechanical injury

    Directory of Open Access Journals (Sweden)

    YAN Ji-wen

    2013-02-01

    Full Text Available 【Abstract】Objective: To investigate the protec-tive effect of mouse astrocyte-conditioned medium (ACM on hypoxic and mechanically injured neurons by a cell model in vitro, and to explore the possible mechanism. Methods: The model of hypoxic neuronal injury was caused by 3% O 2 in three-gas incubator. Neurons were cul-tured with ordinary medium or 20% ACM respectively and randomly divided into hypoxic group (hypoxia for 4, 8, 24 h and marked as H4R0, H8R0, H24R0 and hypoxia reoxygenation group (H4R24, H8R24, H24R24. Mechanical injury model was developed by scratching neurons cultured in 20% ACM or ordinary medium to different degrees. Neu-rons in both medium were divided into normal control group, mild, moderate and severe injury groups. The 20% ACM was added 24 h before hypoxia/reoxygenation or mechanical injury. The morphology and survival of neurons were observed and counted by trypan blue staining. The concentration of NO, lactic dehydrogenase (LDH and membrane ATPase activity were detected by corresponding kits. Results: It was showed that 20% ACM can obviously promote the survival rate of hypoxia/reoxygenated neurons and scratched neurons as well. The morphology and num-ber of neurons exposed to hypoxia or scratch injury showed great difference between groups with or without ACM treatment. Compared with control group, the concentration of NO and LDH was much lower in hypoxic/reoxygenated neurons treated with 20% ACM, and the ATPase activity was higher. For the mechanical injury model, neurons with moderate injury also revealed a lower NO and LDH concen-tration than the control group. All the differences were sta-tistically significant (P<0.05. Conclusion: ACM can promote the survival and func-tional recovery of neurons following hypoxia or scratching to a certain degree. The mechanism may be associated with reducing the synthesis and release of NO and LDH as well as increasing the activity of membrane ATPase. Key words: Glial cell line

  1. Effects of multiple viewings of an ultraviolet photo on sun protection behaviors.

    Science.gov (United States)

    Mahler, H I M

    2018-05-02

    To determine whether multiple viewings of one's ultraviolet (UV) facial photo differentially affects subsequent sun protection behaviors relative to a single viewing. Pretest-posttest control group. Southern California college students (N = 151) were randomly assigned to be shown their UV facial photo one time, multiple times over the course of 2 weeks, or not at all. Emotional reactions, perceived susceptibility to skin damage, and sun protection intentions were assessed immediately, and sun protection behaviors were assessed during a surprise telephonic follow-up 1 month later. Immediately after viewing a UV photo of their face, participants reported significantly greater perceived susceptibility to skin damage, greater intentions to engage in future sun protection, and more negative emotions than those who had not seen a UV photo. Moreover, 1 month later, those who had viewed their UV photo were less likely to report having sunbathed and reported significantly greater sun protection than did controls. There were no differences in sun protection behaviors between those who had been shown their UV photo only once during the initial intervention session and those who had been sent their UV photo several times thereafter. However, among those who had been sent their UV photo several times, those who reported having viewed their photo on additional occasions reported significantly greater sun protection behaviors than those who had not. Being randomly assigned to view a UV facial photo multiple times generally neither strengthened nor weakened effects on subsequent sun protection behaviors relative to being shown the photo just once. However, among those who were sent their photo and thus had the option of viewing it more often than they had been assigned to, those who chose to view their photo more frequently also engaged in more sun protection behaviors. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.

    Science.gov (United States)

    Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-04-05

    To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.

  3. Hydroxychloroquine Protects against Cardiac Ischaemia/Reperfusion Injury In Vivo via Enhancement of ERK1/2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Lauren Bourke

    Full Text Available An increasing number of investigations including human studies demonstrate that pharmacological ischaemic preconditioning is a viable way to protect the heart from myocardial ischaemia/reperfusion (I/R injury. This study investigated the role of hydroxychloroquine (HCQ in the heart during I/R injury. In vitro and in vivo models of myocardial I/R injury were used to assess the effects of HCQ. It was found that HCQ was protective in neonatal rat cardiomyocytes through inhibition of apoptosis, measured by TUNEL and cleaved caspase-3. This protection in vitro was mediated through enhancement of ERK1/2 phosphorylation mediated by HCQ in a dose-dependent fashion. A decrease in infarct size was observed in an in vivo model of myocardial I/R injury in HCQ treated animals and furthermore this protection was blocked in the presence of the ERK1/2 inhibitor U0126. For the first time, we have shown that HCQ promotes a preconditioning like protection in an in vivo simulated rat myocardial I/R injury model. Moreover, it was shown that HCQ is protective via enhanced phosphorylation of the pro-survival kinase ERK1/2.

  4. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation

    NARCIS (Netherlands)

    Cortjens, Bart; Royakkers, Annick A. N. M.; Determann, Rogier M.; van Suijlen, Jeroen D. E.; Kamphuis, Stephan S.; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W.; Spronk, Peter E.; Schultz, Marcus J.; Bouman, Catherine S. C.

    2012-01-01

    Introduction: Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. Objective: To determine whether ventilator settings in critically ill patients without

  5. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  6. Fibronectin-integrin signaling is required for L-glutamine's protection against gut injury.

    Directory of Open Access Journals (Sweden)

    Stefanie Niederlechner

    Full Text Available Extracellular matrix (ECM stabilization and fibronectin (FN-Integrin signaling can mediate cellular protection. L-glutamine (GLN is known to prevent apoptosis after injury. However, it is currently unknown if ECM stabilization and FN-Integrin osmosensing pathways are related to GLN's cell protective mechanism in the intestine.IEC-6 cells were treated with GLN with or without FN siRNA, integrin inhibitor GRGDSP, control peptide GRGESP or ERK1/2 inhibitors PD98059 and UO126 under basal and stressed conditions. Cell survival measured via MTS assay. Phosphorylated and/or total levels of cleaved caspase-3, cleaved PARP, Bax, Bcl-2, heat shock proteins (HSPs, ERK1/2 and transcription factor HSF-1 assessed via Western blotting. Cell size and F-actin morphology quantified by confocal fluorescence microscopy and intracellular GLN concentration by LC-MS/MS.GLN's prevention of FN degradation after hyperthermia attenuated apoptosis. Additionally, inhibition of FN-Integrin interaction by GRGDSP and ERK1/2 kinase inhibition by PD98059 inhibited GLN's protective effect. GRGDSP attenuated GLN-mediated increases in ERK1/2 phosphorylation and HSF-1 levels. PD98059 and GRGDSP also decreased HSP levels after GLN treatment. Finally, GRGDSP attenuated GLN-mediated increases in cell area size and disrupted F-actin assembly, but had no effect on intracellular GLN concentrations.Taken together, this data suggests that prevention of FN degradation and the FN-Integrin signaling play a key role in GLN-mediated cellular protection. GLN's signaling via the FN-Integrin pathway is associated with HSP induction via ERK1/2 and HSF-1 activation leading to reduced apoptosis after gut injury.

  7. The protective effect of Nigella sativa against liver injury: a review

    Directory of Open Access Journals (Sweden)

    Hamid Mollazadeh

    2015-12-01

    Full Text Available Nigella sativa (Family Ranunculaceae is a widely used medicinal plant throughout the world. N. sativa is referred in the Middle East as a part of an overall holistic approach to health. Pharmacological properties of N. sativa including immune stimulant, hypotensive, anti-inflammatory, anti-cancer, antioxidant, hypoglycemic, spasmolytic and bronchodilator have been shown. Reactive oxygen species (ROS and oxidative stress are known as the major causes of many diseases such as liver injury and many substances and drugs can induce oxidative damage by generation of ROS in the body. Many pharmacological properties of N. sativa are known to be attributed to the presence of thymoquinone and its antioxidant effects. Thymoquinone protects liver from injury via different mechanisms including inhibition of iron-dependent lipid peroxidation, elevation in total thiol content and glutathione level, radical scavengering, increasing the activity of quinone reductase, catalase, superoxide dismutase and glutathione transferase, inhibition of NF-κB activity and inhibition of both cyclooxygenase and lipoxygenase. Therefore, this review aimed to highlight the roles of ROS in liver diseases and the mechanisms of N. sativa in prevention of liver injury.

  8. The protective effect of Nigella sativa against liver injury: a review.

    Science.gov (United States)

    Mollazadeh, Hamid; Hosseinzadeh, Hossein

    2014-12-01

    Nigella sativa (Family Ranunculaceae) is a widely used medicinal plant throughout the world. N. sativa is referred in the Middle East as a part of an overall holistic approach to health. Pharmacological properties of N. sativa including immune stimulant, hypotensive, anti-inflammatory, anti-cancer, antioxidant, hypoglycemic, spasmolytic and bronchodilator have been shown. Reactive oxygen species (ROS) and oxidative stress are known as the major causes of many diseases such as liver injury and many substances and drugs can induce oxidative damage by generation of ROS in the body. Many pharmacological properties of N. sativa are known to be attributed to the presence of thymoquinone and its antioxidant effects. Thymoquinone protects liver from injury via different mechanisms including inhibition of iron-dependent lipid peroxidation, elevation in total thiol content and glutathione level, radical scavengering, increasing the activity of quinone reductase, catalase, superoxide dismutase and glutathione transferase, inhibition of NF-κB activity and inhibition of both cyclooxygenase and lipoxygenase. Therefore, this review aimed to highlight the roles of ROS in liver diseases and the mechanisms of N. sativa in prevention of liver injury.

  9. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Aydin, Mehmet Salih; Kocarslan, Aydemir; Kocarslan, Sezen; Kucuk, Ahmet; Eser, İrfan; Sezen, Hatice; Buyukfirat, Evren; Hazar, Abdussemet

    2015-01-01

    Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham (n=10), control (n=10) and thymoquinone (TQ) treatment group (n=10). Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (POSI). Control group injury scores were statistically higher compared to sham and TQ-treatment groups (Pmodel.

  10. Risk Factors and Protective Factors for Lower-Extremity Running Injuries A Systematic Review.

    Science.gov (United States)

    Gijon-Nogueron, Gabriel; Fernandez-Villarejo, Marina

    2015-11-01

    A review of the scientific literature was performed 1) to identify studies describing the most common running injuries and their relation to the risk factors that produce them and 2) to search for potential and specific protective factors. Spanish and English biomedical search engines and databases (MEDLINE/PubMed, Database Enfermería Fisioterapia Podología [ENFISPO], Cochrane Library, and Cumulative Index to Nursing and Allied Health Literature) were queried (February 1 to November 30, 2013). A critical reading and assessment was then performed by the Critical Appraisal Skills Programme Spanish tool. In total, 276 abstracts that contained the selected key words were found. Of those, 25 identified and analyzed articles were included in the results. Injuries result from inadequate interaction between the runner's biomechanics and external factors. This leads to an excessive accumulation of impact peak forces in certain structures that tends to cause overuse injuries. The main reasons are inadequate muscle stabilization and pronation. These vary depending on the runner's foot strike pattern, foot arch morphology, and sex. Specific measures of modification and control through running footwear are proposed.

  11. Comparison of the Protective Effects of Erythropoietin and Melatonin on Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Banaei, Shokofeh; Ahmadiasl, Nasser; Alihemmati, Alireza

    2016-07-01

    Renal ischemia-reperfusion (IR) contributes to the development of acute renal failure (ARF). Oxygen free radicals are considered to be the principal components involved in the pathophysiological tissue alterations observed during renal IR. In this study, we compared the effects of melatonin (MEL) and erythropoietin (EPO), both known antioxidant and anti-inflammatory agents, on IR-induced renal injury in rats. Wistar albino rats were unilaterally nephrectomized and then subjected to 45 minutes of renal pedicle occlusion followed by 24 hours of reperfusion. MEL (10 mg/kg, i.p) and EPO (5000 U/kg, i.p) were administered prior to the onset of ischemia. After 24 hours of reperfusion and following decapitation, blood samples were collected for the determination of the hemoglobin (Hb) and hematocrit (Hct) levels. Additionally, renal samples were taken for histological evaluation. Ischemia-reperfusion significantly decreased the observed Hb and Hct values. The histopathological findings in the IR group confirmed that there was an increase in the hyaline cast and thickening of the Bowman capsule basement membrane. Treatment with EPO or MEL significantly increased the Hb and Hct values. In the MEL + IR group, the histopathological changes were lower than those found in the EPO + IR group. Treatment with EPO and MEL had a beneficial effect on renal IR injury. The results may also indicate that MEL protects against morphological damage better than EPO in renal IR injury.

  12. Protective effects of Rosmarinic acid against renal ischaemia/reperfusion injury in rats

    International Nuclear Information System (INIS)

    Ozturk, H.; Ozturk, H.; Terzi, E.H.

    2014-01-01

    Objective: To investigate the potential protective effects of Rosmarinic acid (RA) on rats exposed to ischaemia/reperfusion renal injury. Methods: The prospective study was conducted at Abant Izzet Baysal University, Turkey, and comprised 21 male Spraque Dawley rats weighing 250-270g each. They were divided into three equal groups. Unilaterally nephrectomised rats were subjected to 60 minutes of left renal ischaemia followed by 60 minutes of reperfusion. Group 1 had shamoperated animals; group 2 had ischaemia/reperfusion untreated animals; and group 3 had ischaemia/reperfusion animals treated with rosmarinic acid. Serum creatinine, blood urea nitrogen, tissue malondialdehyde, glutathione peroxidase, superoxide dismutase and myeloperoxidase (MPO) activities, and light microscopic findings were evaluated. SPSS 17 was used for statistical analysis. Results: Treatment of rats with rosmarinic acid produced a reduction in the serum levels of creatinine and blood urea nitrogen compared to the other groups. However, no statistically significant difference was found. The levels of malondialdehyde and myeloperoxidase were decreased in the renal tissue of group 3, while glutathione peroxidose and superoxide dismutase levels remained unchanged. The injury score decreased in the treatment group rats compared to the untreated group. Rosmarinic acid significantly decreased focal glomerular necrosis, dilatation of Bowman's capsule, degeneration of tubular epithelium, necrosis in tubular epithelium, and tubular dilatation. Conclusions: Rosmarinic acid prevented ischaemia/reperfusion injury in the kidneys by decreasing oxidative stress. (author)

  13. [Protective effect of compound bismuth and magnesium granules on aspirin-induced gastric mucosal injury in rats].

    Science.gov (United States)

    Mu, F H; Hu, F L; Wei, H; Zhang, Y Y; Yang, G B; Lei, X Y; Yang, Y P; Sun, W N; Cui, M H

    2016-02-01

    To investigate the protective effect of compound bismuth and magnesium granules on aspirin-induced gastric mucosal injury in rats and its possible mechanism. Acute gastric mucosal injury model was developed with intraperitoneal injection of aspirin in Wistar rats. The rats were divided into normal control group, injury group, sucralfate protection group, compound bismuth and magnesium granules protection group and its herbal components protection group(each group 12 rats). In the protection groups, drugs as mentioned above were administered by gavage before treated with intraperitoneal injection of aspirin. To evaluate the extent of gastric mucosal injury and the protective effect of drugs, gastric mucosal lesion index, gastric mucosal blood flow, content of gastric mucosal hexosamine, prostaglandins (PG), nitric oxide(NO), tumor necrosis factor (TNF), and interleukin (IL) -1, 2, 8 were measured in each group, and histological changes were observed by gross as well as under microscope and electron microscope. Contents of hexosamine, NO, and PG in all the protection groups were significantly higher than those in the injury group (all Pcompound bismuth and magnesium granules group was significantly higher than that in the sucralfate group ((11.29±0.51) vs(10.80±0.36)nmol/ml, Pcompound bismuth and magnesium granules group were significantly lower than those in the sucralfate group ((328.17±6.56) vs(340.23±8.05)pg/ml, PCompound bismuth and magnesium granules and its herbal components may have significant protective effect on aspirin-induced gastric mucosal injury.

  14. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  15. The protective effect of ENA Actimineral resource A on CCl4-induced liver injury in rats.

    Science.gov (United States)

    Hong, Il-Hwa; Ji, Hoon; Hwa, Sung-Yong; Jeong, Won-Il; Jeong, Da-Hee; Do, Sun-Hee; Kim, Ji-Min; Ki, Mi-Ran; Park, Jin-Kyu; Goo, Moon-Jung; Hwang, Ok-Kyung; Hong, Kyung-Sook; Han, Jung-Youn; Chung, Hae-Young; Jeong, Kyu-Shik

    2011-06-01

    ENA Actimineral Resource A (ENA-A) is alkaline water that is composed of refined edible cuttlefish bone and two different species of seaweed, Phymatolithon calcareum and Lithothamnion corallioides. In the present study, ENA-A was investigated as an antioxidant to protect against CCl(4)-induced oxidative stress and hepatotoxicity in rats. Liver injury was induced by either subacute or chronic CCl(4) administration, and the rats had free access to tap water mixed with 0% (control group) or 10% (v/v) ENA-A for 5 or 8 weeks. The results of histological examination and measurement of antioxidant activity showed that the reactive oxygen species production, lipid peroxidation, induction of CYP2E1 were decreased and the antioxidant activity, including glutathione and catalase production, was increased in the ENA-A groups as compared with the control group. On 2-DE gel analysis of the proteomes, 13 differentially expressed proteins were obtained in the ENA-A groups as compared with the control group. Antioxidant proteins, including glutathione S-transferase, kelch-like ECH-associated protein 1, and peroxiredoxin 1, were increased with hepatocyte nuclear factor 3-beta and serum albumin precursor, and kininogen precursor decreased more in the ENA-A groups than compared to the control group. In conclusion, our results suggest that ENA-A does indeed have some protective capabilities against CCl(4)-induced liver injury through its antioxidant function.

  16. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Chong-Un Cheong

    2016-07-01

    Full Text Available Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. The scavenging of reactive oxygen species (ROS mediated by antioxidants may be a potential strategy for retarding the diseases’ progression. Costunolide (CS is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H2O2 and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H2O2 exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP, and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H2O2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK. These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.

  17. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    Science.gov (United States)

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (Pcultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (Pculture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The essential oil of Artemisia capillaris protects against CCl4-induced liver injury in vivo

    Directory of Open Access Journals (Sweden)

    Qinghan Gao

    Full Text Available Abstract To study the hepatoprotective effect of the essential oil of Artemisia capillaris Thunb., Asteraceae, on CCl4-induced liver injury in mice, the levels of serum aspartate aminotransferase and alanine aminotransferase, hepatic levels of reduced glutathione, activity of glutathione peroxidase, and the activities of superoxide dismutase and malondialdehyde were assayed. Administration of the essential oil of A. capillaris at 100 and 50 mg/kg to mice prior to CCl4 injection was shown to confer stronger in vivo protective effects and could observably antagonize the CCl4-induced increase in the serum alanine aminotransferase and aspartate aminotransferase activities and malondialdehyde levels as well as prevent CCl4-induced decrease in the antioxidant superoxide dismutase activity, glutathione level and glutathione peroxidase activity (p < 0.01. The oil mainly contained β-citronellol, 1,8-cineole, camphor, linalool, α-pinene, β-pinene, thymol and myrcene. This finding demonstrates that the essential oil of A. capillaris can protect hepatic function against CCl4-induced liver injury in mice.

  19. Cordyceps sinensis protects against renal ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Wang, Hua-Pin; Liu, Ching-Wen; Chang, Hsueh-Wen; Tsai, Jen-Wei; Sung, Ya-Zhu; Chang, Li-Ching

    2013-03-01

    Cordyceps sinensis (CS) is an entomogenous fungus used as a tonic food and Chinese medicine to replenish health. This study investigated the protective effects of CS in rats post-renal ischemia-reperfusion (I/R) sequence by analyzing the influence on stromal cell-derived factor-1α (SDF-1α and chemokine (C-X-C motif) receptor 4 (CXCR4) expressions and senescence during recovery. Chemokine SDF-1 [now called chemokine C-X-C motif ligand 12 (CXCL12)] and its receptor CXCR4 are crucial in kidney repair after ischemic acute renal failure. CS treatment significantly alleviated I/R-induced renal damage assessed by creatinine levels (p < 0.05) and abated renal tubular damages assessed by periodic acid-Schiff with diastase (PASD) staining. CS induced early SDF-1α expression and increased CXCR4 expression 1-6 h post-reperfusion. Histology studies have revealed that CS induced SDF-1α in squamous cells of Bowman's capsule, mesangial cells, distal convoluted tubules (DCT), and proximal convoluted tubules (PCT). CS also improved renal repair in I/R-induced injury by increasing Ki-67 staining. I/R induced renal senescence after 3 and 6 h of reperfusion. However, CS alleviated I/R-induced senescence at early stage (1 and 3 h). We conclude that CS protects against I/R injury via the SDF-1/CXCR4-signaling axis and alleviates senescence.

  20. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-03-03

    Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice.

  1. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron

    Directory of Open Access Journals (Sweden)

    Yu-Fu Zhou

    2017-05-01

    Full Text Available Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.

  2. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    Science.gov (United States)

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  3. Total flavonoid extract from Coreopsis tinctoria Nutt. protects rats against myocardial ischemia/reperfusion injury.

    Science.gov (United States)

    Zhang, Ya; Yuan, Changsheng; Fang, He; Li, Jia; Su, Shanshan; Chen, Wen

    2016-09-01

    This study aimed to evaluate the protective effects of total flavonoid extract from Coreopsis tinctoria Nutt. (CTF) against myocardial ischemia/reperfusion injury (MIRI) using an isolated Langendorff rat heart model. Left ventricular developed pressure (LVDP) and the maximum rate of rise and fall of LV pressure (±dp/dtmax) were recorded. Cardiac injury was assessed by analyzing lactate dehydrogenase (LDH) and creatine kinase (CK) released in the coronary effluent. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Myocardial inflammation was assessed by monitoring tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), interleukin-8 (IL-8), and interleukin-6 (IL-6) levels. Myocardial infarct size was estimated. Cell morphology was assessed by 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin (HE) staining. Cardiomyocyte apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Pretreatment with CTF significantly increased the heart rate and increased LVDP, as well as SOD and GSH-Px levels. In addition, CTF pretreatment decreased the TUNEL-positive cell ratio, infarct size, and levels of CK, LDH, MDA, TNF-α, CRP, IL-6, and IL-8. These results suggest that CTF exerts cardio-protective effects against MIRI via anti-oxidant, anti-inflammatory, and anti-apoptotic activities.

  4. Life-threatening and disabling injuries in car-to-car side impacts--implications for development of protective systems.

    Science.gov (United States)

    Håland, Y; Lövsund, P; Nygren, A

    1993-04-01

    Improvements to the passive safety of cars in lateral collisions are of great importance. This study of injuries in car side collisions in Sweden by the use of two evaluation methods has been performed to establish the basis for future development of protective systems for this type of accident. The Folksam car accident data file has been used. Injuries were found to be twice as common for near-side than for far-side* occupants in car to car impacts. Serious to fatal (AIS 3-6) injuries to belted front seat occupants in near side impacts (10% of all injuries) were compared with the estimated number of injuries to different parts of the body with risk of serious consequences (RSC)--either deaths or permanent disabilities (4.5% of all injuries). The two injury evaluation methods resulted in different ranking orders. AIS 3-6 injuries were received by the chest (37%), abdomen/pelvis (25%), and the head (15%). The RSC method gave a ranking order of head (25%), neck (21%), leg (15%), chest (14%), and abdomen/pelvis (11%). The method of evaluating AIS 3-6 injuries emphasizes only the threat to life. The RSC method also takes into account the risk of disabilities. Injuries to the neck and the leg were found to be most disabling, whilst the injuries to the head, chest, and abdomen/pelvis were the most life threatening. The study also shows that elderly people receive significantly more chest injuries (relative to the number of head injuries), on average four times more than young people.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions.

    Directory of Open Access Journals (Sweden)

    Hany H Arab

    Full Text Available Alcohol consumption has been commonly associated with gastric mucosal lesions including gastric ulcer. Diosmin (DIO is a natural citrus flavone with remarkable antioxidant and anti-inflammatory features that underlay its protection against cardiac, hepatic and renal injuries. However, its impact on gastric ulcer has not yet been elucidated. Thus, the current study aimed to investigate the potential protective effects of DIO against ethanol-induced gastric injury in rats. Pretreatment with DIO (100 mg/kg p.o. attenuated the severity of ethanol gastric mucosal damage as evidenced by lowering of ulcer index (UI scores, area of gastric lesions, histopathologic aberrations and leukocyte invasion. These actions were analogous to those exerted by the reference antiulcer sucralfate. DIO suppressed gastric inflammation by curbing of myeloperoxidase (MPO and tumor necrosis factor-α (TNF-α levels along with nuclear factor kappa B (NF-κB p65 expression. It also augmented the anti-inflammatory interleukin-10 (IL-10 levels. Meanwhile, DIO halted gastric oxidative stress via inhibition of lipid peroxides with concomitant enhancement of glutathione (GSH, glutathione peroxidase (GPx and the total antioxidant capacity (TAC. With respect to gastric mucosal apoptosis, DIO suppressed caspase-3 activity and cytochrome C (Cyt C with enhancement of the anti-apoptotic B cell lymphoma-2 (Bcl-2 in favor of cell survival. These favorable actions were associated with upregulation of the gastric cytoprotective prostaglandin E2 (PGE2 and nitric oxide (NO. Together, these findings accentuate the gastroprotective actions of DIO in ethanol gastric injury which were mediated via concerted multi-pronged actions, including suppression of gastric inflammation, oxidative stress and apoptosis besides boosting of the antioxidant and the cytoprotective defenses.

  6. The possible protective effects of dipyridamole on ischemic reperfusion injury of priapism

    Directory of Open Access Journals (Sweden)

    Ersagun Karaguzel

    2016-02-01

    Full Text Available ABSTRACT Purpose To investigate the protective effects against ischemia reperfusion injury of dipyridamole in a model of induced priapism in rats. Materials and Methods Twenty-four male Sprague-Dawley rats were divided into four groups, control, P/R, P/R+DMSO and P/R+D. 3ml blood specimens were collected from vena cava inferior in order to determine serum MDA, IMA, TAS, TOS and OSI values, and penile tissue was taken for histopathological examination in control group. Priapism was induced in P/R group. After 1h, priapism was concluded and 30 min reperfusion was performed. In P/R+DMSO group 1ml/kg DMSO was administered intraperitoneally 30 min before reperfusion, while in P/R+D group 10mg/kg dipyridamole was administered intraperitoneally 30 min before reperfusion. Blood and penis specimens were collected after the end of 30 min reperfusion period. Sinusoidal area (µm2, tears in tunica albuginea and injury parameters in sinusoidal endothelium of penis were investigated. Results Histopathological examination revealed no significant changes in term of sinusoidal area. A decrease in tears was observed in P/R+D group compared to P/R group (p0.05. There were no significant differences in MDA and IMA values between groups. A significant increase in TOS and OSI values was observed in P/R+D group compared to P/R group. A significant decrease in TAS levels was observed in P/R+D group compared to the P/R group. Conclusions The administration of dipyridamole before reperfusion in ischemic priapism model has a potential protective effect against histopathological injury of the penis.

  7. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  8. Atorvastatin protects against ischemia-reperfusion injury in fructose-induced insulin resistant rats.

    Science.gov (United States)

    Prakash, Prem; Khanna, Vivek; Singh, Vishal; Jyoti, Anupam; Jain, Manish; Keshari, Ravi Shankar; Barthwal, Manoj Kumar; Dikshit, Madhu

    2011-08-01

    High fructose (HFr) intake is known to cause insulin resistance syndrome (IRS), however its effect against acute coronary events remains elusive. The present study was undertaken to evaluate the effect of HFr (60%) diet on myocardial ischemia-reperfusion (MI-RP) injury and its modulation by atorvastatin treatment. Wistar rats kept on HFr/chow feeding for 10 weeks, received atorvastatin (30 mg/kg, per oral) or vehicle for two additional weeks followed by MI-RP injury. MI-RP injury was significantly augmented in HFr fed rats, as evident by the increase in infarct size (IS, 65 ± 5% vs. 43 ± 7%) and activities of cardiac injury biomarkers [serum lactate dehydrogenase (LDH, 698 ± 57 vs. 444 ± 26 U/L), creatinine kinase (CK-MB, 584 ± 58 vs. 435 ± 28 U/L) and tissue myeloperoxidase (MPO, 235 ± 15 vs. 101 ± 11 μM/min/100 mg tissue)]. Insulin resistance (plasma glucose, 64 ± 5 vs. 100 ± 5 mg/dl; AUC (0-120 min), p < 0.05), MI-RP injury (IS 20 ± 5%, LDH 292 ± 28 U/L, CK-MB 257 ± 13 U/L, MPO 95 ± 5 μM/min/100 mg tissue) and triglyceride (TG) level were significantly reduced, while myocardial Akt, p-Akt, eNOS, p-eNOS and iNOS protein expression were significantly enhanced following atorvastatin treatment in comparison to HFr fed rats. Oxidative stress marker, malondialdehyde and circulating levels of inflammatory cytokines (CRP, IL-6, IFN-γ and TNF) were significantly reduced, while total nitrite content in the tissue and plasma was significantly augmented in atorvastatin treated rats. Atorvastatin also ameliorated endothelial dysfunction and significantly enhanced aortic Akt and eNOS protein expression. Atorvastatin conferred significant protection against MI-RP injury and alleviated HFr induced IRS possibly by increasing NOS expression through Akt dependent pathway.

  9. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  10. Reduction in radiation-induced brain injury by use of pentobarbital or lidocaine protection

    International Nuclear Information System (INIS)

    Oldfield, E.H.; Friedman, R.; Kinsella, T.; Moquin, R.; Olson, J.J.; Orr, K.; DeLuca, A.M.

    1990-01-01

    To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the other two groups (p less than 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure. Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise unsafe doses of radiation in patients with CNS neoplasms

  11. Protective Efficacy of Emodin against γ-Rays Induced Acute Hepatorenal Injury in Rats

    International Nuclear Information System (INIS)

    Ibrahim, S.I.; Lotfi, S.A.

    2011-01-01

    Emodin(C 16 H 12 O 5 ), an active principle extracted from Rheum palmatum. Its protective effect was evaluated against γ-rays-induced biochemical alterations in rats. The purpose of recent study is to demonstrate protective efficacy of emodin against γ-rays induced acute hepatorenal injury in rats.γ -irradiation (6 Gy) caused significant elevation in the release of serum alanine and aspartate transaminases, (ALT and AST), alkaline phosphatase (SALP), lactate dehydrogenase (LDH), bilirubin (Br) and glucose (Gu) with concomitant decrease in haemoglobin (Hb) after 24 h of its exposure. Toxicant exposure intensified the lipid peroxidation (LPO, measured as MDA units), total cholesterol (TC) and activity of acid phosphatase (TAC) and altered glutathione status (GSH), activities of adenosine triphosphatase (ATP), alkaline phosphatase (TALP), glutamate dehydrogenase (GDH) as well as major cellular constituents; total proteins (TP) and glycogen (Gn) in liver and kidney, compared to control measures. Emodin, oral treatment, significantly lessened the toxicity by protecting γ-rays-induced alterations in various blood and tissue biochemical variables, compared to irradiated groups. Thus, the study concluded that emodin at a dose of 40 mg/ kg body wt possesses optimum hepatorenal protective ability in γ-irradiated toxicant rats

  12. Paeoniflorin, a Monoterpene Glycoside, Protects the Brain from Cerebral Ischemic Injury via Inhibition of Apoptosis.

    Science.gov (United States)

    Zhang, Yuqin; Li, Huang; Huang, Mingqing; Huang, Mei; Chu, Kedan; Xu, Wei; Zhang, Shengnan; Que, Jinhua; Chen, Lidian

    2015-01-01

    Paeoniflorin (PF) is a principal bioactive component, which exhibits many pharmacological effects, including protection against ischemic injury. This paper aimed to investigate the protective effect of PF both in vivo and in vitro. Middle cerebral artery occlusion (MCAO) was performed on male Sprague-Dawley (SD) rat for 2 h, and different doses of PF or vehicle were administered 2 h after reperfusion. Rats were sacrificed after 7 days treatment of PF/vehicle. PF treatment for 7 days ameliorated MCAO-induced neurological deficit and decreased the infarct area. Further study demonstrated that PF inhibited the over-activation of astrocytes and apoptosis of neurons, and PF promoted up-regulation of neuronal specific marker neuron-specific nuclear (NeuN) and microtubule-associated protein 2 (MAP-2) in brain. Moreover, NMDA-induced neuron apoptosis was employed. The in vitro study revealed that PF treatment protected against NMDA-induced cell apoptosis and neuronal loss via up-regulation of neuronal specific marker NeuN, MAP-2 and Bcl-2 and the down-regulation Bax. Taken together, the present study demonstrates that PF produces its protective effect by inhibiting the over-activation of astrocytes, apoptosis of neurons and up-regulation of neuronal specific marker NeuN, MAP-2, and B-cell lymphoma-2 (Bcl-2), and down-regulation Bax. Our study reveals that PF may be a potential neuroprotective agent for stroke and can provide basic data for clinical use.

  13. A clinical study of multiple trauma combined with acute lung injury

    Directory of Open Access Journals (Sweden)

    Tao Liang

    2016-11-01

    Full Text Available Objective: To study the changes of the contents of inflammatory mediators in serum of polytrauma patients with acute lung injury (ALI and their correlation with the disease. Methods: Patients suffering from multiple trauma combined with ALI were selected as ALI group (n = 54. Patients suffering from multiple trauma without ALI were considered as the control group (n = 117. The severity of the disease of patients in the two groups was assessed. Arterial blood was extracted for blood gas analysis. Venous blood was extracted to detect the contents of inflammatory mediators tumor necrosis factor-a, interleukin-1b (IL-1b, IL-10, granulocyte-macrophage colony stimulating factor, NO, endothelin-1. Results: The scores of injury severity score [(25.42 ± 3.58 vs. (17.03 ± 2.25], systemic inflammatory response syndrome [(3.85 ± 0.52 vs. (2.20 ± 0.36] and acute physiology and chronic health evaluation II [(92.63 ± 11.04 vs. (60.46 ± 8.87] in patients in ALI group were all significantly higher than those in the control group and its correcting shock time [(8.39 ± 1.05 vs. (5.15 ± 0.72 h] was longer than that of the control group. The amount of blood transfusion [(674.69 ± 93.52 vs. (402.55 ± 57.65 mL] was greater than that in the control group. The contents of the arterial partial pressure of oxygen [(76.65 ± 9.68 vs. (86.51 ± 10.56 mmHg], arterial blood pressure of carbon dioxide [(27.76 ± 4.82 vs. (36.78 ± 5.82 mmHg] and arterial partial pressure of oxygen/fraction of inspired oxygen [(236.94 ± 36.49 vs. (353.95 ± 47.76] were all significantly lower than those in the control group. The contents of serum tumor necrosis factor-a, IL-1b, IL- 10, granulocyte-macrophage colony stimulating factor, NO and endothelin-1 were obviously higher than those of control group and also positively correlated with the scores of injury severity score, systemic inflammatory response syndrome and acute physiology and chronic health evaluation II. Conclusions

  14. Common Peroneal Nerve Palsy with Multiple-Ligament Knee Injury and Distal Avulsion of the Biceps Femoris Tendon

    Directory of Open Access Journals (Sweden)

    Takeshi Oshima

    2015-01-01

    Full Text Available A multiple-ligament knee injury that includes posterolateral corner (PLC disruption often causes palsy of the common peroneal nerve (CPN, which occurs in 44% of cases with PLC injury and biceps femoris tendon rupture or avulsion of the fibular head. Approximately half of these cases do not show functional recovery. This case report aims to present a criteria-based approach to the operation and postoperative management of CPN palsy that resulted from a multiple-ligament knee injury in a 22-year-old man that occurred during judo. We performed a two-staged surgery. The first stage was to repair the injuries to the PLC and biceps femoris. The second stage involved anterior cruciate ligament reconstruction. The outcomes were excellent, with a stable knee, excellent range of motion, and improvement in the palsy. The patient was able to return to judo competition 27 weeks after the injury. To the best of our knowledge, this is the first case report describing a return to sports following CPN palsy with multiple-ligament knee injury.

  15. Multiple bilateral lower limb fractures in a 2-year-old child: previously unreported injury with a unique mechanism

    Directory of Open Access Journals (Sweden)

    Anuj Jain

    2014-10-01

    Full Text Available 【Abstract】Fall from height is a common cause of unintentional injuries in children and accounts for 6% of all trauma-related childhood deaths, usually from head injury. We report a case of a 2-year-old child with multiple fractures of the bilateral lower limbs due to this reason. A child fell from a height of around 15 feet after toppling from a alcony. He developed multiple fractures involving the right femoral shaft, right distal femoral epiphysis (Salter Harris type 2, right distal metaphysis of the tibia and fi bula, and undisplaced Salter Harris type 2 epiphyseal injury of the left distal tibia. There were no head, abdominal or spinal injuries. The patient was taken into emergency operation theatre after initial management which consisted of intravenous fl uids, blood transfusion, and splintage of both lower limbs. Fracture of the femoral shaft was treated by closed reduction and fixation using two titanium elastic nails. Distal femoral physeal injury required open eduction and fixation with K wires. Distal tibia fractures were closely reduced and managed nonoperatively in both the lower limbs. All the fractures united in four weeks. At the last follow-up, the child had no disability and was able to perform daily ctivities comfortably. We also proposed the unique mechanism of injury in this report. Key words: Multiple bilateral lower limb fractures; Fall; Child

  16. Gender-Based Violence Causing Severe Multiple Injuries; a Case Report

    Directory of Open Access Journals (Sweden)

    Adalard Falschung

    2018-04-01

    Full Text Available Introduction: Gender-based violence (GBV against women has been identified as a global health and development issue. We reported a case of GBV causing sever, multiple injuries in a middle-aged female. Case report: A 47-year-old woman presented to emergency room with disturbed level of consciousness, shortness of breath and multiple patches of skin discoloration. On examination, the patient was semi-conscious, with multiple ecchymosis and bilateral decreased air entry. Computed tomography scan of the neck and chest showed six rib fractures on the left side, and eight rib fractures on the right side, sternal fracture, manubriosternal dislocation, bilateral hemothorax, fracture of body of eleventh thoracic vertebra, and fracture of cervical spine of fifth and seventh vertebrae. The patient was intubated and admitted to intensive care unit. She was discharged with good health condition after 23 days of hospital admission. Conclusion: GBV is still a cause of severe trauma that puts the patient’s life at risk.

  17. The compound Chinese medicine "Kang Fu Ling" protects against high power microwave-induced myocardial injury.

    Science.gov (United States)

    Zhang, Xueyan; Gao, Yabing; Dong, Ji; Wang, Shuiming; Yao, Binwei; Zhang, Jing; Hu, Shaohua; Xu, Xinping; Zuo, Hongyan; Wang, Lifeng; Zhou, Hongmei; Zhao, Li; Peng, Ruiyun

    2014-01-01

    The prevention and treatment of Microwave-caused cardiovascular injury remains elusive. This study investigated the cardiovascular protective effects of compound Chinese medicine "Kang Fu Ling" (KFL) against high power microwave (HPM)-induced myocardial injury and the role of the mitochondrial permeability transition pore (mPTP) opening in KFL protection. Male Wistar rats (100) were divided into 5 equal groups: no treatment, radiation only, or radiation followed by treatment with KFL at 0.75, 1.5, or 3 g/kg/day. Electrocardiography was used to Electrophysiological examination. Histological and ultrastructural changes in heart tissue and isolated mitochondria were observed by light microscope and electron microscopy. mPTP opening and mitochondrial membrane potential were detected by confocal laser scanning microscopy and fluorescence analysis. Connexin-43 (Cx-43) and endothelial nitric oxide synthase (eNOS) were detected by immunohistochemistry. The expression of voltage-dependent anion channel (VDAC) was detected by western blotting. At 7 days after radiation, rats without KFL treatment showed a significantly lower heart rate (P<0.01) than untreated controls and a J point shift. Myocyte swelling and rearrangement were evident. Mitochondria exhibited rupture, and decreased fluorescence intensity, suggesting opening of mPTP and a consequent reduction in mitochondrial membrane potential. After treatment with 1.5 g/kg/day KFL for 7 d, the heart rate increased significantly (P<0.01), and the J point shift was reduced flavorfully (P<0.05) compared to untreated, irradiated rats; myocytes and mitochondria were of normal morphology. The fluorescence intensities of dye-treated mitochondria were also increased, suggesting inhibition of mPTP opening and preservation of the mitochondrial membrane potential. The microwave-induced decrease of Cx-43 and VDAC protein expression was significantly reversed. Microwave radiation can cause electrophysiological, histological and

  18. The compound Chinese medicine "Kang Fu Ling" protects against high power microwave-induced myocardial injury.

    Directory of Open Access Journals (Sweden)

    Xueyan Zhang

    Full Text Available BACKGROUND: The prevention and treatment of Microwave-caused cardiovascular injury remains elusive. This study investigated the cardiovascular protective effects of compound Chinese medicine "Kang Fu Ling" (KFL against high power microwave (HPM-induced myocardial injury and the role of the mitochondrial permeability transition pore (mPTP opening in KFL protection. METHODS: Male Wistar rats (100 were divided into 5 equal groups: no treatment, radiation only, or radiation followed by treatment with KFL at 0.75, 1.5, or 3 g/kg/day. Electrocardiography was used to Electrophysiological examination. Histological and ultrastructural changes in heart tissue and isolated mitochondria were observed by light microscope and electron microscopy. mPTP opening and mitochondrial membrane potential were detected by confocal laser scanning microscopy and fluorescence analysis. Connexin-43 (Cx-43 and endothelial nitric oxide synthase (eNOS were detected by immunohistochemistry. The expression of voltage-dependent anion channel (VDAC was detected by western blotting. RESULTS: At 7 days after radiation, rats without KFL treatment showed a significantly lower heart rate (P<0.01 than untreated controls and a J point shift. Myocyte swelling and rearrangement were evident. Mitochondria exhibited rupture, and decreased fluorescence intensity, suggesting opening of mPTP and a consequent reduction in mitochondrial membrane potential. After treatment with 1.5 g/kg/day KFL for 7 d, the heart rate increased significantly (P<0.01, and the J point shift was reduced flavorfully (P<0.05 compared to untreated, irradiated rats; myocytes and mitochondria were of normal morphology. The fluorescence intensities of dye-treated mitochondria were also increased, suggesting inhibition of mPTP opening and preservation of the mitochondrial membrane potential. The microwave-induced decrease of Cx-43 and VDAC protein expression was significantly reversed. CONCLUSION: Microwave radiation can

  19. Cortical injury in multiple sclerosis; the role of the immune system

    Directory of Open Access Journals (Sweden)

    Walker Caroline A

    2011-12-01

    Full Text Available Abstract The easily identifiable, ubiquitous demyelination and neuronal damage that occurs within the cerebral white matter of patients with multiple sclerosis (MS has been the subject of extensive study. Accordingly, MS has historically been described as a disease of the white matter. Recently, the cerebral cortex (gray matter of patients with MS has been recognized as an additional and major site of disease pathogenesis. This acknowledgement of cortical tissue damage is due, in part, to more powerful MRI that allows detection of such injury and to focused neuropathology-based investigations. Cortical tissue damage has been associated with inflammation that is less pronounced to that which is associated with damage in the white matter. There is, however, emerging evidence that suggests cortical damage can be closely associated with robust inflammation not only in the parenchyma, but also in the neighboring meninges. This manuscript will highlight the current knowledge of inflammation associated with cortical tissue injury. Historical literature along with contemporary work that focuses on both the absence and presence of inflammation in the cerebral cortex and in the cerebral meninges will be reviewed.

  20. A Complex Facial Trauma Case with Multiple Mandibular Fractures and Dentoalveolar Injuries

    Directory of Open Access Journals (Sweden)

    Yeliz Guven

    2015-01-01

    Full Text Available The principles of management of mandibular fractures differ in children when compared to adults and depend on the specific age-related status of the growing mandible and the developing dentition. This paper presents a case report with a complex facial trauma affecting the mandibular body and condyle region and dentoalveolar complex. Clinical examination revealed soft tissue injuries, limited mouth opening, lateral deviation of the mandible, an avulsed incisor, a subluxated incisor, and a fractured crown. CBCT examination revealed a nondisplaced fracture and an oblique greenstick fracture of the mandibular body and unilateral fracture of the condyle. Closed reduction technique was chosen to manage fractures of the mandible. Favorable healing outcomes on multiple fractures of the mandible throughout the 6-year follow-up period proved the success of the conservative treatment. This case report is important since it presents a variety of pathological sequelae to trauma within one case.

  1. Acrolein detection: potential theranostic utility in multiple sclerosis and spinal cord injury.

    Science.gov (United States)

    Tully, Melissa; Zheng, Lingxing; Shi, Riyi

    2014-06-01

    Oxidative stress has been implicated as a major pathological process underlying CNS disease and trauma. More specifically, acrolein, an unsaturated aldehyde, produced by way of lipid peroxidation, has been shown to play a crucial role in initiating and perpetuating detrimental effects associated with multiple sclerosis and spinal cord injury. In light of these findings, quantification of acrolein levels both systemically and locally could allow for the use of acrolein as a biomarker to aid in diagnosis and guide treatment regimens. The three main approaches currently available are acrolein derivatization followed by LC/GC-MS, application of an acrolein antibody and subsequent immunoblotting, and the 3-hydroxypropylmercapturic acid-based method. Of these three strategies, the 3-hydroxypropylmercapturic acid-based method is the least invasive allowing for rapid translation of acrolein detection into a clinical setting.

  2. Distance protection of multiple-circuit shared tower transmission lines with different voltages

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    combined faults, being advised to increase the resistive limit of the protection zone, if the network has lower short-circuit power. It is recommended to assure that the fault can only happen for cases where the faulted phase from the higher voltage level leads the faulted phase from the lower voltage......Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. In this study, the fault loop impedance of combined faults is compared with the fault loop impedance......-phase-to-ground faults. It is also demonstrated that the fault loop impedance of combined faults is more resistive, when compared with equivalent single-phase-to-ground faults. It is concluded that the settings used to protect a line against single-phase-to-ground faults are capable of protecting the line against...

  3. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ewa Soltysinska

    Full Text Available Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP, but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of

  4. Multiple effects of self-protection on the spreading of epidemics

    International Nuclear Information System (INIS)

    Wang, Zhigang; Zhang, Haifeng; Wang, Zhen

    2014-01-01

    Aside from the commonly considered strategies: vaccination or risk, in this work another basic policy self-protection strategy is incorporated into research of epidemics spreading. Then within the network-theoretical framework, we mainly explore the impact of self-protection strategy on the epidemic size and the eradication of infection. Interestingly, we find that the self-protection influence is multiple: given that the effectiveness of the self-protective strategy is negligible, nobody is willing to take up this act, both vaccination and risk traits dominate the whole system; On the contrary, when the effectiveness of self-protective policy is elevated, it becomes a popular strategy and the size of epidemic can be controlled at a relatively low level. However, one worse situation is present as well: when the effectiveness of self-protection is moderate, the infection probability and epidemic size can reach the maximal level. This is because that, under such a case, the emergence of the self-protective strategy neither inspires the enthusiasm of vaccination nor provides ideal effect

  5. Epidemiological analysis of demographic characteristics and type of injuries in patients with multiple trauma with respect to conclusive treatment outcome

    Directory of Open Access Journals (Sweden)

    Zagorac Slaviša

    2008-01-01

    Full Text Available Introduction Multiple trauma is one of the leading causes of mortality and morbidity in the population of people under 45 years of age. The consequences of multiple trauma have huge epidemiological, social and economic significance. Objective The aim of the paper was to analyze the conclusive treatment outcome of multiply traumatized patients with respect to their sex, age, injury mechanism and type. METHOD This retrospective study included 100 patients with multiple injuries (ISS>16 treated in the Emergency Room of the Clinical Centre of Serbia in the course of 2004. Clinical, X-ray, laboratory and numerical presentation methods - scores (ISS and GCS were used to show the injury severity. Results Most of the injured were males (80%, and the average age was 40±20 (5-83. Out of the total number of patients who died, 23 (82% were males, and 5 (18% were females. The average age of the patients with fatal outcomes was 48±21 (8-86. Traffic accidents were the leading cause of injury (59%. The median GCS was 10±3 (3-15. The average ISS was 30 (20-66 in the surviving patients, and 53 (27-77 in those who died. Conclusion With respect to sex, in most cases multiple trauma affects males (p<0.01, with the average age of about 40. With respect to injury mechanism, the main cause of the occurrence of multiple trauma is traffic accidents (p<0.01. There is a statistically significant difference in the values of GCS and ISS relative to the definitive outcome (p<0.01. Statistical data processing indicated that there was a statistically significant correlation between mortality and type of injury in a given organic system (p<0.01, but that there was no statistically significant correlation between mortality and age. .

  6. Citrus bergamia Risso & Poiteau juice protects against renal injury of diet-induced hypercholesterolemia in rats.

    Science.gov (United States)

    Trovato, Ada; Taviano, Maria F; Pergolizzi, Simona; Campolo, Loredana; De Pasquale, Rita; Miceli, Natalizia

    2010-04-01

    The present study was designed to evaluate the protective effect of treatment with Citrus bergamia juice (1 mL/day, for 30 days) against hypercholesterolemic diet-induced renal injury in rat.C. bergamia juice provoked a significant reduction in the plasma levels of cholesterol, triglycerides and LDL, and an increase in HDL levels, versus hyperlipidemic controls (p juice administration significantly decreased MDA levels elevations compared with hyperlipidemic controls (4.10 +/- 0.10 nmol/mg protein and 4.78 +/- 0.15 nmol/mg protein, respectively).Histological observations of the kidney supported the biochemical data and indicated a protective effect of C. bergamia juice on the development of renal damage in hypercholesterolemic rats.The antioxidant potential of C. bergamia juice was examined in two in vitro systems: in the DPPH test the juice showed a noticeable effect on scavenging free radicals (IC(50) = 25.01 +/- 0.70 +/-L); in the reducing power assay it showed a strong activity, too (1.44 +/- 0.01 ASE/mL).These findings suggest that C. bergamia juice has a protective role in hypercholesterolemic diet-induced renal damage, which may be attributed to its antioxidant properties. Copyright (c) 2009 John Wiley & Sons, Ltd.

  7. Protection from radiation injury through oral administration of PF4 gene carried by attenuated salmonella

    International Nuclear Information System (INIS)

    Zhao Lihua; Liu Bin; Yu Xiaofei; Zhang Lei; Han Zhongchao

    2005-01-01

    Objective: To investigate the in vivo radiation protection effect of PF4 by oral administration of attenuated salmonella as the carrier in mice. Methods: The eukaryotic vector pIRES2-EGFP-carried PF4 gene was transferred into an aroA-autotrophic mutant of salmonella typhimurium (SL3261), which was administered orally to BALBPc mice at 1x10 8 PFu once every interval three days. At 12 hours after the third oral administration the mice were subjected to a total body irradiation (TBI) of 700 cGy by a 60 Co source. The protective effect of SL3261/PF4 was determined by detection GFP ( green fluorescence protein) expression in tissues, peripheral blood count, culture of bone marrow colony-forming cells and survival time of mice. Results: Expression of GFP could be detected in the liver, spleen, intestine, kidney, peripheral blood and bone marrow. On days 7 and 14 after irradiation, Compared to controls, there were obvious differences in number of bone marrow mononuclear cells, CFU-GM (granulocyte-macrophage colony-forming unit ) and HPP-CFC (high proliferating potential-colony-forming cells) of mice treated with SL3261/PF4 (P<0.05) as well as prolongation of the survival time. Conclusion: These data demonstrate for the first time that PF4 protects mice from TBI injury and accelerates recovery of hematopoiesis by oral administration of attenuated salmonella carrying PF4 gene. (authors)

  8. Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance

    Science.gov (United States)

    Jin, Jianliang; Lv, Xianhui; Chen, Lulu; Zhang, Wei; Li, Jinbo; Wang, Qian; Wang, Rong; Lu, Xiang; Miao, Dengshun

    2014-01-01

    To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1-/- mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL−1) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg−1 diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1-/- and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1-/- mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1-/- mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury. PMID:24915841

  9. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    Science.gov (United States)

    Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R

    2014-01-01

    The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (pVentilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.

  10. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Xinhua Zhou

    2015-01-01

    Full Text Available Edaravone (EDA is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA- induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.

  11. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways

    Directory of Open Access Journals (Sweden)

    Meihui Chen

    2016-01-01

    Full Text Available Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs death caused by hydrogen peroxide (H2O2, imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.

  12. Injury protection and accident causation parameters for vulnerable road users based on German In-Depth Accident Study GIDAS.

    Science.gov (United States)

    Otte, Dietmar; Jänsch, Michael; Haasper, Carl

    2012-01-01

    Within a study of accident data from GIDAS (German In-Depth Accident Study), vulnerable road users are investigated regarding injury risk in traffic accidents. GIDAS is the largest in-depth accident study in Germany. Due to a well-defined sampling plan, representativeness with respect to the federal statistics is also guaranteed. A hierarchical system ACASS (Accident Causation Analysis with Seven Steps) was developed in GIDAS, describing the human causation factors in a chronological sequence. The accordingly classified causation factors - derived from the systematic of the analysis of human accident causes ("7 steps") - can be used to describe the influence of accident causes on the injury outcome. The bases of the study are accident documentations over ten years from 1999 to 2008 with 8204 vulnerable road users (VRU), of which 3 different groups were selected as pedestrians n=2041, motorcyclists n=2199 and bicyclists n=3964, and analyzed on collisions with cars and trucks as well as vulnerable road users alone. The paper will give a description of the injury pattern and injury mechanisms of accidents. The injury frequencies and severities are pointed out considering different types of VRU and protective measures of helmet and clothes of the human body. The impact points are demonstrated on the car, following to conclusion of protective measures on the vehicle. Existing standards of protection devices as well as interdisciplinary research, including accident and injury statistics, are described. With this paper, a summarization of the existing possibilities on protective measures for pedestrians, bicyclists and motorcyclists is given and discussed by comparison of all three groups of vulnerable road users. Also the relevance of special impact situations and accident causes mainly responsible for severe injuries are pointed out, given the new orientation of research for the avoidance and reduction of accident patterns. 2010 Elsevier Ltd. All rights reserved.

  13. Protective agents used as additives in University of Wisconsin solution to promote protection against ischaemia-reperfusion injury in rat lung.

    Science.gov (United States)

    Chiang, C H; Wu, K; Yu, C P; Perng, W C; Yan, H C; Wu, C P; Chang, D M; Hsu, K

    1998-09-01

    1. An intervention to reduce ischaemia-reperfusion lung injury will be an important advance in transplant medicine. Although the mechanisms associated with producing ischaemia-reperfusion endothelial injury have not been completely elucidated, many of the injury mediators have been studied in detail. While no single pharmacological therapy is likely to be totally effective in eliminating this complex injury, we have developed a mixture of agents that are known to block pathways involved in producing ischaemia-reperfusion-associated lung vascular injury.2. The present study modified University of Wisconsin solution (UW) by adding one of the protective agents prostaglandin E1 (PGE1), dexamethasone (Dex) or dibutyryl cAMP (Bt2-cAMP), or a combination of these, to the perfusate of rat lungs exposed to 4 h of cold ischaemia followed by 1 h of reperfusion. Nine modified UW solutions were studied: (1) UW+Dex, (2) UW+PGE1, (3) UW+Bt2-cAMP, (4) UW+Dexx3, (5) UW+PGE1x3, (6) UW+Bt2-cAMPx3, (7) UW+Dex+PGE1, (8) UW+Dex+Bt2-cAMP, (9) UW+PGE1+Bt2-cAMP. These solutions were utilized in individual experiments to assess haemodynamic changes, lung weight gain, the capillary filtration coefficient (Kfc) and pathology in all lungs.3. The results indicate that lung weight gain and Kfc values were significantly lower than with UW alone in groups 1, 2 and 3, which contained only one additional protective agent. In groups 4, 5 and 6, which contain three times the concentration of each protective agent, both Kfc and lung weight gain were similar to those measured in groups 1, 2 and 3, i.e. lungs were protected but the protection was not dose dependent. In groups 7, 8 and 9, which contained two protective agents, lung weight gain and Kfc were greatly reduced compared with UW alone. Histopathological studies showed similar decreases in the injury profiles of lungs.4. Although UW contains several antioxidant protective agents such as allopurinol and glutathione, it did not provide effective

  14. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  15. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury.

    Science.gov (United States)

    Liu, Jun; Lu, Jian-feng; Wen, Xiao-yuan; Kan, Juan; Jin, Chang-hai

    2015-01-01

    In this study, the antioxidant activity and hepatoprotective effect of inulin and catechin grafted inulin (catechin-g-inulin) against carbon tetrachloride (CCl4)-induced acute liver injury were investigated. Results showed that both inulin and catechin-g-inulin had moderate scavenging activity on superoxide radical, hydroxyl radical and H2O2, as well as lipid peroxidation inhibition effect. The antioxidant activity decreased in the order of Vc > catechin >catechin-g-inulin > inulin. Administration of inulin and catechin-g-inulin could significantly reduce the elevated levels of serum aspartate transaminase, alanine transaminase and alkaline phosphatase as compared to CCl4 treatment group. Moreover, inulin and catechin-g-inulin significantly increased the levels of hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and total antioxidant capacity, whereas markedly decreased the malondialdehyde level when compared with CCl4 treatment group. Notably, catechin-g-inulin showed higher hepatoprotective effect than inulin. In addition, the hepatoprotective effect of catechin-g-inulin was comparable to positive standard of silymarin. Our results suggested that catechin-g-inulin had potent antioxidant activity and potential protective effect against CCl4-induced acute liver injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Protective effect of Hibiscus sabdariffa against serum/glucose deprivation-induced PC12 cells injury

    Science.gov (United States)

    Bakhtiari, Elham; Hosseini, Azar; Mousavi, Seyed Hadi

    2015-01-01

    Objectives: Findings natural products with antioxidant and antiapoptotic properties has been one of the interesting challenges in the search for the treatment of neurodegenerative diseases including ischemic stroke. Serum/glucose deprivation (SGD) has been used as a model for the understanding of the molecular mechanisms of neuronal damage during ischemia in vitro and for the expansion of neuroprotective drugs against ischemia-induced brain injury. Recent studies showed that Hibiscus sabdariffa exert pharmacological actions such as potent antioxidant. Therefore, in this study we investigated the protective effect of extract of H. sabdariffa against SGD-induced PC12 cells injury. Materials and Methods: Cells were pretreated with different concentrations of H. sabdariffa extract (HSE) for 2 hr, and then exposed to SGD condition for 6, 12 and 18 hr. Results: SGD caused a major reduction in cell viability after 6, 12, and 18 hr as compared with control cells (psabdariffa has the potential to be used as a new therapeutic approach for neurodegenerative disorders. PMID:26101756

  17. Protective effect of Mangifera indica L. extract (Vimang) on the injury associated with hepatic ischaemia reperfusion.

    Science.gov (United States)

    Sánchez, Gregorio Martínez; Rodríguez H, María A; Giuliani, Attilia; Núñez Sellés, Alberto J; Rodríguez, Niurka Pons; León Fernández, Olga Sonia; Re, L

    2003-03-01

    The effect of Mangifera indica L. extract (Vimang) on treatment of injury associated with hepatic ischaemia/reperfusion was tested. Vimang protects from the oxidative damage induced by oxygen-based free radicals as shown in several in vitro test systems conducted. The ability of Vimang to reduce liver damage was investigated in rats undergoing right-lobe blood fl ow occlusion for 45 min followed by 45 min of reperfusion. The ischaemia/reperfusion model leads to an increase of transaminase (ALT and AST), membrane lipid peroxidation, tissue neutrophil in filtration, DNA fragmentation, loss of protein -SH groups, cytosolic Ca2+ overload and a decrease of catalase activity. Oral administration of Vimang (50, 110 and 250 mg/kg, b.w.) 7 days before reperfusion, reduced transaminase levels and DNA fragmentation in a dose dependent manner (p Vimang also restored the cytosolic Ca2+ levels and inhibited polymorphonuclear migration at a dose of 250 mg/kg b.w., improved the oxidation of total and non protein sulfhydryl groups and prevented modification in catalase activity, uric acid and lipid peroxidation markers (p Vimang could be a useful new natural drug for preventing oxidative damage during hepatic injury associated with free radical generation. Copyright 2003 John Wiley & Sons, Ltd.

  18. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow.

    Science.gov (United States)

    Wang, Qin; Fan, Weijia; Cai, Ying; Wu, Qiaoli; Mo, Lidong; Huang, Zhenwu; Huang, Huiling

    2016-09-01

    In mammalian tissues, taurine is an important natural component and the most abundant free amino acid in the heart, retina, skeletal muscle, brain, and leukocytes. This study is to examine the taurine's protective effects on neuronal ultrastructure, the function of the mitochondrial respiratory chain complex, and on cerebral blood flow (CBF). The model of traumatic brain injury (TBI) was made for SD rats by a fluid percussion device, with taurine (200 mg/kg) administered by tail intravenous injection once daily for 7 days after TBI. It was found that CBF was improved for both left and right brain at 30 min and 7 days post-injury by taurine. Reaction time was prolonged relative to the TBI-only group. Neuronal damage was prevented by 7 days taurine. Mitochondrial electron transport chain complexes I and II showed greater activity with the taurine group. The improvement by taurine of CBF may alleviate edema and elevation in intracranial pressure. Importantly taurine improved the hypercoagulable state.

  19. The protective effect of lycopene against radiation injury to the small intestine of abdominally radiated mice

    International Nuclear Information System (INIS)

    Itoh, Youko; Kurabe, Teruhisa; Ishiguchi, Tsuneo

    2004-01-01

    To reduce the side effects of radiotherapy, radioprotective effects of lycopene on villi and crypts in the small intestine of abdominally radiated mice (15 Gy) were examined with administration pre-, continuous and post-radiation. In the lycopene group, the ratio of the villus length to the crypt was significantly increased in comparison with the radiation only group at 2 days after radiation. At 7 days after radiation, the ratio of necrotic cells in crypt/total was significantly decreased and the ratio of necrotic cells in villus/total was significantly increased by lycopene administration, which indicated an acceleration of the recovery from the radiation injury with lycopene. Each lycopene administered group showed a significant radioprotective effect, with the pre-radiation administration inducing a smaller effect than that of continuous and post-radiation administration. Radiation induced apoptosis was also decreased by lycopene administration. It is concluded that pre-, continuous and post-radiation administration of lycopene protects against radiation injury of the small intestine and accelerate the recovery. (author)

  20. Comparison of influencing factors on outcomes of single and multiple road traffic injuries: A regional study in Shanghai, China (2011-2014.

    Directory of Open Access Journals (Sweden)

    Wenya Yu

    Full Text Available To identify key intervention factors and reduce road traffic injury (RTI-associated mortality, this study compared outcomes and influencing factors of single and multiple road traffic injuries (RTIs in Shanghai.Based on the design of National Trauma Data Bank, this study collected demographic, injury, and outcome data from RTI patients treated at the four largest trauma centers in Shanghai from January 2011 to January 2015. Data were analyzed with descriptive statistics, univariate analysis, and hierarchical logistic regression analysis.Among 2397 participants, 59.4% had a single injury, and 40.6% had multiple injuries. Most patients' outcome was cure or improvement. For single-RTI patients, length of stay, body region, central nervous system injury, acute renal failure, multiple organ dysfunction syndrome, bacterial infection, and coma were significantly related to outcome. For multiple-RTI patients, age, admission pathway, prehospital time, length of stay, number of body regions, body region, injury condition, injury severity score, and coma were significantly related to outcome.Emergency rescue in road traffic accidents should focus on high-risk groups (the elderly, high-incidence body regions (head, thorax, pelvis and number of injuries, injury condition (central nervous system injury, coma, complications, admission pathway, injury severity (critically injured patients, and time factors (particularly prehospital time.

  1. CD4 T cell knockout does not protect against kidney injury and worsens cancer.

    Science.gov (United States)

    Ravichandran, Kameswaran; Wang, Qian; Ozkok, Abdullah; Jani, Alkesh; Li, Howard; He, Zhibin; Ljubanovic, Danica; Weiser-Evans, Mary C; Nemenoff, Raphael A; Edelstein, Charles L

    2016-04-01

    Most previous studies of cisplatin-induced acute kidney injury (AKI) have been in models of acute, high-dose cisplatin administration that leads to mortality in non-tumor-bearing mice. The aim of the study was to determine whether CD4 T cell knockout protects against AKI and cancer in a clinically relevant model of low-dose cisplatin-induced AKI in mice with cancer. Kidney function, serum neutrophil gelatinase-associated lipocalin (NGAL), acute tubular necrosis (ATN), and tubular apoptosis score were the same in wild-type and CD4 -/- mice with AKI. The lack of protection against AKI in CD4 -/- mice was associated with an increase in extracellular signal-regulated kinase (ERK), p38, CXCL1, and TNF-α, mediators of AKI and fibrosis, in both cisplatin-treated CD4 -/- mice and wild-type mice. The lack of protection was independent of the presence of cancer or not. Tumor size was double, and cisplatin had an impaired therapeutic effect on the tumors in CD4 -/- vs. wild-type mice. Mice depleted of CD4 T cells using the GK1.5 antibody were not protected against AKI and had larger tumors and lesser response to cisplatin. In summary, in a clinically relevant model of cisplatin-induced AKI in mice with cancer, (1) CD4 -/- mice were not protected against AKI; (2) ERK, p38, CXCL1, and TNF-α, known mediators of AKI, and interstitial fibrosis were increased in CD4 -/- kidneys; and (3) CD4 -/- mice had faster tumor growth and an impaired therapeutic effect of cisplatin on the tumors. The data warns against the use of CD4 T cell inhibition to attenuate cisplatin-induced AKI in patients with cancer. A clinically relevant low-dose cisplatin model of AKI in mice with cancer was used. CD4 -/- mice were not functionally or histologically protected against AKI. CD4 -/- mice had faster tumor growth. CD4 -/- mice had an impaired therapeutic effect of cisplatin on the tumors. Mice depleted of CD4 T cells were not protected against AKI and had larger tumors.

  2. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury

    International Nuclear Information System (INIS)

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates.

  3. Protective effect of dexmedetomidine combined with ulinastatin on cardiopulmonary function injury caused by cardiopulmonary bypass surgery

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-11-01

    Full Text Available Objective: To analyze the protective effect of dexmedetomidine combined with ulinastatin on cardiopulmonary function impairment caused by cardiopulmonary bypass surgery. Methods: A total of 78 patients who received valve replacement under cardiopulmonary bypass were divided into observation group and control group (n=39 according to random number table. Control group received intraoperative ulinastatin intervention and observation group received intraoperative dexmedetomidine combined with ulinastatin intervention. Differences in the levels of cardiac function indexes, myocardial injury markers, pulmonary function parameters, inflammatory indexes and so on were compared between two groups of patients 24 hours after operation. Results: Cardiac function parameters LSV, RSV and RVEF values of observation group 24 hours after operation were higher than those of control group while PAP value was lower than that of control group; serum myocardial injury markers H-FABP, cTn-T, CKMB, cTnⅠ and NT-proBNP levels were lower than those of control group; lung function parameters Cs and Cd values were higher than those of control group while RI, R5-R20, X5 and Fres values were lower than those of control group; serum pro-inflammatory factors IL-6 and TNF-α levels were lower than those of control group while anti-inflammatory factors sTNF-RI, IL-4 and IL-10 levels were higher than those of control group. Conclusions: Dexmedetomidine combined with ulinastatin can protect the cardiopulmonary function in patients with cardiopulmonary bypass, and help to reduce the occurrence of postoperative cardiopulmonary dysfunction and other severe complications.

  4. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  5. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    Science.gov (United States)

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354

  6. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Chen JR

    2015-06-01

    Full Text Available Jing Rui Chen,1–3 Jing Wei,1–3 Ling Yan Wang,1–3 Yan Zhu,1–3 Lan Li,1–3 Mary Akinyi Olunga,1–3 Xiu Mei Gao,1–3 Guan Wei Fan1–31Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China; 2Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, 3Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of ChinaAim: To investigate the potential cardioprotective effects of QiShenYiQi Pill® (QSYQ on myocardial ischemia/reperfusion (I/R injury through antioxidative stress and mitochondrial protection.Methods and results: Sprague Dawley rats were pretreated with QSYQ or saline for 7 days and subjected to ischemia (30 minutes occlusion of the left anterior descending coronary artery and reperfusion (120 minutes. Cardiac functions were evaluated by echocardiogram and hemodynamics. Myocardial mitochondria were obtained to evaluate changes in mitochondrial structure and function, immediately after 120 minutes reperfusion. Pretreatment with QSYQ protected against I/R-induced myocardial structural injury and improved cardiac hemodynamics, as demonstrated by normalized serum creatine kinase and suppressed oxidative stress. Moreover, the impaired myocardial mitochondrial structure and function decreased level of ATP (accompanied by reduction of ATP5D and increase in the expression of cytochrome C. Myocardial fiber rupture, interstitial edema, and infiltrated leukocytes were all significantly ameliorated by pretreatment with QSYQ.Conclusion: Pretreatment of QSYQ in Sprague Dawley rats improves ventricular function and energy metabolism and reduces oxidative stress via ameliorating multiple mitochondrial dysfunctions during I/R injury.Keywords: QSYQ, ischemia/reperfusion injury, energy metabolism, mitochondria

  7. Optimising case detection within UK electronic health records : use of multiple linked databases for detecting liver injury

    NARCIS (Netherlands)

    Wing, Kevin; Bhaskaran, Krishnan; Smeeth, Liam; van Staa, Tjeerd P|info:eu-repo/dai/nl/304827762; Klungel, Olaf H|info:eu-repo/dai/nl/181447649; Reynolds, Robert F; Douglas, Ian

    2016-01-01

    OBJECTIVES: We aimed to create a 'multidatabase' algorithm for identification of cholestatic liver injury using multiple linked UK databases, before (1) assessing the improvement in case ascertainment compared to using a single database and (2) developing a new single-database case-definition

  8. The Effects of Noncontingent Access to Single-versus Multiple-Stimulus Sets on Self-Injurious Behavior.

    Science.gov (United States)

    DeLeon, Iser G.; Anders, Bonita M.; Rodriguez-Catter, Vanessa; Neidert, Pamela L.

    2000-01-01

    The automatically reinforced self-injury of a girl (age 11) with autism was treated by providing noncontingent access to a single set of preferred toys during 30-minute sessions. Rotating toy sets after 10 minutes or providing access to multiple toy sets resulted in reductions that lasted the entire 30 minutes. (Contains four references.)…

  9. Increasing creatine kinase activity protects against hypoxia / reoxygenation injury but not against anthracycline toxicity in vitro.

    Directory of Open Access Journals (Sweden)

    Sevasti Zervou

    Full Text Available The creatine kinase (CK phosphagen system is fundamental to cellular energy homeostasis. Cardiomyocytes express three CK isoforms, namely the mitochondrial sarcomeric CKMT2 and the cytoplasmic CKM and CKB. We hypothesized that augmenting CK in vitro would preserve cell viability and function and sought to determine efficacy of the various isoforms. The open reading frame of each isoform was cloned into pcDNA3.1, followed by transfection and stable selection in human embryonic kidney cells (HEK293. CKMT2- CKM- and CKB-HEK293 cells had increased protein and total CK activity compared to non-transfected cells. Overexpressing any of the three CK isoforms reduced cell death in response to 18h hypoxia at 1% O2 followed by 2h re-oxygenation as assayed using propidium iodide: by 33% in CKMT2, 47% in CKM and 58% in CKB compared to non-transfected cells (P<0.05. Loading cells with creatine did not modify cell survival. Transient expression of CK isoforms in HL-1 cardiac cells elevated isoenzyme activity, but only CKMT2 over-expression protected against hypoxia (0.1% for 24h and reoxygenation demonstrating 25% less cell death compared to non-transfected control (P<0.01. The same cells were not protected from doxorubicin toxicity (250nM for 48h, in contrast to the positive control. These findings support increased CK activity as protection against ischaemia-reperfusion injury, in particular, protection via CKMT2 in a cardiac-relevant cell line, which merits further investigation in vivo.

  10. Protective Effect of Royal Jelly against Phenylhydrazine-induced Histological Injuries of Small Intestine of Mice: Morphometric Analyses

    Directory of Open Access Journals (Sweden)

    Hojat Anbara

    2016-01-01

    Full Text Available Background and Objectives: Phenylhydrazine (PHZ, as a known hemolytic agent, causes toxicity in different tissues at various levels. The aim of the current study was to examine the possible protective effects of royal jelly (RJ against PHZ-induced histological injuries of small intestine in mice.   Methods: In this experimental study, adult male mice were randomly divided into four groups of 8 mice each. PHZ was administered intraperitoneally to two groups of mice (at a dose of 60mg/kg every 48 hours for 35 days. One of the groups received RJ (100mg/kg orally 4 hours before PHZ administration. The third group only received RJ, and the forth group was considered as control. Twenty-four hours after the last treatment, different segments of small intestine were dissected out, then histological sections were prepared and quantitative morphometric assessments were performed. To compare the groups, one-way ANOVA and multiple comparative Tukey tests were used. The significance level was considered to be p<0.05.   Results: In this study, PHZ caused significant decreases in depth of duodenal crypts, distribution rate of the goblet cells in ileal villi, width of duodenal and jejunal villi, and height of villi in all three segments of small intestine. Co-administration of RJ partially improved the changes in the above parameters.   Conclusion: From results of this study, it seems that RJ as a free radical scavenger could reduce PHZ-induced intestinal toxicity in mouse.

  11. Determining the feasibility of establishing new multiple-use marine protected areas in Chile.

    Science.gov (United States)

    Vásquez-Lavín, Felipe; Simon, Jeanne W; Paz-Lerdón, Ximena

    2013-12-01

    This paper evaluates the feasibility of establishing a multiple-use marine protected area. The methodology was applied to evaluate three proposed sites in Chile with diverse conservation needs, social stress and poverty levels, and different economic activities (small-scale fishing, heavy industry, and mining activities). We use two broad categories for the evaluation: socio-economic and political-institutional. The methodology uses a combination of secondary data with personal interviews, workshops, and focus groups with stakeholders (e.g., fishermen, unions, politicians, social organizations) from different political, social, and economic backgrounds to characterize current and potential natural and social resources and to evaluate in an ordinal scale the feasibility of establishing the protected area. The methodology allows us to correctly identify the challenges faced in each site and can be used to develop appropriate strategies for balancing economic, social, and environmental objectives. This methodology can be replicated to evaluate the feasibility of other marine or terrestrial protected areas.

  12. Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiann-Hwa [Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Department of Emergency Medicine, Cathay General Hospital, Taipei, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Taiwan (China); Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China); Lee, Kam-Fai [Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Taiwan (China); Tsai, Tung-Hu, E-mail: thtsai@ym.edu.tw [Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (China); Department of Education and Research, Taipei City Hospital, Taipei, Taiwan (China)

    2014-09-15

    Magnolol is isolated from the herb Magnolia officinalis, which has been demonstrated to exert pharmacological effects. Our aim was to investigate whether magnolol is able to act as an anti-inflammatory agent that brings about neuroprotection using a global ischemic stroke model and to determine the mechanisms involved. Rats were treated with and without magnolol after ischemia reperfusion brain injury by occlusion of the two common carotid arteries. The inflammatory cytokine production in serum and the volume of infarction in the brain were measured. The proteins present in the brains obtained from the stroke animal model (SAM) and control animal groups with and without magnolol treatment were compared. Magnolol reduces the total infarcted volume by 15% and 30% at dosages of 10 and 30 mg/kg, respectively, compared to the untreated SAM group. The levels of acute inflammatory cytokines, including interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 were attenuated by magnolol. Magnolol was also able to suppress the production of nitrotyrosine, 4-hydroxy-2-nonenal (4-HNE), inducible NO synthase (iNOS), various phosphorylated p38 mitogen-activated protein kinases and various C/EBP homologues. Furthermore, this modulation of ischemia injury factors in the SAM model group treated with magnolol seems to result from a suppression of reactive oxygen species production and the upregulation of p-Akt and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These findings confirm the anti-oxidative properties of magnolol, including the inhibition of ischemic injury to neurons; this protective effect seems to involve changes in the in vivo activity of Akt, GSK3β and NF-κB. - Graphical abstract: Schematic presentation of the signaling pathways involved in magnolol inhibited transient global ischemia brain apoptosis and inflammation in rats. The effect of magnolol on the scavenger of ROS, which inhibits p38 MAPK and CHOP protein inactivation

  13. The Protective Effect of Curcumin versus Sodium Nitroprusside on Intestinal Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Dalia M Saleh

    2014-04-01

    Full Text Available Objective: Intestinal ischemia/reperfusion (I/R injury is a signi and #64257;cant complication in abdominal vascular surgery. Various treatment modalities have been applied, however, the role of nitric oxide (NO in this type of injury is still controversial. Aim of the work: To compare the protective effect of curcumin vs sodium nitroprusside (SNP, NO donor on intestine and remote organs following intestinal I/R injury. Methods: Rats were divided into 4 groups (sham-control, I/R, curcumin+I/R, SNP+I/R. I/R was induced by 30 min clamping the superior mesenteric artery (SMA then 60 min reperfusion. Rats were pretreated with either curcumin (80 mg/kg/day with food for one week or SNP (5 mg/kg, i.p prior to I/R. Intestinal levels of malondialdehyde (MDA, Nitrite/nitrate, superoxide dismutase (SOD and reduced glutathione (GSH were measured. The sections from jejunum, lungs and liver were stained with hematoxylin and eosin (H and E for histopathological examination. Immunohistochemical stains for eNOS expression in the jejunum and cleaved caspase-3 for apoptosis in the lungs and liver were done. Results: I/R resulted in both local and remote organs in and #64258;ammation associated with signi and #64257;cant increase in MDA and nitrate/nitrite and significant decrease in SOD and GSH levels. These histological and biochemical changes were improved by pretreatment with curcumin and to less extent by SNP. Immunohistochemical examination showed significant decrease in eNOS activity in the I/R group which was improved by curcumin pretreatment not by SNP. Liver apoptosis was improved by curcumin while lung apoptosis was improved by SNP. Conclusion: Curcumin ameliorates I/R-induced local and remote organs damage through its anti-inflammatory and antiapoptotic effect. SNP may be beneficial in I/R injury but not as significant as curcumin. [J Interdiscipl Histopathol 2014; 2(2.000: 74-87

  14. Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine

    International Nuclear Information System (INIS)

    Chen, Jiann-Hwa; Kuo, Hsing-Chun; Lee, Kam-Fai; Tsai, Tung-Hu

    2014-01-01

    Magnolol is isolated from the herb Magnolia officinalis, which has been demonstrated to exert pharmacological effects. Our aim was to investigate whether magnolol is able to act as an anti-inflammatory agent that brings about neuroprotection using a global ischemic stroke model and to determine the mechanisms involved. Rats were treated with and without magnolol after ischemia reperfusion brain injury by occlusion of the two common carotid arteries. The inflammatory cytokine production in serum and the volume of infarction in the brain were measured. The proteins present in the brains obtained from the stroke animal model (SAM) and control animal groups with and without magnolol treatment were compared. Magnolol reduces the total infarcted volume by 15% and 30% at dosages of 10 and 30 mg/kg, respectively, compared to the untreated SAM group. The levels of acute inflammatory cytokines, including interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 were attenuated by magnolol. Magnolol was also able to suppress the production of nitrotyrosine, 4-hydroxy-2-nonenal (4-HNE), inducible NO synthase (iNOS), various phosphorylated p38 mitogen-activated protein kinases and various C/EBP homologues. Furthermore, this modulation of ischemia injury factors in the SAM model group treated with magnolol seems to result from a suppression of reactive oxygen species production and the upregulation of p-Akt and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These findings confirm the anti-oxidative properties of magnolol, including the inhibition of ischemic injury to neurons; this protective effect seems to involve changes in the in vivo activity of Akt, GSK3β and NF-κB. - Graphical abstract: Schematic presentation of the signaling pathways involved in magnolol inhibited transient global ischemia brain apoptosis and inflammation in rats. The effect of magnolol on the scavenger of ROS, which inhibits p38 MAPK and CHOP protein inactivation

  15. The effect of vehicle protection on spine injuries in military conflict.

    Science.gov (United States)

    Possley, Daniel R; Blair, James A; Freedman, Brett A; Schoenfeld, Andrew J; Lehman, Ronald A; Hsu, Joseph R

    2012-09-01

    To evaluate the effect of critical time periods in vehicle protection on spine injuries in the Global War on Terror. To characterize the effect of method of movement on and around the battlefield during Operation Enduring Freedom and Operation Iraqi Freedom from 2001 to 2009 in terms of its impact on the incidence and severity of spinal fractures sustained in combat. Retrospective study. Mounted and dismounted American servicemembers who were injured during combat. Extracted medical records of servicemembers identified in the Joint Theater Trauma Registry from October 2001 to December 2009. Methods of movement were defined as mounted or dismounted. Two time periods were compared. Cohorts were created for 2×2 analysis based on method of movement and the time period in which the injury occurred. Time period 1 and 2 were separated by April 1, 2007, which correlates with the initial fielding of the modern class of uparmored fighting vehicles with thickened underbelly armor and a V-shaped hull. Our four comparison groups were Dismounted in Time Period 1 (D1), Dismounted in Time Period 2 (D2), Mounted in Time Period 1 (M1), and Mounted in Time Period 2 (M2). In total, 1,819 spine fractures occurred over the entire study period. Four hundred seventy-two fractures (26%) were sustained in 145 servicemembers who were mounted at the time of injury, and 1,347 (74%) were sustained by 404 servicemembers who were dismounted (pto the TL junction (T10-L3) increased significantly from Time Period 1 to 2 (34% vs. 40% of all fractures, respectively, p=.03). Thoracolumbar fractures were significantly more severe in that there were more Arbeitsgemeinschaft fur Osteosynthesefragen/Magerl Type A injuries versus all TL fractures, 1.75 versus 2.68/10,000 or 27% of all spine fractures in Time Period 1 versus 40% in Time Period 2 (p=.007). Furthermore, there were significantly fewer minor fractures (spinous process and transverse process fractures) (pto the Denis classification system, in

  16. Protective Effects of Two Constituents of Chinese Herbs on Spinal Motor Neurons from Embryonic Rats with Hypoxia Injury

    OpenAIRE

    Chen, Jian-feng; Fan, Jian; Tian, Xiao-wu; Tang, Tian-si

    2011-01-01

    Neuroprotective agents are becoming significant tools in the repair of central nervous system injuries. In this study, we determined whether ginkgolides (Gin, extract of GinkgoBiloba) and Acanthopanax senticosus saponins (ASS, flavonoids extracted from Acanthopanax herbal preparations) have protective effects on rat spinal cords exposed to anoxia and we explored the mechanisms that underlie the protective effects. Spinal motor neurons (SMNs) from rat spinal cords were obtained and divided int...

  17. Glucose supplementation does not interfere with fasting-induced protection against renal ischemia/reperfusion injury in mice.

    Science.gov (United States)

    Verweij, Mariëlle; van de Ven, Marieke; Mitchell, James R; van den Engel, Sandra; Hoeijmakers, Jan H J; Ijzermans, Jan N M; de Bruin, Ron W F

    2011-10-15

    Preoperative fasting induces robust protection against renal ischemia/reperfusion (I/R) injury in mice but is considered overcautious and possibly detrimental for postoperative recovery in humans. Furthermore, fasting seems to conflict with reported benefits of preoperative nutritional enhancement with carbohydrate-rich drinks. Here, we investigated whether preoperative ingestion of a glucose solution interferes with fasting-induced protection against renal I/R injury. Mice were randomized into the following groups: fasted for 3 days with access to water (fasted) or a glucose solution (fasted+glc) and fed ad libitum with water (fed) or a glucose solution (fed+glc). After induction of bilateral renal I/R injury, all animals had free access to food and water. Calorie intake, body weight, insulin sensitivity, kidney function, and animal survival were determined. Fed+glc mice had a comparable daily calorie intake as fed mice, but 50% of those calories were obtained from the glucose solution. Fasted+glc mice had a daily calorie intake of approximately 75% of the intake of both fed groups. This largely prevented the substantial body weight loss seen in fasted animals. Preoperative insulin sensitivity was significantly improved in fasted+glc mice versus fed mice. After I/R injury, kidney function and animal survival were superior in both fasted groups. The benefits of fasting and preoperative nutritional enhancement with carbohydrates are not mutually exclusive and may be a clinically feasible regimen to protect against renal I/R injury.

  18. Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway.

    Science.gov (United States)

    Niu, Xiaowei; Zhang, Jingjing; Ling, Chun; Bai, Ming; Peng, Yu; Sun, Shaobo; Li, Yingdong; Zhang, Zheng

    2018-01-01

    Objectives Angelica sinensis exerts various pharmacological effects, such as antioxidant and anti-apoptotic activity. This study aimed to investigate the active ingredients in A. sinensis with antioxidant properties and whether A. sinensis polysaccharide (ASP) protects H9c2 cells against oxidative and endoplasmic reticulum (ER) stress. Methods The ingredients of A. sinensis and their targets and related pathways were determined using web-based databases. Markers of oxidative stress, cell viability, apoptosis, and ER stress-related signalling pathways were measured in H9c2 cells treated with hydrogen peroxide (H 2 O 2 ) and ASP. Results The ingredient-pathway-disease network showed that A. sinensis exerted protective effects against oxidative injury through its various active ingredients on regulation of multiple pathways. Subsequent experiments showed that ASP pretreatment significantly decreased H 2 O 2 -induced cytotoxicity and apoptosis in H9c2 cells. ASP pretreatment inhibited H 2 O 2 -induced reactive oxygen species generation, lactic dehydrogenase release, and malondialdehyde production. ASP exerted beneficial effects by inducing activating transcription factor 6 (ATF6) and increasing ATF6 target protein levels, which in turn attenuated ER stress and increased antioxidant activity. Conclusions Our findings indicate that ASP, a major water-soluble component of A. sinensis, exerts protective effects against H 2 O 2 -induced injury in H9c2 cells by activating the ATF6 pathway, thus ameliorating ER and oxidative stress.

  19. Research on Protective Effect and Mechanism of Idazoxan on lps Attacked Acute Hepatic Injury

    Science.gov (United States)

    Zhu, Junyu; Ying, Shangqi; Kang, Wenyuan; Huang, Wenjuan; Liang, Huaping

    2018-01-01

    Objective: To observe the protection effect of Idazoxan (IDA) on LPS induced acute hepatic injury, and to explore its action mechanism. Methods: 60 adult C57BL/6 mice were divided into a control group (20 mice, intraperitoneal injection of phosphate buffer), a model group (20 mice, intraperitoneal injection of LPS 10 mg/kg) and a agmatine group (20 mice, intraperitoneal injection of LPS 10 mg/kg and agmatine 200 mg/kg) according to random number table method. Blood and liver tissue were collected for preparation of tissue homogenate. Enzyme-linked immunosorbent assay (ELISA) was adopted for detecting tumor necrosis factor-α (TNF-α) and interleukin (IL- 1β and IL - 6) contents in the serum and liver tissue at 24h after molding. Automatic biochemical analyzer is used for determining alanine transaminase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) level at 24h after molding; The liver tissue pathology changes were observed at 24h after molding. Macrophage RAW264.7 cells were stimulated by 10 μg/mL LPS and with or without IDA (100 μmol/L). 2’, 7’-dichlorofluoresce in diacetate (DCFH-DA) was used as a fluorescent probe for detection of intracellular reactive oxygen species (ROS) level; qRT - PCR method was used for detecting antioxidant enzymes HO-1 and NQO-1 mRNA expression level at 2h, 4h and 8 h. Results: mice in the model group suffered from depression, curling and food water forbidding at 6h after molding. Mice in the Idazoxan group have obviously better spirit and activity than that of model group. The serum ALT, AST and LDH level of LPS attacked acute hepatic injury mice can be effectively alleviated after Idazoxan treatment. The expression of proinflammatory factor TNF-α and IL-6 in the liver can be reduced. The liver showed obvious pathological changes at 24 h after injection, such as liver cell swelling, necrosis, congestion, inflammatory cell infiltration, etc.; The liver cell injury was prominently alleviated in IDA

  20. Naural Responses to Injury: Prevention, Protection, and Repair. Volume 8. Vision, Laser Eye Injury, and Infectious Diseases

    National Research Council Canada - National Science Library

    Bazan, Nicolas

    1997-01-01

    Four specific aims were proposed in the original grant application. Develop a new confocal microscope that can be used in living eyes to understand the earliest stages of trauma, laser injuries, and disease...

  1. [Studies on chemical protectors against radiation. XXXII. Protective effects of methanol extracts of various Taiwan crude drugs on radiation injuries].

    Science.gov (United States)

    Wang, C M; Ohta, S; Shinoda, M

    1990-11-01

    This study is to investigate radioprotective effects of 23 Taiwan crude drugs on X-ray induced bone marrow death and skin injury in mice. Each methanol extract of these Taiwan crude drugs was injected intraperitoneally into ICR male mice at 6 weeks of age before irradiation. Mice were whole-body irradiated with a soft X-ray generator. Radiation factors of the two screening tests used were as follows: 70 kVp, 10 mA, 10 mm acrylate filter, 70R/min, 2100R for survival test, and 30 kVp, 10 mA, 190R/min, 1100R for protective test on skin injury. As a result of these studies, the survival effect was recognized in Solani Incani Herba and Orthosiphi Aristati Herba. On the other hand, Mimosae Herba, Canarii Radix, Bombacis Radix, Arecae Fructus, Hedyotidis Diffusae Herba and Cynomorii Caulis were shown to have significant protective potency on skin injury.

  2. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    Science.gov (United States)

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L -1 ) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH -1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst. Copyright © 2016. Published by Elsevier Masson SAS.

  3. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    Science.gov (United States)

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  4. [The protective effect of XD in ConA-induced liver injury].

    Science.gov (United States)

    Liu, Xiao-Bin; Wang, Jing; Zhang, Qian-Qian; Liu, Tao; Dang, Tong-Mei; Cao, Yi-Ming

    2010-12-01

    To explore the protective effect and its mechanism of Modified Xiaochaihu decoction(MXD) in the liver injury of mice. METHORDS: Using Reitman methord to examine serum ALT and ATS; Using sandwich enzyme immunoassay ABC-ELISA to examine serum TNF-α and IFN-γ. Serum ALT and ATS of MXD large dose group and Xiaochaihu decoction (XD )group were lower than that of animal models group, there was significant difference among groups (P0.05) between serum ALT and ATS of MXD small dose group and that of animal models group; MXD large dose group, XD group and Biphenyldimethylesterate (DDB) group are similar, no difference (P>0.05). Serum TNF-α and IFN-γ of MXD large dose group and XD group were significant lower than that of animal models group, there was significant difference among groups (PXD group ware higher than that of MXD large dose group, there was significant difference among groups (PXD group and DDB group were similar, no difference. Xiaocaihu decoction possesses the effect of pro2 tection of hepatic impairment and the protective mechanism might be associated with the inhibition of apoptosis and immunomodulation.

  5. The Protective Role of Ginkgo Biloba against Radiation Induced Injury on Rat Gastro-intestinal Tract

    International Nuclear Information System (INIS)

    El-Ghazaly, M.A.; Gharib, O.A.; El-Sheikh, M.M.; Khayyal, M.T.

    2015-01-01

    Ginkgo Biloba extract (EGb 761) is an antioxidant substance exhibits a wide variety of biological activities. The present study was performed to evaluate oxidative stress and inflammatory parameters of gastrointestinal injury induced by exposing rats to acute doses of γ-rays and the potential value of EGb 761 in preventing changes in these parameters. Male albino rats were treated orally with the extract in a dose of 100 mg/ kg for 7 successive days before whole body exposure to acute radiation levels of 2 and 6 Gray (Gy). Control groups were run concurrently. The rats were sacrificed 3 days after irradiation. Various inflammatory mediators and biochemical parameters were determined in the stomach and intestine. Both tissues were also examined histopathologically. Exposure to radiation led to dose dependent changes in the level of oxidative stress biomarkers (elevation of thiobarbituric acid reactive substance (TBARS) and nitrite associated with a glutathione (GSH) decrease as well as in the level of inflammatory parameters (elevation of Tumour necrosis factorα (TNF-α) and myeloperoxidase (MPO) associated with depletion of prostaglandin E 2 (PGE 2 ). Pre-treatment with EGb 761 protected against the changes in both oxidative stress biomarkers and inflammatory mediators. EGb 761 exerted a protective effect against the radiation induced gastrointestinal damage, possibly through its anti-inflammatory and anti-oxidant properties.

  6. Mannan-binding lectin is involved in the protection against renal ischemia/ reperfusion injury by dietary restriction

    NARCIS (Netherlands)

    Shushimita; P. van der Pol (Pieter); R.W.F. de Bruin (Ron); J.N.M. IJzermans (Jan); C. van Kooten (Cees); F.J.M.F. Dor (Frank)

    2015-01-01

    textabstractPreoperative fasting and dietary restriction offer robust protection against renal ischemia/ reperfusion injury (I/RI) in mice.We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on

  7. Edaravone Protected Human Brain Microvascular Endothelial Cells from Methylglyoxal-Induced Injury by Inhibiting AGEs/RAGE/Oxidative Stress

    Science.gov (United States)

    Li, Wenlu; Xu, Hongjiao; Hu, Yangmin; He, Ping; Ni, Zhenzhen; Xu, Huimin; Zhang, Zhongmiao; Dai, Haibin

    2013-01-01

    Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO) seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC), protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD) induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, cell account, lactate dehydrogenase (LDH) release and Rhodamine 123 staining. Advanced glycation end-products (AGEs) formation and receptor for advanced glycation end-products (RAGE) expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS) release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10–100 µmol/l. What’s more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress. PMID:24098758

  8. Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress.

    Directory of Open Access Journals (Sweden)

    Wenlu Li

    Full Text Available Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC, protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT formation, cell account, lactate dehydrogenase (LDH release and Rhodamine 123 staining. Advanced glycation end-products (AGEs formation and receptor for advanced glycation end-products (RAGE expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10-100 µmol/l. What's more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress.

  9. Mechanisms of multiple neurotransmitters in the effects of Lycopene on brain injury induced by Hyperlipidemia.

    Science.gov (United States)

    Yang, Weichun; Shen, Ziyi; Wen, Sixian; Wang, Wei; Hu, Minyu

    2018-02-07

    Lycopene is a kind of carotenoid, with a strong capacity of antioxidation and regulating the bloodlipid. There has been some evidence that lycopene has protective effects on the central nervous system, but few studies have rigorously explored the role of neurotransmitters in it. Therefore, the present study was designed to investigate the effects of several neurotransmitters as lycopene exerts anti-injury effects induced by hyperlipidemia. Eighty adult SD rats, half male and half female, were randomly divided into eight groups on the basis of serum total cholesterol (TC) levels and body weight. There was a control group containing rats fed a standard laboratory rodent chow diet (CD); a hypercholesterolemic diet (rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5% thiouracil - this is also called a CCT diet) group; a positive group (CCT + F) fed CCT, supplemented with 10 mg·kg·bw - 1 ·d - 1 fluvastatin sodium by gastric perfusion; and lycopene groups at five dose levels (CCT + LYCO) fed with CCT and supplied lycopene at doses of 5, 25, 45, 65, and 85 mg·kg·bw - 1 ·d - 1 . The levels of TC, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), oxidized low density lipoprotein (ox-LDL), low-density lipoprotein receptor (LDLR), nerve growth factor (NGF), glutamic acid (Glu), Gamma aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), N-methyl-D-aspartate (NMDA1R), GABA A , 5-HT 1 , D 1 , and apoptosis-related proteins Caspase3, bax, and bcl-2 were measured after the experiment. Nissl staining was adopted to observe the morphological changes in neurons. At the end of the experiment, the levels of TC, TG, LDL-C, IL-1, TNF-α, and ox-LDL in the serum and brain as well as the content of Glu, DA, NMDA, and D 1 in the brain of rats in the CCT group were higher than those in the control group (Plycopene (25

  10. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-01-01

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  11. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  12. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    Science.gov (United States)

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  13. Evaluation of genetically inactivated alpha toxin for protection in multiple mouse models of Staphylococcus aureus infection.

    Directory of Open Access Journals (Sweden)

    Rebecca A Brady

    Full Text Available Staphylococcus aureus is a major human pathogen and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. While S. aureus protective antigens have been identified in the literature, the majority have only been tested in a single animal model of disease. We wished to evaluate the ability of one S. aureus vaccine antigen to protect in multiple mouse models, thus assessing whether protection in one model translates to protection in other models encompassing the full breadth of infections the pathogen can cause. We chose to focus on genetically inactivated alpha toxin mutant HlaH35L. We evaluated the protection afforded by this antigen in three models of infection using the same vaccine dose, regimen, route of immunization, adjuvant, and challenge strain. When mice were immunized with HlaH35L and challenged via a skin and soft tissue infection model, HlaH35L immunization led to a less severe infection and decreased S. aureus levels at the challenge site when compared to controls. Challenge of HlaH35L-immunized mice using a systemic infection model resulted in a limited, but statistically significant decrease in bacterial colonization as compared to that observed with control mice. In contrast, in a prosthetic implant model of chronic biofilm infection, there was no significant difference in bacterial levels when compared to controls. These results demonstrate that vaccines may confer protection against one form of S. aureus disease without conferring protection against other disease presentations and thus underscore a significant challenge in S. aureus vaccine development.

  14. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Directory of Open Access Journals (Sweden)

    Pauline M Snijder

    Full Text Available BACKGROUND: Ischemia-reperfusion injury (IRI is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. RESULTS: Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05. Seven days post-reperfusion, both 10 ppm (p<0.01 and 100 ppm (p<0.05 H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05 and 60% (p<0.001, respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05 and 67% (p<0.01 and ANP by 84% and 63% (p<0.05, respectively. CONCLUSIONS: Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac

  15. [Delayed perforation of the cecum and sigmoid colon after blunt abdominal trauma in a patient with multiple injuries].

    Science.gov (United States)

    Miranda, E; Arroyo, A; Ronda, J M; Muñoz, J L; Alonso, C; Martínez-Peñuelas, F; Martí-Viaño, J L

    2007-01-01

    Blunt abdominal trauma can damage the intestinal vasculature and may occasionally lead to delayed intestinal perforation, associated with a combined rate of morbidity and mortality of 25%. The diagnosis of such complications is hindered by sedation in critical patients, however, and morbimortality in this population is therefore higher. We report the case of a man with multiple injuries admitted to the intensive care unit, where delayed perforations of the sigmoid colon and cecum were diagnosed. The management of blunt abdominal trauma is reviewed and the possible causes, diagnostic approaches, and treatment options for colon injuries are discussed.

  16. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis.

    Science.gov (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-10-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  17. Community integration outcomes of people with spinal cord injury and multiple matched controls: A pilot study.

    Science.gov (United States)

    Callaway, Libby; Enticott, Joanne; Farnworth, Louise; McDonald, Rachael; Migliorini, Christine; Willer, Barry

    2017-06-01

    Australia's National Disability Insurance Scheme (NDIS) is designed to influence home, social and economic participation for Scheme participants. Given the major disability reform underway, this pilot study aimed to: (i) examine community integration outcomes of people with spinal cord injury (SCI); (ii) compare findings with multiple matched controls and (iii) consider findings within the context of Australia's NDIS. Setting: Victoria, Australia. Matched analysis (people with and without SCI). Community Integration Questionnaire (CIQ). n = 40 adults with SCI (M age = 52.8 years; 61% male; 77% traumatic SCI). Matched analyses from each SCI subject aged integration (ρ = 0.02). Relative risk of low home integration was significant in the SCI cohort (conditional RR (95% CI) = 3.1 (1.5-6.3), ρ = 0.001). Relative risk of low CIQ total, social integration and productivity scores did not reach significance. This cohort of SCI participants was less integrated into home and productive occupations than matched norms, holding implications for planning and allocation of supports to influence outcomes within an NDIS. Further research is necessary to understand community integration outcomes in larger matched samples. © 2016 Occupational Therapy Australia.

  18. The lazaroid U74389G protects normal brain from stereotactic radiosurgery-induced radiation injury

    International Nuclear Information System (INIS)

    Buatti, John M.; Friedman, William A.; Theele, Daniel P.; Bova, Francis J.; Mendenhall, William M.

    1996-01-01

    Purpose: To test an established model of stereotactic radiosurgery-induced radiation injury with pretreatments of either methylprednisolone or the lazaroid U74389G. Methods and Materials: Nine cats received stereotactic radiosurgery with a linear accelerator using an animal radiosurgery device. Each received a dose of 125.0 Gy prescribed to the 84% isodose shell to the anterior limb of the right internal capsule. One animal received no pretreatment, two received citrate vehicle, three received 30 mg/kg of methylprednisolone, and three received 5 mg/kg of U74389G. After irradiation, the animals had frequent neurologic examinations, and neurologic deficits developed in all of them. Six months after the radiation treatment, the animals were anesthetized, and had gadolinium-enhanced magnetic resonance (MR) scans, followed by Evans blue dye perfusion, euthanasia, and brain fixation. Results: Magnetic resonance scans revealed a decrease in the size of the lesions from a mean volume of 0.45 ± 0.06 cm 3 in the control, vehicle-treated, and methylprednisolone-treated animals to 0.22 ± 0.14 cm 3 in the U74389G-treated group. The scans also suggested the absence of necrosis and ventricular dilatation in the lazaroid-treated group. Gross pathology revealed that lesions produced in the untreated, vehicle-treated, and methylprednisolone-treated cats were similar and were characterized by a peripheral zone of Evans blue dye staining with a central zone of a mature coagulative necrosis and focal hemorrhage. However, in the U74389G-treated animals, the lesions were found to have an area of Evans blue dye staining, but lacked discrete areas of necrosis and hemorrhage. Conclusion: These results suggest that the lazaroid U74389G protects the normal brain from radiation injury produced by stereotactic radiosurgery

  19. Protective effects of ghrelin in ventilator-induced lung injury in rats.

    Science.gov (United States)

    Li, Guang; Liu, Jiao; Xia, Wen-Fang; Zhou, Chen-Liang; Lv, Li-Qiong

    2017-11-01

    Ghrelin has exhibited potent anti-inflammatory effects on various inflammatory diseases. The aim of this study was to investigate the potential effects of ghrelin on a model of ventilator-induced lung injury (VILI) established in rats. Male Sprague-Dawley rats were randomly divided into three groups: low volume ventilation (LV, Vt=8ml/kg) group, a VILI group (Vt=30ml/kg), and a VILI group pretreated with ghrelin (GH+VILI). For the LV group, for the VILI and GH+VILI groups, the same parameters were applied except the tidal volume was increased to 40ml/kg. After 4h of MV, blood gas, lung elastance, and levels of inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and (MIP)-2 and total protein in bronchoalveolar lavage fluid (BALF) were analyzed. Myeloperoxidase (MPO), (TLR)-4, and NF-κB, were detected in lung tissues. Water content (wet-to-dry ratio) and lung morphology were also evaluated. The VILI group had a higher acute lung injury (ALI) score, wet weight to dry ratio, MPO activity, and concentrations of inflammatory mediators (TNF-α, IL-6, IL-1β, and MIP-2) in BALF, as well as higher levels of TLR4 and NF-κB expression than the LV group (Pghrelin pretreatment (PGhrelin pretreatment also decreased TLR4 expression and NF-κB activity compared with the VILI group (PGhrelin pretreatment attenuated VILI in rats by reducing MV-induced pulmonary inflammation and might represent a novel therapeutic candidate for protection against VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Unique sex- and age-dependent effects in protective pathways in acute kidney injury.

    Science.gov (United States)

    Boddu, Ravindra; Fan, Chunlan; Rangarajan, Sunil; Sunil, Bhuvana; Bolisetty, Subhashini; Curtis, Lisa M

    2017-09-01

    Sex and age influence susceptibility to acute kidney injury (AKI), with young females exhibiting lowest incidence. In these studies, we investigated mechanisms which may underlie the sex/age-based dissimilarities. Cisplatin (Cp)-induced AKI resulted in morphological evidence of injury in all groups. A minimal rise in plasma creatinine (PCr) was seen in Young Females, whereas in Aged Females, PCr rose precipitously. Relative to Young Males, Aged Males showed significantly, but temporally, comparably elevated PCr. Notably, Aged Females showed significantly greater mortality, whereas Young Females exhibited none. Tissue KIM-1 and plasma NGAL were significantly lower in Young Females than all others. IGFBP7 levels were modestly increased in both Young groups. IGFBP7 levels in Aged Females were significantly elevated at baseline relative to Aged Males, and increased linearly through day 3 , when these levels were comparable in both Aged groups. Plasma cytokine levels similarly showed a pattern of protective effects preferentially in Young Females. Expression of the drug transporter MATE2 did not explain the sex/age distinctions. Heme oxygenase-1 (HO-1) levels (~28-kDa species) showed elevation at day 1 in all groups with highest levels seen in Young Males. Exclusively in Young Females, these levels returned to baseline on day 3 , suggestive of a more efficient recovery. In aggregate, we demonstrate, for the first time, a distinctive pattern of response to AKI in Young Females relative to males which appears to be significantly altered in aging. These distinctions may offer novel targets to exploit therapeutically in both females and males in the treatment of AKI.

  1. Protective effect of ebselen on experimental testicular torsion and detorsion injury.

    Science.gov (United States)

    Rifaioglu, M M; Motor, S; Davarci, I; Tuzcu, K; Sefil, F; Davarci, M; Nacar, A

    2014-12-01

    Ebselen is used as a drug in clinical trials against stroke, reperfusion injury with anti-atherosclerotic and renoprotective effects. The aim of this study is to investigate the protective effect of ebselen, on torsion/detorsion (T/D)-induced biochemical and histopathological changes in experimental testicular ischaemia/reperfusion injury. A total of 28 male Wistar Albino rats were divided into four groups: group 1(sham-operated group, n = 7), group 2(ebselen group, n = 7), group 3(torsion/detorsion + saline, n = 7) and group 4(T/D + 10 mg kg(-1) ebselen group, n = 7). The tissue homogenate samples were used for immediate nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase, catalase and glutathione measurement. Testes in all groups were evaluated for the biochemical assay and histopathological examinations. To evaluate spermatogenesis, Johnsen scoring system was used. Testicular tissue MDA and NO levels in group 3 were significantly higher than in group 1 and 4. In histological evaluation of the testicular tissues, ebselen administration improved tubular histology significantly compared with T/D group. Significant increase in histological score was observed in the testis of group 3 compared with group 1 and 2. Histological score in group 4 significantly decreased compared with group 3. Johnson score was significantly lower in T/D group compared with all other three groups, ebselen administration increased the score significantly compared with T/D group. Ebselen reduced oxidative biochemical and histopathological damage in our testicular T/D rat model. © 2013 Blackwell Verlag GmbH.

  2. DL-2-amino-3-phosphonopropionic acid protects primary neurons from oxygen-glucose deprivation induced injury.

    Science.gov (United States)

    Cui, Di; Xu, Jun; Xu, Quanyi; Zuo, Guokun

    2017-02-21

    Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3) in treating oxygen-glucose deprivation (OGD)-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1) a control group that was not treated; (2) DL-AP3 group treated with 10 μM of DL-AP3; (3) OGD group, in which neurons were cultured under OGD conditions; and (4) OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1) and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05). In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.

  3. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation.

    Science.gov (United States)

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-12-08

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H 2 O 2 ) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H 2 O 2 , resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H 2 O 2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H 2 O 2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H 2 O 2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H 2 O 2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H 2 O 2 -induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H 2 O 2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury.

  4. How does multiple trauma, traumatic brain injury (TBI) or spinal cord injury (SCI) affect male sexual functioning?

    OpenAIRE

    Treacy, C.

    2015-01-01

    Sex is an important part of life for many people, therefore dealing with erectile problems, living with the effects of physical injury, changes in your appearance or side-effects of treatment can have an enormous impact on your sex life and relationships. Normal sexual behaviour and erectile function depends on a complex interaction between various body-systems, including the brain, nerves, blood-supply and hormones. All of these systems (alone or in combination) may be affected following mul...

  5. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs

    Science.gov (United States)

    Mathew, Biji; Jacobson, Jeffrey R.; Berdyshev, Evgeny; Huang, Yong; Sun, Xiaoguang; Zhao, Yutong; Gerhold, Lynnette M.; Siegler, Jessica; Evenoski, Carrie; Wang, Ting; Zhou, Tong; Zaidi, Rafe; Moreno-Vinasco, Liliana; Bittman, Robert; Chen, Chin Tu; LaRiviere, Patrick J.; Sammani, Saad; Lussier, Yves A.; Dudek, Steven M.; Natarajan, Viswanathan; Weichselbaum, Ralph R.; Garcia, Joe G. N.

    2011-01-01

    Clinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components serve as modulators and novel therapeutic targets of RILI. Sphingolipid involvement in murine RILI was confirmed by radiation-induced increases in lung expression of sphingosine kinase (SphK) isoforms 1 and 2 and increases in the ratio of ceramide to sphingosine 1-phosphate (S1P) and dihydro-S1P (DHS1P) levels in plasma, bronchoalveolar lavage fluid, and lung tissue. Mice with a targeted deletion of SphK1 (SphK1−/−) or with reduced expression of S1P receptors (S1PR1+/−, S1PR2−/−, and S1PR3−/−) exhibited marked RILI susceptibility. Finally, studies of 3 potent vascular barrier-protective S1P analogs, FTY720, (S)-FTY720-phosphonate (fTyS), and SEW-2871, identified significant RILI attenuation and radiation-induced gene dysregulation by the phosphonate analog, fTyS (0.1 and 1 mg/kg i.p., 2×/wk) and to a lesser degree by SEW-2871 (1 mg/kg i.p., 2×/wk), compared with those in controls. These results support the targeting of S1P signaling as a novel therapeutic strategy in RILI.—Mathew, B., Jacobson, J. R., Berdyshev, E., Huang, Y., Sun, X., Zhao, Y., Gerhold, L. M., Siegler, J., Evenoski, C., Wang, T., Zhou, T., Zaidi, R., Moreno-Vinasco, L., Bittman, R., Chen, C. T., LaRiviere, P. J., Sammani, S., Lussier, Y. A., Dudek, S. M., Natarajan, V., Weichselbaum, R. R., Garcia, J. G. N. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. PMID:21712494

  6. The protective effect of huperzine A against hepatic ischemia reperfusion injury in mice.

    Science.gov (United States)

    Yang, Y; Yang, J; Jiang, Q

    2014-06-01

    Nowadays, hepatic ischemia reperfusion (HI/R) injury is regarded as a serious concern in clinical practices. Huperzine A (HupA) is an alkaloid isolated from the Chinese folk medicine huperzia serrate, which has possessed diverse pharmacological actions. A mouse model of HI/R was caused by clamping the hepatic artery, the hepatoportal vein, and the bile duct with a vascular clamp for 30 minutes followed by reperfusion for 6 hours under anesthesia. The sham group experienced the identical procedure without hepatic ischemia. The HupA group received an injection into the tail vein 5 minutes prior to HI/R at the doses of 167 and 500 μg/kg. The vehicle group was injected with physiological saline instead of HupA. The liver function was assessed by determinations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA), and glutathione (GSH) were also measured spectrophotometrically. In addition, the activities of hepatic inflammatory mediators such as nuclear factor kappa B (NF-κB) p65, tumor necrosis factors-α (TNF-α, interleukin-1β (IL-1β) and IL-6 were also measured. Furthermore, the apoptotic damage was evaluated by measuring caspase-3 activity in hepatic tissues. Treatment with HupA in mice at the doses of 167 and 500 μg/kg remarkably reduced serum ALT and AST activities in HupA-treated ischemic mice. Furthermore, HupA treatment could enhance the activities of hepatic tissue SOD, CAT, and GSH but decrease MDA tissue content. The activities of inflammatory cytokines including NF-κB p65, TNF-α, IL-1β and IL-6 were all decreased in ischemic mice treated with HupA. Colorimetric test results illustrated that a marked reduction of caspase-3 activity was found in the HupA-treated group compared with the vehicle group. Our present data suggest that HupA has a protective role against HI/R injury of mice and antioxidative, anti-inflammatory, and antiapoptotic

  7. Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor.

    Science.gov (United States)

    Hung, Pi-Lien; Huang, Chao-Ching; Huang, Hsiu-Mei; Tu, Dom-Gene; Chang, Ying-Chao

    2013-08-01

    Low level of thyroid hormone is a strong independent risk factor for white matter (WM) injury, a major cause of cerebral palsy, in preterm infants. Thyroxin upregulates brain-derived neurotrophic factor during development. We hypothesized that thyroxin protected against preoligodendrocyte apoptosis and WM injury in the immature brain via upregulation of brain-derived neurotrophic factor. Postpartum (P) day-7 male rat pups were exposed to hypoxic ischemia (HI) and intraperitoneally injected with thyroxin (T4; 0.2 mg/kg or 1 mg/kg) or normal saline immediately after HI at P9 and P11. WM damage was analyzed for myelin formation, axonal injury, astrogliosis, and preoligodendrocyte apoptosis. Neurotrophic factor expression was assessed by real-time polymerase chain reaction and immunohistochemistry. Neuromotor functions were measured using open-field locomotion (P11 and P21), inclined plane climbing (P11), and beam walking (P21). Intracerebroventricular injection of TrkB-Fc or systemic administration of 7,8-dihydroxyflavone was performed. On P11, the HI group had significantly lower blood T4 levels than the controls. The HI group showed ventriculomegaly and marked reduction of myelin basic protein immunoreactivities in the WM. T4 (1 mg/kg) treatment after HI markedly attenuated axonal injury, astrocytosis, and microgliosis, and increased preoligodendrocyte survival. In addition, T4 treatment significantly increased myelination and selectively upregulated brain-derived neurotrophic factor expression in the WM, and improved neuromotor deficits after HI. The protective effect of T4 on WM myelination and neuromotor performance after HI was significantly attenuated by TrkB-Fc. Systemic 7,8-dihydroxyflavone treatment ameliorated hypomyelination after HI injury. T4 protects against WM injury at both pathological and functional levels via upregulation of brain-derived neurotrophic factor-TrkB signaling in the immature brain.

  8. Skin protection behaviour and sex differences in melanoma location in patients with multiple primary melanomas.

    Science.gov (United States)

    Warren, Matthew; McMeniman, Erin; Adams, Agnieszka; De'Ambrosis, Brian

    2017-02-01

    Previous studies have shown that sunscreen usage, sun-protection measures and self-examination rates in patients with single primary melanomas (SPM) are similar to that in the general population. This study hypothesises that these rates would be different in a population with multiple primary melanomas (MPM). We further hypothesise that there would be a sex difference in melanoma location in patients with MPM. The objectives of this study were to determine skin protection measures, self-examinations and melanoma location in a cohort of patients with MPM. A survey was conducted on 137 patients with MPM examining their sun-protection measures, skin self-examination rates and medical and phenotypic characteristics. These data were combined with a review of their medical records to examine the patients' skin cancer history. Patients with MPM had higher rates of skin self-evaluation (74% vs 22%), sunscreen usage (70% vs 45%) and other sun-protection measures (95% vs 46%) than has been published for patients with a history of a SPM. We have also shown that women have a higher risk of developing melanomas on their arms (p skin self-examination, sunscreen usage and other sun-protection methods in patients with MPM is higher than in studies of patients with SPM. It also highlighted sex differences in terms of melanoma location for patients with MPM. Further studies to examine the cause of the differences in these forms of protective behaviour could help improve the utilisation of these important preventative measures in all patients. © 2015 The Australasian College of Dermatologists.

  9. Evaluation of Pulmonary Reperfusion Injury in Rats Undergoing Mesenteric Ischemia and Reperfusion and Protective Effect of Postconditioning on this Process

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Marques dos Santos

    2015-10-01

    Full Text Available ABSTRACT INTRODUCTION: Some publications have demonstrated the presence of lung reperfusion injury in mesenteric ischemia and reperfusion (I/R, but under to diverse methods. Postconditioning has been recognized as effective in preventing reperfusion injury in various organs and tissues. However, its effectiveness has not been evaluated in the prevention of lung reperfusion injury after mesenteric ischemia and reperfusion. OBJECTIVE: To evaluate the presence of pulmonary reperfusion injury and the protective effect of ischemic postconditioning on lung parenchyma in rats submitted to mesenteric ischemia and reperfusion. METHODS: Thirty Wistar rats were distributed into three groups: group A (10 rats, which was held mesenteric ischemia (30 minutes and reperfusion (60 minutes; group B (10 rats, ischemia and reperfusion, interspersed by postconditioning with two alternating cycles of reperfusion and reocclusion, for two minutes each; and group C (10 rats, ischemia and reperfusion interleaved by postconditioning with four alternating cycles of reperfusion and reocclusion of 30 seconds each. Finally, it was resected the upper lung lobe for histological analysis. RESULTS: There were mild lung lesions (grade 1 in all samples. There was no statistical difference between groups 1 and 2 (P >0.05. CONCLUSION: The mesenteric ischemia and reperfusion in rats for thirty and sixty minutes, respectively, caused mild reperfusion injury in lung. Postconditioning was not able to minimize the remote reperfusion injury and there was no difference comparing two cycles of two minutes with four cycles of 30 seconds.

  10. Distance protection of multiple-circuit shared tower transmission lines with different voltages

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. This study presents a detailed theoretical analysis of such combined faults, including the development...... of a formula for estimating the magnitude of the short-circuit current. It is demonstrated that if the faulted phase from the higher voltage level leads the faulted phase from the lower voltage level, a distance relay at the higher voltage level sees the fault in the forward direction, whereas a distance relay...

  11. Protective personality traits: High openness and low neuroticism linked to better memory in multiple sclerosis.

    Science.gov (United States)

    Leavitt, Victoria M; Buyukturkoglu, Korhan; Inglese, Matilde; Sumowski, James F

    2017-11-01

    Memory impairment in multiple sclerosis (MS) is common, although few risk/protective factors are known. To examine relationships of personality to memory/non-memory cognition in MS. 80 patients completed a cognitive battery and a personality scale measuring the "Big 5" traits: openness, neuroticism, agreeableness, extraversion, and conscientiousness. Memory was most related to openness, with higher openness linked to better memory and lower risk for memory impairment, controlling for age, atrophy, education, and intelligence quotient (IQ). Lower neuroticism was also related to better memory, and lower conscientiousness to memory impairment. Non-memory cognition was unrelated to personality. Personality may inform predictive models of memory impairment in MS.

  12. Anti-thromboxane B2 antibodies protect against acetaminophen-induced liver injury in mice

    Directory of Open Access Journals (Sweden)

    Ivan Ćavar

    2011-12-01

    Full Text Available Prostanoids are lipid compounds that mediate a variety of physiological and pathological functions in almost all body tissues and organs. Thromboxane (TX A2 is a powerful inducer of platelet aggregation and vasoconstriction and it has ulcerogenic activity in the gastrointestinal tract. Overdose or chronic use of a high dose of acetaminophen (N-acetyl-paminophenol, APAP is a major cause of acute liver failure in the Western world. We investigated whether TXA2 plays a role in host response to toxic effect of APAP. CBA/H Zg mice of both sexes were intoxicated with a single lethal or high sublethal dose of APAP, which was administered to animals by oral gavage. The toxicity of APAP was determined by observing the survival of mice during 48 h, by measuring concentration of alanine-aminotransferase (ALT in plasma 20-22 h after APAP administration and by liver histology. The results have shown that anti-thromboxane (TX B2 antibodies (anti-TXB2 and a selective inhibitor of thromboxane (TX synthase, benzylimidazole (BZI, were significantly hepatoprotective, while a selective thromboxane receptor (TPR antagonist, daltroban, was slightly protective in this model of acute liver injury. A stabile metabolite of TXA2, TXB2, and a stabile agonist of TPR, U-46619, had no influence on APAP-induced liver damage. Our findings suggest that TXA2 has a pathogenic role in acute liver toxicity induced with APAP, which was highly abrogated by administration of anti-TXB2. According to our results, this protection is mediated, at least in part, through decreased production of TXB2 by liver fragments ex vivo.

  13. Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury.

    Science.gov (United States)

    Guo, Hui-Cai; Guo, Fang; Zhang, Li-Nan; Zhang, Rong; Chen, Qing; Li, Jun-Xia; Yin, Jian; Wang, Yong-Li

    2011-06-01

    Chronic intermittent hypobaric hypoxia (CIHH) has been shown to attenuate intracellular Na(+) accumulation and Ca(2+) overload during ischemia and reperfusion (I/R), both of which are closely related to the outcome of myocardial damage. Na/K pump plays an essential role in maintaining the equilibrium of intracellular Na(+) and Ca(2+) during I/R. It has been shown that enhancement of Na/K pump activity by ischemic preconditioning may be involved in the cardiac protection. Therefore, we tested whether Na/K pump was involved in the cardioprotection by CIHH. We found that Na/K pump current in cardiac myocytes of guinea pigs exposed to CIHH increased 1.45-fold. The K(1) and f(1), which reflect the portion of α(1)-isoform of Na/K pump, dramatically decreased or increased, respectively, in CIHH myocytes. Western blot analysis revealed that CIHH increased the protein expression of the α(1)-isoform by 76%, whereas the protein expression of the α(2)-isoform was not changed significantly. Na/K pump current was significantly suppressed in simulated I/R, and CIHH preserved the Na/K pump current. CIHH significantly improved the recovery of cell length and contraction during reperfusion. Furthermore, inhibition of Na/K pump by ouabain attenuated the protective effect afforded by CIHH. Collectively, these data suggest that the increase of Na/K pump activity following CIHH is due to the upregulating α(1)-isoform of Na/K pump, which may be one of the mechanisms of CIHH against I/R-induced injury.

  14. Radiation-induced late brain injury and the protective effect of traditional Chinese medicine

    International Nuclear Information System (INIS)

    Yi Junlin; Miao Yanjun; Yang Weizhi; Cai Weiming; Liu Yajie

    2004-01-01

    Objective: To investigate whether radiation-induced late injury of the brain can be ameliorated by traditional Chinese Medicine through blocking the primary events. Methods: This trial included five animal groups: sham irradiation, irradiation only, and three treatment groups. The whole brain of BALB/C mouse was irradiated with 22 Gy by using a 6 MV linear accelerator. Step down method was used to evaluate the study and memory abilities. Mouse weight was also recorded every week before and after irradiation. On D90, all mice alive were euthanized and Glee's silver dye method and Bielschousky silver dye method were used to detect the senile plaque and the neurofibrillary tangle. One-Way ANOVA was used to evaluate the differences among the groups in the various aspects of study and memory abilities as well as quality of life. Kaplan-Meier was used to evaluate the survival. Log-rank was used to detect the differences among the survival groups. Results: 1. There was no significant difference in survival among the treatment groups, even though Salvia Miltiorrhiza (SM) was able to improve the quality of life. As to the cognition function, it was shown that whole brain radiation would make a severe cognition damage with the learning and memorizing ability of the irradiated mice being worse than those of the sham irradiation group. The Traditional Chinese Medicine Salvia Miltiorrhiza possesses the role of a protective agent against cognition function damage induced by irradiation. 2. Glee's silver dye and Bielschousky silver dye show much more senile plaque and the neurofibrillary tangle in brain tissue of R group and R + 654-2 group than those in the R + SM group. Conclusions: Salvia Miltiorrhiza is able to protect the mouse from cognition function damage induced by irradiation and improve the quality of life by ameliorating the primary events, though it does not improve the survival

  15. Protection from diclofenac-induced liver injury by Yulangsan polysaccharide in a mouse model.

    Science.gov (United States)

    Huang, Jianchun; Nguyen, Vanphuc; Tang, Xiaojun; Wei, Jinbin; Lin, Xing; Lai, Zefeng; Doan, Vanminh; Xie, Qiuqiao; Huang, Renbin

    2016-12-04

    Millettia pulchra Kurz var-laxior (Dunn) Z. Wei, a wild-growing plant of the family Fabaceae is known to possess multifarious medicinal properties. Yulangsan polysaccharide (YLSPS) is a chief ingredient of its root, which has been used in Chinese traditional medicine with a long history for remedy of acute or chronic hepatitis and jaundice. To investigate the ability of the YLSPS to protect against diclofenac-induced hepatotoxicity in mice. Mice were orally treated with YLSPS daily 1h after the injection of diclofenac for 2 weeks. Dimethyl diphenyl bicarboxylate was used as a reference drug. YLSPS effectively reduced the elevated levels of serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and enhanced the reduction of superoxide dismutase, catalase, and glutathione peroxidase activities in the liver. Moreover, the content of malondialdehyde was reduced by treatment with YLSPS, and histological findings also confirmed the anti-hepatotoxic activity. In addition, YLSPS significantly inhibited proinflammatory mediators, such as tumor necrosis factor-alpha and interleukin 1 beta. YLSPS also enhanced mitochondrial antioxidants and inhibited cell death by preventing the down-regulation of Bcl-2 and the up-regulation and release of Bax along with caspase 9 and 3 activity; thus, these findings confirm the involvement of mitochondria in diclofenac-induced apoptosis. The results indicate that protective effects of YLSPS against diclofenac-induced acute hepatic injury may rely on its effect on reducing oxidative stress, suppressing inflammatory responses, and improving drug-metabolizing enzyme activity in the liver. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system.

    Science.gov (United States)

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2004-04-01

    Although human heme oxygenase-1 (hHO-1) could provide a useful approach for cellular protection in the ischemic heart, constitutive overexpression of hHO-1 may lead to unwanted side effects. To avoid this, we designed a hypoxia-regulated hHO-1 gene therapy system that can be switched on and off. This vigilant plasmid system is composed of myosin light chain-2v promoter and a gene switch that is based on an oxygen-dependent degradation domain from the hypoxia inducible factor-1-alpha. The vector can sense ischemia and switch on the hHO-1 gene system, specifically in the heart. In an in vivo experiment, the vigilant hHO-1 plasmid or saline was injected intramyocardially into myocardial infarction mice or sham operation mice. After gene transfer, expression of hHO-1 was only detected in the ischemic heart treated with vigilant hHO-1 plasmids. Masson trichrome staining showed significantly fewer fibrotic areas in vigilant hHO-1 plasmids-treated mice compared with saline control (43.0%+/-4.8% versus 62.5%+/-3.3%, PhHO-1 expression in peri-infarct border areas, concomitant with higher Bcl-2 levels and lower Bax, Bak, and caspase 3 levels in the ischemic myocardium compared with saline control. By use of a cardiac catheter, heart from vigilant hHO-1 plasmids-treated mice showed improved recovery of contractile and diastolic performance after myocardial infarction compared with saline control. This study documents the beneficial regulation and therapeutic potential of vigilant plasmid-mediated hHO-1 gene transfer. This novel gene transfer strategy can provide cardiac-specific protection from future repeated bouts of ischemic injury.

  17. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Science.gov (United States)

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  18. Protective effects of regular aerobic exercise on renal tissue injury following creatine monohydrate supplementation in rats

    Directory of Open Access Journals (Sweden)

    Davoud Rahimi

    2017-01-01

    Full Text Available Creatine is one of the most common supplements for improvement of athletic performance which is used by athletes. The most important debate about creatine consumption is its adverse effect on kidneys due to increased protein load. This study was performed to evaluate the protective effects of aerobic exercise on renal tissue injury following consumption of creatine monohydrate in the rat. For this purpose, 30 male Wistar rats were randomly divided into 3 groups of 10 animals each. Group 1, as control, received only standard food. Group 2 received 5 g/kg b.w. creatine monohydrate supplement daily for 8 weeks through gavage and group 3 received creatine monohydrate supplementation in the same manner30 minutes before aerobic exercise. Aerobic exercise was performed 5 times per week on treadmill at speed of 10-25m/min for 10-30 minutes with the slope of 5 degrees. At the end of 8 weeks, water intake and urinary excretion of rats were measured and blood samples were collected for measurement of serum renal function biomarkers including urea, uric acid and creatinine. Finally, the rats were euthanized for renal histopathology. In group 3, by doing regular aerobic exercise, water intake and urinary excretion rates were significantly (p

  19. Protective Role of Royal Jelly in Oxymetholone-induced Oxidative Injury in Mouse Testis

    Directory of Open Access Journals (Sweden)

    Gholamreza Najafi

    2014-06-01

    Full Text Available Background: An adverse effect of oxymetholone (OXM, an anabolic-androgenic steroid used as energetic medicine, is reproductive toxicity. Royal jelly (RJ is an efficient antioxidant that has been used to treat reproductive problems. In this study, we investigated the effects of RJ on OXM-induced oxidative injuries in mouse testes. Methods: Male mice were divided into four groups. Two groups of mice were administered OXM (5 mg/kg/day, p.o. for 28 days. One of these groups received RJ (100 mg/kg/day, p.o. concurrently. A vehicle-treated control group and a RJ control group were also included. Results: The OXM-treated group showed a significant decrease in the serum testosterone concentration and spermatogenic activities, along with many histological alterations. OXM treatment also caused a significant decrease in catalase activity with an increase in lipid peroxidation in the mouse testes. The above-noted parameters were restored to near normal levels by RJ co-administration. Conclusion: The results demonstrate that RJ protects against OXM-induced reproductive toxicities.

  20. Lipoxin A4 Preconditioning and Postconditioning Protect Myocardial Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qifeng Zhao

    2013-01-01

    Full Text Available This study aims to investigate the pre- and postconditioning effects of lipoxin A4 (LXA4 on myocardial damage caused by ischemia/reperfusion (I/R injury. Seventy-two rats were divided into 6 groups: sham groups (C1 and C2, I/R groups (I/R1 and I/R2, and I/R plus LXA4 preconditioning and postconditioning groups (LX1 and LX2. The serum levels of IL-1β, IL-6, IL-8, IL-10, TNF-α, and cardiac troponin I (cTnI were measured. The content and the activity of Na+-K+-ATPase as well as the superoxide dismutase (SOD, and malondialdehyde (MDA levels were determined. Along with the examination of myocardium ultrastructure and ventricular arrhythmia scores (VAS, connexin 43 (Cx43 expression were also detected. Lower levels of IL-1β, IL-6, IL-8, TNF-α, cTnI, MDA content, and VAS and higher levels of IL-10, SOD activity, Na+-K+-ATPase content and activity, and Cx43 expression appeared in LX groups than I/R groups. Besides, H&E staining, TEM examination as well as analysis of gene, and protein confirmed that LXA4 preconditioning was more effective than postconditioning in preventing arrhythmogenesis via the upregulation of Cx43. That is, LXA4 postconditioning had better protective effect on Na+-K+-ATPase and myocardial ultrastructure.

  1. Protective Effect of Cymbopogon citratus Essential Oil in Experimental Model of Acetaminophen-Induced Liver Injury.

    Science.gov (United States)

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Cardia, Gabriel Fernando Esteves; Cavalcante, Heitor Augusto Otaviano; Silva-Comar, Francielli Maria de Souza; Becker, Tânia Cristina Alexandrino; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    To investigate the hepatoprotective effect of Cymbopogon citratus or lemongrass essential oil (LGO), it was used in an animal model of acute liver injury induced by acetaminophen (APAP). Swiss mice were pretreated with LGO (125, 250 and 500[Formula: see text]mg/kg) and SLM (standard drug, 200[Formula: see text]mg/kg) for a duration of seven days, followed by the induction of hepatotoxicity of APAP (single dose, 250[Formula: see text]mg/kg). The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase were determined to evaluate the hepatoprotective effects of the LGO. The livers were used to determine myeloperoxidase (MPO) activity, nitric oxide (NO) production and histological analysis. The effect of LGO on leukocyte migration was evaluated in vitro. Anti-oxidant activity was performed by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro. LGO pretreatment decreased significantly the levels of ALT, AST and ALP compared with APAP group. MPO activity and NO production were decreased. The histopathological analysis showed an improved of hepatic lesions in mice after LGO pretreatment. LGO inhibited neutrophil migration and exhibited anti-oxidant activity. Our results suggest that LGO has protective activity against liver toxicity induced by paracetamol.

  2. Protective Effect Of Bosentan In Experimental Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Eser Ataş

    2013-02-01

    Full Text Available OBJECTIVE: In cerebral ischemia, there are many factors that start the events leading to cell death. These factors contain free radical production, excitotoxicity, sodium and calcium flow disruption, enzymatic changes, stimulation of the inflamatuar process, the activation of platelets and leukocytes, delayed coagulation, endothelial dysfunction and endothelin (ET release. Bosentan is the competitive antagonist of endothelin receptors; ETA and ETB. The aim of this study is to determine whether the protective effects of bosentan in experimental cerebral ischemia reperfusion injury. MATERIAL and METHODS: In this study, after ischemia-reperfusion procedure, bosentan molecule was regularly given to rats for 5 days. The brain tissues of decapitated rats were histopathologically examined. The levels of oxidant and antioxidant were determined in these brain tissues. RESULTS: It was observed that antioxidant levels and histopathological examinations were in rats given bosentan better than control group rats. CONCLUSION: In conclusion, this study has showed that bosentan may be an agent which could reduce negative effects resulting from neuronal death associated with ischemic stroke.

  3. Mechanism of the Protective Effect of Yulangsan Flavonoid on Myocardial Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2014-09-01

    Full Text Available Aims: Effect and mechanism of Yulangsan flavonoid (YLSF on rat myocardial ischemia/reperfusion injury (MI/RI has been investigated. Methods: Sprague-Dawley (SD rats were randomly divided into seven groups (sham group, model group and NS group: 2 mL of normal saline/kg body weight was administered; diltiazem group: 5 mg of diltiazem hydrochloride/kg body weight was administered; YLSFL, YLSFM and YLSFH groups: 20, 40 and 80 mg of YLSF/kg body weight was administered and the MI/RI model was established. Myocardial infarct area, levels of myocardial enzymes and nitric oxide synthase (NOS were measured. Caspase-3 and adenine nucleotide translocator-1 (ANT1 mRNA expression were evaluated by reverse transcription polymerase chain reaction (RT-PCR. Pathological structure and cardiocyte ultrastructure were also analysed. Results: Compared with the MI/RI group, pretreatment with YLSF or diltiazem hydrochloride decreased the infarct area, levels of inducible nitric oxide synthase (iNOS, caspase-3 as well as the leakage of myocardial enzyme and increased activities of total nitric oxide synthase (tNOS as well as constitutive nitric oxide synthase (cNOS. Cellular edema and the infiltration of inflammatory cells were alleviated. Conclusions: The experiment showed that YLSF protected the heart against MI/RI, possibly by reducing lipid peroxidation damage, regulating NOS activity and modulating the apoptosis genes expression.

  4. Empirical study on protective effect of dendrobium candidum wall.ex lindl drop on acute radiation-injuried mice

    International Nuclear Information System (INIS)

    Sun Jingping; Zhang Guoqing

    2008-01-01

    Objective: To study the protective effect of Dendrobium candidum Wall.ex Lindl drop (DCWD) on acute radiation-injuried mice and the correlative mechanism. Methods: According to the body weight BALB/c mice were divided into the control group, radiation-injuried group and DCWD groups which were divided into two groups according to the dose of DCWD. Before whole-body irradiation with 4.0 Gy 6 MV X-rays, the BALB/c mice were supplied with DCWD every day. After being irradiated, these mice were continued to be given DCWD until they were killed. The DNA contents of bone marrow, the CD4 + /CD8 + ratios of peripheral blood and splenic cells, blastation of lymphocyte and the contents of IL-2 were observed. Results: DCWD hasincreased the DNA contents of bone marrow, the ability of blastation of lymphocyte and the IL-2 contents of irradiated mice. It has protected T leukomonocyte by accommodating the hyprotypes of T leukomonocyte. Conclusion: DCWD can protect the acute radiation-injuried mice which relates with protecting the hematopoiesis and the immune function etc. (authors)

  5. Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    Directory of Open Access Journals (Sweden)

    Hyo Jeong Kim

    2013-01-01

    Full Text Available Carbon monoxide (CO may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3 and phosphatidylinositol 3-kinase (PI3K-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  6. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β.

    Science.gov (United States)

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  7. Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury.

    Science.gov (United States)

    Lehmann, Sylvia; Leonhardt, Steffen; Ngo, Chuong; Bergmann, Lukas; Schrading, Simone; Heimann, Konrad; Wagner, Norbert; Tenbrock, Klaus

    2018-01-01

    Electrical Impedance Tomography (EIT) is a tomographic, radiation-free technique based on the injection of a harmless alternating current. As electrical impedance strictly correlates with the variation of air content, EIT delivers highly dynamic information about global and regional ventilation. We want to demonstrate the potential of EIT individualizing ventilation by positioning. Gravity-dependent EIT findings were analyzed retrospectively in a critically ill mechanically ventilated pediatric patient with cystic fibrosis and coincident lung diseases. To further evaluate gravity-dependent changes in ventilation, six adult healthy and spontaneously breathing volunteers were investigated during simultaneous detection of EIT, breathing patterns, tidal volume (VT) and breathing frequency (BF). EIT findings in healthy lungs in five positions showed gravity-dependent effects of ventilation with overall ventilation of predominantly the right lung (except during left-side positioning) and with the ventral lung in supine, prone and upright position. These EIT-derived observations are in line with pathophysiological mechanisms and earlier EIT studies. Unexpectedly, the patient with cystic fibrosis and lobectomy of the right upper and middle lobe one year earlier, showed improvement of global and regional ventilation in the right position despite reduced lung volume and overinflation of this side. This resulted in individualized positioning and improvement of ventilation. Although therapeutic recommendations are available for gravitational influences of lung ventilation, they can be contradictory depending on the underlying lung disease. EIT has the potential to guide therapists in the positioning of patients according to their individual condition and disease, especially in case of multiple lung injury. © 2016 John Wiley & Sons Ltd.

  8. Understanding suicide and disability through three major disabling conditions: Intellectual disability, spinal cord injury, and multiple sclerosis.

    Science.gov (United States)

    Giannini, Margaret J; Bergmark, Brian; Kreshover, Samantha; Elias, Eileen; Plummer, Caitlin; O'Keefe, Eileen

    2010-04-01

    Disability is not a category of disease but rather relates to the physical, sensory, cognitive, and/or mental disorders that substantially limit one or more major life activities. These functional limitations have been found to be predictive of suicide, with psychiatric comorbidities increasing the risk for suicide. Enormous gaps exist in the understanding of the relationship between disability and suicide. We reviewed the current literature addressing the prevalence of and risk factors for suicide among persons with three major disabling conditions and identify priorities for future research. We performed a literature review investigating the relationship between three major disabilities (intellectual disability, spinal cord injury, multiple sclerosis) and suicide. To ensure thorough evaluation of the available literature, we searched PubMed, the Cochrane Library, and Google Scholar with terms including "suicide," "disability," "intellectual disability," "spinal cord injury," "multiple sclerosis," and permutations thereof. By this method we evaluated 110 articles and included 21 in the review. Suicide rates are significantly higher among persons with multiple sclerosis and spinal cord injury than in the general population. A more nuanced picture of suicide rates and risk factors exists for the intellectual disability population, in which it appears that rates of suicide risk factors are higher than among the general population while suicide rates may be lower. The highest rates of suicide are reported among study populations of persons with multiple sclerosis, followed by persons with spinal cord injury, and then individuals with intellectual disability. Suicide among persons with disabilities is a complex and pressing public health concern. Urgent research priorities include (1) valid estimates of suicide rates among persons with disabilities by age cohort; (2) assessment of the predictive importance of suicide risk factors; and (3) determination of best

  9. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury.

    Directory of Open Access Journals (Sweden)

    Marialbert Acosta-Herrera

    Full Text Available Acute lung injury (ALI is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV using low tidal volumes (LVT plus moderate to high levels of positive end-expiratory pressure (PEEP. However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The 'response to microorganisms' was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the 'neuron projection morphogenesis' process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated. Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection

  10. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury

    Science.gov (United States)

    Acosta-Herrera, Marialbert; Lorenzo-Diaz, Fabian; Pino-Yanes, Maria; Corrales, Almudena; Valladares, Francisco; Klassert, Tilman E.; Valladares, Basilio; Slevogt, Hortense; Ma, Shwu-Fan

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV) using low tidal volumes (LVT) plus moderate to high levels of positive end-expiratory pressure (PEEP). However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg) plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg) plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The ‘response to microorganisms’ was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the ‘neuron projection morphogenesis’ process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a) were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated). Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection

  11. A Survey of Georgia Adult Protective Service Staff: Implications for Older Adult Injury Prevention and Policy

    Directory of Open Access Journals (Sweden)

    Strasser, Sheryl

    2011-07-01

    that are not well understood by APS staff. Soliciting input from intended trainees allows public health educators to tailor and improve training sessions. Trainee input may result in optimization of policy implementation, which may result in greater injury prevention and protection of older adults vulnerable to abuse, neglect and exploitation. [West J Emerg Med. 2011;12(3:357-364.

  12. A survey of georgia adult protective service staff: implications for older adult injury prevention and policy.

    Science.gov (United States)

    Strasser, Sheryl M; Kerr, Judith; King, Patricia S; Payne, Brian; Beddington, Sarah; Pendrick, Danielle; Leyda, Elizabeth; McCarty, Frances

    2011-07-01

    . Soliciting input from intended trainees allows public health educators to tailor and improve training sessions. Trainee input may result in optimization of policy implementation, which may result in greater injury prevention and protection of older adults vulnerable to abuse, neglect and exploitation.

  13. Involvement of the nitric oxide in melatonin-mediated protection against injury.

    Science.gov (United States)

    Fan, Wenguo; He, Yifan; Guan, Xiaoyan; Gu, Wenzhen; Wu, Zhi; Zhu, Xiao; Huang, Fang; He, Hongwen

    2018-05-01

    Melatonin is a hormone mainly synthesized by the pineal gland in vertebrates and known well as an endogenous regulator of circadian and seasonal rhythms. It has been demonstrated that melatonin is involved in many physiological and pathophysiological processes showing antioxidant, anti-apoptotic and anti-inflammatory properties. Nitric oxide (NO) is a free radical gas in the biological system, which is produced by nitric oxide synthase (NOS) family. NO acts as a biological mediator and plays important roles in different systems in humans. The NO/NOS system exerts a broad spectrum of signaling functions. Accumulating evidence has clearly revealed that melatonin regulates NO/NOS system through multiple mechanisms that may influence physiological and pathophysiological processes. This article reviews the latest evidence for the effects of melatonin on NO/NOS regulation in different organs and disease conditions, the potential cellular mechanisms by which melatonin is involved in organ protection are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. [Protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease].

    Science.gov (United States)

    Liu, Y T; Li, Y Q; Wang, Y Z

    2016-12-20

    Objective: To investigate the protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease (NAFLD). Methods: A total of 36 healthy male Sprague-Dawley rats with a mean body weight of 180±20 g were randomly divided into control group, model group, and treatment group, with 12 rats in each group, after adaptive feeding for 1 week. The rats in the control group were given basic feed, and those in the model group and treatment group were given high-fat feed. After 12 weeks of feeding, the treatment group was given Saccharomyces boulardii (75×10 8 CFU/kg/d) by gavage, and those in the control group and model group were given isotonic saline by gavage. At the 20th week, blood samples were taken from the abdominal aorta to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), intestinal fatty acid binding protein (IFABP), tumor necrosis factor-α (TNF-α), and endotoxins. The liver pathological changes, intestinal histopathological changes, and expression of occludin in the intestinal mucosa were observed. Fecal samples were collected to measure the changes in Escherichia coli and Bacteroides. A one-way analysis of variance and the SNK test were used for comparison between multiple groups, and the rank sum test was used as the non-parametric test. Results: Compared with the control group, the model group had significantly higher body weight, liver mass, and liver index ( P 0.05). Compared with the control group, the model group had significant increases in the levels of endotoxin, TNF-α, and IFABP ( P Saccharomyces boulardii can reduce body weight and improve hepatocyte steatosis. Saccharomyces boulardii can reduce endotoxemia in NAFLD rats and thus alleviate inflammatory response. Saccharomyces boulardii can also adjust the proportion of Escherichia coli and Bacteroides in the intestine of NAFLD rats.

  15. Testosterone Depletion by Castration May Protect Mice from Heat-Induced Multiple Organ Damage and Lethality

    Directory of Open Access Journals (Sweden)

    Ruei-Tang Cheng

    2010-01-01

    Full Text Available When the vehicle-treated, sham-operated mice underwent heat stress, the fraction survival and core temperature at +4 h of body heating were found to be 5 of 15 and 34.4∘C±0.3∘C, respectively. Castration 2 weeks before the start of heat stress decreased the plasma levels of testosterone almost to zero, protected the mice from heat-induced death (fraction survival, 13/15 and reduced the hypothermia (core temperature, 37.3∘C. The beneficial effects of castration in ameliorating lethality and hypothermia can be significantly reduced by testosterone replacement. Heat-induced apoptosis, as indicated by terminal deoxynucleotidyl- transferase- mediatedαUDP-biotin nick end-labeling staining, were significantly prevented by castration. In addition, heat-induced neuronal damage, as indicated by cell shrinkage and pyknosis of nucleus, to the hypothalamus was also castration-prevented. Again, the beneficial effects of castration in reducing neuronal damage to the hypothalamus as well as apoptosis in multiple organs during heatstroke, were significantly reversed by testosterone replacement. The data indicate that testosterone depletion by castration may protect mice from heatstroke-induced multiple organ damage and lethality.

  16. The role of eye protection in work-related eye injuries.

    Science.gov (United States)

    Fong, L P; Taouk, Y

    1995-05-01

    A recent survey of general hospitals by the Victorian Injury Surveillance System found that ocular trauma represented 15% of work-related injuries. As circumstances surrounding occupational eye injuries have been poorly documented previously, their associations to occupation, industry and work-safety practices, including safety eyewear use, need to be identified to develop appropriate preventive strategies for high-risk groups. From a prospective cross-sectional survey of all eye injuries treated at the Royal Victorian Eye and Ear Hospital, work-related cases were analysed for demographic, occupational and safety eye-wear information. Hospital-based data were supplemented by information from WorkCover Authorities and Labour Force statistics to derive incidence and cost estimates. There were 9390 eye injuries during the 18-month survey period; 42% (n=3923) of total and 29% (n=52) of penetrating ocular injuries occurred at work. The most frequently injured were metal, automotive and building trades workers grinding and drilling (41% of outpatients) and hammering (53% of penetrating eye injuries). Automotive workers had the highest frequency for penetrating injuries, and most were exposed to hammering and were also the least likely to wear safety eye-wear. Eye injuries are frequent (10% of work-related injuries) and highly preventable by the correct use of safety eye-wear, a cost-effective intervention that may result in cost savings of $59 million for work-type activities in the occupational and domestic settings in Australia each year.

  17. Efficiency and protective effect of encapsulation of milk immunoglobulin G in multiple emulsion.

    Science.gov (United States)

    Chen, C C; Tu, Y Y; Chang, H M

    1999-02-01

    Milk immunoglobulin G (IgG), separated with protein G affinity chromatography, and IgG in colostral whey were encapsulated by 0.5% (w/v) of Tween 80, sucrose stearate, or soy protein, which were used as secondary emulsifiers in the water in oil in water type multiple emulsion. The residual contents of separated IgG and IgG in colostral whey, ranging from 58.7 to 49.7% and from 13.2 to 21.3%, respectively, in the inner water phase (water phase surrounded by oil phase) with emulsifiers were determined by ELISA. However, the emulsion stability decreased after 24 h, and the residual IgG content in the inner water phase was lowered. Encapsulation of IgG in the multiple emulsion increased the stability of separated IgG against acid (pH 2.0) and alkali (pH 12.0) by 21-56% and 33-62%, respectively, depending on the emulsifier used. Moreover, multiple emulsion also provided a remarkable protective effect on separated IgG stability against proteases. The residual contents of separated IgG in multiple emulsion, using Tween 80 as secondary emulsifier, incubated for 2 h with pepsin (pH 2.0) and trypsin and chymotrypsin (pH 7.6) (enzyme/substrate = 1/20) were 35.4, 72.5, and 82.3%, whereas those of separated IgG in enzyme solution were only 7.2, 33. 1, and 35.2%, respectively. However, the separated IgG loss during the preparation of multiple emulsion was almost 41-50%.

  18. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation.

    Science.gov (United States)

    Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C

    2012-06-01

    Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Three-dimensional biomimetic head model as a platform for thermal testing of protective goggles for prevention of eye injuries.

    Science.gov (United States)

    Friedman, Rinat; Haimy, Ayelet; Gefen, Amit; Epstein, Yoram

    2018-04-22

    The rate of eye injury is steadily rising during military conflicts of the century, with thermal burns being the most common type of injury to the eyes. The present study focuses on assessing the heat resistance properties of military protective goggles using three-dimensional (3D) finite element head modeling fitted with the tested protective gear. A computational thermal impact was applied onto a 3D biomimetic human head model fitted with two goggle models - sports (Type 1) and square (Type 2). The resultant temperature of the eye tissues and the thermal injury thresholds were calculated by using the modeling, hence allowing to determine the protective efficacy of the goggles objectively, in a standardized, quantitative and cost-effective manner. Both types of goggles had a dramatic protective effect on the eyes. The specific goggle geometry had no notable effect on the level of protection to the inner tissues against the thermal insult. At the skin level goggles reduced temperatures by ~64% under the impact zone, with only a mild difference (10 °C) between the goggles. Little limitations on the shape and geometry of goggles were observed and any structure of goggles can provide an adequate protection against a thermal insult (per se) to inner cranial tissues, assuming the lenses are wide and thick enough to block direct skin contact of the heat insult. It was shown that our 3D biomimetic human head model provides a practical and cost-effective tool for determining the performance level of goggles with different attributed (i.e., shapes and thermal properties). Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-01-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia

  1. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiao [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Shetty, Sreerama [Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708 (United States); Zhang, Ping [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Gao, Rong; Hu, Yuxin [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Wang, Shuxia [Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Li, Zhenyu [Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536 (United States); Fu, Jian, E-mail: jian.fu@uky.edu [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  2. Confidentiality Protection of User Data and Adaptive Resource Allocation for Managing Multiple Workflow Performance in Service-Based Systems

    Science.gov (United States)

    An, Ho

    2012-01-01

    In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in…

  3. Extending technology-aided leisure and communication programs to persons with spinal cord injury and post-coma multiple disabilities.

    Science.gov (United States)

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Ricciuti, Riccardo A; Trignani, Roberto; Oliva, Doretta; Signorino, Mario; D'Amico, Fiora; Sasanelli, Giovanni

    2015-01-01

    These two studies extended technology-aided programs to promote leisure and communication opportunities to a man with cervical spinal cord injury and a post-coma man with multiple disabilities. The studies involved the use of ABAB designs, in which A and B represented baseline and intervention phases, respectively. The programs focused on enabling the participants to activate songs, videos, requests, text messages, and telephone calls. These options were presented on a computer screen and activated through a small pressure microswitch by the man with spinal cord injury and a special touch screen by the post-coma man. To help the latter participant, who had no verbal skills, with requests and telephone calls, series of words and phrases were made available that he could activate in those situations. Data showed that both participants were successful in managing the programs arranged for them. The man with spinal cord injury activated mean frequencies of above five options per 10-min session. The post-coma man activated mean frequencies of about 12 options per 20-min session. Technology-aided programs for promoting leisure and communication opportunities might be successfully tailored to persons with spinal cord injury and persons with post-coma multiple disabilities. Implications for Rehabilitation Technology-aided programs may be critical to enable persons with pervasive motor impairment to engage in leisure activities and communication events independently. Persons with spinal cord injury, post-coma extended brain damage, and forms of neurodegenerative disease, such as amyotrophic lateral sclerosis, may benefit from those programs. The programs could be adapted to the participants' characteristics, both in terms of technology and contents, so as to improve their overall impact on the participants' functioning and general mood.

  4. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin

    2014-01-01

    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  5. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway.

    Science.gov (United States)

    Wang, Qin; Lin, Ping; Li, Peng; Feng, Li; Ren, Qian; Xie, Xiaofeng; Xu, Jing

    2017-10-01

    The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dt max and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Compromiso neuronal en esclerosis múltiple Neuronal injury in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Jorge Correale

    2006-10-01

    Full Text Available La esclerosis múltiple (EM ha sido considerada clásicamente como una enfermedad desmielinizante. Si bien el compromiso neurodegenerativo fue previamente descripto, sólo recientemente ha sido enfatizado. Por estudios recientes se ha identificado la degeneración axonal como el mayor determinante de discapacidad neurológica irreversible en pacientes con EM. El daño axonal se inicia tempranamente y permanece silente durante años, la discapacidad neurológica se desarrolla cuando se alcanza cierto umbral de pérdida axonal y los mecanismos de compensación se agotan. Se han propuesto tres hipótesis para explicar el daño axonal: 1 El daño es causado por un proceso inflamatorio, 2 Existe una excesiva acumulación de Ca2+ intraaxonal, 3 Los axones desmielinizados evolucionan a un proceso degenerativo producto de la falta de soporte trófico provisto por la mielina o células formadoras de mielina. Si bien la EM fue tradicionalmente considerada como una enfermedad de la sustancia blanca, el proceso de desmielinización también ocurre en la corteza cerebral. Las lesiones corticales muestran injuria neuronal representada por transección de axones y dendritas, así como apoptosis de neuronas. Dado que los métodos convencionales de resonancia magnética nuclear (RMN son limitados en su capacidad para brindar información sobre el compromiso axonal en EM, procedimientos como tensor de difusión, espectroscopia por resonancia magnética, resonancia magnética funcional, y nuevas técnicas para medir atrofia han sido desarrollados recientemente para monitorear su evolución. El reconocimiento de que EM es en parte un proceso neurodegenerativo impone abordar de manera crítica la patogenia de la enfermedad, a fin de considerar nuevas estrategias de tratamiento.The concept of multiple sclerosis (MS as a demyelinating disease is deeply ingrained. Although the existence of a neurodegenerative component has always been apparent, it has only recently

  7. EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway.

    Science.gov (United States)

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan

    2017-03-28

    Ginkgo bilob a extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, γ-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

  8. Assessment of protective effects of pheniramine maleate on reperfusion injury in lung after distant organ ischemia: a rat model.

    Science.gov (United States)

    Gokalp, Orhan; Yurekli, Ismail; Kiray, Muge; Bagriyanik, Alper; Yetkin, Ufuk; Yurekli, Banu Sarer; Gur, Serkan; Aksun, Murat; Satoglu, Ismail Safa; Gokalp, Gamze; Gurbuz, Ali

    2013-04-01

    The aim of this study is to investigate the protective effects of methylprednisolone (MP) and pheniramine maleate (PM) on reperfusion injury of lungs developing after ischemia of the left lower extremity of rats. A total of 28 randomly selected male rats were divided into 4 groups, each consisting of 7 rats. Group 1 was the control group. Group 2 was the sham group (ischemia/reperfusion [I/R]). Rats in group 3 were subjected to I/R and given PM (Ph group) and rats in group 4 were subjected to I/R and given MP (Pn group). Malondialdehyde levels were significantly lower in Ph group than in I/R group (P < .05). Superoxide dismutase and glutathione peroxidase enzyme activities were found to be significantly higher in Ph group than in the I/R group (P < .05). Histological examination demonstrated that PM had protective effects against I/R injury. The PM has a protective effect against I/R injury in rat lung.

  9. The absence of protective effect of candesartan and angiotensin IV in the moderate brain injury in rats

    International Nuclear Information System (INIS)

    Nasser, M.; Botelle, L.; Javellaud, J.; Oudart, N.; Achard, J-M

    2012-01-01

    Background: angiotensin receptor blockers (ARB) are protective in various models of experimental ischemic stroke. This protective effect is mediated by the stimulation of non-AT1 receptors by angiotensin II and angiotensin IV. Since traumatic brain injury shares with ischemic cerebral injury several common mechanisms, we examined if a pretreatment with the ARB candesartan, or a post-treatment with angiotensin IV are also protective in a rat model of blunt traumatic brain injury (TBI). Methods :adults Sprague Dawley rats were treated for five days with candesartan (0.5 mg/kg/day) or saline by gavage prior to the induction of diffuse moderate TBI using the impact-acceleration model. Two others groups of rats were treated by a daily intraperitoneal injection of angiotensin IV (1.5 mg/kg/day) or saline for five days following TBI. Overall neurological insult were assessed daily by measuring the neurological score. Sensitive deficits (scotch test) and sensorimotor deficits (beam-walking test) were evaluated daily from day 1 to 7 and at day 15; cognitive impairment (object recognition test) was evaluated at day 15. Results : TBI induced significant sensitive and sensorimotor deficits that were maximal at day 1 and spontaneously improved with time. At day 15, traumatised animals had a marked alteration of the working memory. Neither treatment with candesartan, angiotensin IV or with erythropoietin decreased the severity of the initial sensorimotor deficits, nor accelerate the recovery rate. Candesartan, angiotensin IV had likewise no protective effect on the cognitive deficit evaluated to day 15. Conclusion: pretreatment with candesartan and post-treatment with angiotensin IV are both ineffective to protect against sensorimotor and c ognitive impairment in a rat model of impact-acceleration TBI. (author)

  10. Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats.

    Science.gov (United States)

    Kachadroka, Supatra; Hall, Alicia M; Niedzielko, Tracy L; Chongthammakun, Sukumal; Floyd, Candace L

    2010-03-01

    Several groups have recently shown that 17beta-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17beta-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17beta-estradiol-mediated protection by evaluating a delayed administration over a clinically relevant dose range and manipulating testicular-derived testosterone. Adult male Sprague Dawley rats were either gonadectomized or left gonad-intact prior to SCI. SCI was produced by a midthoracic crush injury. At 30 min post SCI, animals received a subcutaneous pellet of 0.0, 0.05, 0.5, or 5.0 mg of 17beta-estradiol, released over 21 days. Hindlimb locomotion was analyzed weekly in the open field. Spinal cords were collected and analyzed for cell death, expression of Bcl-family proteins, and white-matter sparing. Post-SCI administration of the 0.5- or 5.0-mg pellet improved hindlimb locomotion, reduced urinary bladder size, increased neuronal survival, reduced apoptosis, improved the Bax/Bcl-xL protein ratio, and increased white-matter sparing. In the absence of endogenous testicular-derived androgens, SCI induced greater apoptosis, yet 17beta-estradiol administration reduced apoptosis to the same extent in gonadectomized and gonad-intact male rats. These data suggest that delayed post-SCI administration of a clinically relevant dose of 17beta-estradiol is protective in male rats, and endogenous androgens do not alter estrogen-mediated protection. These data suggest that 17beta-estradiol is an effective therapeutic intervention for reducing secondary damage after SCI in males, which could be readily translated to clinical trials.

  11. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures.

    Science.gov (United States)

    Chen, Hongjun; Wang, Yuling; Dong, Shaojun

    2007-12-10

    In this article, we demonstrate an effective hydrothermal route for the synthesis of multiple PDDA-protected (PDDA = poly(diallyl dimethylammonium) chloride) noble-metal (including silver, platinum, palladium, and gold) nanostructures in the absence of any seeds and surfactants, in which PDDA, an ordinary and water-soluble polyelectrolyte, acts as both a reducing and a stabilizing agent. Under optimal experimental conditions, Ag nanocubes, Pt and Pd nanopolyhedrons, and Au nanoplates can be obtained, which were characterized by transmission electron microscopy , scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. More importantly, the nanostructures synthesized show potential applications in surface-enhanced Raman scattering and electrocatalysis, in which Ag nanocubes and Pt nanopolyhedrons were chosen as the examples, respectively.

  12. Effects of marine protected areas on overfished fishing stocks with multiple stable states.

    Science.gov (United States)

    Takashina, Nao; Mougi, Akihiko

    2014-01-21

    Marine protected areas (MPAs) have attracted much attention as a tool for sustainable fisheries management, restoring depleted fisheries stocks and maintaining ecosystems. However, even with total exclusion of fishing effort, depleted stocks sometimes show little or no recovery over a long time period. Here, using a mathematical model, we show that multiple stable states may hold the key to understanding the tendency for fisheries stocks to recover because of MPAs. We find that MPAs can have either a positive effect or almost no effect on the recovery of depleted fishing stocks, depending on the fish migration patterns and the fishing policies. MPAs also reinforce ecological resilience, particularly for migratory species. In contrast to previous reports, our results show that MPAs have small or sometimes negative effects on the recovery of sedentary species. Unsuitable MPA planning might result in low effectiveness or even deterioration of the existing condition. © 2013 Elsevier Ltd. All rights reserved.

  13. Methimazole protects lungs during hepatic ischemia-reperfusion injury in rats: an effect not induced by hypothyroidism.

    Science.gov (United States)

    Tütüncü, Tanju; Demirci, Cagatay; Gözalan, Ugur; Yüksek, Yunus Nadi; Bilgihan, Ayse; Kama, Nuri Aydin

    2007-05-01

    Hepatic ischemia-reperfusion injury may lead to remote organ failure with mortal respiratory dysfunction. The aim of the present study was to analyze the possible protective effects of methimazole on lungs after hepatic ischemia-reperfusion injury. Forty male Wistar albino rats were randomized into five groups: a control group, in which bilateral pulmonary lobectomy was done; a hepatic ischemia-reperfusion group, in which bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion; a thyroidectomy-ischemia-reperfusion group (total thyroidectomy followed by, 7 days later, bilateral pulmonary lobectomy after hepatic ischemia-reperfusion); a methimazole-ischemia-reperfusion group (following methimazole administration for 7 days, bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion); and a methimazole +L-thyroxine-ischemia-reperfusion group (following methimazole and L-thyroxine administration for 7 days, bilateral pulmonary lobectomy was performed after hepatic ischemia-reperfusion). Pulmonary tissue specimens were evaluated histopathologically and for myeloperoxidase and malondialdehyde levels. All of the ischemia-reperfusion intervention groups had higher pulmonary injury scoring indices than the control group (P < 0.001). Pulmonary injury index of the ischemia-reperfusion group was higher than that of both the methimazole-supplemented hypothyroid and euthyroid groups (P = 0028; P = 0,038, respectively) and was similar to that of the thyroidectomized group. Pulmonary tissue myeloperoxidase and malondialdehyde levels in the ischemia-reperfusion group were similar with that in the thyroidectomized rats but were significantly higher than that in the control, and both the methimazole-supplemented hypothyroid and euthyroid groups. Methimazole exerts a protective role on lungs during hepatic ischemia-reperfusion injury, which can be attributed to its anti-inflammatory and anti-oxidant effects rather than hypothyroidism alone.

  14. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  15. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2016-01-01

    Full Text Available Objective: To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model. Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs group, erythropoietin (EPO group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected. Results: Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group. Conclusions: Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  16. Preconditioning induced by gentamicin protects against acute kidney injury: The role of prostaglandins but not nitric oxide

    International Nuclear Information System (INIS)

    Pessoa, Edson A.; Convento, Marcia B.; Ribas, Otoniel S.; Tristao, Vivian R.; Reis, Luciana Aparecida; Borges, Fernanda T.; Schor, Nestor

    2011-01-01

    Nephrotoxicity is the main side effect of gentamicin (GENTA). Preconditioning (PC) refers to a situation in which an organ subjected to an injury responds less intensely when exposed to another injury. The aim of this study was to evaluate the effect of PC with GENTA on nephrotoxic acute kidney injury (AKI). GENTA group rats were injected daily with GENTA (40 mg/kg/BW) for 10 days. PC animals were injected with GENTA for 3 days (40 mg/kg/BW/daily) and, after one rest week, were injected daily with GENTA for 10 days. Animals of the L-NAME and DICLO groups were preconditioned for 3 days and then received daily injections of GENTA for 10 days; they were concomitantly treated with L-NAME (10 mg/kg/BW) and diclofenac (DICLO, 5 mg/kg/BW) for 13 days. Blood and urine were collected for measurement of serum creatinine, urea, urine sodium, protein, hydroperoxides, lipid peroxidation and nitric oxide (NO). The animals were killed; kidneys were removed for histology and immunohistochemistry for apoptosis and cell proliferation. GENTA group rats showed an increase in plasma creatinine, urea, urine sodium, hydroperoxides, lipid peroxidation, proteinuria, necrosis and apoptosis, characterizing nephrotoxic AKI. PC animals showed a decrease in these parameters and increased proliferation. The blockade of NO synthesis by L-NAME potentiated the protective effect, suggesting that NO contributed to the injury caused by GENTA. The blockade of prostaglandin synthesis with DICLO increased serum and urinary parameters, blunting the protective effect of PC. Our data suggest that PC could be a useful tool to protect against nephrotoxic AKI.

  17. Ulinastatin Protects against Acute Kidney Injury in Infant Piglets Model Undergoing Surgery on Hypothermic Low-Flow Cardiopulmonary Bypass.

    Directory of Open Access Journals (Sweden)

    Xiaocou Wang

    Full Text Available Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF. This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass.Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6, the control group (Group C, n = 6, and the sham operation group (Group S, n = 6, and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation

  18. Protection against head injuries should not be optional: a case for mandatory installation of side-curtain air bags.

    Science.gov (United States)

    Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid

    2010-10-01

    More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Abusive head trauma and accidental head injury: a 20-year comparative study of referrals to a hospital child protection team

    Science.gov (United States)

    John, Simon; Vincent, Andrea L; Reed, Peter

    2015-01-01

    Aim To describe children referred for suspected abusive head trauma (AHT) to a hospital child protection team in Auckland, New Zealand. Methods Comparative review of demographics, histories, injuries, investigations and diagnostic outcomes for referrals under 15 years old from 1991 to 2010. Results Records were available for 345 children. Referrals increased markedly (88 in the first decade, 257 in the second), but the diagnostic ratio was stable: AHT 60%, accidental or natural 29% and uncertain cause 11%. The probability of AHT was similar regardless of socio-economic status or ethnicity. In children under 2 years old with accidental head injuries (75/255, 29%) or AHT (180/255, 71%), characteristics of particular interest for AHT included no history of trauma (88/98, 90%), no evidence of impact to the head (84/93, 90%), complex skull fractures with intracranial injury (22/28, 79%), subdural haemorrhage (160/179, 89%) and hypoxic ischaemic injury (38/39, 97%). In children over 2 years old, these characteristics did not differ significantly between children with accidental head injuries (21/47, 45%) and AHT (26/47, 55%). The mortality of AHT was higher in children over 2 years old (10/26, 38%) than under 2 years (19/180, 11%). Conclusions The striking increase in referrals for AHT probably represents increasing incidence. The decision to refer a hospitalised child with a head injury for assessment for possible AHT should not be influenced by socio-economic status or ethnicity. Children over 2 years old hospitalised for AHT are usually injured by mechanisms involving impact and should be considered at high risk of death. PMID:26130384

  20. Insight into multiple-triggering effect in DTSCRs for ESD protection

    Science.gov (United States)

    Zhang, Lizhong; Wang, Yuan; Wang, Yize; He, Yandong

    2017-07-01

    The diode-triggered silicon-controlled rectifier (DTSCR) is widely used for electrostatic discharge (ESD) protection in advanced CMOS process owing to its advantages, such as design simplification, adjustable trigger/holding voltage, low parasitic capacitance. However, the multiple-triggering effect in the typical DTSCR device may cause undesirable larger overall trigger voltage, which results in a reduced ESD safe margin. In previous research, the major cause is attributed to the higher current level required in the intrinsic SCR. The related discussions indicate that it seems to result from the current division rule between the intrinsic and parasitic SCR formed in the triggering process. In this letter, inserting a large space into the trigger diodes is proposed to get a deeper insight into this issue. The triggering current is observed to be regularly reduced along with the increased space, which confirms that the current division is determined by the parasitic resistance distributed between the intrinsic and parasitic SCR paths. The theoretical analysis is well confirmed by device simulation and transmission line pulse (TLP) test results. The reduced overall trigger voltage is achieved in the modified DTSCR structures due to the comprehensive result of the parasitic resistance vs triggering current, which indicates a minimized multiple-triggering effect. Project supported by the Beijing Natural Science Foundation, China (No. 4162030).

  1. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs.

    Science.gov (United States)

    Fish, Brian L; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R; Cohen, Eric P; Moulder, John E; Orschell, Christie M; Medhora, Meetha

    2016-11-01

    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.

  2. Taylor spatial frame fixation in patients with multiple traumatic injuries: study of 57 long-bone fractures.

    Science.gov (United States)

    Sala, Francesco; Elbatrawy, Yasser; Thabet, Ahmed M; Zayed, Mahmoud; Capitani, Dario

    2013-08-01

    To evaluate the Taylor spatial frame (TSF) for primary and definitive fixation of lower limb long-bone fractures in patients with multiple traumatic injuries. Retrospective. Level I trauma center. Consecutive series of 52 patients, 57 fractures (25 femoral and 32 tibial), treated between 2005 and 2009. Forty-nine fractures (86%) were open. Injury Severity Score ≥16 for all patients. Fifty-four fractures (95%) underwent definitive fixation with the TSF and 3 were treated primarily within 48 hours of injury. In 22 cases (39%), fractures were acutely reduced with the TSF, fixed to bone and the struts in sliding mode without further adjustment, and in 35 cases (61%), the total residual deformity correction program was undertaken. Clinical and radiological. Complete union was obtained in 52 fractures (91%) without additional surgery at an average of 29 weeks. Four nonunions and 1 delayed union occurred. Results based on Association for the Study and Application of the Method of Ilizarov criteria: 74% excellent, 16% good, 4% fair, and 7% poor for bone outcomes and 35% excellent, 47% good, and 18% fair for functional outcomes. Eighty-eight percent of patients returned to preinjury work activities. Primary and definitive fixation with the TSF is effective. Advantages include continuity of device until union, reduced risk of infection, early mobilization, restoration of primary defect caused by bone loss, easy and accurate application, convertibility and versatility compared with a monolateral fixator, and improved union rate and range of motion for lower extremity long-bone fractures in patients with multiple traumatic injuries.

  3. The Effects of Playing Multiple High School Sports on National Basketball Association Players' Propensity for Injury and Athletic Performance.

    Science.gov (United States)

    Rugg, Caitlin; Kadoor, Adarsh; Feeley, Brian T; Pandya, Nirav K

    2018-02-01

    Athletes who specialize in their sport at an early age may be at risk for burnout, overuse injury, and reduced attainment of elite status. Timing of sport specialization has not been studied in elite basketball athletes. National Basketball Association (NBA) players who played multiple sports during adolescence would be less likely to experience injury and would have higher participation rates in terms of games played and career length compared with single-sport athletes. Descriptive epidemiology study. First-round draft picks from 2008 to 2015 in the NBA were included in the study. From publically available records from the internet, the following data were collected for each athlete: participation in high school sports, major injuries sustained in the NBA, percentage of games played in the NBA, and whether the athlete was still active in the NBA. Athletes who participated in sports in addition to basketball during high school were defined as multisport athletes and were compared with athletes who participated only in basketball in high school. Two hundred thirty-seven athletes were included in the study, of which 36 (15%) were multisport athletes and 201 (85%) were single-sport athletes in high school. The multisport cohort played in a statistically significantly greater percentage of total games (78.4% vs 72.8%; P NBA (94% vs 81.1%; P = .03). While a minority of professional basketball athletes participated in multiple sports in high school, those who were multisport athletes participated in more games, experienced fewer major injuries, and had longer careers than those who participated in a single sport. Further research is needed to determine the reasons behind these differences.

  4. Identifying protective and risk factors for injurious falls in patients hospitalized for acute care: a retrospective case-control study

    Directory of Open Access Journals (Sweden)

    Emmanuel Aryee

    2017-11-01

    Full Text Available Abstract Background Admitted patients who fall and injure themselves during an acute hospitalization incur increased costs, morbidity, and mortality, but little research has been conducted on identifying inpatients at high risk to injure themselves in a fall. Falls risk assessment tools have been unsuccessful due to their low positive predictive value when applied broadly to entire hospital populations. We aimed to identify variables associated with the risk of or protection against injurious fall in the inpatient setting. We also aimed to test the variables in the ABCs mnemonic (Age > 85, Bones-orthopedic conditions, anti-Coagulation and recent surgery for correlation with injurious fall. Methods We performed a retrospective case-control study at an academic tertiary care center comparing admitted patients with injurious fall to admitted patients without fall. We collected data on the demographics, medical and fall history, outcomes, and discharge disposition of injured fallers and control patients. We performed multivariate analysis of potential risk factors for injurious fall with logistic regression to calculate adjusted odds ratios. Results We identified 117 injured fallers and 320 controls. There were no differences in age, anti-coagulation use or fragility fractures between cases and controls. In multivariate analysis, recent surgery (OR 0.46, p = 0.003 was protective; joint replacement (OR 5.58, P = 0.002, psychotropic agents (OR 2.23, p = 0.001, the male sex (OR 2.08, p = 0.003 and history of fall (OR 2.08, p = 0.02 were significantly associated with injurious fall. Conclusion In this study, the variables in the ABCs parameters were among the variables not useful for identifying inpatients at risk of injuring themselves in a fall, while other non-ABCs variables demonstrated a significant association with injurious fall. Recent surgery was a protective factor, and practices around the care of surgical patients could be

  5. Protective Effect of Unacylated Ghrelin on Compression-Induced Skeletal Muscle Injury Mediated by SIRT1-Signaling

    Directory of Open Access Journals (Sweden)

    Felix N. Ugwu

    2017-11-01

    Full Text Available Unacylated ghrelin, the predominant form of circulating ghrelin, protects myotubes from cell death, which is a known attribute of pressure ulcers. In this study, we investigated whether unacylated ghrelin protects skeletal muscle from pressure-induced deep tissue injury by abolishing necroptosis and apoptosis signaling and whether these effects were mediated by SIRT1 pathway. Fifteen adult Sprague Dawley rats were assigned to receive saline or unacylated ghrelin with or without EX527 (a SIRT1 inhibitor. Animals underwent two 6-h compression cycles with 100 mmHg static pressure applied over the mid-tibialis region of the right limb whereas the left uncompressed limb served as the intra-animal control. Muscle tissues underneath the compression region, and at the similar region of the opposite uncompressed limb, were collected for analysis. Unacylated ghrelin attenuated the compression-induced muscle pathohistological alterations including rounding contour of myofibers, extensive nucleus accumulation in the interstitial space, and increased interstitial space. Unacylated ghrelin abolished the increase in necroptosis proteins including RIP1 and RIP3 and attenuated the elevation of apoptotic proteins including p53, Bax, and AIF in the compressed muscle. Furthermore, unacylated ghrelin opposed the compression-induced phosphorylation and acetylation of p65 subunit of NF-kB. The anti-apoptotic effect of unacylated ghrelin was shown by a decrease in apoptotic DNA fragmentation and terminal dUTP nick-end labeling index in the compressed muscle. The protective effects of unacylated ghrelin vanished when co-treated with EX527. Our findings demonstrated that unacylated ghrelin protected skeletal muscle from compression-induced injury. The myoprotective effects of unacylated ghrelin on pressure-induced tissue injury were associated with SIRT1 signaling.

  6. Eye Injuries

    Science.gov (United States)

    ... that you could lose your vision. Most eye injuries are preventable. If you play sports or work in certain jobs, you may need protection. The most common type of injury happens when something irritates the ...

  7. Knee Injuries

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Knee Injuries KidsHealth / For Teens / Knee Injuries What's in ... can do to protect them. What's in a Knee? The knee is a joint , actually the largest ...

  8. Nebivolol protects against myocardial infarction injury via stimulation of beta 3-adrenergic receptors and nitric oxide signaling.

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    Full Text Available Nebivolol, third-generation β-blocker, may activate β3-adrenergic receptor (AR, which has been emerged as a novel and potential therapeutic targets for cardiovascular diseases. However, it is not known whether nebivolol administration plays a cardioprotective effect against myocardial infarction (MI injury. Therefore, the present study was designed to clarify the effects of nebivolol on MI injury and to elucidate the underlying mechanism. MI model was constructed by left anterior descending (LAD artery ligation. Nebivolol, β3-AR antagonist (SR59230A, Nitro-L-arginine methylester (L-NAME or vehicle was administered for 4 weeks after MI operation. Cardiac function was monitored by echocardiography. Moreover, the fibrosis and the apoptosis of myocardium were assessed by Masson's trichrome stain and TUNEL assay respectively 4 weeks after MI. Nebivolol administration reduced scar area by 68% compared with MI group (p<0.05. Meanwhile, nebivolol also decreased the myocardial apoptosis and improved the heart function after MI (p<0.05 vs. MI. These effects were associated with increased β3-AR expression. Moreover, nebivolol treatment significantly increased the phosphorylation of endothelial NOS (eNOS and the expression of neuronal NOS (nNOS. Conversely, the cardiac protective effects of nebivolol were abolished by SR and L-NAME. These results indicate that nebivolol protects against MI injury. Furthermore, the cardioprotective effects of nebivolol may be mediated by β3-AR-eNOS/nNOS pathway.

  9. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    Science.gov (United States)

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-02

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.

  10. Protective effects of two constituents of Chinese herbs on spinal motor neurons from embryonic rats with hypoxia injury.

    Science.gov (United States)

    Chen, Jian-Feng; Fan, Jian; Tian, Xiao-Wu; Tang, Tian-Si

    2012-01-01

    Neuroprotective agents are becoming significant tools in the repair of central nervous system injuries. In this study, we determined whether ginkgolides (Gin, extract of GinkgoBiloba) and Acanthopanax senticosus saponins (ASS, flavonoids extracted from Acanthopanax herbal preparations) have protective effects on rat spinal cords exposed to anoxia and we explored the mechanisms that underlie the protective effects. Spinal motor neurons (SMNs) from rat spinal cords were obtained and divided into five groups with 10 wells in each group. In control group, SMNs suffered no injury under normal oxygen; in hypoxia- inducible (HI) group, SMNs suffered injury from hypoxia; in Gin group, 37.5µg/ml Gin were used before 24 hrs of hypoxia; in ASS group, 50µg/ml ASS were used before 24 hrs of hypoxia;in glial cell-lined derived neurotrophic factor (GDNF) group, 0.1µg/ml GDNF were used before 24 hrs of hypoxia. Changes in morphology, neuron viability, and lactate dehydrogenase (LDH) release were observed. In addition, the expression of HIF-1α induced by hypoxia was measured. The neuronal viability in the Gin, ASS, and GDNF pretreated groups was higher than that in the HI group (P0.05). The quantity of LDH released in the three pretreated groups was lower than that in the HI group (Phypoxic neurons.

  11. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    Science.gov (United States)

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  12. Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2016-05-01

    Full Text Available We observed mitochondrial connexin43 (mtCx43 expression under cerebral ischemia-reperfusion (I/R injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO. Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD activity and malondialdehyde (MDA content. MtCx43, p-mtCx43, protein kinase C (PKC, and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX and diazoxide (DZX groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists.

  13. Protection of Liver as a Remote Organ after Renal Ischemia-Reperfusion Injury by Renal Ischemic Postconditioning

    Directory of Open Access Journals (Sweden)

    Behjat Seifi

    2014-01-01

    Full Text Available This study was designed to investigate the protective effects of local renal ischemic postconditioning (POC on liver damage after renal ischemia-reperfusion (IR injury. Male rats were divided into three groups  (n=8. They underwent a right nephrectomy before induction of 45 minutes of left kidney ischemia or sham operation. POC was performed by four cycles of 10 seconds of ischemia and 10 seconds of reperfusion just at the beginning of 24 hours of reperfusion. Then blood and liver samples were collected to measure serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, and liver oxidative stress parameters including superoxide dismutase (SOD activity and malondialdehyde (MDA level. Renal IR caused a significant increase in liver functional indices as demonstrated by increased serum AST and ALT compared to sham group. These parameters reduced significantly in POC group compared to IR group. Liver MDA levels increased and SOD activity decreased in IR group compared to sham group. Induction of POC reduced the elevated liver MDA levels and increased the reduced liver SOD activity. These results revealed that renal IR injury causes liver damage as a remote organ and POC protects liver from renal IR injury by a modification in the hepatic oxidative stress status.

  14. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  15. Endogenous protection derived from activin A/Smads transduction loop stimulated via ischemic injury in PC12 cells.

    Science.gov (United States)

    Mang, Jing; Mei, Chun-Li; Wang, Jiao-Qi; Li, Zong-Shu; Chu, Ting-Ting; He, Jin-Ting; Xu, Zhong-Xin

    2013-10-17

    Activin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab). We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.

  16. Endogenous Protection Derived from Activin A/Smads Transduction Loop Stimulated via Ischemic Injury in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Xin Xu

    2013-10-01

    Full Text Available Activin A (ActA, a member of transforming growth factor-beta (TGF-b super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab. We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.

  17. Thioredoxin-1 Protects Bone Marrow-Derived Mesenchymal Stromal Cells from Hyperoxia-Induced Injury In Vitro

    Science.gov (United States)

    Zhang, Lei; Wang, Jin; Zeng, Lingkong; Li, Qiong; Liu, Yalan

    2018-01-01

    Background The poor survival rate of mesenchymal stromal cells (MSC) transplanted into recipient lungs greatly limits their therapeutic efficacy for diseases like bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the effect of thioredoxin-1 (Trx-1) overexpression on improving the potential for bone marrow-derived mesenchymal stromal cells (BMSCs) to confer resistance against hyperoxia-induced cell injury. Methods 80% O2 was used to imitate the microenvironment surrounding-transplanted cells in the hyperoxia-induced lung injury in vitro. BMSC proliferation and apoptotic rates and the levels of reactive oxygen species (ROS) were measured. The effects of Trx-1 overexpression on the level of antioxidants and growth factors were investigated. We also investigated the activation of apoptosis-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinases (MAPK). Result Trx-1 overexpression significantly reduced hyperoxia-induced BMSC apoptosis and increased cell proliferation. We demonstrated that Trx-1 overexpression upregulated the levels of superoxide dismutase and glutathione peroxidase as well as downregulated the production of ROS. Furthermore, we illustrated that Trx-1 protected BMSCs against hyperoxic injury via decreasing the ASK1/P38 MAPK activation rate. Conclusion These results demonstrate that Trx-1 overexpression improved the ability of BMSCs to counteract hyperoxia-induced injury, thus increasing their potential to treat hyperoxia-induced lung diseases such as BPD. PMID:29599892

  18. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Science.gov (United States)

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  19. Protective effect of tetraethyl pyrazine against focal cerebral ischemia/reperfusion injury in rats: therapeutic time window and its mechanism.

    Science.gov (United States)

    Jia, Jie; Zhang, Xi; Hu, Yong-Shan; Wu, Yi; Wang, Qing-Zhi; Li, Na-Na; Wu, Cai-Qin; Yu, Hui-Xian; Guo, Qing-Chuan

    2009-03-01

    Tetramethyl pyrazine has been considered an effective agent in treating neurons ischemia/reperfusion injury, but the mechanism of its therapeutic effect remains unclear. This study was to explore the therapeutic time window and mechanism of tetramethyl pyrazine on temporary focal cerebral ischemia/reperfusion injury. Middle cerebral artery occlusion was conducted in male Sprague-Dawley rats and 20 mg/kg of tetramethyl pyrazine was intraperitoneally injected at different time points. At 72 h after reperfusion, all animals' neurologic deficit scores were evaluated. Cerebrums were removed and cerebral infarction volume was measured. The expression of thioredoxin and thioredoxin reductase mRNA was determined at 6 and 24 h after reperfusion. Cerebral infarction volume and neurological deficit scores were significantly decreased in the group with tetramethyl pyrazine treatment. The expression of thioredoxin-1/thioredoxin-2 and thioredoxin reductase-1/thioredoxin reductase-2 was significantly decreased in rats with ischemia/reperfusion injury, while it was increased by tetramethyl pyrazine administration. Treatment with tetramethyl pyrazine, within 4 h after reperfusion, protects the brain from ischemic reperfusion injury in rats. The neuroprotective mechanism of tetramethyl pyrazine treatment is, in part, mediated through the upregulation of thioredoxin transcription.

  20. Severe injury in multiple impacts: Analysis of 1997-2015 NASS-CDS.

    Science.gov (United States)

    Viano, David C; Parenteau, Chantal S

    2018-07-04

    This is a descriptive study of the incidence and risk for severe injury in single-impact and multi-impact crashes by belt use and crash type using NASS-CDS. 1997-2015 NASS-CDS data were used to determine the distribution of crashes by the number of impacts and severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to >15-year-old nonejected drivers by seat belt use in 1997+ MY vehicles. It compares the risk for severe injury in a single impact and in crashes involving 2, 3, or 4+ impacts in the collision with a focus on a frontal crash followed by other impacts. Most vehicle crashes involve a single impact (75.4% of 44,889,518 vehicles), followed by 2-impact crashes (19.6%), 3-impact crashes (5.0%) and 4+ impacts (2.6%). For lap-shoulder-belted drivers, the distribution of severe injury was 42.1% in a single impact, 29.3% in 2 impacts, 13.4% in 3 impacts, and 15.1% in 4+ impact crashes. The risk for a belted driver was 0.256 ± 0.031% in a single impact, 0.564 ± 0.079% in 2 impacts, 0.880 ± 0.125% in 3 impacts, and 2.121 ± 0.646% in 4+ impact. The increase in risk from a single crash to multi-impact collisions was statistically significant (P impact, 53.8% of belted drivers were in a frontal crashes, 22.4% in side crashes, 20% in rear crashes, and 1.7% in rollover crashes. The risk for severe injury was highest in a rollover at 0.677 ± 0.250%, followed by near-side impact at 0.467 ± 0.084% and far-side impact at 0.237 ± 0.071%. Seat belt use was 82.4% effective in preventing severe injury (MAIS 4+F) in a rollover, 47.9% in a near-side impact, and 74.8% in a far-side impact. In 2-impact crashes with a belted driver, the most common sequence was a rear impact followed by a frontal crash at 1,843,506 (21.5%) with a risk for severe injury of 0.100 ± 0.058%. The second most common was a frontal impact followed by another frontal crash at 1,257,264 (14.7%) with a risk of 0.401 ± 0.057%. The risk was 0.658 ± 0.271% in a frontal impact followed by a rear

  1. Antioxidant protection of statins in acute kidney injury induced by sepsis

    Directory of Open Access Journals (Sweden)

    Franciele do Nascimento Santos

    2014-10-01

    Full Text Available Objective Evaluating the effect of preconditioning with simvastatin in acute kidney injury induced by sepsis. Method Male adult Wistar rats were divided into the following groups: SHAM (control; SHAM+Statin (0.5 mg/kg simvastatin, orally; Sepsis (cecal puncture ligation – CPL; Sepsis+Statin. Physiological parameters, peritoneal fluid culture, renal function, oxidative metabolites, severity of acute kidney injury and animal survival were evaluated. Results The treatment with simvastatin in induced sepsis showed elevation of creatinine clearance with attenuation of generation of oxidative metabolites, lower severity of acute kidney injury and reduced mortality. Conclusion This investigation confirmed the renoprotection with antioxidant principle of the simvastatin in acute kidney injury induced by sepsis in an experimental model.

  2. Protective Effects of Salubrinal on Liver Injury in Rat Models of Brain Death

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Shui-Jun Zhang; Sheng-Li Cao; Wen-Zhi Guo; Bing Yan; Hong-Bo Fang

    2015-01-01

    Background:Previous studies have indicated that endoplasmic reticulum stress participates in and mediates liver injury and apoptosis in brain-dead (BD) rats.In this study,we observed the effect ofsalubrinal (Sal,Sigma,USA) on liver cells in BD rats and explored its relevant mechanisms.Methods:Thirty Sprague-Dawley rats were equally randomized into three groups:BD group,Sal group,and DMSO group.The BD models were established by increasing intracranial pressure in a modified,slow,and intermittent way.In the drug groups,Sal was administered l h before the induction of BD.After modeling was completed,the blood and liver samples were harvested.CHOP and Caspase-12 mRNA expression was detected using quantitative polymerase chain reaction.PKR-like ER kinase (PERK),P-eukaryotic translation initiation factor 2α (eIF2α),eIF2α,CHOP and caspase-12 expression was detected using western blotting (WB).CHOP and caspase-12 distribution and expression in liver tissues were determined using immunohistochemistry (IHC).Alanine aminotransferase and aspartate aminotransferase level were detected using an automatic biochemical analyzer.Hepatic cell apoptosis was detected using TUNEL.The results were analyzed using Quantity-one v4.62 software (Bio-Rad,USA).Results:CHOP and caspase-12 expression and PERK,eIF2α,and P-eIF2α protein expression showed no significant difference between BD group and DMSO group.Compared with BD group,Sal group had a significantly higher P-eIF2C level and a lower P-PERK level 2 h and 6 h after BD (P < 0.05).However,eIF2α expression showed no significant difference (P > 0.05).After the Sal treatment,CHOP and caspase-12 mRNA expression significantly decreased 4 h after BD (P < 0.05).WB and IHC indicated that CHOP and caspase-12 expression also significantly decreased after Sal treatment.Sal was associated with improved liver function and decreased hepatic cell apoptosis.Conclusions:Sal can significantly reduce apoptosis in hepatic cells of BD rats

  3. Allopurinol Protects against Ischemia/Reperfusion-Induced Injury in Rat Urinary Bladders

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Shin

    2015-01-01

    Full Text Available Bladder ischemia-reperfusion (I/R injury results in the generation of reactive oxygen species (ROS and markedly elevates the risk of lower urinary tract symptoms (LUTS. Allopurinol is an inhibitor of xanthine oxidase (XO and thus can serve as an antioxidant that reduces oxidative stress. Here, a rat model was used to assess the ability of allopurinol treatment to ameliorate the deleterious effects of urinary bladder I/R injury. I/R injury reduced the in vitro contractile responses of longitudinal bladder strips, elevated XO activity in the plasma and bladder tissue, increased the bladder levels of tumor necrosis factor-α (TNF-α, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase, reduced the bladder levels of extracellular regulated kinase (ERK, and decreased and increased the bladder levels of Bcl-2 and Bax, respectively. I/R injury also elevated lipid peroxidation in the bladder. Allopurinol treatment in the I/R injury was generated significantly ameliorating all I/R-induced changes. Moreover, an in situ fluorohistological approach also showed that allopurinol reduces the generation of intracellular superoxides enlarged by I/R injury. Together, the beneficial effects of allopurinol reducing ROS production may be mediated by normalizing the activity of the ERK, JNK, and Bax/Bcl-2 pathways and by controlling TNF-α expression.

  4. Andrographis paniculata extract protect against isoproterenol-induced myocardial injury by mitigating cardiac dysfunction and oxidative injury in rats.

    Science.gov (United States)

    Ojha, Shreesh; Bharti, Saurabh; Golechha, Mahaveer; Sharma, Ashok K; Rani, Neha; Kumari, Santosh; Arya, Dharamvir Singh

    2012-01-01

    Present study evaluated the cardioprotective effect of Andrographis paniculata (100, 200 or 400 mg/kg) against isoproterenol (85 mg/kg, b.w.)-induced cardiotoxicity referred as myocardial infarction in rats. Isoproterenol significantly (p paniculata favorably restored hemodynamic parameters and left ventricular function and significantly (p paniculata pretreatment in isoproterenol-induced cardiotoxicity depicted the cardioprotective effect of A. paniculata. Results showed that A. paniculata protected heart against cardiotoxic effects of isoproterenol by boosting endogenous antioxidant network, restoring ventricular function and maintaining structural integrity of heart.

  5. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishihara

    2015-01-01

    Full Text Available Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury.

  6. Evaluation of the South African surrogate leg for landmine protection injury measurements

    CSIR Research Space (South Africa)

    Pandelani, T

    2010-01-01

    Full Text Available For troop mobility and safety during peacekeeping operations, protection against landmines is key. Vehicle landmine protection validation testing is an integral part of military equipment procurement process and serves as an important technical...

  7. The protective effects of the proteasome inhibitor bortezomib (velcade on ischemia-reperfusion injury in the rat retina.

    Directory of Open Access Journals (Sweden)

    Fang-Ting Chen

    Full Text Available PURPOSE: To evaluate the protective effects of bortezomib (Velcade on ischemia-reperfusion (IR injury in the rat retina. METHODS: The rats were randomized to receive treatment with saline, low-dose bortezomib (0.05 mg/kg, or high-dose bortezomib (0.2 mg/kg before the induction of IR injury. Electroretinography (ERG was used to assess functional changes in the retina. The expression of inflammatory mediators (iNOS, ICAM-1, MCP-1, TNF-α, anti-oxidant proteins (heme oxygenase, thioredoxin, peroxiredoxin, and pro-apoptotic proteins (p53, bax were quantified by PCR and western blot analysis. An immunofluorescence study was performed to detect the expression of iNOS, oxidative markers (nitrotyrosine, 8-OHdG, acrolein, NF-κB p65, and CD 68. Apoptosis of retinal cells was labeled with in situ TUNEL staining. Neu-N staining was performed in the flat-mounted retina to evaluate the density of retinal ganglion cells. RESULTS: ERG showed a decreased b-wave after IR injury, and pretreatment with bortezomib, especially the high dosage, reduced the functional impairment. Bortezomib successfully reduced the elevation of inflammatory mediators, anti-oxidant proteins, pro-apoptotic proteins and oxidative markers after IR insult in a dose-dependent manner. In a similar fashion, NF-κB p65- and CD 68-positive cells were decreased by bortezomib treatment. Retinal cell apoptosis in each layer was attenuated by bortezomib. The retinal ganglion cell density was markedly decreased in the saline and low-dose bortezomib groups but was not significantly changed in the high-dose bortezomib group. CONCLUSIONS: Bortezomib had a neuro-protective effect in retinal IR injury, possibly by inhibiting the activation of NF-κB related to IR insult and reducing the inflammatory signals and oxidative stress in the retina.

  8. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response.

    Science.gov (United States)

    Liu, Tian-Yin; Chen, Shi-Biao

    2016-12-01

    Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Hyperoxic preconditioning fails to confer additional protection against ischemia-reperfusion injury in acute diabetic rat heart.

    Science.gov (United States)

    Pourkhalili, Khalil; Hajizadeh, Sohrab; Akbari, Zahra; Dehaj, Mansour Esmaili; Akbarzadeh, Samad; Alizadeh, Alimohammad

    2012-01-01

    Experimental studies show that detrimental effects of ischemia-reperfusion (I/R) injury can be attenuated by hyperoxic preconditioning in normal hearts, however, there are few studies about hyperoxia effects in diseased myocardium. The present study was designed to assess the cardioprotective effects of hyperoxia pretreatment (≥ 95 % O2) in acute diabetic rat hearts. Normal and one week acute diabetic rats were either exposed to 60 (H60) and 180 (H180) min of hyperoxia or exposed to normal atmospheric air (21 % O2). Then hearts were isolated immediately and subjected to 30 min of regional ischemia followed by 120 min of reperfusion. Infarct size, cardiomyocyte apoptosis, enzymes release and ischemia induced arrhythmias were determined. Heart of diabetic control rats had less infarct size and decreased LDH and CK-MB release compared to normal hearts. 60 and 180 min of hyperoxia reduced myocardial infarct size and enzymes release in normal hearts. 180 min of hyperoxia also decreased cardiomyocytes apoptosis in normal state. On the other hand, protective values of hyperoxia were not significantly different in diabetic hearts. Moreover, hyperoxia reduced severity of ventricular arrhythmias in normal rat hearts whereas; it did not confer any additional antiarrhythmic protection in diabetic hearts. These findings suggest that diabetic hearts are less susceptible to ischemia-induced arrhythmias and infarction. Hyperoxia greatly protects rat hearts against I/R injury in normal hearts, however, it could not provide added cardioprotective effects in acute phase of diabetes.

  10. Mitofusin 2 Exerts a Protective Role in Ischemia Reperfusion Injury Through Increasing Autophagy

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2018-05-01

    Full Text Available Background/Aims: Autophagy is essential for maintaining cellular homeostasis and the survival of terminally differentiated cells as neurons. In this study, we aim to investigate whether mitofusin 2, a mitochondrial fusion protein, mediates autophagy in cerebral ischemia/reperfusion (I/R injury. Methods: Primary cultured neurons were treated with oxygen-glucose deprivation/reperfusion to mimic cerebral I/R injury in vitro. Autophagosomes were visualized upon TEM. Autophagy-markers were then detected to monitor autophagy by western-blot and real-time PCR, and the autophagic flux was tracked with a mRFP-GFP-LC3 construct by fluorescence as well as autophagy inhibitors and agonists. The up- and downregulation of Mfn2 were through transfecting a lentivirusexpression vector respectively. And neuronal injury was detected by cell counting kit and TUNEL assay. Results: Results showed I/R increased autophagosome formation and inhibited autolysosome degradation. Furthermore, use of autophagy related agents demonstrated that I/R injury was caused by insufficient autophagy and aggravated by impaired autophagic degradation. The results also indicated that mitofusin 2 could ameliorate I/R injury through increasing autophagosome formation and promoting the fusion of autophagosomes and lysosomes. In contrast, downregulation of mitofusin 2 aggravated the I/R injury by inhibiting autophagosome formation and the fusion of autophagosomes and lysosomes. Additionly, mitofusin 2 overexpression did not lead to autolysosome accumulation induced by I/R. Conclusions: In summary, this study explicitly demonstrated that mitofusin 2 could ameliorate I/R injury mainly through promoting autophagy, which represented a potential novel strategy for neuroprotection against cerebral I/R damage.

  11. Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress

    Science.gov (United States)

    Lu, Yongke; Leung, Tung Ming; Ward, Stephen C.

    2012-01-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the l-citrulline/nitric oxide (NO·) salvage pathway to continually supply l-arginine from l-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/− mice (Ass−/− mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/− mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/− compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration. PMID:22052013

  12. Low-Intensity Pulsed Ultrasound Protects Retinal Ganglion Cell From Optic Nerve Injury Induced Apoptosis via Yes Associated Protein

    Directory of Open Access Journals (Sweden)

    Jia-Xing Zhou

    2018-06-01

    Full Text Available Background: Low-intensity pulsed ultrasound (LIPUS has been used in clinical studies. But little is known about its effects on the central nervous system (CNS, or its mechanism of action. Retinal ganglion cells (RGCs are CNS neuronal cells that can be utilized as a classic model system to evaluate outcomes of LIPUS protection from external trauma-induced retinal injury. In this study, we aim to: (1 determine the pulse energy and the capability of LIPUS in RGC viability, (2 ascertain the protective role of LIPUS in optic nerve (ON crush-induced retinal injury, and 3 explore the cellular mechanisms of RGC apoptosis prevention by LIPUS.Methods: An ON crush model was set up to induce RGC death. LIPUS was used to treat mice eyes daily, and the retina samples were dissected for immunostaining and Western blot. The expression of yes-associated protein (YAP and apoptosis-related proteins was detected by immunostaining and Western blot in vitro and in vivo. Apoptosis of RGCs was evaluated by TUNEL staining, the survival of RGCs and retained axons were labeled by Fluoro-gold and Tuj1 antibody, respectively. Rotenone was used to set up an in vitro cellular degenerative model and siYAP was used to interfering the expression of YAP to detect the LIPUS protective function.Results: LIPUS protected RGC from loss and apoptosis in vivo and in vitro. The ratio of cleaved/pro-caspase3 also decreased significantly under LIPUS treatment. As a cellular mechanical sensor, YAP expression increased and YAP translocated to nucleus in LIPUS stimulation group, however, phospho-YAP was found to be decreased. When YAP was inhibited, the LIPUS could not protect RGC from caspase3-dependent apoptosis.Conclusion: LIPUS prevented RGCs from apoptosis in an ON crush model and in vitro cellular degenerative model, which indicates a potential treatment for further traumatic ON injury. The mechanism of protection is dependent on YAP activation and correlated with caspase-3 signaling.

  13. Immunization with a Neural-Derived Peptide Protects the Spinal Cord from Apoptosis after Traumatic Injury

    Directory of Open Access Journals (Sweden)

    Roxana Rodríguez-Barrera

    2013-01-01

    Full Text Available Apoptosis is one of the most destructive mechanisms that develop after spinal cord (SC injury. Immunization with neural-derived peptides (INDPs such as A91 has shown to reduce the deleterious proinflammatory response and the amount of harmful compounds produced after SC injury. With the notion that the aforementioned elements are apoptotic inducers, we hypothesized that INDPs would reduce apoptosis after SC injury. In order to test this assumption, adult rats were subjected to SC contusion and immunized either with A91 or phosphate buffered saline (PBS; control group. Seven days after injury, animals were euthanized to evaluate the number of apoptotic cells at the injury site. Apoptosis was evaluated using DAPI and TUNEL techniques; caspase-3 activity was also evaluated. To further elucidate the mechanisms through which A91 exerts this antiapoptotic effects we quantified tumor necrosis factor-alpha (TNF-α. To also demonstrate that the decrease in apoptotic cells correlated with a functional improvement, locomotor recovery was evaluated. Immunization with A91 significantly reduced the number of apoptotic cells and decreased caspase-3 activity and TNF-α concentration. Immunization with A91 also improved the functional recovery of injured rats. The present study shows the beneficial effect of INDPs on preventing apoptosis and provides more evidence on the neuroprotective mechanisms exerted by this strategy.

  14. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart.

    Science.gov (United States)

    Granata, Riccarda; Trovato, Letizia; Gallo, Maria Pia; Destefanis, Silvia; Settanni, Fabio; Scarlatti, Francesca; Brero, Alessia; Ramella, Roberta; Volante, Marco; Isgaard, Jorgen; Levi, Renzo; Papotti, Mauro; Alloatti, Giuseppe; Ghigo, Ezio

    2009-07-15

    The hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) stimulates GH synthesis and release in the pituitary. GHRH also exerts proliferative effects in extrapituitary cells, whereas GHRH antagonists have been shown to suppress cancer cell proliferation. We investigated GHRH effects on cardiac myocyte cell survival and the underlying signalling mechanisms. Reverse transcriptase-polymerase chain reaction analysis showed GHRH receptor (GHRH-R) mRNA in adult rat ventricular myocytes (ARVMs) and in rat heart H9c2 cells. In ARVMs, GHRH prevented cell death and caspase-3 activation induced by serum starvation and by the beta-adrenergic receptor agonist isoproterenol. The GHRH-R antagonist JV-1-36 abolished GHRH survival action under both experimental conditions. GHRH-induced cardiac cell protection required extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt activation and adenylyl cyclase/cAMP/protein kinase A signalling. Isoproterenol strongly upregulated the mRNA and protein of the pro-apoptotic inducible cAMP early repressor, whereas GHRH completely blocked this effect. Similar to ARVMs, in H9c2 cardiac cells, GHRH inhibited serum starvation- and isoproterenol-induced cell death and apoptosis through the same signalling pathways. Finally, GHRH improved left ventricular recovery during reperfusion and reduced infarct size in Langendorff-perfused rat hearts, subjected to ischaemia-reperfusion (I/R) injury. These effects involved PI3K/Akt signalling and were inhibited by JV-1-36. Our findings suggest that GHRH promotes cardiac myocyte survival through multiple signalling mechanisms and protects against I/R injury in isolated rat heart, indicating a novel cardioprotective role of this hormone.

  15. RBE for late spinal cord injury following multiple fractions of neutrons

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Christensen, G.M.; Thrower, P.D.; Mariano, M.

    1978-01-01

    Using the length of the time interval between the irradiation of lumbosacral spinal cord of mice with ten fractions of either x rays or neutrons, and the onset of hindquarter paralysis, a fast neutron RBE of 3.5 for spinal cord damage at a neutron dose per fraction of 100 rad has been measured. This RBE for spinal cord injury is significant because it is larger than the RBE being used to calculate treatment doses in neutron radiotherapy

  16. An unusual case of self-inflicted multiple needles injuries to eye

    Directory of Open Access Journals (Sweden)

    Shweta Gaur

    2013-01-01

    Full Text Available Self-inflicted eye injuries among psychiatric patients are rare but important group of ophthalmic conditions that require close cooperation between different medical specialties to ensure optimum care of the severely disturbed patient. They have been associated with a variety of disorders, including paranoid schizophrenia, drug-induced psychosis, obsessive-compulsive disorder, depression, mental retardation, and ritualistic behavior. It has been described in both adults and children, but occurs most commonly in young adults with acute or chronic psychoses.

  17. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction.

    Directory of Open Access Journals (Sweden)

    Shushimita Shushimita

    Full Text Available Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI in mice. We recently showed that Mannan-binding lectin (MBL, the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.

  18. Protective Mechanism of STAT3-siRNA on Cerebral Ischemia Injury

    Science.gov (United States)

    He, Jinting; Yang, Le; Liang, Wenzhao

    2018-01-01

    Nerve cells in ischemic brain injury will occur a series of complex signal transduction pathway changes and produce the corresponding biological function, thus affecting the central nervous system functionally different cells in the ischemic brain injury metabolism, division, Differentiation and death process, while changes in signal pathways also play an important role in the repair process of the post-ischemic nervous system. JAK/STAT pathway and vascular lesions have some relevance, but its exact mechanism after cerebral ischemia is not yet fully understood. This study is intended to further explore the JAK / STAT pathway in the functional site of STAT3 in neuronal ischemia Hypoxic injury and related molecular mechanisms, targeting these targets design intervention strategies to block the signal pathway, in order to provide a theoretical basis for the treatment of ischemic brain damage in this pathway.

  19. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  20. A review of oxidative stress in acute kidney injury: protective role of ...

    African Journals Online (AJOL)

    Acute kidney injury (AKI) is the common clinical syndrome which is associated with increased morbidity and mortality. The severity extends from less to more advanced spectrums which link to biological, physical and chemical agents. Oxidative stress (OS)-related AKI has demonstrated the increasing of reactive oxygen ...

  1. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death

    Science.gov (United States)

    Tang, Yaoping; Wang, Yongchao; Park, Kyoung-mi; Hu, Qiuping; Teoh, Jian-peng; Broskova, Zuzana; Ranganathan, Punithavathi; Jayakumar, Calpurnia; Li, Jie; Su, Huabo; Tang, Yaoliang; Ramesh, Ganesan; Kim, Il-man

    2015-01-01

    Aims Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. Methods and results Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. Conclusion These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury. PMID:25824147

  2. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    Science.gov (United States)

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  3. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q. H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y. X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X. M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  4. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    L. Zong

    2014-03-01

    Full Text Available Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN and lipopolysaccharide (LPS in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST and alanine aminotransferase (ALT. Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  5. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    International Nuclear Information System (INIS)

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis

  6. Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Han, Xue; Wu, Ye; Liu, Xin; Ma, Lu; Lv, Tingting; Sun, Qi; Xu, Wenli; Zhang, Suli; Wang, Ke; Wang, Wen; Ma, Xinliang; Liu, Huirong

    2017-08-31

    To determine the effect of adiponectin (APN) on the coronary no-reflow (NR) injury in rats with Type 2 diabetes mellitus (T2DM), 80 male Sprague-Dawley rats were fed with a high-sugar-high-fat diet to build a T2DM model. Rats received vehicle or APN in the last week and then were subjected to myocardial ischemia reperfusion (MI/R) injury. Endothelium-dependent vasorelaxation of the thoracic aorta was significantly decreased and serum levels of endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were noticably increased in T2DM rats compared with rats without T2DM. Serum APN was positively correlated with the endothelium-dependent vasorelaxation, but negatively correlated with the serum level of ET-1. Treatment with APN improved T2DM-induced endothelium-dependent vasorelaxation, recovered cardiac function, and decreased both NR size and the levels of ET-1, ICAM-1 and VCAM-1. Hypoadiponectinemia was associated with the aggravation of coronary NR in T2DM rats. APN could alleviate coronary NR injury in T2DM rats by protecting the endothelium and improving microcirculation. © 2017 The Author(s).

  7. Protection of the Extracts of Lentinus edodes Mycelia against Carbon-Tetrachloride-Induced Hepatic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Mei-Fen Chen

    2012-01-01

    Full Text Available Lentinus edodes is the medicinal macrofungus showing potential for therapeutic applications in infectious disorders including hepatitis. In an attempt to develop the agent for handling hepatic injury, we used the extracts of Lentinus edodes mycelia (LEM to screen the effect on hepatic injury in rats induced by carbon tetrachloride (CCl4. Intraperitoneal administration of CCl4 not only increased plasma glutamic oxaloacetic transaminase (GOT and glutamic pyruvic transaminase (GPT but also decreased hepatic superoxide dismutase (SOD and glutathione peroxidase (GPx levels in rats. Similar to the positive control silymarin, oral administration (three times daily of this product (LEM for 8 weeks significantly reduced plasma GOT and GPT. Also, the activities of antioxidant enzymes of SOD and GPx were elevated by LEM. in liver from CCl4-treated rats, indicating that mycelium can increase antioxidant-like activity. Moreover, the hepatic mRNA and protein levels of SOD and GPx were both markedly raised by LEM. The obtained results suggest that oral administration of the extracts of Lentinus edodes mycelia (LEM has the protective effect against CCl4-induced hepatic injury in rats, mainly due to an increase in antioxidant-like action.

  8. Protective effects of nettle (Urtica dioica extract against acute kidney injury induced by gentamycin in the rat

    Directory of Open Access Journals (Sweden)

    سید پژمان مرتضوی

    2017-11-01

    Full Text Available Aminoglycosides are often used in combination with beta-lactam antibiotics and have a rapid bactericidal effect, are available at an affordable cost and have less incidence of resistance, making them a drug of choice for treatment of several life-threatening infections. However, the nephrotoxic effects of aminoglycosides prevent their long term use. The use of herbal extracts in order to decrease injuries of injurious materials has long been considered. The present study was conducted in order to investigate the protective effects of nettle (Urtica dioica extract against gentamicin induced kidney injuries in the rat. Forty five male Wistar rats were divided into 9 groups consisting of: 1-healthy control group, 2- negative control group that received tween 20 (extract solvent, 3- patient control group which received onlygentamicin at 100 mg/kg, experimental healthy groups 4-6 which received nettle extract at 50, 100 and 200 mg/kg and patient experimental groups 7-9 which received nettle extract along with gentamicin at 100 mg/kg. At the end of the experiment (28 days, blood samples were obtained, and the kidneys were removed for histopathologic investigations. The results showed that gentamicin alone induced renal tissue damage and significantly increased the serum levels of creatinine and urea (p

  9. Anticancer Drug 2-Methoxyestradiol Protects against Renal Ischemia/Reperfusion Injury by Reducing Inflammatory Cytokines Expression

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2014-01-01

    Full Text Available Background. Ischemia/reperfusion (I/R injury is a major cause of acute renal failure and allograft dysfunction in kidney transplantation. ROS/inflammatory cytokines are involved in I/R injury. 2-Methoxyestradiol (2ME2, an endogenous metabolite of estradiol, inhibits inflammatory cytokine expression and is an antiangiogenic and antitumor agent. We investigated the inhibitory effect of 2ME2 on renal I/R injury and possible molecular actions. Methods. BALB/c mice were intraperitoneally injected with 2ME2 (10 or 20 mg/kg or vehicle 12 h before and immediately after renal I/R experiments. The kidney weight, renal function, tubular damages, and apoptotic response were examined 24 h after I/R injury. The expression of mRNA of interleukin-1β, tumor necrosis factor- (TNF α, caspase-3, hypoxia inducible factor- (HIF 1α, and proapoptotic Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3 in kidney tissue was determined using RT-PCR, while the expression of nuclear factor κB (NF-κB, BCL-2, and BCL-xL, activated caspase-9, and HIF-1α was determined using immunoblotting. In vitro, we determined the effect of 2ME2 on reactive oxygen species (ROS production and cell viability in antimycin-A-treated renal mesangial (RMC and tubular (NRK52E cells. Results. Serum creatinine and blood urea nitrogen were significantly higher in mice with renal I/R injury than in sham control and in I/R+2ME2-treated mice. Survival in I/R+2ME2-treated mice was higher than in I/R mice. Histological examination showed that 2ME2 attenuated tubular damage in I/R mice, which was associated with lower expression TNF-α, IL-1β, caspase-9, HIF-1α, and BNIP3 mRNA in kidney tissue. Western blotting showed that 2ME2 treatment substantially decreased the expression of activated caspase-9, NF-κB, and HIF-1α but increased the antiapoptotic proteins BCL-2 and BCL-xL in kidney of I/R injury. In vitro, 2MR2 decreased ROS production and increased cell viability in antimycin

  10. Protective effect of hydroalcoholic extract of Andrographis paniculata on ischaemia-reperfusion induced myocardial injury in rats.

    Science.gov (United States)

    Ojha, Shreesh Kumar; Bharti, Saurabh; Joshi, Sujata; Kumari, Santosh; Arya, Dharamvir Singh

    2012-03-01

    Protecting myocardium from ischaemia-reperfusion (I-R) injury is important to reduce the complication of myocardial infarction (MI) and interventional revascularization procedures. In the present study, the cardioprotective potential of hydroalcoholic extract of Andrographis paniculata was evaluated against left anterior descending coronary artery (LADCA) ligation-induced I-R injury of myocardium in rats. MI was induced in rats by LADCA ligation for 45 min followed by reperfusion for 60 min. The rats were divided into five experimental groups viz., sham (saline treated, but LADCA was not ligated), I-R control (saline treated + I-R), benazepril (30 mg/kg + I-R), A. paniculata (200 mg/kg per se) and A. paniculata (200 mg/kg + I-R). A. paniculata was administered orally for 31 days. On day 31, rats were subjected to the I-R and cardiac function parameters were recorded. Further, rats were sacrificed and heart was excised for biochemical and histopathological studies. In I-R control group, LADCA ligation resulted in significant cardiac dysfunction evidenced by reduced haemodynamic parameters; mean arterial pressure (MAP) and heart rate (HR). The left ventricular contractile function was also altered. In I-R control group, I-R caused decline in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) as well as leakage of myocytes injury marker enzymes, creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH), and enhanced lipid peroxidation product, malonaldialdehyde (MDA). However, rats pretreated with A. paniculata 200 mg/kg showed favourable modulation of haemodynamic and left ventricular contractile function parameters, restoration of the myocardial antioxidants and prevention of depletion of myocytes injury marker enzymes along with inhibition of lipid peroxidation. Histopathological observations confirmed the protective effects of A. paniculata. The cardioprotective effects of A. paniculata were

  11. Protective effect of edaravone for tourniquet-induced ischemia-reperfusion injury on skeletal muscle in murine hindlimb

    Science.gov (United States)

    2013-01-01

    Background Studies have shown that ischemia-reperfusion (I/R) produces free radicals leading to lipid peroxidation and damage to skeletal muscle. The purposes of this study were 1) to assess the histological findings of gastrocnemius muscle (GC) and tibialis anterior muscle (TA) in I/R injury model mice, 2) to histologically analyze whether a single pretreatment of edaravone inhibits I/R injury to skeletal muscle in murine models and 3) to evaluate the effect of oxidative stress on these muscles. Methods C57BL6 mice were divided in two groups, with one group receiving 3 mg/kg intraperitoneal injections of edaravone (I/R + Ed group) and the other group receiving an identical amount of saline (I/R group) 30 minutes before ischemia. Edaravone (3-methy-1-pheny1-2-pyrazolin-5-one) is a potent and novel synthetic scavenger of free radicals. This drug inhibits both nonenzymatic lipid peroxidation and the lipoxygenase pathway, in addition to having potent antioxidant effects against ischemia reperfusion. The duration of the ischemia was 1.5 hours, with reperfusion at either 24 or 72 hours (3 days). Specimens of gastrocnemius (GC) and anterior tibialis (TA) were removed for histological evaluation and biochemical analysis. Results This model of I/R injury was highly reproducible in histologic muscle damage. In the histologic damage score, the mean muscle fibers and inflammatory cell infiltration in the I/R + Ed group were significantly less than the corresponding values of observed in the I/R group. Thus, pretreatment with edaravone was observed to have a protective effect on muscle damage after a period of I/R in mice. In addition, the mean muscle injury score in the I/R + Ed group was also significantly less than the I/R group. In the I/R + Ed group, the mean malondialdehyde (MDA) level was lower than in the I/R group and western-blotting revealed that edaravone pretreatment decreased the level of inducible nitric oxide synthase (iNOS) expression. Conclusions Edaravone

  12. Protective Effects of Sonic Hedgehog Against Ischemia/Reperfusion Injury in Mouse Skeletal Muscle via AKT/mTOR/p70S6K Signaling

    Directory of Open Access Journals (Sweden)

    Qiu Zeng

    2017-10-01

    Full Text Available Background/Aims: Skeletal muscle ischemia/reperfusion (I/R injury is a common and severe disease. Sonic hedgehog (Shh plays a critical role in post-natal skeletal muscle regeneration. In the present study, the role of Shh in skeletal muscle I/R injury and the mechanisms involved were investigated. Methods: The expression of Shh, AKT/mTOR/p70S6K and apoptosis pathway components were evaluated following tourniquet-induced skeletal muscle I/R injury. Then, mice were subjected to systemic administration of cyclopamine or one-shot treatment of a plasmid encoding the human Shh gene (phShh to examine the effects of Shh on I/R injury. Moreover, mice were subjected to systemic administration of NVP-BEZ235 to investigate the role of the AKT/mTOR/p70S6K pathway in Shh-triggered skeletal muscle protection. Results: We found that the levels of Shh, AKT/mTOR/p70S6K pathway components and Cleaved Caspase 3 and the Bax/Bcl2 ratio initially increased and then decreased at different time points post-I/R injury. Moreover, Shh protected skeletal muscle against I/R injury by alleviating muscle destruction, reducing interstitial fibrosis and inhibiting apoptosis, and these protective effects were abrogated when the AKT/mTOR/p70S6K pathway was inhibited. Conclusion: Collectively, these data suggest that Shh signaling exerts a protective role through the AKT/mTOR/p70S6K signaling pathway during skeletal muscle I/R injury. Thus, Shh signaling may be a therapeutic target for protecting skeletal muscle from I/R injury.

  13. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  14. γ-Tocotrienol does not substantially protect DS neurons from hydrogen peroxide-induced oxidative injury

    Directory of Open Access Journals (Sweden)

    Then Sue-Mian

    2012-01-01

    Full Text Available Abstract Background Down syndrome (DS neurons are more susceptible to oxidative stress and previous studies have shown that vitamin E was able to reduce oxidative stress and improve DS neurons' viability. Therefore, this study was done to investigate the protective role of γ-tocotrienol (γT3 in DS neurons from hydrogen peroxide (H2O2 -induced oxidative stress. The pro-apoptosis tendency of γT3 was compared to α-tocopherol (αT in non-stress condition as well. Methods Primary culture of DS and euploid neurons were divided into six groups of treatment: control, H2O2, γT3 pre-treatment with H2O2, γT3 only, αT pre-treatment with H2O2 and αT only. The treatments were assessed by MTS assay and apoptosis assay by single-stranded DNA (ssDNA apoptosis ELISA assay, Hoechst and Neu-N immunofluorescence staining. The cellular uptake of γT3 and αT was determined by HPLC while protein expressions were determined by Western blot. Comparison between groups was made by the Student's t test, one-way ANOVA and Bonferroni adjustment as well as two-way ANOVA for multiple comparisons. Results One day incubation of γT3 was able to reduced apoptosis of DS neurons by 10%, however γT3 was cytotoxic at longer incubation period (14 days and at concentrations ≥ 100 μM. Pre-treatment of αT and γT3 only attenuate apoptosis and increase cell viability in H2O2-treated DS and euploid neurons by 10% in which the effects were minimal to maintain most of the DS cells' morphology. γT3 act as a free radical scavenger by reducing ROS generated by H2O2. In untreated controls, DS neurons showed lower Bcl-2/Bax ratio and p53 expression compared to normal neurons, while cPKC and PKC-δ expressions were higher in DS neurons. On the other hand, pre-treatment of γT3 in H2O2-treated DS neurons have reduced Bcl-2/Bax ratio, which was not shown in euploid neurons. This suggests that pre-treatment of γT3 did not promote DS cell survival. Meanwhile γT3 and αT treatments

  15. Naringin Protects Against High Glucose-Induced Human Endothelial Cell Injury Via Antioxidation and CX3CL1 Downregulation

    Directory of Open Access Journals (Sweden)

    Guilin Li

    2017-08-01

    Full Text Available Background/Aims: The induction of endothelial injury by hyperglycemia in diabetes has been widely accepted. Naringin is a bio-flavonoid. Some studies showed that naringin alleviates diabetic complications, but the exact mechanisms by which naringin improves diabetic anomalies are not yet fully understood. The aim of this research was to study the protective effect of naringin on high glucose-induced injury of human umbilical vein endothelial cells (HUVECs. Methods: HUVECs were cultured with or without high glucose in the absence or presence of naringin for 5 days. The expression of CX3CL1 was determined by quantitative real-time RT-PCR (qPCR and western blot. The cellular bioenergetic analysis oxygen consumption rate (OCR was measured with a Seahorse Bioscience XF analyzer. Results: The production of reactive oxygen species (ROS, the expression of CX3CL1 and the level of AKT phosphorylation were increased in HUVECs cultured with high glucose compared with controls. However, naringin rescued these increases in ROS production, CX3CL1 expression and AKT phosphorylation. Nitric oxide (NO production and OCR were lower in the high glucose group, and naringin restored the changes induced by high glucose. Molecular docking results suggested that Naringin might interact with the CX3CL1 protein. Conclusion: Naringin protects HUVECs from high-glucose-induced damage through its antioxidant properties by downregulating CX3CL1 and by improving mitochondrial function.

  16. Agmatine Protects against Zymosan-Induced Acute Lung Injury in Mice by Inhibiting NF-κB-Mediated Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Xuanfei Li

    2014-01-01

    Full Text Available Acute lung injury (ALI is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  17. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Science.gov (United States)

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  18. Agmatine protects against zymosan-induced acute lung injury in mice by inhibiting NF-κB-mediated inflammatory response.

    Science.gov (United States)

    Li, Xuanfei; Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Yan, Jun; Liang, Huaping

    2014-01-01

    Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  19. Combined Blockade of Interleukin-1α and -1β Signaling Protects Mice from Cognitive Dysfunction after Traumatic Brain Injury.

    Science.gov (United States)

    Newell, Elizabeth A; Todd, Brittany P; Mahoney, Jolonda; Pieper, Andrew A; Ferguson, Polly J; Bassuk, Alexander G

    2018-01-01

    Diffuse activation of interleukin-1 inflammatory cytokine signaling after traumatic brain injury (TBI) elicits progressive neurodegeneration and neuropsychiatric dysfunction, and thus represents a potential opportunity for therapeutic intervention. Although interleukin (IL)-1α and IL-1β both activate the common type 1 IL-1 receptor (IL-1RI), they manifest distinct injury-specific roles in some models of neurodegeneration. Despite its potential relevance to treating patients with TBI, however, the individual contributions of IL-1α and IL-1β to TBI-pathology have not been previously investigated. To address this need, we applied genetic and pharmacologic approaches in mice to dissect the individual contributions of IL-1α, IL-β, and IL-1RI signaling to the pathophysiology of fluid percussion-mediated TBI, a model of mixed focal and diffuse TBI. IL-1RI ablation conferred a greater protective effect on brain cytokine expression and cognitive function after TBI than did individual IL-1α or IL-1β ablation. This protective effect was recapitulated by treatment with the drug anakinra, a recombinant naturally occurring IL-1RI antagonist. Our data thus suggest that broad targeting of IL-1RI signaling is more likely to reduce neuroinflammation and preserve cognitive function after TBI than are approaches that individually target IL-1α or IL-1β signaling.

  20. Insulin protects apoptotic cardiomyocytes from hypoxia/reoxygenation injury through the sphingosine kinase/sphingosine 1-phosphate axis.

    Directory of Open Access Journals (Sweden)

    Huan Yu

    Full Text Available OBJECTIVE: Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated. METHODS AND RESULTS: Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes. CONCLUSION: The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.

  1. Protective Effect of Hesperetin and Naringenin against Apoptosis in Ischemia/Reperfusion-Induced Retinal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Selcuk Kara

    2014-01-01

    Full Text Available Purpose. Hesperetin and naringenin are naturally common flavonoids reported to have antioxidative effects. This study was performed to investigate whether either hesperetin or naringenin has a protective effect against apoptosis on retinal ischemia/reperfusion (I/R injury. Methods. Retinal I/R was induced by increasing the intraocular pressure to 150 mmHg for 60 minutes. Thirty-three male Wistar albino rats were randomised into 5 groups named control, I/R + sham, I/R + solvent (DMSO, I/R + hesperetin, and I/R + naringenin. Animals were given either hesperetin, naringenin, or the solvent intraperitoneally immediately following reperfusion. Thickness of retinal layers and retinal cell apoptosis were detected by histological analysis, tunel assay, and immunohistochemistry assay. Results. Hesperetin and naringenin attenuated the I/R-induced apoptosis of retinal cells in the inner and outer nuclear cells of the rat retina. Retinal layer thickness of the naringenin treatment group was significantly thicker than that of the hesperetin, sham, and solvent groups (P<0.05. Conclusions. Hesperetin and naringenin can prevent harmful effects induced by I/R injury in the rat retina by inhibiting apoptosis of retinal cells, which suggests that those flavanones have a therapeutic potential for the protection of ocular ischemic diseases.

  2. Study on the protective effect of ethyl pyruvate on mouse models of sepsis-induced lung injury

    International Nuclear Information System (INIS)

    Ti Dongdong; Deng Zihui; Xue Hui; Wang Luhuan; Lin Ji; Yan Guangtao

    2008-01-01

    Objective: To investigate the protective role of ethyl pyruvate on mouse models of lung injury from sepsis. Methods: Mouse sepsis models were established by cecal ligation-perforation. Four enzyme parameters related to synthesis of free radicals in lung homogenized fluids namely malonaldehyde (MDA), pyruvate acid, lactic acid and total anti-oxidative capacity (TAOC) were determined with spectrophotometry, and serum leptin levels were detected with radioimmunoassay at 3, 6, 9, 12h after operation in these models. Half of the models were treated with intraperitoneal injection of ethyl pyruvate (EP) (75mg/kg). Results: In the models treated with ethyl pyruvate injection, the activity of malonaldehyde, pyruvate acid, lactic acid and total anti-oxidative capacity were affected to certain extent, at some time frames but the results were not unanimously inhibitive or promotive. Serum leptin levels in EP injection models at 6h and 12h after sepsis were significantly higher than those in non-treated models. Conclusion: Ethyl pyruvate perhaps exerted its protective effect on sepsis-induced lung injury through increase of leptin levels in the models. (authors)

  3. A global mismatch in the protection of multiple marine biodiversity components and ecosystem services

    DEFF Research Database (Denmark)

    Lindegren, Martin; Holt, Ben G.; MacKenzie, Brian R.

    2018-01-01

    spatial scale. We demonstrate a pronounced spatial mismatch between the existing degree of protection and all the conservation priorities above, highlighting that neither the world's most diverse, nor the most productive ecosystems are currently the most protected ecosystems. Furthermore, we show...... more effectively than the existing degree of protection, which at best is only marginally better than a random expectation. Therefore, a holistic perspective is needed when designating an appropriate degree of protection of marine conservation priorities worldwide....

  4. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    Science.gov (United States)

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (Pvalsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (PValsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Salvianic acid A sodium protects HUVEC cells against tert-butyl hydroperoxide induced oxidative injury via mitochondria-dependent pathway.

    Science.gov (United States)

    Jia, Dan; Li, Tian; Chen, Xiaofei; Ding, Xuan; Chai, Yifeng; Chen, Alex F; Zhu, Zhenyu; Zhang, Chuan

    2018-01-05

    Salvianic acid A (Danshensu) is a major water-soluble component extracted from Salvia miltiorrhiza (Danshen), which has been widely used in clinic in China for treatment of cardiovascular diseases (CVDs). This study aimed to investigate the protective effects of salvianic acid A sodium (SAAS) against tert-butyl hydroperoxide (t-BHP) induced human umbilical vein endothelial cell (HUVEC) oxidative injury and the underlying molecular mechanisms. In the antioxidant activity-assessing model, SAAS pretreatment significantly ameliorated the cell growth inhibition and apoptosis induced by t-BHP. An ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) based-metabolic profiling was developed to investigate the metabolic changes of HUVEC cells in response to t-BHP and SAAS. The results revealed that t-BHP injury upregulated 13 metabolites mainly involved in tryptophan metabolism and phenylalanine metabolism which were highly correlated with mitochondrial function and oxidative stress, and 50 μM SAAS pretreatment effectively reversed these metabolic changes. Further biomedical research indicated that SAAS pretreatment reduced the t-BHP induced increase of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and mitochondrial membrane potential (MMP), and the decrease of key antioxidant enzymes through mitochondria antioxidative pathways via JAK2/STAT3 and PI3K/Akt/GSK-3β signalings. Taken together, our results suggested that SAAS may protect HUVEC cells against t-BHP induced oxidative injury via mitochondrial antioxidative defense system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (PhHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  7. Chores at Times of Fatal or Serious Injuries Associated with Tractor Overturns with and without Rollover Protection

    Directory of Open Access Journals (Sweden)

    Henry P. Cole

    2016-09-01

    Full Text Available This study describes chores when farmers were either fatally or seriously injured and required emergency medical treatment as a result of overturns of tractors with or without rollover protective structures (ROPS. Data from the 2002 Kentucky Farm Tractor Overturn Survey were used for this study. The data were collected by a telephone survey of a population-based random sample of 6063 (7.98% of Kentucky’s 76,017 farm operators as listed in the Kentucky Agricultural Statistics Service database. Of farm operators interviewed, 551 (9.1% reported 603 overturns and 5512 (90.9% reported no overturns in the history of their farm, covering a period from 1925 to February 2002. Only the latest overturn was considered to improve recall accuracy. In addition, since the 1925 to 1959 time period had only 49 (8.1% of the overturns reported, (14 farmers did not provide the year of most recent overturn; only data from the 1960 to 2002 period (approximately 41 years were used. After making these adjustments, incidents evaluated included 25 cases (one fatal and four serious nonfatal injuries that involved ROPS-equipped tractor overturns and 88 cases (24 fatal and 64 serious nonfatal injuries that involved non-ROPS tractor overturns. Chores at highest risk for tractor overturns were identified for which educational and ROPS retrofit interventions could be emphasized. The highest frequency of overturn-related fatalities and nonfatal injuries were associated with hay harvesting, rotary mowing, and on-farm travel chores. These three chores represented 68.2% of fatal events and 50.0% of permanent and 56.6% of temporary disability overturn incidents. Tragically, in countries such as India and China with emerging mechanization, a large majority of tractors are produced without ROPS that can be expected to result in the same overturn-related epidemic of deaths experienced in highly mechanized countries, despite evidence of the protection provided by ROPS.

  8. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  9. Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis.

    Directory of Open Access Journals (Sweden)

    Barbara Renga

    Full Text Available BACKGROUND: The farnesoid-x-receptor (FXR is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated genes and biological functions. PRINCIPAL FINDINGS: Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic FXR agonists on FXR-regulated genes, including SHP, OSTα, BSEP and MRP4. A proof-of-concept study carried out to investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed to rescue from liver injury and downregulated the expression of MRP4. CONCLUSIONS: FXR antagonism in vivo

  10. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    Science.gov (United States)

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Reducing the risk of injury from table saw use: the potential benefits and costs of automatic protection.

    Science.gov (United States)

    Graham, John D; Chang, Joice

    2015-02-01

    The use of table saws in the United States is associated with approximately 28,000 emergency department (ED) visits and 2,000 cases of finger amputation per year. This article provides a quantitative estimate of the economic benefits of automatic protection systems that could be designed into new table saw products. Benefits are defined as reduced health-care costs, enhanced production at work, and diminished pain and suffering. The present value of the benefits of automatic protection over the life of the table saw are interpreted as the switch-point cost value, the maximum investment in automatic protection that can be justified by benefit-cost comparison. Using two alternative methods for monetizing pain and suffering, the study finds switch-point cost values of $753 and $561 per saw. These point estimates are sensitive to the values of inputs, especially the average cost of injury. The various switch-point cost values are substantially higher than rough estimates of the incremental cost of automatic protection systems. Uncertainties and future research needs are discussed. © 2014 Society for Risk Analysis.

  12. Dexamethasone Protects Against Tourniquet-Induced Acute Ischemia-Reperfusion Injury in Mouse Hindlimb

    Directory of Open Access Journals (Sweden)

    Ryan M. Corrick

    2018-03-01

    Full Text Available Extremity injuries with hemorrhage have been a significant cause of death in civilian medicine and on the battlefield. The use of a tourniquet as an intervention is necessary for treatment to an injured limb; however, the tourniquet and subsequent release results in serious acute ischemia-reperfusion (IR injury in the skeletal muscle and neuromuscular junction (NMJ. Much evidence demonstrates that inflammation is an important factor to cause acute IR injury. To find effective therapeutic interventions for tourniquet-induced acute IR injuries, our current study investigated effect of dexamethasone, an anti-inflammatory drug, on tourniquet-induced acute IR injury in mouse hindlimb. In C57/BL6 mice, a tourniquet was placed on unilateral hindlimb (left hindlimb at the hip joint for 3 h, and then released for 24 h to induce IR. Three hours of tourniquet and 24 h of release (24-h IR caused gastrocnemius muscle injuries including rupture of the muscle sarcolemma and necrosis (42.8 ± 2.3% for infarct size of the gastrocnemius muscle. In the NMJ, motor nerve terminals disappeared, and endplate potentials were undetectable in 24-h IR mice. There was no gastrocnemius muscle contraction in 24-h IR mice. Western blot data showed that inflammatory cytokines (TNFα and IL-1β were increased in the gastrocnemius muscle after 24-h IR. Treatment with dexamethasone at the beginning of reperfusion (1 mg/kg, i.p. significantly inhibited expression of TNFα and IL-1β, reduced rupture of the muscle sarcolemma and infarct size (24.8 ± 2.0%, and improved direct muscle stimulation-induced gastrocnemius muscle contraction in 24-h IR mice. However, this anti-inflammatory drug did not improve NMJ morphology and function, and sciatic nerve-stimulated skeletal muscle contraction in 24-h IR mice. The data suggest that one-time treatment with dexamethasone at the beginning of reperfusion only reduced structural and functional impairments of the skeletal muscle but not the

  13. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1.

    Science.gov (United States)

    Zhang, Meijuan; Wang, Suping; Mao, Leilei; Leak, Rehana K; Shi, Yejie; Zhang, Wenting; Hu, Xiaoming; Sun, Baoliang; Cao, Guodong; Gao, Yanqin; Xu, Yun; Chen, Jun; Zhang, Feng

    2014-01-29

    Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies.

  14. Effect of analgesia on the changes in respiratory parameters in blunt chest injury with multiple rib fractures.

    Science.gov (United States)

    Ekpe, Eyo Effiong; Eyo, Catherine

    2017-01-01

    Blunt chest injury with multiple rib fractures can result in such complications as pneumonia, atelectasis, bronchiectasis, empyema thoracis, acute respiratory distress syndrome, and prolonged Intensive Care Unit and hospital stay, with its concomitant mortality. These may be prevented or reduced by good analgesic therapy which is the subject of this study. This was a prospective study of effects of analgesia on changes in pulmonary functions of patients with traumatic multiple rib fractures resulting from blunt chest injury. There were 64 adult patients who were studied with multiple rib fractures caused by blunt chest trauma. Of these patients, 54 (84.4%) were male and 10 (15.6%) were female. Motorcycle (popularly known as "okada") and tricycle (popularly known as keke napep) accidents significantly accounted for the majority of the multiple rib fractures, that is, in 50 (78.1%) of the patients. Before analgesic administration, no patient had a normal respiratory rate, but at 1 h following the administration of analgesic, 21 (32.8%) of patients recorded normal respiratory rates and there was a significant reduction in the number (10.9% vs. 39.1%) of patients with respiratory rates> 30 breaths/min. Before commencement of analgesic, no patient recorded up to 99% of oxygen saturation (SpO2) as measured by pulse oximeter, while 43.8% recorded SpO2of 96%. This improved after 1 h of administration of analgesics to SpO2of 100% in 18.8% of patients and 99% in 31.3% of patients and none recording SpO2of 100% of predicted while only 9 (14.1%) patients were able to achieve a PEFR value in the range of 91%-100% of predicted value. One hour after analgesia, a total of 6 (9.4%) patients were able to achieve PEFR values> 100% predicted, while 35 (54.7%) patients achieved PEFR values in the range of 91%-100% predicted. Adequate analgesia is capable of reversing the negative effects of chest pain of traumatic multiple rib fractures on pulmonary function parameters through

  15. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Milatovic, Dejan, E-mail: dejan.milatovic@vanderbilt.edu [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Gupta, Ramesh C. [Murray State University, Breathitt Veterinary Center, Hopkinsville, KY (United States); Yu, Yingchun; Zaja-Milatovic, Snjezana [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Aschner, Michael [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Pharmacology and the Kennedy Center for Research on Human Development, Nashville, TN (United States)

    2011-11-15

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p < 0.01) increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 {mu}M) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F{sub 2}-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 {mu}g/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F{sub 2}-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional

  16. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Gupta, Ramesh C.; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael

    2011-01-01

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p 2 -isoprostanes (F 2 -IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 μM) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F 2 -IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 μg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F 2 -IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative

  17. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia

    2003-01-01

    significantly increased up to but not including 20 dpl in the GFAP-IL6 mice. Oxidative stress as well as apoptotic cell death was significantly decreased throughout the time period studied in the GFAP-IL6 mice compared to controls. This could be linked to the altered inflammatory response as well......The effect of CNS-targeted IL-6 gene expression has been thoroughly investigated in the otherwise nonperturbed brain but not following brain injury. Here we examined the impact of astrocyte-targeted IL-6 production in a traumatic brain injury (cryolesion) model using GFAP-IL6 transgenic mice...... as to the transgenic IL-6-induced increase of the antioxidant, neuroprotective proteins metallothionein-I + II. These results indicate that although in the brain the chronic astrocyte-targeted expression of IL-6 spontaneously induces an inflammatory response causing significant damage, during an acute...

  18. [Inhibition of gap junctional intercellular communication protects astrocytes from hypoxia/reoxygenation injury].

    Science.gov (United States)

    Tong, Xu-Hui; Gu, Yu-Chen; Jiao, Hao; Yu, Li; Dong, Shu-Ying

    2015-01-01

    To investigate the effects of inhibiting gap junctional intercellular communication on hypoxia/reoxygenation injury in astrocytes. Primary cultured cerebral cortical astrocytes of neonate rats were divided into normal control group, hypoxia reoxygenation injury group and 18-α-glycyrrhetinic acid and oleamide (gap junctional intercellular channel inhibitors) group. The gap junction intercellular communication was determined by Parachute assay. The viability of astrocyes was detected by MTT assay. The apoptosis of astrocytes were detected with annexin V/PI and Hoechst 33258 staining. Compared with the normal control group, the gap junctional function of astrocytes was increased significantly in ischemia/reperfusion group (Pastrocytes decreased significantly (Pastrocytes in18-α-glycyrrhetinic acid and oleamide group decreased significantly (Pastrocytes increased significantly (Pastrocytes.

  19. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury

    DEFF Research Database (Denmark)

    Bless, N M; Smith, D; Charlton, J

    1997-01-01

    Neutrophils play an important part in the development of acute inflammatory injury. Human neutrophils contain high levels of the serine protease elastase, which is stored in azurophilic granules and is secreted in response to inflammatory stimuli. Elastase is capable of degrading many components...... of extracellular matrix [1-4] and has cytotoxic effects on endothelial cells [5-7] and airway epithelial cells. Three types of endogenous protease inhibitors control the activity of neutrophil elastase, including alpha-1 protease inhibitor (alpha-1PI), alpha-2 macroglobulin and secreted leukoproteinase inhibitor...... (SLPI) [8-10]. A disturbed balance between neutrophil elastase and these inhibitors has been found in various acute clinical conditions (such as adult respiratory syndrome and ischemia-reperfusion injury) and in chronic diseases. We investigated the effect of NX21909, a selected oligonucleotide (aptamer...

  20. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs

    OpenAIRE

    Mathew, Biji; Jacobson, Jeffrey R.; Berdyshev, Evgeny; Huang, Yong; Sun, Xiaoguang; Zhao, Yutong; Gerhold, Lynnette M.; Siegler, Jessica; Evenoski, Carrie; Wang, Ting; Zhou, Tong; Zaidi, Rafe; Moreno-Vinasco, Liliana; Bittman, Robert; Chen, Chin Tu

    2011-01-01

    Clinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components...

  1. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    Science.gov (United States)

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  2. Simple battery armor to protect against gastrointestinal injury from accidental ingestion

    Science.gov (United States)

    Laulicht, Bryan; Deshpande, Vikram; Langer, Robert; Karp, Jeffrey M.

    2014-01-01

    Inadvertent battery ingestion in children and the associated morbidity and mortality results in thousands of emergency room visits every year. Given the risk for serious electrochemical burns within hours of ingestion, the current standard of care for the treatment of batteries in the esophagus is emergent endoscopic removal. Safety standards now regulate locked battery compartments in toys, which have resulted in a modest reduction in inadvertent battery ingestion; specifically, 3,461 ingestions were reported in 2009, and 3,366 in 2013. Aside from legislation, minimal technological development has taken place at the level of the battery to limit injury. We have constructed a waterproof, pressure-sensitive coating, harnessing a commercially available quantum tunneling composite. Quantum tunneling composite coated (QTCC) batteries are nonconductive in the low-pressure gastrointestinal environment yet conduct within the higher pressure of standard battery housings. Importantly, this coating technology enables most battery-operated equipment to be powered without modification. If these new batteries are swallowed, they limit the external electrolytic currents responsible for tissue injury. We demonstrate in a large-animal model a significant decrease in tissue injury with QTCC batteries compared with uncoated control batteries. In summary, here we describe a facile approach to increasing the safety of batteries by minimizing the risk for electrochemical burn if the batteries are inadvertently ingested, without the need for modification of most battery-powered devices. PMID:25368176

  3. Simple battery armor to protect against gastrointestinal injury from accidental ingestion.

    Science.gov (United States)

    Laulicht, Bryan; Traverso, Giovanni; Deshpande, Vikram; Langer, Robert; Karp, Jeffrey M

    2014-11-18

    Inadvertent battery ingestion in children and the associated morbidity and mortality results in thousands of emergency room visits every year. Given the risk for serious electrochemical burns within hours of ingestion, the current standard of care for the treatment of batteries in the esophagus is emergent endoscopic removal. Safety standards now regulate locked battery compartments in toys, which have resulted in a modest reduction in inadvertent battery ingestion; specifically, 3,461 ingestions were reported in 2009, and 3,366 in 2013. Aside from legislation, minimal technological development has taken place at the level of the battery to limit injury. We have constructed a waterproof, pressure-sensitive coating, harnessing a commercially available quantum tunneling composite. Quantum tunneling composite coated (QTCC) batteries are nonconductive in the low-pressure gastrointestinal environment yet conduct within the higher pressure of standard battery housings. Importantly, this coating technology enables most battery-operated equipment to be powered without modification. If these new batteries are swallowed, they limit the external electrolytic currents responsible for tissue injury. We demonstrate in a large-animal model a significant decrease in tissue injury with QTCC batteries compared with uncoated control batteries. In summary, here we describe a facile approach to increasing the safety of batteries by minimizing the risk for electrochemical burn if the batteries are inadvertently ingested, without the need for modification of most battery-powered devices.

  4. An Innovative Hyperbaric Hypothermic Machine Perfusion Protects the Liver from Experimental Preservation Injury

    Directory of Open Access Journals (Sweden)

    Ferdinando A. Giannone

    2012-01-01

    Full Text Available Purpose. Hypothermic machine perfusion systems seem more effective than the current static storage to prevent cold ischemic liver injury. Thus, we test an innovative hyperbaric hypothermic machine perfusion (HHMP, which combines hyperbaric oxygenation of the preservation solution and continuous perfusion of the graft. Methods. Rat livers were preserved with Celsior solution according to 4 different modalities: normobaric static preservation; hyperbaric static preservation at 2 atmosphere absolute (ATA; normobaric dynamic preservation, with continuous perfusion; hyperbaric dynamic preservation, with continuous perfusion at 2 ATA. After 24 h cold preservation, we assessed different parameters. Results. Compared to baseline, livers preserved with the current static storage showed severe ultrastructural damage, glycogen depletion and an increased oxidative stress. Normobaric perfused livers showed improved hepatocyte ultrastructure and ameliorated glycogen stores, but they still suffered a significant oxidative damage. The addition of hyperbaric oxygen produces an extra benefit by improving oxidative injury and by inducing endothelial NO synthase (eNOS gene expression. Conclusions. Preservation by means of the present innovative HHMP reduced the liver injury occurring after the current static cold storage by lowering glycogen depletion and oxidative damage. Interestingly, only the use of hyperbaric oxygen was associated to a blunted oxidative stress and an increased eNOS gene expression.

  5. Mitochondria-Targeted Antioxidant Mito-Tempo Protects Against Aldosterone-Induced Renal Injury In Vivo

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2017-11-01

    Full Text Available Background/Aims: Growing evidence suggests mitochondrial dysfunction (MtD and the Nlrp3 inflammasome play critical roles in chronic kidney disease (CKD progression. We previously reported that Aldosterone (Aldo-induced renal injury in vitro is directly caused by mitochondrial reactive oxygen species (mtROS-mediated activation of the Nlrp3 inflammasome. Here we aimed to determine whether a mitochondria-targeted antioxidant (Mito-Tempo could prevent Aldo-induced kidney damage in vivo. Methods: C57BL/6J mice were treated with Aldo and/or Mito-Tempo (or ethanol as a control for 4 weeks. Renal injury was evaluated by Periodic Acid-Schiff reagent or Masson’s trichrome staining and electron microscopy. ROS were measured by DCFDA fluorescence and ELISA. MtD was determined by real-time PCR and electron microscopy. Activation of the Nlrp3 inflammasome and endoplasmic reticulum stress (ERS was detected via western blot. Results: Compared with control mice, Aldo-infused mice showed impaired renal function, increased mtROS production and MtD, Nlrp3 inflammasome activation, and elevated ERS. We showed administration of Mito-Tempo significantly improved renal function and MtD, and reduced Nlrp3 inflammasome activation and ERS in vivo. Conclusion: Mitochondria-targeted antioxidants may attenuate Aldo-infused renal injury by inhibiting MtD, the Nlrp3 inflammasome, and ERS in vivo. Therefore, targeting mtROS might be an effective strategy for preventing CKD.

  6. Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury.

    Science.gov (United States)

    Dai, Jie; Liu, Mingwei; Ai, Qing; Lin, Ling; Wu, Kunwei; Deng, Xinyu; Jing, Yuping; Jia, Mengying; Wan, Jingyuan; Zhang, Li

    2014-06-05

    Metformin is a commonly used anti-diabetic drug with AMP-activated protein kinase (AMPK)-dependent hypoglycemic activities. Recent studies have revealed its anti-inflammatory and anti-oxidative properties. In the present study, the anti-oxidative potential of metformin and its potential mechanisms were investigated in a mouse model with carbon tetrachloride (CCl₂)-induced severe oxidative liver injury. Our results showed that treatment with metformin significantly attenuated CCl₂-induced elevation of serum aminotransferases and hepatic histological abnormalities. The alleviated liver injury was associated with decreased hepatic contents of oxidized glutathione (GSSG) and malondialdehyde (MDA). In addition, metformin treatment dose-dependently enhanced the activities of catalase (CAT) and decreased CCl₄-induced elevation of hepatic H₂O₂ levels, but it had no obvious effects on the protein level of CAT. We also found that metformin increased the level of phosphorylated AMP-activated protein kinase (AMPK), but treatment with AMPK activator AICAR had no obvious effects on CAT activity. A molecular docking analysis indicated that metformin might interact with CAT via hydrogen bonds. These data suggested that metformin effectively alleviated CCl₄-induced oxidative liver injury in mice and these hepatoprotective effects might be associated with CAT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    Science.gov (United States)

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.

  8. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies

    Directory of Open Access Journals (Sweden)

    Danina M. Muntean

    2016-01-01

    Full Text Available Ischaemia/reperfusion (I/R injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS. Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.

  9. Protective effect of total flavones of Abelmoschus manihot L. Medic against poststroke depression injury in mice and its action mechanism.

    Science.gov (United States)

    Liu, Mei; Jiang, Qiu-Hong; Hao, Ji-Li; Zhou, Lan-Lan

    2009-03-01

    Total flavones of Abelmoschus manihot L. Medic (TFA) is the major active component isolated from the traditional Chinese herb Abelmoschus manihot L. Medic. We investigated the protective effect of TFA against poststroke depression (PSD) injury in mice and its action mechanism. A mouse model of PSD was induced by middle cerebral artery occlusion (MACO) 30 min/reperfusion, followed by isolation feeding and chronic unpredictable mild stress for 2 weeks. Treatment groups received TFA at three different doses (160, 80, and 40 mg/kg, p.o.) or fluoxetine (Flu, 2.5 mg/kg, p.o.) daily for 24 days. Change in behavior, brain tissue malondialdehyde (MDA) levels, and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured. The expression of brain-derived neurotrophic factor (BDNF) was detected by immunohistochemistry, and mRNA expression of BDNF and cAMP response element-binding protein (CREB) analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Treatment with TFA (160, 80, and 40 mg/kg) significantly ameliorated mice escape-directed behavioral impairment induced by PSD, markedly reduced MDA levels, and increased the activity of SOD, GSH-Px close to normal levels. TFA administration also attenuated PSD-induced neuronal death/losses, upregulated expression of BDNF both at mRNA and protein levels, as well as CREB mRNA levels. TFA had a protective effect against PSD injury in mice. Cardioprotection involves the inhibition of lipid peroxidation and upregulation of BDNF-CREB levels in the hippocampus, which may also be important mechanism of its antidepressants. This potential protection makes TFA a promising therapeutic agent for the PSD. (c) 2009 Wiley-Liss, Inc.

  10. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    Science.gov (United States)

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Lipopolysaccharide preconditioning protects hepatocytes from ischemia/reperfusion injury (IRI through inhibiting ATF4-CHOP pathway in mice.

    Directory of Open Access Journals (Sweden)

    Jianhua Rao

    Full Text Available BACKGROUND: Low-dose lipopolysaccharide (LPS preconditioning-induced liver protection has been demonstrated during ischemia-reperfusion injury (IRI in several organs but has not been sufficiently elucidated underlying causal mechanism. This study investigated the role of low-dose LPS preconditioning on ATF4-CHOP pathway as well as the effects of the pathway on tissue injury and inflammation in a mouse model of liver partial-warm IRI. METHODS: LPS (100 µg/kg/d was injected intraperitoneally two days before ischemia. Hepatic injury was evaluated based on serum alanine aminotransferase levels, histopathology, and caspase-3 activity. The ATF4-CHOP pathway and its related apoptotic molecules were investigated after reperfusion. The role of LPS preconditioning on apoptosis and ATF4-CHOP pathway was examined in vitro. Moreover, the effects of the ATF4-CHOP pathway on apoptosis, Caspase-12, and Caspase-3 were determined with ATF4 small interfering RNA (siRNA. Inflammatory cytokine expression was also checked after reperfusion. Inflammatory cytokines and related signaling pathways were analyzed in vitro in macrophages treated by LPS preconditioning or ATF4 siRNA. RESULTS: LPS preconditioning significantly attenuated liver injury after IRI. As demonstrated by in vitro experiments, LPS preconditioning significantly reduced the upregulation of the ATF4-CHOP pathway and inhibited Caspase-12 and Caspase-3 activation after IRI. Later experiments showed that ATF4 knockdown significantly suppressed CHOP, cleaved caspase-12 and caspase-3 expression, as well as inhibited hepatocellular apoptosis. In addition, in mice pretreated with LPS, TNF-α and IL-6 were inhibited after reperfusion, whereas IL-10 was upregulated. Similarly, low-dose LPS significantly inhibited TNF-α, IL-6, ATF4-CHOP pathway, NF-κB pathway, and ERK1/2 in high-dose LPS-stimulated macrophages, whereas IL-10 and cytokine signaling (SOCS-3 suppressor were induced. Importantly, ATF4 siRNA is

  12. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    Science.gov (United States)

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  13. The Opening of ATP-Sensitive K+ Channels Protects H9c2 Cardiac Cells Against the High Glucose-Induced Injury and Inflammation by Inhibiting the ROS-TLR4-Necroptosis Pathway

    Directory of Open Access Journals (Sweden)

    Weijie Liang

    2017-02-01

    Full Text Available Background/Aims: Hyperglycemia activates multiple signaling molecules, including reactive oxygen species (ROS, toll-like receptor 4 (TLR4, receptor-interacting protein 3 (RIP3, a kinase promoting necroptosis, which mediate hyperglycemia-induced cardiac injury. This study explored whether inhibition of ROS-TLR4-necroptosis pathway contributed to the protection of ATP-sensitive K+ (KATP channel opening against high glucose-induced cardiac injury and inflammation. Methods: H9c2 cardiac cells were treated with 35 mM glucose (HG to establish a model of HG-induced insults. The expression of RIP3 and TLR4 were tested by western blot. Generation of ROS, cell viability, mitochondrial membrane potential (MMP and secretion of inflammatory cytokines were measured as injury indexes. Results: HG increased the expression of TLR4 and RIP3. Necrostatin-1 (Nec-1, an inhibitor of necroptosis or TAK-242 (an inhibitor of TLR4 co-treatment attenuated HG-induced up-regulation of RIP3. Diazoxide (DZ, a mitochondrial KATP channel opener or pinacidil (Pin, a non-selective KATP channel opener or N-acetyl-L-cysteine (NAC, a ROS scavenger pre-treatment blocked the up-regulation of TLR4 and RIP3. Furthermore, pre-treatment with DZ or Pin or NAC, or co-treatment with TAK-242 or Nec-1 attenuated HG-induced a decrease in cell viability, and increases in ROS generation, MMP loss and inflammatory cytokines secretion. However, 5-hydroxy decanoic acid (5-HD, a mitochondrial KATP channel blocker or glibenclamide (Gli, a non-selective KATP channel blocker pre-treatment did not aggravate HG-induced injury and inflammation. Conclusion: KATP channel opening protects H9c2 cells against HG-induced injury and inflammation by inhibiting ROS-TLR4-necroptosis pathway.

  14. Medical social work practice in child protection in China: A multiple case study in Shanghai hospitals.

    Science.gov (United States)

    Zhao, Fang; Hämäläinen, Juha; Chen, Yu-Ting

    2017-01-01

    With the rapid development of the child welfare system in China over recent years, medical social work has been increasingly involved in providing child protection services in several hospitals in Shanghai. Focusing on five cases in this paper, the exploratory study aims to present a critical overview of current practices and effects of medical social work for child protection, based on a critical analysis of the multidimensional role of social work practitioners engaged in the provision of child protection services as well as potential challenges. Implications and suggestions for future improvements of China's child protection system are also discussed.

  15. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  16. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Miki Nagase

    Full Text Available Macrophage-mediated inflammation has been implicated in various kidney diseases. We previously reported that Rac1, a Rho family small GTP-binding protein, was overactivated in several chronic kidney disease models, and that Rac1 inhibitors ameliorated renal injury, in part via inhibition of inflammation, but the detailed mechanisms have not been clarified. In the present study, we examined whether Rac1 in macrophages effects cytokine production and the inflammatory mechanisms contributing to kidney derangement. Myeloid-selective Rac1 flox control (M-Rac1 FC and knockout (M-Rac1 KO mice were generated using the cre-loxP system. Renal function under basal conditions did not differ between M-Rac1 FC and KO mice. Accordingly, lipopolysaccharide (LPS-evoked kidney injury model was created. LPS elevated blood urea nitrogen and serum creatinine, enhanced expressions of kidney injury biomarkers, Kim-1 and Ngal, and promoted tubular injury in M-Rac1 FC mice. By contrast, deletion of myeloid Rac1 almost completely prevented the LPS-mediated renal impairment. LPS triggered a marked induction of macrophage-derived inflammatory cytokines, IL-6 and TNFα, in M-Rac1 FC mice, which was accompanied by Rac1 activation, stimulation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH oxidase, and reactive oxygen species overproduction. These changes were inhibited in M-Rac1 KO mice. LPS evoked F4/80-positive macrophages accumulation in the kidney, which was not affected by myeloid Rac1 deficiency. We further tested the role of Rac1 signaling in cytokine production using macrophage cell line, RAW264.7. Exposure to LPS increased IL-6 and TNFα mRNA expression. The LPS-driven cytokine induction was dose-dependently blocked by the Rac1 inhibitor EHT1864, NADPH oxidase inhibitor diphenyleneiodonium, and NF-κB inhibitor BAY11-7082. In conclusion, genetic ablation of Rac1 in the myeloid lineage protected against LPS-induced renal inflammation and injury, by

  17. Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Gensheng Zhang

    2016-02-01

    Full Text Available Background/Aims: Tempol is a protective antioxidant against ischemic injury in many animal models. The molecular mechanisms are not well understood. Nuclear factor erythroid 2-related factor (Nrf2 is a master transcription factor during oxidative stress, which is enhanced by activation of protein kinase C (PKC pathway. Another factor, tubular epithelial apoptosis, is mediated by activation of phosphoinositide 3-kinase (PI3K/protein kinase B (PKB, Akt signaling pathway during renal ischemic injury. We tested the hypothesis that tempol activates PKC or PI3K/Akt/Nrf2 pathways to transcribe many genes that coordinate endogenous antioxidant defense. Methods: The right renal pedicle was clamped for 45 minutes and the left kidney was removed to study renal ischemia/reperfusion (I/R injury in C57BL/6 mice. The response was assessed from serum parameters, renal morphology and renal expression of PKC, phosphorylated-PKC (p-PKC, Nrf2, heme oxygenase-1 (HO-1, Akt, phosphorylated-Akt (p-Akt, pro-caspase-3 and cleaved caspase-3 in groups of sham and I/R mice given vehicle, or tempol (50 or 100 mg/kg, intraperitoneal injection. Results: The serum malondialdehyde (MDA, marker of reactive oxygen species doubled and the BUN and creatinine increased 5- to 10-fold after I/R injury. Tempol (50 or 100 mg/kg prevented the increases in MDA but only tempol (50 mg/kg lessened the increases in BUN and creatinine and moderated the acute tubular necrosis. I/R did not change expression of PKC or p-PKC but reduced renal expression of Nrf2, p-Akt, HO-1 and pro-caspase-3 and increased cleaved caspase-3. Tempol (50 mg/kg prevented these changes produced by I/R whereas tempol (100 mg/kg had lesser or inconsistent effects. Conclusion: Tempol (50 mg/kg prevents lipid peroxidation and attenuates renal damage after I/R injury. The beneficial pathway apparently is not dependent on upregulation or phosphorylation of PKC, at lower tempol doses, does implicate upregulation of Akt with

  18. The Mechanism of Sevoflurane Preconditioning-Induced Protections against Small Intestinal Ischemia Reperfusion Injury Is Independent of Mast Cell in Rats

    Directory of Open Access Journals (Sweden)

    Xiaoliang Gan

    2013-01-01

    Full Text Available The study aimed to investigate whether sevoflurane preconditioning can protect against small intestinal ischemia reperfusion (IIR injury and to explore whether mast cell (MC is involved in the protections provided by sevoflurane preconditioning. Sprague-Dawley rats exposed to sevoflurane or treated with MC stabilizer cromolyn sodium (CS were subjected to 75-minute superior mesenteric artery occlusion followed by 2-hour reperfusion in the presence or absence of MC degranulator compound 48/80 (CP. Small intestinal ischemia reperfusion resulted in severe intestinal injury as demonstrated by significant elevations in intestinal injury scores and p47phox and gp91phox, ICAM-1 protein expressions and malondialdehyde and IL-6 contents, and MPO activities as well as significant reductions in SOD activities, accompanied with concomitant increases in mast cell degranulation evidenced by significant increases in MC counts, tryptase expression, and β-hexosaminidase concentrations, and those alterations were further upregulated in the presence of CP. Sevoflurane preconditioning dramatically attenuated the previous IIR-induced alterations except MC counts, tryptase, and β-hexosaminidase which were significantly reduced by CS treatment. Furthermore, CP exacerbated IIR injury was abrogated by CS but not by sevoflurane preconditioning. The data collectively indicate that sevoflurane preconditioning confers protections against IIR injury, and MC is not involved in the protective process.

  19. Drug-Induced Liver Injury by Glatiramer Acetate Used for Treatment of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Attila Onmez

    2013-12-01

    Full Text Available Glatiramer acetate (GA, Copaxone is an approved drug for the treatment of relapsing–remitting multiple sclerosis. Most common side effects observed with GA are local injection site reactions, which can include pain, swelling, or redness. However, systemic adverse event such as hepatotoxicity related to GA is rarely seen. In this report, we present a case of GA-induced toxic hepatitis associated with cholestatic and hepatocellular damage.

  20. Multiple Bony Injuries on Bone Scan in a Case of Unsuspected Child Abuse

    Directory of Open Access Journals (Sweden)

    Ya-Wen Chuang

    2017-01-01

    Full Text Available This case is described of an eleven-month-old infant with lower limbs swelling and the left elbow skeletal malformation following a fall. The radionuclide bone scan was perfor