WorldWideScience

Sample records for initiation complex plant

  1. Effect of plant-biostimulant on cassava initial growth

    Directory of Open Access Journals (Sweden)

    João Emílio de Souza Magalhães

    2016-04-01

    Full Text Available ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1. At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.

  2. Emerging functions of multi-protein complex Mediator with special emphasis on plants.

    Science.gov (United States)

    Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh

    2017-10-01

    Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.

  3. Initial Studies on Alkaloids from Lombok Medicinal Plants

    Directory of Open Access Journals (Sweden)

    John B. Bremner

    2001-01-01

    Full Text Available Initial investigation of medicinal plants from Lombok has resulted in the collection of 100 plant species predicted to have antimicrobial, including antimalarial, properties according to local medicinal uses. These plants represent 49 families and 80 genera; 23% of the plants tested positively for alkaloids. Among the plants testing positive, five have been selected for further investigation involving structure elucidation and antimicrobial testing on the extracted alkaloids. Initial work on structural elucidation of some of the alkaloids is reported briefly.

  4. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  5. Using action research for complex research initiatives

    CSIR Research Space (South Africa)

    Greeff, M

    2009-12-01

    Full Text Available the research process of such a complex research initiative. Action research is one research method that lends itself to these complex projects. The paper uses the Ability Based Technology Interventions (AbTi) research project as a case study to analyse...

  6. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong

    2015-01-01

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex

  7. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-08-15

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex.

  8. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-01-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation. PMID:21551388

  9. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity.

    Science.gov (United States)

    Stefanaki, Anastasia; Kantsa, Aphrodite; Tscheulin, Thomas; Charitonidou, Martha; Petanidou, Theodora

    2015-01-01

    The architectural complexity of flower structures (hereafter referred to as floral complexity) may be linked to pollination by specialized pollinators that can increase the probability of successful seed set. As plant-pollinator systems become fragile, a loss of such specialized pollinators could presumably result in an increased likelihood of pollination failure. This is an issue likely to be particularly evident in plants that are currently rare. Using a novel index describing floral complexity we explored whether this aspect of the structure of flowers could be used to predict vulnerability of plant species to extinction. To do this we defined plant vulnerability using the Red Data Book of Rare and Threatened Plants of Greece, a Mediterranean biodiversity hotspot. We also tested whether other intrinsic (e.g. life form, asexual reproduction) or extrinsic (e.g. habitat, altitude, range-restrictedness) factors could affect plant vulnerability. We found that plants with high floral complexity scores were significantly more likely to be vulnerable to extinction. Among all the floral complexity components only floral symmetry was found to have a significant effect, with radial-flower plants appearing to be less vulnerable. Life form was also a predictor of vulnerability, with woody perennial plants having significantly lower risk of extinction. Among the extrinsic factors, both habitat and maximum range were significantly associated with plant vulnerability (coastal plants and narrow-ranged plants are more likely to face higher risk). Although extrinsic and in particular anthropogenic factors determine plant extinction risk, intrinsic traits can indicate a plant's proneness to vulnerability. This raises the potential threat of declining global pollinator diversity interacting with floral complexity to increase the vulnerability of individual plant species. There is potential scope for using plant-pollinator specializations to identify plant species particularly at

  11. Transcription initiation complex structures elucidate DNA opening.

    Science.gov (United States)

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  12. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  13. Plant Mediator complex and its critical functions in transcription regulation.

    Science.gov (United States)

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  14. Initiating Event Rates at U.S. Nuclear Power Plants. 1988 - 2013

    International Nuclear Information System (INIS)

    Schroeder, John A.; Bower, Gordon R.

    2014-01-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant's low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC's Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  15. Integrated approach to knowledge acquisition and safety management of complex plants with emphasis on human factors

    International Nuclear Information System (INIS)

    Kosmowski, K.T.

    1998-01-01

    In this paper an integrated approach to the knowledge acquisition and safety management of complex industrial plants is proposed and outlined. The plant is considered within a man-technology-environment (MTE) system. The knowledge acquisition is aimed at the consequent reliability evaluation of human factor and probabilistic modeling of the plant. Properly structured initial knowledge is updated in life-time of the plant. The data and knowledge concerning the topology of safety related systems and their functions are created in a graphical CAD system and are object oriented. Safety oriented monitoring of the plant includes abnormal situations due to external and internal disturbances, failures of hard/software components and failures of human factor. The operation and safety related evidence is accumulated in special data bases. Data/knowledge bases are designed in such a way to support effectively the reliability and safety management of the plant. (author)

  16. The initiating events in the Loviisa nuclear power plant history

    International Nuclear Information System (INIS)

    Sjoblom, K.

    1987-01-01

    During the 16 reactor years of Loviisa nuclear power plant operation no serious incident has endangered the high level of safety. The initiating events of plant incidents have been analyzed in order to get a view of plant operational safety experience. The initiating events have been placed in categories similar to those that EPRI uses. However, because of the very small number of scrams the study was extended to also cover transients with a relatively low safety importance in order to get more comprehensive statistics. Human errors, which contributed to 15% of the transients, were a special subject in this study. The conditions under which human failures occurred, and the nature and root causes of the human failures that caused the initiating events were analyzed. For future analyses it was noticed that it would be beneficial to analyze incidents immediately, to consult with the persons directly involved and to develop an international standard format for incident analyses

  17. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    FAO Silveira

    Full Text Available Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences of Miconia albicans (SW. Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS, shrublands (cerrado sensu strico, CE and woodlands (cerradão, CD. As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  18. Architecture of the RNA polymerase II-Mediator core initiation complex.

    Science.gov (United States)

    Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P

    2015-02-19

    The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.

  19. Robust method for determining steady state initial values for MSS plant models

    International Nuclear Information System (INIS)

    Ringham, M.R.; Carlson, J.R.

    1987-01-01

    Results of an EPRI sponsored project (RP 2504-3 amend i) demonstrated that the methodology embodied in the existing System Performance and Analysis Code (SPANC) can be employed to provide initial values for MSS plant models. An EASY5 version of the TMI plant two loop approximation with primary coolant flow recirculation through a failed pump was selected for demonstration purposes. The project entailed replacing the 1967 ASME steam properties in SPANC with the simplified MSS functions. The MSS component models were then recast into equivalent steady state models compatible with the SPANC executive system. A special input routine was written to modify the MSS data to the SPANC data format. The accuracy of the obtained initial values was approximately four significant figures, sufficient to converge on the EASY5 steady state algorithms. Convergence is relatively insensitive to the initial guess in SPANC and are obtained at a computer cost of approximately two minutes on the UNIVAC 1100/60. Since plant configuration is established by data input in SPANC, it can easily be altered to provide initial values for an MMS simulation of all TMI type plants

  20. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes... (ITPs) for light water cooled nuclear power plants. DATES: Submit comments by January 31, 2013. Comments...

  1. Quantification of complex modular architecture in plants.

    Science.gov (United States)

    Reeb, Catherine; Kaandorp, Jaap; Jansson, Fredrik; Puillandre, Nicolas; Dubuisson, Jean-Yves; Cornette, Raphaël; Jabbour, Florian; Coudert, Yoan; Patiño, Jairo; Flot, Jean-François; Vanderpoorten, Alain

    2018-04-01

    Morphometrics, the assignment of quantities to biological shapes, is a powerful tool to address taxonomic, evolutionary, functional and developmental questions. We propose a novel method for shape quantification of complex modular architecture in thalloid plants, whose extremely reduced morphologies, combined with the lack of a formal framework for thallus description, have long rendered taxonomic and evolutionary studies extremely challenging. Using graph theory, thalli are described as hierarchical series of nodes and edges, allowing for accurate, homologous and repeatable measurements of widths, lengths and angles. The computer program MorphoSnake was developed to extract the skeleton and contours of a thallus and automatically acquire, at each level of organization, width, length, angle and sinuosity measurements. Through the quantification of leaf architecture in Hymenophyllum ferns (Polypodiopsida) and a fully worked example of integrative taxonomy in the taxonomically challenging thalloid liverwort genus Riccardia, we show that MorphoSnake is applicable to all ramified plants. This new possibility of acquiring large numbers of quantitative traits in plants with complex modular architectures opens new perspectives of applications, from the development of rapid species identification tools to evolutionary analyses of adaptive plasticity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Initiation of DNA replication: functional and evolutionary aspects

    Science.gov (United States)

    Bryant, John A.; Aves, Stephen J.

    2011-01-01

    Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040

  3. On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions

    Directory of Open Access Journals (Sweden)

    Magdy A. El-Tawil

    2009-01-01

    Full Text Available A perturbing nonlinear Schrodinger equation is studied under general complex nonhomogeneities and complex initial conditions for zero boundary conditions. The perturbation method together with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the symbolic solution algorithm is tested through computing the possible approximations under truncation procedures. The method of solution is illustrated through case studies and figures.

  4. Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks

    Science.gov (United States)

    Ubbens, Jordan R.; Stavness, Ian

    2017-01-01

    Plant phenomics has received increasing interest in recent years in an attempt to bridge the genotype-to-phenotype knowledge gap. There is a need for expanded high-throughput phenotyping capabilities to keep up with an increasing amount of data from high-dimensional imaging sensors and the desire to measure more complex phenotypic traits (Knecht et al., 2016). In this paper, we introduce an open-source deep learning tool called Deep Plant Phenomics. This tool provides pre-trained neural networks for several common plant phenotyping tasks, as well as an easy platform that can be used by plant scientists to train models for their own phenotyping applications. We report performance results on three plant phenotyping benchmarks from the literature, including state of the art performance on leaf counting, as well as the first published results for the mutant classification and age regression tasks for Arabidopsis thaliana. PMID:28736569

  5. Advanced nuclear plant control complex

    International Nuclear Information System (INIS)

    Scarola, K.; Jamison, S.; Manazir, R.M.; Rescorl, R.L.; Harmon, D.L.

    1991-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system which is nuclear qualified for rapid response to changes in plant parameters and a component control system which together provide a discrete monitoring and control capability at a panel in the control room. A separate data processing system, which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs and a large, overhead integrated process status overview board. The discrete indicator and alarm system and the data processing system receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accidental conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof. (author)

  6. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants

    Science.gov (United States)

    Mansilla, Natanael; Racca, Sofia; Gras, Diana E.; Gonzalez, Daniel H.

    2018-01-01

    Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution. PMID:29495437

  7. The role of human performance in the safety complex plants' operation

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurred in the plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15% of the global failures are related with the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger to the plant experience in the working place, level of skills, events in personal and/or professional life, discipline, social ambience, somatic health. The human performances' assessment in the probabilistic safety assessment offers the possibility of evaluation of human contribution to the events sequences outcome. Not all the human errors have impact on the system. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic method (event tree, fault tree) to identify the solutions for human reliability improved in order to minimize the risk in industrial plants' operation. Also, the human error types and their causes are defined and the 'decision tree method' as technique in our analysis for human reliability assessment is presented. The exemplification of human error analysis method was achieved based on operation data for Valcea Heavy Water Pilot Plant. As initiating event for the accident state 'the steam supply interruption' event has been considered. The human errors' contribution was analysed for the accident sequence with the worst consequences. (authors)

  8. The effect of plant growth regulators on callus initiation in wormwood ...

    African Journals Online (AJOL)

    Studies were carried out in the Biotechnology laboratory of Plant Science Department of Ahmadu Bello University Zaria, Nigeria to study the effect of some plant growth regulators on the in vitro initiation of callus using the leaves of Chiyong variety of Artemisia annua. The explants were sterilized and incubated on Murashige ...

  9. Structure and function of complex carbohydrates active in regulating plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P; Darvill, A G; McNeil, M

    1981-01-01

    A key regulatory role of complex carbohydrates in the interactions between plants and microbes has been established. The complex carbohydrates act as regulatory molecules or hormones in that the carbohydrates induce de novo protein synthesis in receptive cells. The first complex carbohydrate recognized to possess such regulatory properties is a polysaccharide (PS) present in the walls of fungi. Hormonal concentrations of this PS elicit plant cells to accumulate phytoalexins (antibiotics). More recently we have recognized that a PS in the walls of growing plant cells also elicits phytoalexin accumulation; microbes and viruses may cause the release of active fragments of this endogenous elicitor. Another PS in plant cell walls is the Proteinase Inhibitor Inducing Factor (PIIF). This hormone appears to protect plants by inducing synthesis in plants of proteins which specifically inhibit digestive enzymes of insects and bacteria. Glycoproteins secreted by incompatible races (races that do not infect the plant) of a fungal pathogen of soybeans protect seedlings from attack by compatible races. Glycoproteins from compatible races do not protect the seedlings. The acidic PS secreted by the nitrogen-fixing rhizobia appear to function in the infection of legumes by the rhizobia. W.D. Bauer and his co-workers have evidence that these PS are required for the development of root hairs capable of being infected by symbiont rhizobia. Current knowledge of the structures of these biologically active complex carbohydrates will be presented.

  10. Structure and function of complex I in animals and plants - a comparative view.

    Science.gov (United States)

    Senkler, Jennifer; Senkler, Michael; Braun, Hans-Peter

    2017-09-01

    The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position. The extra domain includes proteins resembling prokaryotic gamma-type carbonic anhydrases. We here present a detailed comparison of complex I from mammals and flowering plants. Forty homologous subunits are present in complex I of both groups of species. In addition, five subunits are present in mammalian complex I, which are absent in plants, and eight to nine subunits are present in plant complex I which do not occur in mammals. Based on the atomic structure of mammalian complex I and biochemical insights into complex I architecture from plants we mapped the species-specific subunits. Interestingly, four of the five animal-specific and five of the eight to nine plant-specific subunits are localized at the inner surface of the membrane arm of complex I in close proximity. We propose that the inner surface of the membrane arm represents a workbench for attaching proteins to complex I, which are not directly related to respiratory electron transport, like nucleoside kinases, acyl-carrier proteins or carbonic anhydrases. We speculate that further enzyme activities might be bound to this micro-location in other groups of organisms. © 2017 Scandinavian Plant Physiology Society.

  11. B Plant Complex generator dangerous waste storage areas inspection plan: Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    This document contains the inspection plan for the <90 day dangerous/mixed waste storage areas and satellite accumulation areas at B Plant Complex. This inspection plan is designed to comply with all applicable federal, state and US Department of Energy-Richland Operations Office training requirements. In particular, the requirements of WAC 173-303 ''Dangerous Waste Regulations'' are met by this inspection plan. This inspection plan is designed to provide B Plant Complex with the records and documentation showing that the waste storage and handling program is in compliance with applicable regulations. The plan also includes the requirements for becoming a qualified inspector of waste storage areas and the responsibilities of various individuals and groups at B Plant Complex

  12. General Atomic reprocessing pilot plant: description and results of initial testing

    International Nuclear Information System (INIS)

    1977-12-01

    In June 1976 General Atomic completed the construction of a reprocessing head-end cold pilot plant. In the year since then, each system within the head end has been used for experiments which have qualified the designs. This report describes the equipment in the plant and summarizes the results of the initial phase of reprocessing testing

  13. Development and Initial Psychometric Assessment of the Plant Attitude Questionnaire

    Science.gov (United States)

    Fančovičová, Jana; Prokop, Pavol

    2010-10-01

    Plants are integral parts of ecosystems which determine life on Earth. People's attitudes toward them are however, largely overlooked. Here we present initial psychometric assessment of self-constructed Plant Attitude Scale (PAS) that was administered to a sample of 310 Slovakian students living in rural areas aged 10-15 years. The final version of PAS consists from 29 Likert-scale items that were loaded to four distinct dimensions (Interest, Importance, Urban trees and Utilization). Mean scores revealed that Slovakian students lack positive attitudes toward plants and that gender had no effect on their mean attitude scores. Living in a family with a garden was associated with a more positive attitude toward plants. Further correlative research on diverse samples containing urban children and experimental research examining the impact of gardening in schools on student attitudes toward plants is required.

  14. [Development characteristics of aquatic plants in a constructed wetland for treating urban drinking water source at its initial operation stage].

    Science.gov (United States)

    Zheng, Jun; Ma, Xin-Tang; Zhou, Lan; Zhou, Qing-Yuan; Wang, Zhong-Qiong; Wang, Wei-Dong; Yin, Cheng-Qing

    2011-08-01

    The development characteristics and improvement measures of aquatic plants were studied in Shijiuyang Constructed Wetland (SCW) at its initial operation stage. SCW was a large-scale wetland aiming to help relieve the source water pollution in Jiaxing City. A checklist of vascular plants in SCW was built, and species composition, life forms, biomass and association distributions were examined. Our objectives were to examine the diversity and community structure of aquatic plants in SCW at its initial operation stage, and to find out the possible hydrophyte improvement measures. The survey results showed that there were 49 vascular plant species belonging to 41 genera, 25 families in SCW, which greatly exceeded the artificially transplanted 13 species. The life forms of present aquatic plants in SCW were dominated by hygrophilous plants (20 species) and emerged plants (17 species), which accounted for 75.5% of the total number of aquatic plants. The aquatic plants transplanted artificially were dominated by emerged plants (accounted for 69.2%), while those naturally developed were predominated by hygrophilous plants (accounted for 47.2%). The horizontal distribution of aquatic plant community in SCW was mixed in the form of mosaics, which made up typical association complex. Except association Aeschynomene indica L., the dominant species of other associations were all those transplanted artificially. The naturally grown species scattered throughout the SCW and only occupied a small percentage. A marked difference was detected on the species and species richness of aquatic plants in different regions of SCW. Biomass of aquatic plant associations in SCW was 167.7 t. SCW has shown a trend of succession heading for quick increase of plant diversity at the primary operation stage. This trend provides a good material base for the future stable community of aquatic plants in SCW. According to the current status of aquatic plants, some suggestions were put forward on the

  15. Initiating events in the safety probabilistic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Stasiulevicius, R.

    1989-01-01

    The importance of the initiating event in the probabilistic safety analysis of nuclear power plants are discussed and the basic procedures necessary for preparing reports, quantification and grouping of the events are described. The examples of initiating events with its occurence medium frequency, included those calculated for OCONEE reactor and Angra-1 reactor are presented. (E.G.)

  16. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  17. Plants lacking the main light-harvesting complex retain photosystem II macro-organization.

    Science.gov (United States)

    Ruban, A V; Wentworth, M; Yakushevska, A E; Andersson, J; Lee, P J; Keegstra, W; Dekker, J P; Boekema, E J; Jansson, S; Horton, P

    2003-02-06

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes-which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.

  18. Using Plants to Explore the Nature & Structural Complexity of Life

    Science.gov (United States)

    Howard, Ava R.

    2014-01-01

    Use of real specimens brings the study of biology to life. This activity brings easily acquired plant specimens into the classroom to tackle common alternative conceptions regarding life, size, complexity, the nature of science, and plants as multicellular organisms. The activity occurs after a discussion of the characteristics of life and engages…

  19. Nuclear power desalinating complex with IRIS reactor plant and Russian distillation desalinating unit

    International Nuclear Information System (INIS)

    Kostin, V. I.; Panov, Yu.K.; Polunichev, V. I.; Fateev, S. A.; Gureeva, L. V.

    2004-01-01

    This paper has been prepared as a result of Russian activities on the development of nuclear power desalinating complex (NPDC) with the IRIS reactor plant (RP). The purpose of the activities was to develop the conceptual design of power desalinating complex (PDC) and to evaluate technical and economical indices, commercial attractiveness and economical efficiency of PDC based on an IRIS RP with distillation desalinating plants. The paper presents the main results of studies as applied to dual-purpose PDC based on IRIS RP with different types of desalinating plants, namely: characteristics of nuclear power desalinating complex based on IRIS reactor plant using Russian distillation desalinating technologies; prospective options of interface circuits of the IRIS RP with desalinating plants; evaluations of NPDC with IRIS RP output based on selected desalinating technologies for water and electric power supplied to the grid; cost of water generated by NPDC for selected interface circuits made by the IAEA DEEP code as well as by the Russian TEO-INVEST code; cost evaluation results for desalinated water of PDC operating on fossil fuel and conditions for competitiveness of the nuclear PDC based on IRIS RP compared with analog desalinating complexes operating on fossil fuel.(author)

  20. The initial growth of complex oxides : study and manipulation

    NARCIS (Netherlands)

    Rijnders, Augustinus J.H.M.

    2001-01-01

    In this thesis, the initial growth stage, i.e., nucleation and growth of the first few unit cell layers, of complex oxides was studied in real time during pulsed laser deposition (PLD). These studies were performed at their optimal epitaxial growth conditions, i.e., high temperature and high oxygen

  1. Structures of transcription pre-initiation complex with TFIIH and Mediator.

    Science.gov (United States)

    Schilbach, S; Hantsche, M; Tegunov, D; Dienemann, C; Wigge, C; Urlaub, H; Cramer, P

    2017-11-09

    For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II.

  2. Detergent zeolite complex "Alusil", Zvornik

    OpenAIRE

    Stanković Mirjana S.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed the basis technological and machine projects for a detergent zeolite complex, on the basis of which a pilot plant with an initial capacity of 5,000 t/y was constructed in 1983 within Birač-Zvornik production complex. Additional projects were done afterwards and the starting capacity increased to 200,000 t/y in 1988. This plant became the biggest producer of detergent zeolite in the world. These projects were manufactured on the basis of specific techno...

  3. Critical initial-slip scaling for the noisy complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Liu, Weigang; Täuber, Uwe C

    2016-01-01

    We employ the perturbative fieldtheoretic renormalization group method to investigate the universal critical behavior near the continuous non-equilibrium phase transition in the complex Ginzburg–Landau equation with additive white noise. This stochastic partial differential describes a remarkably wide range of physical systems: coupled nonlinear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose–Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics, such as cold atomic gases and exciton-polaritons in pumped semiconductor quantum wells in optical cavities. Our starting point is a noisy, dissipative Gross–Pitaevski or nonlinear Schrödinger equation, or equivalently purely relaxational kinetics originating from a complex-valued Landau–Ginzburg functional, which generalizes the standard equilibrium model A critical dynamics of a non-conserved complex order parameter field. We study the universal critical behavior of this system in the early stages of its relaxation from a Gaussian-weighted fully randomized initial state. In this critical aging regime, time translation invariance is broken, and the dynamics is characterized by the stationary static and dynamic critical exponents, as well as an independent ‘initial-slip’ exponent. We show that to first order in the dimensional expansion about the upper critical dimension, this initial-slip exponent in the complex Ginzburg–Landau equation is identical to its equilibrium model A counterpart. We furthermore employ the renormalization group flow equations as well as construct a suitable complex spherical model extension to argue that this conclusion likely remains true to all orders in the perturbation expansion. (paper)

  4. Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics.

    Science.gov (United States)

    Popescu, George V; Noutsos, Christos; Popescu, Sorina C

    2016-01-01

    In modern plant biology, progress is increasingly defined by the scientists' ability to gather and analyze data sets of high volume and complexity, otherwise known as "big data". Arguably, the largest increase in the volume of plant data sets over the last decade is a consequence of the application of the next-generation sequencing and mass-spectrometry technologies to the study of experimental model and crop plants. The increase in quantity and complexity of biological data brings challenges, mostly associated with data acquisition, processing, and sharing within the scientific community. Nonetheless, big data in plant science create unique opportunities in advancing our understanding of complex biological processes at a level of accuracy without precedence, and establish a base for the plant systems biology. In this chapter, we summarize the major drivers of big data in plant science and big data initiatives in life sciences with a focus on the scope and impact of iPlant, a representative cyberinfrastructure platform for plant science.

  5. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    Science.gov (United States)

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  7. Annual Plant Reviews

    DEFF Research Database (Denmark)

    , three dimensional structures and functions of each protein in a biological system. In plant science, the number of proteome studies is rapidly expanding after the completion of the Arabidopsis thaliana genome sequence, and proteome analyses of other important or emerging model systems and crop plants...... are in progress or are being initiated. Proteome analysis in plants is subject to the same obstacles and limitations as in other organisms, but the nature of plant tissues, with their rigid cell walls and complex variety of secondary metabolites, means that extra challenges are involved that may not be faced when...... analysing other organisms. This volume aims to highlight the ways in which proteome analysis has been used to probe the complexities of plant biochemistry and physiology. It is aimed at researchers in plant biochemistry, genomics, transcriptomics and metabolomics who wish to gain an up-to-date insight...

  8. Plant Phenotyping through the Eyes of Complex Systems: Theoretical Considerations

    Science.gov (United States)

    Kim, J.

    2017-12-01

    Plant phenotyping is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists from different disciplines but also the paradigm shift to a holistic approach. Complex system is defined as a system having a large number of interacting parts (or particles, agents), whose interactions give rise to non-trivial properties like self-organization and emergence. Plant ecosystems are complex systems which are continually morphing dynamical systems, i.e. self-organizing hierarchical open systems. Such systems are composed of many subunits/subsystems with nonlinear interactions and feedback. The throughput such as the flow of energy, matter and information is the key control parameter in complex systems. Information theoretic approaches can be used to understand and identify such interactions, structures and dynamics through reductions in uncertainty (i.e. entropy). The theoretical considerations based on network and thermodynamic thinking and exemplary analyses (e.g. dynamic process network, spectral entropy) of the throughput time series will be presented. These can be used as a framework to develop more discipline-specific fundamental approaches to provide tools for the transferability of traits between measurement scales in plant phenotyping. Acknowledgment: This work was funded by the Weather Information Service Engine Program of the Korea Meteorological Administration under Grant KMIPA-2012-0001.

  9. Complex bladder-exstrophy-epispadias management: Causes of failure of initial bladder closure

    Directory of Open Access Journals (Sweden)

    Kouame Dibi Bertin

    2014-01-01

    Full Text Available The success of the initial closure of the complex bladder-exstrophy remains a challenge in pediatric surgery. This study describes a personal experience of the causes of failure of the initial closure and operative morbidity during the surgical treatment of bladder-exstrophy complex. From April 2000 to March 2014, four patients aged 16 days to 7 years and 5 months underwent complex exstrophy-epispadias repair with pelvic osteotomies. There were three males and one female. Three of them had posterior pelvic osteotomy, one had anterior innominate osteotomy. Bladder Closure: Bladder closure was performed in three layers. Our first patient had initial bladder closure with polyglactin 4/0 (Vicryl ® 4/0, concerning the last three patients, initial bladder closure was performed with polydioxanone 4/0 (PDS ® 4/0. The bladder was repaired leaving the urethral stent and ureteral stents for full urinary drainage for three patients. In one case, only urethral stent was left, ureteral drainage was not possible, because stents sizes were more important than the ureteral diameter. Out of a total of four patients, initial bladder closure was completely achieved for three patients. At the immediate postoperative follow-up, two patients presented a complete disunion of the abdominal wall and bladder despite an appropriate postoperative care. The absorbable braided silk (polyglactin used for the bladder closure was considered as the main factor in the failure of the bladder closure. The second cause of failure of the initial bladder closure was the incomplete urine drainage, ureteral catheterisation was not possible because the catheters sizes were too large compared with the diameters of the ureters. The failure of the initial bladder-exstrophy closure may be reduced by a closure with an absorbable monofilament silk and efficient urine drainage via ureteral catheterisation.

  10. Ecological significance and complexity of N-source preference in plants.

    Science.gov (United States)

    Britto, Dev T; Kronzucker, Herbert J

    2013-10-01

    Plants can utilize two major forms of inorganic N: NO3(-) (nitrate) and NH4(+) (ammonium). In some cases, the preference of one form over another (denoted as β) can appear to be quite pronounced for a plant species, and can be an important determinant and predictor of its distribution and interactions with other species. In many other cases, however, assignment of preference is not so straightforward and must take into account a wide array of complex physiological and environmental features, which interact in ways that are still not well understood. This Viewpoint presents a discussion of the key, and often co-occurring, factors that join to produce the complex phenotypic composite referred to by the deceptively simple term 'N-source preference'. N-source preference is much more complex a biological phenomenon than is often assumed, and general models predicting how it will influence ecological processes will need to be much more sophisticated than those that have been so far developed.

  11. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  12. A review for identification of initiating events in event tree development process on nuclear power plants

    International Nuclear Information System (INIS)

    Riyadi, Eko H.

    2014-01-01

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events

  13. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jeong, Kwangsup; Jung, Wondea

    2005-01-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration

  14. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinkyun [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)]. E-mail: kshpjk@kaeri.re.kr; Jeong, Kwangsup [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of); Jung, Wondea [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)

    2005-08-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration.

  15. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jinkyun Park; Kwangsup Jeong; Wondea Jung [Korea Atomic Energy Research Institute, Taejon (Korea). Integrated Safety Assessment Division

    2005-08-15

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operator' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration. (author)

  16. The function of the Mediator complex in plant immunity.

    Science.gov (United States)

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  17. Variations of adventitious bud plants initiated from cutting scales of irradiated lily

    International Nuclear Information System (INIS)

    Zhang Kezhong; Zhao Xiangyun; Huang Shanwu; Lu Changxun; Zhang Qixiang

    2003-01-01

    Adventitious bud plants were initiated from cutting scales of irradiated lilies. During adventitious bud plants growth and development, variation was observed on their petals, stamens, pistils and leaves. Stamens gave birth to the highest mutation rate and the most diverse variation, such as no pollen male sterility type, pollen abortion male sterility type, stamen collapse male sterility type and partial male sterility type, etc. Different male sterility types were found among the three lilies. Considering mutation rate of adventitious bud plants, 1-2 Gy was suitable dose for 'Pollyana' and 1-3 Gy was proper to Lilium regale and 'Romano'

  18. Complexity factors and prediction of performance

    International Nuclear Information System (INIS)

    Braarud, Per Oeyvind

    1998-03-01

    Understanding of what makes a control room situation difficult to handle is important when studying operator performance, both with respect to prediction as well as improvement of the human performance. A factor analytic approach identified eight factors from operators' answers to an 39 item questionnaire about complexity of the operator's task in the control room. A Complexity Profiling Questionnaire was developed, based on the factor analytic results from the operators' conception of complexity. The validity of the identified complexity factors was studied by prediction of crew performance and prediction of plant performance from ratings of the complexity of scenarios. The scenarios were rated by both process experts and the operators participating in the scenarios, using the Complexity Profiling Questionnaire. The process experts' complexity ratings predicted both crew performance and plant performance, while the operators' rating predicted plant performance only. The results reported are from initial studies of complexity, and imply a promising potential for further studies of the concept. The approach used in the study as well as the reported results are discussed. A chapter about the structure of the conception of complexity, and a chapter about further research conclude the report. (author)

  19. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  20. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  1. Modeling complex flow structures and drag around a submerged plant of varied posture

    Science.gov (United States)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  2. A review for identification of initiating events in event tree development process on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Riyadi, Eko H., E-mail: e.riyadi@bapeten.go.id [Center for Regulatory Assessment of Nuclear Installation and Materials, Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada 8 Jakarta 10120 (Indonesia)

    2014-09-30

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  3. The correlation of initial radiographic characteristics of distal radius fractures and injuries of the triangular fibrocartilage complex.

    Science.gov (United States)

    Kasapinova, K; Kamiloski, V

    2016-06-01

    Our purpose was to determine the correlation of initial radiographic parameters of a distal radius fracture with an injury of the triangular fibrocartilage complex. In a prospective study, 85 patients with surgically treated distal radius fractures were included. Wrist arthroscopy was used to identify and classify triangular fibrocartilage complex lesions. The initial radial length and angulation, dorsal angulation, ulnar variance and distal radioulnar distance were measured. Wrist arthroscopy identified a triangular fibrocartilage complex lesion in 45 patients. Statistical analysis did not identify a correlation with any single radiographic parameter of the distal radius fractures with the associated triangular fibrocartilage complex injuries. The initial radiograph of a distal radius fracture does not predict a triangular fibrocartilage complex injury. III. © The Author(s) 2016.

  4. Flower-Visiting Social Wasps and Plants Interaction: Network Pattern and Environmental Complexity

    Directory of Open Access Journals (Sweden)

    Mateus Aparecido Clemente

    2012-01-01

    Full Text Available Network analysis as a tool for ecological interactions studies has been widely used since last decade. However, there are few studies on the factors that shape network patterns in communities. In this sense, we compared the topological properties of the interaction network between flower-visiting social wasps and plants in two distinct phytophysiognomies in a Brazilian savanna (Riparian Forest and Rocky Grassland. Results showed that the landscapes differed in species richness and composition, and also the interaction networks between wasps and plants had different patterns. The network was more complex in the Riparian Forest, with a larger number of species and individuals and a greater amount of connections between them. The network specialization degree was more generalist in the Riparian Forest than in the Rocky Grassland. This result was corroborated by means of the nestedness index. In both networks was found asymmetry, with a large number of wasps per plant species. In general aspects, most wasps had low niche amplitude, visiting from one to three plant species. Our results suggest that differences in structural complexity of the environment directly influence the structure of the interaction network between flower-visiting social wasps and plants.

  5. Improved design architecture to minimize functional complexity of plant protection system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon, E-mail: jcjung@kings.ac.kr

    2016-12-01

    An improved design architecture method to minimize the functional complexity of PPS (Plant Protection System) is proposed in this work. Firstly, the design concerns are identified with both AHP (Analytic Hierarchy Process) analysis. AHP is able to identify the source of design concerns using pairwise comparison. AHP result shows CCF is the primary concern and the complexity is the secondly. Even though complexity is the second largest concern to the effectiveness of digital I&C system, but it has not been highlighted as CCF. This is the reason why this work focuses on the sources of complexity to maximize the effectiveness of digital system in the viewpoint of design architecture. The proposed methods are, separating non-safety functions from bistable logics and simplifying communication links and network. In order to verify the new concept, EFFBD (Enhanced Functional Flow Block Diagram) models are developed for two bistable logics of PPS and the complexities are measured using Halstead’s program maintainability measures. This measure specifies what provokes functional complexity. Periodic testing and operating bypass function are the source of complexity in this analysis.

  6. Improved design architecture to minimize functional complexity of plant protection system for nuclear power plant

    International Nuclear Information System (INIS)

    Jung, JaeCheon

    2016-01-01

    An improved design architecture method to minimize the functional complexity of PPS (Plant Protection System) is proposed in this work. Firstly, the design concerns are identified with both AHP (Analytic Hierarchy Process) analysis. AHP is able to identify the source of design concerns using pairwise comparison. AHP result shows CCF is the primary concern and the complexity is the secondly. Even though complexity is the second largest concern to the effectiveness of digital I&C system, but it has not been highlighted as CCF. This is the reason why this work focuses on the sources of complexity to maximize the effectiveness of digital system in the viewpoint of design architecture. The proposed methods are, separating non-safety functions from bistable logics and simplifying communication links and network. In order to verify the new concept, EFFBD (Enhanced Functional Flow Block Diagram) models are developed for two bistable logics of PPS and the complexities are measured using Halstead’s program maintainability measures. This measure specifies what provokes functional complexity. Periodic testing and operating bypass function are the source of complexity in this analysis.

  7. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  8. Research of polysaccharide complexes from asteraceae family plants

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Марчишин

    2015-10-01

    Full Text Available Aim of research. Depth study of polysaccharides in some little-known plant species of Asteraceae family is pressing question, considering that polysaccharides are important biologically active compounds widely used in pharmaceutical and medical practice as remedies and preventive medications. The aim of research was to determinate both quantitative content and monomeric composition of polysaccharide complexes from Asteraceae family plant species – Tagetes genus, Arnica genus, and Bellis genus.Materials and methods. Determination of polysaccharides was carried out by the precipitation reaction, using 96 % ethyl alcohol P and Fehling's solution after acid hydrolysis; quantitative content of this group of compounds was determined by gravimetric analysis. On purpose to identify the monomeric composition hydrolysis under sulfuric acid conditions was conducted. Qualitative monomeric composition of polysaccharides after hydrolysis was carried out by paper chromatography method in n-Butanol – Pyridine – Distilled water P (6:4:3 system along with saccharides reference samples.Results. Polysaccharide complexes from Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Arnica montana, Arnica foliosa, wild and cultivated Bellis perennis herbs were studied. Water-soluble polysaccharides and pectin fractions were isolated from studied objects; their quantitative content and monomeric composition were determined.Conclusion. The highest amount of water-soluble polysaccharides was found in cultivated Bellis perennis herb (10,13 %, the highest amount of pectin compounds – in Tagetes tenuifolia herb (13,62 %; the lowest amount of water-soluble polysaccharides and pectin compounds was found in Arnica montana herb (4,61 % and Tagetes patula herb (3,62 %, respectively. It was found that polysaccharide complexes from all studied species include glucose and arabinose

  9. Cogeneration plants: SNAM (Italy) initiatives and incentives

    International Nuclear Information System (INIS)

    Pipparelli, M.

    1991-01-01

    First, an overall picture is presented of the extension of the use of cogeneration by the Italian brick industry. The particular suitability and usefulness of this form of energy to the brick industry are pointed out. Then a look is given at the legal and financial incentives which have been built into the National Energy Plan to encourage on-site production by Italian industries. Finally, a review is made of initiatives made by SNAM (the Italian National Methane Distribution Society) to develop a favourable tariff structure for on-site power producers using methane as their energy source, as well as, of the Society's efforts to set up a cogeneration equipment consulting service which would provide advice on cogeneration plant design, operation and maintenance

  10. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.

    Science.gov (United States)

    Robinson, Philip J; Trnka, Michael J; Bushnell, David A; Davis, Ralph E; Mattei, Pierre-Jean; Burlingame, Alma L; Kornberg, Roger D

    2016-09-08

    A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Complex programmable logic device based alarm sequencer for nuclear power plants

    International Nuclear Information System (INIS)

    Khedkar, Ravindra; Solomon, J. Selva; KrishnaKumar, B.

    2001-01-01

    Complex Programmable Logic Device based Alarm Sequencer is an instrument, which detects alarms, memorizes them and displays the sequences of occurrence of alarms. It caters to sixteen alarm signals and distinguishes the sequence among any two alarms with a time resolution of 1 ms. The system described has been designed for continuous operation in process plants, nuclear power plants etc. The system has been tested and found to be working satisfactorily. (author)

  12. Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense.

    Science.gov (United States)

    Fürst, Ursula; Hegenauer, Volker; Kaiser, Bettina; Körner, Max; Welz, Max; Albert, Markus

    2016-01-01

    Dodders ( Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants - only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa . In a recent work we identified a pattern recognition receptor of tomato, "Cuscuta Receptor 1" (CuRe1), which is critical to detect a "Cuscuta factor" (CuF) and initiate defense responses such as the production of ethylene or the generation of reactive oxygen species. CuRe1 also contributes to the tomato resistance against C. reflexa . Here we point to the fact that CuRe1 is not the only relevant component for full tomato resistance but it requires additional defense mechanisms, or receptors, respectively, to totally fend off the parasite.

  13. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    OpenAIRE

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII)(2) that bind 70% of PSII chlorophyll and three minor monomeric complexes(3)-which together form PSII supercomplexes(4-6). The antenna comple...

  14. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    Science.gov (United States)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  15. Possible evidence for transport of an iron cyanide complex by plants

    International Nuclear Information System (INIS)

    Samiotakis, M.; Ebbs, S.D.

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to 15 N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots (δ 15 N%o=1000-1500) and shoots (δ 15 N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater 15 N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane

  16. Possible evidence for transport of an iron cyanide complex by plants

    Energy Technology Data Exchange (ETDEWEB)

    Samiotakis, M.; Ebbs, S.D

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to {sup 15}N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots ({delta} {sup 15}N%o=1000-1500) and shoots ({delta} {sup 15}N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater {sup 15}N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane.

  17. Dragon TIS Spotter: An Arabidopsis-derived predictor of translation initiation sites in plants

    KAUST Repository

    Magana-Mora, Arturo; Ashoor, Haitham; Jankovic, Boris R.; Kamau, Allan; Awara, Karim; Chowdhary, Rajesh; Archer, John A.C.; Bajic, Vladimir B.

    2012-01-01

    In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. The Author(s) 2012. Published by Oxford University Press.

  18. Dragon TIS Spotter: An Arabidopsis-derived predictor of translation initiation sites in plants

    KAUST Repository

    Magana-Mora, Arturo

    2012-10-30

    In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. The Author(s) 2012. Published by Oxford University Press.

  19. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants

    Directory of Open Access Journals (Sweden)

    Subhasis eSamanta

    2015-09-01

    Full Text Available Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channelling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic and molecular analyses have unravelled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator’s involvement in these processes.

  20. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants.

    Science.gov (United States)

    Samanta, Subhasis; Thakur, Jitendra K

    2015-01-01

    Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.

  1. Caries preventive efficiency of therapeutic complex accomponying orthodontic treatment of children with initial dental caries

    Directory of Open Access Journals (Sweden)

    Denga A.E.

    2013-12-01

    Full Text Available The use of orthodontic non-removable appliance in orthodontic treatment inter¬feres with the process of teeth mineralization, worsens level of oral cavity hygiene, stimulates development of caries process. The situation is complicated when a patient has an initial tooth decay. The aim of this study was to determine genetic characteristics of children with initial caries and clinical evaluation of effectiveness of the developed caries preventive therapeutic complex accompanying treatment of jaw facial anomalies (JFA. 47 children aged 12-14 with initial tooth decay participated in the examination. Complex diagnostics, including molecular genetic studies was carried out. Therapeutic complex for children, of the main group included remineralizing, adaptogenic, biogenic agents, which increase non-specific resistance, as well as infiltration ICON therapy before fixing braces. Caries preventive complex accompanying JFA treatment in children with primary tooth decay developed with regard to revealed genetic disorders of amelogenesis, 2-nd of phase detoxification, collagen formation, functional responses in the oral cavity, state of hard tissues of teeth and periodontal tissues enabled to preserve existing carious process, normalize periodontal and hygienic indices at all stages of treatment.

  2. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  3. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  4. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Directory of Open Access Journals (Sweden)

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  5. Distributed Low-Complexity Controller for Wind Power Plant in Derated Operation

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Madjidian, Daria; Spudic, Vedrana

    2013-01-01

    We consider a wind power plant of megawatt wind turbines operating in derated mode. When operating in this mode, the wind power plant controller is free to distribute power set-points to the individual turbines, as long as the total power demand is met. In this work, we design a controller...... that exploits this freedom to reduce the fatigue on the turbines in the wind power plant. We show that the controller can be designed in a decentralized manner, such that each wind turbine is equipped with a local low-complexity controller relying only on few measurements and little communication. As a basis...... for the controller design, a linear wind turbine model is constructed and verified in an operational wind power plant of megawatt turbines. Due to limitations of the wind power plant available for tests, it is not possible to implement the developed controller; instead the final distributed controller is evaluated...

  6. Estimation of initiating event distribution at nuclear power plants by Bayesian procedure

    International Nuclear Information System (INIS)

    Chen Guangming

    1995-01-01

    Initiating events at nuclear power plants such as human errors or components failures may lead to a nuclear accident. The study of the frequency of these events or the distribution of the failure rate is necessary in probabilistic risk assessment for nuclear power plants. This paper presents Bayesian modelling methods for the analysis of the distribution of the failure rate. The method can also be utilized in other related fields especially where the data is sparse. An application of the Bayesian modelling in the analysis of distribution of the time to recover Loss of Off-Site Power ( LOSP) is discussed in the paper

  7. Initiation of the migrating myoelectric complex in dogs.

    Science.gov (United States)

    Bueno, L; Rayner, V; Ruckebusch, Y

    1981-01-01

    1. Contractile and spike activity in the conscious dog were recorded from strain gauge force transducers and electrodes chronically implanted on the antrum, duodenum and jejunum. The pattern of activity was related to the time elapsed after feeding a daily meal, both in intact dogs and in dogs with antro-jejunal or oesophago-duodenal anastomoses. 2. From 8 to 10 h after feeding, transient reductions of the continuous antral spiking activity were recorded while phases of regular spiking activity (RSA) and contractions developed on the proximal intestine. 3. About 18 h after feeding, the post-prandial antral activity became intermittent, each period of contractions being accompanied by the duodenal development of a RSA phase. 4. The RSA phases were still initiated on the duodenum after an antro-jejunal anastomosis and after gastrectomy. 5. It is concluded that phases of RSA of the migrating myoelectric complex are initiated in the proximal part of the small intestine rather than in the stomach. It is suggested that the RSA phase exerts an inhibitory effect on the antrum which may serve to reduce the flow of digesta through the pylorus when the ability of the duodenum to receive chyme is restricted. PMID:7320868

  8. Low Complexity Track Initialization from a Small Set of Non-Invertible Measurements

    Directory of Open Access Journals (Sweden)

    Wolfgang Koch

    2008-02-01

    Full Text Available Target tracking from non-invertible measurement sets, for example, incomplete spherical coordinates measured by asynchronous sensors in a sensor network, is a task of data fusion present in a lot of applications. Difficulties in tracking using extended Kalman filters lead to unstable behavior, mainly caused by poor initialization. Instead of using high complexity numerical batch-estimators, we offer an analytical approach to initialize the filter from a minimum number of observations. This directly pertains to multi-hypothesis tracking (MHT, where in the presence of clutter and/or multiple targets (i low complexity algorithms are desirable and (ii using a small set of measurements avoids the combinatorial explosion. Our approach uses no numerical optimization, simply evaluating several equations to find the state estimates. This is possible since we avoid an over-determined setup by initializing only from the minimum necessary subset of measurements. Loss in accuracy is minimized by choosing the best subset using an optimality criterion and incorporating the leftover measurements afterwards. Additionally, we provide the possibility to estimate only sub-sets of parameters, and to reliably model the resulting added uncertainties by the covariance matrix. We compare two different implementations, differing in the approximation of the posterior: linearizing the measurement equation as in the extended Kalman filter (EKF or employing the unscented transform (UT. The approach will be studied in two practical examples: 3D track initialization using bearingsonly measurements or using slant-range and azimuth only.

  9. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  10. Efficiency mark of the two-product power complex of nuclear power plant

    Science.gov (United States)

    Khrustalev, V. A.; Suchkov, V. M.

    2017-11-01

    The article discusses the combining nuclear power plants (NPP) with pressurized water reactors and distillation-desalination plants (DDP), their joint mode of operation during periods of coating failures of the electric power load graphs and thermo-economical efficiency. Along with the release of heat and generation of electric energy a desalination complex with the nuclear power plant produces distillate. Part of the selected steam “irretrievably lost” with a mix of condensation of this vapor in a desalination machine with a flow of water for distillation. It means that this steam transforms into condition of acquired product - distillate. The article presents technical solutions for the return of the working fluid for turbine К-1000-60/1500-2 и К-1200-6,8/50, as well as permissible part of low pressure regime according to the number of desalination units for each turbine. Patent for the proposed two-product energy complex, obtained by Gagarin State Technical University is analyzed. The energy complex has such system advantages as increasing the capacity factor of a nuclear reactor and also allows to solve the problem of shortage of fresh water. Thermo-economics effectiveness of this complex is determined by introducing a factor-“thermo-economic index”. During analyzing of the results of the calculations of a thermo-economic index we can see a strong influence of the cost factor of the distillate on the market. Then higher participation of the desalination plant in coverage of the failures of the graphs of the electric loading then smaller the payback period of the NPP. It is manifested more clearly, as it’s shown in the article, when pricing options depend on time of day and the configuration of the daily electric load diagram. In the geographical locations of the NPPs with PWR the Russian performance in a number of regions with low freshwater resources and weak internal electrical connections combined with DDP might be one of the ways to improve the

  11. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  12. Signaling events during initiation of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Schmitz, Alexa M; Harrison, Maria J

    2014-03-01

    Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression. © 2014 Institute of Botany, Chinese Academy of Sciences.

  13. Leaf-cutting ant attack in initial pine plantations and growth of defoliated plants

    Directory of Open Access Journals (Sweden)

    Mariane Aparecida Nickele

    2012-07-01

    Full Text Available The objective of this work was to evaluate the natural attack by Acromyrmex crassispinus in initial Pinus taeda plantations without control measures against ants, as well as the effect of defoliation in seedlings of P. taeda. Evaluations of the attack of leaf-cutting ants on P. taeda plantations were done monthly in the first six months, then 9 and 12 months after planting. The percentages of plants that were naturally attacked by ants were registered. The effect of defoliation was evaluated by artificial defoliation, simulating the natural patterns of attack by A. crassispinus on P. taeda seedlings. The natural attack of A. crassispinus was greater during the first months after planting, being more intense in the first 30 days. Artificial defoliation indicated that there were no significant losses in diameter and height in plants with less than 75% defoliation. However, there were significant losses in diameter and height in plants with 100% defoliation, independently of the cut of the apical meristem, and also plant death. The control of leaf-cutting ants in P. taeda plantings, in which A. crassispinus is the most frequent leaf-cutting ant, should be intense only at the beginning of planting, since the most severe attacks occur during this time.

  14. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    MCKINNIS, D.L.

    1999-01-01

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  15. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    Directory of Open Access Journals (Sweden)

    Wagner L. Araújo

    2012-09-01

    Full Text Available The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g. photosynthesis, photorespiration and nitrogen metabolism. We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications.

  16. The RTR complex as caretaker of genome stability and its unique meiotic function in plants

    Directory of Open Access Journals (Sweden)

    Alexander eKnoll

    2014-02-01

    Full Text Available The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination (HR in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO-associated meiotic gene conversion (GC differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.

  17. Dragon TIS Spotter: an Arabidopsis-derived predictor of translation initiation sites in plants.

    Science.gov (United States)

    Magana-Mora, Arturo; Ashoor, Haitham; Jankovic, Boris R; Kamau, Allan; Awara, Karim; Chowdhary, Rajesh; Archer, John A C; Bajic, Vladimir B

    2013-01-01

    In higher eukaryotes, the identification of translation initiation sites (TISs) has been focused on finding these signals in cDNA or mRNA sequences. Using Arabidopsis thaliana (A.t.) information, we developed a prediction tool for signals within genomic sequences of plants that correspond to TISs. Our tool requires only genome sequence, not expressed sequences. Its sensitivity/specificity is for A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus trichocarpa (81.6%/94.4%), which suggests that our tool can be used in annotation of different plant genomes. We provide a list of features used in our model. Further study of these features may improve our understanding of mechanisms of the translation initiation. Our tool is implemented as an artificial neural network. It is available as a web-based tool and, together with the source code, the list of features, and data used for model development, is accessible at http://cbrc.kaust.edu.sa/dts.

  18. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

    Science.gov (United States)

    Antolín-Llovera, Meritxell; Petutsching, Elena Kristin; Ried, Martina Katharina; Lipka, Volker; Nürnberger, Thorsten; Robatzek, Silke; Parniske, Martin

    2014-12-01

    The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Discrimination of plant-parasitic nematodes from complex soil communities using ecometagenetics.

    Science.gov (United States)

    Porazinska, Dorota L; Morgan, Matthew J; Gaspar, John M; Court, Leon N; Hardy, Christopher M; Hodda, Mike

    2014-07-01

    Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis

  20. Translation initiation mediated by nuclear cap-binding protein complex.

    Science.gov (United States)

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  1. The effects of overtime work and task complexity on the performance of nuclear plant operators: A proposed methodology

    International Nuclear Information System (INIS)

    Banks, W.W.; Potash, L.

    1985-01-01

    This document presents a very general methodology for determining the effect of overtime work and task complexity on operator performance in response to simulated out-of-limit nuclear plant conditions. The independent variables consist of three levels of overtime work and three levels of task complexity. Multiple dependent performance measures are proposed for use and discussion. Overtime work is operationally defined in terms of the number of hours worked by nuclear plant operators beyond the traditional 8 hours per shift. Task complexity is operationalized in terms of the number of operator tasks required to remedy a given plant anomalous condition and bring the plant back to a ''within limits'' or ''normal'' steady-state condition. The proposed methodology would employ a 2 factor repeated measures design along with the analysis of variance (linear) model

  2. Global peatland initiation driven by regionally asynchronous warming.

    Science.gov (United States)

    Morris, Paul J; Swindles, Graeme T; Valdes, Paul J; Ivanovic, Ruza F; Gregoire, Lauren J; Smith, Mark W; Tarasov, Lev; Haywood, Alan M; Bacon, Karen L

    2018-05-08

    Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world's largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world's most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates.

  3. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  4. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-03-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.

  5. Initiating stochastic maintenance optimization at Candu Power Plants

    International Nuclear Information System (INIS)

    Doyle, E.K.

    2003-01-01

    As previously reported at ICONE 6 in New Orleans (1996), the use of various innovative maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. Further cost refinement of the station maintenance strategy is being evaluated via the applicability of statistical analysis of historical failure data. Since the statistical evaluation was initiated in 1999 significant progress has been made in demonstrating the viability of stochastic methods in Candu maintenance. Some of the relevant results were presented at ICONE 10 in Washington DC (2002). Success with the graphical displays and the relatively easy to implement stochastic computer programs was sufficient to move the program along to the next significant phase. This next phase consists of investigating the validity of using subjective elicitation techniques to obtain component lifetime distributions. This technique provides access to the elusive failure statistics, the lack of which is often referred to in the literature as the principle impediment preventing the use of stochastic methods in large industry. At the same time the technique allows very valuable information to be captured from the fast retiring 'baby boom generation'. Initial indications have been quite positive. (author)

  6. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, A.V.; Wentworth, M.; Yakushevska, A.E.; Andersson, J.; Lee, P.J.; Keegstra, W.; Dekker, J.P.; Boekema, E.J.; Jansson, S.; Horton, P.

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the

  7. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the

  8. Study on a quantitative evaluation method of equipment maintenance level and plant safety level for giant complex plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki

    2010-01-01

    In this study, a quantitative method on maintenance level which is determined by the two factors, maintenance plan and field work implementation ability by maintenance crew is discussed. And also a quantitative evaluation method on safety level for giant complex plant system is discussed. As a result of consideration, the following results were obtained. (1) It was considered that equipment condition after maintenance work was determined by the two factors, maintenance plan and field work implementation ability possessed by maintenance crew. The equipment condition determined by the two factors was named as 'equipment maintenance level' and its quantitative evaluation method was clarified. (2) It was considered that CDF in a nuclear power plant, evaluated by using a failure rate counting the above maintenance level was quite different from CDF evaluated by using existing failure rates including a safety margin. Then, the former CDF was named as 'plant safety level' of plant system and its quantitative evaluation method was clarified. (3) Enhancing equipment maintenance level means an improvement of maintenance quality. That results in the enhancement of plant safety level. Therefore, plant safety level should be always watched as a plant performance indicator. (author)

  9. Hierarchical spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine B.; Møller, Jesper; Waagepetersen, Rasmus

    2009-01-01

    A complex multivariate spatial point pattern of a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially a maxim...

  10. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  11. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    Science.gov (United States)

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Science.gov (United States)

    Mahdavi-Arab, Nafiseh; Meyer, Sebastian T; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2014-01-01

    Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both

  13. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Directory of Open Access Journals (Sweden)

    Nafiseh Mahdavi-Arab

    Full Text Available Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance

  14. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants

    International Nuclear Information System (INIS)

    Reinbothe, C.; Lebedev, N.; Reinbothe, S.

    1999-01-01

    When etiolated angiosperm seedlings break through the soil after germination, they are immediately exposed to sunlight, but at this stage they are unable to perform photosynthesis1. In the absence of chlorophyll a and chlorophyll b, two other porphyrin species cooperate as the basic light-harvesting structure of etiolated plants. Protochlorophyllide a and protochlorophyllide b (ref. 2) form supramolecular complexes with NADPH and two closely related NADPH:protochlorophyllide oxidoreductase (POR) proteins—PORA and PORB (ref. 3)—in the prolamellar body of etioplasts. Here we report that these light-harvesting POR–protochlorophyllide complexes, named LHPP, are essential for the establishment of the photosynthetic apparatus and also confer photoprotection on the plant. They collect sunlight for rapid chlorophyll a biosynthesis and, simultaneously, dissipate excess light energy in the bulk of non-photoreducible protochlorophyllide b. Based on this dual function, it seems that LHPP provides the link between skotomorphogenesis and photosynthesis that is required for efficient de-etiolation

  15. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    International Nuclear Information System (INIS)

    Auclair, K. D.

    2002-01-01

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  16. Atmospheric dispersion in complex terrain: Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Lima e Silva Filho, P.P. de

    1986-01-01

    The Angra 1 plant is located in a very complex terrain, what makes the environmental impact assessment very difficult, regarding to the atmospheric transport problem as well as to the diffusion problem. Three main characteristics are responsible for that situation: the location at the shoreline, the complex topography and the high roughness of the terrain. Those characteristics generate specific phenomena and utilization of parameters from other sites are not convenient. Considering financial and technical viabilities, we must look for the local parameters, disregarding the easy, although risky, attitude of applying parameters and models incovenient to the Angra site. Some of those aspects are more important, and among them we will discuss the Plume Rise, the Critical Height, the Drainage Flow and the Atmospheric Dispersion Coefficients. (Author) [pt

  17. Reciprocal diversification in a complex plant-herbivore-parasitoid food web

    Directory of Open Access Journals (Sweden)

    Bokma Folmer

    2007-11-01

    Full Text Available Abstract Background Plants, plant-feeding insects, and insect parasitoids form some of the most complex and species-rich food webs. According to the classic escape-and-radiate (EAR hypothesis, these hyperdiverse communities result from coevolutionary arms races consisting of successive cycles of enemy escape, radiation, and colonization by new enemy lineages. It has also been suggested that "enemy-free space" provided by novel host plants could promote host shifts by herbivores, and that parasitoids could similarly drive diversification of gall form in insects that induce galls on plants. Because these central coevolutionary hypotheses have never been tested in a phylogenetic framework, we combined phylogenetic information on willow-galling sawflies with data on their host plants, gall types, and enemy communities. Results We found that evolutionary shifts in host plant use and habitat have led to dramatic prunings of parasitoid communities, and that changes in gall phenotype can provide "enemy-free morphospace" for millions of years even in the absence of host plant shifts. Some parasites have nevertheless managed to colonize recently-evolved gall types, and this has apparently led to adaptive speciation in several enemy groups. However, having fewer enemies does not in itself increase speciation probabilities in individual sawfly lineages, partly because the high diversity of the enemy community facilitates compensatory attack by remaining parasite taxa. Conclusion Taken together, our results indicate that niche-dependent parasitism is a major force promoting ecological divergence in herbivorous insects, and that prey divergence can cause speciation in parasite lineages. However, the results also show that the EAR hypothesis is too simplistic for species-rich food webs: instead, diversification seems to be spurred by a continuous stepwise process, in which ecological and phenotypic shifts in prey lineages are followed by a lagged evolutionary

  18. Complex monitoring of the surroundings of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Tylova, E.

    1993-01-01

    Based on a Resolution of the Government of the Czech Republic, the Ministry of the Environment and the Ministry of Health of the Czech Republic shall develop a project of complex environmental pollution and contamination monitoring in the surroundings of the Dukovany nuclear power plant and shall discuss this project with municipalities there till the end of 1993. The objective of the project is to assess in a complex manner the situation in the Dukovany area with respect to all risks and their simultaneous effects, so as to ensure that the population in the area concerned is not burdened to an intolerable extent. (Z.S.)

  19. Plant cell culture initiation

    NARCIS (Netherlands)

    Hall, R.D.

    2000-01-01

    The use of cultured plant cells in either organized or unorganized form has increased vey considerably in the last 10-15 yr. Many new technologies have been developed and applications in both fundamental and applied research have led to the development of some powerful tools for improving our

  20. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs.

    Science.gov (United States)

    Wallace, Adam; Filbin, Megan E; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E

    2010-04-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.

  1. Sanitary landfill leachate as a source of nutrients on the initial growth of sunflower plants

    Directory of Open Access Journals (Sweden)

    Francisco H. Nunes Júnior

    Full Text Available ABSTRACT The aim of this study was to evaluate the initial growth of sunflower seedlings under different concentrations of sanitary landfill leachate, considering the feasibility of its use as source of nutrients for agricultural production. Biometric and vigor variables were analyzed through the measurements of collar diameter, shoot height, number of leaves and shoot and root fresh and dry matters, from January to February 2015. The experimental design was completely randomized in a 5 x 4 factorial scheme: five leachate concentrations (0, 40, 60, 80 and 100 kg N ha-1 x four harvest periods (14, 21, 25 and 29 days after sowing, with five replicates each containing two plants. The data were subjected to analysis of variance and polynomial regression, and the results of the last harvest (29 DAS were compared by Tukey test (p ≤ 0.05. The use of sanitary landfill leachate increased all analyzed variables in sunflower plants when compared to the control plants (without leachate, especially in the treatment of 100 kg N ha-1. There was no inhibitory effect of the leachate on the initial growth of sunflower seedlings under adopted experimental conditions.

  2. "Plantas con madre": plants that teach and guide in the shamanic initiation process in the East-Central Peruvian Amazon.

    Science.gov (United States)

    Jauregui, X; Clavo, Z M; Jovel, E M; Pardo-de-Santayana, M

    2011-04-12

    We present and discuss a particular group of plants used by a diversity of healers in the initiation process and apprenticeship of traditional medicine, as practiced by Amazonian societies in East-Central Peru. Often, these plants are locally called plantas con madre (plants with a mother), and are thought to guide initiates in the process of seeking sacred knowledge, learning about plant usage, and understanding traditional medicine practices. We illustrate the diversity of plants used in the apprenticeship and practice of traditional medicine, and nurture the discussion to better understand the terminology used by Indigenous healers to describe plant uses and their practices. The study was conducted between 2003 and 2008 with the participation of 29 curanderos (healers; 23 men, 6 women), 3 apprentices and 4 herbalists. The participants belonged to four ethnic groups: 17 Mestizos, 15 Shipibo-Konibo, 1 Ashaninka, and 1 Matsiguenga; a Spanish apprentice and an Italian herbalist were also included in the study. The field data were collected using semi-structured interviews, participant observation, and the witnessing of numerous healing sessions. Oral informed consent was obtained from each participant. We identified 55 plant species belonging to 26 botanical families, which are used in initiation processes and apprenticeships of traditional medicine. This group of plants is administered under strict conditions during training and healing sessions called dietas (shamanic diets), with the supervision of one or more maestros curanderos (master healers). We observed that during the shamanic diets, maestros curanderos administered plants depending on the teachings or tools he/she was passing on, and were based on a particular sequence during the initiation process: (I) purification and cleansing species; (II) sensitivity and intuition; (III) strengthening; and (IV) protection and defence. Traditional healers continue to be a primary source of health care for the majority

  3. An Initiative for the Study and Use of Genetic Diversity of Domesticated Plants and Their Wild Relatives

    Science.gov (United States)

    Mastretta-Yanes, Alicia; Acevedo Gasman, Francisca; Burgeff, Caroline; Cano Ramírez, Margarita; Piñero, Daniel; Sarukhán, José

    2018-01-01

    Domestication has been influenced by formal plant breeding since the onset of intensive agriculture and the Green Revolution. Despite providing food security for some regions, intensive agriculture has had substantial detrimental consequences for the environment and does not fulfill smallholder’s needs under most developing countries conditions. Therefore, it is necessary to look for alternative plant production techniques, effective for each environmental, socio-cultural, and economic conditions. This is particularly relevant for countries that are megadiverse and major centers of plant domestication and diversification. In this white paper, a Mexico-centered initiative is proposed, with two main objectives: (1) to study, understand, conserve, and sustainably use the genetic diversity of domesticated plants and their wild relatives, as well as the ongoing evolutionary processes that generate and maintain it; and (2) to strengthen food and forestry production in a socially fair and environmentally friendly way. To fulfill these objectives, the initiative focuses on the source of variability available for domestication (genetic diversity and functional genomics), the context in which domestication acts (breeding and production) and one of its main challenges (environmental change). Research on these components can be framed to target and connect both the theoretical understanding of the evolutionary processes, the practical aspects of conservation, and food and forestry production. The target, main challenges, problems to be faced and key research questions are presented for each component, followed by a roadmap for the consolidation of this proposal as a national initiative. PMID:29515612

  4. An Initiative for the Study and Use of Genetic Diversity of Domesticated Plants and Their Wild Relatives

    Directory of Open Access Journals (Sweden)

    Alicia Mastretta-Yanes

    2018-02-01

    Full Text Available Domestication has been influenced by formal plant breeding since the onset of intensive agriculture and the Green Revolution. Despite providing food security for some regions, intensive agriculture has had substantial detrimental consequences for the environment and does not fulfill smallholder’s needs under most developing countries conditions. Therefore, it is necessary to look for alternative plant production techniques, effective for each environmental, socio-cultural, and economic conditions. This is particularly relevant for countries that are megadiverse and major centers of plant domestication and diversification. In this white paper, a Mexico-centered initiative is proposed, with two main objectives: (1 to study, understand, conserve, and sustainably use the genetic diversity of domesticated plants and their wild relatives, as well as the ongoing evolutionary processes that generate and maintain it; and (2 to strengthen food and forestry production in a socially fair and environmentally friendly way. To fulfill these objectives, the initiative focuses on the source of variability available for domestication (genetic diversity and functional genomics, the context in which domestication acts (breeding and production and one of its main challenges (environmental change. Research on these components can be framed to target and connect both the theoretical understanding of the evolutionary processes, the practical aspects of conservation, and food and forestry production. The target, main challenges, problems to be faced and key research questions are presented for each component, followed by a roadmap for the consolidation of this proposal as a national initiative.

  5. An Initiative for the Study and Use of Genetic Diversity of Domesticated Plants and Their Wild Relatives.

    Science.gov (United States)

    Mastretta-Yanes, Alicia; Acevedo Gasman, Francisca; Burgeff, Caroline; Cano Ramírez, Margarita; Piñero, Daniel; Sarukhán, José

    2018-01-01

    Domestication has been influenced by formal plant breeding since the onset of intensive agriculture and the Green Revolution. Despite providing food security for some regions, intensive agriculture has had substantial detrimental consequences for the environment and does not fulfill smallholder's needs under most developing countries conditions. Therefore, it is necessary to look for alternative plant production techniques, effective for each environmental, socio-cultural, and economic conditions. This is particularly relevant for countries that are megadiverse and major centers of plant domestication and diversification. In this white paper, a Mexico-centered initiative is proposed, with two main objectives: (1) to study, understand, conserve, and sustainably use the genetic diversity of domesticated plants and their wild relatives, as well as the ongoing evolutionary processes that generate and maintain it; and (2) to strengthen food and forestry production in a socially fair and environmentally friendly way. To fulfill these objectives, the initiative focuses on the source of variability available for domestication ( genetic diversity and functional genomics ), the context in which domestication acts ( breeding and production ) and one of its main challenges ( environmental change ). Research on these components can be framed to target and connect both the theoretical understanding of the evolutionary processes, the practical aspects of conservation, and food and forestry production. The target, main challenges, problems to be faced and key research questions are presented for each component, followed by a roadmap for the consolidation of this proposal as a national initiative.

  6. Overview of human performance improvement initiatives in Nuclear Power Plants (NPPs )

    International Nuclear Information System (INIS)

    Sharma, Ashok Kumar

    2006-01-01

    Nuclear Power Plants (NPPs) are very complex systems. Diverse, multiple and redundant technological systems are used for effective control and safety of the NPPs. The increased numbers of such systems require increased operator attention. Additionally, the control stations (man-machine interfaces) are to be kept manageable in size. This sometimes reduces the scope for truly ergonomic design. These limitations, coupled with the shortcomings of human nature, led to unintended human performance problems and errors resulting into poor plant performance worldwide. Some organisational weaknesses, managerial decisions and latent errors also aided and abetted human errors. In view of this, a need was felt for development of performance culture at all levels in NPP organisations. Towards this end, ready-to-use performance improvement tools were developed and used for individual performers, supervisors and managers in the NPPs. This paper describes the experiences of the global nuclear electricity generating industry towards human performance improvement and error reduction. (author)

  7. Identification of Potential Plants Producing Tannin-protein Complex for a-amylase as Botanical Pesticide

    Directory of Open Access Journals (Sweden)

    Asriyah Firdausi

    2013-05-01

    Full Text Available Research  on  the  development  of  botanical  pesticides  should  be developed  through  new  methods,  such  as  by  inhibiting the  activity  of  digestive enzymes  by  secondary  metabolites.  The  aim  of  this  study  was  to  identify some  of  potential  plants  as  a  source  of  tannin-protein  complexes  to  inhibitthe  activity  of  - amylase.  The  study  of  identification  of  potential  plants producing  the  active  ingredient  tannin-protein  complex  was  divided  into  three stages,  1  identification  of  potential  plants  producing  tannin,  2  isolation  of tannin-protein  complexes,  and  3  in  vitro  test  of  tannin-protein  complexes effect  of  the  -amylase activity.  Some  of  the observed  plants  were  sidaguri  leaf (Sida rhombifolia, melinjo leaf (Gnetum gnemon, gamal leaf (Gliricidia sepium,lamtoro  leaf  (Leucaena  leucocephala ,  betel  nut  (Areca  catechu ,  and  crude gambier  (Uncaria  gambir a s  a  source of  tannins  and  melinjo  seed was  used  asprotein  source.  Betel  nut  and  melinjo  seed  were  the  best  source  of  tannin-protein  complex,  tannin  content  1.77  mg  TAE/mL  with  antioxidant  activity  of  90%,the  ability  to  inhibit  the  activity  of  -amylase by  95%  with  IC 50  values  of 10 mg/mL.Key words: Tannin, protein, -amylase, botanical pesticides,Areca catechu, Gnetum gnemon.

  8. Vulnerability analysis of process plants subject to domino effects

    International Nuclear Information System (INIS)

    Khakzad, Nima; Reniers, Genserik; Abbassi, Rouzbeh; Khan, Faisal

    2016-01-01

    In the context of domino effects, vulnerability analysis of chemical and process plants aims to identify and protect installations which are relatively more susceptible to damage and thus contribute more to the initiation or propagation of domino effects. In the present study, we have developed a methodology based on graph theory for domino vulnerability analysis of hazardous installations within process plants, where owning to the large number of installations or complex interdependencies, the application of sophisticated reasoning approaches such as Bayesian network is limited. We have taken advantage of a hypothetical chemical storage plant to develop the methodology and validated the results using a dynamic Bayesian network approach. The efficacy and out-performance of the developed methodology have been demonstrated via a real-life complex case study. - Highlights: • Graph theory is a reliable tool for vulnerability analysis of chemical plants as to domino effects. • All-closeness centrality score can be used to identify most vulnerable installations. • As for complex chemical plants, the methodology outperforms Bayesian network.

  9. Uranium speciation in plants

    International Nuclear Information System (INIS)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A.; Nitsche, H.

    2003-01-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  10. Role of carbene complexes in initiation and chain propagation in double bond redistribution reactions

    International Nuclear Information System (INIS)

    Dolgoplosk, K.L.; Makovetskij, E.I.; Tinyakova, E.I.; Golenko, T.G.; Oreshkin, I.A.

    1976-01-01

    A study has been made of the role of carbene complexes of tungsten in initiation and propagation of the ring-opening polymerization of cycloolefins. Data are given on polymerization of cyclopentene and cycloocterdiene-1,5 in the presence of the system tungsten chloride-diazo-compound (DAC)

  11. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A [Raveh Ecology Ltd., Haifa (Israel)

    1994-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  12. Waste minimization promotes biophysical treatment of complex petrochemical wastes in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A. [Invirotreat International Ltd., Fulleron, CA (United States); Raveh, A. [Raveh Ecology Ltd., Haifa (Israel)

    1993-12-31

    This work describes a full-scale waste treatment system which was put into operation in a petrochemical manufacturing plant in Israel for the purpose of detoxifying its complex organic waste stream. The treatment plant design incorporates an innovative waste management approach to accommodate the limited space allocated for the facility. Initial performance data indicate a high efficient inorganic waste reduction. 4 refs., 6 figs., 2 tabs.

  13. B Plant Complex pollution prevention plan. Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    The US Department of Energy (DOE) has directed Westinghouse Hanford Company (WHC) to develop an effective strategy to minimize the generation of hazardous, radioactive, and mixed wastes at Hanford in compliance with state and federal regulations. WHC has formalized a pollution prevention program composed of management policies, management requirements and procedures. This plan addresses pollution prevention for B Plant Complex. A pollution prevention team is in place and has been assigned responsibility for implementing the plan. This plan includes actions and goals for reducing volume and toxicity of waste generated, as well as a basis for evaluation of progress. Descriptions of waste streams, current specific goals, general pollution prevention methods, and specific accomplishments are in the appendices of this plan

  14. Complex nuclear safety evaluation of the Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kriz, Z.

    1991-01-01

    The safety concept of V-230 type reactor units dates back to the late 1960s. The units fail to be sufficiently dimensioned for emergency cooling of the reactor core and are fitted with no containment. So far, operating experience is good. The availability factor is 71.5% for unit 1 and 77.8% for unit 2. There occur 1 to 3 unscheduled shutdowns annually. The quality of steam generator tubes is very good. A complex safety assessment of the plant was accomplished in 1990. It concerned the concept and criteria of safety assessment, the earthquake situation, the condition of the primary coolant circuit equipment, the control system, the effect of the human factor, and preparedness of emergency plans. OSART and ASSET missions were accomplished at the plant. Based on the results of the missions as well as of inspections by the State Surveillance over Nuclear Safety, the decision has been adopted to operate the plant not longer than till 1995; the further fate of the plant will be decided on according to a future technical and economic analysis. (M.D.)

  15. The role of human performance in safe operation of complex plants

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurring in plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15 percents of the global failures are related to the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger of the plant, experience in the same working place, level of skills, events in personal and/or professional life, discipline, social ambience and somatic health. The human performances assessment in the probabilistic safety assessment offers the possibility of evaluation for human contribution to the events sequences outcome. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic methods (event tree, fault tree) to identify the solution for human reliability improvement in order to minimise the risk in industrial plant operation. Also, are defined the human error types and their causes and the 'decision tree method' is presented as technique in our analyses for human reliability assessment. The exemplification of human error analysis method was achieved based on operation data for Valcea heavy water pilot plant. (authors)

  16. Computer simulations of discharges from a lignite power plant complex

    International Nuclear Information System (INIS)

    Koukouliou, V.; Horyna, J.; Perez-Sanchez, D.

    2008-01-01

    This paper describes work carried out within the IAEA EMRAS program NORM working group to test the predictions of three computer models against measured radionuclide concentrations resulting from discharges from a lignite power plant complex. This complex consists of two power plants with a total of five discharge stacks, situated approximately 2-5 kilometres from a city of approximately 10,000 inhabitants. Monthly measurements of mean wind speed and direction, dust loading, and 238 U activities in fallout samples, as well as mean annual values of 232 Th activity in the nearest city sampling sites were available for the study. The models used in the study were Pc-CREAM (a detailed impact assessment model), and COMPLY and CROM (screening models). In applying the models to this scenario it was noted that the meteorological data provided was not ideal for testing, and that a number of assumptions had to be made, particularly for the simpler models. However, taking the gaps and uncertainties in the data into account, the model predictions from PC-CREAM were generally in good agreement with the measured data, and the results from different models were also generally consistent with each other. However, the COMPLY predictions were generally lower than those from PC-CREAM. This is of concern, as the aim of a screening model (COMPLY) is to provide conservative estimates of contaminant concentrations. Further investigation of this problem is required. The general implications of the results for further model development are discussed. (author)

  17. Mechanisms of energy transfer and conversion in plant Light-Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Tiago Ferreira de

    2009-09-24

    The light-harvesting complex of photosystem II (LHC-II) is the major antenna complex in plant photosynthesis. It accounts for roughly 30% of the total protein in plant chloroplasts, which makes it arguably the most abundant membrane protein on Earth, and binds about half of plant chlorophyll (Chl). The complex assembles as a trimer in the thylakoid membrane and binds a total of 54 pigment molecules, including 24 Chl a, 18 Chl b, 6 lutein (Lut), 3 neoxanthin (Neo) and 3 violaxanthin (Vio). LHC-II has five key roles in plant photosynthesis. It: (1) harvests sunlight and transmits excitation energy to the reaction centres of photosystems II and I, (2) regulates the amount of excitation energy reaching each of the two photosystems, (3) has a structural role in the architecture of the photosynthetic supercomplexes, (4) contributes to the tight appression of thylakoid membranes in chloroplast grana, and (5) protects the photosynthetic apparatus from photo damage by non photochemical quenching (NPQ). A major fraction of NPQ is accounted for its energy-dependent component qE. Despite being critical for plant survival and having been studied for decades, the exact details of how excess absorbed light energy is dissipated under qE conditions remain enigmatic. Today it is accepted that qE is regulated by the magnitude of the pH gradient ({delta}pH) across the thylakoid membrane. It is also well documented that the drop in pH in the thylakoid lumen during high-light conditions activates the enzyme violaxanthin de-epoxidase (VDE), which converts the carotenoid Vio into zeaxanthin (Zea) as part of the xanthophyll cycle. Additionally, studies with Arabidopsis mutants revealed that the photosystem II subunit PsbS is necessary for qE. How these physiological responses switch LHC-II from the active, energy transmitting to the quenched, energy-dissipating state, in which the solar energy is not transmitted to the photosystems but instead dissipated as heat, remains unclear and is the

  18. Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex.

    Science.gov (United States)

    Aylett, Christopher H S; Boehringer, Daniel; Erzberger, Jan P; Schaefer, Tanja; Ban, Nenad

    2015-03-01

    Eukaryotic translation initiation requires cooperative assembly of a large protein complex at the 40S ribosomal subunit. We have resolved a budding yeast initiation complex by cryo-EM, allowing placement of prior structures of eIF1, eIF1A, eIF3a, eIF3b and eIF3c. Our structure highlights differences in initiation-complex binding to the ribosome compared to that of mammalian eIF3, demonstrates a direct contact between eIF3j and eIF1A and reveals the network of interactions between eIF3 subunits.

  19. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Science.gov (United States)

    Mitsunami, Tomoko; Nishihara, Masahiro; Galis, Ivan; Alamgir, Kabir Md; Hojo, Yuko; Fujita, Kohei; Sasaki, Nobuhiro; Nemoto, Keichiro; Sawasaki, Tatsuya; Arimura, Gen-ichiro

    2014-01-01

    Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  20. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Directory of Open Access Journals (Sweden)

    Tomoko Mitsunami

    Full Text Available Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack. To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor, which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  1. Overexpression of the PAP1 Transcription Factor Reveals a Complex Regulation of Flavonoid and Phenylpropanoid Metabolism in Nicotiana tabacum Plants Attacked by Spodoptera litura

    Science.gov (United States)

    Mitsunami, Tomoko; Nishihara, Masahiro; Galis, Ivan; Alamgir, Kabir Md; Hojo, Yuko; Fujita, Kohei; Sasaki, Nobuhiro; Nemoto, Keichiro; Sawasaki, Tatsuya; Arimura, Gen-ichiro

    2014-01-01

    Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals. PMID:25268129

  2. Trait- and density-mediated indirect interactions initiated by an exotic invasive plant autogenic ecosystem engineer

    Science.gov (United States)

    Dean E. Pearson

    2010-01-01

    Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can...

  3. The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a trans-Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs ▿ †

    Science.gov (United States)

    Wallace, Adam; Filbin, Megan E.; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E.

    2010-01-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs. PMID:20154140

  4. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation.

    Science.gov (United States)

    Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong

    2017-07-06

    Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Controlling Initial and Final Radii to Achieve a Low-Complexity Sphere Decoding Technique in MIMO Channels

    Directory of Open Access Journals (Sweden)

    Fatemeh Eshagh Hosseini

    2012-01-01

    Full Text Available In order to apply sphere decoding algorithm in multiple-input multiple-output communication systems and to make it feasible for real-time applications, its computational complexity should be decreased. To achieve this goal, this paper provides some useful insights into the effect of initial and the final sphere radii and estimating them effortlessly. It also discusses practical ways of initiating the algorithm properly and terminating it before the normal end of the process as well as the cost of these methods. Besides, a novel algorithm is introduced which utilizes the presented techniques according to a threshold factor which is defined in terms of the number of transmit antennas and the noise variance. Simulation results show that the proposed algorithm offers a desirable performance and reasonable complexity satisfying practical constraints.

  6. Structure, function and regulation of plant photosystem I

    NARCIS (Netherlands)

    Jensen, Poul Erik; Bassi, Roberto; Boekema, Egbert J.; Dekker, Jan P.; Jansson, Stefan; Leister, Dario; Robinson, Colin; Scheller, Henrik Vibe

    Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the

  7. Structure, function and regulation of plant photosystem I

    NARCIS (Netherlands)

    Jensen, P.E.; Bassi, R.; Boekema, E.J.; Dekker, J.P.; Jansson, S.; Leister, D.; Robinson, C.; Scheller, H.V.

    2007-01-01

    Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the

  8. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene.

    Science.gov (United States)

    Shopan, Jannat; Mou, Haipeng; Zhang, Lili; Zhang, Changtong; Ma, Weiwei; Walsh, John A; Hu, Zhongyuan; Yang, Jinghua; Zhang, Mingfang

    2017-06-01

    Recessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the Potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bβ). Silencing of eIF2Bβ in a TuMV-susceptible mustard plant line and expression of eIF2Bβ from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bβ is required for efficient TuMV infection. eIF2Bβ represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2·GTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bβ was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bβ. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials

    Science.gov (United States)

    Hamilton, N. C.

    2015-03-01

    The HF complex permeability spectrum of a magnetic material is deduced from the measured impedance spectrum, which is then normalized to a series permeability spectrum. However, this series permeability spectrum has previously been shown to correspond to a parallel magnetic circuit, which is not appropriate. Some of the implications of this truth are examined. This electric/magnetic duality has frustrated efforts to interpret the shape of the complex magnetic permeability spectra of materials, and has hindered the application of impedance spectroscopy to magnetic materials. In the presence of magnetic loss, the relationship between the relative magnetic permeability and the magnetic susceptibility is called into question. The use of reluctivity spectra for expressing magnetic material properties is advocated. The relative loss factor, tanδm/μi is shown to be an approximation for the imaginary part of the reluctivity. A single relaxation model for the initial reluctivity spectra of magnetic materials is presented, and its principles are applied to measurements of a high permeability ferrite. The results are presented as contour plots of the spectra as a function of temperature.

  10. Commonalty initiatives in US nuclear power plants to improve radiation protection culture and worker efficiency

    International Nuclear Information System (INIS)

    Wood, W.; Miller, D.

    2003-01-01

    Many US nuclear power plants have learned that common procedures, policies, instrumentation, tools and work practices achieve improvements to the radiation protection culture. Significant worker efficiency achievements are accomplished especially during refuelling outages. This paper discusses commonalty initiatives currently being implemented at many US Plants to address management challenges presented by deregulation of the US electric industry, reduction in the pool of outage contractors and aging of the experienced radiation worker population. The new INPO 2005 dose goals of 650 person-mSv/year for PWRs and 1200 person-mSv/yr for PWRs will require new approaches to radiation protection management to achieve these challenging goals by 2005. (authors)

  11. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Felipe eMoraga

    2015-10-01

    Full Text Available Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  12. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes.

    Science.gov (United States)

    Fuciman, Marcel; Enriquez, Miriam M; Polívka, Tomáš; Dall'Osto, Luca; Bassi, Roberto; Frank, Harry A

    2012-03-29

    The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.

  13. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  14. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    Science.gov (United States)

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  15. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase

    DEFF Research Database (Denmark)

    Costa, Sara; Marek, Magdalena; Axelsen, Kristian Buhl

    2016-01-01

    and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 β-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues......) compromises complex association, but the mutant β-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications...

  16. Uptake of Plutonium-238 into Solanum tuberosum L. (potato plants) in presence of complexing agent EDTA.

    Science.gov (United States)

    Tawussi, Frank; Gupta, Dharmendra K; Mühr-Ebert, Elena L; Schneider, Stephanie; Bister, Stefan; Walther, Clemens

    2017-11-01

    Bioavailability and plant uptake of radionuclides depend on various factors. Transfer into different plant parts depends on chemical and physical processes, which need to be known for realistic ingestion dose modelling when these plants are used for food. Within the scope of the present work, the plutonium uptake by potato plants (Solanum tuberosum L.) was investigated in hydroponic solution of low concentration [Pu] = 10 -9  mol L -1 . Particular attention was paid to the speciation of radionuclides in the solution which was modelled by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. During the contamination period, the redox potential did not change significantly. In contrast, the pH value showed characteristic changes depending on exudates excreted by the plants. Plant roots took up high amounts of plutonium (37%-50% of the added total amount). In addition to the uptake into the roots, the radionuclides can also adsorb to the exterior root surface. The solution-to-plant transfer factor showed values between 0.03 and 0.80 (Bq kg -1 / Bq L -1 ) for the potato tubers. By addition of the complexing agent EDTA (10 -4  mol L-1), the plutonium uptake from solution increased by 58% in tubers and by 155% in shoots/leaves. The results showed that excreted substances by plants affect bioavailability of radionuclides at low concentration, on the one hand. On the other hand, the uptake of plutonium by roots and the accumulation in different plant parts can lead to non-negligible ingestion doses, even at low concentration. We are aware of the limited transferability of data obtained in hydroponic solutions to plants growing in soil. However, the aim of this study is twofold: First we want to investigate the influence of Pu speciation on plant uptake in a rather well defined system which can be modelled using available thermodynamic data

  17. Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator

    International Nuclear Information System (INIS)

    Vieira, Leonardo S.; Donatelli, Joao L.; Cruz, Manuel E.

    2006-01-01

    In this work we present the development and implementation of an integrated approach for mathematical exergoeconomic optimization of complex thermal systems. By exploiting the computational power of a professional process simulator, the proposed integrated approach permits the optimization routine to ignore the variables associated with the thermodynamic balance equations and thus deal only with the decision variables. To demonstrate the capabilities of the integrated approach, it is here applied to a complex cogeneration system, which includes all the major components of a typical thermal plant, and requires more than 800 variables for its simulation

  18. Plant host finding by parasitic plants: A new perspective on plant to plant communication

    Science.gov (United States)

    Mark C. Mescher; Justin B. Runyon; Consuelo M. De Moraes

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-...

  19. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  20. Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme.

    Science.gov (United States)

    Wieczorek, Anna; Downey, Christopher D; Dallmann, H Garry; McHenry, Charles S

    2010-09-17

    The DnaX complex (DnaX(3)δδ'χ psi) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β(2), onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β(2) binding (determined functionally) is diminished 12-30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β(2). DNA synthesis activity can be restored by increased concentrations of β(2). In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β(2) loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.

  1. The xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching.

    NARCIS (Netherlands)

    Peterman, E.J.G.; Gradinaru, C.C.; Calkoen, F.; Borst, J.C.; van Grondelle, R.; van Amerongen, H.

    1997-01-01

    A spectral and functional assignment of the xanthophylls in monomeric and trimeric light-harvesting complex II of green plants has been obtained using HPLC analysis of the pigment composition, laser-flash induced triplet- minus-singlet, fluorescence excitation, and absorption spectra. It is shown

  2. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2013-07-01

    Full Text Available In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1–4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity

  3. Tablets in Education. Results from the Initiative ETiE, for Teaching Plants to Primary School Students

    Science.gov (United States)

    Fokides, Emmanuel; Atsikpasi, Pinelopi

    2017-01-01

    The study presents the results from the first phase of the initiative Emerging Technologies in Education. At this stage, we examined the learning outcomes from the use of tablets and an application as content delivery methods for teaching plants' parts, reproduction types and organs, photosynthesis, and respiration. The project lasted for four…

  4. Spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine; Møller, Jesper; Waagepetersen, Rasmus Plenge

    A complex multivariate spatial point pattern for a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially...... a maximum likelihood approach to inference where problems arise due to unknown interaction radii for the plants. We next demonstrate that a Bayesian approach provides a flexible framework for incorporating prior information concerning the interaction radii. From an ecological perspective, we are able both...

  5. A Simple and High Performing Rate Control Initialization Method for H.264 AVC Coding Based on Motion Vector Map and Spatial Complexity at Low Bitrate

    Directory of Open Access Journals (Sweden)

    Yalin Wu

    2014-01-01

    Full Text Available The temporal complexity of video sequences can be characterized by motion vector map which consists of motion vectors of each macroblock (MB. In order to obtain the optimal initial QP (quantization parameter for the various video sequences which have different spatial and temporal complexities, this paper proposes a simple and high performance initial QP determining method based on motion vector map and temporal complexity to decide an initial QP in given target bit rate. The proposed algorithm produces the reconstructed video sequences with outstanding and stable quality. For any video sequences, the initial QP can be easily determined from matrices by target bit rate and mapped spatial complexity using proposed mapping method. Experimental results show that the proposed algorithm can show more outstanding objective and subjective performance than other conventional determining methods.

  6. Complexity and availability for fusion power plants: The potential advantages of inertial fusion energy

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1997-01-01

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. The author examines these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compares these factors with corresponding scheduled and unscheduled outage data from present day fission experience. The author stresses that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself. Given one must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. The author indicates that such requirements can probably be met for IFE plants. He recommends that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggests that databases are probably adequate for this task. 40 refs., 4 figs., 3 tabs

  7. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    Science.gov (United States)

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Awarable complexity: a study on CRT picture design based on plant images by NPP operators

    International Nuclear Information System (INIS)

    Kawano, Ryutaro; Ohtsuka, Tsutomu; Masugi, Tsuyoshi

    2000-01-01

    Original pictures installed in the 1st and 2nd generation type central control panels (CCP) and new 'Awarable and Complex' pictures were made on personal computers and evaluated. A total 18 of actual plant operators (M=32.3, SD=10.5 years old) participated in the evaluation. The operators rated the new CRT pictures highly. The response times using the new CRT pictures were shorter than those by the original pictures. Both results suggested that the CRT picture design guidelines based on the operators' plant images were effective for improving their performance. (author)

  9. Plant Host Finding by Parasitic Plants: A New Perspective on Plant to Plant Communication

    OpenAIRE

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much d...

  10. Structure of the higher plant light harvesting complex I: In vivo characterization and structural interdependence of the Lhca proteins

    NARCIS (Netherlands)

    Klimmek, F.; Ganeteg, U.; Ihalainen, J.A.; van Roon, H.; Jensen, P.E.; Scheller, H.V.; Dekker, J.P.; Jansson, S.

    2005-01-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding

  11. The binding of Xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A specific requirement for carotenoids with a 3-hydroxy-beta-end group.

    Science.gov (United States)

    Phillip, Denise; Hobe, Stephan; Paulsen, Harald; Molnar, Peter; Hashimoto, Hideki; Young, Andrew J

    2002-07-12

    The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.

  12. B Plant Complex waste management training plan. Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    This training program is designed to comply with all applicable federal, state and US Department of Energy-Richland Operations Office training requirements. The training program complies with requirements contained within WAC 173-303-330 for the development of a written dangerous waste training program. The training program is designed to prepare personnel to manage and maintain waste treatment, storage and disposal (TSD) units, as well as generator units, in a safe, effective, efficient and environmentally sound manner. In addition to preparing employees to manage and maintain TSD and generator units under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should an emergency occur. The training plan also identifies specific individuals holding key waste management positions at B Plant Complex

  13. MIPS PlantsDB: a database framework for comparative plant genome research.

    Science.gov (United States)

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  14. Complex Dietary Supplements from Raw Plants Provide Nutrition for Athletes

    Directory of Open Access Journals (Sweden)

    Dmitriy M. Uvarov

    2017-03-01

    Full Text Available The aim of this study was to investigate the effectiveness of mechanically activated complexes from plant substances to enhance athletes’ adaptability to intense physical activity. Methods: The object of the study was the dietary supplement Kladorod, which is based on the reindeer lichen Cladonia rangiferina and Rhodiola rosea in weight ratio of 10:1. To test the dietary supplement, we developed a special scheme for the experiment and selected 10 elite athletes (boxers and mixfighters. Athletes were divided into 2 groups and were under the same conditions (nutrition, medical monitoring, living conditions and training process. Athletes of the experimental group were given the dietary supplement Kladorod (capsule of 0.4 g by mouth between meals 4 times a day for 28 days. The control group was given placebo (Ringer-Locke powder capsules in the same terms in a similar way. During the experiment, the athletes were medically examined 3 times: at the beginning, in the middle, and after the course of intervention. We measured muscle performance, fat mass, muscle mass, and serum concentrations of cortisol and total testosterone. Results: It was established that during the intensive training of boxers and mixfighters for rating fights, administration of the dietary supplement Kladorod for 28 days stabilized the absolute and relative muscle mass, preventing its reduction, in comparison with the placebo group. At the same time, indicators of fat mass decreased significantly in the experimental group. After administering the course of Kladorod, we did not observe a significant decrease in testosterone/cortisol ratio, compared to the control group Thus, the use of biologically active supplements based on lichen raw materials and complexes of lichen raw materials with different plant substances enables the body to increase its adaptive potential and physical capacity.

  15. Overview of the ITER Tokamak complex building and integration of plant systems toward construction

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Jean-Jacques, E-mail: jean-jacques.cordier@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bak, Joo-Shik [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Baudry, Alain [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Benchikhoune, Magali [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Carafa, Leontin; Chiocchio, Stefano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Darbour, Romaric [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Elbez, Joelle; Di Giuseppe, Giovanni; Iwata, Yasuhiro; Jeannoutot, Thomas; Kotamaki, Miikka; Kuehn, Ingo; Lee, Andreas; Levesy, Bruno; Orlandi, Sergio [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Packer, Rachel [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, Laurent; Reich, Jens; Rigoni, Giuliano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2015-10-15

    The ITER Tokamak complex consists of Tokamak, diagnostic and tritium buildings. The Tokamak machine is located in the bioshield pit of the Tokamak building. Plant systems are implemented in the three buildings and are strongly interfacing with the Tokamak. The reference baseline (3D) configuration is a set of over 1000 models that today defines in an exhaustive way the overall layout of Tokamak and plant systems, needed for fixing the interfaces and to complete the construction design of the buildings. During the last two years, one of the main ITER challenges was to improve the maturity of the plant systems layout in order to confirm their integration in the building final design and freeze the interface definitions in-between the systems and to the buildings. The propagation of safety requirements in the design of the nuclear building like confinement, fire zoning and radiation shielding is of first priority. A major effort was placed by ITER Organization together with the European Domestic Agency (F4E) and the Architect Engineer as a joint team to fix the interfaces and the loading conditions to buildings. The most demanding systems in terms of interface definition are water cooling, cryogenic, detritiation, vacuum, cable trays and building services. All penetrations through the walls for piping, cables and other equipment have been defined, as well as all temporary openings needed for the installation phase. Project change requests (PCR) impacting the Tokamak complex buildings have been implemented in a tight allocated time schedule. The most demanding change was to implement a new design of the Tokamak basic machine supporting system. The 18 supporting columns of the cryostat (2001 baseline) were replaced at the end of 2012 by a concrete crown and radial concrete ribs linked to the basemat and to the bioshield surrounding the Tokamak. The change was implemented successfully in the building construction design to allow basemat construction phase being performed

  16. Production of Complex Multiantennary N-Glycans in Nicotiana benthamiana Plants1[W][OA

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J.M.; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-01-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions. PMID:21233332

  17. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    Science.gov (United States)

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  18. The ARCO 1 megawatt Photovoltaic Power Plant

    Science.gov (United States)

    Rhodes, G. W.; Reilly, M. R.

    The world's largest Photovoltaic Power Plant is in operation and meeting performance specifications on the Southern California Edison (SCE) grid near Hesperia, California. The 1 MW plant designed and constructed by The BDM Corporation, for ARCO Solar Inc., occupies a 20 acre site adjacent to the SCE Lugo substation. The entire design and construction process took 7 1/2 months and was not only on schedule but below budget. Because of its vast photovoltaic experience, BDM was chosen over several engineering firms to perform this complex job. We were provided a conceptual design from ARCO which we quickly refined and immediately initiated construction.

  19. Use of bioactivator, biostimulant and complex of nutrients in soybean seeds

    Directory of Open Access Journals (Sweden)

    José Adolfo Binsfeld

    2014-03-01

    Full Text Available New discoveries have stimulated the use of different substances with physiologic effects, in order to develop agricultural crops. Thus, this study aimed at evaluating seeds treated with biostimulant, bioactivator and nutrients, in the initial development of soybean seeds. Two lots of seeds (high and low vigor, BMX Potência RR cultivar were used. The products tested were an insecticide with bioactivator effect, a plant growth regulator with biostimulant effect, a complex of nutrients and a control. Under laboratory conditions, the parameters water content, germination, first germination counting, accelerated aging, cold test, length and dry matter weight of seedlings were evaluated. Under greenhouse conditions, evaluations included emergence, emergence speed index, length and dry matter weight of seedlings. The efficiency of the products tested was affected by the seed physiologic quality, with a more pronounced effect for the products in high vigor lots. In general, the treatment with best results for initial performance was the complex of nutrients, followed by the plant growth regulator with biostimulant effect. The bioactivator had negative effect on seeds germination and seedling development.

  20. Augmenting Probabilistic Risk Assesment with Malevolent Initiators

    International Nuclear Information System (INIS)

    Smith, Curtis; Schwieder, David

    2011-01-01

    As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This paper explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operating plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering 'random' failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts.

  1. THE ENSURING FUNCTIONAL INTERCHANGEABILITY WHEN FORMING THE CONTROL COMPLEX OF INDICATORS OF THE INITIAL CONDITION OF THE CONSUMER OF SPORTS AND IMPROVING SERVICES

    Directory of Open Access Journals (Sweden)

    A. S. Khorloohiyn

    2017-01-01

    Full Text Available One of key elements of an engineering component quality management system of process of provision of sports and improving services in gyms is the subsystem of diagnostics of physical client state. The aim of the study was to increase in efficiency of functioning of a quality management system of process of provision of sports and improving services in gyms due to development of techniques of incorrect estimation of the initial client state.The task of formation of a complex of indices of the initial status by criterion of necessary informtiveness is formulated. The principle of the functional interchangeability as a methodological basis for its decision is reasonable. The hierarchical structure of an integral assessment of the initial client state of gym is offered. On its basis the hierarchical model of rating of informtiveness of a complex of the single (measured indices, the providing objectivity of an integral assessment of the initial status is developed. The correctness of model is provided at the expense of a formulation of a complex of assumptions and original technology of application of different methods of expert estimation.The result of simulation of informtiveness of an integral assessment of the initial client state for a specific type of service and the purposes of physical enhancement includes: 1 library of sets of single indices, for each of which the technique and a monitoring aid, and also an informtiveness assessment in points, 2 the rules of support of the functional interchangeability of alternative complexes of indices by criterion of sufficiency of informtiveness of a complex based on additive models and the accepted restrictions is defined.The concept of a technique of formation of a complex of the measured and (or evaluated indices of the initial client state for the specific type of sports and improving service adapted under material opportunities of gym on the one hand, and responding to criterion of necessary

  2. Modeling time to recovery and initiating event frequency for loss of off-site power incidents at nuclear power plants

    International Nuclear Information System (INIS)

    Iman, R.L.; Hora, S.C.

    1988-01-01

    Industry data representing the time to recovery of loss of off-site power at nuclear power plants for 63 incidents caused by plant-centered losses, grid losses, or severe weather losses are fit with exponential, lognormal, gamma and Weibull probability models. A Bayesian analysis is used to compare the adequacy of each of these models and to provide uncertainty bounds on each of the fitted models. A composite model that combines the probability models fitted to each of the three sources of data is presented as a method for predicting the time to recovery of loss of off-site power. The composite model is very general and can be made site specific by making adjustments on the models used, such as might occur due to the type of switchyard configuration or type of grid, and by adjusting the weights on the individual models, such as might occur with weather conditions existing at a particular plant. Adjustments in the composite model are shown for different models used for switchyard configuration and for different weights due to weather. Bayesian approaches are also presented for modeling the frequency of initiating events leading to loss of off-site power. One Bayesian model assumes that all plants share a common incidence rate for loss of off-site power, while the other Bayesian approach models the incidence rate for each plant relative to the incidence rates of all other plants. Combining the Bayesian models for the frequency of the initiating events with the composite Bayesian model for recovery provides the necessary vehicle for a complete model that incorporates uncertainty into a probabilistic risk assessment

  3. MODELING OF OPERATION MODES OF SHIP POWER PLANT OF COMBINED PROPULSION COMPLEX WITH CONTROL SYSTEM BASED ON ELECTRONIC CONTROLLERS

    Directory of Open Access Journals (Sweden)

    E. A. Yushkov

    2016-12-01

    Full Text Available Purpose. Designing of diagrams to optimize mathematic model of the ship power plant (SPP combined propulsion complexes (CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. Methodology. After analyzing of ship power plant modes of CPC proposed diagrams to optimize mathematic model of the above mentioned complex. The model based on using of electronic controllers in automatic regulation and control systems for diesel and thruster which allow to actualize more complicated control algorithm with viewpoint of increasing working efficiency of ship power plant at normal and emergency modes. Results. Determined suitability of comparative computer modeling in MatLab Simulink for building of imitation model objects based on it block diagrams and mathematic descriptions. Actualized diagrams to optimize mathematic model of the ship’s power plant (SPP combined propulsion complexes (CPC with Azipod system in MatLab Simulink software package Ships_CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. The function blocks of proposed complex are the main structural units which allow to investigate it normal and emergency modes. Originality. This model represents a set of functional blocks of the components SPP CPC, built on the principle of «input-output». For example, the function boxes outputs of PID-regulators of MRDG depends from set excitation voltage and rotating frequency that in turn depends from power-station load and respond that is a ship moving or dynamically positioning, and come on input (inputs of thruster rotating frequency PID-regulator models. Practical value. The results of researches planned to use in

  4. Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g.

    Science.gov (United States)

    Choe, Junho; Oh, Nara; Park, Sungjin; Lee, Ye Kyung; Song, Ok-Kyu; Locker, Nicolas; Chi, Sung-Gil; Kim, Yoon Ki

    2012-05-25

    In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.

  5. Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study

    International Nuclear Information System (INIS)

    Najmabadi, Farrokh

    2005-01-01

    A detailed and integrated study of compact stellarators as power plants, ARIES-CS, was initiated recently to advance our understanding of attractive compact stellarator configurations and to define key R and D areas. We have completed phase 1 of ARIES-CS study - our results are described in this paper. We have identified several promising stellarator configurations. High α particle loss of these configurations is a critical issue. It appears that devices with an overall size similar to those envisioned for tokamak power plants are possible. A novel approach was developed in ARIES-CS in which the blanket at the critical areas of minimum stand-off is replaced by a highly efficient WC-based shield. In this manner, we have been able to reduce the minimum stand-off by ∼20%-30% compared to a uniform radial build which was assumed in previous studies. Our examination of engineering options indicates that overall assembly and maintenance procedure plays a critical role in identifying acceptable engineering design and has a major impact on the optimization of a plasma/coil configuration

  6. A study on the determination of threshold values for the initiating event performance indicators of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Kang, D. I.; Park, J. H.; Kim, K. Y.; Whang, M. J.; Yang, J. E.; Sung, G. Y.

    2003-01-01

    In this paper, we determine the threshold values of unplanned reactor scram, domestic initiating event performance indicator, using data of domestic unplanned reactor scram and probabilistic safety assessment model of Korea Standard Nuclear Power Plant(KSNP). We also perform a pilot study of initiating event Risk Based Performance Indicator(RBPI) for KSNP. Study results for unplanned reactor scram show that the threshold value of between green and blue color is 3, that of between blue and yellow color is 6, and that of between yellow and orange color is 30. Pilot study results of initiating event RBPI show that loss of feedwater, transient, and loss of component cooling water events are selected as initiating event RBPI for KSNP

  7. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  8. 77 FR 70410 - Endangered and Threatened Wildlife and Plants; Initiation of Status Review and 5-Year Review of...

    Science.gov (United States)

    2012-11-26

    ...-0095; FXES11130900000-134-FF09E30000] Endangered and Threatened Wildlife and Plants; Initiation of... Linner, Field Supervisor, Colorado Ecological Services Office; mailing address P.O. Box 25486, DFC (MS... SPR (76 FR 76987); and (8) Information regarding contact and interaction among Preble's populations or...

  9. Accident analyses in nuclear power plants following external initiating events and in the shutdown state. Final report

    International Nuclear Information System (INIS)

    Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael

    2016-06-01

    The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.

  10. Heat integration of an Olefins Plant: Pinch Analysis and mathematical optimization working together

    Directory of Open Access Journals (Sweden)

    M. Beninca

    2011-03-01

    Full Text Available This work explores a two-step, complexity reducing methodology, to analyze heat integration opportunities of an existing Olefins Plant, identify and quantify reduction of energy consumption, and propose changes of the existing heat exchanger network to achieve these goals. Besides the analysis of plant design conditions, multiple operational scenarios were considered to propose modifications for handling real plant operation (flexibility. On the strength of plant complexity and large dimension, work methodology was split into two parts: initially, the whole plant was evaluated with traditional Pinch Analysis tools. Several opportunities were identified and modifications proposed. Modifications were segregated to represent small and independent portions of the original process. One of them was selected to be re-analyzed, considering two scenarios. Reduction of problem dimension allowed mathematical methodologies (formulation with decomposition, applying LP, MILP and NLP optimization methods to synthesize flexible networks to be applied, generating a feasible modification capable of fulfilling the proposed operational scenarios.

  11. CoalFleet for tomorrow. An industry initiative to accelerate the deployment of advanced coal-based generation plants

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, J.; Holt, N.; Phillips, J. [Electric Power Research Institute (United States)

    2006-07-01

    The industry initiative 'CoalFleet for tomorrow' was launched in November 2004 to accelerate the deployment and commercialization of clean, efficient, advanced coal power systems. This paper discusses the structure of CoalFleet and its strategy for reducing the cost, leadtime and risk of deploying advanced coal technologies such as combined-cycle power plants. 6 figs.

  12. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  13. Mechanistic dissection of plant embryo initiation

    NARCIS (Netherlands)

    Radoeva, T.M.

    2016-01-01

    Land plants can reproduce sexually by developing an embryo from a fertilized egg cell, the zygote. After fertilization, the zygote undergoes several rounds of controlled cell divisions to generate a mature embryo. However, embryo formation can also be induced in a variety of other cell types in

  14. Plant Cell Culture Initiation: practical tips

    NARCIS (Netherlands)

    Hall, R.D.

    2001-01-01

    The use of cultured plant cells in either organized or unorganized form has increased vey considerably in the last 10-15 yr. Many new technologies have been developed and applications in both fundamental and applied research have led to the development of some powerful tools for improving our

  15. Use of complex electronic equipment within radiative areas of PWR power plants: feability study

    International Nuclear Information System (INIS)

    Fremont, P.; Carquet, M.

    1988-01-01

    EDF has undertaken a study in order to evaluate the technical and economical feasibility of using complex electronic equipment within radiative areas of PWR power plants. This study lies on tests of VLSI components (Random Access Memories) under gamma rays irradiations, which aims are to evaluate the radiation dose that they can withstand and to develop a selection method. 125 rad/h and 16 rad/h tests results are given [fr

  16. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex.

    Science.gov (United States)

    Ham, Byung-Kook; Li, Gang; Jia, Weitao; Leary, Julie A; Lucas, William J

    2014-11-01

    In plants, the vascular system, specifically the phloem, functions in delivery of small RNA (sRNA) to exert epigenetic control over developmental and defense-related processes. Although the importance of systemic sRNA delivery has been established, information is currently lacking concerning the nature of the protein machinery involved in this process. Here, we show that a PHLOEM SMALL-RNA BINDING PROTEIN 1 (PSRP1) serves as the basis for formation of an sRNA ribonucleoprotein complex (sRNPC) that delivers sRNA (primarily 24 nt) to sink organs. Assembly of this complex is facilitated through PSRP1 phosphorylation by a phloem-localized protein kinase, PSRPK1. During long-distance transport, PSRP1-sRNPC is stable against phloem phosphatase activity. Within target tissues, phosphatase activity results in disassembly of PSRP1-sRNPC, a process that is probably required for unloading cargo sRNA into surrounding cells. These findings provide an insight into the mechanism involved in delivery of sRNA associated with systemic gene silencing in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. Initiating events study of the first extraction cycle process in a model reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renze; Zhang, Jian Gang; Zhuang, Dajie; Feng, Zong Yang [China Institute for Radiation Protection, Taiyuan (China)

    2016-06-15

    Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

  18. Experimental study of the combined utilization of nuclear power heating plants for big towns and industrial complexes

    International Nuclear Information System (INIS)

    Neumann, J.; Barabas, K.

    1977-01-01

    The paper describes a comparison of nuclear power heating plants with an output corresponding to 1000MW(e) with plants of the same output using coal or oil. The economic aspects are compared, both as regards investment and operation costs. The comparison of the environmental aspects is performed on the atmospheric pollution from exhausts and gaseous emission and on the thermal pollutions in hydrosphere and atmosphere. Basic nuclear power plant schemes with two PWRs, each of 1500MW(th), are described. The plant supplies electric power and heat for factories and municipal heating systems (apartments, shops, and other auxiliary municipal facilities). At the same time the basic heat-flow diagram of a nuclear power heating plant is given, together with the relative losses. The study emphasizes the possible utilization of waste heat for heating glasshouses of 200m 2 . The problems of utilizing waste heat, and the needs of a big town and of industrial complexes in the vicinity of the nuclear power heating plant are also considered. (author)

  19. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Douglas R; Riely, Brendan K

    2010-09-01

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors of symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or co

  20. Cancer initiation and progression: an unsimplifiable complexity

    Directory of Open Access Journals (Sweden)

    Frezza Eldo E

    2006-10-01

    Full Text Available Abstract Background Cancer remains one of the most complex diseases affecting humans and, despite the impressive advances that have been made in molecular and cell biology, how cancer cells progress through carcinogenesis and acquire their metastatic ability is still widely debated. Conclusion There is no doubt that human carcinogenesis is a dynamic process that depends on a large number of variables and is regulated at multiple spatial and temporal scales. Viewing cancer as a system that is dynamically complex in time and space will, however, probably reveal more about its underlying behavioural characteristics. It is encouraging that mathematicians, biologists and clinicians continue to contribute together towards a common quantitative understanding of cancer complexity. This way of thinking may further help to clarify concepts, interpret new and old experimental data, indicate alternative experiments and categorize the acquired knowledge on the basis of the similarities and/or shared behaviours of very different tumours.

  1. A complex approach to the health states of pitch coking plant workers

    Energy Technology Data Exchange (ETDEWEB)

    Kandus, J.

    1976-01-01

    206 workers of three pitch coking plants, who had been exposed for an average of 4 years to fumes containing 3,4 benzopyrene, were examined. No occupational carcinoma or precancerous foci were detected. The only statistically significant findings were chronic atrophic inflammations of upper respiratory pathways (26%). This investigation is the initial stage in a long-term study of this group of workers. A plan for preventive examinations (including specialized ones), contraindications applicable for this type of job, methods for epidemiological investigations and the follow-up of workers after leaving this work, are described in detail.

  2. Lipids and pigment-protein complexes of photosynthetic apparatus of Deschampsia antarctica Desv. plants under UV-B radiation

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available Aim. To investigate structural and functional modifications of major components of photosynthetic membranes of endemic antarctic species D. antarctica under UV-B radiation. Methods. For quantitative determination of photosynthetic membrane components we used Arnon’s method (for chlorophylls and carotenoids; separation of carotenoids was carried out by Merzlyak’s method; polar lipids were isolated by Zill and Harmon method in modification of Yakovenko and Mihno; glycolipids separation and identification we carried out by Yamamoto method; and sulfoquinovosyl diacylglycerol content was determined by Kean method. The separation, disintegration and determination of pigment-protein complexes of chloroplasts were carried out by Anderson method. Authenticity of differences between the mean arithmetic values of indices was set after the Student criterion. Differences were considered as reliable at p 0.05. Results. We determined structural and functional changes in lipids, carotenoids and pigment-protein complexes at the photosyntetic apparatus level in D. antarctica plants under UV-B radiation. Conclusions. Adaptation of D. antarctica plants to UV-B radiation is accompanied by a cascade of physiological and biochemical rearrangements at the level of photosynthetic apparatus, manifested as the changes in pigment, lipid and pigment-protein complexes content

  3. Broccoli (Brassica oleracea var. italica head initiation under field conditions

    Directory of Open Access Journals (Sweden)

    Alina Kałużewicz

    2012-12-01

    Full Text Available A two–year study on the influence of temperature on broccoli head initiation was carried out at the ''Marcelin'' experimental station of the Poznań University of Life Sciences. In each year of the study, plants were planted in the field at four dates. The evaluation of the developmental phase of the broccoli shoot apex was based on the analysis of microscope slides. The date of head initiation was assumed as the day on which the first of the examined apices were found to be at the early generative phase. The plant characteristics (number of leaves, leaf area and stem diameter on the date of initiation were also determined. Variation in length of the period from planting to head initiation was found both between dates of planting and between experimental years. The shortest period from planting to initiation was when the plants were planted in April and June (17-18 days in the first year and the longest one for planting in April in the first year of the study (29 days. The length of the period from planting to head initiation depended on mean daily air temperature. The higher the temperature was, the shorter was the period.

  4. Core Mediator structure at 3.4 Å extends model of transcription initiation complex.

    Science.gov (United States)

    Nozawa, Kayo; Schneider, Thomas R; Cramer, Patrick

    2017-05-11

    Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.

  5. Multivariate algorithms for initiating event detection and identification in nuclear power plants

    International Nuclear Information System (INIS)

    Wu, Shun-Chi; Chen, Kuang-You; Lin, Ting-Han; Chou, Hwai-Pwu

    2018-01-01

    Highlights: •Multivariate algorithms for NPP initiating event detection and identification. •Recordings from multiple sensors are simultaneously considered for detection. •Both spatial and temporal information is used for event identification. •Untrained event isolation avoids falsely relating an untrained event. •Efficacy of the algorithms is verified with data from the Maanshan NPP simulator. -- Abstract: To prevent escalation of an initiating event into a severe accident, promptly detecting its occurrence and precisely identifying its type are essential. In this study, several multivariate algorithms for initiating event detection and identification are proposed to help maintain safe operations of nuclear power plants (NPPs). By monitoring changes in the NPP sensing variables, an event is detected when the preset thresholds are exceeded. Unlike existing approaches, recordings from sensors of the same type are simultaneously considered for detection, and no subjective reasoning is involved in setting these thresholds. To facilitate efficient event identification, a spatiotemporal feature extractor is proposed. The extracted features consist of the temporal traits used by existing techniques and the spatial signature of an event. Through an F-score-based feature ranking, only those that are most discriminant in classifying the events under consideration will be retained for identification. Moreover, an untrained event isolation scheme is introduced to avoid relating an untrained event to those in the event dataset so that improper recovery actions can be prevented. Results from experiments containing data of 12 event classes and a total of 125 events generated using a Taiwan’s Maanshan NPP simulator are provided to illustrate the efficacy of the proposed algorithms.

  6. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Yan, B.; Stantic, M.; Zobalová, Renata; Bezawork-Geleta, A.; Stapelberg, M.; Stursa, J.; Prokopová, Kateřina; Dong, L.; Neužil, Jiří

    2015-01-01

    Roč. 15, č. 401 (2015) ISSN 1471-2407 R&D Projects: GA MZd NT14078; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Tumour-initiating cells * Mitochondrially targeted vitamin E succinate * Complex II Subject RIV: FD - Oncology ; Hematology Impact factor: 3.265, year: 2015

  7. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    OpenAIRE

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Ria?o-Pach?n, Diego M.; Corr?a, Luiz G. G.; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A.

    2010-01-01

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phy...

  8. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant

    OpenAIRE

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-01-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that u...

  9. The genetic architecture of a complex ecological trait: host plant use in the specialist moth, HELIOTHIS SUBFLEXA

    Science.gov (United States)

    The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...

  10. Complex analysis of hazards to the man and natural environment due to electricity production in nuclear and coal power plants

    International Nuclear Information System (INIS)

    Strupczewski, A.

    1990-01-01

    The report presents a complex analysis of hazards connected with electrical energy production in nuclear power plants and coal power plants, starting with fuel mining, through power plant construction, operation, possible accidents and decommissioning to long term global effects. The comparison is based on contemporary, proven technologies of coal fired power plants and nuclear power plants with pressurized water reactors. The hazards to environment and man due to nuclear power are shown to be much smaller than those due to coal power cycle. The health benefits due to electrical power availability are shown to be much larger than the health losses due to its production. (author). 71 refs, 17 figs, 12 tabs

  11. The light-harvesting complexes of higher plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, I.E.; Croce, R.

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  12. The light-harvesting complexes of higher-plant Photosystem I : Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, Emilie; Croce, Roberta

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) al-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  13. Improved methods for prediction of creep-fatigue in next generation conventional and nuclear plant

    International Nuclear Information System (INIS)

    Payten, Warwick

    2012-01-01

    Materials technology poses a major challenge in the design and construction of next generation super critical/ultra super critical power plant (SC/USC) and Generation IV (GenIV) nuclear plant. New plant is expected to have in the order of a 60 year life-time, imposing complex design difficulties in areas of creep rupture and creep fatigue damage. For SC/USC plant, the main goal is the enhancement of performance by raising the steam pressure and temperatures. In order to achieve these goals materials with acceptable creep rupture strength at design temperatures and pressures must be used. In GenIV designs, the issue is more complex, with both low and high tempera-ture designs. A key requirement in the majority of the designs, however, will be acceptable resistance to creep rupture, fatigue cracking, creep fatigue interactions, with the additional effects of void swelling and irradiation creep. The accumulation of creep fatigue damage over time in both SC/USC and GenIV plant will be one of the principal damage mechanisms. This will eventually lead to crack initiation in critical high temperature equipment. Hence, improved knowledge of creep and fatigue interactions is a necessary development as components in power-generating plants move to operate at high temperature under cyclic conditions. The key to safe, reliable operation of these high-energy plants will depend on understanding the factors that affect damage initiation and propagation, as well as developing and validating technologies to predict the accumulation of damage in systems and components.

  14. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    Science.gov (United States)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    The comparative evaluation of the levels of biologically active chemical elements and their migration in the soil-plant complex of two Urov endemic locations in East Transbaikalia (Zolinsky and Uryumkansky) and background areas (Western Baikal region and the western area of the Trans-Baikal region) was conducted. The predominant soil-forming rocks in East Transbaikalia are weathering products of Proterozoic carbonated granitoids PR2. The surface rocks consist from granite, granodiorite, diorite quartz diorite, gabbro, norite, gabbro-norite and other. Soils - mountain and cryogenic meadow forests, mountain permafrost taiga podzolised, meadow alluvial, peaty meadow [2]. The paludification of narrow valleys and thermokarst phenomena are typical in Urov endemic localities. It reflects on the spotted of soil and differentiation of chemical composition of soils and plants. Most of the chemical elements in soils were determined by means of X-ray fluorescence, and trace elements in soils and plants - by atomic absorption spectrometry. The selenium content was measured by spectrofluorimetric method [3]. The research processed by methods of variation statistics. It was found that the soils of two locations of the Urov subregion of the biosphere were more enriched with iron, barium, calcium, uranium, thorium, phosphorus, and to a lesser extent strontium compared to background soils. The ratio of Ca: P was significantly higher in the soil of background areas, and Ca: Sr, on the contrary, in endemic soils. In assessing the migration of trace elements in soil-plant complex by means of the total content of trace elements and biological absorption coefficient found a marked accumulation by plants manganese, chromium, arsenic and weak plants accumulation of cobalt and nickel. Soil landscape is not much different in content of selenium, but its migration in plants was reduced in places of spread of Urov disease [1]. The concentrators of cadmium (leaves of different species of willow

  15. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-23

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  16. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    Directory of Open Access Journals (Sweden)

    Peter E Larsen

    2016-01-01

    Full Text Available In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree and Laccaria bicolor (mycorrhizal fungi interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.

  17. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector.

    Science.gov (United States)

    Killiny, Nabil; Almeida, Rodrigo P P

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.

  18. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: a Redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; Amerongen, van H.; Grondelle, van R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  19. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: A redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; van Amerongen, H.; van Grondelle, R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  20. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoecomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoecomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  1. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoeconomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoeconomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  2. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    International Nuclear Information System (INIS)

    Reiman, T.

    2007-03-01

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  3. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.

    2007-03-15

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  4. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    Science.gov (United States)

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  5. The exocyst complex in plants

    Czech Academy of Sciences Publication Activity Database

    Eliáš, M.; Drdová, E.; Žiak, Drahomír; Bavlnka, Břetislav; Hála, Michal; Cvrčková, F.; Soukupová, Hana; Žárský, Viktor

    2003-01-01

    Roč. 27, č. 3 (2003), s. 199-201 ISSN 1065-6995 R&D Projects: GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z5038910 Keywords : Plant cell morphogenesis * GTPases * Rab Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.092, year: 2003

  6. Business intelligence appliances in nuclear plant information system

    International Nuclear Information System (INIS)

    Bai Zhe; Zou Yuanhao

    2012-01-01

    With the widely use of information system, the enterprise has accumulated large amount of business data. It is urgent and complicated task to manipulate the massive and complex data collation, dig out the useful knowledge which can assist business managers and technical staff with decision-making and error analysis. At present, the business intelligence is in its initial stage in nuclear power plants (NPP), most of the plants start to show and analyze the data at the end-user interface, then go further with Data Mining gradually. By the basis of Data Warehouse. Online Analytical Processing and Data Mining technology, the data can be extracted, transformed and loaded. After the processing, the data is converted into useful information for plant managers to have different perspectives of decision-making and technical staff to analyse errors. (authors)

  7. Plant critical concept

    International Nuclear Information System (INIS)

    O'Regan, P.J.

    1995-01-01

    The achievement of operation and maintenance (O ampersand M) cost reductions is a prime concern for plant operators. Initiatives by the nuclear industry to address this concern are under way and/or in development. These efforts include plant reliability studies, reliability-centered maintenance, risk ranking and testing philosophies, performance-based testing philosophies, graded quality assurance, and so forth. This paper presents the results of an effort to develop a methodology that integrates and applies the common data and analysis requirements for a number of risk-based and performance-based initiatives. This initial phase of the effort applied the methodology and its results to two initiatives. These were the procurement function and the preventive maintenance function. This effort integrated multiple programs and functions to identify those components that are truly critical from an integrated plant performance perspective. The paper describes the scope of the effort, the development of a methodology to identify plant critical components, and the application of these results to the maintenance rule compliance, preventive maintenance, and procurement functions at the candidate plant

  8. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  9. Compact simulators for WWER-440 type nuclear power plants

    International Nuclear Information System (INIS)

    Vegh, E.; Janosy, J.S.

    1991-09-01

    This paper describes a compact simulator for VVER-440 type plants. Up till now three simulators have been delivered: to Paks Nuclear Power Plant (Hungary), and to Kola and Rovno NPPs (Soviet Union). In this compact simulator the modelling complexity of the plant is almost similar to that of a full-scope one apart from the Control Room being replaced by a Control Desk and four colour graphic display units. The simulation of the plant covers the whole operating range: from cold shut-down state to nominal power level. The simulator contains up to 32 different initial conditions. Moreover, every 5 minutes the simulator produces so called 'snapshots', i.e. disc images of the Data Base. Using these snapshots the instructor can go back in time (called backtracking) in order to repeat some previously passed events

  10. Initial experience with xenograft bioconduit for the treatment of complex prosthetic valve endocarditis.

    Science.gov (United States)

    Roubelakis, Apostolos; Karangelis, Dimos; Sadeque, Syed; Yanagawa, Bobby; Modi, Amit; Barlow, Clifford W; Livesey, Steven A; Ohri, Sunil K

    2017-07-01

    The treatment of complex prosthetic valve endocarditis (PVE) with aortic root abscess remains a surgical challenge. Several studies support the use of biological tissues to minimize the risk of recurrent infection. We present our initial surgical experience with the use of an aortic xenograft conduit for aortic valve and root replacement. Between October 2013 and August 2015, 15 xenograft bioconduits were implanted for complex PVE with abscess (13.3% female). In 6 patients, concomitant procedures were performed: coronary bypass (n=1), mitral valve replacement (n=5) and tricuspid annuloplasty (n=1). The mean age at operation was 60.3±15.5 years. The mean Logistic European system for cardiac operating risk evaluation (EuroSCORE) was 46.6±23.6. The median follow-up time was 607±328 days (range: 172-1074 days). There were two in-hospital deaths (14.3% mortality), two strokes (14.3%) and seven patients required permanent pacemaker insertion for conduction abnormalities (46.7%). The mean length of hospital stay was 26 days. At pre-discharge echocardiography, the conduit mean gradient was 9.3±3.3mmHg and there was either none (n=6), trace (n=6) or mild aortic insufficiency (n=1). There was no incidence of mid-term death, prosthesis-related complications or recurrent endocarditis. Xenograft bioconduits may be safe and effective for aortic valve and root replacement for complex PVE with aortic root abscess. Although excess early mortality reflects the complexity of the patient population, there was good valve hemodynamics, with no incidence of recurrent endocarditis or prosthesis failure in the mid-term. Our data support the continued use and evaluation of this biological prosthesis in this high-risk patient cohort.

  11. Structural studies of complex carbohydrates of plant cell walls. Progress report, June 15, 1992--June 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, A.G.

    1994-10-01

    This report contains the abstracts of fourteen papers published, in press, or in preparation reporting on research activities to investigate the structure, as well as the function of cell walls in plants. This document also contains research on methods to determine the structure of complex carbohydrates of the cell walls.

  12. Plant Genes Involved in Symbiotic Sinal Perception/Signal Transduction

    DEFF Research Database (Denmark)

    Binder, A; Soyano, T; Hayashi, H

    2014-01-01

    to nodule primordia formation, and the infection thread initiation in the root hairs guiding bacteria towards dividing cortical cells. This chapter focuses on the plant genes involved in the recognition of the symbiotic signal produced by rhizobia, and the downstream genes, which are part of a complex...... symbiotic signalling pathway that leads to the generation of calcium spiking in the nuclear regions and activation of transcription factors controlling symbiotic genes induction...

  13. Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?

    Directory of Open Access Journals (Sweden)

    Thomas Bøhn

    2017-09-01

    Full Text Available Agriculture is fundamental for human survival through food production and is performed in ecosystems that, while simplified, still operate along ecological principles and retain complexity. Agricultural plants are thus part of ecological systems, and interact in complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss three case studies that demonstrate how agricultural solutions to pest and weed control, if they overlook important ecological and evolutionary factors, cause “surprises”: (i the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa, (ii the ecological changes generated by Bt-cotton landscapes in China, and (iii the decline of the monarch butterfly, Danaus plexippus, in North America. The recognition that we work with complex systems is in itself important, as it should limit the belief in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding result in “surprises” like resistance evolution both in weeds and pest insects, risking the reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the follow-up. We recommend prioritization of research that counteracts the tendencies of reductionist approaches. These may be beneficial on a short term, but with trade-off costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem services, long-term soil productivity, pollution, and reduced food quality.

  14. Program change management during nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Bushart, Sean; Kim, Karen; Naughton, Michael

    2011-01-01

    Decommissioning a nuclear power plant is a complex project. The project involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As certain project Milestones are met, the evolution of such plant programs and regulations can help optimize project execution and cost. This paper will provide information about these Milestones and the plant departments and programs that change throughout a decommissioning project. The initial challenge in the decommissioning of a nuclear plant is the development of a definitive plan for such a complex project. EPRI has published several reports related to decommissioning planning. These earlier reports provided general guidance in formulating a Decommissioning Plan. This Change Management paper will draw from the experience gained in the last decade in decommissioning of nuclear plants. The paper discusses decommissioning in terms of a sequence of major Milestones. The plant programs, associated plans and actions, and staffing are discussed based upon experiences from the following power reactor facilities: Maine Yankee Atomic Power Plant, Yankee Nuclear Power Station, and the Haddam Neck Plant. Significant lessons learned from other sites are also discussed as appropriate. Planning is a crucial ingredient of successful decommissioning projects. The development of a definitive Decommissioning Plan can result in considerable project savings. The decommissioning plants in the U.S. have planned and executed their projects using different strategies based on their unique plant circumstances. However, experience has shown that similar project milestones and actions applied through all of these projects. This allows each plant to learn from the experiences of the preceding projects. As the plant transitions from an operating plant through decommissioning, the reduction and termination of defunct programs and regulations can help optimize all facets of

  15. The Initial Development of a Computerized Operator Support System

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L Boring; Thomas A Ulrich; Ken Thomas

    2014-08-01

    A computerized operator support system (COSS) is a collection of resilient software technologies to assist operators in monitoring overall nuclear power plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast- moving, complex events. A prototype COSS for a chemical volume control system at a nuclear power plant has been developed in order to demonstrate the concept and provide a test bed for further research. The development process identified four underlying elements necessary for the prototype, which consist of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. An operational prototype resides at the Idaho National Laboratory (INL) using the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). Several human-machine interface (HMI) considerations are identified and incorporated in the prototype during this initial round of development.

  16. Initiating Event Analysis of a Lithium Fluoride Thorium Reactor

    Science.gov (United States)

    Geraci, Nicholas Charles

    The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to

  17. 1170-MW(t) HTGR-PS/C plant application study report: Geismar, Louisiana refinery/chemical complex application

    International Nuclear Information System (INIS)

    McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to an industrial complex at Geismar, Louisiana. This study compares the HTGR with coal and oil as process plant fuels. This study uses a previous broad energy alternative study by the Stone and Webster Corporation on refinery and chemical plant needs in the Gulf States Utilities service area. The HTGR-PS/C was developed by General Atomic (GA) specifically for industries which require both steam and electric energy. The GA 1170-MW(t) HTGR-PC/C design is particularly well suited to industrial applications and is expected to have excellent cost benefits over other energy sources

  18. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    Science.gov (United States)

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  19. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2018-03-01

    Full Text Available Phytohormones regulate numerous important biological processes in plant development and biotic/abiotic stress response cascades. More than 50 and 100 years have passed since the initial discoveries of the phytohormones abscisic acid (ABA and gibberellins (GA, respectively. Over the past several decades, numerous elegant studies have demonstrated that ABA and GA antagonistically regulate many plant developmental processes, including seed maturation, seed dormancy and germination, root initiation, hypocotyl and stem elongation, and floral transition. Furthermore, as a well-established stress hormone, ABA plays a key role in plant responses to abiotic stresses, such as drought, flooding, salinity and low temperature. Interestingly, recent evidence revealed that GA are also involved in plant response to adverse environmental conditions. Consequently, the complex crosstalk networks between ABA and GA, mediated by diverse key regulators, have been extensively investigated and documented. In this updated mini-review, we summarize the most recent advances in our understanding of the antagonistically regulatory roles of ABA and GA in different stages of plant development and in various plant–environment interactions, focusing on the crosstalk between ABA and GA at the levels of phytohormone metabolism and signal transduction.

  20. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  1. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  2. Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates

    Energy Technology Data Exchange (ETDEWEB)

    Patole, S.; Vasilev, C.; El-Zubir, O.; Wang, L.; Johnson, M. P.; Cadby, A. J.; Leggett, G. J.; Hunter, C. N.

    2015-05-15

    We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll–protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll–protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality.

  3. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager.

    Science.gov (United States)

    Sanchez, Sabrina E; Kay, Steve A

    2016-12-01

    The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Temporal dynamics of stomatal conductance of plants under water deficit: can homeostasis be improved by more complex dynamics?

    Directory of Open Access Journals (Sweden)

    Gustavo Maia Souza

    2004-07-01

    Full Text Available In this study we hypothesized that chaotic or complex behavior of stomatal conductance could improve plant homeostasis after water deficit. Stomatal conductance of sunflower and sugar beet leaves was measured in plants grown either daily irrigation or under water deficit using an infrared gas analyzer. All measurements were performed under controlled environmental conditions. In order to measure a consistent time series, data were scored with time intervals of 20s during 6h. Lyapunov exponents, fractal dimensions, KS entropy and relative LZ complexity were calculated. Stomatal conductance in both irrigated and non-irrigated plants was chaotic-like. Plants under water deficit showed a trend to a more complex behaviour, mainly in sunflower that showed better homeostasis than in sugar beet. Some biological implications are discussed.Este estudo testou a hipótese de que a condutância estomática de uma população de estômatos em uma folha poderia apresentar um comportamento caótico ou complexo sob diferentes condições hídricas, o que poderia favorecer a capacidade homeostática das plantas. A condutância estomática em folhas de girassol e de beterraba cultivadas com irrigação diária e sob deficiência hídrica foi medida com um analisador de gás por infra-vermelho em condições controladas. Os dados foram registrados a cada 20s durante 6h. As séries temporais obtidas foram analisadas por meio dos coeficientes de Lyapunov, dimensão fractal, entropia KS e complexidade LZ relativa. A condutância estomática nas plantas cultivadas com e sem deficiência hídrica exibiu um comportamento provavelmente caótico. As plantas sob estresse hídrico mostraram uma tendência para um comportamento mais complexo, principalmente as plantas de girassol cuja capacidade homeostática foi superior. Algumas implicações biológicas destes comportamentos são discutidas no texto.

  5. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  6. Identification of initiating events using a master logic diagram in low-power and shutdown PSA for nuclear power plant

    International Nuclear Information System (INIS)

    Han, S. J.; Park, J. H.; Kim, T. W.; Ha, J. J.

    2003-01-01

    It is necessary to apply a formal technique instead of an empirical technique in the identification of initiating events for Low Power and ShutDown (LPSD) Probabilistic Safety Assessment (PSA) of Nuclear Power Plant (NPP). The present study focuses on the examination of Master Logic Diagram (MLD) technique as a formal technique in the identification of initiating events. The MLD technique is a deductive tool using top-down approach for the formal and logical indentification of initiating events. The present study modified the MLD used in the full power PSA considering the characteristics of LPSD operation. The modified MLD introduced a systematic formation in decomposition process of which the MLD for full power PSA lacked. The modified MLD was able to identify initiating events systematic and logical. However, the formal techniques including the MLD have a limitation for precisely identifying all of the initiating events. In order to overcome this limitation, it is necessary to combine it with an empirical technique. We expect that the modified MLD can be used in an upgrade of the current LPSD PSAs

  7. Environmental processes leading to the presence of organically bound plutonium in plant tissues consumed by animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.

    1979-01-01

    Using a proposed model for Pu behaviour to integrate current knowledge, information is presented on the chemical/biochemical processes governing the form of Pu in soils and plants and the relationship of these phenomena to gut absorption in animals. Regardless of the source term, Pu behaviour in the soil will be governed by the chemistry of Pu(IV), which predominates over Pu(VI) due to reductive reactions in the soil and at the plant root surface. The soil behaviour of Pu(IV) is governed by (1) hydrolysis, which results in insolubilization and sorption on solid phases, and (2) complexation with inorganic and organic ligands, which stabilize Pu(IV) against hydrolysis and increase solubility. These competing processes likely represent the rate-limiting step in the ingestion pathway because plants do not effectively discriminate against the soluble Pu(IV) ion. Following dissociation of soil Pu(IV) complexes at the outer root surface, Pu is transported across the plant root membrane as the Pu(IV) ion and translocated as Pu(IV) complexes with plant organic ligands. Redistribution of Pu occurs as the plant grows, with initial increases in stem tissues followed by accumulation in roots as the plant matures. The Pu concentration decreases up the plant and seeds contain the lowest Pu concentrations. The gastro-intestinal absorption of Pu requires the presence of soluble Pu forms and hydrolysis/complexation reactions in the gut likely govern solubility. The acidity of the gut is not sufficient to retard hydrolysis of Pu(IV). Therefore, the gastro-intestinal absorption of Pu organically bound in plant tissues is increased relative to Pu administered in hydrolysable solutions. (author)

  8. A model of frontal polymerization using complex initiation

    Directory of Open Access Journals (Sweden)

    P. M. Goldfeder

    1999-01-01

    Full Text Available Frontal polymerization is a process in which a spatially localized reaction zone propagates into a monomer, converting it into a polymer. In the simplest case of free-radical polymerization, a mixture of monomer and initiator is placed in a test tube. A reaction is then initiated at one end of the tube. Over time, a self-sustained thermal wave, in which chemical conversion occurs, is produced. This phenomenon is possible because of the highly exothermic nature of the polymerization reactions.

  9. Water-chemical regime of a fast reactor ower complex

    International Nuclear Information System (INIS)

    Musikhin, R.N.; Piskunov, E.M.; Samarkin, A.A.; Yurchenko, D.S.

    1983-01-01

    Some peculiarities of water-chemical regime of a power compleX in Shevchenko are considered. The complex comprises a desalination unit, a gas-masout heating-and-power plant and the BN-350 reactor. The compleX is used for the production of electric and thermal energy and fresh water. The power complex peculiarity is the utilization of disalinated seawater in a technological cycle along with highly mineralized seawater with a total salt content of 13.5 g/l (for cooling) in heat exchanges. A regime of ammoniacal correction of feed water was used as a basic water-chemical regime in the initial period of the BN-350 steam generator operation. Deposits composed mainly of iron oxide slime were observed on steam generator surfaces during the operation under these conditions. A conclusion is made that the regime with chelating agent providing steam generator safe operation without chemical cleaning is the most expedient one

  10. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.

    Science.gov (United States)

    Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco

    2017-05-01

    Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L * a * b * and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool

  11. Nuclear Fuel Complex - a landmark of indigenous nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, H C [Nuclear Fuel Complex, Hyderabad (India)

    1977-01-01

    The Nuclear Fuel Complex (NFC) set up in India for manufacturing fuel and related hardware has proved to be a significant step towards self-sufficiency and saving of foreign exchange. The complex is involved in the entire operations starting from processing of raw material concentrates to finishing of fuel assemblies and other zircaloy reactor components. The complex consists of the following units : (1) Zirconium Oxide Plant, (2) Zirconium Sponge Plant, (3) Zircaloy Fabrication Plant, (4) Uranium Oxide Plant, (5) Ceramic Fabrication Plant, (6) Enriched Uranium Oxide Plant, (7) Enriched Fuel Fabrication Plant, (8) Special Materials Plant and (9) Titanium Plant. A brief description of the activities of the various units of the complex are given. The effluent management scheme is outlined. The requirements and cost of fuel and zircaloy components for the power stations at Tarapur, Kota and Kalpakkam are mentioned.

  12. Maturation processes and structures of small secreted peptides in plants

    Directory of Open Access Journals (Sweden)

    Ryo eTabata

    2014-07-01

    Full Text Available In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognised by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signalling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarise recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants.

  13. Genetic resources as initial material for developing new soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    В. М. Кір’ян

    2016-12-01

    Full Text Available Purpose. To estimate genetic resources collection of soft winter wheat plants (new collection accessions of Ustymivka Experimental Station for Plant Production and select initial material for breeding of adaptive, productive and qualitative soft winter wheat varieties. Methods. Field experiment, laboratory testing. Results. The authors pre- sented results of study of over 1000 samples of gene pool of soft winter wheat from 25 countries during 2001–2005 in Ustymivka Experimental Station for Plant Production of Plant Production Institute nd. a. V. Ya. Yuriev, NAAS of Ukraine for a complex of economic traits. More than 400 new sources with high adaptive properties were selected that combine traits of high productivity and high quality of grain, early ripening, resistance to biotic and abiotic fac- tors (the assessment of samples for 16 valuable traits is given. The selected material comes from various agro-cli- matic zones, including zones of unsustainable agriculture. Conclusions. Recommended sources of traits that have breeding value will allow to enrich high-quality assortment of wheat and considerably accelerate breeding process du- ring development of new soft winter wheat varieties.

  14. INITIAL DEVELOPMENT OF AÇAÍ PLANTS UNDER SHADE GRADATION

    Directory of Open Access Journals (Sweden)

    ELEANDRO CANDIDO DAPONT

    2016-01-01

    Full Text Available ABSTRACT In order to evaluate the effect of different levels of shading on açai (Euterpe oleracea Mart. plants development, an experiment was conducted at the nursery of Floresta, Rio Branco, AC. The experiment was arranged in a completely randomized design with six treatments and four replications of 25 plants, set as full sunlight and 18%, 35%, 50%, 70%, and 80% shading. The evaluation occurred 125 days after transplantation and the variables were stem diameter, root length, length of the aerial part, total length, dry matter of root, dry matter of aerial part, and total dry matter. With exception of root length, there was significant difference between treatments for all variables. The production of açai plants should be performed using 40% shading.

  15. Exocyst and autophagy-related membrane trafficking in plants.

    Science.gov (United States)

    Pecenková, Tamara; Markovic, Vedrana; Sabol, Peter; Kulich, Ivan; Žárský, Viktor

    2017-12-18

    Endomembrane traffic in eukaryotic cells functions partially as a means of communication; delivery of membrane in one direction has to be balanced with a reduction at the other end. This effect is typically the case during the defence against pathogens. To combat pathogens, cellular growth and differentiation are suppressed, while endomembrane traffic is poised towards limiting the pathogen attack. The octameric exocyst vesicle-tethering complex was originally discovered as a factor facilitating vesicle-targeting and vesicle-plasma membrane (PM) fusion during exocytosis prior to and possibly during SNARE complex formation. Interestingly, it was recently implicated both in animals and plants in autophagy membrane traffic. In animal cells, the exocyst is integrated into the mTOR-regulated energy metabolism stress/starvation pathway, participating in the formation and especially initiation of an autophagosome. In plants, the first functional link was to autophagy-related anthocyanin import to the vacuole and to starvation. In this concise review, we summarize the current knowledge of exocyst functions in autophagy and defence in plants that might involve unconventional secretion and compare it with animal conditions. Formation of different exocyst complexes during undisturbed cell growth, as opposed to periods of cellular stress reactions involving autophagy, might contribute to the coordination of endomembrane trafficking pathways. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  17. Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst.

    Science.gov (United States)

    Zárský, Viktor; Potocký, Martin

    2010-04-01

    The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a 'recycling domain' (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase-effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.

  18. Initial Response by a Native Beetle, Chrysochus auratus (Coleoptera: Chrysomelidae), to a Novel Introduced Host-Plant, Vincetoxicum rossicum (Gentianales: Apocynaceae).

    Science.gov (United States)

    deJonge, R B; Bourchier, R S; Smith, S M

    2017-06-01

    Native insects can form novel associations with introduced invasive plants and use them as a food source. The recent introduction into eastern North America of a nonnative European vine, Vincetoxicum rossicum (Kleopow) Barbar., allows us to examine the initial response of a native chrysomelid beetle, Chrysochus auratus F., that feeds on native plants in the same family as V. rossicum (Apocynaceae). We tested C. auratus on V. rossicum and closely related or co-occurring native plants (Apocynum spp., Asclepias spp., and Solidago canadensis L.) using all life stages of the beetle in lab, garden, and field experiments. Experiments measured feeding (presence or absence and amount), survival, oviposition, and whether previous exposure to V. rossicum in the lab or field affected adult beetle feeding. Beetles fed significantly less on V. rossicum than on native Apocynum hosts. Adult beetles engaged in exploratory feeding on leaves of V. rossicum and survived up to 10 d. Females oviposited on V. rossicum, eggs hatched, and larvae fed initially on the roots; however, no larvae survived beyond second instar. Beetles collected from Apocynum cannabinum L. field sites intermixed with V. rossicum were less likely to feed on this novel nonnative host than those collected from colonies further from and less likely to be exposed to V. rossicum (>5 km). Our experimental work indicates that V. rossicum may act as an oviposition sink for C. auratus and that this native beetle has not adapted to survive on this recently introduced novel host plant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Overview of US nuclear energy initiatives

    International Nuclear Information System (INIS)

    McFarlane, H.

    2006-01-01

    The United States has embraced nuclear as an important component of its energy future. Triggered by successful passage of the Energy Policy Act in November 2005, four federal initiatives are enjoying some measure of initial success. The first energy authorization act in 13 years, the new legislation contains incentives for up to six new nuclear plants comparable to those for other clean energy sources. Once these incentives were codified, US utilities began to express interest in expanding the nuclear fleet. The Department of Energy's (DOE) push for new nuclear plants, called the 2010 Initiative, has been underway since 2002. Prior to last November, the Nuclear Regulatory Commission (NRC) had no official expressions of interest in building new nuclear plants. Since November, the NRC has been notified of interest in building at least 26 new advanced light water reactors, concentrated at existing nuclear sites in the rapidly growing Southeastern United States. In addition, most of the 103 currently operating plants are expected to obtain 20 year life extensions. Utilities, suppliers and the regulator have been increasing their staffs in anticipation of the new plant orders. Undergraduate nuclear engineering enrollment has surged to its highest level in more than 15 years. The Department of Energy is also moving ahead with its licensing application for a geologic repository at Yucca Mountain. Because exiting legislation limits the amount of spent fuel and nuclear waste that could be stored in the mountain, Congress, DOE and the nuclear industry have become interested in alternative management schemes for the repository. The major DOE initiative is the Global Nuclear Energy Partnership (GNEP), which would close the fuel cycle and introduce advanced fast reactors to manage the long-lived actinides. GNEP also has a major international component, with partnerships to provide reliable fuel supply worldwide to any nation with valid nonproliferation credentials. The United

  20. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase.

    Science.gov (United States)

    Costa, Sara R; Marek, Magdalena; Axelsen, Kristian B; Theorin, Lisa; Pomorski, Thomas G; López-Marqués, Rosa L

    2016-06-01

    P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one β-subunit isoform, whereas others are promiscuous and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 β-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues, Asn(181) and Asn(231) Whereas mutation of Asn(231) seems to have a small effect on P4-ATPase complex formation, mutation of evolutionarily conserved Asn(181) disrupts interaction between the two subunits. Of the four cysteine residues located in the ALIS5 ectodomain, mutation of Cys(86) and Cys(107) compromises complex association, but the mutant β-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications in the β-subunit have different functional roles in different organisms, which may be related to the promiscuity of the P4-ATPase. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. VOCABULARY, TEXTUAL COMPLEXITY AND READING COMPREHENSION IN DIGITAL LEARNING ENVIRONMENTS: AN INITIAL INVESTIGATION WITH HIGH SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Maria José Bocorny Finatto

    2016-12-01

    Full Text Available In this paper, we describe an initial investigation that intended to qualify the elaboration and usability of didactic resources for Distance Learning (DL in the field of Languages/Portuguese Language and Reading. We present the planning of the resource, the selection of materials and the theoretical notions involved, and the initial design of the activity, which consisted in reading and evaluating the complexity of a set of short texts. The experience was successful only for a small controlled group of students and unsuccessful for the large uncontrolled group. In order to improve the devised resource and implement it didactically, there is the need to perform previous presential learning activities with the involved groups and proceed with the student’s evaluation of the results after the task is accomplished.

  2. Initial investigation of dietitian perception of plant-based protein quality.

    Science.gov (United States)

    Hughes, Glenna J; Kress, Kathleen S; Armbrecht, Eric S; Mukherjea, Ratna; Mattfeldt-Beman, Mildred

    2014-07-01

    Interest in plant-based diets is increasing, evidenced by scientific and regulatory recommendations, including Dietary Guidelines for Americans. Dietitians provide guidance in dietary protein selection but little is known about how familiar dietitians are with the quality of plant versus animal proteins or methods for measuring protein quality. Likewise, there is a need to explore their beliefs related to dietary recommendations. The aim of this study was to assess dietitians' perceptions of plant-based protein quality and to determine if these are affected by demographic factors such as age and dietary practice group (DPG) membership. This was a cross-sectional design using an online survey. The survey was sent to all members of the Missouri Dietetic Association. All completed surveys (136) were analyzed. The main outcome measures were responses to belief and knowledge questions about the protein quality of plant-based diets, along with demographic information including age and DPG membership. Descriptive statistics and frequencies were determined, and chi-square analysis was used to determine the associations between belief and knowledge responses and demographic characteristics. Responses to belief statements suggested a high level of support for plant-based diets. No associations were found between any of the belief questions and demographic factors. A majority of respondents were not familiar with protein quality determination methods that are currently recognized by global regulatory and advisory agencies. Potential barriers identified in shifting to a more plant-based diet were lack of interest and perceived difficulty. Knowledge among dietitians of plant-based protein quality in general, and methods of protein quality measurement more specifically, needs to be addressed to enhance their knowledge base for making dietary protein recommendations. Two potential avenues for training are university curricula and continuing education opportunities provided to

  3. Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes.

    NARCIS (Netherlands)

    Geervliet, J.B.F.; Vet, L.E.M.; Dicke, M.

    1996-01-01

    To determine and compare innate preferences of the parasitoid species Cotesia glomerata and C. rubecula for different plant-herbivore complexes, long-range (1-m) foraging behavior was studied in dual-choice experiments in a wind tunnel. In this study we tested the hypothesis that naive females of

  4. Plant specific basic principle simulator as a first step to plant specific full scope simulator

    International Nuclear Information System (INIS)

    Krajnc, B.; Pribozic, F.; Novsak, M.

    1996-01-01

    Nuklearna Elektrarna Krsko (NEK) decided to enhance the quality and scope of initial training of NEK technical personnel, mainly in so called Phase 1 and 2 of training for licensed personnel. This training is a prerequisite for further training on the full scope simulator for future operators and is also given to larger number of engineers, working in different important areas where thorough knowledge of nuclear technology and plant systems is required. Due to that it was decided that plant specific Basis Principle Simulators (BPS) should be developed. The other important reason for such decision was an indication that NEK specific full scope simulator will have to be purchased. Based on that it was concluded that BPS should serve as a good opportunity to learn about the state of the art approaches in the modeling area, to see in which direction development of software in conjunction with state of the art hardware is going and in particular to the extent possible verify the existence of required plant documentation in support BPS and later plant specific full scope simulator. In this paper the scope of NEK BPS simulation, experience in initial data gathering, experience with know-how transfer based on direct involvement of NEK and Izobrazevalni Center za Jedrsko Tehnnologijo (ICJT) personnel in modeling of instrumentation and control will be presented. Lessons learned, particularly in light of coming project for NEK full scope simulator, will also be addressed. The future use of the BPS in the NEK training programs will be described. It can be concluded that due to very complex technology, phase approaches in training of key NEK technical personnel, the development of NEK plant specific BPS is justifiable, regardless of the fact that NEK will also obtain specific full scope simulator. It has to be pointed out that BPS can not be supplement for plant specific full scope simulator, due to number of reasons discussed in the paper. (author)

  5. Structure of the higher plant light harvesting complex I: in vivo characterization and structural interdependence of the Lhca proteins.

    Science.gov (United States)

    Klimmek, Frank; Ganeteg, Ulrika; Ihalainen, Janne A; van Roon, Henny; Jensen, Poul E; Scheller, Henrik V; Dekker, Jan P; Jansson, Stefan

    2005-03-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.

  6. Polyhomologation based on in situ generated Boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures

    KAUST Repository

    Zhang, Zhen; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2015-01-01

    A novel strategy, based on the in situ generated Boron-thexyl-silaboracyclic initiating sites for the polyhomologation of dimethylsulfoxonium methylide, has been developed for the synthesis of complex polyethylene-based architectures. As examples

  7. Definition of Storage Complex for the Technological Development Plant and the Evaluation Scenarios

    International Nuclear Information System (INIS)

    Recreo, F.; Hurtado, A.; Eguilior, S.

    2015-01-01

    This report intends a geological description of the site for the Technological Development Plant that CIUDEN is conducting in Hontomín (Burgos) for the improvement, both technological and economic, of the key aspects of geological storage of CO2 in deep permeable formations. Safety studies of this site began in 2008 with a preliminary appraisal of several pre-selected areas in the western part of the so-called "Cantabrian Basin". However, the modelling of the processes acting in the permanent sequestration of CO2 requires a much more detailed knowledge of the geological formations that form the complex storage and of its lithologic, petrophysical, hydrogeological, geochemical and geomechanical characteristics. This report presents a summary of the geological and hydrogeological information available from the documentation provided by the Geological Survey of Spain (IGME) and the published studies conducted in the area for oil research campaigns between 1965-68 and 1991–96. This information has allowed to deriving a preliminary conceptualization of what would be the system model of the geological system where the Technological Development Plant will be installed as well as identifying the remaining uncertainties.

  8. Complex-radical copolymerization of vinyl monomers on organoelemental initiators

    International Nuclear Information System (INIS)

    Grishin, D.F.

    1993-01-01

    Data on regularities of the initiation and growth of the (co)polymerization of polar vinyl series monomers on organo-elemental initiator, organo-boron in particular, are generalized. The effect of organo-metallic compounds and some phenol type inhibitors on the rate of acrylate (co)polymerization is analyzed from view of the change of electroacceptor properties (electrophilicity) of macroradicals

  9. Three-way interaction among plants, bacteria, and coleopteran insects.

    Science.gov (United States)

    Wielkopolan, Beata; Obrępalska-Stęplowska, Aleksandra

    2016-08-01

    Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.

  10. APPROVAL OF WASTE TREATMENT AND IMMOBILIZATION PLANT CONTRACTOR-INITIATED AUTHORIZATION BASIS AMENDMENT REQUESTS (ABAR)

    International Nuclear Information System (INIS)

    JONES GL

    2008-01-01

    The objective is to describe the process used by the Office of River Protection (ORP) for evaluating and implementing Contractor-initiated changes to the Waste Treatment and Immobilization Plant (WTP) Authorization Basis (AB). The WTP Project's history has provided a unique challenge for establishing and maintaining an ORP-approved AB during design and construction. Until operations begin, the project cannot implement the classic Unreviewed Safety Question (USQ) process to determine when ORP approval of Contractor-initiated changes is required. A 'quasiUSQ' process has been implemented that defines when AB changes could occur. The three types of AB changes are (1) Limited Scope Changes, (2) Authorization Basis Deviations, and (3) Authorization Basis Amendment Request (ABAR). DOE RL/REG 97-13, 'Office of River Protection Position on Contractor-Initiated Changes to the Authorization Basis', describes the process the WTP Contractor must follow to make changes to the AB, with and without ORP approval. The process uses a 'safety evaluation' process that is similar to the USQ process but at a more qualitative level. The maturation of the WTP Contractor's facility design and activities, and other changing conditions, resulted in a process that allows the Contractor to make changes to the AB without ORP approval; however, those changes that may significantly affect nuclear safety do require ORP approval. This process balances the WTP regulatory principle of efficiency with assurance that adequate safety will not be compromised. The process has reduced the number of ABARs requiring ORP approval and reduced the potential for delays in design and procurement activities

  11. Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    Rodrigo Amato Moreira

    2016-09-01

    Full Text Available The knowledge about the amount of nutrient uptake in pitaya plants helps the balanced fertilizer recommendation for the crop, providing adequate nutrition and contributing to the maximum expression of this species potential. This research was carried out in order to evaluate the growth, nutrient accumulation and efficiency of absorption, transportation and use of P by pitaya according to phosphorus fertilization. A randomized blocks design was used, with five doses of P (0 mg dm-3, 20 mg dm-3, 40 mg dm-3, 80 mg dm-3 and 160 mg dm-3 incorporated into the soil, with four replications, three pots per plot and one cutting per pot. Differences in the nutrient accumulation of all doses were evident in the pitaya shoots and roots, as well as in the efficiency of absorption, transport and use of P, according to phosphorus fertilization. The nutrient accumulation in the pitaya roots was ranked in the following order: N > K > Ca > S > P > Mg > Fe > Mn > Zn > B ≥ Cu. For the shoots, the order was: K > N > Ca > S > Mg > P > Mn > Fe > Zn > B ≥ Cu. The initial growth of pitaya plants was maximum with 81 mg dm-3 of P, in a Red-Yellow Dystrophic Latosol. The application of 44-67 mg dm3 of P to the soil promoted the highest accumulation of macro and micronutrients in the pitaya.

  12. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas

    Science.gov (United States)

    Li, Chaoqiong; Fu, Qiantang; Niu, Longjian; Luo, Li; Chen, Jianghua; Xu, Zeng-Fu

    2017-01-01

    Recent research revealed that TERMINAL FLOWER 1 (TFL1) homologues are involved in the critical developmental process of floral initiation in several plant species. In this study, the functions of three putative TFL1 homologues (JcTFL1a, JcTFL1b and JcTFL1c) in the biofuel plant Jatropha curcas were analysed using the transgenic approach. JcTFL1b and JcTFL1c, but not JcTFL1a, could complement the TFL1 function and rescue early flowering and determinate inflorescence phenotype in tfl1-14 Arabidopsis mutant, thus suggesting that JcTFL1b and JcTFL1c may be homologues of TFL1. Transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c showed late flowering, whereas only JcTFL1b and JcTFL1c overexpression delayed flowering in transgenic Arabidopsis. JcTFL1b-RNAi transgenic Jatropha consistently exhibited moderately early flowering phenotype. JcFT and JcAP1 were significantly downregulated in transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c, which suggested that the late flowering phenotype of these transgenic Jatropha may result from the repressed expression of JcFT and JcAP1. Our results indicate that these three JcTFL1 genes play redundant roles in repressing flowering in Jatropha. PMID:28225036

  13. Canadian programs on understanding and managing aging degradation of nuclear power plant components

    International Nuclear Information System (INIS)

    Chadha, J.A.; Pachner, J.

    1989-06-01

    Maintaining adequate safety and reliability of nuclear power plants and nuclear power plant life assurance and life extension are growing in importance as nuclear plants get older. Age-related degradation of plant components is complex and not fully understood. This paper provides an overview of the Canadian approach and the main activities and their results towards understanding and managing age-related degradation of nuclear power plant components, structures and systems. A number of pro-active programs have been initiated to anticipate, detect and mitigate potential aging degradation at an early stage before any serious impact on plant safety and reliability. These programs include Operational Safety Management Program, Nuclear Plant Life Assurance Program, systematic plant condition assessment, refurbishment and upgrading, post-service examination and testing, equipment qualification, research and development, and participation in the IAEA programs on safety aspects of nuclear power plant aging and life extension. A regulatory policy on nuclear power plants is under development and will be based on the domestic as well as foreign and international studies and experience

  14. The control and automation of a complex experimental plant: The Sesta test facility; L`automazione di un impiuanto sperimentale complesso: La stazione di Sesta

    Energy Technology Data Exchange (ETDEWEB)

    Maini, Michele; Prandoni, Walter [ENEL Spa, Cologno Monzese (Italy). Polo Elettrico e Automazione. Unita` Robotica

    1997-05-01

    The running of complex experimental plants in the field of energetic sources involves a strong component of automation. Since they are unique and innovative plants there are not well defined ways to run them. So it is necessary to design the automation each time and then to select the proper resources for the implementation. The plant for the testing of gas turbine components of Sesta is an important example of this type of approach.

  15. Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Liao, P.N.; Pascal, A.A.; van Grondelle, R.; Walla, P.J.; Ruban, A.V.; Robert, B.

    2011-01-01

    Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem

  16. Plant-bacterium interactions analyzed by proteomics

    Directory of Open Access Journals (Sweden)

    Amber eAfroz

    2013-02-01

    Full Text Available The evolution of the plant immune response has resulted in a highly effective defense system that is able to resist potential attack by microbial pathogens. The primary immune response is referred to as pathogen associated molecular pattern triggered immunity and has evolved to recognize common features of microbial pathogens. In response to the delivery of pathogen effector proteins, plants acquired R proteins to fight against pathogen attack. R-dependent defense response is important in understanding the biochemical and cellular mechanisms and underlying these interactions will enable molecular and transgenic approaches for crops with increased biotic resistance. Proteomic analyses are particularly useful for understanding the mechanisms of host plant against the pathogen attack. Recent advances in the field of proteome analyses have initiated a new research area, i.e the analysis of more complex microbial communities and their interaction with plant. Such areas hold great potential to elucidate, not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa, symbiotic, pathogenic bacteria and commensal bacteria. During biotic stress, plant hormonal signaling pathways prioritizes defense over other cellular functions. Some plant pathogens take advantage of hormone dependent regulatory system by mimicking hormones that interfere with host immune responses to promote virulence. In this review, it is discussed the cross talk that plays important role in response to pathogens attack with different infection strategies using proteomic approaches.

  17. Proposed chemical plant initiated accident scenarios in a sulphur-iodine cycle plant coupled to a pebble bed modular reactor

    International Nuclear Information System (INIS)

    Brown, N.R.; Revankar, S.T.; Seker, V.; Downar, Th.J.

    2010-01-01

    In the sulphur-iodine (S-I) cycle nuclear hydrogen generation scheme the chemical plant acts as the heat sink for the very high temperature nuclear reactor (VHTR). Thus, any accident which occurs in the chemical plant must feedback to the nuclear reactor. There are many different types of accidents which can occur in a chemical plant. These accidents include intra-reactor piping failure, inter-reactor piping failure, reaction chamber failure and heat exchanger failure. Since the chemical plant acts as the heat sink for the nuclear reactor, any of these accidents induce a loss-of-heat-sink accident in the nuclear reactor. In this paper, several chemical plant initiated accident scenarios are presented. The following accident scenarios are proposed: i) failure of the Bunsen chemical reactor; ii) product flow failure from either the H 2 SO 4 decomposition section or HI decomposition section; iii) reactant flow failure from either the H 2 SO 4 decomposition section or HI decomposition section; iv) rupture of a reaction chamber. Qualitative analysis of these accident scenarios indicates that each result in either partial or total loss of heat sink accidents for the nuclear reactor. These scenarios are reduced to two types: i) discharge rate limited accidents; ii) discontinuous reaction chamber accidents. A discharge rate limited rupture of the SO 3 decomposition section of the SI cycle is proposed and modelled. Since SO 3 decomposition occurs in the gaseous phase, critical flow out of the rupture is calculated assuming ideal gas behaviour. The accident scenario is modelled using a fully transient control volume model of the S-I cycle coupled to a THERMIX model of a 268 MW pebble bed modular reactor (PBMR-268) and a point kinetics model. The Bird, Stewart and Lightfoot source model for choked gas flows from a pressurised chamber was utilised as a discharge rate model. A discharge coefficient of 0.62 was assumed. Feedback due to the rupture is observed in the nuclear

  18. The role of risk analysis in control of complex plants' safety operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation, assessment and control is necessary to be discussed at every decision level of an activity. In this way the performances of a system, action or technology are qualitatively assessed by indicating the possible consequences on environmental, people or property. The paper presents methodologies of risk assessment successfully applied on isotopic separation plants. The quantitative methodologies presented use fault tree and event tree to determine the accident states frequency and physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use fuzzy models for the multi-criteria decision making, models based on risk matrix built on the basis of a combination between severity and probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, realising of the model of risk assessment for the activity or objective in study, developing of application of the proposed model. Applying this methodology to isotopic separation plants has led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plants operation and operating experience assessment, technical specifications optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, it is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons choosing of the most appropriate method for the risk assessment of an activity, leads to solution in due time, of some problems with economic, social

  19. The role of risk analysis in control of complex plant safe operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation assessment and control is necessary to be discussed in every decision making level of an activity. Performances of a system, action or technology, by indicating the possible consequences on environment, people or property should be qualitatively assessed. The paper presents methodologies of risk assessment successful applied on isotopic separation plants. The quantitative methodologies presented, use fault tree and event tree to determine the accident states frequency, physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use the fuzzy models for the multicriterial decision making, models based on risk matrix build on the base of combination between the severity and the probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, building the model of risk assessment for the activity or objective in study, developing the applications of the proposed model. Applying this methodology to isotopic separation plants have led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plant operations and operating experience assessment, technical specifications for optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation of events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons, choosing of the most appropriate method for the risk assessment of an activity, leads to a solution in useful time, of some problems with economic, social

  20. Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Baktoft, Karen H.; Balslev, Henrik

    2009-01-01

    In Europe, forests have been strongly influenced by human land-use for millennia. Here, we studied the importance of anthropogenic historical factors as determinants of understorey species distributions in a 967 ha Danish forest complex using 156 randomly placed 100-m2 plots, 15 environmental, 9...... dispersal and a strong literature record as ancient-forest species, were still concentrated in areas that were high forest in 1805. Among the younger forests, there were clear floristic differences between those on reclaimed bogs and those not. Apparently remnant populations of wet-soil plants were still...

  1. Bud initiation and optimum harvest date in Brussels sprouts

    NARCIS (Netherlands)

    Everaarts, A.P.; Sukkel, W.

    1999-01-01

    For six cultivars of Brussels sprouts (Brassica oleracea var. gemmifera) with a decreasing degree of earliness, or optimum harvest date, the time of bud initiation was determined during two seasons. Fifty percent of the plants had initiated buds between 60 and 75 days after planting (DAP) in 1994

  2. Equipment decontamination: A brief survey of the DOE complex

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes

  3. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    OpenAIRE

    N Matsuo; M Otuka; H Hamasima; K Hokamoto; S Itoh

    2016-01-01

    Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated ...

  4. Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahner, S.; Fomin, V. V.

    2002-02-26

    In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the status of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).

  5. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  6. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    Science.gov (United States)

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  7. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  8. Differentiation in a geographical mosaic of plants coevolving with ants: phylogeny of the Leonardoxa africana complex (Fabaceae: Caesalpinioideae) using amplified fragment length polymorphism markers.

    Science.gov (United States)

    Brouat, C; McKey, D; Douzery, E J P

    2004-05-01

    Comprising four allopatric subspecies that exhibit various grades of ant-plant interactions, from diffuse to obligate and symbiotic associations, the Leonardoxa africana complex (Fabaceae, Caesalpinioideae) provides a good opportunity to investigate the evolutionary history of ant-plant mutualisms. A previous study of the L. africana complex based on chloroplast DNA noncoding sequences revealed a lack of congruence between clades suggested by morphological and plastid characters. In this study, we analysed phylogenetic relationships within the L. africana complex using a Bayesian probability approach on amplified fragment length polymorphism markers. The results reported permit partial validation of the four subspecies of L. africana previously defined by morphological and ecological markers. Incongruences between phylogenies based on chloroplast DNA and amplified fragment length polymorphism markers are discussed in the light of morphological and ecological data, and confronted with hypotheses of convergence, lineage sorting and introgression.

  9. Preparation of the initial safety case

    International Nuclear Information System (INIS)

    Hensley, G.

    1987-01-01

    In British Nuclear Fuels plc (BNFL), the design of nuclear chemical plants for construction and subsequent operation at Sellafield Works is carried out by the Engineering Division of the Spent Fuel Management Services Group based at Risley, Warrington. Plant construction cannot take place, nor plant commissioning, until it has been demonstrated in the initial (design) safety case that the chosen design will allow the plant to be operated in an adequately safe manner, corresponding to an extremely low level of risk. The safety documentation procedure is described. A Preliminary Design Safety Appraisal is made of the initial design proposal to give an early indication of the order of risk that might prevail. The risk from each hazard is compared with an allocated risk target which makes up a proportion of the total plant risk which is quantified in BNFL's risk criteria. Where the risk appears unacceptable, appropriate modifications are made to the design. Prior to commissioning, a comprehensive, detailed risk assessment is carried out. The methodology of probabilistic risk assessment is described and examples given of how different hazards are assessed. (author)

  10. Characterization of Mediator Complex and its Associated Proteins from Rice.

    Science.gov (United States)

    Samanta, Subhasis; Thakur, Jitendra Kumar

    2017-01-01

    The Mediator complex is a multi-protein complex that acts as a molecular bridge conveying transcriptional messages from the cis element-bound transcription factor to the RNA Polymerase II machinery. It is found in all eukaryotes including members of the plant kingdom. Increasing number of reports from plants regarding different Mediator subunits involved in a multitude of processes spanning from plant development to environmental interactions have firmly established it as a central hub of plant regulatory networks. Routine isolation of Mediator complex in a particular species is a necessity because of many reasons. First, composition of the Mediator complex varies from species to species. Second, the composition of the Mediator complex in a particular species is not static under all developmental and environmental conditions. Besides this, at times, Mediator complex is used in in vitro transcription systems. Rice, a staple food crop of the world, is used as a model monocot crop. Realizing the need of a reliable protocol for the isolation of Mediator complex from plants, we describe here the isolation of Mediator complex from rice.

  11. Evolved Control of Natural Plants: Crossing the Reality Gap for User-Defined Steering of Growth and Motion

    DEFF Research Database (Denmark)

    Hofstadler, Daniel Nicolas; Wahby, Mostafa; Heinrich, Mary Katherine

    2017-01-01

    Mixing societies of natural and artificial systems can provide interesting and potentially fruitful research targets. Here we mix robotic setups and natural plants in order to steer the motion behavior of plants while growing. The robotic setup uses a camera to observe the plant and uses a pair...... of light sources to trigger phototropic response, steering the plant to user-defined targets. An evolutionary robotic approach is used to design a controller for the setup. Initially, preliminary experiments are performed with a simple predetermined controller and a growing bean plant. The plant behavior......-evolved controller in the real setup controlling a natural bean plant. The results demonstrate a successful crossing of the reality gap in the setup. The success of the approach allows for future extensions to more complex tasks including control of the shape of plants and pattern formation in multiple plant setups....

  12. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  13. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  14. Estimation of small-scale hydroelectric power plant costs

    International Nuclear Information System (INIS)

    Santos, Afonso Henriques Moreira; Silva, Benedito Claudio da; Magalhaes, Ricardo Nogueira

    2010-01-01

    Changes in Brazilian energy scenario through last years such as increase of demand and search for clean and economically feasible renewable energy sources, has stimulated investors to small hydro power plants (SHP) sector. Such characteristics together with several economic incentives, legal and regulatory mechanisms also, have helped and stimulated building of new plants of this kind and have attracted a great number of investors to this sector. Study of costs analysis and feasibility of investments is a study which has been used since long time in SHP business market as several preliminary studies previous to civil project have significant costs which lead us to count with a feasibility analysis from the very beginning of studies, exactly what is suggested in the present methodology. Such feasibility analysis, in the common patterns where basic unit costs of each input remain outstanding, would be very complex due to great difficulty in obtaining information at initial phase of project. In this direction this study brings a contribution for investors as well as for designers of small hydro power plants since it outlines a link between physical and energetic characteristics of small hydro power plant in its total cost. Such link is based in available physical characteristics in initial phase of the project, making possible a previous comparison between arrangements of a central or even the comparison of return of investment between different plants. The resulting benefit being the possibility of choosing centrals with greater economic feasibility disregarding bad undertakings or arrangements with more expressive cost. Final result gives a better delay in return of investment, helps in power, arrangements more optimized and in saving time as well, reducing costs of undertakings. Due to large number of SHP arrangements, we chose for this study the most common in Brazil, plant of medium and large fall, shunting line balance chimney and low pressure conduit. (author)

  15. Uranium deposit removal from the Oak Ridge Gaseous Diffusion Plant K-25 Building

    International Nuclear Information System (INIS)

    Ladd, L.D.; Stinnett, E.C. Jr.; Hale, J.R.; Haire, M.J.

    1993-01-01

    The Oak Ridge Gaseous Diffusion Plant went into operation as the first plant to separate uranium by the gaseous diffusion process. It was built during World War II as part of the U.S. Army Corps of Engineers' Manhattan Project. Its war-time code name was K-25, which was also the name of the first uranium separation building constructed at the installation. The K-25 building was considered an engineering miracle at the time of its construction. Built in a U shape ∼1 mile long and 400 ft wide, it housed complex and unique separation equipment. Despite its size and complexity, it was made fully operational within <2 yr after construction began. The facility operated successfully for more than 20 yr until it was placed in a standby mode in 1964. It is now clear the K-25 gaseous diffusion plant will never again be used to enrich uranium. The U.S. Department of Energy, therefore, has initiated a decontamination and decommission program. This paper discusses various procedures and techniques for addressing critical mass, uranium deposits, and safeguards issues

  16. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Thomas [NUKEM Technologies GmbH, Alzenau (Germany); NUKEM Technologies GmbH, Slavutich (Ukraine)

    2009-07-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  17. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    International Nuclear Information System (INIS)

    Pietsch, Thomas

    2009-01-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  18. Plant defences against ants provide a pathway to social parasitism in butterflies

    Science.gov (United States)

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M.; Bonelli, Simona; Casacci, Luca P.; Zebelo, Simon A.; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E.; Thomas, Jeremy A.; Balletto, Emilio

    2015-01-01

    Understanding the chemical cues and gene expressions that mediate herbivore–host-plant and parasite–host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous–predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host. PMID:26156773

  19. Initial perspectives on process threat management

    International Nuclear Information System (INIS)

    Whiteley, James R. Rob; Mannan, M. Sam

    2004-01-01

    Terrorist and criminal acts are now considered credible risks in the process industries. Deliberate attacks on the nation's petroleum refineries and chemical plants would pose a significant threat to public welfare, national security, and the US economy. To-date, the primary response of government and industry has been on improved security to prevent attacks and the associated consequences. While prevention is clearly preferred, the potential for successful attacks must be addressed. If plant security is breached, the extent of the inflicted damage is determined by the available plant safety systems and procedures. We refer to this 'inside the gate' response as process threat management. The authors have initiated a joint industry/academia study to address: - the level of safety provided by existing plant equipment and safety systems in response to a terrorist act, and; - identification of process (rather than security) needs or opportunities to address this new safety concern. This paper describes the initial perspectives and issues identified by the team at the beginning of the study

  20. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Science.gov (United States)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to

  1. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Directory of Open Access Journals (Sweden)

    Venturi Maria L

    2004-01-01

    Full Text Available Abstract Background The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. Results Our phylogenetic analyses revealed that (i animals are more closely related to fungi than to plants, (ii red algae are closer to plants than to animals or fungi, (iii choanoflagellates are closer to animals than to fungi or plants, (iv diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v diplomonads are basal to other eukaryotes (including alveolates and euglenozoans. Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene and concatenated (supergene. Different time estimation methods yielded similar results (within 5%: vertebrate-arthropod (964 million years ago, Ma, Cnidaria-Bilateria (1,298 Ma, Porifera-Eumetozoa (1,351 Ma, Pyrenomycetes-Plectomycetes (551 Ma, Candida-Saccharomyces (723 Ma, Hemiascomycetes-filamentous Ascomycota (982 Ma, Basidiomycota-Ascomycota (968 Ma, Mucorales-Basidiomycota (947 Ma, Fungi-Animalia (1,513 Ma, mosses-vascular plants (707 Ma, Chlorophyta-Tracheophyta (968 Ma, Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma, Plantae-Animalia (1,609 Ma, Alveolata-plants+animals+fungi (1,973 Ma, Euglenozoa-plants+animals+fungi (1,961 Ma, and Giardia-plants+animals+fungi (2,309 Ma. By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10

  2. Human factor in the operation of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Kostiha, Frantisek; Pleskac, Frantisek

    2009-01-01

    The human factor, i.e. the action of man within complex technical systems, has been in the focus of the Dukovany NPP management constantly. The paper gives an overview of the plant strategy regarding human factor issues, such as training, human factor prevention methods and practices to improve the resistance of the system to human error, the use of information systems, and operational feedback from the role of the human factor and influence of the operators on the initiation, development and resulting level of severity of operational events. The method of monitoring and assessment of the quality of human performance at the Dukovany plant on an ongoing basis aimed at a constant improvement is highlighted. (orig.)

  3. Identification of nonlinear dynamics in power plant components using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Fernandez, B.; Tsai, W.K.

    1990-01-01

    Advances in digital computer technology have enabled widespread implementation of closed-loop digital control systems in a variety of industries. In some instances, however, the complexity of the plant and the uncertainty associated with the parameters involved in the mathematical modeling narrow the range of applicability of most systematic control system design methodologies. A multiyear project has been initiated to assess the feasibility of the artificial neural networks (ANNs) technology for computerized enhanced diagnostics and control of nuclear power plant components. At this stage of the project, a new methodology, based on backpropagation learning, has been developed for identifying the nonlinear dynamic systems from a set of input-output data known as the training set

  4. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR (section) 761.75[c])

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2002-01-01

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) (section) 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available

  5. Preservation of competence and cooperation with universities. Initiatives of German nuclear power plant operators to further know-how and competence preservation

    International Nuclear Information System (INIS)

    Seidel, Andre; Mohrbach, Ludger

    2009-01-01

    Nuclear power plants and nuclear technology offer graduates of technical and scientific university disciplines ambitious challenges in an attractive working environment. Irrespective of the politically motivated opt-out of the peaceful use of nuclear power in Germany, nuclear industry will continue to need motivated and committed young scientists and engineers for the next few decades. They contribute to the success of nuclear power plant operators, manufacturers, and consulting institutions. German nuclear power plant operators promote institutions of learning and research focusing on nuclear topics by means of a coordinated initiative. In this way, they contribute to preserving competence, attracting young scientists and engineers, and expanding research and development in Germany beyond the confines of specific topics. VGB PowerTech e.V. (VGB) supports operators in organizing these activities also by establishing subject-related working parties as a platform for exchanging information and harmonizing specific measures. (orig.)

  6. Plant Research '75

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Research is reported on stomatal regulation of the gas exchanges between plant and environment; inhibitory effects in flower formation; plant growth and development through hormones; hormone action; development and nitrogen fixation in algae; primary cell wall glycoprotein ectensin; enzymic mechanisms and control of polysaccharide and glycoprotein synthesis; molecular studies of membrane studies; sensory transduction in plants; regulation of formation of protein complexes and enzymes in higher plant cell and mechanism of sulfur dioxide toxicity in plants. (PCS)

  7. Application of fault tree methodology to modeling of the AP1000 plant digital reactor protection system

    International Nuclear Information System (INIS)

    Teolis, D.S.; Zarewczynski, S.A.; Detar, H.L.

    2012-01-01

    The reactor trip system (RTS) and engineered safety features actuation system (ESFAS) in nuclear power plants utilizes instrumentation and control (IC) to provide automatic protection against unsafe and improper reactor operation during steady-state and transient power operations. During normal operating conditions, various plant parameters are continuously monitored to assure that the plant is operating in a safe state. In response to deviations of these parameters from pre-determined set points, the protection system will initiate actions required to maintain the reactor in a safe state. These actions may include shutting down the reactor by opening the reactor trip breakers and actuation of safety equipment based on the situation. The RTS and ESFAS are represented in probabilistic risk assessments (PRAs) to reflect the impact of their contribution to core damage frequency (CDF). The reactor protection systems (RPS) in existing nuclear power plants are generally analog based and there is general consensus within the PRA community on fault tree modeling of these systems. In new plants, such as AP1000 plant, the RPS is based on digital technology. Digital systems are more complex combinations of hardware components and software. This combination of complex hardware and software can result in the presence of faults and failure modes unique to a digital RPS. The United States Nuclear Regulatory Commission (NRC) is currently performing research on the development of probabilistic models for digital systems for inclusion in PRAs; however, no consensus methodology exists at this time. Westinghouse is currently updating the AP1000 plant PRA to support initial operation of plants currently under construction in the United States. The digital RPS is modeled using fault tree methodology similar to that used for analog based systems. This paper presents high level descriptions of a typical analog based RPS and of the AP1000 plant digital RPS. Application of current fault

  8. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  9. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant1

    Science.gov (United States)

    Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv

    2015-01-01

    During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340

  10. Only in dying, life: programmed cell death during plant development.

    Science.gov (United States)

    Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K

    2015-02-01

    Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Won; Leckie, J.O. [Stanford Univ., CA (United States); Siegel, M.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption.

  12. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    International Nuclear Information System (INIS)

    Park, Sang-Won; Leckie, J.O.; Siegel, M.D.

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption

  13. Plants under dual attack

    NARCIS (Netherlands)

    Ponzio, C.A.M.

    2016-01-01

    Though immobile, plants are members of complex environments, and are under constant threat from a wide range of attackers, which includes organisms such as insect herbivores or plant pathogens. Plants have developed sophisticated defenses against these attackers, and include chemical responses

  14. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.

    Science.gov (United States)

    Schneider, André; Nguyen, Christophe

    2011-01-01

    Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Creation of initial breeding material of potato with complex resistance to Fusarium dry rot and tuber late blight

    Directory of Open Access Journals (Sweden)

    В. В. Гордієнко

    2017-09-01

    Full Text Available Purpose. To select the initial breeding material with complex resistance to Fusarium dry rot and tuber late blight among the created potato of secondary interspecific hyb­rids. Methods. Interspecific hybridization, laboratory test, analytical approach. Results. Based on the interspecific hybridization, the initial breeding material was created and the degree of its resistance to the above pathogens was determined by way of artificial infection of tubers with the inoculum of such fungi as Fusarium sambucinum Fuck and Phytophthora infestans (Mont. De Bary. During interspecific hybridization based on schemes of saturating and enriching crosses, using forms of various species with a high phenotypic expression of resistance to Fusarium dry rot, the result of the cumulative effect of genes that control resistance to the pathogen was observed. Crossing combinations differed significantly for the degree of population average manifestation of resistance to the diseases. Conclusions. Combinations В54, В53, В61 with a mean resistance (above 7 grades to Fusarium dry rot have been selected. Such combinations as B52, B50 and B54 had increased resistance to tuber late blight. It was found that the combination В54 is characterized by complex resistance to both diseases. For further work, the following samples with complex resistance to Fusarium dry rot and tuber late blight (7 grades or more were selected: В59с42, В59с43, В50с16, В50с19, В50с44, В51с1, В51с26, В51с28, В52с11, В52с23, В52с24, В52с29, В53с1, В53с11, В53с17 , В53с23, В54с13, В54с14.

  16. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    Science.gov (United States)

    Gratton, Steven

    2011-09-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain “Youngness Paradox”-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  17. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    International Nuclear Information System (INIS)

    Gratton, Steven

    2011-01-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain ''Youngness Paradox''-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  18. Plants: An International Scientific Open Access Journal to Publish All Facets of Plants, Their Functions and Interactions with the Environment and Other Living Organisms

    Science.gov (United States)

    Fernando, W.G. Dilantha

    2012-01-01

    Plants are one of the two major groups of living organisms that are an essential entity to the function of the biosphere. Plants can be found in all known parts of the earth, in all shapes and sizes. They include the green algae, mosses, ferns, vines, grasses, bushes, herbs, flowering plants and trees. Although some plants are parasitic, most produce their own food through photosynthesis. Most plants initiate from a seed. The importance of plants in the food chain dates back to ancient times. The first humans gathered wild plants for food. As settlements developed, food crops were cultivated, leading to selection of high-yielding cultivated varieties to feed the growing populations. Unlike plants, humans and other animals are unable to manufacture their own food. Therefore, they are dependent, directly or indirectly, on plants. Plants are found in natural ecosystems such as rain forests, and also in agricultural areas and urbanized settings. They are an essential part of our daily lives providing food, clean air, and important ecosystem functions. The study of plants and their function could be considered the most complex of interactions. From the time a seed germinates, it goes through a myriad of physiological processes that can be closely studied using modern tools and molecular biological methods. An open access journal such as Plants will give millions of readers access to that information around the world. PMID:27137635

  19. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S... Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the... power plants. ADDRESSES: Please refer to Docket ID NRC-2012-0293 about the availability of information...

  20. Initial investigation of dietitian perception of plant-based protein quality

    OpenAIRE

    Hughes, Glenna J; Kress, Kathleen S; Armbrecht, Eric S; Mukherjea, Ratna; Mattfeldt-Beman, Mildred

    2014-01-01

    Interest in plant-based diets is increasing, evidenced by scientific and regulatory recommendations, including Dietary Guidelines for Americans. Dietitians provide guidance in dietary protein selection but little is known about how familiar dietitians are with the quality of plant versus animal proteins or methods for measuring protein quality. Likewise, there is a need to explore their beliefs related to dietary recommendations. The aim of this study was to assess dietitians' perceptions of ...

  1. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    Science.gov (United States)

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Optimal load allocation of complex ship power plants

    International Nuclear Information System (INIS)

    Baldi, Francesco; Ahlgren, Fredrik; Melino, Francesco; Gabrielii, Cecilia; Andersson, Karin

    2016-01-01

    Highlights: • The optimal operation of the prime movers of hybrid ship power plants is addressed. • Both mechanical, electric and thermal power demand are considered. • The problem is modelled as a mixed integer-nonlinear programming problem. • Up to 3% savings can be achieved with hybrid power plants. • Including the thermal power demand improves the solution by up to 4%. - Abstract: In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, the cruise industry is growing in size and impact. In this context, further effort is required for improving the energy efficiency of cruise ship energy systems. In this paper, we propose a generic method for modelling the power plant of an isolated system with mechanical, electric and thermal power demands and for the optimal load allocation of the different components that are able to fulfil the demand. The optimisation problem is presented in the form of a mixed integer linear programming (MINLP) problem, where the number of engines and/or boilers running is represented by the integer variables, while their respective load is represented by the non-integer variables. The individual components are modelled using a combination of first-principle models and polynomial regressions, thus making the system nonlinear. The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea, and used to compare the existing power plant with a hybrid propulsion plant. The results show the benefits brought by using the proposing method, which allow estimating the performance of the hybrid system (for which the load allocation is a non-trivial problem) while also including the contribution of the heat demand. This allows showing that, based on a reference round voyage, up to 3% savings could be achieved by installing the proposed system, compared to the existing one, and that a NPV of 11 kUSD could be achieved already 5 years after the installation of the

  3. Plant stress signalling: understanding and exploiting plant-plant interactions.

    Science.gov (United States)

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  4. A quantitative approach to design of material accounting system for a complex facility. Study at the PNC reprocessing plants

    International Nuclear Information System (INIS)

    Ikawa, K.

    1994-01-01

    An approach to a design of nuclear materials accounting sysyem for a complex facility in Japan is discussed. Near-real-time materials accountancy model studied at the PNC reprocessing plant is described. Main features of the computerized nuclear materials accounting system are considered as well as the PROMAC - C code algorithm for statistical data processing is presented. 18 refs., 5 figs., 1 tab

  5. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  6. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  7. Initiating Events for Multi-Reactor Plant Sites

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  8. Polyamines and abiotic stress in plants: A complex relationship

    Directory of Open Access Journals (Sweden)

    Rakesh eMinocha

    2014-05-01

    Full Text Available The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g. due to their ability to deal with oxidative radicals or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism. The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e. being a protector as well as a perpetrator of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

  9. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  10. Oak Ridge Y-12 Plant groundwater protection program management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  11. Oak Ridge Y-12 Plant groundwater protection program management plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres

  12. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  13. Clarification of complex phenomena in nuclear plants present status and future trend of fluid analysis by cellular automaton methods

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi

    1999-01-01

    Since most of complex phenomena comprise of various elementary processes e.g., fluid flow, heat conduction, phase transition, chemical reaction, structural deformation, and these processes interact each other nonlinearly, the complex phenomena cannot be easily clarified by such the conventional topdown approaches as describe phenomena by using differential equations. In contrast to the topdown approaches where the differential equations are located at the top of the analysis procedures, these are bottomup approaches where phenomena are reproduced by local interaction of particles on cells. Cellular automata are one of the typical bottomup approaches. The basic principle, computer simulation results, and massively parallel processors for the cellular automata are reviewed and perspectives of the bottomup approach are discussed on clarification of the complex phenomena in nuclear plants. The computer simulations mainly deal with fluid flows and phase interfacial phenomena. (author)

  14. Foliar uptake of zinc by vascular plants. Radiometric study

    International Nuclear Information System (INIS)

    Maresova, J.; Remenarova, L.; Hornik, M.; Pipiska, M.; Augustin, J.; Lesny, J.

    2012-01-01

    The aim of this paper was to obtain quantitative data of foliar uptake kinetics and long distance transport of zinc in tobacco (Nicotiana tabacum L.) and hop (Humulus lupulus L.) plants. Zinc was used as a model of microelement and toxic metal, tobacco and hop as a representatives of agriculturally important plants. A tip of leaf blade was immersed in the solution spiked with 65 ZnCl 2 and foliar uptake and translocation to other parts of the plant grown in nutrient solution was measured by gamma-spectrometry and autoradiography. We found that foliar zinc uptake by both plants is dependent on the initial metal concentration within the range C 0 = 10-100 μmol dm -3 ZnCl 2 . Zinc is immobilized mainly in immersed part of the contact leaf and only 0 = 0.1 mmol dm -3 ZnCl 2 concentrations >2.5 mg/g Zn and 4.8 mg/g Zn (dry wt.) in immersed part of tobacco and hop leaf plant, respectively were found after 5 days of exposure. Low mobility of zinc entering the plant via the leaf surface can be attributed to the immobilization of zinc into Zn-ligand complexes with high stability constants log K at pH 6.0-8.0, such as the reaction products of Zn 2+ ions with citric acid, histidine or phosphates. Zinc can be extracted from dried leaves by the solutions of inorganic salts, carboxylic acids, amino acids and synthetic complexing ligands such as EDTA. Anionic (SDS) and non-ionic (Tween 40) surfactants causes the decrease of the Zn foliar uptake, but not translocation of Zn from the contact leaf area. Obtained data are discussed from the point of view of possible limited efficiency of liquid formulations designed for practical applications as Zn foliar fertilizers. (author)

  15. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts

    NARCIS (Netherlands)

    Albert, M.; Kaiser, B.; Krol, van der A.R.; Kaldenhoff, R.

    2010-01-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which

  16. RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex.

    Science.gov (United States)

    Krehan, Mario; Heubeck, Christian; Menzel, Nicolas; Seibel, Peter; Schön, Astrid

    2012-09-01

    RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.

  17. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells.

    Science.gov (United States)

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L; Liao, Gongxian; Hoffman, Brad E; Leong, Kam W; Terhorst, Cox; Daniell, Henry; Herzog, Roland W

    2015-04-09

    Coagulation factor replacement therapy for the X-linked bleeding disorder hemophilia is severely complicated by antibody ("inhibitor") formation. We previously found that oral delivery to hemophilic mice of cholera toxin B subunit-coagulation factor fusion proteins expressed in chloroplasts of transgenic plants suppressed inhibitor formation directed against factors VIII and IX and anaphylaxis against factor IX (FIX). This observation and the relatively high concentration of antigen in the chloroplasts prompted us to evaluate the underlying tolerance mechanisms. The combination of oral delivery of bioencapsulated FIX and intravenous replacement therapy induced a complex, interleukin-10 (IL-10)-dependent, antigen-specific systemic immune suppression of pathogenic antibody formation (immunoglobulin [Ig] 1/inhibitors, IgE) in hemophilia B mice. Tolerance induction was also successful in preimmune mice but required prolonged oral delivery once replacement therapy was resumed. Orally delivered antigen, initially targeted to epithelial cells, was taken up by dendritic cells throughout the small intestine and additionally by F4/80(+) cells in the duodenum. Consistent with the immunomodulatory responses, frequencies of tolerogenic CD103(+) and plasmacytoid dendritic cells were increased. Ultimately, latency-associated peptide expressing CD4(+) regulatory T cells (CD4(+)CD25(-)LAP(+) cells with upregulated IL-10 and transforming growth factor-β (TGF-β) expression) as well as conventional CD4(+)CD25(+) regulatory T cells systemically suppressed anti-FIX responses. © 2015 by The American Society of Hematology.

  18. Complex agro-ecosystems for food security in a changing climate

    Science.gov (United States)

    Khumairoh, Uma; Groot, Jeroen CJ; Lantinga, Egbert A

    2012-01-01

    Attempts to increase food crop yields by intensifying agricultural systems using high inputs of nonrenewable resources and chemicals frequently lead to de-gradation of natural resources, whereas most technological innovations are not accessible for smallholders that represent the majority of farmers world wide. Alternatively, cocultures consisting of assemblages of plant and animal species can support ecological processes of nutrient cycling and pest control, which may lead to increasing yields and declining susceptibility to extreme weather conditions with increasing complexity of the systems. Here we show that enhancing the complexity of a rice production system by adding combinations of compost, azolla, ducks, and fish resulted in strongly increased grain yields and revenues in a season with extremely adverse weather conditions on East Java, Indonesia. We found that azolla, duck, and fish increased plant nutrient content, tillering and leaf area expansion, and strongly reduced the density of six different pests. In the most complex system comprising all components the highest grain yield was obtained. The net revenues of this system from sales of rice grain, fish, and ducks, after correction for extra costs, were 114% higher than rice cultivation with only compost as fertilizer. These results provide more insight in the agro-ecological processes and demonstrate how complex agricultural systems can contribute to food security in a changing climate. If smallholders can be trained to manage these systems and are supported for initial investments by credits, their livelihoods can be improved while producing in an ecologically benign way. PMID:22957173

  19. Prospects for the utilization of small nuclear plants for civil ships, floating heat and power stations and power seawater desalination complexes

    International Nuclear Information System (INIS)

    Polunichev, V.I.

    2000-01-01

    Small power nuclear reactor plants developed by OKB Mechanical Engineering are widely used as propulsion plants in various civil ships. Russia is the sole country in the world that possesses a powerful icebreaker and transport fleet which offers effective solution for vital socio-economic tasks of Russia's northern regions by maintaining a year-round navigation along the Arctic sea route. In the future, intensification of freighting volumes is expected in Arctic seas and at estuaries of northern rivers. Therefore, further replenishment of nuclear-powered fleet is needed by new generation ice-breakers equipped with advanced reactor plants. Adopted progressive design and technology solutions, reliable equipment and safety systems being continuously perfected on the basis of multi year operation experience feedback, addressing updated safety codes and achievement of science and technology, allow the advanced propulsion reactor plants of this type to be recommended as energy sources for floating heat and power co-generation stations and power-seawater desalination complexes. (author)

  20. Master Logic Diagram: An Approach to Identify Initiating Events of HTGRs

    Science.gov (United States)

    Purba, J. H.

    2018-02-01

    Initiating events of a nuclear power plant being evaluated need to be firstly identified prior to applying probabilistic safety assessment on that plant. Various types of master logic diagrams (MLDs) have been proposedforsearching initiating events of the next generation of nuclear power plants, which have limited data and operating experiences. Those MLDs are different in the number of steps or levels and different in the basis for developing them. This study proposed another type of MLD approach to find high temperature gas cooled reactor (HTGR) initiating events. It consists of five functional steps starting from the top event representing the final objective of the safety functions to the basic event representing the goal of the MLD development, which is an initiating event. The application of the proposed approach to search for two HTGR initiating events, i.e. power turbine generator trip and loss of offsite power, is provided. The results confirmed that the proposed MLD is feasiblefor finding HTGR initiating events.

  1. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    Science.gov (United States)

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  2. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  3. Reducing NO(x) emissions from a nitric acid plant of domestic petrochemical complex: enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process.

    Science.gov (United States)

    Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar

    2013-01-01

    The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain.

  4. Development and licensing of a melting plant for Chernobyl scrap

    International Nuclear Information System (INIS)

    Sappok, M.; Zunk, H.; Fashevsky, K.A.

    1998-01-01

    One decade after the accident at unit 4 of the Chernobyl nuclear power station, a melting plant for radioactively contaminated metallic materials, the so-called SURF facility, is being planned and licensed for erection in the direct neighbourhood of the NPP area. Main goal is the recycling of the material largely decontaminated by the melting process, by means of manufacturing of casks and containers for waste disposal and of shielding equipment. The melting plant will be part of the Ukrainian waste handling centre (CPPRO). The technology is based on the long-term experience gained at Siempelkamp's CARLA plant in Krefeld. Within 1995 and 1996 the licensing conditions were defined, the licensing documents prepared and the formal procedure initiated. The complex is scheduled to start operation in 2001, in case the necessary financing is allocated. To this end the proposed site of the facility has undergone the state assessment. The technical documentation for construction is at the stage of development. (author)

  5. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    Science.gov (United States)

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  6. Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases

    Directory of Open Access Journals (Sweden)

    Hermann Restrepo-Diaz

    2013-08-01

    Full Text Available Leaf photosynthesis, a major determinant for yield sustainability in rice, is greatly conditioned by high temperature stress during growth. The effect of short-term high temperatures on leaf photosynthesis, stomatal conductance, Fv/Fm, SPAD readings and yield characteristics was studied in two Colombian rice cultivars. Two genotypes, cv. Fedearroz 50 (F50 and cv. Fedearroz 733 (F733 were used in pot experiments with heat stress treatment (Plants were exposed to 40°C for two and half hours for five consecutive days and natural temperature (control treatment. Heat treatments were carried out at the initiation of panicle primordial (IP or grain-filling (GF phases. The results showed that short-term high temperature stress produced a reduction on the photosynthesis rate in both cultivars either IP or GF phases. Similar trends were found on stomatal conductance in all cases due to high temperatures. Although Fv/Fm and SPAD readings were not affected by high temperatures, these variables diminished significantly among phenological phases. 'F733' rice plants showed higher number spikelet sterility due to heat stress treatments. These results seem to indicate that heat-tolerant cultivars of rice is associated with high levels of photosynthesis rate in leaves.

  7. From IPE [individual plant examinations] to IPEEE [individual plant examination of external events

    International Nuclear Information System (INIS)

    Newton, I.M.

    1994-01-01

    In addition to doing individual plant examinations (IPEs) which assess risk to nuclear plants from internal factors, all US plants are now also required to analyse external events and submit an IPEEE (Individual Plant Examination of External Events). Specifically, the IPEEEs require an assessment of plant-specific risks from the following types of initiating events: seismic events; fire; wind; tornadoes; flooding; accidents involving transportation or nearby facilities, such as oil refineries. (author)

  8. Planning and building a complex mine water treatment plant for Vietnam; Planung und Bau einer komplexen Grubenwasserreinigungsanlage fuer Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Schlenstedt, Joerg [LMBV international, Senftenberg (Germany); Bilek, Felix [GFI Grundwasserforschungsinstitut GmbH, Dresden (Germany); Kochan, Hans-Juergen

    2010-05-15

    In an anthracite coal mine in the northeast of Vietnam a mine water treatment plant shall be built. This plant is meant to be a pilot plant for further plants in this region. Apart from the climatic situation and the initially barely existing hydrological and hydrochemical data material, the high solids and manganese content in the mine water are a major challenge. Only by monitoring and capacity building which ran parallel to the planning process as well as the data collection and process optimisation in laboratory and bench scale, the planning process could be realised successfully. For the mine water remediation such a process was developed and well planned. This process is based on neutralisation, oxidation and hydroxide sedimentation as well as on oxidation and sorption processes which are catalysed on solid material surfaces. The project is financed by the BMBF sponsored RAME group and the individual contribution of the German project partners on the on hand. In this framework all scientific and engineering performances are generated. On the other hand the Vietnamese partner VINACOMIN invests by financing the construction of the plant, partly building it and participating on the planning with own engineering performances. Beside the authors, Peter Denke from LMBV international, Stefan Kurtz from GFI Dresden and Marlies Jaschke from eta-AG are involved in the project. (orig.)

  9. Mixed-waste minimization activities in the nuclear weapons complex

    International Nuclear Information System (INIS)

    Marchetti, J.A.; Suffern, J.S.

    1991-01-01

    Over the past 40 years, the US Department of Energy (DOE) and the nuclear weapons complex have successfully executed their mission of providing the country with a strong nuclear deterrent. Now, however, they must attain another mission at the same time: to eliminate or greatly reduce the environmental, safety, and health problems in the complex. Mixed-waste minimization activities have taken place in 11 of the complex production plants and laboratories: the Pinellas plant, the Mount plant, the Kansas City plant, the Y-12 plant, the Rocky Flats plant, the Savannah River Site (SRS), the Savannah River Site (SRS), the Pantex plant, the Nevada Test Site, Sandia National Laboratories, Los Alamos National Laboratory, and the Lawrence Livermore National Laboratory. The mixed-waste minimization opportunities that have been implemented to date by the production facilities are different from those that have been implemented by the laboratories. Areas of opportunity at the plants involve the following activities: (1) process design or improvement; (2) substitution of materials; (3) waste segregation; (4) recycling; and (5) administrative controls

  10. Nuclear plant analyzer program for Bulgaria

    International Nuclear Information System (INIS)

    Shier, W.; Kennett, R.

    1993-01-01

    An interactive nuclear plant analyzer(NPA) has been developed for use by the Bulgarian technical community in the training of plant personnel, the development and verification of plant operating procedures, and in the analysis of various anticipated operational occurrences and accident scenarios. The current NPA includes models for a VVER-440 Model 230 and a VVER-1000 Model 320 and is operational on an IBM RISC6000 workstation. The RELAP5/MOD2 computer code has been used for the calculation of the reactor responses to the interactive commands initiated by the NPA operator. The interactive capabilities of the NPA have been developed to provide considerable flexibility in the plant actions that can be initiated by the operator. The current capabilities for both the VVER-440 and VVER-1000 models include: (1) scram initiation; (2) reactor coolant pump trip; (3) high pressure safety injection system initiation; (4) low pressure safety injection system initiation; (5) pressurizer safety valve opening; (6) steam generator relief/safety valve opening; (7) feedwater system initiation and trip; (8) turbine trip; and (9) emergency feedwater initiation. The NPA has the capability to display the results of the simulations in various forms that are determined by the model developer. Results displayed on the reactor mask are shown through the user defined, digital display of various plant parameters and through color changes that reflect changes in primary system fluid temperatures, fuel and clad temperatures, and the temperature of other metal structures. In addition, changes in the status of various components and systems can be initiated and/or displayed both numerically and graphically on the mask. This paper provides a description of the structure of the NPA, a discussion of the simulation models used for the VVER-440 and the VVER-1000, and an overview of the NPA capabilities. Typical results obtained using both simulation models will be discussed

  11. The Complexity of Bioactive Natural Products in Plants

    DEFF Research Database (Denmark)

    Frisch, Tina

    Plants produce a diverse range of bioactive natural products promoting their fitness. These specialized metabolites may serve as chemical defence against herbivores and pathogens and may inhibit the growth and development of competing species. Hydroxynitrile glucosides and glucosinolates are two...... classes of defence compounds, which have diverging properties, but also share common biosynthetic features. Hydroxynitrile glucosides are produced in species across the plant kingdom, whereas glucosinolates are found almost exclusively within the Brassicales, which generally does not contain...... hydroxynitrile glucosides. This division has raised questions regarding possible evolutionary relationships between the biosynthetic pathways. The very rare co-occurrence of hydroxynitrile glucosides and glucosinolates found in Alliaria petiolata (garlic mustard, løgkarse) and Carica papaya (papaya) makes...

  12. A methodology for analyzing precursors to earthquake-initiated and fire-initiated accident sequences

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.; Apostolakis, G.

    1998-04-01

    This report covers work to develop a methodology for analyzing precursors to both earthquake-initiated and fire-initiated accidents at commercial nuclear power plants. Currently, the U.S. Nuclear Regulatory Commission sponsors a large ongoing project, the Accident Sequence Precursor project, to analyze the safety significance of other types of accident precursors, such as those arising from internally-initiated transients and pipe breaks, but earthquakes and fires are not within the current scope. The results of this project are that: (1) an overall step-by-step methodology has been developed for precursors to both fire-initiated and seismic-initiated potential accidents; (2) some stylized case-study examples are provided to demonstrate how the fully-developed methodology works in practice, and (3) a generic seismic-fragility date base for equipment is provided for use in seismic-precursors analyses. 44 refs., 23 figs., 16 tabs

  13. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding.

    Science.gov (United States)

    Bhat, Javaid A; Ali, Sajad; Salgotra, Romesh K; Mir, Zahoor A; Dutta, Sutapa; Jadon, Vasudha; Tyagi, Anshika; Mushtaq, Muntazir; Jain, Neelu; Singh, Pradeep K; Singh, Gyanendra P; Prabhu, K V

    2016-01-01

    Genomic selection (GS) is a promising approach exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. In plant breeding, it provides opportunities to increase genetic gain of complex traits per unit time and cost. The cost-benefit balance was an important consideration for GS to work in crop plants. Availability of genome-wide high-throughput, cost-effective and flexible markers, having low ascertainment bias, suitable for large population size as well for both model and non-model crop species with or without the reference genome sequence was the most important factor for its successful and effective implementation in crop species. These factors were the major limitations to earlier marker systems viz., SSR and array-based, and was unimaginable before the availability of next-generation sequencing (NGS) technologies which have provided novel SNP genotyping platforms especially the genotyping by sequencing. These marker technologies have changed the entire scenario of marker applications and made the use of GS a routine work for crop improvement in both model and non-model crop species. The NGS-based genotyping have increased genomic-estimated breeding value prediction accuracies over other established marker platform in cereals and other crop species, and made the dream of GS true in crop breeding. But to harness the true benefits from GS, these marker technologies will be combined with high-throughput phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the continuous decline in sequencing cost will make the WGS feasible and cost effective for GS in near future. Till that time matures the targeted sequencing seems to be more cost-effective option for large scale marker discovery and GS, particularly in case of large and un-decoded genomes.

  14. Complexities of Nitrogen Isotope Biogeochemistry in Plant-Soil Systems: Implications for the Study of Ancient Agricultural and Animal Management Practices

    Directory of Open Access Journals (Sweden)

    Paul eSzpak

    2014-06-01

    Full Text Available Nitrogen isotopic studies have potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1 agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage and (2 animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens. The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts.

  15. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses.

    Science.gov (United States)

    Duprat, Anne; Caranta, Carole; Revers, Frédéric; Menand, Benoît; Browning, Karen S; Robaglia, Christophe

    2002-12-01

    An Arabidopsis thaliana line bearing a transposon insertion in the gene coding for the isozyme form of the plant-specific cap-binding protein, eukaryotic initiation factor (iso) 4E (eIF (iso) 4E), has been isolated. This mutant line completely lacks both eIF(iso)4E mRNA and protein, but was found to have a phenotype and fertility indistinguishable from wild-type plants under standard laboratory conditions. In contrast, the amount of the related eIF4E protein was found to increase in seedling extracts. Furthermore, polysome analysis shows that the mRNA encoding eIF4E was being translated at increased levels. Given the known interaction between cap-binding proteins and potyviral genome-linked proteins (VPg), this plant line was challenged with two potyviruses, Turnip mosaic virus (TuMV) and Lettuce mosaic virus (LMV) and was found resistant to both, but not to the Nepovirus, Tomato black ring virus (TBRV) and the Cucumovirus, Cucumber mosaic virus (CMV). Together with previous data showing that the VPg-eIF4E interaction is necessary for virus infectivity and upregulates genome amplification, this shows that the eIF4E proteins are specifically recruited for the replication cycle of potyviruses.

  16. Mediated Plastid RNA Editing in Plant Immunity

    Science.gov (United States)

    García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo

    2013-01-01

    Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264

  17. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  18. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  19. Culinary plants and their potential impact on metabolic overload.

    Science.gov (United States)

    Kim, Ji Yeon; Kwon, Oran

    2011-07-01

    Contemporary human behavior has led a large proportion of the population to metabolic overload and obesity. Postprandial hyperlipidemia and hyperglycemia evoke redox imbalance in the short term and lead to complex chronic disease in the long term with repeated occurrence. Complex diseases are best prevented with complex components of plants; thus, current nutrition research has begun to focus on the development of plant-based functional foods and dietary supplements for health and well-being. Furthermore, given the wide range of species, parts, and secondary metabolites, culinary plants can contribute significant variety and complexity to the human diet. Although understanding the health benefits of culinary plants has been one of the great challenges in nutritional science due to their inherent complexity, it is an advantageous pursuit. This review will address the challenges and opportunities relating to studies of the health benefits of culinary plants, with an emphasis on obesity attributed to metabolic overload. © 2011 New York Academy of Sciences.

  20. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    International Nuclear Information System (INIS)

    Yan, Bing; Stantic, Marina; Zobalova, Renata; Bezawork-Geleta, Ayenachew; Stapelberg, Michael; Stursa, Jan; Prokopova, Katerina; Dong, Lanfeng; Neuzil, Jiri

    2015-01-01

    Accumulating evidence suggests that breast cancer involves tumour-initiating cells (TICs), which play a role in initiation, metastasis, therapeutic resistance and relapse of the disease. Emerging drugs that target TICs are becoming a focus of contemporary research. Mitocans, a group of compounds that induce apoptosis of cancer cells by destabilising their mitochondria, are showing their potential in killing TICs. In this project, we investigated mitochondrially targeted vitamin E succinate (MitoVES), a recently developed mitocan, for its in vitro and in vivo efficacy against TICs. The mammosphere model of breast TICs was established by culturing murine NeuTL and human MCF7 cells as spheres. This model was verified by stem cell marker expression, tumour initiation capacity and chemotherapeutic resistance. Cell susceptibility to MitoVES was assessed and the cell death pathway investigated. In vivo efficacy was studied by grafting NeuTL TICs to form syngeneic tumours. Mammospheres derived from NeuTL and MCF7 breast cancer cells were enriched in the level of stemness, and the sphere cells featured altered mitochondrial function. Sphere cultures were resistant to several established anti-cancer agents while they were susceptible to MitoVES. Killing of mammospheres was suppressed when the mitochondrial complex II, the molecular target of MitoVES, was knocked down. Importantly, MitoVES inhibited progression of syngeneic HER2 high tumours derived from breast TICs by inducing apoptosis in tumour cells. These results demonstrate that using mammospheres, a plausible model for studying TICs, drugs that target mitochondria efficiently kill breast tumour-initiating cells. The online version of this article (doi:10.1186/s12885-015-1394-7) contains supplementary material, which is available to authorized users

  1. The plant exocyst

    NARCIS (Netherlands)

    Zhang, Y.; Emons, A.M.C.; Ketelaar, T.

    2010-01-01

    exocyst is an octameric vesicle tethering complex that functions upstream of SNARE mediated exocytotic vesicle fusion with the plasma membrane. All proteins in the complex have been conserved during evolution, and genes that encode the exocyst subunits are present in the genomes of all plants

  2. The knowledge-based framework for a nuclear power plant operator advisor

    International Nuclear Information System (INIS)

    Miller, D.W.

    1989-01-01

    An important facet in the design, development, and evaluation of aids for complex systems is the identification of the tasks performed by the operator. Operator aids utilizing artificial intelligence, or more specifically knowledge-based systems, require identification of these tasks in the context of a knowledge-based framework. In this context, the operator responses to the plant behavior are to monitor and comprehend the state of the plant, identify normal and abnormal plant conditions, diagnose abnormal plant conditions, predict plant response to specific control actions, and select the best available control action, implement a feasible control action, monitor system response to the control action, and correct for any inappropriate responses. These tasks have been identified to formulate a knowledge-based framework for an operator advisor under development at Ohio State University that utilizes the generic task methodology proposed by Chandrasekaran. The paper lays the foundation to identify the responses as a knowledge-based set of tasks in accordance with the expected human operator responses during an event. Initial evaluation of the expert system indicates the potential for an operator aid that will improve the operator's ability to respond to both anticipated and unanticipated events

  3. Polyhomologation based on in situ generated Boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures

    KAUST Repository

    Zhang, Zhen

    2015-04-10

    A novel strategy, based on the in situ generated Boron-thexyl-silaboracyclic initiating sites for the polyhomologation of dimethylsulfoxonium methylide, has been developed for the synthesis of complex polyethylene-based architectures. As examples, the synthesis of a 4-arm polyethylene star, three (polystyrene)(polyethylene)2 3-miktoarm stars and a PE-branched double graft copolymers are given.

  4. Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis.

    Science.gov (United States)

    Maruta, Natsumi; Trusov, Yuri; Brenya, Eric; Parekh, Urvi; Botella, José Ramón

    2015-03-01

    In animals, heterotrimeric G proteins, comprising Ga, Gb, and Gg subunits, are molecular switches whose function tightly depends on Ga and Gbg interaction. Intriguingly, in Arabidopsis (Arabidopsis thaliana), multiple defense responses involve Gbg, but not Ga. We report here that the Gbg dimer directly partners with extra-large G proteins (XLGs) to mediate plant immunity. Arabidopsis mutants deficient in XLGs, Gb, and Gg are similarly compromised in several pathogen defense responses, including disease development and production of reactive oxygen species. Genetic analysis of double, triple, and quadruple mutants confirmed that XLGs and Gbg functionally interact in the same defense signaling pathways. In addition, mutations in XLG2 suppressed the seedling lethal and cell death phenotypes of BRASSINOSTEROID INSENSITIVE1-associated receptor kinase1-interacting receptor-like kinase1 mutants in an identical way as reported for Arabidopsis Gb-deficient mutants. Yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescent complementation assays revealed that XLG2 physically interacts with all three possible Gbg dimers at the plasma membrane. Phylogenetic analysis indicated a close relationship between XLGs and plant Ga subunits, placing the divergence point at the dawn of land plant evolution. Based on these findings, we conclude that XLGs form functional complexes with Gbg dimers, although the mechanism of action of these complexes, including activation/deactivation, must be radically different form the one used by the canonical Ga subunit and are not likely to share the same receptors. Accordingly, XLGs expand the repertoire of heterotrimeric G proteins in plants and reveal a higher level of diversity in heterotrimeric G protein signaling.

  5. Mitochondria as a Possible Place for Initial Stages of Steroid Biosynthesis in Plants

    Directory of Open Access Journals (Sweden)

    Elena K. Shematorova

    2014-12-01

    Full Text Available With the aim of thorough comparison of steroidogenic systems of plants and animals, transgenic plants of Solanaceae family expressing CYP11A1 cDNA encoding cytochrome P450SCC of mammalian mitochondria were further analysed. Positive effect of CYP11A1 on resistance of the transgenic tobacco plants to the infection by fungal phytopathogene Botrytis cinerea was for the first time detected. Subtle changes in mitochondria of the transgenic Nicotiana tabacum plants expressing mammalian CYP11A1 cDNA were demonstrated by transmissive electron microscopy. The main components of the electron transfer chain of plant mitochondria were for the first time cloned and characterized. It was established that plants from the Solanacea family (tomato, tobacco and potato contain two different genes with similar exon-intron structures (all contain 8 exons encoding mitochondrial type ferredoxins (MFDX, and one gene for mitochondrial ferredoxin reductase (MFDXR. The results obtained point out on profound relatedness of electron transfer chains of P450-dependent monooxygenases in mammalian and plant mitochondria and support our previous findings about functional compatability of steroidogenic systems of Plantae and Animalia.

  6. Honeycomb Actuators Inspired by the Unfolding of Ice Plant Seed Capsules.

    Directory of Open Access Journals (Sweden)

    Lorenzo Guiducci

    Full Text Available Plant hydro-actuated systems provide a rich source of inspiration for designing autonomously morphing devices. One such example, the pentagonal ice plant seed capsule, achieves complex mechanical actuation which is critically dependent on its hierarchical organization. The functional core of this actuation system involves the controlled expansion of a highly swellable cellulosic layer, which is surrounded by a non-swellable honeycomb framework. In this work, we extract the design principles behind the unfolding of the ice plant seed capsules, and use two different approaches to develop autonomously deforming honeycomb devices as a proof of concept. By combining swelling experiments with analytical and finite element modelling, we elucidate the role of each design parameter on the actuation of the prototypes. Through these approaches, we demonstrate potential pathways to design/develop/construct autonomously morphing systems by tailoring and amplifying the initial material's response to external stimuli through simple geometric design of the system at two different length scales.

  7. Importance of tyrosine phosphorylation in receptor kinase complexes.

    Science.gov (United States)

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Systematic evaluation program. Status report and initial evaluation

    International Nuclear Information System (INIS)

    1983-06-01

    The MHB Ongoing Systematic Evaluation Program (SEP) Assessment Study was initiated by the Swedish Nuclear Power Inspectorate (SKI) in 1980. This MHB report is a status report and initial evaluation of SEP. The methodology and results of SEP are disscused with particular emphasis on the first two SEP plant reviews - the Palisades and R.E. Ginna nuclear power plants. The comments of cognizant persons in the NRC and the ACRS, as well as private consultants, are included herein. MHBs major findings are as follows: The SEP plant review methodology was acceptable to the NRC Commissioners, the ACRS, and the NRC Staffs consultants who evaluated the first two SEP plant reviews. A concern raised by all who commented on SEP was the absence of Three Mile Island Action Plan Items and Unresolved Safety Issues from current SEP reviews. The SEP reviews of the Palisades and R.E. Ginna plants concluded that the two plant designs were adequate with respect to a majority of safety topics. Several topics remain unresolved in both the Palisades and R.E. Ginna SEP reviews. In the case of the Ginna plant, several related topics have been grouped together in a major structural reevaluation study. In general, due to the number of unresolved and excluded topics, SEP has not at this time produced a plant safety evaluation which can be considered complete and integrated. (author)

  9. A study of complex defects failing by fatigue, ductile tearing and cleavage

    International Nuclear Information System (INIS)

    Bezensek, B.; Ren, Z.; Hancock, J.W.

    2001-01-01

    Defect assessment procedures ensure the structural integrity of plant, which may contain complex defects. The present work addresses complex defects with re-entrant sectors, which develop from the interaction of two co-planar surface breaking defects in fatigue. Experimental studies show rapid fatigue growth and amplified crack driving forces in the re-entrant sector. This leads to the rapid evolution of the complex crack into a bounding semielliptical defect. Experiments involving ductile tearing of cracks with a re-entrant sector show that tearing initiates in the re-entrant sector and that the defect evolves into a bounding semielliptical defect. Cleavage failures of defects with re-entrant sectors indicate the re-characterisation procedure is only conservative after invoking constraint arguments. The study confirms the conservatism inherent in the re-characterisation rules of assessment procedures, such as BS 7910 [1] and ASME Section XI [2] for complex defects extending by fatigue or ductile tearing. A potentially non-conservative situation exists for defects with re-entrant sectors failing by cleavage at small fractions of the limit load.(author)

  10. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    Ryu, Jun-hyung

    2013-01-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  11. INITIAL TRAINING OF RESEARCHERS

    Directory of Open Access Journals (Sweden)

    Karina Alejandra Cruz-Pallares

    2015-07-01

    Full Text Available The document presents results of a research that used as strategy a complementary training project with thirty-three students of a Bachelors Degree in Primary School 1997(DPS,1997 of an Education Faculty for the initial training of investigators, applied by four teachers members of the academic research group in Mexico; that develops through process of action research methodology. Highlighted in results is the strengthening of the competition of reading, understanding and writing scientific texts, which is analogous to the first feature of the graduate profile called intellectual skills. Among the conclusions it is emphasized that the initial training of teachers in a task that is quite interesting, challenging and complex, as is the educational complex phenomenon.

  12. Collaborative Plant Breeding for Organic Agricultural Systems in Developed Countries

    Directory of Open Access Journals (Sweden)

    Isabelle Goldringer

    2011-08-01

    Full Text Available Because organic systems present complex environmental stress, plant breeders may either target very focused regions for different varieties, or create heterogeneous populations which can then evolve specific adaptation through on-farm cultivation and selection. This often leads to participatory plant breeding (PPB strategies which take advantage of the specific knowledge of farmers. Participatory selection requires increased commitment and engagement on the part of the farmers and researchers. Projects may begin as researcher initiatives with farmer participation or farmer initiatives with researcher participation and over time evolve into true collaborations. These projects are difficult to plan in advance because by nature they change to respond to the priorities and interests of the collaborators. Projects need to provide relevant information and analysis in a time-frame that is meaningful for farmers, while remaining scientifically rigorous and innovative. This paper presents two specific studies: the first was a researcher-designed experiment that assessed the potential adaptation of landraces to organic systems through on-farm cultivation and farmer selection. The second is a farmer-led plant breeding project to select bread wheat for organic systems in France. Over the course of these two projects, many discussions among farmers, researchers and farmers associations led to the development of methods that fit the objectives of those involved. This type of project is no longer researcher-led or farmer-led but instead an equal collaboration. Results from the two research projects and the strategy developed for an ongoing collaborative plant breeding project are discussed.

  13. Initial crisis risk communications: A success story

    International Nuclear Information System (INIS)

    Goldman, S.B.; Traverso, D.K.

    1992-01-01

    Federal regulations require nuclear facilities to be prepared for the risk communication aspects of a catastrophic emergency. Thus, all nuclear plants have provisions for a Joint Public Information Center (JPIC). The JPICs are designed to handle more than 300 media for 24 hours a day; to coordinate information among utility, federal, state, and local agencies; to provide spokespersons; etc. For a large-scale emergency, JPICs can work very well. However, some utilities - indeed, most companies - appear to have only two modes of emergency communication response: normal staff and JPIC. Experience has shown that normal staffing is inadequate to handle the risk communication response for media-intensive low-level emergencies and for the initial stages of an escalating emergency. It is clear that initial response will determine how well a company fares in its overall emergency response and in its long-term relations with the media and public. A solution to this risk communication challenge was developed by Cleveland Electric Illuminating Company's Perry Nuclear Plant - the Public Information Response Team. Using existing facilities and staff - only one of whom works regularly with the media - the Perry plant proactively manages its initial risk communication response

  14. Transuranic Behavior in Soils and Plants

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.; Rogers, J.E.; McFadden, K.M.; McNair, V.M.; Schreckhise, R.G.

    1980-01-01

    The principal objectives of these investigations are to determine (1) the potential for alteration of transuranic solubility through formation of transuranic complexes in soil and the role of the soil microflora in this process, (2) the extent of uptake nd translocation by plants and the sites of plant deposition of transuranics or their complexes, (3) the bond types and chemical forms of transuranics or their metabolites in microbes, plant tissues and soils, (4) the influence of soil properties, environmental conditions and cropping on these processes, and (5) the retention of airborne pollutants by plant foliage and their subsequent absorption by leaves and transport to seeds and roots

  15. CALCULATION OF INITIALS OPTIMAL PRODUCTION CAPACITIES CONSIDERING UNCERTAINTY ELEMENTS

    Directory of Open Access Journals (Sweden)

    Hilda Oquendo Ferrer

    2016-04-01

    Full Text Available In diversification, an attractive variant constitutes the projection of ethanol plants due to all the advantages that this represents and a crucial element for this to be effective is the existence of cane as a fundamental raw material for the sugar industry and therefore the derived productions. To project the initials optimal capacity of the plant, uncertainty in the raw material was considered. Mathematical models of capacity in time are obtained, choosing those that best fit, being the linear the simplest for future calculations. The initial capacity the plant should have is determined, also the time at which the first extension and the capacity of the plant should be done, which allows, considering other criteria, to make decisions about what should be the capacity of an ethanol plant in response to the current and future availability of sugar cane. It is presented a general method that can be used considering other tax sugar companies in a province or a region.

  16. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.

    Science.gov (United States)

    Uemura, Tomohiro

    2016-10-01

    Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Towards Plant Species Identification in Complex Samples: A Bioinformatics Pipeline for the Identification of Novel Nuclear Barcode Candidates.

    Directory of Open Access Journals (Sweden)

    Alexandre Angers-Loustau

    Full Text Available Monitoring of the food chain to fight fraud and protect consumer health relies on the availability of methods to correctly identify the species present in samples, for which DNA barcoding is a promising candidate. The nuclear genome is a rich potential source of barcode targets, but has been relatively unexploited until now. Here, we show the development and use of a bioinformatics pipeline that processes available genome sequences to automatically screen large numbers of input candidates, identifies novel nuclear barcode targets and designs associated primer pairs, according to a specific set of requirements. We applied this pipeline to identify novel barcodes for plant species, a kingdom for which the currently available solutions are known to be insufficient. We tested one of the identified primer pairs and show its capability to correctly identify the plant species in simple and complex samples, validating the output of our approach.

  18. Impact of Pre-Initiators on PSA in Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ochirbat, Chimedtseren [KAIST, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    Most of nuclear power plants had already conducted PSA work to examine their plant safety for identifying vulnerability and preparing the mitigating strategies for severe accident. However, the PSA for research reactor has been conducted limitedly comparing with nuclear power plants due to lack of awareness and resources. Most of PSA results demonstrated that human failure events (HFEs) take a major role of risk contributor in terms of core damage frequency. HFEs are categorized as the following three types: pre-initiating event interaction (e.g., maintenance of errors, testing errors, calibration errors), initiating event related interactions (e.g., human error causing loss of power, human error causing system trip), and post-initiating event (e.g., all action actuating manual safety system backup of an automatic system). Lack of resources and utilization of research reactor calls a vicious circle in terms of safety degradation. The safety degradation poses the vulnerability of human failure during research reactor utilization process. Typically, evaluation of pre-initiators related to test and maintenance are not taking into account in PSA for research reactors. This paper aims to investigate the impact of pre-initiating events related to test and maintenance activities on PSA results in terms of core damage frequency for a research reactor.

  19. Impact of Pre-Initiators on PSA in Research Reactor

    International Nuclear Information System (INIS)

    Ochirbat, Chimedtseren; Kim, Sok Chul

    2014-01-01

    Most of nuclear power plants had already conducted PSA work to examine their plant safety for identifying vulnerability and preparing the mitigating strategies for severe accident. However, the PSA for research reactor has been conducted limitedly comparing with nuclear power plants due to lack of awareness and resources. Most of PSA results demonstrated that human failure events (HFEs) take a major role of risk contributor in terms of core damage frequency. HFEs are categorized as the following three types: pre-initiating event interaction (e.g., maintenance of errors, testing errors, calibration errors), initiating event related interactions (e.g., human error causing loss of power, human error causing system trip), and post-initiating event (e.g., all action actuating manual safety system backup of an automatic system). Lack of resources and utilization of research reactor calls a vicious circle in terms of safety degradation. The safety degradation poses the vulnerability of human failure during research reactor utilization process. Typically, evaluation of pre-initiators related to test and maintenance are not taking into account in PSA for research reactors. This paper aims to investigate the impact of pre-initiating events related to test and maintenance activities on PSA results in terms of core damage frequency for a research reactor

  20. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.R.

    1987-01-01

    The new Fuel Handling Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both Magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for active commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  1. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.

    1987-01-01

    The new Fuel Handing Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for ''active'' commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  2. BRAND program complex

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.

    1983-01-01

    A description is given of the structure, input procedure and recording rules of initial data for the BRAND programme complex intended for the Monte Carlo simulation of neutron physics experiments. The BRAND complex ideology is based on non-analogous simulation of the neutron and photon transport process (statistic weights are used, absorption and escape of particles from the considered region is taken into account, shifted readouts from a coordinate part of transition nucleus density are applied, local estimations, etc. are used). The preparation of initial data for three sections is described in detail: general information for Monte Carlo calculation, source definition and data for describing the geometry of the system. The complex is to be processed with the BESM-6 computer, the basic programming lan-- guage is FORTRAN, volume - more than 8000 operators

  3. Development of a method of lifetime assessment of power plant components under complex multi-axial vibration loads

    International Nuclear Information System (INIS)

    Fesich, Thomas M.

    2012-01-01

    In general, technical components are loaded and stressed by forces and moments both constant and variable over time. Multi-axial stress conditions can arise as a function of the load on, and/or the geometry of, a component. Assessing the impact on stability of multi-axial stress conditions is a problem for which no generally valid solution has as yet been found, especially when loads and stresses vary over time. This is also due to the fact that the development over time of stresses can give rise to very complex stress conditions. Assessing the lifetime of power plant components subjected to complex vibration loads and stresses often is not reliable if performed by means of conventional codes and approaches, or is associated with high degrees of conservatism. The MPA AIM-Life concept developed at the Stuttgart MPA/IMWF, which is an advanced and verified strength hypothesis based on energy considerations, allows such assessments to be made more reliably, numerically efficient, and avoiding excessive conservatism. (orig.)

  4. Diagnostic aid and maintenance at the La Hague reprocessing plants

    International Nuclear Information System (INIS)

    Bern, J.B.; Chabert, J.

    1989-01-01

    The Cogema plant at La Hague is the world's leading nuclear fuel reprocessing plant. A major extension program was initiated in 1980. It includes the construction of a new 800 t/year capacity plant (UP3), to be commissioned in 1989, and the doubling of the capacity of the present plant (UP2 800) scheduled to go on stream in 1992. On the occasion of this huge capital investment, an overall assessment was made of the operating and maintenance systems of the site. The general objective was to achieve maximum productivity and availability, in view of: - the extreme importance of safety for the protection of workers and the environment, - the high level of automation required by the complexity of the process, - the inaccessibility of the nuclear equipment, the scale of the investment. To achieve this goal, a set of diagnostic and maintenance aid systems were developed and installed. A general site data network serves to link these systems and to distribute the corresponding data to the different users. This paper describes these different systems, presents the functionalities of the network and demonstrates the sequencing of the operations in a typical maintenance application

  5. Plant Physiology: Out in the Midday Sun, Plants Keep Their Cool.

    Science.gov (United States)

    Ezer, Daphne; Wigge, Philip A

    2017-01-09

    Plants use context-dependent information to calibrate growth responses to temperature signals. A new study shows that plants modulate their sensitivity to temperature depending on whether or not they are in direct sunlight. This enables them to make adaptive decisions in a complex natural environment. Copyright © 2017. Published by Elsevier Ltd.

  6. Complexity: Outline of the NWO strategic theme Dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; van der Maas, H.; Mulder, B.; Stam, K.; van Steen, M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  7. Complexity : outline of the NWO strategic theme dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; Maas, van der H.; Mulder, B.; Stam, K.; Steen, van M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  8. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  9. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    Science.gov (United States)

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    Full Text Available The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor attachment protein receptor Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  11. New South African complex leaches gold, uranium, and sulphur from slimes

    Energy Technology Data Exchange (ETDEWEB)

    Payne, A.

    1978-01-01

    Slimes dams at various mines in the Orange Free State and the Transvaal are being re-treated to recover U, Au, and H/sub 2/SO/sub 4/. Components of the Free State Metallurgical Complex include flotation plants, a uranium plant, the President Brand plant for H/sub 2/SO/sub 4/ production from the pyrite concentrates, and a calcine leaching plant for producing gold from the calcines of the acid plant. Reasons for the complex and its operation are discussed. (DLC)

  12. Initiation of Setaria as a model plant

    Directory of Open Access Journals (Sweden)

    Xianmin DIAO,James SCHNABLE,Jeffrey L. BENNETZEN,Jiayang LI

    2014-02-01

    Full Text Available Model organisms such as Arabidopsis (Arabidopsis thaliana and rice (Oryza sativa have proven essential for efficient scientific discovery and development of new methods. With the diversity of plant lineages, some important processes such as C4 photosynthesis are not found in either Arabidopsis or rice, so new model species are needed. Due to their small diploid genomes, short life cycles, self-pollination, small adult statures and prolific seed production, domesticated foxtail millet (Setaria italica and its wild ancestor, green foxtail (S. viridis, have recently been proposed as novel model species for functional genomics of the Panicoideae, especially for study of C4 photosynthesis. This review outlines the development of these species as model organisms, and discusses current challenges and future potential of a Setaria model.

  13. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  14. Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs

    Science.gov (United States)

    Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer

    2017-04-01

    The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.

  15. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms.

    Science.gov (United States)

    Ahmad, Faheem; Babalola, Olubukola O; Tak, Hamid I

    2012-09-01

    Plant diseases caused by plant pathogens substantially reduce crop production every year, resulting in massive economic losses throughout the world. Accurate detection and identification of plant pathogens is fundamental to plant pathogen diagnostics and, thus, plant disease management. Diagnostics and disease-management strategies require techniques to enable simultaneous detection and quantification of a wide range of pathogenic and non-pathogenic microorganisms. Over the past decade, rapid development of matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for characterization of microorganisms has enabled substantially improved detection and identification of microorganisms. In the biological sciences, MALDI-TOF MS is used to analyze specific peptides or proteins directly desorbed from intact bacteria, fungal spores, nematodes, and other microorganisms. The ability to record biomarker ions, in a broad m/z range, which are unique to and representative of individual microorganisms, forms the basis of taxonomic identification of microorganisms by MALDI-TOF MS. Recent advances in mass spectrometry have initiated new research, i.e. analysis of more complex microbial communities. Such studies are just beginning but have great potential for elucidation not only of the interactions between microorganisms and their host plants but also those among different microbial taxa living in association with plants. There has been a recent effort by the mass spectrometry community to make data from large scale mass spectrometry experiments publicly available in the form of a centralized repository. Such a resource could enable the use of MALDI-TOF MS as a universal technique for detection of plant pathogens and non-pathogens. The effects of experimental conditions are sufficiently understood, reproducible spectra can be obtained from computational database search, and microorganisms can be rapidly characterized by genus, species

  16. Initial biochar effects on plant productivity derive from N fertilization

    NARCIS (Netherlands)

    Jeffery, Simon; Memelink, Ilse; Hodgson, Edward; Jones, Sian; van de Voorde, Tess F. J.; Bezemer, T. Martijn; Mommer, Liesje; van Groenigen, Jan Willem

    2017-01-01

    Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate these mechanisms using stable isotope probing.

  17. The foundations of plant intelligence.

    Science.gov (United States)

    Trewavas, Anthony

    2017-06-06

    Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.

  18. Preferences for different nitrogen forms by coexisting plant species and soil microbes.

    Science.gov (United States)

    Harrison, Kathryn A; Bol, Roland; Bardgett, Richard D

    2007-04-01

    The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms

  19. Configuration management of plant modifications for nuclear power plants

    International Nuclear Information System (INIS)

    Ritsch, W.J.

    1987-01-01

    Due to the increasing complexity of nuclear power plant operation, regulatory pressure, and the large numbers of people required to operate and support the stations, the control of plant modifications at these plants needs to be expanded and improved. The aerospace and defense industries, as well as the owners or operators of large energy projects have established configuration management programs (CMPs) to control plant design changes. These programs are composed of well-defined functions for identifying, evaluating, recording, tracking, issuing, and documenting the established baseline conditions, as well as required changes to these baseline conditions. The purpose of this paper is to describe a recommended CMP for plant modifications consisting of a computerized data base installed on the utility's computer to provide a central storage of plant design and operations data necessary to control the following activities as they are affected by plant design changes: training; record management; operations; maintenance; health physics; planning/scheduling; procurement/inventory control; outage management (including modifications); and emergency response

  20. Nuclear weapons complex. Weaknesses in DOE's nonnuclear consolidation plan

    International Nuclear Information System (INIS)

    Wells, James E. Jr.; Fenzel, William F.; Schulze, John R.; Gaffigan, Mark E.

    1992-11-01

    Nuclear weapons contain a wide variety of nonnuclear components - items that are not made from nuclear materials. These components comprise the majority of parts in nuclear weapons, including the ones needed to guide weapons to their targets, initiate the nuclear explosion, increase the weapons' explosive yield, and ensure the weapons' safety and security. DOE has three facilities, the Kansas City Plant in Missouri, the Mound Plant in Ohio, and the Pinellas Plant in Florida, that are dedicated primarily to nonnuclear activities and have unique manufacturing responsibilities. Some additional nonnuclear manufacturing activities are performed at the Rocky Flats Plant in Colorado, the Y-12 Plant in Tennessee, and the Pantex Plant in Texas. Descriptions of each plant and the activities they conduct are contained in appendix I of this report. In 1991, DOE began planning to reconfigure the nuclear weapons complex into one that is smaller, less diverse, and less expensive to operate. More specifically, DOE issued a reconfiguration study in January 1991 that set forth a detailed framework for making the complex smaller and more efficient. The study will lead to a complex-wide Programmatic Environmental Impact Statement (PEIS) on how best to reconfigure the complex. This statement is planned to be completed in late 1993. As part of the effort to analyze the reconfiguration, DOE's Assistant Secretary for Defense Programs directed the Albuquerque Operations Office in April 1991 to develop a nonnuclear consolidation plan to serve as input to the PEIS. There are a number of weaknesses in DOE's NCP. First, because the NCP's scope was limited to examining single-site consolidation alternatives, the decision to select Kansas City as the preferred option was made without analyzing other nonnuclear options. These options included down sizing and modernizing all facilities in place or maximizing consolidation by eliminating all nonnuclear sites and relocating their functions to a

  1. Kabob report. Pt. 3. Chevron plant largest in Canada

    Energy Technology Data Exchange (ETDEWEB)

    1971-01-18

    Canada's largest fully integrated primary natural- gas processing and sulfur recovery plant is heading for physical completion by mid-summer of 1971. The Ralph M. Parsons Construction Co. of Canada Ltd., contractor for the S. Kaybob Beaverhill Lake Unit No. 3 gas-processing plant, to be operated by Chevron Standard Ltd., estimates completion by June 30. After that the $80 million complex will have tests and running in time. With any reasonable luck, it should be fully on stream by late summer. Preliminary construction on the 200-acre site started in Jan. 1969 with clearing and contouring of the main plant and sulfur storage sites. Initial rough grading started in the early summer, after spring breakup was over. Delivery of most of the big items was made by rail because the local secondary roads were inadequate for them. Concrete has been a large item. The contractor has its own batch plant on the site for the estimated 28,000 cu yd which will be needed for the whole job. Dominating the construction site from the start has been the high sulfur plant stack, first of the major items to be finished. It will serve to dispose of effluent from the largest sulfur recovery unit in Canada. It is 465 ft high, one of the largest in Alberta, and a significant contribution to pollution control and environmental protection.

  2. Traditional Knowledge of Western Herbal Medicine and Complex Systems Science.

    Science.gov (United States)

    Niemeyer, Kathryn; Bell, Iris R; Koithan, Mary

    2013-09-01

    Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM.

  3. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    Science.gov (United States)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  4. STUDY OF EFFECTIVENESS OF BREAKWATER STRUCTURES OF THE “EASTERN PETROCHEMICAL COMPANY” JSC OIL REFINERY AND PETROCHEMICAL PLANTS PORT COMPLEX

    Directory of Open Access Journals (Sweden)

    Prikhod’ko Oleg Alekseevich

    2017-05-01

    Full Text Available The article presents the research of MGSU Corporation for testing of design solutions of the “Eastern petrochemical company” JSC oil refinery and petrochemical plants port complex using the physical modeling method. Construction of the marine terminal of the oil refinery and petrochemical plants port complex is planned to be on the Eastern shore of the Vostok Bay which is the part of Peter the Great Bay in the Sea of Japan. The port area is created by means of an artificial land site. The water area of the terminal will be guarded against sea waves by a breakwater. Experiments on the study of wave propagation in the port model water area at the Eastern and Western breakwaters were performed in the laboratory wave basin in three-dimensional layout, with the aim of obtaining of data about wave heights at berthing facilities. Effectiveness of the breakwater designs was studied in two-dimensional layout in a wave flume. During the port model construction all the designed waterworks as well as the project bathymetry of the port water area were reproduced at a scale of 1:100. Analysis of the experiment results with the slope protection embodiment version demonstrates that this engineering solution is able to withstand waves of the design parameters.

  5. Development of a MELCOR self-initialization algorithm for boiling water reactors

    International Nuclear Information System (INIS)

    Chien, C.S.; Wang, S.J.; Cheng, S.K.

    1996-01-01

    The MELCOR code, developed by Sandia National Laboratories, is suitable for calculating source terms and simulating severe accident phenomena of nuclear power plants. Prior to simulating a severe accident transient with MELCOR, the initial steady-state conditions must be generated in advance. The current MELCOR users' manuals do not provide a self-initialization procedure; this is the reason users have to adjust the initial conditions by themselves through a trial-and-error approach. A MELCOR self-initialization algorithm for boiling water reactor plants has been developed, which eliminates the tedious trial-and-error procedures and improves the simulation accuracy. This algorithm adjusts the important plant variable such as the dome pressure, downcomer level, and core flow rate to the desired conditions automatically. It is implemented through input with control functions provided in MELCOR. The reactor power and feedwater temperature are fed as input data. The initialization work of full-power conditions of the Kuosheng nuclear power station is cited as an example. These initial conditions are generated successfully with the developed algorithm. The generated initial conditions can be stored in a restart file and used for transient analysis. The methodology in this study improves the accuracy and consistency of transient calculations. Meanwhile, the algorithm provides all MELCOR users an easy and correct method for establishing the initial conditions

  6. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    Science.gov (United States)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  7. Lunar Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — We present an open design for a first plant growth module on the Moon (LPX). The primary science goal of lunar habitat is to investigate germination and initial...

  8. Messenger RNA 3' end formation in plants.

    Science.gov (United States)

    Hunt, A G

    2008-01-01

    Messenger RNA 3' end formation is an integral step in the process that gives rise to mature, translated messenger RNAs in eukaryotes. With this step, a pre-messenger RNA is processed and polyadenylated, giving rise to a mature mRNA bearing the characteristic poly(A) tract. The poly(A) tract is a fundamental feature of mRNAs, participating in the process of translation initiation and being the focus of control mechanisms that define the lifetime of mRNAs. Thus messenger RNA 3' end formation impacts two steps in mRNA biogenesis and function. Moreover, mRNA 3' end formation is something of a bridge that integrates numerous other steps in mRNA biogenesis and function. While the process is essential for the expression of most genes, it is also one that is subject to various forms of regulation, such that both quantitative and qualitative aspects of gene expression may be modulated via the polyadenylation complex. In this review, the current status of understanding of mRNA 3' end formation in plants is discussed. In particular, the nature of mRNA 3' ends in plants is reviewed, as are recent studies that are beginning to yield insight into the functioning and regulation of plant polyadenylation factor subunits.

  9. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    International Nuclear Information System (INIS)

    Takeda, N.; Kuhn, R.J.; Yang, C.F.; Takegami, T.; Wimmer, E.

    1986-01-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T 1 -resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized 32 P-RNA. Incubation of preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor

  10. MRI of plants and foods

    Science.gov (United States)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  11. Experimental investigation of am measures and effect of hydro-accumulator initial pressure for VVER-440 plants

    International Nuclear Information System (INIS)

    Ivan Toth; Gyorgy Ezsol; Attila Guba; Laszlo Perneczky

    2005-01-01

    Full text of publication follows: A series of experiments were performed at the PMK-2 test facility within the IMPAM-VVER project of the EU 5. Framework Programme. The PMK-2 integral-type facility is a scaled down model of the Paks NPP with a volume and power scaling of 1:2070. Transients can be started from nominal operating conditions. The ratio of elevations is 1:1 except for the lower plenum and pressurizer. The six loops of the plant are modelled by a single active loop. The main objective of the project was to address different problems encountered during the development of EOPs for the Paks NPP in Hungary. Two of the six PMK tests addressed the investigation of starting criteria for primary and secondary bleed during a small break LOCA without HPIS: - a 'base case', with bleed actions following the plant procedures; - a run with secondary and primary bleed started as early as possible. Further two tests investigated the effect of nominal and reduced initial hydro-accumulator pressures on the process, the main question being, whether the starting pressure of the LPIS can be reached without significant overheating of the fuel. These latter were run from lowered initial system pressure in order to be compared to similar tests performed in the project at the PACTEL facility. The two first tests confirmed tendencies shown by earlier plant calculations that neither the secondary nor the primary bleed is effective enough to reduce the pressure, even if their earliest possible actuation is envisaged. As a consequence, low pressure injection could not be started in time to avoid severe fuel rod heat-up and the core power had to be cut in both tests. Comparing the results of tests 3 and 4 the beneficial effect of lowered HA pressure could be analysed. Although heater rod temperatures started to rise also in this test after hydro-accumulators were empty, the secondary and primary bleed actions resulted in the primary pressure dropping to 0.7 MPa and LPIS injection

  12. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    Science.gov (United States)

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  13. Plants and men in space - A new field in plant physiology

    Science.gov (United States)

    Andre, M.; Macelroy, R. D.

    1990-01-01

    Results are presented on a comparison of nutritional values of and human psychological responses to algae and of higher plants considered for growth as food on long-term missions in space, together with the technological complexities of growing these plants. The comparison shows the advantages of higher plants, with results suggesting that a high level of material recycling can be obtained. It is noted that the issue of space gravity may be not a major problem for plants because of the possibility that phototropism can provide an alternative sense of direction. Problems of waste recycling can be solved in association with plant cultivation, and a high degree of autonomy of food production can be obtained.

  14. The interaction between strigolactones and other plant hormones in the regulation of plant development

    Directory of Open Access Journals (Sweden)

    Xi eCheng

    2013-06-01

    Full Text Available Plant hormones are small molecules derived from various metabolic pathways and are important regulators of plant development. The most recently discovered phytohormone class comprises the carotenoid-derived strigolactones (SLs. For a long time these compounds were only known to be secreted into the rhizosphere where they act as signalling compounds, but now we know they are also active as endogenous plant hormones and they have been in the spotlight ever since. The initial discovery that SLs are involved in the inhibition of axillary bud outgrowth, initiated a multitude of other studies showing that SLs also play a role in defining root architecture, secondary growth, hypocotyl elongation and seed germination, mostly in interaction with other hormones. Their coordinated action enables the plant to respond in an appropriate manner to environmental factors such as temperature, shading, day length and nutrient availability. Here, we will review the current knowledge on the crosstalk between SLs and other plant hormones – such as auxin, cytokinin, abscisic acid, ethylene and gibberellins - during different physiological processes. We will furthermore take a bird’s eye view of how this hormonal crosstalk enables plants to respond to their ever changing environments.

  15. Complex decision-making: initial results of an empirical study

    OpenAIRE

    Pier Luigi Baldi

    2011-01-01

    A brief survey of key literature on emotions and decision-making introduces an empirical study of a group of university students exploring the effects of decision-making complexity on error risk. The results clearly show that decision-making under stress in the experimental group produces significantly more errors than in the stress-free control group.

  16. Employing modern power plant simulators in nuclear power plants

    International Nuclear Information System (INIS)

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  17. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions.

    Science.gov (United States)

    Mendive-Tapia, David; Mangaud, Etienne; Firmino, Thiago; de la Lande, Aurélien; Desouter-Lecomte, Michèle; Meyer, Hans-Dieter; Gatti, Fabien

    2018-01-11

    A multidimensional quantum mechanical protocol is used to describe the photoinduced electron transfer and electronic coherence in plant cryptochromes without any semiempirical, e.g., experimentally obtained, parameters. Starting from a two-level spin-boson Hamiltonian we look at the effect that the initial photoinduced nuclear bath distribution has on an intermediate step of this biological electron transfer cascade for two idealized cases. The first assumes a slow equilibration of the nuclear bath with respect to the previous electron transfer step that leads to an ultrafast decay with little temperature dependence; while the second assumes a prior fast bath equilibration on the donor potential energy surface leading to a much slower decay, which contrarily displays a high temperature dependence and a better agreement with previous theoretical and experimental results. Beyond Marcus and semiclassical pictures these results unravel the strong impact that the presence or not of equilibrium initial conditions has on the electronic population and coherence dynamics at the quantum dynamics level in this and conceivably in other biological electron transfer cascades.

  18. Internal Flooding Probabilistic Safety Assessment of an OPR-1000 Plant during Low Power and Shutdown Operation

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Park, Jin Hee; Lim, Ho Gon

    2016-01-01

    In 2009, the electric power research institute (EPRI) published a guideline for the development of IF-PRA that addresses the requirements of the ASME/ANS RASa-2009 PRA consensus standard. The EPRI guideline delineates a level of detail and assessment complexity that has been significantly increased with respect to the guidance for IF assessment performed for the individual plant examination (IPE) to address Generic Letter 88- 20. The main differences include: A more systematic approach to the definition of flood area. The identification, screening and analysis of flooding sources and scenarios. The calculation of the initiating-event frequency (IEF) based on the actual length and characteristics of the piping. The inclusion of spatial effects such as spray from pipe leaks. The specific documentation associated with the plant walkdowns. Among these differences, this research focused on the third and fourth items when performing the internal flooding PSA. This is done by identifying the pipe and fluid characteristics, assessing the pipe pressure, characterizing the pipe (i.e., pipe diameter, length, etc.) and determining the pressure boundary failure frequency. The results were summed for the various piping systems within a given flood area to arrive at an overall internal flood initiating frequency for a given flood mode (i.e., spray, general flood, or major flood) for that particular area by each POS (Plant Operational State). In this initiating event frequency evaluations, the POS duration time is especially considered to get the real values for LPSD state. Characterizations of spray scenarios were evaluated to determine their impact on plant risk caused by internal flooding events.

  19. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations

    Directory of Open Access Journals (Sweden)

    Jacob J. Herman

    2011-12-01

    Full Text Available Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  20. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E

    2011-01-01

    Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  1. Complex decision-making: initial results of an empirical study

    Directory of Open Access Journals (Sweden)

    Pier Luigi Baldi

    2011-09-01

    Full Text Available A brief survey of key literature on emotions and decision-making introduces an empirical study of a group of university students exploring the effects of decision-making complexity on error risk. The results clearly show that decision-making under stress in the experimental group produces significantly more errors than in the stress-free control group.

  2. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  3. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    Science.gov (United States)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  4. Energy conservation and management strategies in Heavy Water Plants

    International Nuclear Information System (INIS)

    Kamath, H.S.

    2002-01-01

    In the competitive industrial environment it is essential that cost of the product is kept at the minimum possible. Energy conservation is an important aspect in achieving this as energy is one of the key recourses for growth and survival of industry. The process of heavy water production being very complex and energy intensive, Heavy Water board has given a focussed attention for initiating various measures for reducing the specific energy consumption in all the plants. The initiative resulted in substantial reduction in specific energy consumption and brought in savings in cost. The cumulative reduction of specific energy consumption has been over 30% over the last seven years and the total savings for the last three years on account of the same has been about Rs. 190 crore. The paper describes the strategies adopted in the heavy water plants for effecting the above achievements. The paper covers the details of some of the energy saving schemes carried out at different heavy water plants through case studies. The case studies of schemes implemented at HWPs are general in nature and is applicable for any other industry. The case studies cover the modifications with re-optimisation of the process parameters, improvements effected in utility units like refrigeration and cooling water systems, improvements in captive power plant cycle and improved recycle scheme for water leading to reduced consumptions. The paper also mentions the innovative ammonia absorption refrigeration with improved coefficient of performance and HWB's efforts in development of the system as an integrated unit of the ammonia water deuterium exchange process for heavy water production. HWB also has taken up R and D on various other schemes for improvements in energy consumption for future activities covering utilisation of low grade energy for generation of refrigeration. (author)

  5. Thinking Forbidden Thoughts: The Oedipus Complex as a Complex of Knowing.

    Science.gov (United States)

    Schein, Michael

    2016-04-01

    The Oedipus complex, considered by Freud the "nuclear complex of development," played a central role in the evolution of psychoanalytic thought. This paper returns to the point of transition from the seduction theory, Freud's initial theorem, to the oedipal model, and suggests that the Oedipus complex is first and foremost a text and as such contains a multiplicity of narratives. In particular, the author articulates the close relation between the Oedipus complex and the subject of knowing, postulating that underlying its surface level, the deep-level structure of this complex is one of knowing. As a complex of knowing it is of dual quality, both promoting and impeding the ability to know.

  6. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  7. Engineering a pH-Regulated Switch in the Major Light-Harvesting Complex of Plants (LHCII): Proof of Principle.

    Science.gov (United States)

    Liguori, Nicoletta; Natali, Alberto; Croce, Roberta

    2016-12-15

    Under excess light, photosynthetic organisms employ feedback mechanisms to avoid photodamage. Photoprotection is triggered by acidification of the lumen of the photosynthetic membrane following saturation of the metabolic activity. A low pH triggers thermal dissipation of excess absorbed energy by the light-harvesting complexes (LHCs). LHCs are not able to sense pH variations, and their switch to a dissipative mode depends on stress-related proteins and allosteric cofactors. In green algae the trigger is the pigment-protein complex LHCSR3. Its C-terminus is responsible for a pH-driven conformational change from a light-harvesting to a quenched state. Here, we show that by replacing the C-terminus of the main LHC of plants with that of LHCSR3, it is possible to regulate its excited-state lifetime solely via protonation, demonstrating that the protein template of LHCs can be modified to activate reversible quenching mechanisms independent of external cofactors and triggers.

  8. Differential effects of human and plant N-acetylglucosaminyltransferase I (GnTI) in plants

    NARCIS (Netherlands)

    Henquet, M.; Heinhuis, B.; Borst, J.W.; Eigenhuijsen, J.; Schreuder, M.; Bosch, D.; van der Krol, A.R.

    2009-01-01

    In plants and animals, the first step in complex type N-glycan formation on glycoproteins is catalyzed by N-acetylglucosaminyltransferase I (GnTI). We show that the cgl1-1 mutant of Arabidopsis, which lacks GnTI activity, is fully complemented by YFP-labeled plant AtGnTI, but only partially

  9. Differential effects of human and plant N-acetylglucosaminyltransferase I (GnTI) in plants

    NARCIS (Netherlands)

    Henquet, M.G.L.; Heinhuis, B.; Borst, J.W.; Eigenhuijsen, J.; Schreuder, M.; Bosch, D.; Krol, van der A.R.

    2010-01-01

    In plants and animals, the first step in complex type N-glycan formation on glycoproteins is catalyzed by N-acetylglucosaminyltransferase I (GnTI). We show that the cgl1-1 mutant of Arabidopsis, which lacks GnTI activity, is fully complemented by YFP-labeled plant AtGnTI, but only partially

  10. Belowground Plant Dynamics Across an Arctic Landscape

    Science.gov (United States)

    Salmon, V. G.; Iversen, C. M.; Breen, A. L.; Thornton, P. E.; Wullschleger, S.

    2017-12-01

    High-latitude ecosystems are made up of a mosaic of different plant communities, all of which are exposed to warming at a rate double that observed in ecosystems at lower latitudes. Arctic regions are an important component of global Earth system models due to the large amounts of soil carbon (C) currently stored in permafrost as well their potential for increased plant C sequestration under warmer conditions. Losses of C from thawing and decomposing permafrost may be offset by increased plant productivity, but plant allocation to belowground structures and acquisition of limiting nutrients remain key sources of uncertainty in these ecosystems. The relationship between belowground plant traits and environmental conditions is not well understood, nor are tradeoffs between above- and belowground plant traits. To address these knowledge gaps, we sampled above- and belowground plant tissues along the Kougarok Hillslope on the Seward Peninsula, Alaska. The vegetation communities sampled included Alder shrubland, willow birch tundra, tussock tundra, dwarf shrub lichen tundra, and non-acidic mountain complex. Within each plant community, aboveground biomass was quantified and specific leaf area, leaf chemistry (%C, %N, %P and δ15N), and wood density were measured. Belowground fine-root biomass and rooting depth distribution were also determined at the community level. Fine roots from shrubs and graminoids were separated so that specific root area, diameter, and chemistry (%C, %N, %P and δ15N) could be assessed for these contrasting plant functional types. Initial findings indicate fine root biomass pools across the widely varying plant communities are constrained by soil depth, regardless of whether the rooting zone is restricted by permafrost or rock. The presence of Alnus viridis subspp. fruticosa, a deciduous shrub that facilitates nitrogen (N) fixation within its root nodules by Frankia bacteria, in Alder shrubland and willow birch tundra communities was associated

  11. Complexity of plant volatile-mediated interactions beyond the third trophic level

    NARCIS (Netherlands)

    Poelman, E.H.; Kos, M.

    2016-01-01

    Food chains of plant-associated communities typically reach beyond three trophic levels. The predators and parasitoids in the third trophic level are under attack by top predators or parasitised by hyperparasitoids. These higher trophic level organisms respond to plant volatiles in search of their

  12. Initial biochar effects on plant productivity derive from N fertilization

    NARCIS (Netherlands)

    Jeffery, S.L.; Memelink, Ilse; Hodgson, Edward; Jones, S.; Voorde, van de T.F.J.; Bezemer, T.M.; Mommer, L.; Groenigen, van J.W.

    2017-01-01

    Background and aim
    Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate these mechanisms using stable isotope probing.
    Methods
    We conducted two experiments with

  13. The influence of the chemical form of technetium on its uptake by plants

    International Nuclear Information System (INIS)

    Van Loon, L.R.; Desmet, G.M.; Cremers, A.

    1985-01-01

    Spinach plants, grown on a Steiner nutrient solution containing TcO/sup -//sub 4/ at different concentrations, show a linear relationship between the concentration in the nutrient solution and the amount of Tc in the plant (concentration range O Bq/ml-58 Bq/ml). When Tc is added to the plants as a Tc-cysteine complex, less amounts of Tc are present in the plants. The Tc present in the plants is mainly due to the uptake of TcO/sup -//sub 4/, formed by reoxidation of the Tc-cysteine complex in the nutrient solution. Plant tissue analysis together with a mathematical analysis of the uptake, show some evidences for for TcO/sup -//sub 4/ as the most important chemical form of Tc taken up by the plants. In the case of anionic complexes, it's impossible to study only the uptake of the complex. Due to rexodization of the complexed Tc, a mixture of TcO/sup -//sub 4/ and the complex is present in the nutrient solution. In the case of cationic complexes, the TcO/sup -//sub 4/ can be removed from the nutrient solution by an anion exchange resin, so that only the complexed form of Tc is present in the nutrient solution. Its uptake by plants can be studied without interference of TcO/sup -//sub 4/. Uptake of Tc-complexes is possible, but the uptake rate (or transfer factor) is lower by two order of magnitude as compared with TcO/sup -//sub 4/

  14. Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants.

    Directory of Open Access Journals (Sweden)

    Farooqahmed S Kittur

    Full Text Available Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPO(P was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPO(P bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPO(P (20 U/ml provides 2-fold better cytoprotection (44% to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPO(M (21%. The cytoprotective effect of the asialo-rhuEPO(P was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2 and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.

  15. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Science.gov (United States)

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  16. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    Science.gov (United States)

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  17. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  18. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as

  19. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  20. Wyhl - analysis of a citizens' initiative against nuclear power plants

    International Nuclear Information System (INIS)

    Obst, R.

    1976-01-01

    The fact-finding report at hand attempts, on the basis of a systematic evaluation of authentic material from citizens' actions, interviews, etc., to portray the importance, the problems, and the effects of the actions of the opponents of nuclear power plants. (orig./HP) [de

  1. An overview of the western Maryland coal combustion by-products/acid mine drainage initiative, Part 1 of 3

    International Nuclear Information System (INIS)

    Petzrick, P.; Rafalko, L.G.; Lyons, C.

    1996-01-01

    The western Maryland coal combustion by-products (CCB)/acid mine drainage (AMD) initiative (the Initiative) is a public-private partnership exploring the use of CCBs to eliminate AMD from Maryland's abandoned coal mines. This dynamic partnership will sponsor a series of large scale experiments and demonstrations addressing the engineering problems that characterize the beneficial application of CCBs to prevent acid formation on a scale that is consistent with the large quantity of these materials that will be produced by power plants in or near western Maryland. The initial demonstration is the filling and sealing of a small hand dug mine (the Frazee Mine) under approximately ninety feet of overburden on Winding Ridge near Friendsville, Maryland. A second demonstration is being planned for the Kempton mine complex. Subsequent demonstrations will focus on reducing the cost of materials handling and mine injection and solving the engineering problems characteristic of filling abandoned mines in Maryland. The Initiative is the flagship activity in Maryland's overall Ash Utilization Program, the goal of which is to promote beneficial use of all coal combustion by-products

  2. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  3. Cascade plant control by timer method

    International Nuclear Information System (INIS)

    Kiguchi, Takashi; Inoue, Kotaro; Kawai, Toshio; Senoo, Makoto.

    1970-01-01

    The present invention relates to a method of controlling uranium flow rate through a cascaded centrifuge plant for the purpose of enriching uranium 235. Such a cascade includes multiple gas separation stage each of which consists of a plurality of centrifuges. The product gas usually includes a large amount of He gas, and a cold trap is used to eliminate the He from UF 6 . The cold trap is operated periodically in such a way that the mixed gas of He and UF 6 is cooled to solidify only UF 6 and then warmed to obtain UF 6 by gasification. In order to operate the plant continuously, parallel multiple cold traps are operated alternatively. The operating conditions in such a complex cascade system are difficult to alter by conventional control methods. The present invention provides a rapid method of controlling the system when a certain percentage of the centrifuges in one stage malfunction. The control system consists of timers which are provided one for each cold trap to control the operational period of the trap. For example, if 20% of the centrifuges in a particular stage malfunction, the timer period of the cold traps attached to the normally operating centrifuge within the stage is maintained, and the period of all the other centrifuges are changed to 10/8 times that of the initial value. In this way the flow volume through all centrifuges except that in the particular stage is reduced to 80% of the initial value and the operation of the system can be continued with reduced efficiency. (Masui, R.)

  4. A design-phase PSA of a nuclear-powered hydrogen plant

    International Nuclear Information System (INIS)

    Nelson, Pamela F.; Flores, Alain; Francois, Juan Luis

    2007-01-01

    A probabilistic safety assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a high-temperature gas-cooled nuclear reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute's (JAERI) High Temperature Engineering Test Reactor (HTTR) prototype in Japan. The objective of this paper is to show how the PSA can be used for improving the design of the coupled plants. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The results of the PSA show that the average frequency of an accident at this complex that could affect the population is 7 x 10 -8 year -1 which is divided into the various end states. The dominant sequences are those that result in a methane explosion and occur with a frequency of 6.5 x 10 -8 year -1 , while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR

  5. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  6. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  7. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  8. Effect of plant characteristics on the number of personnel

    International Nuclear Information System (INIS)

    Martin, H.D.

    1986-01-01

    Power plant organization and staff categories. Influence of plant size. Influence of plant complexity. Specifics of plant site and infrastructure. Contractual requirements for off-site activities. On-site requirements. Overstaffing, understaffing, promotion and motivation. (orig.)

  9. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  10. Uranium Fuel Plant. Applicants environmental report

    International Nuclear Information System (INIS)

    1975-05-01

    The Uranium Fuel Plant, located at the Cimarron Facility, was constructed in 1964 with operations commencing in 1965 in accordance with License No. SNM-928, Docket No. 70-925. The plant has been in continuous operation since the issuance of the initial license and currently possesses contracts extending through 1978, for the production of nuclear fuels. The Uranium Plant is operated in conjunction with the Plutonium Facility, each sharing common utilities and sanitary wastes disposal systems. The operation has had little or no detrimental ecological impact on the area. For the operation of the Uranium Fuel Fabrication Plant, initial equipment provided for the production of UO 2 , UF 4 , uranium metal and recovery of scrap materials. In 1968, the plant was expanded by increasing the UO 2 and pellet facilities by the installation of another complete production line for the production of fuel pellets. In 1969, fabrication facilities were added for the production of fuel elements. Equipment initially installed for the recovery of fully enriched scrap has not been used since the last work was done in 1970. Economically, the plant has benefited the Logan County area, with approximately 104 new jobs with an annual payroll of approximately $1.3 million. In addition, $142,000 is annually paid in taxes to state, local and federal governments, and local purchases amount to approximately $1.3 million. This was all in land that was previously used for pasture land, with a maximum value of approximately 37,000 dollars. Environmental effects of plant operation have been minimal. A monitoring and measurement program is maintained in order to ensure that the ecology of the immediate area is not affected by plant operations

  11. Whiteflies interfere with indirect plant defense against spider mites in Lima bean

    Science.gov (United States)

    Zhang, Peng-Jun; Zheng, Si-Jun; van Loon, Joop J. A.; Boland, Wilhelm; David, Anja; Mumm, Roland; Dicke, Marcel

    2009-01-01

    Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-β-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme β-ocimene synthase that catalyzes the synthesis of (E)-β-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels. PMID:19965373

  12. Estimation of small-scale hydroelectric power plant costs; Estimacao de custos de PCH

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Afonso Henriques Moreira [MS Consultoria Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Silva, Benedito Claudio da [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Magalhaes, Ricardo Nogueira [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil)

    2010-07-01

    Changes in Brazilian energy scenario through last years such as increase of demand and search for clean and economically feasible renewable energy sources, has stimulated investors to small hydro power plants (SHP) sector. Such characteristics together with several economic incentives, legal and regulatory mechanisms also, have helped and stimulated building of new plants of this kind and have attracted a great number of investors to this sector. Study of costs analysis and feasibility of investments is a study which has been used since long time in SHP business market as several preliminary studies previous to civil project have significant costs which lead us to count with a feasibility analysis from the very beginning of studies, exactly what is suggested in the present methodology. Such feasibility analysis, in the common patterns where basic unit costs of each input remain outstanding, would be very complex due to great difficulty in obtaining information at initial phase of project. In this direction this study brings a contribution for investors as well as for designers of small hydro power plants since it outlines a link between physical and energetic characteristics of small hydro power plant in its total cost. Such link is based in available physical characteristics in initial phase of the project, making possible a previous comparison between arrangements of a central or even the comparison of return of investment between different plants. The resulting benefit being the possibility of choosing centrals with greater economic feasibility disregarding bad undertakings or arrangements with more expressive cost. Final result gives a better delay in return of investment, helps in power, arrangements more optimized and in saving time as well, reducing costs of undertakings. Due to large number of SHP arrangements, we chose for this study the most common in Brazil, plant of medium and large fall, shunting line balance chimney and low pressure conduit. (author)

  13. Better Plants Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  14. Integration of metabolomics and proteomics in molecular plant physiology--coping with the complexity by data-dimensionality reduction.

    Science.gov (United States)

    Weckwerth, Wolfram

    2008-02-01

    In recent years, genomics has been extended to functional genomics. Toward the characterization of organisms or species on the genome level, changes on the metabolite and protein level have been shown to be essential to assign functions to genes and to describe the dynamic molecular phenotype. Gas chromatography (GC) and liquid chromatography coupled to mass spectrometry (GC- and LC-MS) are well suited for the fast and comprehensive analysis of ultracomplex metabolite samples. For the integration of metabolite profiles with quantitative protein profiles, a high throughput (HTP) shotgun proteomics approach using LC-MS and label-free quantification of unique proteins in a complex protein digest is described. Multivariate statistics are applied to examine sample pattern recognition based on data-dimensionality reduction and biomarker identification in plant systems biology. The integration of the data reveal multiple correlative biomarkers providing evidence for an increase of information in such holistic approaches. With computational simulation of metabolic networks and experimental measurements, it can be shown that biochemical regulation is reflected by metabolite network dynamics measured in a metabolomics approach. Examples in molecular plant physiology are presented to substantiate the integrative approach.

  15. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  16. Fine-grained recognition of plants from images.

    Science.gov (United States)

    Šulc, Milan; Matas, Jiří

    2017-01-01

    Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.

  17. Optimizing velocities and transports for complex coastal regions and archipelagos

    OpenAIRE

    Haley, Patrick; Agarwal, Arpit; Lermusiaux, Pierre

    2015-01-01

    We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry,...

  18. Fertilizer and briquetting and carbonisation plants

    Energy Technology Data Exchange (ETDEWEB)

    Rangachary, P T

    1984-11-14

    The fertilizer plant and the briquetting and carbonisation plant of the Neyveli Lignite Corporation's complex in Neyveli, Tamil Nadu, India, and the processes used in each to produce fertilizers, smokeless fuels and tar products are described.

  19. LOSP-initiated event tree analysis for BWR

    International Nuclear Information System (INIS)

    Watanabe, Norio; Kondo, Masaaki; Uno, Kiyotaka; Chigusa, Takeshi; Harami, Taikan

    1989-03-01

    As a preliminary study of 'Japanese Model Plant PSA', a LOSP (loss of off-site power)-initiated Event Tree Analysis for a Japanese typical BWR was carried out solely based on the open documents such as 'Safety Analysis Report'. The objectives of this analysis are as follows; - to delineate core-melt accident sequences initiated by LOSP, - to evaluate the importance of core-melt accident sequences in terms of occurrence frequency, and - to develop a foundation of plant information and analytical procedures for efficiently performing further 'Japanese Model Plant PSA'. This report describes the procedure and results of the LOSP-initiated Event Tree Analysis. In this analysis, two types of event trees, Functional Event Tree and Systemic Event Tree, were developed to delineate core-melt accident sequences and to quantify their frequencies. Front-line System Event Tree was prepared as well to provide core-melt sequence delineation for accident progression analysis of Level 2 PSA which will be followed in a future. Applying U.S. operational experience data such as component failure rates and a LOSP frequency, we obtained the following results; - The total frequency of core-melt accident sequences initiated by LOSP is estimated at 5 x 10 -4 per reactor-year. - The dominant sequences are 'Loss of Decay Heat Removal' and 'Loss of Emergency Electric Power Supply', which account for more than 90% of the total core-melt frequency. In this analysis, a higher value of 0.13/R·Y was used for the LOSP frequency than experiences in Japan and any recovery action was not considered. In fact, however, there has been no experience of LOSP event in Japanese nuclear power plants so far and it is also expected that offsite power and/or PCS would be recovered before core melt. Considering Japanese operating experience and recovery factors will reduce the total core-melt frequency to less than 10 -6 per reactor-year. (J.P.N.)

  20. European passive plant program preliminary safety analyses to support system design

    International Nuclear Information System (INIS)

    Saiu, Gianfranco; Barucca, Luciana; King, K.J.

    1999-01-01

    In 1994, a group of European Utilities, together with Westinghouse and its Industrial Partner GENESI (an Italian consortium including ANSALDO and FIAT), initiated a program designated EPP (European Passive Plant) to evaluate Westinghouse Passive Nuclear Plant Technology for application in Europe. In the Phase 1 of the European Passive Plant Program which was completed in 1996, a 1000 MWe passive plant reference design (EP1000) was established which conforms to the European Utility Requirements (EUR) and is expected to meet the European Safety Authorities requirements. Phase 2 of the program was initiated in 1997 with the objective of developing the Nuclear Island design details and performing supporting analyses to start development of Safety Case Report (SCR) for submittal to European Licensing Authorities. The first part of Phase 2, 'Design Definition' phase (Phase 2A) was completed at the end of 1998, the main efforts being design definition of key systems and structures, development of the Nuclear Island layout, and performing preliminary safety analyses to support design efforts. Incorporation of the EUR has been a key design requirement for the EP1000 form the beginning of the program. Detailed design solutions to meet the EUR have been defined and the safety approach has also been developed based on the EUR guidelines. The present paper describes the EP1000 approach to safety analysis and, in particular, to the Design Extension Conditions that, according to the EUR, represent the preferred method for giving consideration to the Complex Sequences and Severe Accidents at the design stage without including them in the design bases conditions. Preliminary results of some DEC analyses and an overview of the probabilistic safety assessment (PSA) are also presented. (author)

  1. Information interfaces for process plant diagnosis

    International Nuclear Information System (INIS)

    Lind, M.

    1984-02-01

    The paper describes a systematic approach to the design of information interfaces for operator support in diagnosing complex systems faults. The need of interpreting primary measured plant variables within the framework of different system representations organized into an abstraction hierarchy is identified from an analysis of the problem of diagnosing complex systems. A formalized approach to the modelling of production systems, called Multilevel Flow Modelling, is described. A MFM model specifies plant control requirements and the associated need for plant information and provide a consistent context for the interpretation of real time plant signals in diagnosis of malfunctions. The use of MFM models as a basis for functional design of the plant instrumentation system is outlined, and the use of knowledge Based (Expert) Systems for the design of man-machine interfaces is mentioned. Such systems would allow an active user participation in diagnosis and thus provide the basis for cooperative problem solving. 14 refs. (author)

  2. Plant automation

    International Nuclear Information System (INIS)

    Christensen, L.J.; Sackett, J.I.; Dayal, Y.; Wagner, W.K.

    1989-01-01

    This paper describes work at EBR-II in the development and demonstration of new control equipment and methods and associated schemes for plant prognosis, diagnosis, and automation. The development work has attracted the interest of other national laboratories, universities, and commercial companies. New initiatives include use of new control strategies, expert systems, advanced diagnostics, and operator displays. The unique opportunity offered by EBR-II is as a test bed where a total integrated approach to automatic reactor control can be directly tested under real power plant conditions

  3. Analytic functions of several complex variables

    CERN Document Server

    Gunning, Robert C

    2009-01-01

    The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. After initial successes by Poincaré and others in the late 19th and early 20th centuries, the theory encountered obstacles that prevented it from growing quickly into an analogue of the theory for functions of one complex variable. Beginning in the 1930s, initially through the work of Oka, then H. Cartan, and continuing with the work of Grauert, Remmert, and others, new tools were introduced into the theory of several complex variables that resol

  4. The vascular plants: open system of growth.

    Science.gov (United States)

    Basile, Alice; Fambrini, Marco; Pugliesi, Claudio

    2017-03-01

    What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs

  5. Approach to the open advanced facilities initiative for innovation (strategic use by industry) at the University of Tsukuba, Tandem Accelerator Complex

    International Nuclear Information System (INIS)

    Sasa, K.; Tagishi, Y.; Naramoto, H.; Kudo, H.; Kita, E.

    2010-01-01

    The University of Tsukuba, Tandem Accelerator Complex (UTTAC) possesses the 12UD Pelletron tandem accelerator and the 1 MV Tandetron accelerator for University's inter-department education research. We have actively advanced collaborative researches with other research institutes and industrial users. Since the Open Advanced Facilities Initiative for Innovation by the Ministry of Education, Culture, Sports, Science and Technology started in 2007, 12 industrial experiments have been carried out at the UTTAC. This report describes efforts by University's accelerator facility to get industrial users. (author)

  6. Comparative regulatory approaches for groups of new plant breeding techniques.

    Science.gov (United States)

    Lusser, Maria; Davies, Howard V

    2013-06-25

    This manuscript provides insights into ongoing debates on the regulatory issues surrounding groups of biotechnology-driven 'New Plant Breeding Techniques' (NPBTs). It presents the outcomes of preliminary discussions and in some cases the initial decisions taken by regulators in the following countries: Argentina, Australia, Canada, EU, Japan, South Africa and USA. In the light of these discussions we suggest in this manuscript a structured approach to make the evaluation more consistent and efficient. The issue appears to be complex as these groups of new technologies vary widely in both the technologies deployed and their impact on heritable changes in the plant genome. An added complication is that the legislation, definitions and regulatory approaches for biotechnology-derived crops differ significantly between these countries. There are therefore concerns that this situation will lead to non-harmonised regulatory approaches and asynchronous development and marketing of such crops resulting in trade disruptions. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  8. Life: Complexity and Diversity

    Indian Academy of Sciences (India)

    tinual increase in the diversity of life over evolutionary time. Ways of ... Centre for Ecological. Scienc'es .... plants evolved flowers to attract pollinators and reward them with .... with the evolving complexity of their interactions in communi- ties.

  9. PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the PAF1 complex and assists in regulating expression of genes within H3K27ME3-enriched chromatin.

    Science.gov (United States)

    Park, Sunchung; Oh, Sookyung; Ek-Ramos, Julissa; van Nocker, Steven

    2010-06-01

    The human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo. In striking contrast to the developmental pleiotropy conferred by mutation in other plant Paf1C component genes in Arabidopsis, loss of PHP specifically conditioned accelerated phase transition from vegetative growth to flowering and resulted in misregulation of a very limited subset of genes that included the flowering repressor FLOWERING LOCUS C. Those genes targeted by PHP were distinguished from the bulk of Arabidopsis genes and other plant Paf1C targets by strong enrichment for trimethylation of lysine-27 on histone H3 (H3K27me3) within chromatin. These findings suggest that PHP is a component of a plant Paf1C protein in Arabidopsis, but has a more specialized role in modulating expression of a subset of Paf1C targets.

  10. Freeing Crop Genetics through the Open Source Seed Initiative.

    Directory of Open Access Journals (Sweden)

    Claire H Luby

    2016-04-01

    Full Text Available For millennia, seeds have been freely available to use for farming and plant breeding without restriction. Within the past century, however, intellectual property rights (IPRs have threatened this tradition. In response, a movement has emerged to counter the trend toward increasing consolidation of control and ownership of plant germplasm. One effort, the Open Source Seed Initiative (OSSI, www.osseeds.org, aims to ensure access to crop genetic resources by embracing an open source mechanism that fosters exchange and innovation among farmers, plant breeders, and seed companies. Plant breeders across many sectors have taken the OSSI Pledge to create a protected commons of plant germplasm for future generations.

  11. Freeing Crop Genetics through the Open Source Seed Initiative.

    Science.gov (United States)

    Luby, Claire H; Goldman, Irwin L

    2016-04-01

    For millennia, seeds have been freely available to use for farming and plant breeding without restriction. Within the past century, however, intellectual property rights (IPRs) have threatened this tradition. In response, a movement has emerged to counter the trend toward increasing consolidation of control and ownership of plant germplasm. One effort, the Open Source Seed Initiative (OSSI, www.osseeds.org), aims to ensure access to crop genetic resources by embracing an open source mechanism that fosters exchange and innovation among farmers, plant breeders, and seed companies. Plant breeders across many sectors have taken the OSSI Pledge to create a protected commons of plant germplasm for future generations.

  12. Expression and purification of Nod factor receptors - Initial characterization of ligand binding

    DEFF Research Database (Denmark)

    Broghammer, Angelique

    Carbohydrate signals have been shown to regulate defence, growth and development in plants. Decorated chitin molecules, lipochitooligosaccharides, synthesized and secreted by rhizobia are the major signal molecules initiating the plant processes establishing legume-rhizobia symbiosis. Lipochitool......Carbohydrate signals have been shown to regulate defence, growth and development in plants. Decorated chitin molecules, lipochitooligosaccharides, synthesized and secreted by rhizobia are the major signal molecules initiating the plant processes establishing legume-rhizobia symbiosis...... and LjNFR5 ectodomains were glycosylated; 3) LjNFR1 retained its in vitro kinase activity and 4) LjNFR1 and LjNFR5 were localized to the plasma membrane. In depth mass spectroscopy analysis of the N-glycan structure of LjNFR5 resulted in identification of two different glycan structures with identical...

  13. Stimulation treatments of large-seed leguminous plants Pt. 1

    International Nuclear Information System (INIS)

    Nagy, Istvan; Borbely, Ferenc; Nagy, Janos; Dezsi, Zoltan

    1983-01-01

    The effect of low dose X-ray irradiation on the sprouting and initial growth of some leguminous plants was studied. After having the seeds of peas, beans, lupines and horse beans irradiated, the sprouting rate, the amount of sprouting plants, the length of the roots, the sprouts and the sprouting plants, the electrolyte conductivity and the water uptake were determined. The height and the amount of the plants were measured after a period of 6 weeks. According to the sprout-length values, an increased variation in the plant features can be observed as a result of irradiation treatment: both stimulation and inhibition of plant growth occured, depending on the variety of the leguminosae. The indices of sprouting and initial growth agree well with each other. (V.N.)

  14. Making initiatives resonate: how can non-state initiatives advance national contributions under the UNFCCC?

    NARCIS (Netherlands)

    Hermwille, Lukas

    2018-01-01

    The international governance landscape on climate change mitigation is increasingly complex across multiple governance levels. Climate change mitigation initiatives by non-state stakeholders can play an important role in governing global climate change. The article addresses the relationship between

  15. Gravity sensing and signal transduction in vascular plant primary roots.

    Science.gov (United States)

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  16. Mitochondrial Electron Transport and Plant Stress

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Møller, Ian Max

    2011-01-01

    Due to the sessile nature of plants, it is crucial for their survival and growth that they can handle a constantly changing, and thus stressful, ambient environment by modifying their structure and metabolism. The central metabolism of plants is characterized by many alternative options...... for metabolic pathways, which allow a wide range of adjustments of metabolic processes in response to environmental variations. Many of the metabolic pathways in plants involve the processing of redox compounds and the use of adenylates. They converge at the mitochondrial electron transport chain (ETC) where...... redox compounds from carbon degradation are used for powering ATP synthesis. The standard ETC contains three sites of energy conservation in complexes I, III, and IV, which are in common with most other eukaryotes. However, the complexity of the plant metabolic system is mirrored in the ETC. In addition...

  17. The vascular plant species of the Krugłe Bagno aquatic peatland complex (Łęczna – Włodawa Lakeland

    Directory of Open Access Journals (Sweden)

    Barbara Banach

    2014-09-01

    Full Text Available This paper presents the richness of vascular plant species of the Krugłe Bagno aquatic peatland complex and its structure. A field study was carried out in the growing seasons of 2008–2010. The aim of the study was to determine the species richness of the flora and its characteristics as well as to document changes in its composition taking place in successive years of the study. Based on the obtained results, it can be concluded that the stability of the qualitative and quantitative structure of the phytocoenoses and abiotic environmental factors bodes well for the maintenance of this aquatic peatland complex in good condition. However, due to the specificity of its species composition (a large proportion of stenobiontic species, it seems advisable to monitor regularly the biotic and abiotic conditions of this habitat.

  18. Determining the stages of tillering stage, initiation of primordia, flowering and maturity in the rice plant, with the system S, V and R correlated with the thermal sum at the time

    Directory of Open Access Journals (Sweden)

    Jennifer Velázquez

    2015-11-01

    Full Text Available Temperature is one of the major climatic factors that affect growth, development and yield of the rice crop, and also can reduce the time of change of phenological stages. The beginning stages of tillering, initiation of primordia, flowering and harvest maturity were determined with the S, V and R system recently proposed by Counce et ál. (2000; it consists on counting the number of fully developed leaves; in addition, a correlation was made with accumulated degree days that the plant had at that time, in order to estimate with how many degree days the plant began a phenological stage; this parameter is related to the average daily temperature and a base temperature of 10ºC. For the start of tillering the plant needed 140.9 degree days; for primordium start, 1268.9; for bloom 1746; and completed its cycle with a total of 2333.2 degree days. This allows to conclude that, for a variety of long cycle (130-135 days, when the accumulation of degree days is equal or similar to the previous data, the plant initiates one of the above-mentioned phenological stages; however, each one of the varieties in use by farmers must be calibrated, because there are differences in crop cycle length among them.

  19. Green Power Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Patrick Barry [Univ. of Iowa, Iowa City, IA (United States)

    2013-01-28

    National energy policy supports the gathering of more detailed and authoritative data on the introduction of renewable bio-based fuels into new and existing district energy systems via the application of biomass gasification. The University of Iowa developed a biomass-fueled, university-scale steam generation system based on biomass gasification technologies. The system serves as a state-of-the-art research and educational facility in the emerging application of gasification in steam generation. The facility, which includes a smaller down-draft gasifier and a larger multi-stage biomass boiler, was designed to operate primarily on wood-based fuels, but has provisions for testing other biomass fuel sources produced within a 100-mile radius, providing enough flexibility to meet the fluctuating local supply of biomass from industry and Midwest agriculture. The equipment was installed in an existing, staffed facility. The down-draft gasifier unit is operated by College of Engineering staff and students, under the direct technical supervision of qualified Utilities plant staff. The Green Power Initiative also includes a substantial, innovative educational component. In addition to an onsite, graduate-level research program in biomass fuels, the investigators have integrated undergraduate and graduate level teaching – through classroom studies and experiential learning – and applied research into a biomass-based, university-scale, functioning power plant. University of Iowa is unique in that it currently has multiple renewable energy technologies deployed, including significant biomass combustion (oat hulls) at its Main Power Plant and a new reciprocating engine based renewable district energy system. This project complements and supports the national energy policy and State of Iowa initiatives in ethanol and biodiesel. Byproducts of ethanol and biodiesel processes (distiller grains) as well as industry residues (oat hulls, wood chips, construction and demolition

  20. Overview of results and perspectives from the Shoreham major common-cause initiating events study

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.; Paccione, R.J.

    1986-01-01

    This study represents the continuation of a large effort by LILCO to fully understand the potential hazards posed by future operation of the Shoreham Nuclear Power Stations (SNPS). The Shoreham Probabilistic Risk Assessment, a level 3 PRA without external events, provided a characterization of the accident sequences that could leave the core in a condition in which it would be vulnerable to severe damage if further mitigating actions were not taken. It estimated the frequency and magnitude of the potential radioactivity releases associated with such sequences. The study was limited to accident sequences initiated by so called internal events to the plant including a loss of offsite power. It also characterized the public risk associated with those accident sequences. The ''Major Common-Cause Initiating Events Study'' (MCCI) for the Shoreham plant was performed to obtain insights into the plant's susceptibility to, and inherent defenses against, certain MCCIs. Major common-cause initiating events are occurrences which have the potential to initiate a plant transient or LOCA and, also, damage one or more plant systems needed to mitigate the effects of a transient or LOCA. The scope of the MCCI study included detailed analyses of seismic events and fires through the severe core damage and bounding analyses of aircraft crashes, windstorms, turbine missiles and release of hazardous materials near the plant

  1. General Atomic HTGR fuel reprocessing pilot plant: results of initial sequential equipment operation

    International Nuclear Information System (INIS)

    1978-09-01

    In September 1977, the processing of 20 large high-temperature gas-cooled reactor (LHTGR) fuel elements was completed sequentially through the head-end cold pilot plant equipment. This report gives a brief description of the equipment and summarizes the results of the sequential operation of the pilot plant. 32 figures, 15 tables

  2. Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

    Science.gov (United States)

    Roy, Sribash; Tyagi, Antariksh; Shukla, Virendra; Kumar, Anil; Singh, Uma M.; Chaudhary, Lal Babu; Datt, Bhaskar; Bag, Sumit K.; Singh, Pradhyumna K.; Nair, Narayanan K.; Husain, Tariq; Tuli, Rakesh

    2010-01-01

    Background The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. Methodology and Principal Findings We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome- ITS, and three from plastid genome- trnH-psbA, rbcL and matK) in species of Indian Berberis L. (Berberidaceae) and two other genera, Ficus L. (Moraceae) and Gossypium L. (Malvaceae). Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. Conclusions/Significance We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus barcode markers may

  3. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian berberis species.

    Directory of Open Access Journals (Sweden)

    Sribash Roy

    Full Text Available BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI. In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS, and three from plastid genome--trnH-psbA, rbcL and matK in species of Indian Berberis L. (Berberidaceae and two other genera, Ficus L. (Moraceae and Gossypium L. (Malvaceae. Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. CONCLUSIONS/SIGNIFICANCE: We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus

  4. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Sally A. Mackenzie

    2011-04-18

    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility that had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.

  5. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  6. Initiating events frequency determination

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Vukovic, I.

    2004-01-01

    The paper describes work performed for the Nuclear Power Station (NPS). Work is related to the periodic initiating events frequency update for the Probabilistic Safety Assessment (PSA). Data for all relevant NPS initiating events (IE) were reviewed. The main focus was on events occurring during most recent operating history (i.e., last four years). The final IE frequencies were estimated by incorporating both NPS experience and nuclear industry experience. Each event was categorized according to NPS individual plant examination (IPE) initiating events grouping approach. For the majority of the IE groups, few, or no events have occurred at the NPS. For those IE groups with few or no NPS events, the final estimate was made by means of a Bayesian update with general nuclear industry values. Exceptions are rare loss-of-coolant-accidents (LOCA) events, where evaluation of engineering aspects is used in order to determine frequency.(author)

  7. Defining initiating events for purposes of probabilistic safety assessment

    International Nuclear Information System (INIS)

    1993-09-01

    This document is primarily directed towards technical staff involved in the performance or review of plant specific Probabilistic Safety Assessment (PSA). It highlights different approaches and provides typical examples useful for defining the Initiating Events (IE). The document also includes the generic initiating event database, containing about 300 records taken from about 30 plant specific PSAs. In addition to its usefulness during the actual performance of a PSA, the generic IE database is of the utmost importance for peer reviews of PSAs, such as the IAEA's International Peer Review Service (IPERS) where reference to studies on similar NPPs is needed. 60 refs, figs and tabs

  8. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  9. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    Science.gov (United States)

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  10. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment

  11. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1992-01-01

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control console minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation

  12. GenoCAD Plant Grammar to Design Plant Expression Vectors for Promoter Analysis.

    Science.gov (United States)

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2016-01-01

    With the rapid advances in prediction tools for discovery of new promoters and their cis-elements, there is a need to improve plant expression methodologies in order to facilitate a high-throughput functional validation of these promoters in planta. The promoter-reporter analysis is an indispensible approach for characterization of plant promoters. It requires the design of complex plant expression vectors, which can be challenging. Here, we describe the use of a plant grammar implemented in GenoCAD that will allow the users to quickly design constructs for promoter analysis experiments but also for other in planta functional studies. The GenoCAD plant grammar includes a library of plant biological parts organized in structural categories to facilitate their use and management and a set of rules that guides the process of assembling these biological parts into large constructs.

  13. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  14. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  15. Initial acceptance test experience with FFTF plant equipment

    International Nuclear Information System (INIS)

    Brown, R.K.; Coleman, K.A.; Mahaffey, M.K.; McCargar, C.G.; Young, M.W.

    1978-09-01

    The purpose of this paper is to examine the initial acceptance test experience of certain pieces of auxiliary equipment of the Fast Flux Test Facility (FFTF). The scope focuses on the DHX blowers and drive train, inert gas blowers, H and V containment isolation valves, and the Surveillance and In-service Inspection (SISI) transporter and trolley. For each type of equipment, the discussion includes a summary of the design and system function, installation history, preoperational acceptance testing procedures and results, and unusual events and resolutions

  16. Regulation and diversity of plant polysaccharide utilisation in fungi

    NARCIS (Netherlands)

    Battaglia, E.

    2011-01-01

    Filamentous fungi obtain their nutrients by degrading dead or living plant material. Plant material consists of different cell wall and storage polysaccharides. Due to the complex structure and the variety of plant polysaccharides, filamentous fungi secrete a wide range of plant polysaccharide

  17. Complex Flow Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  18. Low technology tissue culture materials for initiation and ...

    African Journals Online (AJOL)

    Low technology tissue culture materials for initiation and multiplication of banana plants. ... African Crop Science Journal ... locally available macronutrients, micronutrients, sugar, equipment and facility reduced the cost of consumable material

  19. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  20. The plant operating procedure information modeling system for creation and maintenance of procedures

    International Nuclear Information System (INIS)

    Fanto, S.V.; Petras, D.S.; Reiner, R.T.; Frost, D.R.; Orendi, R.G.

    1990-01-01

    This paper reports that as a result of the accident at Three Mile Island, regulatory requirements were issued to upgrade Emergency Operating Procedures for nuclear power plants. The use of human-factored, function-oriented, EOPs were mandated to improve human reliability and to mitigate the consequences of a broad range of initiating events, subsequent failures and operator errors, without having to first diagnose the specific events. The Westinghouse Owners Group responded by developing the Emergency Response Guidelines in a human-factored, two-column format to aid in the transfer of the improved technical information to the operator during transients and accidents. The ERGs are a network of 43 interrelated guidelines which specify operator actions to be taken during plant emergencies to restore the plant to a safe and stable condition. Each utility then translates these guidelines into plant specific EOPs. The creation and maintenance of this large web of interconnecting ERGs/EOPs is an extremely complex task. This paper reports that in order to aid procedure documentation specialists with this time-consuming and tedious task, the Plant Operating Procedure Information Modeling system was developed to provide a controlled and consistent means to build and maintain the ERGs/EOPs and their supporting documentation