WorldWideScience

Sample records for initiation complex formation

  1. Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme.

    Science.gov (United States)

    Wieczorek, Anna; Downey, Christopher D; Dallmann, H Garry; McHenry, Charles S

    2010-09-17

    The DnaX complex (DnaX(3)δδ'χ psi) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β(2), onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β(2) binding (determined functionally) is diminished 12-30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β(2). DNA synthesis activity can be restored by increased concentrations of β(2). In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β(2) loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.

  2. Complex Formation Control of Large-Scale Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2012-01-01

    Full Text Available A new formation framework of large-scale intelligent autonomous vehicles is developed, which can realize complex formations while reducing data exchange. Using the proposed hierarchy formation method and the automatic dividing algorithm, vehicles are automatically divided into leaders and followers by exchanging information via wireless network at initial time. Then, leaders form formation geometric shape by global formation information and followers track their own virtual leaders to form line formation by local information. The formation control laws of leaders and followers are designed based on consensus algorithms. Moreover, collision-avoiding problems are considered and solved using artificial potential functions. Finally, a simulation example that consists of 25 vehicles shows the effectiveness of theory.

  3. Single-stranded nucleic acids promote SAMHD1 complex formation.

    Science.gov (United States)

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  4. Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow

    Directory of Open Access Journals (Sweden)

    An Ping Shu

    2017-04-01

    Full Text Available Non-homogeneous debris flows generally occur during the rainy seasons in Southwest China, and have received considerable attention in the literature. Regarding the complexity in debris flow dynamics, experimental approaches have proven to be effective in revealing the formative mechanism for debris flow, and quantifying the relations between the various influencing factors with debris-flow formation and subsequent transport processes. Therefore, a flume-based and experimental study was performed at the Debris Flow Observation and Research Station of Jiangjia Gully in Yunnan Province, to theoretically analyze favorable conditions for debris-flow formation and initial transport by selecting the median particle size d50, flow rate Q, vertical grading coefficient ψ, slopes S, and the initial soil water contents W as the five variables for investigation. To achieve this, an optimal combination of these variables was made through an orthogonal experimental design to determine their relative importance upon the occurrence and initial mobilization behavior of a debris flow and to further enhance our insight into debris-flow triggering and transport mechanisms.

  5. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    Science.gov (United States)

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Complexity and formative experiences

    Directory of Open Access Journals (Sweden)

    Roque Strieder

    2017-12-01

    Full Text Available The contemporaneity is characterized by instability and diversity calling into question certainties and truths proposed in modernity. We recognize that the reality of things and phenomena become effective as a set of events, interactions, retroactions and chances. This different frame extends the need for revision of the epistemological foundations that sustain educational practices and give them sense. The complex thinking is an alternative option for acting as a counterpoint to classical science and its reductionist logic and knowledge compartmentalization, as well as to answer to contemporary epistemological and educational challenges. It aims to associate different areas and forms of knowledge, without, however merge them, distinguishing without separating the several disciplines and instances of the realities. This study, in theoretical references, highlights the relevance of complex approaches to support formative experiences because also able to produce complexities in reflections about educational issues. We conclude that formative possibilities from complexity potentialize the resignification of human’s conception and the understanding of its singularity in interdependence; The understanding that pedagogical and educational activities is a constant interrogation about the possibilities of knowing the knowledge and reframe learning, far beyond knowing its functions and utilitarian purposes; and, as a formative possibility, places us on the trail of responsibility, not as something eventual, but present and indicative of freedom to choose to stay or go beyond.

  7. Complex formation of p-carboxybenzeneboronic acid with fructose

    International Nuclear Information System (INIS)

    Bulbul Islam, T.M.; Yoshino, K.

    2000-01-01

    To increase the solubility of p-caboxybenzeneboronic acid (PCBA) in physiological pH 7.4, the complex formation of PCBA with fructose has been studied by 11 B-NMR. PCBA formed complex with fructose and the complex increased the solubility of PCBA. The complex formation constant (log K) was obtained in pH 7.4 as 2.75 from the 11 B-NMR spectra. Based on this result the complex formation ability of PCBA with fructose has been discussed. (author)

  8. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    Full Text Available Brain strokes are widely spread all over the world and are among the most dangerous for the population. Often it leads to death, complete or partial loss of ability to work. The correction of imbalance of Excitatory and inhibitory neurotransmitter systems by activation of natural inhibitory processes is a promising direction of primary neuroprotection in cerebral ischemia. Particular attention is drawn to the natural inhibitory neurotransmitter – glycine and its role in the mechanisms of acute cerebral ischemia. There are data on the ability of the thiotriazoline antioxidant to potentiate the therapeutic effect of neurometabolic cerebroprotectors. Therefore, the creation of new combined preparation based on glycine with thiotriazoline is important today. Objective: to study the structure, and estimate the energy of formation and geometric characteristics of the intermolecular hydrogen bonds for complexes which are formed with glycine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Method of calculation. The initial approximation to the structure of the complexes was obtained with the help of molecular docking procedure using the AutoDock Vina program. The resulting three-component complexes were preliminarily optimized by the semiempirical PM7 method, taking into account the outward influences, which was simulated by the COSMO method. The calculations were carried out using the MOPAC2012 program. The complexes were optimized using the density functional method with the empirical dispersion correction B97-D3/SVP+COSMO (Water using geometric correction for the incompleteness of the gCP basic set. A more accurate calculation of the solvation energy was carried out by SMD method. Calculations by the density functional method were carried out using the ORCA 3.0.3 program. The energy of formation of complexes in solution was calculated as the difference between the free Gibbs energies of the solvated complex and its individual solvated

  9. Critical initial-slip scaling for the noisy complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Liu, Weigang; Täuber, Uwe C

    2016-01-01

    We employ the perturbative fieldtheoretic renormalization group method to investigate the universal critical behavior near the continuous non-equilibrium phase transition in the complex Ginzburg–Landau equation with additive white noise. This stochastic partial differential describes a remarkably wide range of physical systems: coupled nonlinear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose–Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics, such as cold atomic gases and exciton-polaritons in pumped semiconductor quantum wells in optical cavities. Our starting point is a noisy, dissipative Gross–Pitaevski or nonlinear Schrödinger equation, or equivalently purely relaxational kinetics originating from a complex-valued Landau–Ginzburg functional, which generalizes the standard equilibrium model A critical dynamics of a non-conserved complex order parameter field. We study the universal critical behavior of this system in the early stages of its relaxation from a Gaussian-weighted fully randomized initial state. In this critical aging regime, time translation invariance is broken, and the dynamics is characterized by the stationary static and dynamic critical exponents, as well as an independent ‘initial-slip’ exponent. We show that to first order in the dimensional expansion about the upper critical dimension, this initial-slip exponent in the complex Ginzburg–Landau equation is identical to its equilibrium model A counterpart. We furthermore employ the renormalization group flow equations as well as construct a suitable complex spherical model extension to argue that this conclusion likely remains true to all orders in the perturbation expansion. (paper)

  10. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation.

    Science.gov (United States)

    Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong

    2017-07-06

    Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. STAR FORMATION ACROSS THE W3 COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio [Instituto de Astronomía, Universidad Nacional Autónoma de México, Unidad Académica en Ensenada, Km 103 Carr. Tijuana–Ensenada, Ensenada 22860 (Mexico); Megías, Guillermo D. [Facultad de Física. Universidad de Sevilla. Dpto. Física Atómica, Molecular y Nuclear, Sevilla, E-41080 (Spain); Lada, Elizabeth A. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, FL 32611 (United States); Alves, Joáo F. [Institute of Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2015-09-15

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.

  12. Complexity of formation in holography

    International Nuclear Information System (INIS)

    Chapman, Shira; Marrochio, Hugo; Myers, Robert C.

    2017-01-01

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the ‘complexity of formation’ (DOI: 10.1103/PhysRevLett.116.191301; 10.1103/PhysRevD.93.086006), i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d>2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d=2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  13. Complexity of formation in holography

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Shira [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Marrochio, Hugo [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute,University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Myers, Robert C. [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada)

    2017-01-16

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the ‘complexity of formation’ (DOI: 10.1103/PhysRevLett.116.191301; 10.1103/PhysRevD.93.086006), i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d>2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d=2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  14. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    OpenAIRE

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity...

  15. Nitrosothiol Formation and Protection against Fenton Chemistry by Nitric Oxide-induced Dinitrosyliron Complex Formation from Anoxia-initiated Cellular Chelatable Iron Increase*

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K.; Du, Jian; Patel, Aashka R.; Lancaster, Jack R.

    2014-01-01

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with •NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged •NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief •NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief •NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of •NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of •NO. PMID:24891512

  16. Caries preventive efficiency of therapeutic complex accomponying orthodontic treatment of children with initial dental caries

    Directory of Open Access Journals (Sweden)

    Denga A.E.

    2013-12-01

    Full Text Available The use of orthodontic non-removable appliance in orthodontic treatment inter¬feres with the process of teeth mineralization, worsens level of oral cavity hygiene, stimulates development of caries process. The situation is complicated when a patient has an initial tooth decay. The aim of this study was to determine genetic characteristics of children with initial caries and clinical evaluation of effectiveness of the developed caries preventive therapeutic complex accompanying treatment of jaw facial anomalies (JFA. 47 children aged 12-14 with initial tooth decay participated in the examination. Complex diagnostics, including molecular genetic studies was carried out. Therapeutic complex for children, of the main group included remineralizing, adaptogenic, biogenic agents, which increase non-specific resistance, as well as infiltration ICON therapy before fixing braces. Caries preventive complex accompanying JFA treatment in children with primary tooth decay developed with regard to revealed genetic disorders of amelogenesis, 2-nd of phase detoxification, collagen formation, functional responses in the oral cavity, state of hard tissues of teeth and periodontal tissues enabled to preserve existing carious process, normalize periodontal and hygienic indices at all stages of treatment.

  17. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Directory of Open Access Journals (Sweden)

    Lin Chih-Li

    2010-02-01

    Full Text Available Abstract Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.

  18. Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase.

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K; Du, Jian; Patel, Aashka R; Lancaster, Jack R

    2014-07-18

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation. PMID:16870703

  20. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation.

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-10-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2alpha phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2alpha to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2alpha phosphorylation-dependent and -independent pathways that target translation initiation.

  1. Using action research for complex research initiatives

    CSIR Research Space (South Africa)

    Greeff, M

    2009-12-01

    Full Text Available the research process of such a complex research initiative. Action research is one research method that lends itself to these complex projects. The paper uses the Ability Based Technology Interventions (AbTi) research project as a case study to analyse...

  2. Lateral Fluid Percussion Injury Impairs Hippocampal Synaptic Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor Complex Formation

    Directory of Open Access Journals (Sweden)

    Shaun W. Carlson

    2017-10-01

    Full Text Available Traumatic brain injury (TBI and the activation of secondary injury mechanisms have been linked to impaired cognitive function, which, as observed in TBI patients and animal models, can persist for months and years following the initial injury. Impairments in neurotransmission have been well documented in experimental models of TBI, but the mechanisms underlying this dysfunction are poorly understood. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE complex facilitates vesicular docking and neurotransmitter release in the synaptic cleft. Published studies highlight a direct link between reduced SNARE complex formation and impairments in neurotransmitter release. While alterations in the SNARE complex have been described following severe focal TBI, it is not known if deficits in SNARE complex formation manifest in a model with reduced severity. We hypothesized that lateral fluid percussion injury (lFPI reduces the abundance of SNARE proteins, impairs SNARE complex formation, and contributes to impaired neurobehavioral function. To this end, rats were subjected to lFPI or sham injury and tested for acute motor performance and cognitive function at 3 weeks post-injury. lFPI resulted in motor impairment between 1 and 5 days post-injury. Spatial acquisition and spatial memory, as assessed by the Morris water maze, were significantly impaired at 3 weeks after lFPI. To examine the effect of lFPI on synaptic SNARE complex formation in the injured hippocampus, a separate cohort of rats was generated and brains processed to evaluate hippocampal synaptosomal-enriched lysates at 1 week post-injury. lFPI resulted in a significant reduction in multiple monomeric SNARE proteins, including VAMP2, and α-synuclein, and SNARE complex abundance. The findings in this study are consistent with our previously published observations suggesting that impairments in hippocampal SNARE complex formation may contribute to

  3. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wen Liansheng; Lin Zhangji

    2004-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am (III) with humic acid is studied with solvent extraction technique in this paper. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 M NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am (III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 =6.56±0.05, lgβ 2 =10.77±0.31 at pH=4.0; lgβ 1 =7.94±0.11, lgβ 2 =11.80±0.21 at pH=5.0; lgβ 1 =10.74±0.28, lgβ 2 =12.88±0.49 at pH=6.0; lgβ 1 =12.85±0.30, lgβ 2 =14.80±0.62 at pH=7.0; lgβ 1 =14.88±0.48, lgβ 2 =15.65±0.69 at pH=8.0, respectively. The dependence of the complex of the complex formation constant on pH is: lgβ 1 =2.16(±0.98)pH-2.34(±1.03), lgβ 2 =1.28(±1.04)pH+5.52(±1.21), respectively. (author)

  5. complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wei Liansheng; Lin Zhangji

    1998-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am(III) with humic acid is studied with solvent extraction technique. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 mol/kg NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am(III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 = 6.56 +- 0.05, lgβ 2 = 10.77 +- 0.31 at pH 4.0. lgβ 1 = 7.94 +- 0.11, lgβ 2 = 11.80 +- 0.21 at pH = 5.0. lgβ 1 = 10.74 +- 0.28, lgβ 2 = 12.88 +- 0.49 at pH = 6.0. lgβ 1 = 12.85 +- 0.30, lgβ 2 = 14.80 +- 0.62 at pH = 7.0. lgβ 1 = 14.88 +- 0.48, lgβ 2 = 15.65 +- 0.69 at pH = 8.0, respectively. The dependence of the complex formation constant on pH is: lgβ 1 = 2.16 (+-0.98)pH-2.34(+-0.93),lgβ 2 1.28(+-1.04)pH+5.52(+-1.21), respectively

  6. Formative Assessment Jump-Starts a Middle Grades Differentiation Initiative

    Science.gov (United States)

    Doubet, Kristina J.

    2012-01-01

    A rural middle level school had stalled in its third year of a district-wide differentiation initiative. This article describes the way teachers and the leadership team engaged in collaborative practices to put a spotlight on formative assessment. Teachers learned to systematically gather formative assessment data from their students and to use…

  7. Geology of the Biwabik Iron Formation and Duluth Complex.

    Science.gov (United States)

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  8. Ternary complex formation at mineral/solution interfaces

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1995-01-01

    Adsorption of trace concentrations of radionuclides and heavy metals from aqueous solution is dependent on pH, absorbent and adsorbate concentration, and speciation of the metal in solution. In particular, complexation of metal ions by organic and inorganic ligands can dramatically alter adsorption behavior compared to ligand-free systems. The presence of complexing ligands can cause the formation of ''metal like'' or ''ligand like'' ternary surface complexes depending on whether adsorption of the ternary complex increases or decreases with increasing pH, respectively. Examples of ternary surface complexes behaving ''metal like'' include uranyl-EDTA surface complexes on goethite, neptunyl-EDTA surface complexes on hematite and neptunyl-humic surface complexes on gibbsite. Examples of ''ligand like'' ternary surface complexes include uranyl-carbonato and neptunyl-carbonato surface complexes on iron oxides. The effects of complex solutions and multimineralic systems are discussed. (authors). 39 refs., 16 figs., 8 tabs

  9. Transcription initiation complex structures elucidate DNA opening.

    Science.gov (United States)

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  10. Curvature profiles as initial conditions for primordial black hole formation

    International Nuclear Information System (INIS)

    Polnarev, Alexander G; Musco, Ilia

    2007-01-01

    This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations

  11. Zein/caseinate/pectin complex nanoparticles: Formation and characterization.

    Science.gov (United States)

    Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao

    2017-11-01

    In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Initial ionization stage of FRC formation

    International Nuclear Information System (INIS)

    Commisso, R.J.; Armstrong, W.T.; Cochrane, J.C.; Ekdahl, C.A.; Lipson, J.; Linford, R.K.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1980-01-01

    A Field-Reversed Configuration (FRC) is a prolate compact torus that is confined by poloidal fields only. Theta-pinch formation of an FRC employs an initial bias field, B 1 , whose direction is opposite to that of the main theta-pinch field. Some fraction of the flux associated with this bias field eventually constitutes the closed-field-line flux of the FRC. Experimental and theoretical evidence suggest that the longest-lived FRC's are obtained when the closed flux is maximized. Because the initial ionization is done in the presence of the bias field, the actual bias flux available at the time of application of the main theta-pinch field depends strongly on the initial ionization, or preionization, technique used. In this paper we report on experiments characterizing the previously used theta-pinch preionization technique that employed a net field (bias plus preionization) null, or zero-crossing, of the axial component of the magnetic field to break down the gas. We also discuss results of experiments designed to develop preionization techniques in which the gas breakdown is not accomplished by a zero-crossing

  13. THE ENSURING FUNCTIONAL INTERCHANGEABILITY WHEN FORMING THE CONTROL COMPLEX OF INDICATORS OF THE INITIAL CONDITION OF THE CONSUMER OF SPORTS AND IMPROVING SERVICES

    Directory of Open Access Journals (Sweden)

    A. S. Khorloohiyn

    2017-01-01

    Full Text Available One of key elements of an engineering component quality management system of process of provision of sports and improving services in gyms is the subsystem of diagnostics of physical client state. The aim of the study was to increase in efficiency of functioning of a quality management system of process of provision of sports and improving services in gyms due to development of techniques of incorrect estimation of the initial client state.The task of formation of a complex of indices of the initial status by criterion of necessary informtiveness is formulated. The principle of the functional interchangeability as a methodological basis for its decision is reasonable. The hierarchical structure of an integral assessment of the initial client state of gym is offered. On its basis the hierarchical model of rating of informtiveness of a complex of the single (measured indices, the providing objectivity of an integral assessment of the initial status is developed. The correctness of model is provided at the expense of a formulation of a complex of assumptions and original technology of application of different methods of expert estimation.The result of simulation of informtiveness of an integral assessment of the initial client state for a specific type of service and the purposes of physical enhancement includes: 1 library of sets of single indices, for each of which the technique and a monitoring aid, and also an informtiveness assessment in points, 2 the rules of support of the functional interchangeability of alternative complexes of indices by criterion of sufficiency of informtiveness of a complex based on additive models and the accepted restrictions is defined.The concept of a technique of formation of a complex of the measured and (or evaluated indices of the initial client state for the specific type of sports and improving service adapted under material opportunities of gym on the one hand, and responding to criterion of necessary

  14. Complex formation between uranium(VI) and α-D-glucose 1-phosphate

    International Nuclear Information System (INIS)

    Koban, A.; Geipel, G.; Bernhard, G.

    2003-01-01

    The complex formation of uranium(VI) with α-D-glucose 1-phosphate (C 6 H 11 O 6 PO 3 2- , G1P) was determined by time-resolved laser-induced fluorescence spectroscopy (TRLFS) at pH 4 and potentiometric titration in the pH range from 3 to 10. Both measurements show the formation of a 1 : 1 complex at lower pH values. The formation constant of UO 2 (C 6 H 11 O 6 PO 3 ) was calculated from TRLFS measurements to be log β 11 = 5.72±0.12, and from potentiometric titration log β 11 = 5.40±0.25, respectively. It was found by potentiometric titration that at higher pH values the complexation changes to a 1 : 2 complex. The stability constant for this complex was calculated to be log β 12 = 8.96±0.18. (orig.)

  15. Reversibility and Relaxation Behavior of Polyelectrolyte Complex Micelle Formation

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Stuart, Martien A. Cohen

    2009-01-01

    In this study, the formation and disintegration of polyelectrolyte complex micelles is studied by dynamic light scattering titrations with the aim to assess the extent to which these complexes equilibrate. Also, the time evolution of samples at fixed (electroneutral) composition was followed to

  16. Probe initial parton density and formation time via jet quenching

    International Nuclear Information System (INIS)

    Wang, Xin-Nian

    2002-01-01

    Medium modification of jet fragmentation function due to multiple scattering and induced gluon radiation leads directly to jet quenching or suppression of leading particle distribution from jet fragmentation. One can extract an effective total parton energy loss which can be related to the total transverse momentum broadening. For an expanding medium, both are shown to be sensitive to the initial parton density and formation time. Therefore, one can extract the initial parton density and formation time from simultaneous measurements of parton energy loss and transverse momentum broadening. Implication of the recent experimental data on effects of detailed balance in parton energy loss is also discussed

  17. Initial ionization stage of FRC formation

    Energy Technology Data Exchange (ETDEWEB)

    Commisso, R.J.; Armstrong, W.T.; Cochrane, J.C.; Ekdahl, C.A.; Lipson, J.; Linford, R.K.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1980-01-01

    A Field-Reversed Configuration (FRC) is a prolate compact torus that is confined by poloidal fields only. Theta-pinch formation of an FRC employs an initial bias field, B/sub 1/, whose direction is opposite to that of the main theta-pinch field. Some fraction of the flux associated with this bias field eventually constitutes the closed-field-line flux of the FRC. Experimental and theoretical evidence suggest that the longest-lived FRC's are obtained when the closed flux is maximized. Because the initial ionization is done in the presence of the bias field, the actual bias flux available at the time of application of the main theta-pinch field depends strongly on the initial ionization, or preionization, technique used. In this paper we report on experiments characterizing the previously used theta-pinch preionization technique that employed a net field (bias plus preionization) null, or zero-crossing, of the axial component of the magnetic field to break down the gas. We also discuss results of experiments designed to develop preionization techniques in which the gas breakdown is not accomplished by a zero-crossing.

  18. Hemolymph Melanization in the Silkmoth Bombyx mori Involves Formation of a High Molecular Mass Complex That Metabolizes Tyrosine*

    Science.gov (United States)

    Clark, Kevin D.; Strand, Michael R.

    2013-01-01

    The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628

  19. Chemistry teacher initial formation under the eye of the coordinators of the courses

    Directory of Open Access Journals (Sweden)

    Roberta Guimarães Corrêa

    2016-05-01

    Full Text Available Despite the recognition of the need for change and the constant production of studies on initial formation, the degree courses still have questions that need to be discussed. These issues are related to the difficulty to overcome the lack of teachers in basic education and the type of formation offered in undergraduate courses, which does not seem to meet the current Brazilian educational demands. This paper presents data from a qualitative study conducted with coordinators of seven higher education institutions in the state of São Paulo. Despite the different institutional realities presented in this work, the difficulty of effectively contribute to the formation of chemistry teachers is common to all the institutions. Lack of interest in initial formation teacher’s courses, evasion problems, relationship between the initial formation of chemical teachers and chemistry’s professionals and the lack of commitment of teachers marked the reports of the coordinators of the courses.

  20. Asymmetry of limbic structure (hippocampal formation and amygdaloidal complex at PTSD

    Directory of Open Access Journals (Sweden)

    Aida Sarač-Hadžihalilović

    2003-05-01

    Full Text Available Defining exact position of weak anatomic function which is find in a base of neurological and psychiatric disorder is just became the subject of intensive research interest. For this purposes it is important to implement structural and functional MRI techniques, also for further lightening and seeing subject of this work, more concretely connected to PTSD. Therefore, exactly MRI gives most sensitive volumetric measuring of hippocampal formation and amygdaloidal complex.The goal of this work was to research asymmetry of hippocampal formation and amygdaloidal complex to the PTSD patients.Results showed that at the axial slice length of hippocampal formation on the left and right side of all patients are significantly asymmetric. At the sagittal slice from the left side of hippocampal formation is in many cases longer than right about 50 %. At the coronal slice, there are no significant differences toward patient proportion according to symm. / asymm. of the hippocampal formation width at the right and left side. Difference in volume average of hippocampal formation between right and left side for axial and coronal slice is not statistically significant, but it is significant for sagittal slice. In about amygdaloidal complex patients with PTSD toward symm. / asymm. Amygdaloidal complex at the right and left side of axial and sagittal slice in all three measurement shows asymmetry, what is especially shown at sagittal slice. Difference in average length of amygdaloidal complex at the right and left side is not statistically significant for no one slice.Therefore, results of a new research that are used MRI, showed smaller hippocampal level at PTSD (researched by Van der Kolka 1996, Pitman 1996, Bremner et al., 1995.. Application of MRI technique in research of asymmetry of hippocampal formation and amygdaloidal complex, which we used in our research, we recommend as a template for future researches in a sense of lightening anatomic function that is

  1. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  2. SPECTROPHOTOMETRIC STUDIES OF SANGUINARINE-Β-CYCLODEXTRIN COMPLEX FORMATION

    Directory of Open Access Journals (Sweden)

    Veaceslav Boldescu

    2008-06-01

    Full Text Available The main aim of this study was to investigate the influence of pH and the presence of hydrophilic polymer polyvinylpyrrolidone on the formation of sanguinarine-β-cyclodextrin (SANG-β-CD inclusion complex. Spectrophotometric studies of the SANG-β-CD systems in the presence and without 0.1 % PVP at the pH 5.0 did not show any evidence of the complex formation. However, the same systems showed several obvious evidences at the pH 8.0: the hyperchromic and the hypochromic effects and the presence of the isosbestic point in the region of 200 – 210 nm. The association constants calculated by three linear methods: Benesi-Hildebrand, Scott and Scatchard, were two times higher for the systems with addition of 0.1% PVP than for the systems without it.

  3. Star formation in mergers with comologically motivated initial conditions

    NARCIS (Netherlands)

    Karman, Wouter; Macciò, Andrea V.; Kannan, Rahul; Moster, Benjamin P.; Somerville, Rachel S.

    2015-01-01

    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multimerger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realizations of 12 merger

  4. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    Science.gov (United States)

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  5. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    Science.gov (United States)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  6. Theoretical study about L-arginine complexes formation with thiotriazolin

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-02-01

    Full Text Available Brain vascular diseases are one of the leading causes of morbidity, mortality and disability of population in the industrialized countries of the world. An important element of this problem’s solution is the creation of new highly effective and safe drugs, which would lead to mortality reduction, to increase in life expectancy and quality of life. Therefore it is interesting to create a new combined drug based on L-arginine and thiotriazolin. Purpose of the study: to consider the possible structure and energy characteristics of complexes formed by L-arginine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Calculation method. The initial approximation to the complex geometry was obtained using molecular docking with the help of AutoDock Vina program. The obtained ternary complexes were pre-optimized by semi-empirical PM7 method with modeling the impact of the environment by COSMO method. The calculations were carried out using MOPAC2012 program. Then they were optimized by B97-D3/SVP + COSMO (Water dispersion-corrected DFT-D with geometrical spreading correction on insufficiency of gCP basis set. A more accurate calculation of the solvation energy was conducted by SMD. The calculations by density functional method were carried out using the ORCA 3.0.3 software. Energy complex formation in solution was calculated as the difference of the Gibbs free energy of the solvated complex and its individual components. Results. Quantum chemical calculations show, that thiotriazolin and L-arginine are able to form ternary complexes, where molecules are linked by multiple hydrogen bonds. The calculation data suggest, that studied complexes are thermodynamically unstable in solution. The energies of them are positive, but rather low despite charge gain of a number of intermolecular hydrogen bonds. Finding. Based on the results of the conducted quantum-chemical study of a three components system (MTTA, morpholine, and L-arginine it is possible

  7. Architecture of the RNA polymerase II-Mediator core initiation complex.

    Science.gov (United States)

    Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P

    2015-02-19

    The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.

  8. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    International Nuclear Information System (INIS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-01-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI 2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD + ). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD + -azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state

  9. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  10. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  11. On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions

    Directory of Open Access Journals (Sweden)

    Magdy A. El-Tawil

    2009-01-01

    Full Text Available A perturbing nonlinear Schrodinger equation is studied under general complex nonhomogeneities and complex initial conditions for zero boundary conditions. The perturbation method together with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the symbolic solution algorithm is tested through computing the possible approximations under truncation procedures. The method of solution is illustrated through case studies and figures.

  12. Chabazite and dolomite formation in a dolocrete profile: An example of a complex alkaline paragenesis in Lanzarote, Canary Islands

    Science.gov (United States)

    Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José

    2016-05-01

    This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.

  13. Investigation of formation constant of complex of a new synthesized ...

    African Journals Online (AJOL)

    The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA). According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1.

  14. Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin.

    Directory of Open Access Journals (Sweden)

    Madhusudan Venkatareddy

    Full Text Available Actin dynamics has emerged at the forefront of podocyte biology. Slit diaphragm junctional adhesion protein Nephrin is necessary for development of the podocyte morphology and transduces phosphorylation-dependent signals that regulate cytoskeletal dynamics. The present study extends our understanding of Nephrin function by showing in cultured podocytes that Nephrin activation induced actin dynamics is necessary for lamellipodia formation. Upon activation Nephrin recruits and regulates a protein complex that includes Ship2 (SH2 domain containing 5' inositol phosphatase, Filamin and Lamellipodin, proteins important in regulation of actin and focal adhesion dynamics, as well as lamellipodia formation. Using the previously described CD16-Nephrin clustering system, Nephrin ligation or activation resulted in phosphorylation of the actin crosslinking protein Filamin in a p21 activated kinase dependent manner. Nephrin activation in cell culture results in formation of lamellipodia, a process that requires specialized actin dynamics at the leading edge of the cell along with focal adhesion turnover. In the CD16-Nephrin clustering model, Nephrin ligation resulted in abnormal morphology of actin tails in human podocytes when Ship2, Filamin or Lamellipodin were individually knocked down. We also observed decreased lamellipodia formation and cell migration in these knock down cells. These data provide evidence that Nephrin not only initiates actin polymerization but also assembles a protein complex that is necessary to regulate the architecture of the generated actin filament network and focal adhesion dynamics.

  15. Poly-MVA attenuates 7,12- dimethylbenz[a]anthracene initiated and croton oil promoted skin papilloma formation on mice skin.

    Science.gov (United States)

    Veena, Ravindran K; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K; Antonawich, Francis

    2017-09-01

    Chemopreventive agents which exhibit activities such as anti-inflammation, inhibition of carcinogen induced mutagenesis and scavenging of free radical might play a decisive role in the inhibition of chemical carcinogenesis either at the initiation or promotion stage. Many synthesized palladium (Pd) complexes tested experimentally for antitumor activity are found effective. Poly-MVA is a liquid blend preparation containing B complex vitamins, ruthenium with Pd complexed with alpha lipoic acid as the major ingredients. The antitumor effect of Poly-MVA was evaluated against 7,12-dimethylbenz[a] anthracene-initiated croton oil-promoted papilloma formation on mice skin. Skin tumor was initiated with a single application of 390 nmol of DMBA in 20 µl acetone. The effect of Poly-MVA against croton oil- induced inflammation and lipid peroxidation on the mice skin was also evaluated. Topical application of Poly-MVA (100 µl, twice weekly for 18 weeks) 30 minutes prior to each croton oil application, significantly decreased the tumor incidence (11%) and the average number of tumor per animals. Application of Poly-MVA (100 µl) before croton oil significantly (p < 0.05) protected the mouse skin from inflammation (36%) and lipid peroxidation (14%) when compared to the croton oil alone treated group. Experimental results indicate that Poly-MVA attenuate the tumor promoting effects of croton oil and the effect may probably be due to its anti-inflammatory and antioxidant activity.

  16. A study on complex formation of cadmium (II) ions, 9

    International Nuclear Information System (INIS)

    Matsui, Haruo

    1984-01-01

    Formation constants of cadmium (11) complexes with dicarboxylic acids such as oxalic, malonic, methylmalonic, succinic, and glutaric acids were determined in aqueous solutions containing 3 mol.dm -3 LiClO 4 as a constan ionic medium at 25 0 C by potentiometric titrations. It was reported in the previous works that cadmium (11)- aspartic acid complexes contained two chelate rings. However, a problem remained whether the second chelate ring could be formed by six membered-ring containing -O-Cd-N- bond or by seven membered-ring containing -O-Cd-O- bond. The results of the present work suggested that it would be formed by a six membered ring. Cadmium (11) ions were coordinated with a carboxylic group of the dicarboxylic acids studied, and formed no chelate ring within the complexes. The white precipitate appeared in the solution containing cadmium (11) ion and oxalic acid, in the pH range below 3.0, therefore, the chelate formation was not ascertained in this case. The formation constants, log βsub(pr)= log([Cdsub(p)Lsub(r)sup((2p-2r)+)]/([Cd 2+ ]sup(p)[L 2- ]sup(r))), of the complexes were: log β 11 = 1.98, log β 12 = 3.05 for cadmium (11)-malonic acid; log β 11 = 2.28, log β 12 = 3.06 for cadmium (11)-methylmalonic acid; log β 11 = 1.78, log β 12 = 3.08 for cadmium (11)-succinic acid; log β 11 = 1.85, log β 12 = 3.28 for cadmium (11)-glutaric acid complexes. (author)

  17. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    International Nuclear Information System (INIS)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-01-01

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation

  18. Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex.

    Science.gov (United States)

    Wu, Rentian; Wang, Jiafeng; Liang, Chun

    2012-01-01

    Regulation of DNA replication initiation is essential for the faithful inheritance of genetic information. Replication initiation is a multi-step process involving many factors including ORC, Cdt1p, Mcm2-7p and other proteins that bind to replication origins to form a pre-replicative complex (pre-RC). As a prerequisite for pre-RC assembly, Cdt1p and the Mcm2-7p heterohexameric complex accumulate in the nucleus in G1 phase in an interdependent manner in budding yeast. However, the nature of this interdependence is not clear, nor is it known whether Cdt1p is required for the assembly of the MCM complex. In this study, we provide the first evidence that Cdt1p, through its interaction with Mcm6p with the C-terminal regions of the two proteins, is crucial for the formation of the MCM complex in both the cytoplasm and nucleoplasm. We demonstrate that disruption of the interaction between Cdt1p and Mcm6p prevents the formation of the MCM complex, excludes Mcm2-7p from the nucleus, and inhibits pre-RC assembly and DNA replication. Our findings suggest a function for Cdt1p in promoting the assembly of the MCM complex and maintaining its integrity by interacting with Mcm6p.

  19. The role of plasma proteins in formation of obstructive protamine complexes

    International Nuclear Information System (INIS)

    De Paulis, R.; Mohammad, S.F.; Chiariello, L.; Morea, M.; Olsen, D.B.

    1991-01-01

    Formation of complexes between heparin and protamine (in saline), or heparin, plasma proteins, and protamine (in plasma) was assessed by measurements of light transmission through different test solutions. To examine the formation of these complexes, 125I-labeled protamine was used. Addition of 125I-protamine to plasma or blood resulted in the sedimentation of 125I-protamine in the form of insoluble complexes. This complex formation was not affected by the presence of heparin, suggesting that protamine-plasma protein interaction may be primarily responsible for precipitation of 125I-protamine. To assess the capability of these complexes to obstruct the pulmonary circulation, an in vitro experimental model was developed. Citrated serum, plasma, blood, or saline were allowed to flow through a glass bead column with the help of a peristaltic pump. A pressure transducer positioned before the column allowed pressure measurements at a constant flow rate during the experiment. Mixing of protamine with plasma or blood prior to their passage through the glass bead column resulted in a significant increase in pressure suggesting that the column was being clogged with insoluble complexes. The increase in pressure occurred both in the presence and absence of heparin in plasma or blood. Under identical experimental conditions, the increase in pressure was insignificant when protamine was added to saline or serum regardless of whether heparin was present or absent. This was further confirmed by the use of 125I-protamine. These observations suggest that protamine forms insoluble complexes with certain plasma proteins. Based on these observations, it is hypothesized that following intravenous administration, protamine immediately forms complexes in circulating blood

  20. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  1. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amyloselysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  2. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Oudhuis, A. A. C. M. (Lizette); Hamer, Rob J.; Loos, Katja

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  3. The effect of temperature and time on the formation of amylose–lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose–lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  4. Determination of stability constants of lanthanide nitrate complex formation using a solvent extraction technique

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.; Eberhardt, K.

    2006-01-01

    For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor). The extraction of lanthanide ions into an organic phase consisting of 2, 6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model. Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing

  5. Formation constants of binary complexes of lanthanides with 2-hydroxymethyl-benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Nagendram, A; Omprakash, K L; Chandra Pal, A V; Reddy, M L.N.

    1988-03-01

    Proton-ligand and metal-ligand formation constants of binary complexes of La(III), Pr(III), Nd(III), Gd(III), Dy(III) and Y(III) with 2-hydroxymethylbenzimidazole have been determined pH-metrically in 50 per cent v/v aq dioxane medium at 30deg, 40deg and 50degC and I=0.1 M (NaClO/sub 4/). The theromdynamic parameters of complex formation have been evaluated. Stabilities (log ..beta../sub 2/ values) of the chelates increase with decrease in ionic radius of the metal (Dy(III) > Gd(III) > Y(III) > Nd(III) > Pr(III) > La(III)). (author). 7 refs.

  6. Formative Assessment, Communication Skills and ICT in Initial Teacher Training

    Science.gov (United States)

    Romero-Martín, M. Rosario; Castejón-Oliva, Francisco-Javier; López-Pastor, Víctor-Manuel; Fraile-Aranda, Antonio

    2017-01-01

    The purpose of this study is to analyze the perception of students, graduates, and lecturers in relation to systems of formative and shared assessment and to the acquisition of teaching competences regarding communication and the use of Information and Communications Technology (ICT) in initial teacher education (ITE) on degrees in Primary…

  7. Nontypeable Haemophilus influenzae initiates formation of neutrophil extracellular traps.

    Science.gov (United States)

    Juneau, Richard A; Pang, Bing; Weimer, Kristin E D; Armbruster, Chelsie E; Swords, W Edward

    2011-01-01

    Nontypeable Haemophilus influenzae (NTHI) is a leading cause of otitis media infections, which are often chronic and/or recurrent in nature. NTHI and other bacterial species persist in vivo within biofilms during otitis media and other persistent infections. These biofilms have a significant host component that includes neutrophil extracellular traps (NETs). These NETs do not mediate clearance of NTHI, which survives within NET structures by means of specific subpopulations of lipooligosaccharides on the bacterial surface that are determinants of biofilm formation in vitro. In this study, the ability of NTHI and NTHI components to initiate NET formation was examined using an in vitro model system. Both viable and nonviable NTHI strains were shown to promote NET formation, as did preparations of bacterial DNA, outer membrane proteins, and lipooligosaccharide (endotoxin). However, only endotoxin from a parental strain of NTHI exhibited equivalent potency in NET formation to that of NTHI. Additional studies showed that NTHI entrapped within NET structures is resistant to both extracellular killing within NETs and phagocytic killing by incoming neutrophils, due to oligosaccharide moieties within the lipooligosaccharides. Thus, we concluded that NTHI elicits NET formation by means of multiple pathogen-associated molecular patterns (most notably endotoxin) and is highly resistant to killing within NET structures. These data support the conclusion that, for NTHI, formation of NET structures may be a persistence determinant by providing a niche within the middle-ear chamber.

  8. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  9. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    International Nuclear Information System (INIS)

    Chuguryan, D.G.; Dzyubenko, V.I.; Gerbeleu, N.V.

    1987-01-01

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO 2 HA, NpO 2 A - , and NpOHA 2- , has been demonstrated with salicylaldehyde thiosemicarbazone (H 2 L) and salicylaldehyde S-methyl-isothiosemicarbazone (H 2 Q) at t = 25 +/- 1 0 C and μ = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H 2 L and H 2 Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO 2 OHL 2- and NpO 2 OHQ 2- were also determined, and found to be equal to (2.23 +/-0.37) x 10 -5 and (5.02 +/- 0.9) x 10 -5 , respectively. In the case of S-methyl-N 1 ,N 4 -bis(salicylidene)isothiosemicarbazide (H 2 Z), only one type of complex is formed under these experimental conditions, namely, NpO 2 Z - , with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H 2 Q and H 2 Z were also determined

  10. Complex formation between menadione and cetylethylmorpholinium ethosulfate: effect on uv photodegradation of menadione

    International Nuclear Information System (INIS)

    Kowarski, C.R.; Ghandi, H.I.

    1975-01-01

    The process of menadione photodegradation can be enhanced or diminished by other compounds. The presence of the quaternary ammonium compound cetylethylmorpholinium ethosulfate (I) in solutions of menadione was found to slow the rate of photodegradation by uv light (253.7 nm). The mechanism of this effect may be due to complex formation between menadione and I. Complex formation was demonstrated by a shift in the absorption peaks of menadione from 245 and 260 nm to 251.5 and 261.5 nm, respectively. The equilibrium constant of this complex was calculated to be 1.647 M

  11. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Chemistry Research Div.

    2012-07-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K{sub 1:1} and log K{sub 1:2}) are as follows: 12.5 {+-} 0.1 and 11.4 {+-} 0.2 for salicylate, 11.2 {+-} 0.1 and 10.1 {+-} 0.2 for 5-sulfosalicylate, and 12.4 {+-} 0.1 and 11.4 {+-} 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO{sub 2}(HSal){sup +} and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K{sub S}) obtained are 3.3 {+-} 0.1, 4.9 {+-} 0.1, and 4.4 {+-} 0.1 for UO{sub 2}{sup 2+}, (UO{sub 2}){sub 2}(OH){sub 2}{sup 2+} and (UO{sub 2}){sub 3}(OH){sub 5}{sup +}, respectively. (orig.)

  12. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    International Nuclear Information System (INIS)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K.

    2012-01-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K 1:1 and log K 1:2 ) are as follows: 12.5 ± 0.1 and 11.4 ± 0.2 for salicylate, 11.2 ± 0.1 and 10.1 ± 0.2 for 5-sulfosalicylate, and 12.4 ± 0.1 and 11.4 ± 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO 2 (HSal) + and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K S ) obtained are 3.3 ± 0.1, 4.9 ± 0.1, and 4.4 ± 0.1 for UO 2 2+ , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + , respectively. (orig.)

  13. Formation of americium and europium humate complexes

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Meguro, Y.

    1991-01-01

    Binding constants of americium and europium with a humic acid were determined to study if complex formation of trivalent actinide-humates affects dissolved species of the actinides in hydrosphere. The purified humic acid was characterized by means of UV-vis, IR, and pH titration, indicating high carboxylate capacity and low aromaticity. Binding constants of americium and europium humates were determined at pH 4.6 and 6.0 by solvent extraction using 241 Am or 152 Eu as a tracer. The binding constants for americium-humate obtained preliminarily suggest that complexes with humic acid are not negligible in speciation of trivalent actinides in hydrosphere. The obtained binding constants were nearly identical with those determined previously by the same procedures, but with humic acids of different origin and compositions. (author)

  14. In vitro formation of the Merkel cell-neurite complex in embryonic mouse whiskers using organotypic co-cultures.

    Science.gov (United States)

    Ishida, Kentaro; Saito, Tetsuichiro; Mitsui, Toshiyuki

    2018-06-01

    A Merkel cell-neurite complex is a touch receptor composed of specialized epithelial cells named Merkel cells and peripheral sensory nerves in the skin. Merkel cells are found in touch-sensitive skin components including whisker follicles. The nerve fibers that innervate Merkel cells of a whisker follicle extend from the maxillary branch of the trigeminal ganglion. Whiskers as a sensory organ attribute to the complicated architecture of the Merkel cell-neurite complex, and therefore it is intriguing how the structure is formed. However, observing the dynamic process of the formation of a Merkel cell-neurite complex in whiskers during embryonic development is still difficult. In this study, we tried to develop an organotypic co-culture method of a whisker pad and a trigeminal ganglion explant to form the Merkel cell-neurite complex in vitro. We initially developed two distinct culture methods of a single whisker row and a trigeminal ganglion explant, and then combined them. By dissecting and cultivating a single row from a whisker pad, the morphogenesis of whisker follicles could be observed under a microscope. After the co-cultivation of the whisker row with a trigeminal ganglion explant, a Merkel cell-neurite complex composed of Merkel cells, which were positive for both cytokeratin 8 and SOX2, Neurofilament-H-positive trigeminal nerve fibers and Schwann cells expressing Nestin, SOX2 and SOX10 was observed via immunohistochemical analyses. These results suggest that the process for the formation of a Merkel cell-neurite complex can be observed under a microscope using our organotypic co-culture method. © 2018 Japanese Society of Developmental Biologists.

  15. Complex formation between uranyl and various thiosemicarbazide derivatives

    International Nuclear Information System (INIS)

    Chuguryan, D.G.; Dzyubenko, V.I.

    1987-01-01

    Complex formation between hexavalent uranium and salicylaldehyde thiosemicarbazone (H 2 L), salicylaldehyde S-methyl-isothiosemicarbazone (H 2 Q), S-methyl-N 1 ,N 4 -bis(salicylidene)isothiosemicarbazide(H 2 Z), and thiosemicarbazidodiacetic acid (H 2 R) has been studied spectrophotometrically in solution. Stability constants for complexes having the composition UO 2 A have been calculated. Solid uranyl derivatives having the composition UO 2 L x 2H 2 O, UO 2 Q x 2H 2 O, UO 2 Z x 2H 2 O, and UO 2 R x 2H 2 O have been obtained. These derivatives were isolated and their IR spectroscopic behavior and thermal properties were investigated

  16. Multi-Level Formation of Complex Software Systems

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-05-01

    Full Text Available We present a multi-level formation model for complex software systems. The previous works extract the software systems to software networks for further studies, but usually investigate the software networks at the class level. In contrast to these works, our treatment of software systems as multi-level networks is more realistic. In particular, the software networks are organized by three levels of granularity, which represents the modularity and hierarchy in the formation process of real-world software systems. More importantly, simulations based on this model have generated more realistic structural properties of software networks, such as power-law, clustering and modularization. On the basis of this model, how the structure of software systems effects software design principles is then explored, and it could be helpful for understanding software evolution and software engineering practices.

  17. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Skjoedt, Mikkel-Ole; Garred, Peter

    2013-01-01

    Collectins and ficolins are important in the clearance of endogenous and exogenous danger materials. A new human collectin-11 was recently identified in low concentration in serum in complex with mannose-binding lectin (MBL)/ficolin-associated serine proteases. Collectin-11 binds to carbohydrate...... complement complex on C. albicans. Moreover, spiking collectin-11-depleted serum, which did not mediate complement activation, with recombinant collectin-11 restored the complement activation capability. These results define collectin-11 as the fifth recognition molecule in the lectin complement pathway...

  18. Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.

    Science.gov (United States)

    Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim

    2017-09-01

    The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.

  19. The initial growth of complex oxides : study and manipulation

    NARCIS (Netherlands)

    Rijnders, Augustinus J.H.M.

    2001-01-01

    In this thesis, the initial growth stage, i.e., nucleation and growth of the first few unit cell layers, of complex oxides was studied in real time during pulsed laser deposition (PLD). These studies were performed at their optimal epitaxial growth conditions, i.e., high temperature and high oxygen

  20. Structures of transcription pre-initiation complex with TFIIH and Mediator.

    Science.gov (United States)

    Schilbach, S; Hantsche, M; Tegunov, D; Dienemann, C; Wigge, C; Urlaub, H; Cramer, P

    2017-11-09

    For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II.

  1. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    International Nuclear Information System (INIS)

    Takeda, N.; Kuhn, R.J.; Yang, C.F.; Takegami, T.; Wimmer, E.

    1986-01-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T 1 -resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized 32 P-RNA. Incubation of preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor

  2. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  3. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  4. FORMATION AND ELECTROCHEMICAL BEHAVIOUR OF POLYION COMPLEXES FOR ELECTROCHROMIC DISPLAY MATERIAL

    Institute of Scientific and Technical Information of China (English)

    WAN Guoxiang; WANG Bing; DENG Zhenghua; LUO Chunqiao

    1988-01-01

    Formation of intermacromolecular complexes containing viologen and electron-transfer reaction occurred on the electrode modified by the complex films were studied. Compositions and morphology of the complexes depend on the properties of polyanion and chemical environment of complexation. The analytical results of cyclic voltammetry (CV) and rotating disk voltammetry(RDV) indicated: (1) active sites of viologen in network of complexes transferred single electron reversibly; (2) the redox peak currents showed excellent symmetry and stability; (3) redox potentials were related to properties of polyanions, varying from -0.4 to -0.6V (vs. SCE). Electrochromic materials with different displaying colors could be obtained by changing the structure of polyviologen.

  5. The professionalization of the university students during the initial formation

    Directory of Open Access Journals (Sweden)

    Elizabeth Darias Hernández

    2016-03-01

    Full Text Available At present time, the process of professionalization is considered as one of the highest goals in the university studies and it is the base of solutions of other big problems stated by the present university. However, there is a tendency from the hyperbole of this process as a phenomenon of post graduated education. This excludes and diminishes the value in the university formation, moment where the bases of identity as professionals are created. The article deals with role and placement as a whole and its harmonic relationship between initial and permanent formation, the content of this article constitutes the scientific problem of the research and it brings about the methodological bases to contribute to its solution.

  6. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines.

    Science.gov (United States)

    Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V

    2003-04-01

    Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.

  7. Simulations of photochemical smog formation in complex urban areas

    Science.gov (United States)

    Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.

    2016-12-01

    In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.

  8. Control of cell fate by the formation of an architecturally complex bacterial community.

    Science.gov (United States)

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-04-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells.

  9. Complex bladder-exstrophy-epispadias management: Causes of failure of initial bladder closure

    Directory of Open Access Journals (Sweden)

    Kouame Dibi Bertin

    2014-01-01

    Full Text Available The success of the initial closure of the complex bladder-exstrophy remains a challenge in pediatric surgery. This study describes a personal experience of the causes of failure of the initial closure and operative morbidity during the surgical treatment of bladder-exstrophy complex. From April 2000 to March 2014, four patients aged 16 days to 7 years and 5 months underwent complex exstrophy-epispadias repair with pelvic osteotomies. There were three males and one female. Three of them had posterior pelvic osteotomy, one had anterior innominate osteotomy. Bladder Closure: Bladder closure was performed in three layers. Our first patient had initial bladder closure with polyglactin 4/0 (Vicryl ® 4/0, concerning the last three patients, initial bladder closure was performed with polydioxanone 4/0 (PDS ® 4/0. The bladder was repaired leaving the urethral stent and ureteral stents for full urinary drainage for three patients. In one case, only urethral stent was left, ureteral drainage was not possible, because stents sizes were more important than the ureteral diameter. Out of a total of four patients, initial bladder closure was completely achieved for three patients. At the immediate postoperative follow-up, two patients presented a complete disunion of the abdominal wall and bladder despite an appropriate postoperative care. The absorbable braided silk (polyglactin used for the bladder closure was considered as the main factor in the failure of the bladder closure. The second cause of failure of the initial bladder closure was the incomplete urine drainage, ureteral catheterisation was not possible because the catheters sizes were too large compared with the diameters of the ureters. The failure of the initial bladder-exstrophy closure may be reduced by a closure with an absorbable monofilament silk and efficient urine drainage via ureteral catheterisation.

  10. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes.

    Science.gov (United States)

    Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua

    2017-08-01

    Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.

  11. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    International Nuclear Information System (INIS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-01-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude

  12. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    Science.gov (United States)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  13. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Wirström, Eva S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States)

    2016-04-10

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  14. Complexometric determination: Part I - EDTA and complex formation with the Cu2+ ion

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2002-01-01

    Full Text Available Compounds forming very stable complexes - chelates, have a wide field of application in analytical chemistry. The most famous group of these compounds are complexons. Complexons represent organic polyaminocarbonic acids as for example ethylenediaminetetraacetic acid (EDTA and its salts. The EDTA molecule has six coordinative sites. It is a hexadentate ligands i.e. it has two binding nitrogen atoms and four oxygen atoms from carboxyl groups and it forms complexes with almost all metal ions. EDTA as a tetraprotonic acid, H4Y disociates through four steps, yielding the ions HsY-, H2Y2-, HY3- and Y4-. Which of the EDTA forms will be encountered in a solution, depends on the pH. Due to the poor solubility of EDTA in pure water, as well as in most organic solvents, the disodium salt of EDTA Na2H2Y-2H2O, under the commercial name complexon III, is utilized for analytical determinations. In water, EDTA forms soluble, stabile chelate complexes with all cations, at the molar ratio 1:1, regardless of the charge of the metal ion. In contrast to other equilibria, which are mainly defined by Le Chatellier's principle, equilibria related to metal-EDTA complex formation are also dependent on the influence of the secondary equilibria of EDTA complex formation. Complexing reactions, which are equilibrium reactions, are simultaneously influenced by the following factors: solution pH and the presence of complexing agents which may also form a stabile complex with metal ions. The secondary reaction influence may be viewed and monitored through conditional stability constants. In the first part of the paper, the reaction of the formation of the Cu2+-ion complex with EDTA is analyzed beginning from the main reaction through various influences of secondary reactions on the complex Cu2+-EDTA: pH effect, complexation effect and hydrolysis effect. The equations are given for conditional stability constants, which include equilibrium reactions under actual conditions.

  15. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    Directory of Open Access Journals (Sweden)

    Lee HY

    2011-11-01

    Full Text Available Hye-Young Lee1,*, Young-IL Jeong2,*, Ki-Choon Choi31Anyang Science University, Anyang, Gyeonggi, South Korea; 2Chonnam National University Hwasun Hospital, Jeonnam, South Korea; 3Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration, Chungnam, South Korea*These authors contributed equally to this work.Background: p-Phenylenediamine (PDA or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic.Methods: PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid (PGA. To reinforce PDA/PGA ion complexes, glycol chitosan (GC was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier-transform infrared (FT-IR spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD.Results: Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm, and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was

  16. The influence of atomic number on the complex formation constants by visible spectrophotometric method

    International Nuclear Information System (INIS)

    Samin; Kris-Tri-Basuki; Farida-Ernawati

    1996-01-01

    The influence of atomic number on the complex formation constants and it's application by visible spectrophotometric method has been carried out. The complex compound have been made of Y, Nd, Sm and Gd with alizarin red sulfonic in the mole fraction range of 0.20 - 0.53 and pH range of 3.5 - 5. The optimum condition of complex formation was found in the mole fraction range of 0.30 - 0.53, range of pH 3.75 - 5, and the total concentration was 0.00030 M. It was found that the formation constant (β) of alizarin red S. complex by continued variation and matrix disintegration techniques were β : (7.00 ± 0.64).10 9 of complex 3 9γ,β : (4.09±0.34).10 8 of 6 0Nd, β : (7.26 ± 0.42).10 8 of 62 S m and β : (8.38 ± 0.70).10 8 of 64 G d. It can be concluded that the atomic number of Nd is bigger than Sm which is bigger than Gd. The atomic number of Y is the smallest. (39) and the complex formation constant is a biggest. The complex compound can be used for sample analysis with limit detection of Y : 2.2 .10 -5 M, Nd : 2.9 .10 -5 M, Sm : 2.6 .10 -5 M and Gd : 2.4 .10 -5 M. The sensitivity of analysis are Y>Gd>Sm>Nd. The Y 2 O 3 sample of product result from xenotime sand contains Y 2 O 3 : 98.96 ± 1.40 % and in the filtrate (product of monazite sand) contains Nd : 0.27 ± 0.002 M

  17. Interference-mediated synaptonemal complex formation with embedded crossover designation

    Science.gov (United States)

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  18. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  19. Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yuji [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba, 275-0016 (Japan); Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2017-07-01

    Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations are not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.

  20. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  1. MECHANISMS OF THE COMPLEX FORMATION BY d-METALS ON POROUS SUPPORTS AND THE CATALYTIC ACTIVITY OF THE FORMED COMPLEXES IN REDOX REACTIONS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The catalytic activity of supported complexes of d metals in redox reactions with participation of gaseous toxicants, PH3, CO, O3, and SO2, depends on their composition. Owing to the variety of physicochemical and structural-adsorption properties of available supports, their influence on complex formation processes, the composition and catalytic activity of metal complexes anchored on them varies over a wide range. The metal complex formation on sup-ports with weak ion-exchanging properties is similar to that in aqueous solutions. In this case, the support role mainly adds up to the ability to reduce the activity of water adsorbed on them. The interaction between a metal complex and a support surface occurs through adsorbed water molecules. Such supports can also affect complex formation processes owing to protolytic reactions on account of acidic properties of sorbents used as supports. The catalytic activity of metal complexes supported on polyphase natural sorbents considerably depends on their phase relationship. In the case of supports with the nonsimple structure and pronounced ion-exchanging properties, for instance, zeolites and laminar silicates, it is necessary to take into account the variety of places where metal ions can be located. Such location places determine distinctions in the coordination environment of the metal ions and the strength of their bonding with surface adsorption sites and, therefore, the catalytic activity of surface complexes formed by theses metal ions. Because of the energy surface inhomogeneity, it is important to determine a relationship between the strength of a metal complex bonding with a support surface and its catalytic activity. For example, bimetallic complexes are catalytically active in the reactions of oxidation of the above gaseous toxicants. In particular, in the case of carbon monoxide oxidation, the most catalytic activity is shown by palladium-copper complexes in which copper(II is strongly

  2. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  3. Formation of initial cost of stocks of own production

    Directory of Open Access Journals (Sweden)

    Elena Krukovskiy

    2016-06-01

    Full Text Available The concept and component stocks according to national accounting standards are revealed. The procedure for forming the initial value of the stock, depending on the way they arrive at the company according to the guidelines as well as methods for evaluating stocks of own production is grounded. The methodological principles of formation of information on stocks and the disclosure of its financial statements are considered. In the article investigated the procedure of forming the original value of stocks depending on how they flow to the enterprise. Number of methods of assessment of inventory, which can be used to reflect their value in the accounting and financial reporting, and methods of evaluation of own production is characterized. Identified costs are included in the initial cost of inventories, including inventories of own production. The estimation of the definition of agricultural produce at fair value and features of its application in the enterprise is proposed by authors.

  4. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Agustina eFalibene

    2015-04-01

    Full Text Available Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG in olfactory regions of the mushroom bodies (MB at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning — when ants still showed plant avoidance — MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.

  5. Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants.

    Science.gov (United States)

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang

    2015-01-01

    Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning-when ants still showed plant avoidance-MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.

  6. The effect of surface modification on initial ice formation on aluminum surfaces

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza; Fojan, Peter

    2015-01-01

    material of heat exchanger fins is aluminum, this paper focuses on the effect of aluminum wettability on the initial stages of ice formation. The ice growth was studied on bare as well as hydrophilically and hydrophobically modified surfaces of aluminum (8011A) sheets, commonly used in heat exchangers...

  7. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids.

    Science.gov (United States)

    Chao, Chen; Yu, Jinglin; Wang, Shuo; Copeland, Les; Wang, Shujun

    2018-01-10

    This study aimed to reveal the mechanism of formation of complexes between native maize starch (NMS) and different types of lipids, namely palmitic acid (PA), monopalmitate glycerol (MPG), dipalmitate glycerol (DPG), and tripalmitate glycerol (TPG). The complexing index followed the order of MPG (96.3%) > PA (41.8%) > TPG (8.3%) > DPG (1.1%), indicating that MPG formed more complexes with NMS than PA, and that few complexes were formed between NMS and DPG and TPG. The NMS-PA complex presented higher thermal transition temperatures and lower enthalpy change than the NMS-MPG complex, indicating that although MPG formed more starch complexes, they had less stable crystalline structures than the complex between NMS and PA. X-ray diffraction (XRD) and Raman spectroscopy showed that both MPG and PA formed V-type crystalline structures with NMS, and confirmed that no complexes were formed between NMS and DPG and TPG. We conclude that the monoglyceride formed more starch-lipid complex with maize starch than PA, but that the monoglyceride complex had a less stable structure than that formed with PA. The di- and triglycerides did not form complexes with maize starch.

  8. Effects of control parameters of three-point initiation on the formation of an explosively formed projectile with fins

    Science.gov (United States)

    Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.

    2018-03-01

    The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.

  9. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  10. The History and Rate of Star Formation within the G305 Complex

    Science.gov (United States)

    Faimali, Alessandro Daniele

    2013-07-01

    Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour

  11. Quantum chemical and thermodynamic calculations of fulvic and humic copper complexes in reactions of malachite and azurite formation

    International Nuclear Information System (INIS)

    Fomin, Vitaliy N.; Gogol, Daniil B.; Rozhkovoy, Ivan E.; Ponomarev, Dmitriy L.

    2017-01-01

    This article provides a thermodynamic evaluation of the reactions of humic and fulvic acids in the process of malachite and azurite mineralogenesis. Semi-empirical methods AM/1, MNDO, PM3, PM5, PM6 and PM7 were used to compute the heat of formation, enthalpy and entropy for thermodynamic calculations of the reactions performed on the basis of Hess's law. It is shown that methods PM6 and PM7 in the MOPAC software package provide good compliance with experimental and calculated heats of formation for copper complexes and alkaline earth metal complexes with organic acids. It is found that the malachite and azurite formation processes involving humus complexing substances are thermodynamically possible. - Highlights: • Copper and alkali-earth metal complexes with humic and fulvic acids are considered. • Quantum chemical calculation of thermodynamics for the structures was performed. • Semi-empirical methods PM6 and PM7 provide best correlation for the properties. • Parameters of basic copper carbonate formation reactions were obtained by Hess's law. • Processes of malachite and azurite formation from humus complexes are possible.

  12. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

    DEFF Research Database (Denmark)

    Peters, C; Bayer, M J; Bühler, S

    2001-01-01

    -complex formation occurs downstream from trans-SNARE pairing, and depends on both the Rab-GTPase Ypt7 and calmodulin. The maintenance of existing complexes and completion of fusion are independent of trans-SNARE pairs. Reconstituted proteolipids form sealed channels, which can expand to form aqueous pores in a Ca2...

  13. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    International Nuclear Information System (INIS)

    Nonose, Shinji; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-01-01

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H] 2+ , to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H] 2+ with gaseous molecules. The results relate to conformation changes of [M + 2H] 2+ with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H] 3+ , were also studied. The reaction rates did not depend on temperature so definitely

  14. The correlation of initial radiographic characteristics of distal radius fractures and injuries of the triangular fibrocartilage complex.

    Science.gov (United States)

    Kasapinova, K; Kamiloski, V

    2016-06-01

    Our purpose was to determine the correlation of initial radiographic parameters of a distal radius fracture with an injury of the triangular fibrocartilage complex. In a prospective study, 85 patients with surgically treated distal radius fractures were included. Wrist arthroscopy was used to identify and classify triangular fibrocartilage complex lesions. The initial radial length and angulation, dorsal angulation, ulnar variance and distal radioulnar distance were measured. Wrist arthroscopy identified a triangular fibrocartilage complex lesion in 45 patients. Statistical analysis did not identify a correlation with any single radiographic parameter of the distal radius fractures with the associated triangular fibrocartilage complex injuries. The initial radiograph of a distal radius fracture does not predict a triangular fibrocartilage complex injury. III. © The Author(s) 2016.

  15. Thermodynamic study on salt effects on complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Chibunova, E.S.; Kumeev, R.S.; Terekhova, I.V.

    2015-01-01

    Highlights: • Thermodynamic study on salt effects in CD/pABA complex formation was performed. • Effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant and nonspecific. • Specific influence of KBr is caused by the ability of Br − to penetrate into CD cavity. • Coexistence of two complexation equilibria is accompanied by solvent reorganization. - Abstract: The aim of this work was to gain a deeper understanding of salt effects in the inclusion complex formation of cyclodextrins. For this purpose, thermodynamic study of complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid was carried out in water and solutions of KCl, KBr, KH 2 PO 4 and K 2 SO 4 (0.2 mol/kg). Stability constants were calculated from the binding isotherms obtained on the basis of 1 H NMR measurements. Enthalpy and entropy of complex formation were estimated from the van’t Hoff plots. It was found that effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant, while the influence of KBr on complex formation of cyclodextrins with p-aminobenzoic acid is more pronounced and results in a decrease of the stability constants. Specific action of Br − is caused by the ability of these anions to penetrate into macrocyclic cavity. Coexistence of two complexation equilibria in KBr solution is accompanied by significant solvent reorganization originated from more intensive dehydration of the interacting species. This results in an increase of the enthalpy and entropy of complex formation. Manifestation of Br − effect was found to be the same in the binding of p-aminobenzoic acid with α-, β- and γ-cyclodextrins.

  16. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-01-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation. PMID:21551388

  17. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  18. Conformation-Directed Formation of Self-Healing Diblock Copolypeptide Hydrogels via Polyion Complexation.

    Science.gov (United States)

    Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J

    2017-10-25

    Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.

  19. On determination of enthalpies of complex formation reactions by means of temperature coefficient of complexing degree

    International Nuclear Information System (INIS)

    Povar, I.G.

    1995-01-01

    Equations describing the relation between temperature coefficient of ∂lnα/∂T complexing degree and the sum of changes in the enthalpy of complex formation of the composition M m L n δH mn multiplied by the weight coefficients k mm , are presented. A method to determine changes in the enthalpy of certain ΔH mm reactions from ∂lnα/∂T derivatives has been suggested. The best approximating equation from lnα/(T) dependence has been found. Errors of thus determined δH mm values are estimated and the results of calculation experiment for the system In 3+ -F - are provided. 10 refs., 2 figs., 3 tabs

  20. STAR FORMATION AT VERY LOW METALLICITY. V. THE GREATER IMPORTANCE OF INITIAL CONDITIONS COMPARED TO METALLICITY THRESHOLDS

    International Nuclear Information System (INIS)

    Jappsen, Anne-Katharina; Low, Mordecai-Mark Mac; Glover, Simon C. O.; Klessen, Ralf S.; Kitsionas, Spyridon

    2009-01-01

    The formation of the first stars out of metal-free gas appears to result in stars at least an order of magnitude more massive than in the present-day case. We here consider what controls the transition from a primordial to a modern initial mass function. It has been proposed that this occurs when effective metal line cooling occurs at a metallicity threshold of Z/Z sun > 10 -3.5 . We study the influence of low levels of metal enrichment on the cooling and collapse of initially ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics simulations with particle splitting. Our initial conditions represent protogalaxies forming within a previously ionized H II region that has not yet had time to cool and recombine. These differ considerably from those used in simulations predicting a metallicity threshold, where the gas was initially cold and only partially ionized. In the centrally condensed potential that we study here, a wide variety of initial conditions for the gas yields a monolithic central collapse. Our models show no fragmentation during collapse to number densities as high as 10 5 cm -3 , for metallicities reaching as high as 10 -1 Z sun , far above the threshold suggested by previous work. Rotation allows for the formation of gravitationally stable gas disks over large fractions of the local Hubble time. Turbulence slows the growth of the central density slightly, but both spherically symmetric and turbulent initial conditions collapse and form a single sink particle. We therefore argue that fragmentation at moderate density depends on the initial conditions for star formation more than on the metal abundances present. The actual initial conditions to be considered still need to be determined in detail by observation and modeling of galaxy formation. Metal abundance may still drive fragmentation at very high densities due to dust cooling, perhaps giving an alternative metallicity threshold.

  1. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.

    Science.gov (United States)

    Robinson, Philip J; Trnka, Michael J; Bushnell, David A; Davis, Ralph E; Mattei, Pierre-Jean; Burlingame, Alma L; Kornberg, Roger D

    2016-09-08

    A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The ribosome-associated complex antagonizes prion formation in yeast.

    Science.gov (United States)

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.

  3. Formation of nitridotechnetium(VI) μ-oxo dimer complexes with EDTA and EDDA

    International Nuclear Information System (INIS)

    Takayama, T.; Kani, Y.; Sekine, T.; Kudo, H.; Yoshihara, K.

    1995-01-01

    Reactions of [ 99 TcNCl 4 ] - with ethylenediaminetetraacetic acid 4 (ETDA) and ethylenediamine-N,N'-diacetic acid (EDDA) in a mixture of water and acetone gave Tc VI N-EDTA and Tc VI N-EDTA complexes. The infrared spectra of both reaction products showed the existence of the Tc≡N and C=O groups. The elemental analysis indicated the 1:1 TcN-ligand ratio in the EDTA and EDDA complexes. Electrophoresis showed that the Tc VI -EDTA complex was an anionic species in a perchlorate solution. For the Tc VI N-EDDA complex, neutral and anionic species were formed, depending on the pH of the solution. Formation of the μ-oxo dimer complexes was suggested from the UV-Vis absorption spectra. (author) 11 refs.; 4 figs.; 1 tab

  4. Initiation of soil formation in weathered sulfidic Cu-Pb-Zn tailings under subtropical and semi-arid climatic conditions.

    Science.gov (United States)

    You, Fang; Dalal, Ram; Huang, Longbin

    2018-08-01

    Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Trubert, D.; Le Naour, C.; Kratz, J.V.

    2002-01-01

    Fully relativistic molecular density-functional calculations of the electronic structures of hydrated, hydrolyzed and fluoride/chloride complexes have been performed for group-4 elements Zr, Hf, and element 104, Rf. Using the electronic density distribution data, relative values of the free energy change for hydrolysis and complex formation reactions were defined. The results show the following trend for the first hydrolysis step of the cationic species: Zr>Hf>Rf in agreement with experiments. For the complex formation in HF solutions, the trend to a decrease from Zr to Hf is continued with Rf, provided no hydrolysis takes place. At pH>0, further fluorination of hydrolyzed species or fluoro-complexes has an inversed trend in the group Rf≥Zr>Hf, with the difference between the elements being very small. For the complex formation in HCl solutions, the trend is continued with Rf, so that Zr>Hf>Rf independently of pH. A decisive energetic factor in hydrolysis or complex formation processes proved to be a predominant electrostatic metal-ligand interaction. Trends in the K d (distribution coefficient) values for the group-4 elements are expected to follow those of the complex formation

  6. Thermodynamics of mixed-ligand complex formation of mercury (II) ethylenediaminetetraacetate with amino acids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Kozlovskii, Eugenii [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvei; Kumeev, Roman [Institute of Solution Chemistry, Ivanovo (Russian Federation)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Stable mixed ligand complexes of HgEdta with amino acids at physiological pH value. Black-Right-Pointing-Pointer The thermodynamic and NMR data evident the ambidentate coordination mode of arginine. Black-Right-Pointing-Pointer Participation of the guanidinic group of Arg in coordination process. Black-Right-Pointing-Pointer Binuclear complexes (HgEdta){sub 2}L with the bridging function of amino acid. - Abstract: The mixed-ligand complex formation in the systems Hg{sup 2+} - Edta{sup 4-} - L{sup -}(L = Arg, Orn, Ser) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta){sub 2}L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes was discussed.

  7. Probability of primordial black hole formation and its dependence on the radial profile of initial configurations

    International Nuclear Information System (INIS)

    Hidalgo, J. C.; Polnarev, A. G.

    2009-01-01

    In this paper we derive the probability of the radial profiles of spherically symmetric inhomogeneities in order to provide an improved estimation of the number density of primordial black holes (PBHs). We demonstrate that the probability of PBH formation depends sensitively on the radial profile of the initial configuration. We do this by characterizing this profile with two parameters chosen heuristically: the amplitude of the inhomogeneity and the second radial derivative, both evaluated at the center of the configuration. We calculate the joint probability of initial cosmological inhomogeneities as a function of these two parameters and then find a correspondence between these parameters and those used in numerical computations of PBH formation. Finally, we extend our heuristic study to evaluate the probability of PBH formation taking into account for the first time the radial profile of curvature inhomogeneities.

  8. Quantum-chemical analysis of formation reactions of Со2+ complexes

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2017-11-01

    Full Text Available Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method as to coordination compounds of Co2+ions with H2O, NH3, OH–, F–, Cl–, Br–, I–, CN–, Ac–, Ak– generally given by [Co(H2O6–nLn]2+nx, it has been demonstrated that within the selected series of ligands, there is no correlation between the amount of energy of monosubstituted cobalt aqua complexes formation(∆Е and pK1,just like between the effective nuclear charge of the central atom (z*Со and pK1. According to the behavior of ∆Е and z*Со,we identified two groups of ligands. The first group (OH–, F–, Ac–, Ak–, CN–, NH3 demonstrates logical ∆Е decrease caused by the growth of z*Со. On the contrary, the second group (Cl–, Br–, I– demonstrates ∆Е increase caused by the growth of z*Со. This phenomenon is explained by the change in electronegativity and polarizability of donor atoms in groups and periods of the periodic table. It is established that linear correlations given by lgK = A + B·z*Со can be actualized only for complexes having ligands with similar donor atoms. Referring to the literature on stepwise complex formation of hydroxide, amine and chloride cobalt complexes in combination with z*Со calculations results, we determined A and B constants of lgK, z*Со-correlations for the atoms of oxygen (30.2, –17.7; nitrogen (125.4, –69.9 and chlorine (–6.3, 5.8. The existence of the detected correlation series enables us to lean on lgK,z*М–dependence parameters for the fixed donor atom and to determine Kn values for various complexes with complex-based ligands using calculations and z*М data. This applies to complexes having central atoms of the same nature as well as simple monodentate ligands. The mentioned approach was used to calculate the stability constants for acrylate cobalt complexes (lgK1 = 1.2 и lgК2 = 4.3, which are not covered in literature.

  9. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  10. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    Directory of Open Access Journals (Sweden)

    Jan Lüddecke

    Full Text Available The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.

  11. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang

    2016-08-22

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  12. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.

    2016-01-01

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  13. Complex formation of technetium with the methyl esters of MAG2 and MAG1

    International Nuclear Information System (INIS)

    Noll, B.; Noll, S.; Grosse, B.; Johannsen, B.; Spies, H.

    1993-01-01

    Mercaptoacetylglycine methyl ester (MAG 2 ester) and mercaptoacetyldiglycine methyl ester (MAG 1 ester) were included to investigate complex formation of SH/amide ligands with technetium. The studies are aimed at finding out how blocking the carboxylic groups influences the complexation reaction, with a view to finding an approach to new lipophilic species. (orig./BBR)

  14. Formation constants of lanthanide(III)- aminopolycarboxylate- ATP mixed ligand complexes and their systematics

    International Nuclear Information System (INIS)

    Verma, Sangeeta; Limaye, S.N.; Saxena, M.C.

    1993-01-01

    Formation constants (log Ksub(MAL)sup(MA), log Ksub(ML)sup(M) and log Ksub(ML)sup(ML) of mixed ligand lanthanide(III) complexes of the type [Ln(III).A.ATP[ 2 , where LN(III)=La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ or Dy 3+ ' A=NTA(nitrilotriacetate) or HEDTA (2-hydroxyethylethylenediamine triacetate) and ATP=adenosine 5'-triphosphate (L), and of the binary [Ln(III).ATP[ and [Ln(III).(ATP) 2 [ complexes have been determined by potentiometric pH titrations using the Irving-Rossotti approach at three temperatures 20, 30 and 40 degC and at a fixed ionic strength, I=0.2 mol dm -3 (NAclO 4 ). The solution stabilities (log Ksub(MAL)sup(MA) values) are influenced by the electrostatic effect involved in ternary complexation and increase with temperature. The enthalpy factor (ΔH) has been found to be small but unfavourable and the entropy factor (ΔS) large and favourable. The log Ksub(MAL)sup(MA) values lie in the order NTA>HEDTA with respect to A and La 3+ 3+ 3+ 3+ 3+ 3+ >Gd 3+ 3+ 3+ with respect to lanthanides. Tetrad effect is present in the formation constant values; its magnitude has been found to lie in the sequence f 7 >f 3 -f 4 ≅ f 10 -f 11 for the Ln(III) ions. Systematics in the formation constant values has been further studied by evaluating changes in the inter-electronic repulsion Racah parameters, extra stabilisation of specific 4f 9 -configurations and nephelauxetic ratio using experimental values of the formation constants. (author). 24 refs., 2 figs., 3 tabs

  15. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  16. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  17. THE FORMATION OF DESIGN AND ORGANIZATIONAL AND TECHNOLOGICAL DECISIONS OF THE CONSTRUCTION OF HIGH-RISE MULTIPURPOSE COMPLEXES

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Purpose. The formation of the many ways the construction of high-rise multipurpose complexes. Methodology. The formation of system implementation variants of creation and functioning of high-rise multipurpose complexes using combinatorial morphological analysis and synthesis. Findings. Many life cycle options of high-rise multipurpose complexes. Originality. The developed method of formation of organizational and technological solutions adapted to the conditions of the construction of high-rise multipurpose complexes, which provides the opportunity for multi-variant conditions, taking into account regulatory requirements for fire safety, insolation of buildings and premises, protection against noise and vibration, energy efficiency, infrastructure and population density of a residential district with a full range of institutions and enterprises of local significance, within existing resource constraints, to ensure the commissioning of objects with specified technical and economic characteristics. Practical value. The proposed model and the methodology allow to determine a rational variant of high-rise building according to specified criteria and constraints.

  18. Thermodynamics of complex formation of natural iron(III)porphyrins with neutral ligands

    International Nuclear Information System (INIS)

    Lebedeva, Nataliya Sh.; Yakubov, Sergey P.; Vyugin, Anatoly I.; Parfenyuk, Elena V.

    2003-01-01

    Calorimetric titrations in benzene and chloroform at 298.15 K have been performed to give the complexes stability constants and the thermodynamic parameters for the complex formation of nature iron(III)porphyrins with pyridine. Stoichimetry of the complexes formed has been determined. It has been found that the thermodynamic parameters obtained depend on nature of peripheral substituents of the porphyrins. The estimation of the influence of Cl - and Ac - ions on the processes studied has been carried out. Using thermodynamic analysis method, the crystallsolvates of nature iron(III)porphyrins with benzene have been studied. Stoichiometry, thermal and energetic stability of the π-π-complexes formed have been determined. The data obtained have been used to the estimate solvent effect on the thermodynamic parameters of axial coordination of pyridine on the iron(III)porphyrins in benzene

  19. Quantum statistical vibrational entropy and enthalpy of formation of helium-vacancy complex in BCC W

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua [Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, 519082, Zhuhai (China); Woo, C.H., E-mail: chung.woo@polyu.edu.hk [ME Department, The Hong Kong Polytechnic University, Hong Kong SAR (China)

    2016-12-15

    High-temperature advance-reactor design and operation require knowledge of in-reactor materials properties far from the thermal ground state. Temperature-dependence due to the effects of lattice vibrations is important to the understanding and formulation of atomic processes involved in irradiation-damage accumulation. In this paper, we concentrate on the formation of He-V complex. The free-energy change in this regard is derived via thermodynamic integration from the phase-space trajectories generated from MD simulations based on the quantum fluctuation-dissipation relation. The change of frequency distribution of vibration modes during the complex formation is properly accounted for, and the corresponding entropy change avoids the classical ln(T) divergence that violates the third law. The vibrational enthalpy and entropy of formation calculated this way have significant effects on the He kinetics during irradiation.

  20. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes.

    Science.gov (United States)

    Beutner, Gisela; Eliseev, Roman A; Porter, George A

    2014-01-01

    Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.

  1. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  2. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.

    Science.gov (United States)

    Hunger, Johannes; Tielrooij, Klaas-Jan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-04-26

    We study aqueous solutions of the amphiphilic osmolyte trimethylamine-N-oxide (TMAO) using broadband dielectric spectroscopy and femtosecond mid-infrared spectroscopy. Both experiments provide strong evidence for distinctively slower rotation dynamics for water molecules interacting with the hydrophobic part of the TMAO molecules. Further, water is found to interact more strongly at the hydrophilic site of the TMAO molecules: we find evidence for the formation of stable, TMAO·2H2O and/or TMAO·3H2O complexes. While this coordination structure seems obvious, the lifetime of these complexes is found to be extraordinarily long (>50 ps). The existence of these long-lived complexes leads to pronounced parallel dipole correlations between water and TMAO, reflected in enhanced amplitudes in the dielectric spectra. The strong interaction between water and TMAO also results in a red-shifted band for the O-D stretching vibration of HDO molecules in an isotopically diluted aqueous TMAO solution. This O-D stretching vibration has a vibrational lifetime of 670 fs, which is significantly shorter than the lifetime of the O-D stretch vibration of bulk-like HDO molecules, presumably due to efficient coupling to vibrational modes of TMAO. The rotational dynamics of these O-D groups are slowed down dramatically, and are limited by the rotation of the whole complex, while the O-D vector oriented away from TMAO probably shows an accelerated reorientation.

  3. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex

    DEFF Research Database (Denmark)

    Yao, Xiao Jie; Vélez Ruiz, Gisselle; Whorton, Matthew R

    2009-01-01

    G protein-coupled receptors (GPCRs) mediate the majority of physiologic responses to hormones and neurotransmitters. However, many GPCRs exhibit varying degrees of agonist-independent G protein activation. This phenomenon is referred to as basal or constitutive activity. For many of these GPCRs...... of an agonist, the beta(2)AR and Gs can be trapped in a complex by enzymatic depletion of guanine nucleotides. Formation of the complex is enhanced by the agonist isoproterenol, and it rapidly dissociates on exposure to concentrations of GTP and GDP found in the cytoplasm. The inverse agonist ICI prevents...... formation of the beta(2)AR-Gs complex, but has little effect on preformed complexes. These results provide insights into G protein-induced conformational changes in the beta(2)AR and the structural basis for ligand efficacy....

  4. A CLUSTER IN THE MAKING: ALMA REVEALS THE INITIAL CONDITIONS FOR HIGH-MASS CLUSTER FORMATION

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Kruijssen, J. M. D.; Testi, L.; Walsh, A. J.

    2015-01-01

    G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high density, combined with its lack of prevalent star formation, make it an excellent candidate for an Arches-like cluster in a very early stage of formation. Here we present new Atacama Large Millimeter/Sub-millimeter Array observations of its small-scale (∼0.07 pc) 3 mm dust continuum and molecular line emission from 17 different species that probe a range of distinct physical and chemical conditions. The data reveal a complex network of emission features with a complicated velocity structure: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ∼0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within high-mass Arches-like clusters is compact, centrally condensed, and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process

  5. Initiation of the migrating myoelectric complex in dogs.

    Science.gov (United States)

    Bueno, L; Rayner, V; Ruckebusch, Y

    1981-01-01

    1. Contractile and spike activity in the conscious dog were recorded from strain gauge force transducers and electrodes chronically implanted on the antrum, duodenum and jejunum. The pattern of activity was related to the time elapsed after feeding a daily meal, both in intact dogs and in dogs with antro-jejunal or oesophago-duodenal anastomoses. 2. From 8 to 10 h after feeding, transient reductions of the continuous antral spiking activity were recorded while phases of regular spiking activity (RSA) and contractions developed on the proximal intestine. 3. About 18 h after feeding, the post-prandial antral activity became intermittent, each period of contractions being accompanied by the duodenal development of a RSA phase. 4. The RSA phases were still initiated on the duodenum after an antro-jejunal anastomosis and after gastrectomy. 5. It is concluded that phases of RSA of the migrating myoelectric complex are initiated in the proximal part of the small intestine rather than in the stomach. It is suggested that the RSA phase exerts an inhibitory effect on the antrum which may serve to reduce the flow of digesta through the pylorus when the ability of the duodenum to receive chyme is restricted. PMID:7320868

  6. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    OpenAIRE

    M. Katayeva; R. Mangazbayeva; R. Abdykalykova

    2012-01-01

    The complex formation process of hydroxypropylcellulose (HPC) with polymethacrylic acid (PMA) have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  7. Low Complexity Track Initialization from a Small Set of Non-Invertible Measurements

    Directory of Open Access Journals (Sweden)

    Wolfgang Koch

    2008-02-01

    Full Text Available Target tracking from non-invertible measurement sets, for example, incomplete spherical coordinates measured by asynchronous sensors in a sensor network, is a task of data fusion present in a lot of applications. Difficulties in tracking using extended Kalman filters lead to unstable behavior, mainly caused by poor initialization. Instead of using high complexity numerical batch-estimators, we offer an analytical approach to initialize the filter from a minimum number of observations. This directly pertains to multi-hypothesis tracking (MHT, where in the presence of clutter and/or multiple targets (i low complexity algorithms are desirable and (ii using a small set of measurements avoids the combinatorial explosion. Our approach uses no numerical optimization, simply evaluating several equations to find the state estimates. This is possible since we avoid an over-determined setup by initializing only from the minimum necessary subset of measurements. Loss in accuracy is minimized by choosing the best subset using an optimality criterion and incorporating the leftover measurements afterwards. Additionally, we provide the possibility to estimate only sub-sets of parameters, and to reliably model the resulting added uncertainties by the covariance matrix. We compare two different implementations, differing in the approximation of the posterior: linearizing the measurement equation as in the extended Kalman filter (EKF or employing the unscented transform (UT. The approach will be studied in two practical examples: 3D track initialization using bearingsonly measurements or using slant-range and azimuth only.

  8. Computer analysis of potentiometric data of complexes formation in the solution

    Science.gov (United States)

    Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira

    2018-02-01

    The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.

  9. The Possibility of Ce3+ and Mn2+ Complex Ions Formation With Iodine Species in a Dushman Reaction

    Directory of Open Access Journals (Sweden)

    Iurie Ungureanu

    2018-06-01

    Full Text Available This contribution presents investigations into possible effects of Ce3+ and Mn2+ on the reduction of UV-spectral signal for I3- observed e.g. in the Dushman reaction. The potential of the metal ions to form complexes with iodine-containing species was analysed. It was shown that no complex ions are formed between Ce3+ and Mn2+ metals ions with IO3-, I-, I2 species. Only the formation of a very weak CeI32+ complex ion was found to occur. An effect of a complex formation on the studied systems could be excluded.

  10. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    International Nuclear Information System (INIS)

    Pyreu, Dmitrii; Gruzdev, Matvey; Kumeev, Roman; Gridchin, Sergei

    2014-01-01

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH 2 , CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH 2 , N − or NH2, N − , COO-coordination modes of GlyGly in the complex ZnNtaGGH −1 . - Abstract: The isothermal calorimetry, pH-potentiometric titration and 1 H and 13 C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn 2+ –Nta 3– –L − (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO 3 ). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed

  11. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State UniversityErmak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvey; Kumeev, Roman [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Gridchin, Sergei [Ivanovo State University of Chemistry and Technology, Ivanovo (Russian Federation)

    2014-10-20

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH{sub 2}, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH{sub 2}, N{sup −} or NH2, N{sup −}, COO-coordination modes of GlyGly in the complex ZnNtaGGH{sub −1}. - Abstract: The isothermal calorimetry, pH-potentiometric titration and {sup 1}H and {sup 13}C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn{sup 2+}–Nta{sup 3–}–L{sup −} (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed.

  12. Stereospecific polymerization of acrylonitrile using acrylonitrile-urea canal complex initiated by γ-ray irradiation

    International Nuclear Information System (INIS)

    Yamazaki, Hitoshi; Miyazaki, Yukio; Kamide, Kenji

    1991-01-01

    An attempt was made to clarify the effect of polymerization conditions (e.g., the content of chain transfer reagent, irradiation dose, acrylonitrile (AN)-urea ratio, aging time) on the stereoregularity, the viscosity-average molecular weight M ν , and the conversion in the radiation-induced polymerization of AN-urea canal complex in the presence of radical chain transfer reagent including alkyl mercaptans, alkylamines, alkyl alcohols and chloroform. The addition of n-butyl mercaptan (n-BM) to AN-urea system slowed down the rate of the canal complex formation and decreased the amount of the canal complexes formed. The role of n-BM on the formation of AN-urea canal complex was also examined by DSC. The enthalpy of fusion (ΔH) of AN solid in AN-n-BM-urea system decreased with elapse of aging time, although ΔH of n-BM was almost constant in the whole range of aging time. From these findings, it was concluded that n-BM is not included in the AN-urea canal complex. The conversion decreased remarkably with an increase in n-BM content. When 2 mol%/AN of n-BM was added to AN, M ν was almost constant (ca. M ν = 2.0 x 10 5 ), irrespective of the amount of n-BM added. Addition of n-BM to AN-urea system brings about a small, but significant increase in the content of isotactic triad (mm) by 5 to 14%. (author)

  13. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  14. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Katayeva

    2012-12-01

    Full Text Available The complex formation process of hydroxypropylcellulose (HPC with polymethacrylic acid (PMA have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  15. Structural characterization of Am(III) formate complexes. Combining EXAFS spectroscopy with DFT and thermodynamical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rossberg, Andre [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Froehlich, D.R. [Heidelberg Univ. (Germany). Physikalisch-Chemisches Inst.

    2017-06-01

    We used iterative transformation factor analysis (ITFA) in order to isolate the EXAFS spectral contributions of the complexing ligand from a Am(III)/formate pH-series. Thermodynamic calculations were used as constraint for ITFA and for density functional theory (DFT) calculations to identify the coordination mode within the formed complexes.

  16. Study of factors that influence complex-formation of n-alkanes with crystal carbamide

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnova, V.S.; Korzhov, Yu.A.; Martynenko, A.G.

    1982-01-01

    Studies effect of temperature, solid phase content in the suspension and amount of MeOH on extent of n-alkane extraction during carbamide deparaffinization. A most thorough extraction of n-alkanes is achieved with a graduated temperature regimen of complex-formation.

  17. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric ac......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  18. Formation of mixed ligand complexes of UO22+ involving some nitrogen and oxygen donor ligands

    International Nuclear Information System (INIS)

    Singh, Mamta; Ram Nayan

    1996-01-01

    The complexation reactions of UO 2 2+ ion with nitrogen and oxygen donor ligands, 1-amino-2-naphthol-4-sulphonic acid, o-aminophenol (ap), 2-hydroxybenzoic acid (sa), 3-carboxy-4-hydroxybenzenesulphonic acid (ss) and 1,2-dihydroxybenzene (ca) have been investigated in aqueous solution employing the pH-titration technique. Analysis of the experimental data recorded at 25 degC and at an ionic strength of 0.10 M KNO 3 indicates formation of binary, hydroxo and ternary complexes of uranium. Formation constant values of the existing species have been evaluated and the results have been discussed. (author). 21 refs., 2 figs., 2 tabs

  19. Physics of positronium acceptor complex formation reactions

    International Nuclear Information System (INIS)

    Gangopadhyay, Debarshi; Ganguly, Bichitra Nandi; Mukherjee, Tapas; Dutta-Roy, Binayak

    2002-01-01

    Positronium (P s ) reaction rates (κ) with weak Acceptors (Ac) leading to the formation of Ps-Ac complexes show several interesting features: non-monotonic temperature dependence of κ(departing from the usual Arrhenius behaviour), considerable variability of κ with respect to different solvents, and anomalies in response to external pressure at ambient temperature. The object of this work is to explain all these phenomena using a remarkably simple bubble model (the widely used model for the pick-off component of ortho-positronium decay in liquids), which has been revisited several times in the context and as a result smooth diffuse boundary of the bubble was suggested that yields reasonable agreement of the experimental data. The contractile force on the bubble relies much on the surface tension of the liquid, through our calculation the notion of critical surface tension emerges and enables us to explain the experimental observations satisfactorily. (author)

  20. A spectrophotometric investigation of the complex formation between lanthanum (III) and eriochrome cyanine R

    International Nuclear Information System (INIS)

    Boodts, J.F.C.; Saffioti, W.

    1979-01-01

    The complex formation between La(III) and Eriochrome Cyanine R has been investigated. Three complexes have been detected. A first one (Complex I) in the pH range of 5.3-5.5 with lambda sub(max) = 460nm. a second one (Complex II) in the pH range of 6.2-6.5 with lambda sub(max) = 490nm and a third one (complex III) in the pH range of 8.2 - 9.0 with lambda sub(max) = 545nm and a shoulder between 570-580nm. The composition and stability constants of the complexes, respectively: complex I: La(ECR) 2 and 4.9 x 10 7 , complex II: La(ECR) 2 and 7.0 x 10 7 , complex III: La.ECR and 1.0 x 10 4 . All measurements were taken at 25.0 +- 0.1 0 C and μ = 0.2 (NaClO 4 ). (Author) [pt

  1. A Solution Study of Complex Formation of Some Diamines with Lanthanones

    Directory of Open Access Journals (Sweden)

    J. J. Vora

    2009-01-01

    Full Text Available To study the metal ligand equilibrium in aqueous solution, the well known Irving-Rossotti titration method was used. The temperature selected is 30±0.10C at ionic strength 0.2 M (NaClO4 which was maintained constant through out the work. The binary metal complex (ML2 formation was studied. The metals selected are Sm3+, Gd3+, Dy3+ and Yb3+. The diamine ligands taken are ethylenediamine, 1,2 diamino propane, 1,3 diamino propane, N-N diethyl ethylenediamine and N-N -dimethyl ethylenediamine. Factors that affected the stability of the complexes are size and ionic potential of lanthanone ions, basicity of ligands, ring size and steric effect of ligands.

  2. Influence of Exciplex formation on the electroluminescent properties of dimeric Zn (II) bis-2-(2'-hydroxyphenyl) benzoxazole complex and monomeric Zn (II) 2-(1'-hydroxynaphthyl) benzothiazole complex

    Science.gov (United States)

    Prakash, Sattey; Anand, R. S.; Manoharan, S. Sundar

    2011-10-01

    In this paper we present the factors affecting electroluminescent properties of Zinc complexes of oxazole & thiazole derivatives. Electroluminescent spectra of the Zinc (II) complex of bis-[2-(2'-hydroxyphenyl) benzoxazole], [Zn (HPBO)2]2 and 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] show unusual broadening and shows structural and photophysical similarity with [Zn (HPBT)2]2, a dimeric complex. The [Zn (HPBO)2]2 complex as an emissive layer in the device structure ITO /PEDOT:PSS /TPD (30nm) /[Zn (HPBO)2]2 (60nm) /BCP (6nm) /Ca (3nm) /Al (200nm) shows a broad bluish green emission, with a full width at half maxima (FWHM1˜70nm). The EL spectra is much broader compared to the PL spectra because of exciplex formation at the interfacial region between the emissive layer (EML) & hole transport layer (HTL). We also show the device performance of Zinc 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] complex as emissive layer. Distinctly this device shows a broad greenish yellow emission with a peak maxima at 535nm and 690nm, owing to the exciplex formation between electron transport layer (ETL) and emissive layer (EML), which is in sharp contrast to the exciplex formation across the HTL-EML interface observed for the [Zn (HPBO)2]2 complex.

  3. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.

    Science.gov (United States)

    Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando

    2015-01-01

    The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  5. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.

    Science.gov (United States)

    Villota, Natalia; Lomas, Jose M; Camarero, Luis M

    2017-11-01

    Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Translation initiation mediated by nuclear cap-binding protein complex.

    Science.gov (United States)

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  7. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This

  8. Role of complex formation in the photosensitized degradation of DNA induced by N'-formylkynurenine

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Charlier, M.

    1976-01-01

    N'-Formylkynurenine derivatives efficiently bind to DNA or polynucleotides. Homopolynucleotides and DNA displayed marked differences in the binding process. Association constants were derived which indicated that the oxidized indole ring is more strongly bound to DNA than the unoxidized one. Irradiation of such complexes with wavelengths greater than 320 nm induced pyrimidine dimer formation as well as DNA chain breaks. Complex formation is shown to play an important role in these photosensitized reactions. The photodynamic action of N-formylkynurenine on DNA constituents was negligible at neutral pH but guanine and xanthine derivatives were sensitizable at higher pH. Thymine dimer splitting can occur in aggregated frozen aqueous solutions of N'-formylkynurenine and thymine dimer but this photosensitized splitting was negligible in liquid solutions at room temperature. (author)

  9. Formation and Initiation of Erupting Flux Rope and Embedded Filament Driven by Photospheric Converging Motion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaozhou; Gan, Weiqun [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Xia, Chun; Keppens, Rony, E-mail: zhaoxz@pmo.ac.cn, E-mail: wqgan@pmo.ac.cn, E-mail: chun.xia@kuleuven.be, E-mail: rony.keppens@kuleuven.be [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium)

    2017-06-01

    In this paper, we study how a flux rope (FR) is formed and evolves into the corresponding structure of a coronal mass ejection (CME) numerically driven by photospheric converging motion. A two-and-a-half-dimensional magnetohydrodynamics simulation is conducted in a chromosphere-transition-corona setup. The initial arcade-like linear force-free magnetic field is driven by an imposed slow motion converging toward the magnetic inversion line at the bottom boundary. The convergence brings opposite-polarity magnetic flux to the polarity inversion, giving rise to the formation of an FR by magnetic reconnection and eventually to the eruption of a CME. During the FR formation, an embedded prominence gets formed by the levitation of chromospheric material. We confirm that the converging flow is a potential mechanism for the formation of FRs and a possible triggering mechanism for CMEs. We investigate the thermal, dynamical, and magnetic properties of the FR and its embedded prominence by tracking their thermal evolution, analyzing their force balance, and measuring their kinematic quantities. The phase transition from the initiation phase to the acceleration phase of the kinematic evolution of the FR was observed in our simulation. The FR undergoes a series of quasi-static equilibrium states in the initiation phase; while in the acceleration phase the FR is driven by Lorentz force and the impulsive acceleration occurs. The underlying physical reason for the phase transition is the change of the reconnection mechanism from the Sweet–Parker to the unsteady bursty regime of reconnection in the evolving current sheet underneath the FR.

  10. Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan.

    Science.gov (United States)

    Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M

    2016-03-01

    The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Formation of Mixed-Ligand Complexes of Metals(II) with Monoamine Complexones and Amino Acids in Solution

    Science.gov (United States)

    Pyreu, D. F.; Gridchin, S. N.

    2018-05-01

    The formation of mixed-ligand complexes in the M(II)-Nta, Ida-L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (log K, Δr G 0, Δr H, Δr S) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.

  12. Formation of covalent complexes between human O sup 6 -alkylguanine-DNA alkyltransferase and BCNU-treated defined length synthetic oligodeoxynucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Brent, T.P.; Remack, J.S. (St. Jude Children' s Research Hospital, Memphis, TN (USA))

    1988-07-25

    Repair of chloroethylnitrosourea (CENU)-induced precursors of DNA interstrand cross-links by O{sup 6}-alkylguanine-DNA alkyltransferase (GAT or GATase) appears to be a factor in tumor resistance to therapy with this class of antineoplastic drugs. Since human GAT is highly specific for O{sup 6}-guanine, yet the probably cross-link structure is N{prime}-Guanine N{sup 3}cytosine ethane, rearrangement of the initial O{sup 6}-guanine adduct via O{sup 6},N{sup 1}ethanoguanine has been proposed. The authors suggested that GAT reaction with this intermediate would produce DNA covalently linked to protein through an ethane link from N{sup 1}-guanine to the alkylacceptor site on GAT. In preliminary studies they demonstrated a covalent complex between GAT and carmustine (BCNU)-treated DNA by a precipitation assay method. They have now developed a method for isolating the reaction product of BCNU-treated synthetic 14-mer ({sup 32}P)-labeled oligodeoxynucleotide and GAT using polyacrylamide gel electrophoresis. This approach can be used to characterize the adducts induced by CENUs that lead to complex formation with GAT.

  13. Rethinking sexual initiation: pathways to identity formation among gay and bisexual Mexican male youth.

    Science.gov (United States)

    Carrillo, Héctor; Fontdevila, Jorge

    2011-12-01

    The topic of same-sex sexual initiation has generally remained understudied in the literature on sexual identity formation among sexual minority youth. This article analyzes the narratives of same-sex sexual initiation provided by 76 gay and bisexual Mexican immigrant men who participated in interviews for the Trayectos Study, an ethnographic study of sexuality and HIV risk. These participants were raised in a variety of locations throughout Mexico, where they also realized their same-sex attraction and initiated their sexual lives with men. We argue that Mexican male same-sex sexuality is characterized by three distinct patterns of sexual initiation--one heavily-based on gender roles, one based on homosociality, and one based on object choice--which inform the men's interpretations regarding sexual roles, partner preferences, and sexual behaviors. We analyzed the social factors and forms of cultural/sexual socialization that lead sexual minority youth specifically to each of these three patterns of sexual initiation. Our findings confirm the importance of studying same-sex sexual initiation as a topic in its own right, particularly as a tool to gain a greater understanding of the diversity of same-sex sexual experiences and sexual identities within and among ethnic/cultural groups.

  14. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.

    Science.gov (United States)

    Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.

  15. Classical and quasi-classical trajectory calculations of isotope exchange and ozone formation proceeding through O+O2 collision complexes

    Science.gov (United States)

    Baker, Thomas A.; Gellene, Gregory I.

    2002-10-01

    The isotope exchange reaction, and the three-body ozone formation rate proceeding through an ozone complex, have been studied by classical and quasi-classical trajectory techniques. The exchange rate studies indicate that the rate of this reaction is dominantly sensitive to the O+O2 entrance channel characteristics of the potential energy surface. A detailed consideration of the dynamics of the intermediate ozone complex reveals three important classes. In one class, the complex adopts an ozonelike geometry, largely undergoing asymmetric stretchinglike motion until it dissociates. In a second class, the oxygen atom and molecule never visit the ozonelike geometry but rather remain separated by relatively large distances trapped near the angular momentum barrier in the entrance channel of a pseudo-effective potential. These complexes, which cannot undergo exchange, are, nevertheless, found to contribute significantly to ozone formation at high density of the third body suggesting that the association of the high-density effective formation rate constant with twice the exchange rate may not be valid. The third class can be considered a hybrid of the first two, spending some time as an ozonelike complex and some time as a large atom-diatomic complex. This third class provides a mechanism for rearranging atom locations in the complex (e.g., end and middle position swapping) and, consequently, would not be well accounted for by statistical treatments of the ozone complex based on a single ozonelike reference geometry. In general, the survival time distributions of the complexes are found to be nonexponential. However, when the detailed survival time distributions are coupled with a Lennard-Jones collision model for the stabilization step, the experimental ozone formation rate can be adequately modeled over a broad range of temperature and density.

  16. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  17. Sodium Caseinate-Carrageenan Biopolymeric Nanocomplexes as a Carrier of Vitamin D: Study of Complex Formation, Particles Size and Encapsulation Efficiency

    Directory of Open Access Journals (Sweden)

    Maryam Khoshmanzar

    2014-04-01

    Full Text Available The protein-polysaccharide complex-based nanocapsule is one type of polymeric nanocarrier which can be potentially useful for encapsulation of hydrophobic nutraceuticals. In this research, caseinate-carrageenan complex was used for encapsulation of vitamin D. The complex formation between caseinate and carrageenan was carried out by lowering the pH under isoelectric point of protein. The Fourier transform infrared spectroscopy (FTIR and differential scanning colorimetry (DSC confirmed complex formation between carrageenan, caseinate and vitamin D. The particle size of 1% caseinate particles was in the range of 150-300 nanometer and by addition of vitamin D the particle size increased to 450-750 nanometer. Moreover, carrageenan of all concentrations (at constant concentration of caseinate (1% and pH4.9 resulted in lower particle size below 100 nanometer. The stability of caseinate and its complex formation with carrageenan showed that encapsulation was achieved at 45% efficiency and also vitamin D stability (during 5 days storage was higher in nanocomplex compared to pure caseinate particles (60-63% compared to 53%. The complex formation between caseinate and carrageenan was carried out by pH decreasing under isoelectric point of protein. The FTIR and DSC confirmed complex formation between carrageenan, caseinate and vitamin D. The particle size of caseinate 1% particles were in the range of 150 -300 nanometer and with adding vitamin D, particle size increased to 450-750 nanometer. Moreover, adding carrageenan at all used concentration (at constant concentration of caseinate (1% and pH4.9 resulted in reduced particle size to less than 100 nanometer and vitamin D stability (during 5 days storage was higher (60-63% in nanocomplex compared to pure caseinate particles (53%.The protein-polysaccharide complex based nanocapsule is one type of the polymeric nanocarriers which can potentially be used for encapsulation of hydrophobic nutraceuticals. In

  18. GALAXY FORMATION WITH COLD GAS ACCRETION AND EVOLVING STELLAR INITIAL MASS FUNCTION

    International Nuclear Information System (INIS)

    Kang Xi; Lin, W. P.; Skibba, Ramin; Chen, D. N.

    2010-01-01

    The evolution of the galaxy stellar mass function is especially useful to test the current model of galaxy formation. Observational data have revealed a few inconsistencies with predictions from the ΛCDM model. For example, most massive galaxies have already been observed at very high redshifts, and they have experienced only mild evolution since then. In conflict with this, semi-analytical models (SAMs) of galaxy formation predict an insufficient number of massive galaxies at high redshift and a rapid evolution between redshift 1 and 0. In addition, there is a strong correlation between star formation rate (SFR) and stellar mass for star-forming galaxies, which can be roughly reproduced with the model, but with a normalization that is too low at high redshift. Furthermore, the stellar mass density obtained from the integral of the cosmic star formation history is higher than the measured one by a factor of 2. In this paper, we study these issues using an SAM that includes (1) cold gas accretion in massive halos at high redshift; (2) tidal stripping of stellar mass from satellite galaxies; and (3) an evolving stellar initial mass function (IMF; bottom-light) with a higher gas recycle fraction. Our results show that the combined effects from (1) and (2) can predict sufficiently massive galaxies at high redshifts and reproduce their mild evolution at low redshift, while the combined effects of (1) and (3) can reproduce the correlation between SFR and stellar mass for star-forming galaxies across a wide range of redshifts. A bottom-light/top-heavy stellar IMF could partly resolve the conflict between the stellar mass density and cosmic star formation history.

  19. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    Science.gov (United States)

    Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.

    2018-04-01

    The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors

  20. Young stellar population and ongoing star formation in the H II complex Sh2-252

    Science.gov (United States)

    Jose, Jessy; Pandey, A. K.; Samal, M. R.; Ojha, D. K.; Ogura, K.; Kim, J. S.; Kobayashi, N.; Goyal, A.; Chauhan, N.; Eswaraiah, C.

    2013-07-01

    In this paper, an extensive survey of the star-forming complex Sh2-252 has been undertaken with an aim to explore its hidden young stellar population as well as to understand the structure and star formation history for the first time. This complex is composed of five prominent embedded clusters associated with the subregions A, C, E, NGC 2175s and Teu 136. We used Two Micron All Sky Survey-near-infrared and Spitzer-Infrared Array Camera, Multiband Imaging Photometer for Spitzer photometry to identify and classify the young stellar objects (YSOs) by their infrared (IR) excess emission. Using the IR colour-colour criteria, we identified 577 YSOs, of which, 163 are Class I, 400 are Class II and 14 are transition disc YSOs, suggesting a moderately rich number of YSOs in this complex. Spatial distribution of the candidate YSOs shows that they are mostly clustered around the subregions in the western half of the complex, suggesting enhanced star formation activity towards its west. Using the spectral energy distribution and optical colour-magnitude diagram-based age analyses, we derived probable evolutionary status of the subregions of Sh2-252. Our analysis shows that the region A is the youngest (˜0.5 Myr), the regions B, C and E are of similar evolutionary stage (˜1-2 Myr) and the clusters NGC 2175s and Teu 136 are slightly evolved (˜2-3 Myr). Morphology of the region in the 1.1 mm map shows a semicircular shaped molecular shell composed of several clumps and YSOs bordering the western ionization front of Sh2-252. Our analyses suggest that next generation star formation is currently under way along this border and that possibly fragmentation of the matter collected during the expansion of the H II region as one of the major processes is responsible for such stars. We observed the densest concentration of YSOs (mostly Class I, ˜0.5 Myr) at the western outskirts of the complex, within a molecular clump associated with water and methanol masers and we suggest that it

  1. In vitro complex formation and inhibition of hepatic cytochrome P450 activity by different macrolides and tiamulin in goats and cattle

    NARCIS (Netherlands)

    Zweers-Zeilmaker, W.M.; Miert, A.S.J.P.A.M. van; Horbach, G.J.; Witkamp, R.F.

    1998-01-01

    In humans, clinically relevant drug–drug interactions occur with some macrolide antibiotics via the formation of stable metabolic intermediate (MI) complexes with enzymes of the cytochrome P4503A (CYP3A) subfamily. The formation of such complexes can result in a decreased biotransformation rate of

  2. Formation of protein-birnessite complex: XRD, FTIR, and AFM analysis.

    Science.gov (United States)

    Naidja, A; Liu, C; Huang, P M

    2002-07-01

    Limited information is available on formation chemistry of enzyme-Mn oxide complexes. Adsorption isotherm of protein molecules (tyrosinase) on birnessite (delta-MnO(2)) at pH 6.0 and room temperature (23 degrees C) was of H type, indicating a very high affinity of the enzyme protein molecules to the birnessite mineral surfaces. After thorough washing of the protein-mineral complex with deionized-distilled water, up to 89% of adsorbed protein molecules remained bound to the mineral surfaces. When a high amount of the protein was immobilized, the X-ray diffractogram shows a significant decrease in the intensity of characteristic d-spacings of birnessite. No shift to higher values of the d-spacings of protein-birnessite complex was observed, indicating that the enzyme molecules were not intercalated in the mineral structure but immobilized at the external surfaces and the edges of the mineral oxide. By comparison to the free enzyme, infrared absorption spectra of the protein-birnessite complexes show a shift by up to 11 cm(-1) to lower frequencies in the absorption bands characteristic of amide I and II modes of the polypeptides chains. The mineral surfaces exerted some strain on the protein structure, resulting in an alteration of the protein molecular conformation after binding to the mineral colloid surfaces. In the free state, the globular protein molecules had a spheroid shape with an average cross-sectional diameter of 70+/-6 nm. The unfolding and flattening of the protein molecules after immobilization is clearly shown in atomic force micrographs. Compared to the tyrosinase-birnessite complex, similar FTIR spectra and atomic force micrographs were observed for the pure protein, bovine serum albumin (BSA), after immobilization on birnessite. The information obtained in this study is of fundamental significance for understanding birnessite as an adsorbent of biopolymers and the catalytic role of the enzyme-birnessite complex.

  3. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Is, E-mail: isfatimah@uii.ac.id; Yudha, Septian P.; Mutiara, Nur Afisa Lintang [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-02-08

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  4. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    International Nuclear Information System (INIS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-01-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction

  5. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Science.gov (United States)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  6. The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex.

    Science.gov (United States)

    Pinske, Constanze

    2018-01-01

    Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described

  7. Determination of the stability constants of a number of metal fluoride complexes and their rates of formation

    International Nuclear Information System (INIS)

    Hammer, R.R.

    1979-08-01

    The stability constants of the fluoride complexes of Al +3 , H 3 BO 3 , Cr +3 , Cr +6 , Fe +3 , Gd +3 , Nb +5 , UO 2 +2 , and Zr +4 were determined in 0.96 and 2.88 M HNO 3 solutions in the temperature range 25 to 60 0 C with a fluoride specific ion electrode. These data can be used to calculate the concentration of chemical species in solution and will be used to correlate solution properties with solution composition. The solubilities of some fluoride precipitates were also measured in nitric acid solutions. The rates of formation of the fluoborates, aluminum fluoride, and zirconium fluoride complexes were measured with a fluoride specific ion electrode at 25, 35, and 45 0 C. The rates of formation of all complexes, except BF 4 - , AlF +2 , and a fluoride complex with aluminum containing more than three fluorides associated with it, were too fast to measure with the instrumentation used

  8. Tubular Initial Conditions and Ridge Formation

    Directory of Open Access Journals (Sweden)

    M. S. Borysova

    2013-01-01

    Full Text Available The 2D azimuth and rapidity structure of the two-particle correlations in relativistic A+A collisions is altered significantly by the presence of sharp inhomogeneities in superdense matter formed in such processes. The causality constraints enforce one to associate the long-range longitudinal correlations observed in a narrow angular interval, the so-called (soft ridge, with peculiarities of the initial conditions of collision process. This study's objective is to analyze whether multiform initial tubular structures, undergoing the subsequent hydrodynamic evolution and gradual decoupling, can form the soft ridges. Motivated by the flux-tube scenarios, the initial energy density distribution contains the different numbers of high density tube-like boost-invariant inclusions that form a bumpy structure in the transverse plane. The influence of various structures of such initial conditions in the most central A+A events on the collective evolution of matter, resulting spectra, angular particle correlations and vn-coefficients is studied in the framework of the hydrokinetic model (HKM.

  9. Application of rank annihilation factor analysis to the spectrophotometric determination of the formation constant of complex of a new synthesized tripodal ligand with Co2+

    Directory of Open Access Journals (Sweden)

    Reza Golbedaghi

    2017-05-01

    Full Text Available The complex formation between a new synthesized tripodal ligand (L22py and the cation Co2+ in water was studied spectrophotometrically using rank annihilation factor analysis (RAFA. According to molar ratio data the stoichiometry of complexation between the ligand and the cation Co2+ was 1:1. Formation constant of this complex was derived using RAFA on spectrophotometric data. In this process the contribution of ligand is removed from the absorbance data matrix when the complex stability constant acts as an optimizing object and simply combined with the pure spectrum of ligand, the rank of original data matrix can be reduced by one by annihilating the information of the ligand from the original data matrix. The effect of ethanol, dimethylformamide (DMF and acetonitrile (AN was investigated on the formation constant of the Co2+ complex. Complex formation constant in water was estimated as log Kf = 5.09 ± 0.02. In mixtures of solvents of water and DMF and water and AN, the formation constant of the complex was increased because of lowering donor number of the solvent and in mixture of water and ethanol, the complex formation constant was decreased because of lowering of dielectric constant of the solvent.

  10. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH.

    Science.gov (United States)

    Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming

    2018-07-01

    High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The information technologies in the initial formation process of the professional of education.

    Directory of Open Access Journals (Sweden)

    Oliurca Padilla García

    2012-12-01

    Full Text Available Universities should give the students methods, aids and ways to obtain knowledge, in correspondence with the scientific development reached, so that they can assume a transformer position in the different acting contexts. In this sense, the information technologies not only provide the student with tools and resources of information, but also propitiate an environment that promotes interactions and educative exchange experiences between the students and teachers. Deepening about the role these resources play in the educational environment is of great importance to get its integration in a systematic and systemic way to the initial formation process of the professional of education so, its application in their formation surpasses the traditional concept of using de aims, and becomes an element that significantly strikes in a new configuration of the didactic approach of the process in the nowadays conditions.

  12. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  13. Kinetics and equilibria for the formation of a new DNA metal-intercalator: the cyclic polyamine Neotrien/copper(II) complex.

    Science.gov (United States)

    Biver, Tarita; Secco, Fernando; Tinè, Maria Rosaria; Venturini, Marcella

    2004-01-01

    A study has been performed of the kinetics and equilibria involved in complex formation between the macrocyclic polyamine 2,5,8,11-tetraaza[12]-[12](2,9)[1,10]-phenanthrolinophane (Neotrien) and Cu(II) in acidic aqueous solution and ionic strength 0.5 M (NaCl), by means of the stopped-flow method and UV spectrophotometry. Spectrophotometric titrations and kinetic experiments revealed that the binding of Cu(II) to Neotrien gives rise to several 1:1 complexes differing in their degree of protonation. Under the experimental hydrogen ion concentration range investigated, complexation occurs by two parallel paths: (a) M2+ + (H4L)4+ (MH4L)6+ and (b) M2+ + (H3L)3+ (MH3L)5+. The rate constants values found for complex formation, by paths (a) and (b), are much lower than the values expected from water exchange at copper(II) and other amine/Cu(II) complexation kinetic constants. Kinetic experiments at different NaCl concentrations indicated that this finding was not due to chloride ion competition in complex formation with Neotrien, but it was related to a ring rigidity effect. As the phenanthroline moiety could, in principle, interact with nucleic acids by intercalation or external binding, some preliminary measurements concerned with the possible interactions occurring between the Cu(II)/Neotrien complex and calf thymus DNA (CT-DNA) have also been carried out. The absorption spectra of the Cu(II)/Neotrien complex change upon addition of CT-DNA at pH 7.0, revealing the occurrence of complex-nucleic acid interactions. Moreover, fluorescence titrations, carried out by adding the Cu(II)/Neotrien complex to CT-DNA, previously saturated with ethidium bromide (EB), show that the Cu(II)/Neotrien complex is able to displace EB from DNA, suggesting the complex is able to intercalate into the polynucleotide and then to cleave the phosphodiester bond of DNA.

  14. Kinetic and mechanism formation reaction of complex compound Cu with di-n-buthildithiocarbamate (dbdtc) ligand

    Science.gov (United States)

    Haryani, S.; Kurniawan, C.; Kasmui

    2018-04-01

    Synthesis of complex compound is one field of research which intensively studied. Metal-dithiocarbamate complexes find wide-ranging applications in nanomaterial and metal separation science, and have potential use as chemotherapeutic, pesticides, and as additives to lubricants. However, the information about is reaction kinetic and mechanism are very much lacking. The research and analyzes results show that reaction synthesis ligand DBDTC and complex compounds Cu-DBDTC. Optimum reaction condition of formation of complex compounds Cu with DBDTC at pH=3, [DBDTC] = 4.10-3 M, and the time of reaction 5 minutes. Based the analysis varian reaction of complex compounds at pH 3 and 4, diffrence significance at the other pH: 5; 5,5; 6; 6,5 ; 7; and 8. The various of mole with reactants comosition difference sigbificance, those the time reaction for 5 and 6 minutes diffrence by significance with the other time, it is 3,4,8, and 10 minutes. The great product to at condition pH 6, the time optimum at 5 minutes and molar ratio of logam: ligand = 1:2. The reaction kinetic equation of complex compound Cu with chelathing ligand DBDTC is V=0.917106 [Cu2+]0.87921 [DBDTC]2.03021. Based on the kinetic data, and formed complex compounds estimation, the mechanism explaining by 2 stages. In the first stage formation of [Cu(DBDTC)], and then [Cu(DBDTC)2] with the last structure geomethry planar rectangle. The result of this research will be more useful if an effort is being done in reaction mechanism by chemical computation method for obtain intermediate, and for constant “k” in same stage, k1.k2. and compound complex constanta (β).

  15. Electrochemistry of metal complexes applications from electroplating to oxide layer formation

    CERN Document Server

    Survila, Arvydas

    2015-01-01

    This book aims to sequentially cover all the major stages of electrochemical processes (mass transport, adsorption, charge transfer), with a special emphasis on their deep interrelation. Starting with general considerations on equilibria in solutions and at interfaces as well as on mass transport, the text acquaints readers with the theory and common experimental practice for studying electrochemical reactions of metals complexes. The core part of the book deals with all important aspects of electroplating, including a systematic discussion of co-deposition of metals and formation of alloys.

  16. Potentiometric and spectral studies of complex formation of La(3), Pr(3) and Lu(3) with aspartic acid and asparagine

    International Nuclear Information System (INIS)

    Wojciechowska, A.; Lomozik, L.; Zielinski, S.

    1987-01-01

    The composition and stability of La 3+ , Pr 3+ and Lu 3+ complexes with aspartic acid and asparagine were analysed. The formation of complexes of the type ML and MHL was determined for La 3+ and Pr 3+ with aspartic acid, and of the type MHL for Lu 3+ with aspartic acid. For La 3+ , Pr 3+ and Lu 3+ with asparagine the formation of ML(OH) complexes was observed. By means of 1 HNMR and 13 CNMR studies the participation in the coordination of both -COOH groups was determined for aspartic acid, whereas for asparagine the participation of the -COOH group was determined in complexes with La 3+ , Pr 3+ , and of the -COOH and the -NH 2 groups in the complex with Lu 3+ . (Author)

  17. Interpreting future physics teachers reflections on their professional practice during initial formation: the search for teaching autonomy construction

    OpenAIRE

    Rodolfo Langhi; Roberto Nardi

    2012-01-01

    This research intends to answer the following main question: which traces of teacher autonomy construction are possible to achieve during reflective formative processes in disciplines like Methodology and Physics Teaching Practice carried out during three semesters, in an undergraduate program designed to physics teachers´ initial education? Using an analytical device based on teachers education research assumptions, which we called convergent formative triangulation for progressive teaching ...

  18. Study of the formation of complexes of nitrosyl-rhutenium nitrates with thiourea

    International Nuclear Information System (INIS)

    Floh, B.

    1977-01-01

    A method for the treatment of spent uranium fuel is presented, based on the Purex process using thiourea to increase the ruthenium decontamination factor. Thiourea exhibits a strong tendency for the formation of coordination compounds in acidic media. This tendency serves as a basis to transform nitrosyl-ruthenium species into Ru/SC(NH)(NH 2 )/ 2+ and Ru/SC(NH)(NH 2 )/ 3 complexes which are unextractable by TBP-varsol. The best conditions for the ruthenium-thiourea complex formation were found to be: thiourea-ruthenium ratio (mass/mass) close to 42, at 75 0 C, 30 minutes reaction time and aging period of 60 minutes. The ruthenium decontamination factor for a single uranium extraction are ca. 80-100, not interfering with extraction of actinides. These values are rather high in comparison to those obtained using the conventional Purex process (e.g. F.D. sub(Ru)=10). For this reason, the method developed here is suitable for the treatment of spent uranium fuels. Thiourea (100 g/l) scrubbing experiments of ruthenium, partially co-extracted with actinides, confirmed the possibility of its removal from the extract. With this procedure a decontamination greater than 83,5% for ruthenium as fission product is obtained in two stages [pt

  19. Ternary complex formation of lanthanides and radiolanthanides with phosphate and serum proteins

    International Nuclear Information System (INIS)

    Neumaier, B.; Roesch, F.

    1999-01-01

    Radioyttrium was recently reported to form ternary complexes with phosphate and serum proteins in blood. In the present work it was investigated whether the trivalent radiolanthanides react in a chemically similar way. In systematic binding studies using gel filtration a ternary complex formation between different lanthanides, phosphate and serum proteins could be identified. The tendency to build a ternary compound of the type Ln III - phosphate - serum protein, however, is dependent on the ionic radii of the lanthanides. Whereas the light and transition lanthanides have a strong inclination to build a ternary complex, this tendency is weaker for the heavier ones. Taking into account the high content of phosphate in human blood, the corresponding ternary complexes of radiolanthanides represent an important transport form of these elements in blood. This finding may contribute to an understanding of the nuclear medical observation on the biodistribution of radiolanthanides. The heavy radiolanthanides can be classified as bone seeking metals, whereas the light and transition lanthanide elements accumulate mainly in the liver and the spleen. For the lighter radiolanthanides the corresponding ternary complexes thus represent an important transport form in blood. This physicochemical form of lanthanides mainly results in reticulo endothelial accumulation; on the other hand, the lower tendency of heavier lanthanides leads to preferential skeletal deposition. (orig.)

  20. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-04-01

    Full Text Available The formation of secondary organic aerosol (SOA has been widely studied in the presence of dry seed particles at low relative humidity (RH. At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm−3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm−3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m ∕ z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS, indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory

  1. Investigation of formation constant of complex of a new synthesized tripodal ligand with Cu2+ using rank annihilation factor analysis in surfactant media

    Directory of Open Access Journals (Sweden)

    R. Golbedaghi

    2014-01-01

    Full Text Available The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA. According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1. Formation constant of this complex was derived using RAFA on spectrophotometric data. The performance of the method has been evaluated by using synthetic data. Also concentration and spectral profiles of ligand and complex can be obtained by using the stability constant and appropriate equations. The effect of surfactants such as sodium dodecyl sulfate (SDS, cetyltrimethylammonium bromide (CTAB and Triton X-100 on complex formation constant of Cu2+ with the ligand was investigated.

  2. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.

    Science.gov (United States)

    Ye, Aiqian; Flanagan, John; Singh, Harjinder

    2006-06-05

    The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules. Copyright 2005 Wiley Periodicals, Inc.

  3. Role of carbene complexes in initiation and chain propagation in double bond redistribution reactions

    International Nuclear Information System (INIS)

    Dolgoplosk, K.L.; Makovetskij, E.I.; Tinyakova, E.I.; Golenko, T.G.; Oreshkin, I.A.

    1976-01-01

    A study has been made of the role of carbene complexes of tungsten in initiation and propagation of the ring-opening polymerization of cycloolefins. Data are given on polymerization of cyclopentene and cycloocterdiene-1,5 in the presence of the system tungsten chloride-diazo-compound (DAC)

  4. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides.

    Science.gov (United States)

    Adams, Peter G; Mothersole, David J; Ng, Irene W; Olsen, John D; Hunter, C Neil

    2011-09-01

    In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation. 2011 Elsevier B.V. All rights reserved.

  5. New Ru(II)N'NN'-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO_2 or bicarbonates to formate salts

    International Nuclear Information System (INIS)

    Zengjin Dai; Qi Luo; Hengjiang Cong; Jing Zhang; Tianyou Peng

    2017-01-01

    [RuCl(L1)(MeCN)_2]Cl (1) and [RuCl(L2)(MeCN)_2]Cl (2) complexes were prepared through the reaction of [RuCl2(p-cymene)]_2 with 2,6-bis(benzimidazole-2-yl)-4-hydroxy-pyridine (L1) or 2,6-bis(benzimidazole- 2-yl) pyridine (L2) in acetonitrile, respectively. The treatment of [Ru(OTf)(L2)(MeCN)_2]OTf (3) with 1 equivalent of PPh_3 in ethanol resulted in the formation of [Ru(L2"-"1)(MeCN)(PPh_3)_2]OTf (4), in which one of the N-H moieties of L2 is deprotonated to give an anionic ligand (L2"-"1). It was found that complex 1 can catalyze the hydrogenation of CO_2 to formate salts, producing sodium formate in 34.0% yield with a turnover number (TON) of 407 under the optimized conditions. Further investigations revealed that complexes 1-4 can efficiently catalyze the hydrogenation of sodium bicarbonate to sodium formate, and the catalytic activity follows the order 4 ≥ 1 ≥ 2 ≅ 3. In particular, sodium formate was obtained in good yield (77%) with a high TON (1530) when complex 4 was used as the catalyst. The present results illustrate a new example of Ru(II) complexes bearing a rigid N'NN' framework for the efficient hydrogenation of CO_2 to formate salts in a homogeneous system. (authors)

  6. Radiation accelerated formation of oxygen and carbon related complexes in silicon

    International Nuclear Information System (INIS)

    Lazrak, A.; Magnea, N.; Pautrat, J.L.

    1984-06-01

    During the pulling of silicon monocrystals by the Czochralsky method, oxygen is incorporated into the lattice. It is known from early works that low temperature annealings (400-1000 0 C) make this oxygen to precipitate and a number of different defects to be generated. In order to check whether the fast diffusivity of an oxygen silicon interstitial complex has to be taken in consideration it was interesting to examinate the possible role of radiation damage on the formation of oxygen related defects. Experimental results of an experiment are presented and discussed

  7. The Smart Residential Complex Effect on Personality Formation of Children

    Directory of Open Access Journals (Sweden)

    Seyed Kasra Mirpadyab

    2017-06-01

    Full Text Available The interaction between human beings and the environment has been a question of all times; however, the Industrial Revolution has begun to change its way. It can be seen that the human beings were a part of their environment in the past, but now with the advancement of knowledge and technology, the man can dominate in their environment. But today, the man’s needs should be well known about the interaction with the natural environment and with respect to the position of the residential complexes in the modern society, these buildings are designed to create the psychological comfort and the formation of the personality. The authors of this paper believe the mentioned event will be happening in the future generation of the buildings. These buildings will be equipped with smart automation system for all their activities. This research conducted by grounded theories about the explanation of the smart residential complexes equipped with the BMS, which can be effective for shaping the managerial character of the children in their future.

  8. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    Science.gov (United States)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  9. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang

    2018-08-30

    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of intravenous administration of D-lysergic acid diethylamide on initiation of protein synthesis in a cell-free system derived from brain.

    Science.gov (United States)

    Cosgrove, J W; Brown, I R

    1984-05-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.

  11. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin.

    Science.gov (United States)

    Witkamp, R F; Nijmeijer, S M; van Miert, A S

    1996-01-01

    Tiamulin is a semisynthetic diterpene antibiotic frequently used in farm animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds. It has been suggested that this is caused by a selective inhibition of oxidative drug metabolism via the formation of a cytochrome P-450 metabolic intermediate complex. In the present study, rats were treated orally for 6 days with tiamulin at two different doses: 40 and 226 mg/kg of body weight. For comparison, another group received 300 mg of triacetyloleandomycin (TAO) per kg, which is equivalent to the 226-mg/kg tiamulin group. Subsequently, microsomal P-450 contents, P-450 enzyme activities, metabolic intermediate complex spectra, and P-450 apoprotein concentrations were assessed. In addition, effects on individual microsomal P-450 activities were studied in control microsomes at different tiamulin and substrate concentrations. In the rats treated with tiamulin, a dose-dependent complex formation as evidenced by its absorption spectrum and an increase in cytochrome P-4503A1/2 contents as assessed by Western blotting (immunoblotting) were found. The effects were comparable to those of TAO. Tiamulin induced microsomal P-450 content, testosterone 6 beta-hydroxylation rate, erythromycin N-demethylation rate, and the ethoxyresorufin O-deethylation activity. Other activities were not affected or decreased. When tiamulin was added to microsomes of control rats, the testosterone 6 beta-hydroxylation rate and the erythromycin N-demethylation were strongly inhibited. It is concluded that tiamulin is a potent and selective inducer-inhibitor of cytochrome P-450. Though not belonging to the macrolides, the compound produces an effect on P-450 similar to those of TAO and related compounds.

  12. Observations of the initial stages of colloidal band formation

    Science.gov (United States)

    Li, Yanrong; Tagawa, Yoshiyuki; Yee, Andrew; Yoda, Minami

    2017-11-01

    A number of studies have shown that particles suspended in a conducting fluid near a wall are subject to wall-normal repulsive ``lift'' forces, even in the absence of interparticle interactions, in a flowing suspension. Evanescent-wave visualizations have shown that colloidal particles in a dilute (volume fractions negative zeta-potentials. Above a minimum ``threshold'' electric field magnitude |Emin | , the particles assemble into dense ``bands'' with cross-sectional dimensions of a few μm and length comparable to that of the channel (i.e., a few cm). The results suggest that the threshold field |Emin | is large enough so that there is a region of ``reverse'' flow, along the direction of the EO flow, near the wall. Visualization of a large segment of the channel (>300 hydraulic diameters) at frame rates as great as 1 kHz is used to determine banding maps for a variety of dilute colloidal suspensions and to investigate the initial stages of band formation over a wide range of flow conditions. Supported by US Army Research Office.

  13. Secreted single‐stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

    DEFF Research Database (Denmark)

    Zweig, Maria; Schork, Sabine; Koerdt, Andrea

    2014-01-01

    plays an important role in biofilm formation. Many clinical isolates contain a gonococcal genetic island that encodes a type IV secretion system (T4SS). The T4SS of N. gonorrhoeae strain MS11 secretes ssDNA directly into the medium. Biofilm formation, studied in continuous flow‐chamber systems...... was developed in which thermostable fluorescently labelled ssDNA‐ and ss/dsDNA‐binding proteins were used to visualize ssDNA and total DNA in biofilms and planktonic cultures. Remarkably, mainly dsDNA was detected in biofilms of the ssDNA secreting strain. We conclude that the secreted ssDNA facilitates initial...

  14. A Biomimetic Nickel Complex with a Reduced CO2 Ligand Generated by Formate Deprotonation and its Behaviour towards CO2.

    Science.gov (United States)

    Limberg, Christian; Zimmermann, Philipp; Hoof, Santina; Braun-Cula, Beatrice; Herwig, Christian

    2018-04-10

    Reduced CO2 species are key intermediates in a variety of natural and synthetic processes. In the majority of systems, however, they elude isolation or characterisation due to high reactivity or limited accessibility (heterogeneous systems) and thus formulations often remain uncertain or based on calculations only. We herein report on a Ni-CO22- complex that is unique in many ways. While its structural and electronic features help understanding the CO2 bound state in Ni,Fe carbon monoxide dehydrogenases, its reactivity sheds light on how CO2 can be converted into CO/CO32- by nickel complexes. In addition, the complex has been generated via a rare example of formate β deprotonation, a mechanistical step relevant to nickel catalysed conversion of HxCOyz- at electrodes and formate oxidation in formate dehydrogenases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots.

    Science.gov (United States)

    Yamada, Shintaro; Okamura, Mika; Oda, Arisa; Murakami, Hiroshi; Ohta, Kunihiro; Yamada, Takatomi

    2017-06-01

    Meiotic homologous recombination, a critical event for ensuring faithful chromosome segregation and creating genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) formed at recombination hotspots. Meiotic DSB formation is likely to be influenced by other DNA-templated processes including transcription, but how DSB formation and transcription interact with each other has not been understood well. In this study, we used fission yeast to investigate a possible interplay of these two events. A group of hotspots in fission yeast are associated with sequences similar to the cyclic AMP response element and activated by the ATF/CREB family transcription factor dimer Atf1-Pcr1. We first focused on one of those hotspots, ade6-3049 , and Atf1. Our results showed that multiple transcripts, shorter than the ade6 full-length messenger RNA, emanate from a region surrounding the ade6-3049 hotspot. Interestingly, we found that the previously known recombination-activation region of Atf1 is also a transactivation domain, whose deletion affected DSB formation and short transcript production at ade6-3049 These results point to a possibility that the two events may be related to each other at ade6-3049 In fact, comparison of published maps of meiotic transcripts and hotspots suggested that hotspots are very often located close to meiotically transcribed regions. These observations therefore propose that meiotic DSB formation in fission yeast may be connected to transcription of surrounding regions. Copyright © 2017 by the Genetics Society of America.

  16. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study of inclusion complex formation between chlorpromazine hydrochloride, as an antiemetic drug, and β-cyclodextrin, using conductometric technique

    International Nuclear Information System (INIS)

    Rafati, Amir Abbas; Hamnabard, Nazanin; Ghasemian, Ensieh; Nojini, Zabiolah Bolboli

    2009-01-01

    The behavior of micellization of chlorpromazine hydrochloride (CPH) as an antiemetic drug and its inclusion complex formation with β-cyclodextrin (β-CD) was studied using conductometric technique. The binding or association constant of the complexation equilibrium is evaluated from conductometric measurements by using a nonlinear regression method. The resulting K values for micellization as well as complexation are analyzed. The experiments were carried out at different temperatures. It has been found that CPH form only the 1:1 complex. The association constant values are used for evaluation of thermodynamic parameters of complexation, such as ΔG complex o , ΔH complex o and ΔS complex o .

  18. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    Science.gov (United States)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  19. Peculiarities of litter invertebrates’ multispecies complexes formation on the Khortitsa island (Zaporizhzhya province

    Directory of Open Access Journals (Sweden)

    D. О. Fedorchenko

    2008-02-01

    Full Text Available Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province are studied. The dispersion of taxonomic groups of different levels (families and species in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  20. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.

    Science.gov (United States)

    Prajapati, Ranjit Kumar; Sengupta, Shreya; Rudra, Paulami; Mukhopadhyay, Jayanta

    2016-01-15

    Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, β, β', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Regularity in the changes of the thermodynamic functions associated with the formation of mononuclear complexes

    International Nuclear Information System (INIS)

    Mihailov, M.H.; Mihailova, V.T.; Strezov, A.S.; Taskaeva, M.I.

    1979-01-01

    Regularities for the changes of the free energy ΔG, enthalpy ΔH enthropy ΔS have been derived, associated with the complex formation processes in metal-ligand systems whose stability constants of the consecutive mononuclear compelxes ML, ML 2 , ML 3 , ML 4 ...MLsub(n) satisfy the relation βn = A an/n (n = 1,2,3... N) where βn is the overall stability constant of the MLsub(n) complex, n is the number of ligands (1 [de

  2. Biofilm Formation on Reverse Osmosis Membranes Is Initiated and Dominated by Sphingomonas spp.▿ †

    Science.gov (United States)

    Bereschenko, L. A.; Stams, A. J. M.; Euverink, G. J. W.; van Loosdrecht, M. C. M.

    2010-01-01

    The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces. PMID:20190090

  3. Metamorphic core complex formation by density inversion and lower-crust extrusion.

    Science.gov (United States)

    Martinez, F; Goodliffe, A M; Taylor, B

    2001-06-21

    Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, plutonic intrusions and flexural rotation of initially high-angle normal faults. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading. The continental rifting is recent (since approximately 6 Myr ago), seismogenic and occurring at a rapid rate ( approximately 25 mm yr-1). Here we present evidence-based on isostatic modelling, geological data and heat-flow measurements-that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present-which consists of dense ophiolite overlaying less-dense continental crust-this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth.

  4. Theoretical approach of complex DNA lesions: from formation to repair

    International Nuclear Information System (INIS)

    Bignon, Emmanuelle

    2017-01-01

    This thesis work is focused on the theoretical modelling of DNA damages, from formation to repair. Several projects have been led in this framework, which can be sorted into three different parts. One on hand, we studied complex DNA reactivity. It included a study about 8-oxo-7,8-dihydro-guanine (8oxoG) mechanisms of formation, a project concerning the UV-induced pyrimidine 6-4 pyrimidone (6-4PP) endogenous photo-sensitizer features, and another one about DNA photo-sensitization by nonsteroidal anti-inflammatory drugs (i.e. ketoprofen and ibuprofen). On the other hand, we investigated mechanical properties of damaged DNA. The structural signature of a DNA lesion is of major importance for their repair, unfortunately only few NMR and X-ray structures of such systems are available. In order to gain insights into their dynamical structure, we investigated a series of complex damages: clustered abasic sites, interstrand cross-links, and the 6-4PP photo-lesion. Likewise, we studied the interaction modes DNA with several polyamines, which are well known to interact with the double helix, but also with the perspective to model DNA-protein cross-linking. The third part concerned the study of DNA interactions with repair enzymes. In line with the structural study about clustered abasic sites, we investigated the dynamics of the same system, but this time interacting with the APE1 endonuclease. We also studied interactions between the Fpg glycosylase with an oligonucleotides containing tandem 8-oxoG on one hand and 8-oxoG - abasic site as multiply damaged sites. Thus, we shed new lights on damaged DNA reactivity, structure and repair, which provides perspectives for biomedicine and life's mechanisms understanding as we begin to describe nucleosomal DNA. (author)

  5. Neckteeth formation in two species of the Daphnia curvirostris complex (Crustacea: Cladocera

    Directory of Open Access Journals (Sweden)

    Petr Jan JURAČKA

    2011-08-01

    Full Text Available Cladocerans of the genus Daphnia show different morphological adaptations against invertebrate predation. Among those, the formation of neckteeth has attracted substantial attention. Morphotypes exhibiting neckteeth better resist predation from larvae of phantom midges Chaoborus (Diptera. These morphological structures are known from several species of the Daphnia longispina and D. pulex complexes; recently they have also been reported in the D. curvirostris complex, within which they are well documented from the Far East species D. sinevi and from Central European D. hrbaceki. Much scarcer are indications of the formation of these structures in the widespread species D. curvirostris. Careful inspection of samples from pools with Chaoborus larvae nevertheless revealed that a small necktooth in the first few instars of D. curvirostris is not uncommon, but probably has been mostly overlooked in the past. Occasionally, even adult D. curvirostris males may carry this feature. We provide documentation, particularly by scanning electron micrographs, of neckteeth in field-collected D. curvirostris, and in juvenile individuals of its sister species D. hrbaceki. In addition, we tested the response of three clones each of D. curvirostris and D. hrbaceki to Chaoborus kairomones in laboratory experiments. Two clones of the former species and all three of the latter responded to this predator cue with neckteeth formation. First-instar juveniles of D. hrbaceki also occasionally carried neckteeth in control treatments without Chaoborus kairomones, but second and third instars did not. We also observed strong interclonal variation in neonate length in the presence of kairomones in this species. We provide a summary table listing all Daphnia species presently known to exhibit neckteeth, and propose that the ability to form these structures may be more widespread among common Daphnia species than previously assumed.

  6. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  7. Interdependency of formation and localisation of the Min complex controls symmetric plastid division.

    Science.gov (United States)

    Maple, Jodi; Møller, Simon G

    2007-10-01

    Plastid division represents a fundamental biological process essential for plant development; however, the molecular basis of symmetric plastid division is unclear. AtMinE1 plays a pivotal role in selection of the plastid division site in concert with AtMinD1. AtMinE1 localises to discrete foci in chloroplasts and interacts with AtMinD1, which shows a similar localisation pattern. Here, we investigate the importance of Min protein complex formation during the chloroplast division process. Dissection of the assembly of the Min protein complex and determination of the interdependency of complex assembly and localisation in planta allow us to present a model of the molecular basis of selection of the division site in plastids. Moreover, functional analysis of AtMinE1 in bacteria demonstrates the level of functional conservation and divergence of the plastidic MinE proteins.

  8. Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation.

    Science.gov (United States)

    John, Gordon; Becker, Jürgen; Schwarz, Frank

    2017-07-01

    The aim of the current study was the evaluation of biofilm development on different implant surfaces. Initial biofilm formation was investigated on five different implant surfaces, machined titanium (MTi), modified machined acid-etched titanium (modMATi), machined titanium zirconium (MTiZr), modified machined and acid-etched titanium zirconium (modMATiZr) and sandblasted large grid and acid-etched titanium zirconium surface (SLATiZr) for 24 and 48 h. Biocompatibility was tested after tooth brushing of the samples via cell viability testing with human gingival fibroblasts. After 24 h of biofilm collection, mean plaque surface was detected in the following descending order: After 24 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. Both M surfaces showed significant higher biofilm formation than the other groups. After 48 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. After tooth brushing: SLATiZr > modMATi > modMATiZr > MTi > MTiZr. All native samples depicted significant higher cell viability than their corresponding surfaces after biofilm removal procedure. The TiZr groups especially the modMATiZr group showed slower and less biofilm formation. In combination with the good biocompatibility, both modMA surfaces seem to be interesting candidates for surfaces in transgingival implant design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede; Eita, Mohamed Samir; Khan, Jafar Iqbal; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic

  10. Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex.

    Science.gov (United States)

    Aylett, Christopher H S; Boehringer, Daniel; Erzberger, Jan P; Schaefer, Tanja; Ban, Nenad

    2015-03-01

    Eukaryotic translation initiation requires cooperative assembly of a large protein complex at the 40S ribosomal subunit. We have resolved a budding yeast initiation complex by cryo-EM, allowing placement of prior structures of eIF1, eIF1A, eIF3a, eIF3b and eIF3c. Our structure highlights differences in initiation-complex binding to the ribosome compared to that of mammalian eIF3, demonstrates a direct contact between eIF3j and eIF1A and reveals the network of interactions between eIF3 subunits.

  11. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin.

    OpenAIRE

    Witkamp, R F; Nijmeijer, S M; van Miert, A S

    1996-01-01

    Tiamulin is a semisynthetic diterpene antibiotic frequently used in farm animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds. It has been suggested that this is caused by a selective inhibition of oxidative drug metabolism via the formation of a cytochrome P-450 metabolic intermediate complex. In the present study, rats were treated orally for 6 days with tiamulin at two different doses: 40 and 226 mg/kg of body weight. For compari...

  12. MECHANISM OF FINANCIAL SAFETY FORMATION OF ENTERPRISES OF AGROINDUSTRIAL COMPLEX

    Directory of Open Access Journals (Sweden)

    Aleksandr Khomenko

    2016-11-01

    answer their aims. As a result, depending on the worked out strategy of financial safety, it is possible to draw basic directions of guaranteeing his financial safety activity of enterprises of agro-industrial complex. Organizational-economic principles of forming of mechanism of financial safety of agricultural enterprises must be built on the basis of realization of its expressly certain strategy. It, in same queue, must go out from present of their production potential. This strategy is the basic internal reference-point of forming of financial safety of agricultural enterprise that sets the parameters of all her development. Practical implications. On financial safety of enterprises of agro-industrial complex testifies the conducted analysis of scientific researches, that without regard to the wide list of existing in economic literature researches on the mechanism of forming of enterprises’ financial safety, among scientific circles until now there is not a general idea. It requires forming of new knowledge’s in relation to forming of mechanism of enterprise financial safety, where not only the certain state of subject but also dynamic constituent of development must come forward as a priority lever, what is considered in this article. Value/originality. Creation of valuable mechanism of forming of financial safety of agro-industrial enterprises foresees formulation of criteria and principles of providing of financial safety of every enterprise, determinations of priority national interests in a financial sphere, realization of the permanent watching of factors, which cause a threat financial safety, and also acceptance of measures in relation to their warning and overcoming. The formed mechanism of financial safety of the agricultural formations is pre-condition of prevention of financial threats and negative financial phenomena in production activity of the agricultural formations, defence of their financial losses, and in future stabilizing of activity of the

  13. Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins

    DEFF Research Database (Denmark)

    Salcini, A E; McGlade, J; Pelicci, G

    1994-01-01

    The mammalian SHC gene encodes three overlapping proteins which all contain a carboxy-terminal SH2 domain. Shc proteins are phosphorylated on tyrosine by a variety of receptor and cytoplasmic tyrosine kinases. Phosphorylated Shc proteins form a complex with the SH2-SH3 containing Grb2 protein which...... of Grb2 to Shc proteins requires phosphorylation of Shc at Tyr317, which lies within the high affinity binding motif for the Grb2 SH2 domain, pYVNV, where Asn at the +2 position is crucial for complex formation. In vivo, Tyr317 is the major, but not the only, site for Shc phosphorylation, and is the sole...... aminoterminal deletion, but retain the Tyr317 site and the SH2 domain conserve the capacity to be phosphorylated, to bind to Grb2 and to induce cell transformation. These data indicate that the formation of the Shc-Grb2 complex is a crucial event in the transformation induced by overexpression of Shc...

  14. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical

  15. Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma

    Science.gov (United States)

    Stenson, Mary J.; Maurer, Matthew J.; Wellik, Linda E.; Link, Brian; Hege, Kristen; Dogan, Ahmet; Sotomayor, Eduardo; Witzig, Thomas; Gupta, Mamta

    2015-01-01

    Deregulated mRNA translation has been implicated in disease development and in part is controlled by a eukaryotic initiation complex eIF4F (composed of eIF4E, eIF4G and eIF4A). We demonstrate here that the cap bound fraction from lymphoma cells was enriched with eIF4G and eIF4E indicating that lymphoma cells exist in an activated translational state. Moreover, 77% (110/142) of diffuse large B cell lymphoma tumors expressed eIF4E and this was associated with an inferior event free survival. Over-expression of wild-type eIF4E (eIF4EWT) but not cap-mutant eIF4E (eIF4Ecap mutant) increased the activation of the eIF4F complex. Treatment with the active-site dual mTOR inhibitor CC214-1 reduced the level of the eIF4F complex by decreasing the cap bound fraction of eIF4G and increasing the levels of 4E-BP1. CC214-1 inhibited both the cap dependent and global protein translation. CC214-1 inhibited c-Myc, and cyclin D3 translation by decreasing polysomal fractions from lymphoma cells. Inhibition of eIF4E with shRNA further decreased the CC214-1 induced inhibition of the eIF4F complex, c-Myc, cyclin D3 translation, and colony formation. These studies demonstrate that the eIF4F complex is deregulated in aggressive lymphoma and that dual mTOR therapy has therapeutic potential in these patients. PMID:25839159

  16. Formation of Polyelectrolyte Complex Colloid Particles between Chitosan and Pectin with Different Degree of Esterification

    Science.gov (United States)

    Wang, Hui; Sun, Hongyuan; He, Jieyu

    2017-12-01

    The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.

  17. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    Science.gov (United States)

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.

  18. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Energy Technology Data Exchange (ETDEWEB)

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  19. BAG3 regulates formation of the SNARE complex and insulin secretion

    Science.gov (United States)

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  20. Controlling Initial and Final Radii to Achieve a Low-Complexity Sphere Decoding Technique in MIMO Channels

    Directory of Open Access Journals (Sweden)

    Fatemeh Eshagh Hosseini

    2012-01-01

    Full Text Available In order to apply sphere decoding algorithm in multiple-input multiple-output communication systems and to make it feasible for real-time applications, its computational complexity should be decreased. To achieve this goal, this paper provides some useful insights into the effect of initial and the final sphere radii and estimating them effortlessly. It also discusses practical ways of initiating the algorithm properly and terminating it before the normal end of the process as well as the cost of these methods. Besides, a novel algorithm is introduced which utilizes the presented techniques according to a threshold factor which is defined in terms of the number of transmit antennas and the noise variance. Simulation results show that the proposed algorithm offers a desirable performance and reasonable complexity satisfying practical constraints.

  1. Participation of electronic excited states in the positronium formation mechanism in the Gd(III) pentakis (picrate) complexes with imidazolium countercations

    Energy Technology Data Exchange (ETDEWEB)

    Fulgêncio, F., E-mail: fefulgencio@gmail.com [Departam ento de Química – ICEx Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG (Brazil); Borges, A.S. [Coordenadoria de Química e Biologia – Instituto Federal do Espírito Santos – IFES, Campus Vitória, ES (Brazil); Araújo, M.H. [Departam ento de Química – ICEx Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG (Brazil); Brito, H.F. [Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, São Paulo (Brazil); Oliveira, F.C. [Departamento de Metalurgia e Química, Centro Federal de Educação Tecnológica de Minas Gerais – CEFET-MG, Campus Timóteo, MG (Brazil); Ribeiro, T.; Windmöller, D. [Departam ento de Química – ICEx Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG (Brazil); Magalhães, W.F., E-mail: welmag@ufmg.br [Departam ento de Química – ICEx Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG (Brazil)

    2016-02-15

    In this work, positron annihilation lifetime (PALS) and optical spectroscopies measurements were performed on [Gd(pic){sub 2}(H{sub 2}O){sub 6}](pic)·6H{sub 2}O and on complexes of general formula C{sub 2}[Gd(pic){sub 5}], where pic corresponds to picrate ligands and C to the countercations butyl-methyl, hexyl-methyl, butyl-ethyl and butyl-butyl imidazoles. Since all of these complexes have high energy ligand-to-metal charge transfer states (LMCTS) but form low amounts of Positronium (Ps), the LMCTS do not act here as a mechanism that suppress luminescence nor prevents Ps formation. This result suggests that, besides LMCTS, other effects should also contribute to prevent Ps formation. The results indicate that the electron withdrawing –NO{sub 2} groups in the picrate ligand are responsible by the effect that prevents Ps formation. Also, a rough correlation between the ligands' triplet states lifetimes and Ps formation was observed. The insertion of electron donor groups (the imidazolium countercations) increased the ligands' first triplet excited states ({sup 3}π{sup ⁎}) lifetimes and Ps formation, indicating that these two spectroscopic parameters are correlated. Also, it is demonstrated that there is no clear correlation between Ps formation probability and the excitation energy of the ligands' first triplet excited states. The results were discussed in terms of the recently proposed Ps formation mechanism, named cybotactic correlated system kinetic mechanism (CCSKM), showing that the Ps formation process involves molecular excited states and is kinetically controlled. - Highlights: • PALS and optical spectroscopies measurements performed on Gd{sup 3+} complexes. • A correlation was obtained between the ligands' {sup 3}π{sup ⁎} lifetimes and Ps formation. • Electronegative groups increased the ligands' {sup 3}π{sup ⁎} lifetimes and Ps formation. • Results discussed in terms of a new Ps formation mechanism (ccskm).

  2. Thermodynamics of formation for the 18-crown-6-triglycine molecular complex in water-dimethylsulfoxide solvents

    Science.gov (United States)

    Usacheva, T. R.; Lan, Pham Thi; Sharnin, V. A.

    2014-06-01

    The effect of a water-dimethylsulfoxide (DMSO) solvent on the formation of a molecular complex of 18-crown-6 (18C6) with triglycine (diglycylglycine, 3Gly) is studied via calorimetric titration. It is found that switching from water to an H2O-DMSO mixture with DMSO mole fraction of 0.30 is accompanied by a monotonic increase in the stability of [3Gly18C6] complex, from log K ∘ = 1.10 to log K ∘ = 2.44, and an increase in the exothermicity of the reaction of its formation, from -5.9 to -16.9 kJ/mol. It is shown that the [3Gly18C6] complex exhibits enthalpy stabilization with negative values of enthalpy and entropy over the investigated range of H2O-DMSO solvents. Analysis of the reagents' solvation characteristics reveals that the increase in the reaction's exothermicity of transfer is due to differences in the solvation of [3Gly18C6] and 18C6 with a small solvation contribution from 3Gly. It is concluded that the change in the Gibbs energy of the reaction 3Glysolv + 18C6solv ↔ [3Gly18C6]solv is due to differences in the change in the solvation state of the complex and the peptide (Δtr G ∘([3Gly18C6])-Δtr G ∘(3Gly)).

  3. Accessibility of tyrosyl residues altered by formation of the histone 2A/2B complex

    International Nuclear Information System (INIS)

    Callaway, J.E.; Ho, Y.S.; DeLange, R.J.

    1985-01-01

    The availability of tyrosyl residues to surface iodination was analyzed for histone 2A (H2A), histone 2B (H2B), and the H2A/H2B complex. When H2A is free in solution (200 mM NaCl, pH 7.4) tyrosine-39 and one or both tyrosines-50 and -57 were readily iodinated. Tyrosines-83 and -121 of H2B were iodinated, both when the histone was free in solution and when it was associated with H2A, while tyrosines-37, -40, and -42 of H2B were not iodinated under either condition. When H2A and H2B were associated or covalently cross-linked, all tyrosyl residues of H2A were unavailable for iodination. The authors also found that the iodination of nondenatured H2A and H2B did not inhibit formation of the H2A/H2B complex. These results indicate that the amino-terminal regions of the hydrophobic portions of H2A and H2B undergo significant conformational changes upon formation of the H2A/H2B complex. These conformational shifts occur in the same region of the H2A/H2B complex that contains a contact site between H2A and H2B in the nucleosome, thus indicating an involvement of this region in chromatin assembly

  4. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player?

    Science.gov (United States)

    Ilina, Elena L; Kiryushkin, Alexey S; Semenova, Victoria A; Demchenko, Nikolay P; Pawlowski, Katharina; Demchenko, Kirill N

    2018-04-19

    In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.

  5. The Impact of Adaptive Complex Assessment on the HOT Skill Development of Students

    Science.gov (United States)

    Raiyn, Jamal; Tilchin, Oleg

    2016-01-01

    In this paper we propose a method for the adaptive complex assessment (ACA) of the higher-order thinking (HOT) skills needed by students for problem solving, and we examine the impact of the method on the development of HOT skills in a problem-based learning (PBL) environment. Complexity in the assessment is provided by initial, formative, and…

  6. Critical solvent thermodynamic effect on molecular recognition: The case of the complex formation of carboxylates and ammonium-squaramido based receptors

    Energy Technology Data Exchange (ETDEWEB)

    Piña, M. Nieves, E-mail: neus.pinya@uib.es; López, Kenia A.; Costa, Antoni; Morey, Jeroni, E-mail: jeroni.morey@uib.es

    2013-10-10

    Graphical abstract: - Highlights: • The enthalpy–entropy compensation in the complex is independent of the spacer used. • The enthalpy–entropy compensation is dependent on the microscopic nature of the binary mixture. • The enthalpy–entropy compensation is dependent on the proportion of the components of the binary mixture. - Abstract: An isothermal titration microcalorimetry (ITC) study on the supramolecular complex formation between carboxylates and ammonium-squaramido based receptors at different ethanol:water proportions is reported. The results obtained show that the formation enthalpy sign of a supramolecular complex in a water–ethanol binary mixture can be influenced by the proportion of the cosolvent. Moreover there is an enthalpy–entropy compensation process in the supramolecular complex formation; in poor water mixtures the process is endothermic, whilst in reach water mixtures the process is exothermic. This behavior is mostly due to the intrinsic nature of the mixture between water and ethanol, and particularly the process of solvation and desolvation of receptor, substrate and complex. When this study is repeated with binary mixtures of water–methanol and water–DMSO it is observed that the nature of the organic solvent affects the results. While the mixture water–methanol has a behavior similar to water–ethanol mixture, the water–DMSO mixture shows clear differences. In order to check this compensation process, △Cp values are calculated at two different proportions water–ethanol, and they are consistent with an enthalpy–entropy compensation process similar to that described by the inclusion process for certain hydrophilic cyclodextrines. The results obtained show that the enthalpy–entropy compensation detected in the supramolecular complex formation between carboxylates and ammonium-squaramido receptors is independent of the spacer used, and more dependent on the microscopic nature and proportion of the binary mixture.

  7. Critical solvent thermodynamic effect on molecular recognition: The case of the complex formation of carboxylates and ammonium-squaramido based receptors

    International Nuclear Information System (INIS)

    Piña, M. Nieves; López, Kenia A.; Costa, Antoni; Morey, Jeroni

    2013-01-01

    Graphical abstract: - Highlights: • The enthalpy–entropy compensation in the complex is independent of the spacer used. • The enthalpy–entropy compensation is dependent on the microscopic nature of the binary mixture. • The enthalpy–entropy compensation is dependent on the proportion of the components of the binary mixture. - Abstract: An isothermal titration microcalorimetry (ITC) study on the supramolecular complex formation between carboxylates and ammonium-squaramido based receptors at different ethanol:water proportions is reported. The results obtained show that the formation enthalpy sign of a supramolecular complex in a water–ethanol binary mixture can be influenced by the proportion of the cosolvent. Moreover there is an enthalpy–entropy compensation process in the supramolecular complex formation; in poor water mixtures the process is endothermic, whilst in reach water mixtures the process is exothermic. This behavior is mostly due to the intrinsic nature of the mixture between water and ethanol, and particularly the process of solvation and desolvation of receptor, substrate and complex. When this study is repeated with binary mixtures of water–methanol and water–DMSO it is observed that the nature of the organic solvent affects the results. While the mixture water–methanol has a behavior similar to water–ethanol mixture, the water–DMSO mixture shows clear differences. In order to check this compensation process, △Cp values are calculated at two different proportions water–ethanol, and they are consistent with an enthalpy–entropy compensation process similar to that described by the inclusion process for certain hydrophilic cyclodextrines. The results obtained show that the enthalpy–entropy compensation detected in the supramolecular complex formation between carboxylates and ammonium-squaramido receptors is independent of the spacer used, and more dependent on the microscopic nature and proportion of the binary mixture

  8. Complex formation of uranium(VI) with fructose and glucose phosphates

    International Nuclear Information System (INIS)

    Koban, A.; Geipel, G.; Bernhard, G.; Fanghaenel, T.

    2002-01-01

    scale, we obtain: log [UO 2 (lig) x (2-y)+ ]/ [UO 2 2+ ] = x log [lig(noncomplexed)] - y log [H + ] + log K. From this we conclude that the 1:1 uranyl sugar phosphate species UO 2 (ROPO 3 ) (R is either glucose or fructose) has formed. Using these data, the complex formation constants for the complexes were calculated to lie in the range of log K=3.7 for G6P and 3.2 for F6P. (author)

  9. Solution chemistry of element 105. Pt. III. Hydrolysis and complex formation of Nb, Ta, Db and Pa in HF and HBr solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Bastug, T.

    1999-01-01

    Calculations of the electronic structure of MF 6 - and MBr 6 - complexes of Nb, Ta, Pa and element 105, Db, formed in HF and HBr solutions have been performed using the Dirac-Slater Discrete Variational method. On the basis of results of these calculations, relative values of the free energy change of reactions of complex formation have been determined. The order of the complex formation for both acids is shown to be Pa >> Nb > Db > Ta. Such a sequence is defined by a predominant electrostatic energy of the metal-ligand interaction. The hydrolysis of compounds, as a reverse process, proved to change as Ta > Db > Nb >> Pa. Using the theory of metal extraction by anion exchange, the following trend in the extraction of the anionic species from both the HF and HBr aqueous solutions has been predicted: Pa >> Nb ≥ Db > Ta. The strength of the ML 6 - complexes is shown to decrease from MF 6 , to MCl 6 and further to MBr 6 - which is reflected by shifting the complex formation process to the area of higher acid concentrations. (orig.)

  10. Spectroscopic Studies on Complex Formation of U(VI)-thiosalicylate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, Hye Ryun; Park, Kyoung Kyun; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The dynamic interaction between radionuclides and organic ligands is largely dependent on the composition of functional groups in a ligand chemical structure. Therefore, the structural mimics of natural ligands possessing specific functional groups, such as hydroxy, phenol, carboxyl, thiol and amine groups, have been studied to understand their influence on the migration of radionuclides including actinide species under geological groundwater conditions. In previous studies, we demonstrated that the fraction of hydrolyzed U(VI) species occurring in weak acidic solutions (pH {approx}4.5) is significantly influenced by the presence of salicylate (Sal) ligand due to the simultaneous participation of both phenol and carboxyl groups in the formation of U(VI)-complexes. Thiosalicylic acid (TSalH{sub 2}) is a good model compound for studying the effects of both carboxyl and thiol (-SH) groups. The fraction of di-anionic ligand form (TSal{sup 2-}) is higher at near neutral pH due to the lower pKa ({approx} 8) of the thiol group than the case of salicylic acid (pKa, {approx}13 for salicylic -OH), despite the structural similarity. In addition, the redox capability of the thiol group is expected to influence the reducible radiouclides and the chemical structures of natural ligands by creating cross-linkage (-S-S-) upon oxidation. The goal of the present study is to investigate aqueous U(VI)-TSal complexation equilibrium via laser-based spectroscopic techniques including time resolved laser-induced fluorescence spectroscopy (TRLFS). In this preliminary work, we report the results of spectroscopic studies using conventional UVVis absorbance and fluorescence (FL) measurement methods. The photo-stability of U(VI)-TSal complex or ligand itself upon exposure to a series of laser pulses is estimated by monitoring the change in their absorption bands. Additionally, TSal FL-quenching effect by U(VI) ions is discussed in comparison with that of Sal FL-quenching

  11. The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials

    Science.gov (United States)

    Hamilton, N. C.

    2015-03-01

    The HF complex permeability spectrum of a magnetic material is deduced from the measured impedance spectrum, which is then normalized to a series permeability spectrum. However, this series permeability spectrum has previously been shown to correspond to a parallel magnetic circuit, which is not appropriate. Some of the implications of this truth are examined. This electric/magnetic duality has frustrated efforts to interpret the shape of the complex magnetic permeability spectra of materials, and has hindered the application of impedance spectroscopy to magnetic materials. In the presence of magnetic loss, the relationship between the relative magnetic permeability and the magnetic susceptibility is called into question. The use of reluctivity spectra for expressing magnetic material properties is advocated. The relative loss factor, tanδm/μi is shown to be an approximation for the imaginary part of the reluctivity. A single relaxation model for the initial reluctivity spectra of magnetic materials is presented, and its principles are applied to measurements of a high permeability ferrite. The results are presented as contour plots of the spectra as a function of temperature.

  12. In vitro complex formation and inhibition of hepatic cytochrome P450 activity by different macrolides and tiamulin in goats and cattle.

    Science.gov (United States)

    Zweers-Zeilmaker, W M; Van Miert, A S; Horbach, G J; Witkamp, R F

    1999-02-01

    In humans, clinically relevant drug-drug interactions occur with some macrolide antibiotics via the formation of stable metabolic intermediate (MI) complexes with enzymes of the cytochrome P4503A (CYP3A) subfamily. The formation of such complexes can result in a decreased biotransformation rate of simultaneously administered drugs. In previous studies it was shown that the veterinary antibiotic tiamulin was also able to form a stable MI complex in pigs and rats. In the present study the relative CYP3A inhibiting potency and MI complex formation of a series of macrolide antibiotics and tiamulin were studied in microsomal fractions of goat and cattle and in a cell-line expressing bovine CYP3A. Tiamulin and triacetyloleandomycin (TAO) were found to be effective inhibitors of CYP450 activity in all systems tested. Erythromycin and tilmicosin were found to be relatively less effective inhibitors of CYP450 activity in microsomes, and their activity in the bovine CYP3A4 expressing cell line was relatively weak. Tylosin was shown to be a weak inhibitor in microsomes and not in the cell line, whereas spiramycin had no effect at all. MI-complex formation measured by spectral analysis was seen with TAO, tiamulin, erythromycin and tylosin, but not with tilmicosin and spiramycin. Although additional factors play a role in vivo, these results may explain potential drug-drug interactions and differences between related compounds in this respect.

  13. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    Science.gov (United States)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear complex Al 2(OH) 2(C 2O 4) 44- to exist in a

  14. Formation of ammonia complexes of alkaline earth elements in aqueous solutions

    International Nuclear Information System (INIS)

    Padar, T.G.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1990-01-01

    Coefficients of ammonia distribution between aqueous solutions of calcium, strontium, barium and ammonium perchlorate mixtures at ionic strength - 0.50; 1.0 and 1.5 at 298.2 K and ammonia concentrations 0.2-10 mol/dm 3 are measured. Formation of ammonia complexes of M(NH 3 ) n 2+ composition is shown. Logarithms of stepped stability constants for solutions with zero ionic strength for Ca 2+ are: -0.13; -0.25; -0.52 and -0.77, where n=1-4; for Sr 2+ : -0.04; -0.42 and -0.70, where n=1-3 and for Ba 2+ : -0.11; -0.50 and 0.76, where n=1-3

  15. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    International Nuclear Information System (INIS)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C.

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H 2 Y) and with 6-mercaptopurine (H 2 MP) in dioxane-water (50%) leads to the formation of CdY x 2H 2 O and Cd(HMP) 2 x 2H 2 O, respectively. In methanolic medium Cd(II) and H 2 MP give Cd(MP) x H 2 O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1 0 C and 1M ionic strength with NaClO 4 in dioxane-water medium is logβ = 10.25 +- 0.05. (Author)

  16. Thermodynamic Investigation and Mixed Ligand Complex Formation of 1,4-Bis-(3-aminopropyl)-piperazine and Biorelevant Ligands.

    Science.gov (United States)

    El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H

    2012-01-01

    Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO(3)) using a potentiometric technique. The order of -ΔG(0) and -ΔH(0) was found to obey Co(2+) Zn(2+), in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K.

  17. Constraining the Molecular Complexity in the Interstellar Medium—The Formation of Ethyl Methyl Ether (CH3OCH2CH3) in Star-forming Regions

    Science.gov (United States)

    Bergantini, Alexandre; Frigge, Robert; Kaiser, Ralf I.

    2018-05-01

    We report the first confirmed synthesis of ethyl methyl ether (EME, CH3CH2OCH3) within astrophysical model ices containing water (H2O) and methane (CH4) exposed to ionizing radiation at ultra-low temperatures of 5 K. EME (also known as methoxyethane), was recently observed toward Orion KL and currently is the largest confirmed oxygen-bearing molecule found in the interstellar medium. Exploiting isomer-selective photoionization (PI) of the subliming molecules in the temperature-programmed desorption phase at 10.49, 9.92, and 9.70 eV, coupled with reflectron time-of-flight mass spectrometry and isotopic substitution experiments (H2 18O–CH4), the detection of fragment ions of EME at m/z = 45 (C2H5O+) and m/z = 59 (C3H7O+), and probing the proton transfer in subliming ethanol–EME complexes via m/z = 61 (C3H9O+), the present study reveals that EME can be formed from suprathermal reactions initiated by cosmic rays and secondary electrons generated within astrophysical ices. The detection of EME in our experiments represents a significant advance in the understanding of formation pathways of complex organic molecules present in hot cores and helps to constrain astrochemical models on the formation of such species within molecular clouds.

  18. Formation of different-ligand complexes of neodymium,-holmium- and erbium ions with diantipyrylmethane and gallic acid

    International Nuclear Information System (INIS)

    Gerasimenko, G.I.; Tishchenko, M.A.; Poluehktov, N.S.

    1978-01-01

    Spectrometry has been used for studying the formation of different-ligand complexes of Nd 3+ , Ho 3+ , and Er 3+ with diantipyrylmethane (DAM) and gallic aicd (GA) at pH 10.0-12.0. It has been found that in the complex being formed one ion of rare earth element interacts with one molecule of DAM and three molecules of GA. The oscillator forces grow when passing from aquaions to compounds with gallic acid and then with DAM and GA. The oscillator forces of Nd 3+ and Er 3+ depend linearly on those of Ho 3+ in the solutions of complexes with DAM and GA

  19. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De

    2017-05-09

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  20. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De; Zhang, Zhen; Hadjichristidis, Nikolaos

    2017-01-01

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  1. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    CERN Document Server

    Modarress, H

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo sub 3) and electron donor benzylcyanide (C sub 6 H sub 5 -CH sub 2 -C ident to N) in solvent ethyleneglycol [(CH sub 2 OH) sub 2] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 sup d ig sup C. The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO sub 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the a...

  2. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics

    1997-07-01

    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  3. Labeled EF-Tus for rapid kinetic studies of pretranslocation complex formation

    DEFF Research Database (Denmark)

    Liu, Wei; Kavaliauskas, Darius; Schrader, Jared

    2014-01-01

    The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we...... describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET...... assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii...

  4. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H. [LISA Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC), Université Paris Diderot (UPD), Institut Pierre Simon Laplace, Labex ESEP, Paris (France); Duvernay, F.; Chiavassa, T., E-mail: vvinogradoff@mnhn.fr [PIIM, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Université Aix-Marseille, UMR CNRS 7345, Marseille (France)

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  6. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    International Nuclear Information System (INIS)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H.; Duvernay, F.; Chiavassa, T.

    2015-01-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H 2 O, NH 3 , CO 2 , H 2 CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites

  7. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    Science.gov (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  8. Polarografic study about the complex formation between indium (III) and sodium azide, in aqueous media

    International Nuclear Information System (INIS)

    Tokoro, R.; Bertotti, M.

    1988-01-01

    The present work is a branch of the main work concerned with the complex formation between several metal cations and azide ligand in aqueous media. The polarographic behavior of indium in azide system showed the tendency of complexation. Using polarographic method to determine the half potential of indium at each analytical concentration afforded experimental data to evaluate the constants. The azide concentrations was modified from 1 m to 100 m , the ionic strength held at 2,0 M with sodium perchlorate, indium concentration 7.892 x 10 -4 M, and temperature kept constant at 25,0 0 C. (author) [pt

  9. Dependence of the enthalpies of formation of glycylglycinate complexes of nickel(II) on the composition of a mixed water-dimethylsulfoxide solvent

    Science.gov (United States)

    Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.

    2014-06-01

    The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.

  10. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    International Nuclear Information System (INIS)

    Modarress, H.; Shekaari, H.

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo 3 ) and electron donor benzylcyanide (C 6 H 5 -CH 2 -C≡N) in solvent ethyleneglycol [(CH 2 OH) 2 ] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 d ig C . The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the appropriate formation constant should be expressed in terms of activities. Also an equation have been derived to eliminate the undesirable effects on the nuclear magnetic resonance measured chemical shifts in calculating the constant. The selection of concentration domains and its effect on the calculated formation constant has been discussed and the new equation is modified to be independent of the concentration domains. In this equation the solution nationalised, by considering coefficients, have been taken in to account

  11. The formation of a complex community program for diabetes control: lessons learned from a case study of Project DIRECT.

    Science.gov (United States)

    Goodman, R M; Liburd, L C; Green-Phillips, A

    2001-05-01

    A case study was conducted of the formation of a diabetes initiative in a largely African American urban community. The study focused on how confluent the original project model was with actual formation, what benefits were produced, what areas of needed improvement surfaced, and how different stakeholder groups characterized one another's involvement. The project produced several benefits but also experienced needed improvements in its formation, which suffered from a lack of communication, cooperation, and coordination; unclear goals and personnel roles; and early delays. Lessons include treating project formation as an important developmental stage and reducing bureaucratic management approaches not suited for community partnerships.

  12. Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-S cluster assembly reveals a stable complex formation in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Shadab Anwar

    Full Text Available Iron-Sulfur (Fe-S proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1 protein and Nucleotide binding protein 35 (Nbp35. In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151 of Nbp35 and (G5-V6, M34-D39 and G46-A52 of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins

  13. Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface.

    Science.gov (United States)

    Li, Quanyang; Zhao, Zhengtao

    2017-10-01

    This research investigated the complexation behaviour between lactoferrin (Lf) and sodium caseinate (NaCas) before and after heat treatment. The results showed that heating facilitated their interaction and different complexes were formed at different Lf/NaCas ratios. The presence of low concentrations of NaCas resulted in the rapid precipitation of Lf, while no precipitation was observed at the NaCas concentrations higher than Lf/NaCas ratio of 2:1. The formed complexes at the ratio of 2:1 have an average diameter of 194±9.0nm and they exhibited a great capacity in lowering the air/water interfacial tension. Further increase of NaCas concentration to ratios of 1:1 and 1:2 resulted in the formation of smaller complexes with average diameters of 60±2.5nm. The complexes formed at these two ratios showed similar adsorption behaviour at the air/water interface and they exhibited lower capacity in decreasing the interfacial tension than the ratio of 2:1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Micellar effect on the sensitivity of spectrophotometric Mo(VI) determination based on the formation of gallic acid complex providing evidence for the polyoxoanion structure of molybdate ions

    International Nuclear Information System (INIS)

    Tascioglu, Senay; Sendil, Olcay; Beyreli, Sivekar

    2007-01-01

    In this study effects of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and nonionic (Triton X-100, TX100) micelles on the sensitivity of spectrophotometric molybdenum(VI) (Mo) determination based on the formation of a binary complex with gallic acid (GA) were investigated. Micellar CTAB was found to enhance the formation of Mo-GA complex. SDS micelles exerted an inhibitory effect while TX100 micelles had no effect on the complex formation. By the optimization of experimental conditions, the determination limit of the method suggested in the literature was lowered from 5.2 x 10 -5 to 4.6 x 10 -6 and to 5.7 x 10 -7 M, in the absence and presence of CTAB, respectively. The mechanism of the effect of CTAB was investigated by spectrophotometric titrations and it was concluded that CTAB did not form a ternary complex with Mo and GA. The stoichiometry of the complex, deduced from the results of spectrophotometric titrations, provided evidence for the formation of para-Mo 7 O 4 6- polyanions at pH 4.5, indicating to the formation of a charge transfer complex between these ions and GA in micellar medium

  15. Combustion energies and standard molar enthalpies of formation for the complexes of the first-row transitional metal chlorides with L-α-histidine

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Seven novel solid complexes of the first-row transitional metal with L-α-histidine were synthesized, and their compositions were determined. The constant-volume combustion energies of the complexes were measured by a precision rotation bomb calorimeter. The standard molar enthalpies of combustion and the standard molar enthalpies of formation were calculated. The results indicated thatthe plots of the standard enthalpies of formation against the atomic number of the metal show a regularity of zigzag.

  16. Thermodynamics of HEDPA protonation in different media and complex formation with Mg2+ and Ca2+

    International Nuclear Information System (INIS)

    Foti, Claudia; Giuffrè, Ottavia; Sammartano, Silvio

    2013-01-01

    Highlights: • Acid–base properties of etidronic acid in different ionic media and at different ionic strengths. • Complex formation of etidronate with Na + , K + , Ca 2+ and Mg 2+ . • Dependence on ionic strength analysed by a Debye–Hückel type equation and the SIT approach. • Suggested protonation constants calculated at I = 0.1 mol · L −1 and t = 25 °C, in different ionic media. -- Abstract: Acid–base properties of etidronic acid [(1-Hydroxyethane-1,1-diyil)bis(phosphonic acid), HEDPA] in different ionic media and at different ionic strengths (NaCl, KCl: I ⩽ 2 mol · L −1 ; (C 2 H 5 ) 4 NI: I ⩽ 1 mol · L −1 ) were studied at t = 25 °C, determining, by potentiometric and calorimetric techniques, protonation constants and enthalpy changes. The differences in the protonation constants in the different supporting electrolytes were also interpreted in terms of weak complex formation with M i L (with i = 1, 2), MLH j (with j = 1, 2, 3) and M 2 LH species (with L = HEDPA; M = Na + , K + ). The formation constants for the species of Ca 2+ and Mg 2+ , were determined by potentiometric titrations at different ionic strengths (0.1 ⩽ I/mol · L −1 ⩽ 1) in NaCl at t = 25 °C. The stability of these species is fairly high, as an example, at I = 0.1 mol · L −1 and t = 25 °C, for ML species, log β = 6.52 and 6.86, for Ca 2+ and Mg 2+ , respectively, obtained by considering simultaneously HEDPA–Na + interactions. The dependence on ionic strength was analysed by a Debye–Hückel type equation and the SIT (Specific ion Interaction Theory) approach for protonation thermodynamic parameters and by a Debye–Hückel type equation for Mg 2+ and Ca 2+ complex formation. The sequestering ability of HEDPA toward Ca 2+ and Mg 2+ was also analysed. A comparison with literature data is given

  17. Structural analysis of the ParR/parC plasmid partition complex

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Ringgaard, Simon; Mercogliano, Christopher P

    2007-01-01

    Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA...

  18. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C. (Valencia Univ. (Spain))

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H/sub 2/Y) and with 6-mercaptopurine (H/sub 2/MP) in dioxane-water (50%) leads to the formation of CdY x 2H/sub 2/O and Cd(HMP)/sub 2/ x 2H/sub 2/O, respectively. In methanolic medium Cd(II) and H/sub 2/MP give Cd(MP) x H/sub 2/O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1/sup 0/C and 1M ionic strength with NaClO/sub 4/ in dioxane-water medium is log..beta.. = 10.25 +- 0.05.

  19. Stated Choice Experiments with Complex Ecosystem Changes: The Effect of Information Formats on Estimated Variances and Choice Parameters

    OpenAIRE

    Hoehn, John P.; Lupi, Frank; Kaplowitz, Michael D.

    2010-01-01

    Stated choice experiments about ecosystem changes involve complex information. This study examines whether the format in which ecosystem information is presented to respondents affects stated choice outcomes. Our analysis develops a utility-maximizing model to describe respondent behavior. The model shows how alternative questionnaire formats alter respondents’ use of filtering heuristics and result in differences in preference estimates. Empirical results from a large-scale stated choice e...

  20. Chemical pathways for the formation of ammonia in Hanford wastes

    International Nuclear Information System (INIS)

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important)

  1. Chemical pathways for the formation of ammonia in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

  2. A Simple and High Performing Rate Control Initialization Method for H.264 AVC Coding Based on Motion Vector Map and Spatial Complexity at Low Bitrate

    Directory of Open Access Journals (Sweden)

    Yalin Wu

    2014-01-01

    Full Text Available The temporal complexity of video sequences can be characterized by motion vector map which consists of motion vectors of each macroblock (MB. In order to obtain the optimal initial QP (quantization parameter for the various video sequences which have different spatial and temporal complexities, this paper proposes a simple and high performance initial QP determining method based on motion vector map and temporal complexity to decide an initial QP in given target bit rate. The proposed algorithm produces the reconstructed video sequences with outstanding and stable quality. For any video sequences, the initial QP can be easily determined from matrices by target bit rate and mapped spatial complexity using proposed mapping method. Experimental results show that the proposed algorithm can show more outstanding objective and subjective performance than other conventional determining methods.

  3. The formation of super-dislocation/micropipe complexes in 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J.; Rohrer, G.S.; Skowronski, M. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering; Balakrishna, V.; Augustine, G.; Hobgood, H.McD.; Hopkins, R.H. [Northrop Grumman Science and Technology Center, Pittsburgh PA (United States)

    1998-06-01

    Atomic force microscope images of surface/micropipe intersections on the (0001) growth surface of a 6H-SiC single crystal grown by the physical vapor transport method indicate that micropipes are associated with super-dislocations and that micron-scale deposits of a heterogeneous phase are frequently found in the vicinity of the defect. Based on our observations, we propose a model for the formation of super-dislocation/micropipe complexes that involves the coalescence of unit screw dislocations. The unit dislocations are forced together as large steps grow around heterogeneous material on the surface. (orig.) 5 refs.

  4. Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II), 4-(2-Pyridylazo)resorcinol, and Nitron

    OpenAIRE

    Racheva, Petya Vassileva; Gavazov, Kiril Blazhev; Lekova, Vanya Dimitrova; Dimitrov, Atanas Nikolov

    2013-01-01

    Complex formation and liquid-liquid extraction were studied in a system containing cobalt(II), 4-(2-pyridylazo)resorcinol (PAR), 1,4-diphenyl-3-(phenylamino)-1H-1,2,4-triazole (Nitron, Nt), water, and chloroform. The effect of some experimental parameters (pH, shaking time, concentration of PAR, and concentration of Nt) was systematically investigated, and the optimum conditions for cobalt extraction as an ion-association complex, (NtH+)[Co3+(PAR)2], were found. The following key equilibrium ...

  5. Conversion of impurity-vacancy complexes under γ-irradiation and subsequent F band bleaching in KCl:Eu2+

    International Nuclear Information System (INIS)

    Mladenova, M.; Malinovski, A.; Georgiev, M.

    1982-01-01

    The ESR signal from I-V complexes in KCl:Eu 2+ is found to decrease markedly as a result of γ-irradiation and to vary swing-wise on subsequent F band bleaching at RT. The main bleaching process is explained by the superposition of Z 1 centre formation and the revival of I-V complexes following photostimulated recombination of F centres with I-V-trapped interstitials. Evidence seems also to be obtained for Eu + formation at the initial bleaching stage. (author)

  6. Interpreting future physics teachers reflections on their professional practice during initial formation: the search for teaching autonomy construction

    Directory of Open Access Journals (Sweden)

    Rodolfo Langhi

    2012-01-01

    Full Text Available This research intends to answer the following main question: which traces of teacher autonomy construction are possible to achieve during reflective formative processes in disciplines like Methodology and Physics Teaching Practice carried out during three semesters, in an undergraduate program designed to physics teachers´ initial education? Using an analytical device based on teachers education research assumptions, which we called convergent formative triangulation for progressive teaching autonomy, we had as a main objective the search for the chance to achieve progressive levels of teachers autonomy, according to its three teacher professionalization models, present in a critical and transformative perspective, relating them to the current formative paradigms: the contents based one, the humanist, the activist, the reflective and the technical (approaches we called CHART. Taking into consideration future physics teachers´ collective reflections about their own teaching practice, this research was supported by the following methodological instruments: focus group, coaching, self-confrontation and formative assessment, taking the discourse analysis as background. The outcomes of this research, which followed a sample of 40 future High School physics teachers during three semesters, through the use of five formative steps (planning, implementation, reflection, socialization, involvement and continuity, revealed the evidences of teachers autonomy construction, probably provided by their own teaching practice collective reflections, according to the analytical device used. This research showed that the reflections brakes provided during the process can allow the future teachers to position themselves critically in relation to their future pedagogical activities, even after their initial training. This experience leads us to rethink how subjects like Methodology and Teaching Practice have been teaching in the teachers’ education programs at

  7. In vitro comparison of initiation properties of bacteriophage lambda wild-type PR and x3 mutant promoters.

    OpenAIRE

    Hawley, D K; McClure, W R

    1980-01-01

    The in vitro initiation properties of the PR promoter of bacteriophage lambda and of a PR mutant, x3, were compared. Using the abortive initiation reaction, we measured the lags in the approach to a final steady-state rate when dinucleotide synthesis was initiated with RNA polymerase. These lags corresponded to the average times required for the formation of transcriptionally active open complexes. By measuring the lags at different RNA polymerase concentrations, we could separate open comple...

  8. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    International Nuclear Information System (INIS)

    Brighli, M.

    1984-07-01

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO 2 2+ and UO 4 species of uranium VI is studied in aqueous solution (NaClO 4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO 4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO 2 2+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO 4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO 2 2+ and its complexes on mercury drop are proposed. 143 refs [fr

  9. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gnanaprakash, G. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mahadevan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalyanasundaram, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Philip, John [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: philip@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-05-15

    We report the effect of initial pH and temperature of iron salt solutions on formation of magnetite (Fe{sub 3}O{sub 4}) nanoparticles during co-precipitation. We synthesized nanoparticles by keeping the initial pH at 0.7, 1.5, 3.0, 4.7, 5.7, 6.7 for two different temperatures of 30 and 60 deg. C. When the initial pH (prior to alkali addition) of the salt solution was below 5, the nanoparticles formed were 100% spinel iron oxide. Average size of the magnetite particles increases with initial pH until ferrihydrite is formed at a pH of 3 and the size remains the same till 4.7 pH. The percentage of goethite formed along with non-stoichiometric magnetite was 35 and 78%, respectively, when the initial pH of the solution was 5.7 and 6.7. As the reaction temperature was increased to 60 deg. C, maintaining a pH of 6.7, the amount of goethite increased from 78 to 100%. These results show that the initial pH and temperature of the ferrous and ferric salt solution before initiation of the precipitation reaction are critical parameters controlling the composition and size of nanoparticles formed. We characterize the samples using X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results of the present work provide the right conditions to synthesis pure magnetite nanoparticles, without goethite impurities, through co-precipitation technique for ferrofluid applications.

  10. Thermodynamic Characteristics of Reactions of the Formation of Complexes between Triglycine and Ni2+ Ions in Aqueous Solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.; Bychkova, S. A.

    2018-05-01

    Thermal effects of reactions of the formation of complexes between Ni(II) and triglycine are determined via direct calorimetry in aqueous solutions at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 (KNO3). Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°) of complexing processes in the investigated systems are calculated. The structures of triglycinate complexes NiL+, NiH-1L, NiL2, NiH-2L2- 2, NiL- 3, and NiH-3L4- 3 are introduced to compare the obtained values and data on the thermodynamics of triglycinate complexes of Ni(II).

  11. Entropy-driven complex formation of malvidin-3- O-glucoside with common polyphenols in ethanol-water binary solutions

    Science.gov (United States)

    Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour

    2008-09-01

    The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.

  12. Concomitant carboxylate and oxalate formation from the activation of CO{sub 2} by a thorium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Formanuik, Alasdair; Ortu, Fabrizio; Mills, David P. [School of Chemistry, The University of Manchester (United Kingdom); Inman, Christopher J. [Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Brighton (United Kingdom); Kerridge, Andrew [Department of Chemistry, Lancaster University (United Kingdom); Castro, Ludovic; Maron, Laurent [LPCNO, CNRA et INSA, Universite Paul Sabatier, Toulouse (France)

    2016-12-12

    Improving our comprehension of diverse CO{sub 2} activation pathways is of vital importance for the widespread future utilization of this abundant greenhouse gas. CO{sub 2} activation by uranium(III) complexes is now relatively well understood, with oxo/carbonate formation predominating as CO{sub 2} is readily reduced to CO, but isolated thorium(III) CO{sub 2} activation is unprecedented. We show that the thorium(III) complex, [Th(Cp''){sub 3}] (1, Cp''={C_5H_3(SiMe_3)_2-1,3}), reacts with CO{sub 2} to give the mixed oxalate-carboxylate thorium(IV) complex [{Th(Cp'')_2[κ"2-O_2C{C_5H_3-3,3'-(SiMe_3)_2}]}{sub 2}(μ-κ{sup 2}:κ{sup 2}-C{sub 2}O{sub 4})] (3). The concomitant formation of oxalate and carboxylate is unique for CO{sub 2} activation, as in previous examples either reduction or insertion is favored to yield a single product. Therefore, thorium(III) CO{sub 2} activation can differ from better understood uranium(III) chemistry. (copyright 2016 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  13. Preparation and evaluation of periodontal films based on polyelectrolyte complex formation.

    Science.gov (United States)

    Kassem, Abeer Ahmed; Ismail, Fatma Ahmed; Naggar, Viviane Fahim; Aboulmagd, Elsayed

    2015-05-01

    Local intra-pocket drug delivery devices can provide an effective concentration of the antimicrobial agent at the site of action with avoidance of undesirable side effects. This study explored the application of chitosan-alginate and chitosan-pectin polyelectrolyte complex (PEC) films as drug release regulators for tetracycline HCl (Tc) to treat periodontal pockets. Periodontal films with 1:1 Tc:PEC ratio were prepared using 1:1 chitosan (Ch) to sodium alginate (A) or 1:3 Ch to pectin (P). The scanning electron microscope showed acceptable film appearance and differential scanning calorimetry analysis confirmed complex formation. The in vitro release studies for both films showed a burst drug release, followed by prolonged release for 70 h. A prolonged antibacterial activity of both films against Staphylococcus aureus ATCC 6538 was observed over a period of 21 days. Aging studies indicated that the five months storage period in freezer did not significantly influence the drug release profile or the antibacterial activity of both films. Clinical evaluation showed a significant reduction in pocket depth (p < 0.0001) to their normal values (≤3 mm). PEC films could be exploited as a prolonged drug release devices for treatment of periodontal pockets.

  14. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice.

    Science.gov (United States)

    Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2013-08-01

    In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated central region component1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID receptor-interacting protein13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with homologous pairing aberration in rice meiosis1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.

  15. Formation of Aqueous MgUO2(CO3)32- Complex and Uranium Anion Exchange Mechanism onto an Exchange Resin

    International Nuclear Information System (INIS)

    Dong, Wenming; Brooks, Scott C

    2008-01-01

    The formation of and stability constants for aqueous Mg-UO2-CO3 complexes were determined using an anion exchange method. Magnesium concentration was varied (up to 20 mmol/L) at constant ionic strength (I = 0.101, 0.202, 0.304, 0.406, and 0.509 mol/kg NaNO3), pH = 8.1, total [U(VI)] = 10.4 mol/L under equilibrium with atmospheric CO2. The results indicate that only the MgUO2(CO3)32- complex is formed. The cumulative formation constant extrapolated to zero ionic strength is similar regardless of the activity correction convention used: log = 25.8 b 0.5 using Davies equation and = 25.02 b 0.08 using specific ion interaction theory (SIT). Uranium sorption onto the exchange resin decreased in the presence of Mg putatively due to the formation of MgUO2(CO3)32- that had a lower affinity for the resin than UO2(CO3)34-. Uranium sorption results are consistent with an equivalent anion exchange reaction between NO3- and UO2(CO3)34- species to retain charge neutrality regardless of Mg concentration. No Mg was associated with the anion exchange resin indicating that the MgUO2(CO3)32- complex did not sorb

  16. Module-based complexity formation: periodic patterning in feathers and hairs.

    Science.gov (United States)

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2013-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.

  17. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex.

    Science.gov (United States)

    Burnett, Benjamin J; Altman, Roger B; Ferrao, Ryan; Alejo, Jose L; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C

    2013-05-10

    Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). EF-Ts directly facilitates the formation and disassociation of ternary complex. This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.

  18. Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition.

    Science.gov (United States)

    Gao, Yue; Ma, Defang; Yue, Qinyan; Gao, Baoyu; Huang, Xia

    2016-09-01

    In this study, the MBR was used to treat municipal wastewater for reuse. Effects of powdered activated carbon (PAC) addition on MBR system in terms of effluent water quality, trihalomethane (THM) formation and membrane organic fouling tendency of MBR sludge supernatant at the initial stage of PAC addition were investigated. Effects of chlorine dose and contact time on THM formation and speciation were also studied. PAC addition enhanced the removal of organic matters, especially aromatic components, which improved the UV254 removal rate from 34% to 83%. PAC addition greatly reduced the membrane organic fouling tendency of MBR sludge supernatant. PAC addition reduced the MBR effluent trihalomethane formation potential (THMFP) from 351.29 to 241.95μg/L, while increased THM formation reactivity by 42%. PAC addition enhanced the formation of higher toxic bromine-containing THMs. High chlorine dose and contact time resulted in higher THM formation but lower proportion of bromine-containing THMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Biophysics Microgravity Initiative

    Science.gov (United States)

    Gorti, S.

    2016-01-01

    Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.

  20. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex.

    Science.gov (United States)

    Jang, M H; Scrutton, N S; Hille, R

    2000-04-28

    The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.

  1. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand

    NARCIS (Netherlands)

    Eijsink, Linda E; Perdriau, Sébastien C P; de Vries, Johannes G; Otten, Edwin

    2016-01-01

    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition

  2. Formation of aqueous complexes of metal ions formed during the reprocessing of nuclear fuels with ortho-phenanthroline and dibutylphosphate

    International Nuclear Information System (INIS)

    Musikas, C.; Le Marois, G.; Racinoux, J.

    1979-01-01

    In this work the formation of aqueous complexes of metalions (lanthanides, actinides) was investigated that occurs during reprocessing of nuclear combustibles with ortho-phenanthroline and dibutylphosphate. Complexes with different ligand numbers and solubility are formed. Cationic and anionic forms according to the DBP concentration in the extraction solution. Acid-base titrations, absorption spectra and solubility determinations were used for the characterization. (RB) [de

  3. Hydration of the sulfuric acid-methylamine complex and implications for aerosol formation.

    Science.gov (United States)

    Bustos, Danielle J; Temelso, Berhane; Shields, George C

    2014-09-04

    The binary H2SO4-H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0-6. Because it is a strong acid-base system, H2SO4-NH2CH3 quickly forms a tightly bound HSO4(-)-NH3CH3(+) complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4-NH2CH3 is -21.8 kcal mol(-1) compared with -16.8 kcal mol(-1) for H2SO4-NH3 and -12.8 kcal mol(-1) for H2SO4-H2O. Adding one to two water molecules to the H2SO4-NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4-NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.

  4. Effect of fat type in baked bread on amylose-lipid complex formation and glycaemic response.

    Science.gov (United States)

    Lau, Evelyn; Zhou, Weibiao; Henry, Christiani Jeyakumar

    2016-06-01

    The formation of amylose-lipid complexes (ALC) had been associated with reduced starch digestibility. A few studies have directly characterised the extent of ALC formation with glycaemic response. The objectives of this study were to investigate the effect of using fats with varying degree of saturation and chain length on ALC formation as well as glycaemic and insulinaemic responses after consumption of bread. Healthy men consumed five test breads in a random order: control bread without any added fats (CTR) and breads baked with butter (BTR), coconut oil (COC), grapeseed oil (GRP) or olive oil (OLV). There was a significant difference in glycaemic response between the different test breads (P=0·002), primarily due to COC having a lower response than CTR (P=0·016), but no significant differences between fat types were observed. Insulinaemic response was not altered by the addition of fats/oils. Although BTR was more insulinotropic than GRP (Pfats/oils, with coconut oil showing the greatest attenuation of glycaemic response.

  5. Further details of a hypothesis for the initiation of genetic recombination from recognition sites

    Energy Technology Data Exchange (ETDEWEB)

    Markham, P [Queen Elizabeth College, London (G.B.)

    1982-01-01

    Consideration of the initiation of genetic recombination from fixed sites recognised by an initiation complex, has provided more details of the envisaged mechanism and implications of a recent hypothesis. It has been shown that the hypothesis allows for more than one recombinogenic-event to result from a single binding of the recombination initiation complex to a recognition site in a DNA duplex. This capacity can explain data from fungal systems which are apparently inconsistent with the Meselson-Radding model of genetic recombination with respect to the positional relationship between tracts of hybrid DNA and sites of crossing-over. A mechanism for conversion, involving hybrid DNA formation, but without mismatch correction has also been proposed on the basis of this capacity. It is suggested that the hypothesis may apply generally to genetic recombination, in prokaryotes as well as eukaryotes.

  6. If I Experience Formative Assessment Whilst Studying at University, Will I Put It into Practice Later as a Teacher? Formative and Shared Assessment in Initial Teacher Education (ITE)

    Science.gov (United States)

    Hamodi, Carolina; López-Pastor, Víctor Manuel; López-Pastor, Ana Teresa

    2017-01-01

    The aim of this article is to analyse whether having experience of formative assessment during their initial teacher education courses (ITE) influences graduates' subsequent practice as teachers. That is, if the assessment methods that university students are subject to during their learning process are then actually employed by them during their…

  7. Thermodynamics of the complex formation between thorium(IV) and some polydentate ligands in aqueous solution

    International Nuclear Information System (INIS)

    Di Bernado, P.; Cassol, A.; Tomat, G.; Bismondo, A.; Magon, L.

    1983-01-01

    The changes in free energy, enthalpy, and entropy for the formation of thorium(IV)-oxydiacetate, -iminodiacetate, -thiodiacetate, and -succinate complexes have been determined by potentiometric and calorimetric titrations at 25 deg C in aqueous 1 mol dm - 3 sodium perchlorate. All the ligands form 1:1 chelate complexes with the thorium(IV) ion the stability of which is dependent on both the chelate ring dimensions and the nature of the donor group in the chain. The order of the relative stabilities (iminodiacetate > oxydiacetate > thiodiacetate > succinate) is mainly dependent on the reaction enthalpies, since the δS values are close to each other. In the thorium(IV)-oxydiacetate system the maximum number of three ligands for every metal ion was reached. Because of precipitation of solid compounds in the other systems, it was only possible to define complexes with a lower number of co-ordinated ligands: two for succinate and thiodiacetate, and one for iminodiacetate. Owing to the lower stability of the chelate ring of thiodiacetate and succinate complexes and the high basicity of the amino-group of iminodiacetate, these ligands form also unchelated protonated complexes. (author)

  8. NMR and luminescence spectroscopy study of formation of mixed β-diketonate europium complexes

    International Nuclear Information System (INIS)

    Kavun, V.Ya.; Kalinovskaya, I.V.; Karasev, V.E.; Chernyshov, B.N.; Steblevskaya, N.I.

    1987-01-01

    Methods of NMR ('H, 19 F) and luminescent spectroscopy were applied to study ligand substitution in Eu(β-dik) 3 phen-CDCl 3 -(β-dik)' systems, where β-dik-acetylacetone (AA) and hexafluoroacetyl-acetone (HFAA), phen-1.10-phenathroline at different mole ratio (m) of competing ligands (m=AA/HFAA). Formation of mixed Eu(AA) 2 (HFAA)phen and Eu(AA)(HFAA) 2 phen complexes is proved; calculation of the stark structure of 5 D 0 - 7 F j (j=0,1,2) transitions in low-temperature luminescence spectra is conducted for these complexes. It is stated that at minimum HFAA concentration in the solution the latter replaces AA from europium coordination sphere. It is shown that depending on the value in substitution of acidoligands proceeds successfully by the equations Eu(AA) 3 phen+(NHFAA) n → Eu(AA) 3-n → (HFAA) n phen+(NAA) n ; (n=1,2,3)

  9. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    Science.gov (United States)

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats.

    Science.gov (United States)

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied "open-format" and "closed-format" detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. Copyright © 2015 Zhou et al.

  11. Complex formation reactions of uranyl(VI) with neutral N-donors in dimethyl sulfoxide. Influence of small amounts of water

    International Nuclear Information System (INIS)

    Cassol, A.; Di Bernardo, P.; Zanonato, P.; Portanova, R.; Tolazzi, M.

    1990-01-01

    Quantitative information about the existence and thermodynamic stability of uranyl(VI) ion complexes based solely upon nitrogen coordination has been obtained in the solvent dimethyl sulfoxide. Calorimetric, potentiometric, and FT-IR investigations, under controlled anhydrous conditions, show that the uranyl(VI) ion can form both mono and bis chelates with the ethylenediamine ligand and only a mono chelate of rather low stability with propylenediamine. With the monodentate ligand n-butylamine only a very weak metal-ligand interaction has been detected. The stability constants and the enthalpy and entropy changes have been calculated for the identified coordinated species. All data refer to 25.0 degree C and a tetraethylammonium perchlorate medium of ionic strength 0.1 M. All the complexes are enthalpy stabilized whereas the entropy contributions oppose the complex formation. Calorimetric and FT-IR measurements carried out to investigate the effects of small amounts of water present show that a very low water concentration, comparable to that of the coordinating metal ion, can give rise to hydrolysis reactions that may compete with complex formation. This is due to the combined action of different factors that are discussed. 39 refs., 6 figs., 1 tab

  12. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.

    Science.gov (United States)

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-03-31

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.

  13. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Directory of Open Access Journals (Sweden)

    L. Vanysacker

    2013-01-01

    Full Text Available Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  14. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Science.gov (United States)

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  15. Voltammetric investigation of avidin-biotin complex formation using an electroactive bisbiotinyl compound

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shirotori, Tatsuya; Hirabayashi, George; Kamiya, Naoto; Kuramitz, Hideki; Tanaka, Shunitz

    2004-01-01

    Formation of avidin-biotin complex was investigated using bisbiotinyl thionine (BBT) by means of voltammetric techniques. Thionine is an electroactive compound and has two amino groups that are necessary for the reaction with a biotinylation reagent. The biotinylation of thionine produces a new reagent with two biotin moieties at each end of thionine. Three BBTs of different lengths of the spacer that connects the biotin moiety to the thionine moiety were prepared. The avidin-biotin binding assay was achieved by measuring the electrode response of the thionine moiety in BBT. The binding affinity and the conformation of complex, which depended on the length of spacer, are discussed. BBT in which the spacer is shortest (BBT-S, distance between carbonyl group of the two biotin moieties: 11 A) binds with only one avidin molecule. BBT with medium length of spacer (BBT-M, 28.8 A) forms the complex with two avidin molecules. BBT with the longest spacer (BBT-L, 46.6 A) allows binding with two avidin molecules as well as intramolecular binding within one avidin molecule. The affinity constants of BBT-S, BBT-M and BBT-L for avidin were estimated to be 7.0 x 10 12 M -1 , 3.2 x 10 12 M -1 and 4.0 x 10 12 M -1 , respectively

  16. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    Science.gov (United States)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  17. Thermodynamics of curium(III) in concentrated electrolyte solutions: formation of sulfate complexes in NaCl/Na2SO4 solutions

    International Nuclear Information System (INIS)

    Paviet, P.; Fanghaenel, T.; Klenze, R.; Kim, J.I.

    1996-01-01

    The formation of sulfate complexes of Curium in aqueous solutions is studied by time resolved laser fluorescence spectroscopy (TRLFS) at 25 C. The species Cm 3+ , Cm(SO 4 ) - , Cm(SO 4 ) - 2 and Cm(SO 4 ) 3- 3 are quantified spectroscopically in the trace concentration range by peak deconvolution of fluorescence emission spectra. The complex formation equilibria are measured in NaCl/ Na 2 SO 4 solutions of constant ionic strength (3 molal) as a function of the sulfate concentration. The stability constants of Cm(SO 4 ) + and Cm(SO 4 ) - 2 are determined to be log β 1 = 0.93±0.08 and log β 2 = 0.61±0.08, respectively. The complex Cm(SO 4 ) 3- 3 is found to be stable only at very high sulfate concentrations (above 1 molal) and therefore not considered for further evaluation. (orig.)

  18. Spectrophotometric determination of tizanidine and orphenadrine via ion pair complex formation using eosin Y

    Directory of Open Access Journals (Sweden)

    Eid Manal I

    2011-10-01

    Full Text Available Abstract A simple, sensitive and rapid spectrophotometric method was developed and validated for the determination of two skeletal muscle relaxants namely, tizanidine hydrochloride (I and orphenadrine citrate (II in pharmaceutical formulations. The proposed method is based on the formation of a binary complex between the studied drugs and eosin Y in aqueous buffered medium (pH 3.5. Under the optimum conditions, the binary complex showed absorption maxima at 545 nm for tizanidine and 542 nm for orphenadrine. The calibration plots were rectilinear over concentration range of 0.5-8 μg/mL and 1-12 μg/mL with limits of detection of 0.1 μg/mL and 0.3 μg/mL for tizanidine and orphenadrine respectively. The different experimental parameters affecting the development and stability of the complex were studied and optimized. The method was successfully applied for determination of the studied drugs in their dosage forms; and to the content uniformity test of tizanidine in tablets.

  19. Filament and core formation in nearby molecular clouds: results from the CARMA Large Area Star Formation Survey

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee G.; Fernández-López, Manuel; Lee, Katherine I.; Ostriker, Eve C.; Looney, Leslie; Chen, Che-Yu; Classy Collaboration

    2015-01-01

    Stars rarely form in isolation, so it is critical to understand how the parsec-scale molecular cloud environment shapes the formation of individual dense cores at the sub-0.1 pc scale. To address the pathway to core formation in a clustered environment, I co-developed the CARMA Large Area Star Formation Survey, which spectrally imaged dense gas tracer lines across 800 square arcminutes of the Perseus and Serpens Molecular clouds with 7'' angular resolution. There are four key results from initial papers. First, I created a new non-binary dendrogram code that shows correlation between the hierarchical complexity of dense, N2H+ (J=1-0) structures and the amount of star formation activity in a cluster. This may imply that feedback from young protostars changes the structure of dense gas within a cluster and increases the amount of high column density material. Second, we discovered strong radial velocity gradients within filaments that are an order of magnitude larger than detected axial gradients. We see similar radial gradients in filaments formed in numerical simulations of converging, turbulent flows; this suggests that the observed filaments are accreting material from an environment that is flattened at larger scales, and that they are more likely to fragment locally into cores than to support the flow of gas along the filament length. Third, we constructed two size-linewidth relations using the dendrogram-identified gas structures and our high resolution maps of the gas centroid velocity and line-of-sight velocity dispersion. The two relations show distinct behavior, and we developed a theoretical framework based on isotropic turbulence to show that they support the clustered regions being flattened (sheet-like) at parsec scales, with depths on the order 0.1-0.2 pc into the sky. Finally, we found that many filaments seen with Herschel show substructure in our high resolution maps, which implies that measuring the widths of filaments may be more complex than

  20. Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g.

    Science.gov (United States)

    Choe, Junho; Oh, Nara; Park, Sungjin; Lee, Ye Kyung; Song, Ok-Kyu; Locker, Nicolas; Chi, Sung-Gil; Kim, Yoon Ki

    2012-05-25

    In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.

  1. SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures

    Science.gov (United States)

    Chen, Chia-Li; Li, Lijie; Tang, Ping; Cocker, David R.

    2018-05-01

    SOA formation is not well predicted in current models in urban area. The interaction among multiple anthropogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere. Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant low NOx and extremely low NOx (H2O2) conditions. Addition of m-xylene suppressed SOA formation from the individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO2]/[RO2] ratio but negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing m-xylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics such as f44 versus f43, H/C ratio, O/C ratio, and the oxidation state of the carbon OSbarc were consistent with a continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from individual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.

  2. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    Science.gov (United States)

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  3. [Complex formation between alpha-chymotrypsin and block copolymers based on ethylene and propylene oxide, induced by high pressure].

    Science.gov (United States)

    Topchieva, I N; Sorokina, E M; Kurganov, B I; Zhulin, V M; Makarova, Z G

    1996-06-01

    A new method of formation of non-covalent adducts based on an amphiphilic diblock copolymer of ethylene and propylene oxides with molecular mass of 2 kDa and alpha-chymotrypsin (ChT) under high pressure, has been developed. The composition of the complexes corresponds to seven polymer molecules per one ChT molecule in the pressure range of 1.1 to 400 MPa. The complexes fully retain the catalytic activity. Kinetic constants (Km and kcat) for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester catalyzed by the complexes are identical with the corresponding values for native ChT. Analysis of kinetics of thermal inactivation of the complexes revealed that the constant of the rate of the slow inactivation step is markedly lower than for ChT.

  4. Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics.

    Directory of Open Access Journals (Sweden)

    Aaron M Streets

    Full Text Available An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.

  5. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Science.gov (United States)

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  6. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    Science.gov (United States)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  7. Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111)

    CERN Document Server

    Li, T Q; Tsuji, Y; Ohsawa, T; Komiyama, H

    2002-01-01

    The initial growth and texture formation mechanism of titanium nitride (TiN) films were investigated by depositing TiN films on (111) silicon substrates by using reactive magnetron sputtering of a Ti metallic target under a N sub 2 /Ar atmosphere, and then analyzing the films in detail by using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Two power sources for the sputtering, dc and rf, were compared. At the initial growth stage, a continuous amorphous film containing randomly oriented nuclei was observed when the film thickness was about 3 nm. The nuclei grew and formed a polycrystalline layer when the film thickness was about 6 nm. As the film grew further, its orientation changed depending on the deposition conditions. For dc sputtering, the appearance of (111) or (200)-preferred orientations depended on the N sub 2 partial pressure, and the intensity of the preferred orientation increased with increasing film thickness. For rf sputtering, however, when the film thickness was small (...

  8. Experimental investigation of crack initiation in face-centered cubic materials in the high and very high cycle fatigue regime

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Thomas

    2016-07-01

    Materials in many modern small-scale applications are under complex cyclic stress states and undergo up to 10{sup 9} cycles. Fatigue mechanisms limit their lifetime and lead to failure. Therefore, the Very High Cycle Fatigue (VHCF) regime needs to be studied. This thesis investigates the fatigue mechanisms and crack initiation of nickel, aluminum and copper on a small-scale in the VHCF regime by means of innovative fatigue experimentation. Firstly, the development and implementation of a novel custom-built resonant fatigue setup showed that the resonant frequency of bending micro-samples changes with increasing cycle number due to the accumulating fatigue damage. Then, additional insights on early damage formation have been explored. Mechanisms, prior to crack initiation, such as slip band formation at a state where it appears in only a few grains, have been observed. Cyclic hardening, vacancy formation and oxidation formation may be considered as possible explanations for early fatigue mechanisms. In addition, the new experimental setup can be used to define parameters needed for crack initiation models. Finally, these crack initiation processes have been experimentally examined for pure aluminum and pure copper.

  9. Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network.

    Science.gov (United States)

    Zilberman-Rudenko, Jevgenia; Sylman, Joanna L; Lakshmanan, Hari H S; McCarty, Owen J T; Maddala, Jeevan

    2017-02-01

    The reaction dynamics of a complex mixture of cells and proteins, such as blood, in branched circulatory networks within the human microvasculature or extravascular therapeutic devices such as extracorporeal oxygenation machine (ECMO) remains ill-defined. In this report we utilize a multi-bypass microfluidics ladder network design with dimensions mimicking venules to study patterns of blood platelet aggregation and fibrin formation under complex shear. Complex blood fluid dynamics within multi-bypass networks under flow were modeled using COMSOL. Red blood cells and platelets were assumed to be non-interacting spherical particles transported by the bulk fluid flow, and convection of the activated coagulation factor II, thrombin, was assumed to be governed by mass transfer. This model served as the basis for predicting formation of local shear rate gradients, stagnation points and recirculation zones as dictated by the bypass geometry. Based on the insights from these models, we were able to predict the patterns of blood clot formation at specific locations in the device. Our experimental data was then used to adjust the model to account for the dynamical presence of thrombus formation in the biorheology of blood flow. The model predictions were then compared to results from experiments using recalcified whole human blood. Microfluidic devices were coated with the extracellular matrix protein, fibrillar collagen, and the initiator of the extrinsic pathway of coagulation, tissue factor. Blood was perfused through the devices at a flow rate of 2 µL/min, translating to physiologically relevant initial shear rates of 300 and 700 s -1 for main channels and bypasses, respectively. Using fluorescent and light microscopy, we observed distinct flow and thrombus formation patterns near channel intersections at bypass points, within recirculation zones and at stagnation points. Findings from this proof-of-principle ladder network model suggest a specific correlation between

  10. Formation of Mixed-Ligand Complexes of Pd2+ with Nucleoside 5'-Monophosphates and Some Metal-Ion-Binding Nucleoside Surrogates

    Directory of Open Access Journals (Sweden)

    Oleg Golubev

    2014-10-01

    Full Text Available Formation of mixed-ligand Pd2+ complexes between canonical nucleoside 5'-monophosphates and five metal-ion-binding nucleoside analogs has been studied by 1H-NMR spectroscopy to test the ability of these nucleoside surrogates to discriminate between unmodified nucleobases by Pd2+-mediated base pairing. The nucleoside analogs studied included 2,6-bis(3,5-dimethylpyrazol-1-yl-, 2,6-bis(1-methylhydrazinyl- and 6-(3,5-dimethylpyrazol-1-yl-substituted 9-(β-d-ribofuranosylpurines 1–3, and 2,4-bis(3,5-dimethylpyrazol-1-yl- and 2,4-bis(1-methylhydrazinyl-substituted 5-(β-d-ribofuranosyl-pyrimidines 4–5. Among these, the purine derivatives 1-3 bound Pd2+ much more tightly than the pyrimidine derivatives 4, 5 despite apparently similar structures of the potential coordination sites. Compounds 1 and 2 formed markedly stable mixed-ligand Pd2+ complexes with UMP and GMP, UMP binding favored by 1 and GMP by 2. With 3, formation of mixed-ligand complexes was retarded by binding of two molecules of 3 to Pd2+.

  11. The influence of the formation pitching angle on the area for employing the KM-103 complex

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, A I; Teryanik, V I

    1982-01-01

    Mining sections in which the KM-103 powered complexes are used should be selected and planned on the basis of the actual pitching angle of the formation, and the anticipated vertical and lateral rock displacement in the workings. With the shapes and dimensions characteristic of galley cross-sections which are reinforced by arched 3 and 5-arm supports, and with the anticipated values of rock displacement, a maximum pitching angle exists, above which it is difficult to facilitate the drives of stope face conveyors. For arch-shaped galleys, which are reinforced by an arched 5-arm support, the maximum pitching angle of the formation is greater than in galleys which are reinforced by arched three-arm supports, with equal cross-sections even with large rock displacements. An increase in the cross-section of upwards of 13 square meters does not result in an increase in the maximum pitching angle of the formation due to the extension of the support roof timber. In the trapezoidal workings which are supported by the KPS-3 supports and are worked without employing roof blasting, the maximum pitching angle of the formation is 12 degrees. The thickness of the formation worked must be less than 1.1 meter.

  12. High-mass Star Formation and Its Initial Conditions

    Science.gov (United States)

    Zhang, C. P.

    2017-11-01

    In this thesis, we present four works on the infrared dark clouds, fragmentation and deuteration of compact and cold cores, hyper-compact (HC) HII regions, and infrared dust bubbles, respectively. They are not only the products of early high-mass star formation, but reflect different evolutionary sequences of high-mass star formation. (1) Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope, we obtained HCO^+, HNC, N_2^+, and C^{18}O emission in six IRDCs (infrared dark clouds), and study their dynamics, stability, temperature, and density. (2) Fragmentation at the earliest phases is an important process of massive star formation. Eight massive precluster clumps (G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71) were selected from the SCUBA (submillimetre Common-User Bolometer Array) 850 μm and 450 μm data. The VLA (Very Large Array) at 1.3 cm, PbBI at 3.5 mm and 1.3 mm, APEX (Atacama Pathfinder Experiment telescope) at 870 μm observations were followed up, and archival infrared data at 4.5 μm, 8.0 μm, 24 μm, and 70 μm were combined to study the fragmentation and evolution of these clumps. We explored the habitats of the massive clumps at large scale, cores/condensations at small scale, and the fragmentation process at different wavelengths. Star formation in these eight clumps may have been triggered by the UC (ultra-compact) HII regions nearby. (3) The formation of hyper-compact (HC) HII regions is an important stage in massive star formation. We present high angular resolution observations carried out with the SMA (Submillimeter Array) and the VLA (Very Large Array) toward the HC HII region G35.58-0.03. With the 1.3 mm SMA and 1.3 cm VLA, we detected a total of about 25 transitions of 8 different species and their isotopologues (CO, CH_3CN, SO_2, CH_3CCH, OCS, CS, H30α/38β, and NH_{3}). G35.58-0.03 consists of an HC HII core with electron temperature Te* ≥ 5500 K, emission measure EM ≈ 1.9×10^{9} pc

  13. Discovery of Multiseeded Multimode Formation of Embedded Clusters in the Rosette Molecular Complex

    Science.gov (United States)

    Li, Jin Zeng; Smith, Michael D.

    2005-02-01

    An investigation based on data from the spatially complete Two Micron All Sky Survey (2MASS) reveals that a remarkable burst of clustered star formation is taking place throughout the southeast quadrant of the Rosette Molecular Cloud. Compact clusters are forming in a multiseeded mode, in parallel and at various places. In addition, sparse aggregates of embedded young stars are extensively distributed. In this study we report the primary results and implications for high-mass and clustered star formation in giant molecular clouds. In particular, we incorporate for the first time the birth of medium- to low-mass stars into the scenario of sequential formation of OB clusters. Following the emergence of the young OB cluster NGC 2244, a variety of manifestations of forming clusters of medium to high mass appears in the vicinity of the swept-up layer of the H II region as well as farther into the molecular cloud. The embedded clusters appear to form in a structured manner, which suggests they follow tracks laid out by the decay of macroturbulence. We address the possible origins of the turbulence. This leads us to propose a tree model to interpret the neat spatial distribution of clusters within a large section of the Rosette complex. Prominent new-generation OB clusters are identified at the root of the tree pattern.

  14. A Low-Complexity Subgroup Formation with QoS-Aware for Enhancing Multicast Services in LTE Networks

    Science.gov (United States)

    Algharem, M.; Omar, M. H.; Rahmat, R. F.; Budiarto, R.

    2018-03-01

    The high demand of Multimedia services on in Long Term Evolution (LTE) and beyond networks forces the networks operators to find a solution that can handle the huge traffic. Along with this, subgroup formation techniques are introduced to overcome the limitations of the Conventional Multicast Scheme (CMS) by splitting the multicast users into several subgroups based on the users’ channels quality signal. However, finding the best subgroup configuration with low complexity is need more investigations. In this paper, an efficient and simple subgroup formation mechanisms are proposed. The proposed mechanisms take the transmitter MAC queue in account. The effectiveness of the proposed mechanisms is evaluated and compared with CMS in terms of throughput, fairness, delay, Block Error Rate (BLER).

  15. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD ({approx} +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT ({approx} -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  16. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD (∼ +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT (∼ -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  17. Formative assessment in an online learning environment to support flexible on-the-job learning in complex professional domains

    NARCIS (Netherlands)

    Tamara van Gog; Desirée Joosten-ten Brinke; F. J. Prins; Dominique Sluijsmans

    2010-01-01

    This article describes a blueprint for an online learning environment that is based on prominent instructional design and assessment theories for supporting learning in complex domains. The core of this environment consists of formative assessment tasks (i.e., assessment for learning) that center on

  18. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  19. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  20. Initiation of the microgene polymerization reaction with non-repetitive homo-duplexes

    International Nuclear Information System (INIS)

    Itsko, Mark; Zaritsky, Arieh; Rabinovitch, Avinoam; Ben-Dov, Eitan

    2008-01-01

    Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous. Initiation events with pairs of HDs using Real-Time PCR were more frequent at higher HD concentrations and slightly below the melting temperature. A process molecularity of about 3.1, calculated from the amplification efficiency and the difference in PCR cycles at which propagation was detected at varying HD concentrations, led to a simple mechanism for ID formation: the gap between two HDs is bridged by a third. Considering thermodynamic aspects of the presumed intermediate 'nucleation complex' can predict relative propensity for the process with other HDs

  1. Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi; Shang, Hsien [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Zhang, Qizhou, E-mail: cflee@asiaa.sinica.edu.tw [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-07-01

    HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanol (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.

  2. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH.

    Science.gov (United States)

    Warner, Thomas; Jalilehvand, Farideh

    2016-04-01

    Mercury(II) ions precipitate from aqueous cysteine (H 2 Cys) solutions containing H 2 Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S -HCys) 2 . In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S,N -Cys) 2 ] 2- complex dominating. With excess cysteine (H 2 Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S -Cys) 4 ] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) varied between 8 - 9 mM and 80 - 100 mM, respectively, with H 2 Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 - 8.8, at the pH at which the initial Hg( S -HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199 Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions ( C Hg(II) = 8 - 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess ( C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions ( C Hg(II) = 80 - 100 mM) with high cysteine excess ( C H2Cys > 0.9 M), tetrathiolate [Hg( S -cysteinate) 4 ] m -6 ( m = 0 - 4) complexes dominate in the pH range 7.3 - 7.8, with lower charge than for the [Hg( S -Cys) 4 ] 6- complex due to protonation of some ( m ) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.

  3. Cancer initiation and progression: an unsimplifiable complexity

    Directory of Open Access Journals (Sweden)

    Frezza Eldo E

    2006-10-01

    Full Text Available Abstract Background Cancer remains one of the most complex diseases affecting humans and, despite the impressive advances that have been made in molecular and cell biology, how cancer cells progress through carcinogenesis and acquire their metastatic ability is still widely debated. Conclusion There is no doubt that human carcinogenesis is a dynamic process that depends on a large number of variables and is regulated at multiple spatial and temporal scales. Viewing cancer as a system that is dynamically complex in time and space will, however, probably reveal more about its underlying behavioural characteristics. It is encouraging that mathematicians, biologists and clinicians continue to contribute together towards a common quantitative understanding of cancer complexity. This way of thinking may further help to clarify concepts, interpret new and old experimental data, indicate alternative experiments and categorize the acquired knowledge on the basis of the similarities and/or shared behaviours of very different tumours.

  4. SIMPL enhancement of tumor necrosis factor-α dependent p65-MED1 complex formation is required for mammalian hematopoietic stem and progenitor cell function.

    Directory of Open Access Journals (Sweden)

    Weina Zhao

    Full Text Available Significant insight into the signaling pathways leading to activation of the Rel transcription factor family, collectively termed NF-κB, has been gained. Less well understood is how subsets of NF-κB-dependent genes are regulated in a signal specific manner. The SIMPL protein (signaling molecule that interacts with mouse pelle-like kinase is required for full Tumor Necrosis Factor-α (TNFα induced NF-κB activity. We show that SIMPL is required for steady-state hematopoiesis and the expression of a subset of TNFα induced genes whose products regulate hematopoietic cell activity. To gain insight into the mechanism through which SIMPL modulates gene expression we focused on the Tnf gene, an immune response regulator required for steady-state hematopoiesis. In response to TNFα SIMPL localizes to the Tnf gene promoter where it modulates the initiation of Tnf gene transcription. SIMPL binding partners identified by mass spectrometry include proteins involved in transcription and the interaction between SIMPL and MED1 was characterized in more detail. In response to TNFα, SIMPL is found in p65-MED1 complexes where SIMPL enhances p65/MED1/SIMPL complex formation. Together our results indicate that SIMPL functions as a TNFα-dependent p65 co-activator by facilitating the recruitment of MED1 to p65 containing transcriptional complexes to control the expression of a subset of TNFα-induced genes.

  5. An AU-rich element in the 3{prime} untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuyun; Adams, C.C.; Usack, L. [Cornell Univ., Ithaca, NY (United States)] [and others

    1995-04-01

    In chloroplasts, the 3{prime} untranslated regions of most mRNAs contain a stem-loop-forming inverted repeat (IR) sequence that is required for mRNA stability and correct 3{prime}-end formation. The IR regions of several mRNAs are also known to bind chloroplast proteins, as judged from in vitro gel mobility shift and UV cross-linking assays, and these RNA-protein interactions may be involved in the regulation of chloroplast mRNA processing and/or stability. Here we describe in detail the RNA and protein components that are involved in 3{prime} IR-containing RNA (3{prime} IR-RNA)-protein complex formation for the spinach chloroplast petD gene, which encodes subunit IV of the cytochrome b{sub 6}/f complex. We show that the complex contains 55-, 41-, and 29-kDa RNA-binding proteins (ribonucleoproteins [RNPs]). These proteins together protect a 90-nucleotide segment of RNA from RNase T{sub 1} digestion; this RNA contains the IR and downstream flanking sequences. Competition experiments using 3{prime} IR-RNAs from the psbA or rbcL gene demonstrate that the RNPs have a strong specificity for the petD sequence. Site-directed mutagenesis was carried out to define the RNA sequence elements required for complex formation. These studies identified an 8-nucleotide AU-rich sequence downstream of the IR; mutations within this sequence had moderate to severe effects on RNA-protein complex formation. Although other similar sequences are present in the petD 3{prime} untranslated region, only a single copy, which we have termed box II, appears to be essential for in vivo protein binding. In addition, the IR itself is necessary for optimal complex formation. These two sequence elements together with an RNP complex may direct correct 3{prime}-end processing and/or influence the stability of petD mRNA in chloroplasts. 48 refs., 9 figs., 2 tabs.

  6. Comparative three-dimensional analysis of initial biofilm formation on three orthodontic bracket materials.

    Science.gov (United States)

    Dittmer, Marc Philipp; Hellemann, Carolina Fuchslocher; Grade, Sebastian; Heuer, Wieland; Stiesch, Meike; Schwestka-Polly, Rainer; Demling, Anton Phillip

    2015-04-10

    The purpose of the present study was to investigate and compare early biofilm formation on biomaterials, which are being used in contemporary fixed orthodontic treatment. This study comprised 10 healthy volunteers (5 females and 5 males) with a mean age of 27.3 +-3.7 years. Three slabs of different orthodontic materials (stainless steel, gold and ceramic) were placed in randomized order on a splint in the mandibular molar region. Splints were inserted intraorally for 48 h. Then the slabs were removed from the splints and the biofilms were stained with a two color fluorescence assay for bacterial viability (LIVE/DEAD BacLight-Bacterial Viability Kit 7012, Invitrogen, Mount Waverley, Australia). The quantitative biofilm formation was analyzed by using confocal laser scanning microscopy (CLSM). The biofilm coverage was 32.7 ± 37.7% on stainless steel surfaces, 59.5 ± 40.0% on gold surfaces and 56.8 ± 43.6% on ceramic surfaces. Statistical analysis showed significant differences in biofilm coverage between the tested materials (p=0.033). The Wilcoxon test demonstrated significantly lower biofilm coverage on steel compared to gold (p=0.011). Biofilm height on stainless steel surfaces was 4.0 ± 7.3 μm, on gold surfaces 6.0 ± 6.6 μm and on ceramic 6.5 ± 6.0 μm. The Friedman test revealed no significant differences between the tested materials (p=0.150). Pairwise comparison demonstrated significant differences between stainless steel and gold (p=0.047). Our results indicate that initial biofilm formation seemed to be less on stainless steel surfaces compared with other traditional materials in a short-term observation. Future studies should examine whether there is a difference in long-term biofilm accumulation between stainless steel, gold and ceramic brackets.

  7. Core Mediator structure at 3.4 Å extends model of transcription initiation complex.

    Science.gov (United States)

    Nozawa, Kayo; Schneider, Thomas R; Cramer, Patrick

    2017-05-11

    Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.

  8. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Yan, B.; Stantic, M.; Zobalová, Renata; Bezawork-Geleta, A.; Stapelberg, M.; Stursa, J.; Prokopová, Kateřina; Dong, L.; Neužil, Jiří

    2015-01-01

    Roč. 15, č. 401 (2015) ISSN 1471-2407 R&D Projects: GA MZd NT14078; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Tumour-initiating cells * Mitochondrially targeted vitamin E succinate * Complex II Subject RIV: FD - Oncology ; Hematology Impact factor: 3.265, year: 2015

  9. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  10. Papillae formation on trichome cell walls requires the function of the mediator complex subunit Med25.

    Science.gov (United States)

    Fornero, Christy; Suo, Bangxia; Zahde, Mais; Juveland, Katelyn; Kirik, Viktor

    2017-11-01

    Glassy Hair 1 (GLH1) gene that promotes papillae formation on trichome cell walls was identified as a subunit of the transcriptional mediator complex MED25. The MED25 gene is shown to be expressed in trichomes. The expression of the trichome development marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) is not affected in the glh1 mutant. Presented data suggest that Arabidopsis MED25 mediator component is likely involved in the transcription of genes promoting papillae deposition in trichomes. The plant cell wall plays an important role in communication, defense, organization and support. The importance of each of these functions varies by cell type. Specialized cells, such as Arabidopsis trichomes, exhibit distinct cell wall characteristics including papillae. To better understand the molecular processes important for papillae deposition on the cell wall surface, we identified the GLASSY HAIR 1 (GLH1) gene, which is necessary for papillae formation. We found that a splice-site mutation in the component of the transcriptional mediator complex MED25 gene is responsible for the near papillae-less phenotype of the glh1 mutant. The MED25 gene is expressed in trichomes. Reporters for trichome developmental marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) were not affected in the glh1 mutant. Collectively, the presented results show that MED25 is necessary for papillae formation on the cell wall surface of leaf trichomes and suggest that the Arabidopsis MED25 mediator component is likely involved in the transcription of a subset of genes that promote papillae deposition in trichomes.

  11. Complex Formation and Liquid-Liquid Extraction in the Niobium(V) - 2,4-Dihydroxythiophenol - Hydrophobic Amines System

    International Nuclear Information System (INIS)

    Zalov, A.Z.

    2015-01-01

    The formation and solvent extraction of new ion-association complexes between anionic chelat of niobium(V) with 2,4-dihydroxy-thio-phenol (DHTP) and hydrophobic amines (HAs). The HAs were aniline (An), N-methyl-aniline (MAn), N,N-dimethylaniline (DAn). The optimum conditions for the extraction of mixed ligand complexes (MLC) (organic solvent, extraction time, acidity of the aqueous phase, concentration of reagents), some key constants (association constant (β), extraction constant (Kex)) and analytical characteristics were determined. The molar absorptivities of MLC were calculated ε =(3.5-3.9) * 10/sup 4/ L mol /sup -1/ cm/sup -1/ . The Beer law was applicable in the range of 2.2-100 μg/mL. (author)

  12. The role of territorial marketing in the formation of Russian Far East social and economic development complex

    Directory of Open Access Journals (Sweden)

    Bacherikova M. L.

    2016-11-01

    Full Text Available the article describes those areas of marketing tools which used in the complex of measures on Far East development. The role of territory marketing in formation of conditions for social and economic development of Far East macroregion is determinated; proposals on marketing approach to territory management in order to increase its competitiveness and attractiveness are formulated.

  13. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    Science.gov (United States)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable

  14. THE ROLE OF EDUCATIONAL COMPLEXES IN THE IMPLEMENTATION OF THE PARTNERSHIP MODEL FORMATION OF THE NATIONAL QUALIFICATIONS FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Kristina V. Gileva

    2015-01-01

    Full Text Available The aim of the study is to define potential of modern educational complexes in the field of formation of national system of qualifications on the basis of interpretation of procedures changes in regulation of social and labour relations. Methods. The methods involve analysis, generalisation, ordering and a technique of modelling of processes.Results. The authors describe key positions of the theory of the continuous education that provides rapprochement of requirements of employers with quality of vocational training and the content of educational process in the branch educational institutions. The possible contribution of educational complexes to creation of national system of qualifications and professional standards is considered. In this connection various forms of partnership of the given complexes with public authorities, public structures, and also employers are described.Scientific novelty. The concept of business competence characterising ability of system of vocational training is offered to satisfy the requirement of a labour market by means of active integration of educational, innovative and labour processes.Practical significance. The presented model of interaction of educational complexes and subjects of a labour market can be realised by working out of professional standards, creation of the expert centers and the innovative platforms intended to realisation of advisory activity on the basis of high schools; and also organizational-methodical support of processes of professional certification system formation. According to authors, this model will help to co-ordinate the content of professional and Federal State Educational Standards (FSES. 

  15. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation

    Directory of Open Access Journals (Sweden)

    Mukerji Joya

    2012-06-01

    Full Text Available Abstract Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3. We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6, an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of

  16. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, Cé sar A.; Poater, Albert; Lé bl, Tomá š; Manzini, Simone; Slawin, Alexandra M. Z.; Cavallo, Luigi; Nolan, Steven P.

    2013-01-01

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  17. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  18. Study on initial stage of diesel spray formation. Effects of the condition inside the nozzle sac; Diesel funmu no shoki keisei katei ni kansuru kenkyu. Sac nai nenryo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, N.; Tsujimura, K. [Nissan Diesel Motor Co. Ltd., Saitama (Japan); Komori, M.

    1996-06-25

    To realize clean diesel exhaust, it is very important to clarify the atomization phenomena of the fuel spray. In this study, the initial stage of the atomization process of a diesel injection fuel spray was analyzed with a high-speed image converter camera under the conditions of atmospheric gas pressure and room temperature. As a result, it was found that the initial spray formation was greatly affected lay the condition inside the nozzle sac. In the case in which fuel existed in the sac, pin-like structure spray formation was observed at the initial injection stage. This phenomenon was not observed in the case in which no fuel was present in the sac, and a widely spread fuel spray formation was observed at the initial injection stage. The relatively low-speed fuel spray injected in the initial low-sac-pressure condition was pushed away by the subsequent fuel spray injected in the high-sac-pressure condition. 7 refs., 12 figs., 1 tab.

  19. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint

    International Nuclear Information System (INIS)

    Lamorena, Rheo B.; Jung, Sang-Guen; Bae, Gwi-Nam; Lee, Woojin

    2007-01-01

    The formation of secondary products during the ozone-initiated oxidations with biogenic VOCs emitted from natural paint was investigated in this study. Mass spectrometry and infrared spectroscopy measurements have shown that the major components of gas-phase chemicals emitted from natural paint are monoterpenes including α- and β-pinenes, camphene, p-cymene, and limonene. A significant formation of gaseous carbonyl products and nano-sized particles (4.4-168 nm) was observed in the presence of ozone. Carboxylic acids were also observed to form during the reactions (i.e. formic acid at 0.170 ppm and acetic acid at 0.260 ppm). The formation of particles increased as the volume of paint introduced into a reaction chamber increased. A secondary increase in the particle number concentration was observed after 440 min, which suggests further partitioning of oxidation products (i.e. carboxylic acids) into the particles previously existing in the reaction chamber. The growth of particles increased as the mean particle diameter and particle mass concentrations increased during the reaction. The experimental results obtained in this study may provide insight into the potential exposure of occupants to irritating chemical compounds formed during the oxidations of biogenic VOCs emitted from natural paint in indoor environments

  20. Starch-lipid inclusion complexes for aerogel formation

    Science.gov (United States)

    Recently we reported that aqueous slurries of starch can be excess steam jet-cooked and blended with aqueous solutions of fatty acid salts to produce inclusion complexes between amylose and the fatty acid salt. These complexes can be simply prepared on large scale using commercially available steam ...

  1. Constraints on the initial conditions of stellar formation from ISOCAM observations of dense cores seen in absorption

    International Nuclear Information System (INIS)

    Bacmann, Aurore

    1999-01-01

    Stars form in molecular clouds by gravitational collapse of small condensations called pre-stellar cores. This stage of the star formation process is still relatively unknown since these dense cores are deeply embedded within a thick cocoon of matter. The collapse, as well as the accretion phase depend on the structure of these objects. In order to constrain the initial conditions of star formation. We have carried out a study of the density structure of a vast sample of pre-stellar cores that we observed with the mid-infrared camera ISOCAM aboard the ISO satellite. As the cores are very dense and cold, they are seen in absorption against the diffuse mid-infrared background. This absorption method is highly interesting for our study since it is sensitive to the density structure in the outer parts of the cores. The study of these cores enabled us to confirm the presence of a flattening in their central parts, to show that their column density profiles were composed of a portion close to a NH_2 ∝ r"-"1 power-law, and that some of them presented an edge, i.e. that the slope in the outer parts of the profiles became steeper than NH_2 ∝ r"-"2. An implication of the presence of an edge is that the mass reservoir available for star formation in these cores is finite, supporting the idea that the stellar initial mass function is partly determined at a pre-stellar stage. Comparison of our results with various models of core structure shows that the column density profiles we obtained are consistent with ambipolar diffusion models of magnetically supported cores, although they require a strong background magnetic field which has up to now not been observed in these kinds of regions. (author) [fr

  2. A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the Fusarium graminearum Species Complex

    Directory of Open Access Journals (Sweden)

    Haruhisha Suga

    2016-12-01

    Full Text Available Members of the Fusarium graminearum species complex (Fg complex or FGSC are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022 was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.

  3. Theoretical study of the nucleophilic addition of oximes to the nitrile complexes trans-/cis-[ReCl4(NCCH3)2

    International Nuclear Information System (INIS)

    Klestova-Nadeeva, E. A.; Kuznetsov, M. L.; Dement'ev, A. I.

    2005-01-01

    The reaction of nucleophilic addition of oximes (HON=CRR 1 ) to organic nitriles coordinated in the rhenium complexes trans-/cis-[ReCl 4 (NCCH 3 ) 2 ] was theoretically studied by the Hartree-Fock and density functional theory (B3LYP) methods. The reaction mechanism involves (I) the initial change of the oxime conformation; (II) the formation of the orientation complex with the coordinated nitrile molecule, which transforms into a four-membered transition state; (III) the formation of the addition product in a less stable conformation; and (IV) the formation of the ultimate addition product. The calculations make it possible to interpret the activation of nitriles in terms of the activated complex theory as a result of stabilization of the transition state in going from the free to the coordinated nitrile [ru

  4. Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products.

    Science.gov (United States)

    Huang, Yu; Ho, Kin Fai; Ho, Steven Sai Hang; Lee, Shun Cheng; Yau, P S; Cheng, Yan

    2011-09-15

    The effect of air exchange rate (ACH), temperature (T), and relative humidity (RH) on the formation of indoor secondary organic aerosols (SOAs) through ozonolysis of biogenic organic compounds (BVOCs) emitted from floor cleaner was investigated in this study. The total particle count (with D(p) of 6-225 nm) was up to 1.2 × 10(3)#cm(-3) with ACH of 1.08 h(-1), and it became much more significant with ACH of 0.36 h(-1) (1.1 × 10(4)#cm(-3)). This suggests that a higher ventilation rate can effectively dilute indoor BVOCs, resulting in a less ultrafine particle formation. The total particle count increased when temperature changed from 15 to 23 °C but it decreased when the temperature further increased to 30 °C. It could be explained that high temperature restrained the condensation of formed semi-volatile compounds resulting in low yields of SOAs. When the RH was at 50% and 80%, SOA formation (1.1-1.2 × 10(4)#cm(-3)) was the more efficient compared with that at RH of 30% (5.9 × 10(3)#cm(-3)), suggesting higher RH facilitating the initial nucleation processes. Oxidation generated secondary carbonyl compounds were also quantified. Acetone was the most abundant carbonyl compound. The formation mechanisms of formaldehyde and acetone were proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. CENTRAL REGION COMPONENT1, a Novel Synaptonemal Complex Component, Is Essential for Meiotic Recombination Initiation in Rice[C][W

    Science.gov (United States)

    Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2013-01-01

    In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated CENTRAL REGION COMPONENT1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID RECEPTOR-INTERACTING PROTEIN13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13. PMID:23943860

  6. Contributions to the chemistry of highly concentrated electrolyte solutions. XXXIX. Investigation of Be/sup 2 +/ complex formation by the method of molar volumes

    Energy Technology Data Exchange (ETDEWEB)

    Jedinakova, V [Vysoka Skola Chemicko-Technologicka, Prague (Czechoslovakia). Katedra Technologie Jadernych Paliv a Radiochemie

    1974-01-01

    The formation of aquo- and acido-complexes of the Be/sup 2 +/ ion in aqueous solutions of strong electrolytes was studied by densimetry. In all the systems studied, HClO/sub 4/, HNO/sub 3/, NaNO/sub 3/, KOH, Ca(ClO/sub 4/)/sub 2/, CaCl/sub 2/, the overall coordination number 4 was confirmed for the complex forms of the Be/sup 2 +/ ion. If BeSO/sub 4/ is used as the differential addition in a solvent not forming complexes, dissociation of the sulfate proceeds under the formation of the aquo-complex (Be(H/sub 2/O)/sub 4/)/sup 2 +/. If beryllium perchlorate is used, the Be/sup 2 +/ ion remains in that form, in which it is added to the solution (i.e. the complex form (Be(H/sub 2/O)/sub 2/(ClO/sub 4/)/sub 2/)), in the whole concentration range of the applied isomolar series Ca(ClO/sub 4/)/sub 2/-CaCl/sub 2/, NaClO/sub 4/-NaBr, and NaClO/sub 4/-NaI.

  7. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  8. Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape

    Directory of Open Access Journals (Sweden)

    Gudrun Petzold

    2011-08-01

    Full Text Available Polyelectrolyte complexes (PECs were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene. Additionally, the n−/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS and atomic force microscopy (AFM. Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene. These findings could be proved by AFM. Fractal dimension (D, root mean square (RMS roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.

  9. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Shin

    2010-11-01

    Full Text Available Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/ (- testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/ (- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/ (- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/ (- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  10. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    Science.gov (United States)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  11. The effect of initiation feature and environment on fatigue crack formation and early propagation in aluminum zinc magnesium copper

    Science.gov (United States)

    Burns, James T.

    The current research provides insight into fatigue crack formation and progression in the poorly understood size regime that bridges safe-life and damage tolerance approaches; particular attention is given to the influences of corrosion-induced degradation and time-cycle dependent loading environment effects. Quantitative analysis of crack formation life (Ni), microstructurally small crack (database. Results show that fatigue crack formation involves a complex interaction of elastic stress concentration, due to a 3-dimensional macro-pit, coupled with local micro-feature (and constituent) induced plastic strain concentration. Such interactions cause high Ni variability, but, from an engineering perspective, a broadly corroded surface should contain an extreme group of features driving Ni to ˜0. At low-applied stresses, Ni consumes a significant portion of total life, which is well predicted by coupling elastic-plastic FEA with empirical low-cycle fatigue life models. All pristine and corroded da/dN were uniquely correlated using complex continuum stress intensity (K) and crack opening solutions which account for the stress concentrating formation feature. Multiple crack growth regimes were observed, typical of environment enhanced fatigue in Al alloys. Such behavior is not captured by prominent mechanics-based small crack models. Furthermore, neither local closure nor slip-based models captured the order of magnitude variability in da/dN attributed to microstructure. Low temperature loading produces an order of magnitude increase in Ni, and even larger reduction in da/dN, due to elimination of H-enhanced cracking by reduced external water vapor pressure, lower crack tip reaction rate (to produce atomic-H), and slower H diffusion. Engineering level modeling approaches are validated using these high fidelity experimental results, informing next generation prognosis methods for realistic airframe environments.

  12. Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers.

    Science.gov (United States)

    Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto; Watanabe, Sumiyo; Takemoto, Hiroyasu; Osada, Kensuke; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2016-03-01

    Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The influence of dissolved H2O content in supercritical carbon dioxide to the inclusion complexes formation of ketoprofen/β-cyclodextrin

    Science.gov (United States)

    Goenawan, Joshua; Trisanti, P. N.; Sumarno

    2015-12-01

    This work studies the relation between dissolved H2O content in supercritical carbon dioxide (SC-CO2) with the formation of ketoprofen (KP)/β-cyclodextrin(CD) inclusion complexes. The process involves a physical mixture of these two compounds into contact with the supercritical carbon dioxide which had been previously saturated with H2O over a certain duration. The pressure used for saturation process is 130 bar and saturation temperature was ranged between 30 °C to 50 °C. The inclusion process was achieved by keeping it for 2 hours at 160 bar and 200 bar with inclusion temperature of 50 °C. The results enable us to suggest explanations for the inclusion formation. The inclusion complexes can be formed by contacting the dissolved H2O in SC-CO2 to the physical mixture of KP and CD. An increase in the temperature of saturation process resulted in an increase of dissolved H2O content in the supercritical carbon dioxide. The increasing levels of this water soluble resulted an increase in the inclusion complexes that has been formed. The formation of inclusion complexes includes the water molecules enhancing the emptying of the CD cavities and being replaced by KP, towards a more stable energy state. The drug release used for analyzing the dissolution rate of the KP/CD complexes. The results vary from 79,85% to 99,98% after 45 minutes which is above the rate that has been assigned by Farmakope Indonesia at 70% dissolution rate for KP. The use of SC-CO2 offers a new methods for increasing the rate of dissolution of drugs that are hydrophobic such as KP. CO2 used as a supercritical fluid because of its relatively low cost, easily obtainable supercritical conditions, and lack of toxicity. The material samples were characterized by DSC and Spectrophotometer UV-vis technique.

  14. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation.

    Science.gov (United States)

    Schaffer, Jessica N; Norsworthy, Allison N; Sun, Tung-Tien; Pearson, Melanie M

    2016-04-19

    The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder.

  15. Studies on Ternary Complex Formation of U(VI)-salicylate by Using Time-resolved Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, H. R.; Park, K. K.; Kim, W. H.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Organic ligands containing carboxylic and phenolic functional groups naturally occur in groundwater environment, particularly in forms of polyelectrolytes such as humic and fulvic acids, from microbial degradation of biomass, e.g., plant and animal tissues. These ligands play important roles in dissolution and migration of actinide radionuclide species since they can form stable ternary actinide complexes with common inorganic ions like hydroxides and carbonates. Therefore, model ternary complexes of lanthanides and actinides have been targets of studies to understand their chemical behaviors under near-neutral pH groundwater conditions. Previous model carboxylic ligands include phthalates, maleic acids, or alpha- substituted carboxylic acids. However, majority of previous studies investigated binary systems or used potentiometric titration method that requires high ligand concentration in mM levels. Recently, highly sensitive time-resolved laserinduced fluorescence spectroscopy (TRLFS) has been used to investigate lower concentration (e.g., a few {mu}M levels) reactions of binary complexes between of ligands and metal ions. This technique provides information regarding electronic structures and complexation constants as well as fluorescence quenching mechanism. In the present study, we studied the U(VI)-OH-salicylate (SA) ternary complex formation at higher pH (> 4) via TRLF spectrum and UV-Vis absorbance measurement. Preliminary studies show that the fluorescence (FL) intensity of hydroxouranyl species at pH 4.5 decreases as SA concentration elevates in aqueous solution. Fluorescence quenching mechanism by SA is suggested based on FL intensity (I) and lifetime (tau) measurement via TRLFS

  16. Experimental study of the initial plasma formation stage in a linear theta pinch of inverted field

    International Nuclear Information System (INIS)

    Casin, G.C.; Alvarez, Ricardo; Rojkind, R.H.; Rodrigo, A.B.

    1986-01-01

    The initial stage of the plasma formation was studied in a linear theta pinch. Experiments were made to determine the machine operating conditions for good shot-to-shot reproducibility. Spectroscopic measurements of electron density and of electron and ion temperature were made afterwards to characterize the plasma at different stages of its heating process. The results obtained indicate that shot-to-shot reproducibility is strongly influenced by the presence of impurities and by the plasma preionization technique used. Under proper operating conditions, excellent reproducibility was observed. The measured values of the plasma parameters are compatible with those determined for similar machines. (Author) [es

  17. Formation and biochemical characterization of tube/pelle death domain complexes: critical regulators of postreceptor signaling by the Drosophila toll receptor.

    Science.gov (United States)

    Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J

    1999-09-07

    In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.

  18. Initial experience with xenograft bioconduit for the treatment of complex prosthetic valve endocarditis.

    Science.gov (United States)

    Roubelakis, Apostolos; Karangelis, Dimos; Sadeque, Syed; Yanagawa, Bobby; Modi, Amit; Barlow, Clifford W; Livesey, Steven A; Ohri, Sunil K

    2017-07-01

    The treatment of complex prosthetic valve endocarditis (PVE) with aortic root abscess remains a surgical challenge. Several studies support the use of biological tissues to minimize the risk of recurrent infection. We present our initial surgical experience with the use of an aortic xenograft conduit for aortic valve and root replacement. Between October 2013 and August 2015, 15 xenograft bioconduits were implanted for complex PVE with abscess (13.3% female). In 6 patients, concomitant procedures were performed: coronary bypass (n=1), mitral valve replacement (n=5) and tricuspid annuloplasty (n=1). The mean age at operation was 60.3±15.5 years. The mean Logistic European system for cardiac operating risk evaluation (EuroSCORE) was 46.6±23.6. The median follow-up time was 607±328 days (range: 172-1074 days). There were two in-hospital deaths (14.3% mortality), two strokes (14.3%) and seven patients required permanent pacemaker insertion for conduction abnormalities (46.7%). The mean length of hospital stay was 26 days. At pre-discharge echocardiography, the conduit mean gradient was 9.3±3.3mmHg and there was either none (n=6), trace (n=6) or mild aortic insufficiency (n=1). There was no incidence of mid-term death, prosthesis-related complications or recurrent endocarditis. Xenograft bioconduits may be safe and effective for aortic valve and root replacement for complex PVE with aortic root abscess. Although excess early mortality reflects the complexity of the patient population, there was good valve hemodynamics, with no incidence of recurrent endocarditis or prosthesis failure in the mid-term. Our data support the continued use and evaluation of this biological prosthesis in this high-risk patient cohort.

  19. Studying the association complex formation of atomoxetine and fluvoxamine with eosin Y and its application in their fluorimetric determination

    Science.gov (United States)

    Derayea, Sayed M.; Omar, Mahmoud A.; Abu-hassan, Ahmed A.

    2018-03-01

    A simple, sensitive and non-extractive spectrofluorimetric method has been developed and validated for the determination of two psychoanaleptic drugs, atomoxetine and fluvoxamine, in pure forms and pharmaceutical dosage forms. The proposed method is based on the formation of binary complexes between eosin Y and the studied drugs in the presence of a Teorell-Stenhagen buffer. The quenching of the native fluorescence of eosin Y due to complex formation with the studied drugs was measured spectrofluorimetrically at 545 nm after excitation at 302 nm. At the optimum reaction conditions, the fluorescence quenching values (ΔF) and concentrations were rectilinear over the concentration ranges of 0.2-2.2 and 0.3-2.2 µg ml-1 for atomoxetine and fluvoxamine, respectively. The developed method was successfully applied for the determination of the studied drugs in their pharmaceutical formulations with average percentage recoveries of 100.13 ± 0.66 and 99.69 ± 0.44 for atomoxetine and fluvoxamine, respectively (n = 5), without interference from common excipients.

  20. Characterization of aspartame-cyclodextrin complexation.

    Science.gov (United States)

    Sohajda, Tamás; Béni, Szabolcs; Varga, Erzsébet; Iványi, Róbert; Rácz, Akos; Szente, Lajos; Noszál, Béla

    2009-12-05

    The inclusion complex formation of aspartame (guest) and various cyclodextrins (host) were examined using 1H NMR titration and capillary electrophoresis. Initially the protonation constants of aspartame were determined by NMR-pH titration with in situ pH measurement to yield log K1=7.83 and log K2=2.96. Based on these values the stability of the complexes formed by aspartame and 21 different cyclodextrins (CDs) were studied at pH 2.5, pH 5.2 and pH 9.0 values where aspartame exists predominantly in monocationic, zwitterionic and monoanionic form, respectively. The host cyclodextrin derivatives differed in various sidechains, degree of substitution, charge and purity so that the effect of these properties could be examined systematically. Concerning size, the seven-membered beta-cyclodextrin and its derivatives have been found to be the most suitable host molecules for complexation. Highest stability was observed for the acetylated derivative with a degree of substitution of 7. The purity of the CD enhanced the complexation while the degree of substitution did not provide obvious consequences. Finally, geometric aspects of the inclusion complex were assessed by 2D ROESY NMR and molecular modelling which proved that the guest's aromatic ring enters the wider end of the host cavity.

  1. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.

    2014-08-11

    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  2. X-ray crystallography, electrochemistry, spectral and thermal analysis of some tetradentate schiff base complexes and formation constant measurements

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Savarypour, N.; Dušek, Michal; Eigner, Václav

    2017-01-01

    Roč. 47, č. 11 (2017), s. 1501-1508 ISSN 2470-1556 R&D Projects: GA ČR(CZ) GA15-12653S Institutional support: RVO:68378271 Keywords : X-ray crystallography * transition metal Schiff base complexes * thermogravimetry * electrochemistry * formation constant measurements Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  3. Organizational-economic model of formation of socio-commercial multifunctional complex in the construction of high-rise buildings

    Science.gov (United States)

    Kirillova, Ariadna; Prytkova, Oksana O.

    2018-03-01

    The article is devoted to the features of the formation of the organizational and economic model of the construction of a socio-commercial multifunctional complex for high-rise construction. Authors have given examples of high-altitude multifunctional complexes in Moscow, analyzed the advantages and disadvantages in the implementation of multifunctional complexes, stressed the need for a holistic strategic approach, allowing to take into account the prospects for the development of the city and the creation of a comfortable living environment. Based on the analysis of multifunctional complexes features, a matrix of SWOT analysis was compiled. For the development of cities and improving the quality of life of the population, it is proposed to implement a new type of multifunctional complexes of a joint social and commercial direction, including, along with the implementation of office areas - schools, polyclinics, various sports facilities and cultural and leisure centers (theatrical, dance, studio, etc.). The approach proposed in the article for developing the model is based on a comparative evaluation of the multifunctional complex project of a social and commercial direction implemented at the expense of public-private partnership in the form of a concession agreement and a commercial multifunctional complex being built at the expense of the investor. It has been proved by calculations that the obtained indicators satisfy the conditions of expediency of the proposed organizational-economic model and the project of the social and commercial multifunctional complex is effective.

  4. Organizational-economic model of formation of socio-commercial multifunctional complex in the construction of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Kirillova Ariadna

    2018-01-01

    Full Text Available The article is devoted to the features of the formation of the organizational and economic model of the construction of a socio-commercial multifunctional complex for high-rise construction. Authors have given examples of high-altitude multifunctional complexes in Moscow, analyzed the advantages and disadvantages in the implementation of multifunctional complexes, stressed the need for a holistic strategic approach, allowing to take into account the prospects for the development of the city and the creation of a comfortable living environment. Based on the analysis of multifunctional complexes features, a matrix of SWOT analysis was compiled. For the development of cities and improving the quality of life of the population, it is proposed to implement a new type of multifunctional complexes of a joint social and commercial direction, including, along with the implementation of office areas - schools, polyclinics, various sports facilities and cultural and leisure centers (theatrical, dance, studio, etc.. The approach proposed in the article for developing the model is based on a comparative evaluation of the multifunctional complex project of a social and commercial direction implemented at the expense of public-private partnership in the form of a concession agreement and a commercial multifunctional complex being built at the expense of the investor. It has been proved by calculations that the obtained indicators satisfy the conditions of expediency of the proposed organizational-economic model and the project of the social and commercial multifunctional complex is effective.

  5. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    Science.gov (United States)

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols.

  6. Spectrophotometric Determination of Gemifloxacin Mesylate in Pharmaceutical Formulations Through Ion-Pair Complex Formation

    Directory of Open Access Journals (Sweden)

    Marothu Vamsi Krishna

    2008-01-01

    Full Text Available Four simple and sensitive ion-pairing spectrophotometric methods have been described for the assay of gemifloxacin mesylate (GFX either in pure form or in pharmaceutical formulations. The developed methods involve formation of colored chloroform extractable ion-pair complexes of the drug with safranin O (SFN O and methylene blue (MB in basic medium; Napthol blue 12BR (NB 12BR and azocaramine G (AG in acidic medium. The extracted complexes showed absorbance maxima at 525, 650, 620 and 540 nm for SFN O, MB, NB 12BR and AG, respectively.Beer's law is obeyed in the concentration ranges 3-15, 4-20, 2-10 and 2-10 μg/mL with molar absorptivity of 2.81 × 104, 2.20 x 104, 4.02 × 104 and 4.15 × 104 L mole−1 cm−1 and relative standard deviation of 0.077, 0.104, 0.080 and 0.103% for SFN O, MB, NB 12BR and AG, respectively. These methods have been successfully applied for the assay of drug in pharmaceutical formulations. No interference was observed from common pharmaceutical adjuvants. Results of analysis were validated statistically and through recovery studies.

  7. Chemical pathways for the formation of ammonia in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

  8. Chemical pathways for the formation of ammonia in Hanford wastes

    International Nuclear Information System (INIS)

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence

  9. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Fadeeva, V.I.; Tikhomirova, T.I.

    1982-01-01

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H 2 Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H 2 Sal-heterocyclic amine system

  10. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation.

    Science.gov (United States)

    Ishida, Akihiko; Yamada, Yasuko; Kamidate, Tamio

    2008-11-01

    In hygiene management, recently there has been a significant need for screening methods for microbial contamination by visual observation or with commonly used colorimetric apparatus. The amount of adenosine triphosphate (ATP) can serve as the index of a microorganism. This paper describes the development of a colorimetric method for the assay of ATP, using enzymatic cycling and Fe(III)-xylenol orange (XO) complex formation. The color characteristics of the Fe(III)-XO complexes, which show a distinct color change from yellow to purple, assist the visual observation in screening work. In this method, a trace amount of ATP was converted to pyruvate, which was further amplified exponentially with coupled enzymatic reactions. Eventually, pyruvate was converted to the Fe(III)-XO complexes through pyruvate oxidase reaction and Fe(II) oxidation. As the assay result, yellow or purple color was observed: A yellow color indicates that the ATP concentration is lower than the criterion of the test, and a purple color indicates that the ATP concentration is higher than the criterion. The method was applied to the assay of ATP extracted from Escherichia coli cells added to cow milk.

  11. Teacher formation related to socio-scientific issues: complexity, contributions and limitations of an educational practice

    Directory of Open Access Journals (Sweden)

    Mariuce Campos de Moraes

    2015-12-01

    Full Text Available This reflection refers to teacher formation related to socio-scientific issues. Whereas such matters take into account the impact of scientific development in society, including ethical aspects and encompass dilemmas involving a wide range of prospects for its resolution, we propose analysis of the complexity that is inherent in their teaching. Thus, we aimed to analyze different spaces and teaching time that produce and are produced in close linkage between theory and practice, as well as their contributions and limitations. The study required a dynamic conversation system that led to the analysis indicators. The issue of sustainability was shown to be feasible for educational planning as cover technical and scientific knowledge, ethical, social and economic pressures. The collective production allowed understand arguments and reflective-creative processes. The lived relations in schools has accompanied and limited the ideas expressed on the socio-scientific issues. We understand that the simultaneity of research and reflection in the sociocultural context has strengthened teacher formation.

  12. Dimerisation, rhodium complex formation and rearrangements of N-heterocyclic carbenes of indazoles

    Directory of Open Access Journals (Sweden)

    Zong Guan

    2014-04-01

    Full Text Available Deprotonation of indazolium salts at low temperatures gives N-heterocyclic carbenes of indazoles (indazol-3-ylidenes which can be trapped as rhodium complexes (X-ray analysis. In the absence of Rh, the indazol-3-ylidenes spontaneously dimerize under ring cleavage of one of the N,N-bonds and ring closure to an indazole–indole spiro compound which possesses an exocyclic imine group. The E/Z isomers of the imines can be separated by column chromatography when methanol is used as eluent. We present results of a single crystal X-ray analysis of one of the E-isomers, which equilibrate in solution as well as in the solid state. Heating of the indazole–indole spiro compounds results in the formation of quinazolines by a ring-cleavage/ring-closure sequence (X-ray analysis. Results of DFT calculations are presented.

  13. Thermodynamics of inclusion complex formation of β-cyclodextrin with a variety of surfactants differing in the nature of headgroup

    International Nuclear Information System (INIS)

    Benkő, Mária; Király, Zoltán

    2012-01-01

    Highlights: ► Inclusion complexation of β-cyclodextrins with various surfactants. ► Thermodynamic parameters determined by titration microcalorimetry. ► Stoichiometry of complexation is 1:1. ► The binding constant decreases linearly with increasing temperature. ► Enthalpy–entropy compensation is independent of the nature of the headgroup. - Abstract: The inclusion complexation of β-cyclodextrin with various surfactants, possessing the same alkyl chain length but differing in the hydrophilic headgroup, was investigated by isothermal titration microcalorimetry. Sodium dodecyl sulfate, sodium dodecyl sulfonate, dodecyltrimethylammonium bromide and dodecyl(dimethyl)amine oxide were investigated. The major aim of this study was to elucidate the effects of temperature and the nature of the headgroup on the complex formation. Thermometric titrations were effected between the temperatures (288 and 348) K. The results provided the stoichiometry, the equilibrium constant and the reaction enthalpy of complexation. Changes in Gibbs energy, entropy and van’t Hoff enthalpy were additionally calculated.

  14. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  15. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  16. Role of stem cells in tumor initiation, metastasis formation and their use in cancer therapy

    International Nuclear Information System (INIS)

    Altaner, C.; Altanerova, V.

    2010-01-01

    This review considers recent advances in the stem cell field focusing on the challenges and opportunities for their use in clinical practice. Various kinds of stem cells and their roles in the human organism are in the review described. Attention is given to the role of mesenchymal stem cells as a potential tool in regenerative medicine. The origin and consequences of existence of tumor-initiating cells known as cancer stem cells is discussed also in context of metastasis formation. It seems that tumor-initiating cells might be responsible for resistance to many conventional cancer therapies, which might explain the limitations of these therapeutic modalities. Furthermore, the review focuses to tumor homing property of adult mesenchymal (stromal) stem cells. The feasibility of mesenchymal stem cells isolation from human adipose tissue, their genetic modifications with suicide genes together with ability to find tumor in the organism make them an attractive vehicle for cancer therapy without systemic toxicity. Published achievements from our laboratory in stem cell-based gene cancer therapy are shortly summarized. Generally, it is believed that the stem cell therapies might be ideal future treatment modality for inherited, degenerative diseases and in curing human malignancies as well. (author)

  17. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties

    Science.gov (United States)

    Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2014-05-01

    interesting spin configuration. The center metal atom, including a lanthanoid metal of Tb, tends to be 3+ cation, while the Pc ligand to be 2- anion. This realizes two-spin system, in which spins from 4f electrons and π radical coexist. Though the spins of 4f orbitals of those molecules have been studied, the importance of the π radicals has been highlighted recently from the measurement of electronic conductance properties of these molecules. In this article, recent researches on multi-decker Pc molecules are reviewed. The manuscript is organized with groups of chapters as follows: (1) Film formation, (2) Spin of TbPc2 film and Kondo resonance observation, (3) Rotation of double-decker Pc complex and chemical modification for spin control, (4) Device formation using double-decker Pc complex.

  18. Structural analysis of the Rubjerg Knude Glaciotectonic Complex, Vendsyssel, Northern Denmark

    Directory of Open Access Journals (Sweden)

    Pedersen, Stig A. Schack

    2005-12-01

    and slump-sheets constituting parts of the Lønstrup Klint Formation were derived from the tips of up-thrusted thrust sheets and slumped into the basins. Mud diapirs are a prominent element in the thrust-fault complex, resulting from mud mobilisation mainly at hanging-wallflats and ramps.Shortening during thrust-fault deformation has been calculated as 50%. Only about 11% of the initial stratigraphic units subjected to thrust faulting has been lost due to erosion. The thrust-fault deformation was caused by gravity spreading of an advancing ice sheet. Overpressured mud-fluid played an important role in stress transmission. The average velocity of thrust-fault displacement is estimated at 2 m per year, which led to compression of a 12 kmstretch of flat-lying sediments, c. 40 m in thickness, into a thrust-fault complex 6 km in length. The thrust-fault complex is truncated by a glaciotectonic unconformity, formed when the advancing ice sheet finally overrode the complex. When this ice sheet melted away, a hilland-hole pair was formed, and meltwater deposits derived from a new ice-advance (NE-Ice filled the depression. The NE-Ice overran the complex during its advance to the main stationary line situated in the North Sea. When this ice in turn melted away (c. 19 000 – 15 000 B.P., the glacial landscape was draped by arctic marine deposits of the Vendsyssel Formation (new formation defined herein.

  19. Mediator structure and rearrangements required for holoenzyme formation.

    Science.gov (United States)

    Tsai, Kuang-Lei; Yu, Xiaodi; Gopalan, Sneha; Chao, Ti-Chun; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Murakami, Kenji; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2017-04-13

    The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.

  20. ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Korea 34055 (Korea, Republic of); Lacy, John [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München (Germany); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Garay, Guido; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Zhu, Qingfeng [Astronomy Department, University of Science and Technology, Chinese Academy of Sciences, Hefei 210008 (China); Tatematsu, Ken’ichi; Hirota, Tomoya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ren, Zhiyuan; Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru; Su, Yu-Nung, E-mail: liutiepku@gmail.com [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2017-11-01

    Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagram of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.

  1. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  2. Complex formation in the system uranium(VI) - alpha-substituted carboxylic acids studied by TRLFS. Pt. III. Alpha-aminoisobutyric acid at pH 4

    International Nuclear Information System (INIS)

    Moll, H.; Geipel, G.; Bernhard, G.; Fanghaenel, Th.; Grenthe, I.

    2002-01-01

    At higher ligand concentrations a 1:2 complex between UO 2 2+ and α-aminoisobutyric acid was observed at pH 4. Fluorescence lifetimes and spectra were obtained for UO 2 [NH 3 C(CH 3 ) 2 COO] 2 2+ . The complex formation constant was found to be log β 1:2 = 2.07±0.25. (orig.)

  3. Characterization of active reverse transcriptase and nucleoprotein complexes of the yeast retrotransposon Ty3 in vitro.

    Science.gov (United States)

    Cristofari, G; Gabus, C; Ficheux, D; Bona, M; Le Grice, S F; Darlix, J L

    1999-12-17

    Human immunodeficiency virus (HIV) and the distantly related yeast Ty3 retrotransposon encode reverse transcriptase (RT) and a nucleic acid-binding protein designated nucleocapsid protein (NCp) with either one or two zinc fingers, required for HIV-1 replication and Ty3 transposition, respectively. In vitro binding of HIV-1 NCp7 to viral 5' RNA and primer tRNA(3)(Lys) catalyzes formation of nucleoprotein complexes resembling the virion nucleocapsid. Nucleocapsid complex formation functions in viral RNA dimerization and tRNA annealing to the primer binding site (PBS). RT is recruited in these nucleoprotein complexes and synthesizes minus-strand cDNA initiated at the PBS. Recent results on yeast Ty3 have shown that the homologous NCp9 promotes annealing of primer tRNA(i)(Met) to a 5'-3' bipartite PBS, allowing RNA:tRNA dimer formation and initiation of cDNA synthesis at the 5' PBS (). To compare specific cDNA synthesis in a retrotransposon and HIV-1, we have established a Ty3 model system comprising Ty3 RNA with the 5'-3' PBS, primer tRNA(i)(Met), NCp9, and for the first time, highly purified Ty3 RT. Here we report that Ty3 RT is as active as retroviral HIV-1 or murine leukemia virus RT using a synthetic template-primer system. Moreover, and in contrast to what was found with retroviral RTs, retrotransposon Ty3 RT was unable to direct cDNA synthesis by self-priming. We also show that Ty3 nucleoprotein complexes were formed in vitro and that the N terminus of NCp9, but not the zinc finger, is required for complex formation, tRNA annealing to the PBS, RNA dimerization, and primer tRNA-directed cDNA synthesis by Ty3 RT. These results indicate that NCp9 chaperones bona fide cDNA synthesis by RT in the yeast Ty3 retrotransposon, as illustrated for NCp7 in HIV-1, reinforcing the notion that Ty3 NCp9 is an ancestor of HIV-1 NCp7.

  4. Sm-Nd age of the Stillwater complex and the mantle evolution curve for neodymium

    International Nuclear Information System (INIS)

    DePaolo, D.J.; Wasserburg, G.J.

    1979-01-01

    An internal isochron determined for a gabbro from the Stillwater complex by the Sm-Nd method yields a precise age of 2701 +- 8 Myr and initial 143 Nd/ 144 Nd 0.508248 +- 12. The initial is close to the CHUR evolution curve but clearly displaced below it by epsilonsub(Nd) = 2.8 +- 0.2. A spectrum of total rocks in the Stillwater complex ranging from anorthosite to pyroxenite were found to lie on the same isochron to within experimental error indicating the same age and initial. These data demonstrate that some ancient mantle-derived rocks have initial 143 Nd/ 144 Nd which deviate substantially from the CHUR evolution curve at the time of their formation. This implies that there was early layering in the mantle with substantial REE fractionation (approximately 6 to 12% Nd/Sm enrichment) or that the Stillwater complex was highly contaminated with REE from much older continental crust during emplacement. The results show the necessity of high-precision ages and initial 143 Nd/ 144 Nd values in order to properly describe REE fractionation in the mantle. While the Sm-Nd age results show no indication of any irregularities, we have confirmed that the Rb-SR data for the Stillwater are highly disturbed. This comparison indicates that the Sm-Nd parent-daughter system may be much less susceptible to element redistribution during metamorphism, therefore permitting wide application of this technique to rocks of complex histories. (author)

  5. New insights on the spectrophotometric determination of melatonin pKa values and melatonin-βCD inclusion complex formation constant

    Science.gov (United States)

    Zafra-Roldán, A.; Corona-Avendaño, S.; Montes-Sánchez, R.; Palomar-Pardavé, M.; Romero-Romo, M.; Ramírez-Silva, M. T.

    2018-02-01

    Using UV-Vis spectrophotometry a stability study of melatonin at different pH values was done in aqueous media, finding that at acidic pH melatonin is unstable when interacting with the environment, however it becomes stable protecting it from light and oxygen. From the UV-Vis spectra and SQUAD software, melatonin pKa values, in a completely protected aqueous medium, were estimated as 5.777 ± 0.011 and 10.201 ± 0.024. Using the same techniques, the melatonin and β-cyclodextrin inclusion complex formation constants were assessed at pH 3, 7 and 11.5, giving the values of log β = (3.07 ± 0.06), (2.94 ± 0.01) and (3.07 ± 0.06) M- 1, respectively. From the global acidity formation constants and the complexes' formation constants, the molar fractions were determined for each species of MT and MT - βCD, to build the molar fraction-[βCD]-pH 3D diagram and the molar fraction-pH 2D diagrams, where it was possible to observe the predominance of the MT species with and without βCD. A voltammetric study at pH 3, allowed obtaining a value of log β = (3.15 ± 0.01) M- 1, which corroborates that obtained through UV-Vis spectrophotometry, supporting strongly the rationale behind using simple, straightforward techniques.

  6. A model of frontal polymerization using complex initiation

    Directory of Open Access Journals (Sweden)

    P. M. Goldfeder

    1999-01-01

    Full Text Available Frontal polymerization is a process in which a spatially localized reaction zone propagates into a monomer, converting it into a polymer. In the simplest case of free-radical polymerization, a mixture of monomer and initiator is placed in a test tube. A reaction is then initiated at one end of the tube. Over time, a self-sustained thermal wave, in which chemical conversion occurs, is produced. This phenomenon is possible because of the highly exothermic nature of the polymerization reactions.

  7. Cooperativity of complex salt bridges

    OpenAIRE

    Gvritishvili, Anzor G.; Gribenko, Alexey V.; Makhatadze, George I.

    2008-01-01

    The energetic contribution of complex salt bridges, in which one charged residue (anchor residue) forms salt bridges with two or more residues simultaneously, has been suggested to have importance for protein stability. Detailed analysis of the net energetics of complex salt bridge formation using double- and triple-mutant cycle analysis revealed conflicting results. In two cases, it was shown that complex salt bridge formation is cooperative, i.e., the net strength of the complex salt bridge...

  8. Formation and annealing of metastable (interstitial oxygen)-(interstitial carbon) complexes in n- and p-type silicon

    CERN Document Server

    Makarenko, L F; Lastovskii, S B; Murin, L I; Moll, M; Pintilie, I

    2014-01-01

    It is shown experimentally that, in contrast to the stable configuration of (interstitial carbon)-(interstitial oxygen) complexes (CiOi), the corresponding metastable configuration (CiOi{*}) cannot be found in n-Si based structures by the method of capacitance spectroscopy. The rates of transformation CiOi{*} -> CiOi are practically the same for both n- and p-Si with a concentration of charge carriers of no higher than 10(13) cm(-3). It is established that the probabilities of the simultaneous formation of stable and metastable configurations of the complex under study in the case of the addition of an atom of interstitial carbon to an atom of interstitial oxygen is close to 50\\%. This is caused by the orientation dependence of the interaction potential of an atom of interstitial oxygen with an interstitial carbon atom, which diffuses to this oxygen atom.

  9. Template-directed formation of functional complex metal-oxide nanostructures by combination of sol-gel processing and spin coating

    International Nuclear Information System (INIS)

    Choi, Y.C.; Kim, J.; Bu, S.D.

    2006-01-01

    We report the template-based formation of functional complex metal-oxide nanostructures by a combination of sol-gel processing and spin coating. This method employs the spin-coating of a sol-gel solution into an anodic aluminum oxide membrane (SSAM). Various metal-oxide nanowires and nanotubes with a high aspect-ratio were prepared. The aspect-ratios of the PbO 2 nanowires and Pb(Zr 0.52 Ti 0.48 )O 3 nanowires were about 300 and 400, respectively, and their diameters were about 50 nm. The fabricated PbTiO 3 nanotubes have a relatively constant wall thickness of about 20 nm with an outer diameter of about 60 nm. The deposition time for all of the fabricated metal-oxide nanowires and nanotubes is less than 120 s, which is far shorter than those required in both the sol-gel dipping and sol-gel electrophoretic methods. These results indicate that the SSAM method can be a versatile pathway to prepare functional complex metal-oxide nanowires and nanotubes with a high aspect-ratio. The possible formation process for the one-dimensional nanostructures by SSAM is discussed

  10. Basal membrane complex architecture is disrupted during posterior subcapsular cataract formation in Royal College of Surgeons rats

    Science.gov (United States)

    Joy, Anita

    2014-01-01

    Purpose Previous studies detailing the development of posterior subcapsular cataracts (PSC) in Royal College of Surgeons (RCS) rats have shown that aberrant fiber-end migration underlies the structural compromise. This investigation was conducted to examine the distribution of select basal membrane complex (BMC) components and to assess the intravitreal levels of specific cytokines during PSC formation. Methods Lenses from 52 RCS dystrophic rats (RCS/Lav) and 28 genetically matched control animals (RCS-rdy+/Lav) from 2 to 8 weeks old were used. After enucleation, vitreous was collected for eventual cytokine level analyses; lenses were then removed and processed for immunocytochemical localization of actin, cadherin, β integrin, vinculin, and cell nuclei. Results At 2–3 weeks postnatal, dystrophic lenses showed normal BMC distribution of actin, cadherin, and vinculin; however β integrin distribution was altered as compared to controls. By 4–6 weeks of age, F-actin was visible as bright foci arranged in a “rosette” pattern around fiber-end profiles. Concurrently, vinculin was rearranged into a diffuse pattern within the BMC. Cadherin delineated the fiber ends in dystrophic lenses until 5 weeks postnatal, after which it displayed diffuse cytoplasmic staining with more definitive labeling at the BMC periphery. β integrin was initially distributed as punctuate spots at 2–3 weeks postnatal; however, by 4–6 weeks it was co-localized with F-actin around the periphery of fiber ends. The distribution of F-actin, cadherin, and β integrin components did not undergo further changes after 6 weeks of age; however, vinculin was present predominantly at the periphery of the BMC in 7–8-week-old dystrophic lenses. Intravitreal cytokine levels were assessed for interleukin (IL)-1α, IL-4, IL-6, IL-8, tumor necrosis factor (TNF), and interferon (IFN)-γ. Levels of IL-1α, IL-4, TNF, and IFN-γ demonstrated a similar pattern, with concentrations increasing from 2 to 6

  11. Cloud fluid compression and softening in spiral arms and the formation of giant molecular cloud complexes

    International Nuclear Information System (INIS)

    Cowie, L.L.

    1981-01-01

    In this, the second paper of a series on the galactodynamics of the cloudy interstellar medium, we consider the response of such a gas to a forcing potential in the tight-winding density wave theory. The cloud fluid is treated in the hydrodynamic limit with an equation of state which softens at high densities. It is shown that in the inner regions of the galaxy, cooling of the cloud fluid in the arms can result in gravitational instability and the formation of large bound complexes of clouds which we identify with the giant molecular clouds (GMCs). Masses dimensions, distributions, and scale heights of the GMCs are predicted by the theory. It is suggested that the interstellar gas density in the disk is regulated by the gravitational instability mechanism in the arms which siphons material into star formation. Implications for the evolution of individual GMCs and for galactic morphology are discussed

  12. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  13. Studying the association complex formation of atomoxetine and fluvoxamine with eosin Y and its application in their fluorimetric determination.

    Science.gov (United States)

    Derayea, Sayed M; Omar, Mahmoud A; Abu-Hassan, Ahmed A

    2018-03-01

    A simple, sensitive and non-extractive spectrofluorimetric method has been developed and validated for the determination of two psychoanaleptic drugs, atomoxetine and fluvoxamine, in pure forms and pharmaceutical dosage forms. The proposed method is based on the formation of binary complexes between eosin Y and the studied drugs in the presence of a Teorell-Stenhagen buffer. The quenching of the native fluorescence of eosin Y due to complex formation with the studied drugs was measured spectrofluorimetrically at 545 nm after excitation at 302 nm. At the optimum reaction conditions, the fluorescence quenching values (Δ F ) and concentrations were rectilinear over the concentration ranges of 0.2-2.2 and 0.3-2.2 µg ml -1 for atomoxetine and fluvoxamine, respectively. The developed method was successfully applied for the determination of the studied drugs in their pharmaceutical formulations with average percentage recoveries of 100.13 ± 0.66 and 99.69 ± 0.44 for atomoxetine and fluvoxamine, respectively ( n  = 5), without interference from common excipients.

  14. Formation of nitrogen complexes when [Ru(NH3)5H2O]2+ ion reaction with diazo-acetic ester and aromatic salts of diazonium

    International Nuclear Information System (INIS)

    Shur, V.B.; Tikhonova, I.A.; Vol'pin, M.E.

    1978-01-01

    A possibility of formation of nitrogen complexes during transition metal compound interaction with aliphatic and aromatic diazo compounds is studied. It is shown that at the interaction of [Ru(NH 3 ) 5 H 2 O] 2+ with diazo-acetic ester in water (pH7) at 20 deg, quick splitting of the CN-bond in the ester molecule takes place with the formation of [Ru(NH 3 ) 5 N 2 ] 2+ and [(NH 3 ) 5 RuN 2 Ru(NH 3 ) 5 ] 4+ (NRRN) nitrogen complexes. The sum yield of complexes comprises 86% taking into acount diazo-acetic ester. Aromatic salts of diazonium, n-O 3 SC 6 H 4 N 2 and p-quinone diazide react with the [Ru(NH 3 ) 5 H 2 O] 2+ excess forming NRRN (the yield equals 40-53%). The reaction mechanism is discussed

  15. Dynamics of Research Team Formation in Complex Networks

    Science.gov (United States)

    Sun, Caihong; Wan, Yuzi; Chen, Yu

    Most organizations encourage the formation of teams to accomplish complicated tasks, and vice verse, effective teams could bring lots benefits and profits for organizations. Network structure plays an important role in forming teams. In this paper, we specifically study the dynamics of team formation in large research communities in which knowledge of individuals plays an important role on team performance and individual utility. An agent-based model is proposed, in which heterogeneous agents from research communities are described and empirically tested. Each agent has a knowledge endowment and a preference for both income and leisure. Agents provide a variable input (‘effort’) and their knowledge endowments to production. They could learn from others in their team and those who are not in their team but have private connections in community to adjust their own knowledge endowment. They are allowed to join other teams or work alone when it is welfare maximizing to do so. Various simulation experiments are conducted to examine the impacts of network topology, knowledge diffusion among community network, and team output sharing mechanisms on the dynamics of team formation.

  16. Ultraviolet irradiation initiates ectopic foot formation in regenerating ...

    Indian Academy of Sciences (India)

    If the head or base piece of a bisected hydra is irradiated and recombined with the unirradiated missing part, regeneration proceeds normally indicating that exposure of a body part with either an intact head or foot to UVC does not influence pattern formation. Most significantly, in the middle piece, but not in the head or the ...

  17. FEATURES OF INITIATION OF STYRENE POLYMERIZATION BY CUMENE HYDROPEROXIDE IN PRESENCE OF ACETULACETONATE OF COPPER(II

    Directory of Open Access Journals (Sweden)

    A. V. Grekova

    2016-04-01

    Full Text Available Kinetics of sectional styrene polymerization initiated by cumene hydroperoxide, acetylacetonate of copper(II and by the system of cumene hydroperoxide — acetylacetonate of copper(II in a temperature range 333-363 K is studied. Kinetic parameters of polymerization process are determined. It is shown, that system of cumene hydroperoxide — acetylacetonate of copper(II is in 5-6 times more effective on the initiating ability comparatively to application of its individual components. From findings ensues that decline of energy of activating of initiation from 110 kdzh/mol’ to 87 kdzh/mol’ for cumene hydroperoxide at the use of the studied system is caused with participating of monomer in preliminary complexation facilitating formation of free radicals.

  18. Complex Formation by the mrpABCDEFG Gene Products, Which Constitute a Principal Na+/H+ Antiporter in Bacillus subtilis▿

    OpenAIRE

    Kajiyama, Yusuke; Otagiri, Masato; Sekiguchi, Junichi; Kosono, Saori; Kudo, Toshiaki

    2007-01-01

    The Bacillus subtilis Mrp (also referred to as Sha) is a particularly unusual Na+/H+ antiporter encoded by mrpABCDEFG. Using His tagging of Mrp proteins, we showed complex formation by the mrpABCDEFG gene products by pull-down and blue native polyacrylamide gel electrophoresis analyses. This is the first molecular evidence that the Mrp is a multicomponent antiporter in the cation-proton antiporter 3 family.

  19. Planktonic growth and biofilm formation profiles in Candida haemulonii species complex.

    Science.gov (United States)

    Ramos, Lívia S; Oliveira, Simone S C; Souto, Xênia M; Branquinha, Marta H; Santos, André L S

    2017-10-01

    Candida haemulonii species complex have emerged as multidrug-resistant yeasts able to cause fungemia worldwide. However, very little is known regarding their physiology and virulence factors. In this context, planktonic growth and biofilm formation of Brazilian clinical isolates of Candida haemulonii (n = 5), Candida duobushaemulonii (n = 4), and Candida haemulonii var. vulnera (n = 3) were reported. Overall, the fungal planktonic growth curves in Sabouraud dextrose broth reached the exponential phase in 48 h at 37°C. All the clinical isolates formed biofilm on polystyrene in a time-dependent event, as judged by the parameters evaluated: biomass (crystal violet staining), metabolic activity (XTT reduction), and extracellular matrix (safranin incorporation). No statistically significant differences were observed when the average measurements among the three Candida species were compared regarding both planktonic and biofilm lifestyles; however, typical isolate-specific differences were clearly noticed in fungal growth kinetics. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study

    Science.gov (United States)

    Mondal, Sukanta; Goswami, Tamal; Jana, Gourhari; Misra, Anirban; Chattaraj, Pratim Kumar

    2018-01-01

    In this letter, a possible reason behind selective host-guest organization in the initial stage of sI methane hydrate nucleation is provided, through density functional theory based calculations. In doing so, we have connected earlier experimental and theoretical observations on the structure and energetics of sI methane hydrate to our findings. Geometry and relative stability of small (H2O)5 and (H2O)6 clusters, presence of CH4 guest, integrity and cavity radius of (H2O)20 and (H2O)24, as well as the weak van der Waals type of forces, particularly dispersion interaction, are major factors responsible for initial formation of methane encapsulated dodecahedron cavity over tetrakaidecahedron.

  1. FORMATION CONSTANTS AND THERMODYNAMIC ...

    African Journals Online (AJOL)

    KEY WORDS: Metal complexes, Schiff base ligand, Formation constant, DFT calculation ... best values for the formation constants of the proposed equilibrium model by .... to its positive charge distribution and the ligand deformation geometry.

  2. Control of GABARAP-mediated autophagy by the Golgi complex, centrosome and centriolar satellites.

    Science.gov (United States)

    Joachim, Justin; Tooze, Sharon A

    2018-01-01

    Within minutes of induction of autophagy by amino-acid starvation in mammalian cells, multiple autophagosomes form throughout the cell cytoplasm. During their formation, the autophagosomes sequester cytoplasmic material and deliver it to lysosomes for degradation. How these organelles can be so rapidly formed and how their formation is acutely regulated are major questions in the autophagy field. Protein and lipid trafficking from diverse cell compartments contribute membrane to, or regulate the formation of the autophagosome. In addition, recruitment of Atg8 (in yeast), and the ATG8-family members (in mammalian cells) to autophagosomes is required for efficient autophagy. Recently, it was discovered that the centrosome and centriolar satellites regulate autophagosome formation by delivery of an ATG8-family member, GABARAP, to the forming autophagosome membrane, the phagophore. We propose that GABARAP regulates phagophore expansion by activating the ULK complex, the amino-acid controlled initiator complex. This finding reveals a previously unknown link between the centrosome, centriolar satellites and autophagy. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  3. Thermodynamic properties of actinide complexes

    International Nuclear Information System (INIS)

    Di Bernardo, P.; Tomat, G.; Bismondo, A.

    1980-01-01

    The present paper reports a continuation of investigations on the complexing ability of substituted polycarboxylate ligands toward the uranyl(VI) ion. The changes in free energy were computed from the stability constants determined by potentiometric measurements; the enthalpy changes were measured by direct calorimetric titrations. The acid formation constants and the complex formation constants were calculated with the aid of a CDC/CRYBER '76 computer using the programs LETAGROP VRID and MINIQUAD 75. The enthalpy changes for the proton ligand and metal ligand complex formation were calculated by the least-squares program LETAGROP KALLE. The data obtained for a relatively wide range of concentrations of the metal and hydrogen ions may be interpreted in terms of the formation of simple mononuclear, ML, and acid complexes, Msub(p)Hsub(q)Lsub(r), where p = 1; q = 1, 2; r = 1, 2. The values of free energy enthalpy, and entropy changes for the systems investigated are reported together with the logarithms of the corresponding stability constants. (author)

  4. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    Science.gov (United States)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of

  5. Messenger RNA 3' end formation in plants.

    Science.gov (United States)

    Hunt, A G

    2008-01-01

    Messenger RNA 3' end formation is an integral step in the process that gives rise to mature, translated messenger RNAs in eukaryotes. With this step, a pre-messenger RNA is processed and polyadenylated, giving rise to a mature mRNA bearing the characteristic poly(A) tract. The poly(A) tract is a fundamental feature of mRNAs, participating in the process of translation initiation and being the focus of control mechanisms that define the lifetime of mRNAs. Thus messenger RNA 3' end formation impacts two steps in mRNA biogenesis and function. Moreover, mRNA 3' end formation is something of a bridge that integrates numerous other steps in mRNA biogenesis and function. While the process is essential for the expression of most genes, it is also one that is subject to various forms of regulation, such that both quantitative and qualitative aspects of gene expression may be modulated via the polyadenylation complex. In this review, the current status of understanding of mRNA 3' end formation in plants is discussed. In particular, the nature of mRNA 3' ends in plants is reviewed, as are recent studies that are beginning to yield insight into the functioning and regulation of plant polyadenylation factor subunits.

  6. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  7. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    Science.gov (United States)

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with

  8. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    Science.gov (United States)

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.

  9. Formation of giant cloud complexes by the Parker-Jeans instability

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    The Parker-Jeans instability is considered as a possible mechanism for forming the giant cloud complexes observed near OB associations. We use a previously derived dispersion relation to evaluate the masses and growth times of the dominant modes in this instability. The results show that massive clouds (Mroughly-equal10 6 M/sub sun/) can form quickly (roughly-equal12 million yr) in the high density environments (5 cm -3 ) associated with spiral density wave shocks. For densities larger than about 3 cm -3 , these clouds form primarily as a result of the self-graviational forces in the interstellar medium. Lower mass clouds (Mroughly-equal10 5 M/sub sun/) can form in lower density environments as a result of the pure Parker instability. The masses of the clouds that form when the density exceeds about 3 cm -3 are insensitive to the magnetic field strength, cosmic ray pressure, and ambient density (even in compressed media.). These masses are essentially the Jeans mass in a magnetic interstellar medium. The occurrence of a characteristic mass may explain the similarity of the local OB associations. The role of the Parker-Jeans instability as part of a complete theory of cloud formation is summarized

  10. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  11. Star Formation and Young Population of the H II Complex Sh2-294

    Science.gov (United States)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.

    2012-08-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.

  12. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    International Nuclear Information System (INIS)

    Samal, M. R.; Pandey, A. K.; Chauhan, N.; Jose, J.; Ojha, D. K.; Pandey, B.

    2012-01-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H 2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H 2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass ( ☉ ) YSOs; however, we also detected a massive YSO (∼9 M ☉ ) of Class I nature, embedded in a cloud of visual extinction of ∼24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ∼ 4.5 × 10 6 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ∼4 × 10 6 yr B0 main-sequence star.

  13. Formation of the oil composition of the Yu0 Bazhenov formation, Salym oil field

    Directory of Open Access Journals (Sweden)

    E.V. Soboleva

    2017-05-01

    Full Text Available The Bazhenov horizon of Western Siberia has been studied in considerable detail from different perspectives and different methods, a large number of studies have been devoted to a wide range of issues related to the lithological composition of rocks, their reservoir properties, the study of organic matter, properties and composition of oil at various analytical levels, and many others. This work is devoted to restoring conditions for the formation of oil properties and composition of the Yu0 Salym oil field, based mainly on the geochemical aspects of the study of oil changes both in area and in the section within the productive layer of Salym structure, using some geological data, such as structural plan for the reflecting horizon B (the roof of the Bazhenov formation, having a complex configuration, reservoir temperatures and pressure, well flow rates, and others. There is no single reservoir at the Salym field in the Yu0 formation. For the conclusions of the geological-geochemical interpretation, a sampling of 61 samples of oil from exploration, appraisal and production wells of the initial stages of production was used, since in the future when oil is extracted, the ecology in the deposits changes, and 21 samples of oil from other fields in the West Siberian oil and gas basin. Conventionally, three types of oils are distinguished, differing in their physicochemical parameters, group hydrocarbon and molecular composition. It was suggested that in addition to the own organic matter of the Bazhenov formation, hydrocarbon fluids of the Vasyugan, Tyumen formations and possibly Paleozoic rocks were involved in the formation of the oil composition. The flow of light liquid hydrocarbons and gases occurred along the zones of faults of different genesis and duration of existence.

  14. VOCABULARY, TEXTUAL COMPLEXITY AND READING COMPREHENSION IN DIGITAL LEARNING ENVIRONMENTS: AN INITIAL INVESTIGATION WITH HIGH SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Maria José Bocorny Finatto

    2016-12-01

    Full Text Available In this paper, we describe an initial investigation that intended to qualify the elaboration and usability of didactic resources for Distance Learning (DL in the field of Languages/Portuguese Language and Reading. We present the planning of the resource, the selection of materials and the theoretical notions involved, and the initial design of the activity, which consisted in reading and evaluating the complexity of a set of short texts. The experience was successful only for a small controlled group of students and unsuccessful for the large uncontrolled group. In order to improve the devised resource and implement it didactically, there is the need to perform previous presential learning activities with the involved groups and proceed with the student’s evaluation of the results after the task is accomplished.

  15. Protostellar formation in rotating interstellar clouds. VI. Nonuniform initial conditions

    International Nuclear Information System (INIS)

    Boss, A.P.

    1987-01-01

    The collapse and fragmentation of rotating protostellar clouds is explored, starting from nonuniform density and nonuniform rotation initial conditions. Whether binary fragmentation occurs during the first dynamic collapse phase depends strongly on the initial density profile. Exponential clouds are only somewhat more resistant to fragmentation than uniform-density clouds, but power-law clouds do not undergo fragmentation for likely values of a relevant parameter. Because binary fragments start from profiles intermediate between uniform density and exponential clouds, minimum protostellar mass for population I stars should be increased to approximately 0.02 solar mass. The axisymmetric Terey et al. (1984) model should be stable with respect to nonaxisymmetric perturbations. Considering the observed binary frequency, collapse from power-law initial conditions appears to be less common than collapse from more uniform initial conditions. 34 references

  16. Effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. A pilot study.

    Science.gov (United States)

    Schwarz, F; Sculean, A; Wieland, M; Horn, N; Nuesry, E; Bube, C; Becker, J

    2007-12-01

    The aim of the present pilot study is to investigate the effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. Test specimens were manufactured from commercially pure grade 2 titanium according to one of the following procedures: polished (P), acid-etched (A), chemically modified (mod) A (modA), sand-blasted large grit and A (SLA), and modSLA. Intraoral splints were used to collect an in vivo supragingival plaque biofilm in each group at 12, 24, and 48 h. Stained plaque biofilm (PB) areas (%) were morphometrically assessed. All groups exhibited significant increases of mean PB areas over time (p P > A =modA (p modSLA = P > A = modA (p A = modA (p < 0.001; respectively). Within the limits of a pilot study, it could be concluded that hydrophilicity had no apparent effect, while microtopography had a highly uneven and unpredictable influence on supragingival plaque biofilm formation.

  17. DNA structure modulates the oligomerization properties of the AAV initiator protein Rep68.

    Directory of Open Access Journals (Sweden)

    Jorge Mansilla-Soto

    2009-07-01

    Full Text Available Rep68 is a multifunctional protein of the adeno-associated virus (AAV, a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3 helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag and bovine papillomavirus (BPV E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID and an AAA(+ motor domain. The AAA(+ motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA(+ domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration.

  18. A review on granules initiation and development inside UASB Reactor and the main factors affecting granules formation process

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, Ab Aziz Bin Abdul; Daud, Zawawi Bin; Ahmad, Zulkifli Bin [Civil and Environmental Engineering, University Tun Hussein Onn Malaysia (Malaysia)

    2011-07-01

    Decades of investigations and explorations in the field of anaerobic wastewater treatment have resulted in significant indications about the role importance of sludge granules in biodegradation anaerobic process. It is believed that the development of anaerobic granules is reflecting an important role on the performance of reactor. An overview on the concept of up-flow anaerobic sludge bed (UASB) reactor operation as well as the main parts that reactor consists of is briefly explained in this paper, whereas the major theories of anaerobic granules formation are listed by related researchers. The correlations and compositions of such sludge granule have been specifically explained. It is believed that the extracellular polymer (ECP) is totally responsible of bacterial cell correlations and the formation of bacterial communities in the form of granules. In addition, the dependable factors for the performance of anaerobic granules formation process e.g. temperature, organic loading rate, pH, and alkalinity, nutrients, and cations and heavy metals have been discussed in this paper. Strong evidences proved that the process of gas production in the form of biogas is related to the methanogens activities, which are practically found in the core of granules. The aim of this review is to explore and assess the mechanisms of granules initiation and development inside UASB reactor.

  19. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    Directory of Open Access Journals (Sweden)

    Vinay Pathak

    Full Text Available Singlet oxygen (1O2 is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII. Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  20. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    Science.gov (United States)

    K. Heckman; A.S. Grandy; X. Gao; M. Keiluweit; K. Wickings; K. Carpenter; J. Chorover; C. Rasmussen

    2013-01-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering...

  1. Polyhomologation based on in situ generated Boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures

    KAUST Repository

    Zhang, Zhen; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2015-01-01

    A novel strategy, based on the in situ generated Boron-thexyl-silaboracyclic initiating sites for the polyhomologation of dimethylsulfoxonium methylide, has been developed for the synthesis of complex polyethylene-based architectures. As examples

  2. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa.

    Science.gov (United States)

    Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi

    2015-09-01

    All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Complex-radical copolymerization of vinyl monomers on organoelemental initiators

    International Nuclear Information System (INIS)

    Grishin, D.F.

    1993-01-01

    Data on regularities of the initiation and growth of the (co)polymerization of polar vinyl series monomers on organo-elemental initiator, organo-boron in particular, are generalized. The effect of organo-metallic compounds and some phenol type inhibitors on the rate of acrylate (co)polymerization is analyzed from view of the change of electroacceptor properties (electrophilicity) of macroradicals

  4. Study of complex formation between C18H36N2O6 and UO22+ cation in some binary mixed non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    G.H. Rounaghi

    2017-02-01

    Full Text Available The complexation reaction between UO22+ cation and the macrobicyclic ligand C18H36N2O6 was studied in acetonitrile–dimethylformamide (AN–DMF, acetonitrile–tetrahydrofuran (AN–THF, acetonitrile–dichloromethane (AN–DCM binary solvent solutions at different temperatures using the coductometric method. In most cases, C18H36N2O6 forms a 1:1 [M:L] complex with the UO22+ cation. But in some of the studied solvent systems, in addition to formation of a 1:1 complex, a 1:2 [M:L2] complex is formed in solution. A non-linear behavior was observed for changes of logKf of the (C18H36N2O6·UO22+ complex versus the composition of the binary mixed solvents. The sequence of the stability of the (C18H36N2O6·UO22+ complex in pure solvent systems at 25 °C decreases in the order: AN > THF > DMF. In the case of binary solvent solutions, the stability constant of the complex at 25 °C was found to be: AN–DCM > AN–THF > AN–DMF. The values of thermodynamic quantities (ΔSc°,ΔHc°, for the formation of the complex were obtained from temperature dependence of the stability constant of the complex using the van't Hoff plots. The results show that in all cases, the complex is both entropy and enthalpy stabilized and both of these parameters are affected by the nature and composition of the mixed solvent systems.

  5. TMEM59 potentiates Wnt signaling by promoting signalosome formation.

    Science.gov (United States)

    Gerlach, Jan P; Jordens, Ingrid; Tauriello, Daniele V F; van 't Land-Kuper, Ineke; Bugter, Jeroen M; Noordstra, Ivar; van der Kooij, Johanneke; Low, Teck Y; Pimentel-Muiños, Felipe X; Xanthakis, Despina; Fenderico, Nicola; Rabouille, Catherine; Heck, Albert J R; Egan, David A; Maurice, Madelon M

    2018-04-09

    Wnt/β-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt-FZD assemblies via intramembrane interactions. Subsequently, these Wnt-FZD-TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions. Copyright © 2018 the Author(s). Published by PNAS.

  6. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiuli [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Peng, Changjun; Fu, Dun; Chen, Zheng [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Shen, Liang [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Li, Qingbiao [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Ouyang, Tong, E-mail: yz3t@xmu.edu.cn [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Wang, Yuanpeng, E-mail: wypp@xmu.edu.cn [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China)

    2015-10-30

    Graphical abstract: - Highlights: • Surface complexation and surface precipitation of As on ferrihydrite happen at pH 3–6. • The formation of surface precipitation enhanced As(V) adsorption. • The dissolved Fe{sup 3+} had a good linear relationship with the amount of arsenate re-adsorption. - Abstract: In this study, macroscopic and spectroscopic experimental methods accurately modeled the sorption process of arsenate on ferrihydrite. EXAFS, X-ray diffraction and infrared (IR) spectroscopy indicated that the behavior of As(V) adsorption onto ferrihydrite took place mainly via surface complexation and surface precipitation at acidic pH (3.0–6.0), while the surface precipitation was dominated at longer time intervals and higher Fe{sup 3+} concentration. The macroscopic competitive adsorption experiment between arsenate with phosphate indicated two types of adsorption sites existing on the surface of ferrihydrite, i.e., non-exchangeable sites, which are responsible for a rapid surface complex formation; and exchangeable sites for a slow build-up of surface precipitates. In the slow build-up precipitates, the As(V) surface coverage (mmol/g) exhibited a good linear relationship (R{sup 2} = 0.952) with the amount of dissolved Fe{sup 3+}. Three steps are involved during the process of surface precipitation, i.e., (1) an initial uptake of As(V) via surface complexation; (2) re-adsorption of Fe{sup 3+} leaching from ferrihydrite on the surface complex; and (3) As(V) adsorption via surface complexation again and finally forming the surface precipitate.

  7. Vascular lumen formation.

    Science.gov (United States)

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  8. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development and Initial Analysis of Experiments

    Science.gov (United States)

    Grugel, Richard N.

    2004-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMI investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMI uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMI is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity Environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station. .

  9. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    Science.gov (United States)

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  10. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    Science.gov (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).

  11. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways.

    Science.gov (United States)

    Vajjhala, Parimala R; Ve, Thomas; Bentham, Adam; Stacey, Katryn J; Kobe, Bostjan

    2017-06-01

    The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes. Copyright

  12. Formation of polycrystalline MgB2 synthesized by powder in sealed tube method with different initial boron phase

    Science.gov (United States)

    Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar

    2018-04-01

    Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).

  13. Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain

    Directory of Open Access Journals (Sweden)

    Pesti Szabolcs

    2012-11-01

    Full Text Available Abstract Background Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown. Results Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly. Conclusion Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.

  14. Theoretical investigation of inclusion complex formation of Gold (III – Dimethyldithiocarbamate anticancer agents with cucurbit[n = 5,6]urils

    Directory of Open Access Journals (Sweden)

    Zabiollah Mahdavifar

    2014-09-01

    Full Text Available Gold (III-N,N-dimethyldithiocarbamate [DMDT(AuX2] complexes have recently gained increasing attention as potential anticancer agents because of their strong tumor cell growth–inhibitory effects, generally achieved by exploiting non-cisplatin-like mechanisms of action. The goal of our research work is to encapsulate the gold(III dimethyldithiocarbamate complexes as anticancer with cucurbit[n]urils (CB[n = 5, 6] by accurate calculations, to predict the inclusion complex formation of gold(III species with cucurbiturils (CB[n = 5, 6]. The calculations were carried out just for the 1:1 stoichiometric complexes. Upon encapsulation, binding energy, thermodynamic parameters, structural parameters and electronic structures of complexes are investigated. The results of the thermodynamic calculations and the binding energy show that the inclusion process is exothermic and the CB[6]/[DMDT(AuBr2] complex is more stable than other complexes. The final geometry of CB[n]/drugs indicates that the drugs were expelled from the cavity of CB[n]. NBO calculations reveal that the hydrogen bonding between CB[n] and drugs and electrostatic interactions are the major factors contributing to the overall stabilities of the complexes.

  15. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    OpenAIRE

    N Matsuo; M Otuka; H Hamasima; K Hokamoto; S Itoh

    2016-01-01

    Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated ...

  16. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    Science.gov (United States)

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  17. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP

    International Nuclear Information System (INIS)

    Garcia, P.; Hermoso, J.M.; Garcia, J.A.; Garcia, E.; Lopez, R.; Salas, M.

    1986-01-01

    Incubation of extracts of Cp-1-infected Streptococcus pneumoniae with [α- 32 P]dATP produced a labeled protein with the electrophoretic mobility of the Cp-1 terminal protein. The reaction product was resistant to treatment with micrococcal nuclease and sensitive to treatment with proteinase K. Incubation of the 32 P-labeled protein with 5 M piperidine for 4 h at 50 0 C released 5'-dAMP, indicating that a covalent complex between the terminal protein and 5'-dAMP was formed in vitro. When the four deoxynucleoside triphosphates were included in the reaction mixture, a labeled complex of slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels than the terminal protein-dAMP complex was also found, indicating that the Cp-1 terminal protein-dAMP complex can be elongated and, therefore, that it is an initiation complex. Treatment of the 32 P-labeled terminal protein-dAMP complex with 5.8 M HCl at 110 0 C for 2 h yielded phosphothreonine. These results, together with the resistance of the terminal protein-DNA linkage to hydroxylamine, suggest that the Cp-1 terminal protein is covalently linked to the DNA through a phosphoester bond between L-threonine and 5'-dAMP, namely, a O-5'-deoxyadenylyl-L-threonine bond

  18. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Homoepitaxial Islands on Crystalline Conducting Substrates

    Science.gov (United States)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2017-07-01

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.

  19. Numerical models of salt diapir formation by down-building : the role of sedimentation rate, viscosity contrast, initial amplitude and wavelength

    OpenAIRE

    Fuchs, Lukas; Schmeling, H.; Koyi, Hemin

    2011-01-01

    Formation of salt diapirs has been described to be due to upbuilding (i. e. Rayleigh-Taylor like instability of salt diapirs piercing through a denser sedimentary overburden) or syndepositional down-building process (i. e. the top of the salt diapir remains at the surface all the time). Here we systematically analyse this second end-member mechanism by numerical modelling. Four parameters are varied: sedimentation rate nu(sed), salt viscosity eta(salt), amplitude delta of the initial perturba...

  20. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However......, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased...

  1. B implanted at room temperature in crystalline Si: B defect formation and dissolution

    International Nuclear Information System (INIS)

    Romano, L.; Piro, A.M.; Mirabella, S.; Grimaldi, M.G.

    2005-01-01

    The B lattice location of B implanted into crystalline Si at room temperature has been investigated using the nuclear reaction 11 B(p,α) 8 Be induced by 650 keV proton beam and channelling analyses. The angular scans along the and axes indicate the formation of a particular B complex with B atoms non-randomly located. The same defect has been observed also for B doped Si where the B atoms, initially substitutional and electrically active, have been displaced as consequence of the interaction with the point defects generated by proton irradiation. The angular scans were compatible with the B-B pairs aligned along the axis predicted by theoretical calculations. The thermal evolution in the 400-950 deg. C range of the B complexes has been inferred both by B lattice location measurements and electrical activation. At low temperature (<700 deg. C) only 10% of the total B dose is active and a significant increase of randomly located B occurs. A significant electrical activation consistent with the concentration of substitutional B occurs at temperature higher than 800 deg. C. The data are interpreted in terms of a formation and dissolution of the B complexes

  2. Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions

    Science.gov (United States)

    Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.

    2017-06-01

    Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, I.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.

  3. The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template

    KAUST Repository

    Trinh, Thuat T.

    2012-01-01

    The initial step for silicate and aluminosilicate condensation is studied in water in the presence of a realistic tetrapropylammonium template under basic conditions. The model corresponds to the synthesis conditions of ZSM5. The free energy profile for the dimer formation ((OH) 3Si-O-Si-(OH) 2O - or [(OH) 3Al-O-Si-(OH) 3] -) is calculated with ab initio molecular dynamics and thermodynamic integration. The Si-O-Si dimer formation occurs in a two-step manner with an overall free energy barrier of 75 kJ mol -1. The first step is associated with the Si-O bond formation and results in an intermediate with a five-coordinated Si, and the second one concerns the removal of the water molecule. The template is displaced away from the Si centres upon dimer formation, and a shell of water molecules is inserted between the silicate and the template. The main effect of the template is to slow down the backward hydrolysis reaction with respect to the condensation one. The Al-O-Si dimer formation first requires the formation of a metastable precursor state by proton transfer from Si(OH) 4 to Al(OH) 4 - mediated by a solvent molecule. It then proceeds through a single step with an overall barrier of 70 kJ mol -1. The model with water molecules explicitly included is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction. © the Owner Societies 2012.

  4. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  5. The molecular complex associated with the Galactic H II region Sh2-90: a possible site of triggered star formation

    Science.gov (United States)

    Samal, M. R.; Zavagno, A.; Deharveng, L.; Molinari, S.; Ojha, D. K.; Paradis, D.; Tigé, J.; Pandey, A. K.; Russeil, D.

    2014-06-01

    Aims: We investigate the star formation activity in the molecular complex associated with the Galactic H ii region Sh2-90. Methods: We obtain the distribution of the ionized and cold neutral gas using radio-continuum and Herschel observations. We use near-infrared and Spitzer data to investigate the stellar content of the complex. We discuss the evolutionary status of embedded massive young stellar objects (MYSOs) using their spectral energy distribution. Results: The Sh2-90 region presents a bubble morphology in the mid-infrared. Radio observations suggest it is an evolved H ii region with an electron density ~144 cm-3, emission measure ~ 6.7 × 104 cm-6 pc and an ionized mass ~55 M⊙. From Herschel and CO (J = 3 - 2) observations we found that the H ii region is part of an elongated extended molecular cloud (H2 column density ≥ 3 × 1021 cm-2 and dust temperature 18-27 K) of total mass ≥ 1 × 104 M⊙. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8-O9 V star. Five cold dust clumps, four mid-IR blobs around B stars, and a compact H ii region are found at the edge of the bubble. The velocity information derived from CO data cubes suggest that most of them are associated with the Sh2-90 region. One hundred and twenty-nine low mass (≤3 M⊙) YSOs have been identified, and they are found to be distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found. We suggest that multi-generation star formation is present in the complex. From evidence of interaction, time scales involved, and evolutionary status of stellar/protostellar sources, we argue that the star formation at the edges of Sh2-90 might have been triggered. However, several young sources in this complex are probably formed by some other processes. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A122

  6. Formation of quinones, indanones and furans by the reaction of molybdenum carbene complexes with alkynes

    International Nuclear Information System (INIS)

    Doetz, K.H.; Larbig, H.

    1992-01-01

    (Alkoxy)carbene complexes of molybdenum react with terminal alkynes to give carbene annulation of cycloaddition products, the skeleton of which depends on the carbene substitution pattern and the alkyne used. (CO) 5 Mo=C(OMe)-p-tol undergoes carbene annulation upon reaction with trimethylsilylacetylene leading to naphthoquinone after oxidative work-up. Similar products are obtained from (CO) 5 Mo=C(OMe)2-furyl and hex-1-yne or oct-1-yne. The reaction of these alkynes results in the formation of indanones as five-membered annulation products. In the presence of 3.3-dimethylbut-1-yne the (phenyl) carbene ligands act as a C 1 -synthon, which is incorporated into the furan cycloaddition products

  7. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    Science.gov (United States)

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  8. The DnaA Cycle in Escherichia coli: Activation, Function and Inactivation of the Initiator Protein

    Directory of Open Access Journals (Sweden)

    Tsutomu Katayama

    2017-12-01

    Full Text Available This review summarizes the mechanisms of the initiator protein DnaA in replication initiation and its regulation in Escherichia coli. The chromosomal origin (oriC DNA is unwound by the replication initiation complex to allow loading of DnaB helicases and replisome formation. The initiation complex consists of the DnaA protein, DnaA-initiator-associating protein DiaA, integration host factor (IHF, and oriC, which contains a duplex-unwinding element (DUE and a DnaA-oligomerization region (DOR containing DnaA-binding sites (DnaA boxes and a single IHF-binding site that induces sharp DNA bending. DiaA binds to DnaA and stimulates DnaA assembly at the DOR. DnaA binds tightly to ATP and ADP. ATP-DnaA constructs functionally different sub-complexes at DOR, and the DUE-proximal DnaA sub-complex contains IHF and promotes DUE unwinding. The first part of this review presents the structures and mechanisms of oriC-DnaA complexes involved in the regulation of replication initiation. During the cell cycle, the level of ATP-DnaA level, the active form for initiation, is strictly regulated by multiple systems, resulting in timely replication initiation. After initiation, regulatory inactivation of DnaA (RIDA intervenes to reduce ATP-DnaA level by hydrolyzing the DnaA-bound ATP to ADP to yield ADP-DnaA, the inactive form. RIDA involves the binding of the DNA polymerase clamp on newly synthesized DNA to the DnaA-inactivator Hda protein. In datA-dependent DnaA-ATP hydrolysis (DDAH, binding of IHF at the chromosomal locus datA, which contains a cluster of DnaA boxes, results in further hydrolysis of DnaA-bound ATP. SeqA protein inhibits untimely initiation at oriC by binding to newly synthesized oriC DNA and represses dnaA transcription in a cell cycle dependent manner. To reinitiate DNA replication, ADP-DnaA forms oligomers at DnaA-reactivating sequences (DARS1 and DARS2, resulting in the dissociation of ADP and the release of nucleotide-free apo-DnaA, which then

  9. DEAD-box helicase DDX27 regulates 3′ end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Markus; Rohrmoser, Michaela [Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377 (Germany); Forné, Ignasi [Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336 (Germany); Voss, Kirsten; Burger, Kaspar; Mühl, Bastian; Gruber-Eber, Anita [Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377 (Germany); Kremmer, Elisabeth [Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistr. 25, Munich 81377 (Germany); Imhof, Axel [Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336 (Germany); Eick, Dirk, E-mail: eick@helmholtz-muenchen.de [Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377 (Germany)

    2015-05-15

    PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extended form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3′ end formation of 47S rRNA independently of the PeBoW-complex. - Highlights: • DEAD-box helicase DDX27 is a new constituent of the PeBoW-complex. • The N-terminal F×F motif of DDX27 interacts with the PeBoW components Pes1 and Bop1. • Nucleolar anchoring of DDX27 via its basic C-terminal domain is RNA dependent. • Knockdown of DDX27 induces a specific defect in 3′ end formation of 47S rRNA.

  10. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes.

    Science.gov (United States)

    Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M

    1996-01-01

    The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the

  11. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    Science.gov (United States)

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  12. Formation of a Tc(III)-adenosine diphosphate complex

    International Nuclear Information System (INIS)

    Torres, J.; Kremer, C.; Kremer, E.

    1995-01-01

    A 99 Tc-ADP complex was prepared when KTcO 4 was reduced in aqueous medium by SnCl 2 , Na 2 S 2 O 4 , NaBH 4 or Zn in the presence of ADP in excess. The resulting solution was studied by chromatography and spectrophotometry. Electrochemical reduction and substitution on [Tc III (tu) 6 ] 3+ were investigated as alternative synthetic routes. The anionic Tc-ADP complex was isolated as a solid. Cerimetric titrations confirmed the oxidation state +3 for the central atom. IR and 1 H-NMR data showed that the purine base is bonded to the Tc central atom but not the ribose moiety. No oxo groups seemed to be directly bonded to the Tc atom. The complex is rather stable in neutral solutions. However, it decomposes to pertechnetate and TcO 2 at extreme pH values. (author). 16 refs., 2 figs., 3 tabs

  13. Analysis of the complex formation of heparin with protamine by light scattering and analytical ultracentrifugation: implications for blood coagulation management.

    Science.gov (United States)

    Maurer, Jürgen; Haselbach, Stephanie; Klein, Oliver; Baykut, Doan; Vogel, Vitali; Mäntele, Werner

    2011-02-02

    Heparin, a linear glycosaminoglycan, is used in different forms in anticoagulation treatment. Protamine, a highly positive charged peptide containing about 32 amino acids, acts as an antagonist for heparin to restore normal blood coagulation. The complex formation of protamine with heparin was analyzed by a combination of analytical ultracentrifugation and light scattering. Titration of heparin with protamine in blood plasma preparations results in a drastic increase of turbidity, indicating the formation of nanoscale particles. A similar increase of turbidity was observed in physiological saline solution with or without human serum albumin (HSA). Particle size analysis by analytical ultracentrifugation revealed a particle radius of approximately 30 nm for unfractionated heparin and of approximately 60 nm for low molecular weight heparin upon complexation with excess protamine, in agreement with atomic force microscopy data. In the absence of HSA, larger and more heterogeneous particles were observed. The particles obtained were found to be stable for hours. The particle formation kinetics was analyzed by light scattering at different scattering angles and was found to be complete within several minutes. The time course of particle formation suggests a condensation reaction, with sigmoidal traces for low heparin concentrations and quasi-first-order reaction for high heparin concentrations. Under all conditions, the final scattering intensity reached after several minutes was found to be proportional to the amount of heparin in the blood plasma or buffer solution, provided that excess protamine was available and no multiple scattering occurred. On the basis of a direct relation between particle concentration and the heparin concentration present before protaminization, a light scattering assay was developed which permits the quantitative analysis of the heparin concentration in blood plasma and which could complement or even replace the activated clotting time test

  14. Simultaneous determination of Hg(II)-Ag(I)-Cd(II) by conductometric titration using the formation of ternary complex

    International Nuclear Information System (INIS)

    Hayashida, Ichiro; Yoshida, Hitoshi; Taga, Mitsuhiko; Hikime, Seiichiro

    1979-01-01

    A conductometric determination of Hg(II), Ag(I) and Cd(II) was carried out by using the insoluble ternary complex formation of the metal ions with iodide ion in the presence of 1,10-phenanthroline (phen). Recommended procedure is as follows; An aliquot of sample solution containing (14 -- 29) mg of Hg(II), (8 -- 16) mg of Ag(I), and (9 -- 17) mg of Cd(II) transfered into a 100 ml beaker. Add to acetate buffer and stoichiometric amounts of phen (40% ethanol-water solution). Amounts of nitrate ion which was estimated separately by other titration with 0.1 M Ag(phen) 2 complex (40% ethanol-water solution) are adjusted in the range of (4.0 -- 6.0) mM. The sample solution is titrated with 0.1 M KI standard solution at the rate of 0.20 ml/min or less. The titration curve showed three end-points corresponding to the formation of (1) Hg(phen) 2 I 2 , (2) Ag(phen)I, and (3) Cd(phen) 2 I 2 . The relative standard deviation was less than 0.8%, when the pH value was controlled at 4.0 -- 4.5 (acetate buffer) and the nitrate concentration was adjusted in the range of (4.0 -- 6.0)mM. The effect of diverse ions on the determination was also investigated in detail. (author)

  15. Formation pathways of DMSO(2) in the addition channel of the OH-initiated DMS oxidation: A theoretical study.

    Science.gov (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Angels; Lluch, José M

    2009-07-15

    The production of dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO(2)) in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been shown to be very sensitive to nitrogen oxides (NO(x)) levels. In the present work we have explored the potential energy surfaces corresponding to several reaction pathways which yield DMSO(2) from the CH(3)S(O)(OH)CH(3) adduct [including the formation of CH(3)S(O)(OH)CH(3) from the reaction of DMSO with OH] and the reaction channels that yield DMSO or/and DMSO(2) from the CH(3)S(O(2))(OH)CH(3) adduct are also studied. The formation of the CH(3)S(O(2))(OH)CH(3) adduct from CH(3)S(OH)CH(3) (DMS-OH) and O(2) was analyzed in our previous work. All these pathways due to the presence of NO(x) (NO and NO(2)) and also due to the reactions with O(2), OH and HO(2) are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO(2) (and DMSO) formation yields. In particular, our theoretical results clearly show the existence of NO(x)-dependent pathways leading to the formation of DMSO(2), which could explain some of these experimental results in comparison with experimental measurements carried out in NO(x)-free conditions. Our results indicate that the relative importance of the addition channel in the DMS oxidation process can be dependent on the NO(x) content of chamber experiments and of atmospheric conditions. (c) 2008 Wiley Periodicals, Inc.

  16. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    Science.gov (United States)

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  17. Complement activation and formation of the membrane attack complex on serogroup B Neisseria meningitidis in the presence or absence of serum bactericidal activity

    NARCIS (Netherlands)

    Drogari-Apiranthitou, M.; Kuijper, E. J.; Dekker, N. [=Nick; Dankert, J.

    2002-01-01

    Encapsulated meningococci are complement sensitive only in the presence of bactericidal antibodies by yet-unexplored mechanisms. The objective of this study was to investigate the involvement of major bacterial surface constituents on complement activation and membrane attack complex (MAC) formation

  18. Fragmentation of deuteronated aromatic derivatives: The role of ion-neutral complexes

    Science.gov (United States)

    Harrison, Alex G.; Wang, Jian-Yao

    1997-01-01

    The low-energy collision-induced dissociation reactions of the MD+ ions of a number of alkyl phenyl ethers, alkylbenzenes, acetophenones and benzaldehyde have been studied as a function of collision energy to establish qualitatively the dependence of the fragmentation reactions observed on internal energy. Deuteronated alkyl phenyl ethers (ROC6H5·D+, R = C3H7, C4H9) fragment at low collision energies to form C6H5OHD+ + (R-H), the thermochemically favoured products; with increasing collision energy (and, hence, internal energy) formation of the alkyl ion R+ increases significantly in importance. Deuteronated alkylbenzenes (RC6H5, RC6H4R', R = C2H5, C3H7) similarly form the deuteronated benzene (the thermochemically favoured product) at low collision energies with formation of the alkyl ion R+ being observed at higher collision energies. The results for both systems are consistent with a fragmentation mechanism involving initial formation of an R+/aromatic ion/neutral complex. At low internal energies proton transfer occurs within this complex to form an ion/neutral complex consisting of the deuteronated aromatic and a neutral olefin; this complex fragments to the thermochemically favoured products. Since the transition state leading to these products is a "tight" transition state involving loss of rotational degrees of freedom, the proton transfer reaction is unfavourable entropically with respect to simple dissociation of the R+/aromatic complex to R+ + ArD. Consequently, these products increase in importance as the internal energy is increased. The fragmentation of deuteronated aromatic carbonyl compounds can also be rationalized by similar mechanisms involving the intermediacy of ion/neutral complexes. Deuteronated acetophenone forms only CH3CO+ at all collision energies; this is both the thermochemically and entropically favoured product. However, deuteronated p-aminoacetophenone forms deuteronated aniline, the thermochemically favoured product at low collision

  19. In vitro formation of metabolic-intermediate cytochrome P450 complexes in rabbit liver microsomes by tiamulin and various macrolides.

    Science.gov (United States)

    Carletti, Monica; Gusson, Federica; Zaghini, Anna; Dacasto, Mauro; Marvasi, Luigi; Nebbia, Carlo

    2003-01-01

    Tiamulin and a number of macrolides were evaluated as to their ability in forming metabolic-intermediate (MI) complexes with cytochrome P450 in liver microsomes from rabbits bred for meat production. Complex formation, which occurred only in preparations where the expression of P450 3A was increased as the result of rifampicin pre-treatment and with different kinetics, was in the order tiamulin > erythromycin > TAO approximately roxithromycin approximately tylosin and did not take place with tilmicosin and spiramycin. Most of the tested compounds underwent an oxidative N-dealkylation and a good relationship could be found between the rate of N-dealkylase activity in induced preparations and the aptitude in generating MI complexes. Although the results from in vitro studies should be interpreted with caution, it is suggested that the potential for in vivo drug interactions also exists in the rabbit for tiamulin and for four out of the six tested macrolides.

  20. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    Science.gov (United States)

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  1. REE interactions with hydroxyapatite. Formation of secondary solid phases

    International Nuclear Information System (INIS)

    Seco, F.; Pablo, J. de; Bruno, J.

    2005-01-01

    Full text of publication follows: Lighter rare earth elements (REE) commonly occur in nature as the phosphate mineral monazite, while the heavier REE and Yttrium occur as the phosphate mineral xenotime, which has a similar composition, but different coordination environment of the cation. The geochemical behaviour of REE is mainly controlled by their interactions with phosphate minerals such as hydroxyapatite, Ca 5 (PO 4 ) 3 OH, which is a very common phosphate phase in subsurface environments. Furthermore, is a material considered to be used in a High Level Nuclear Waste repository due to its high capacity in the retention of radionuclides. The objective of this work has been to study the reaction mechanisms and thermodynamics of the interaction of La(III) and Yb(III) with hydroxyapatite as a model for general Ln(III) and Ac(III) behaviour. The surface interaction of La(III) and Yb(III) with synthetic hydroxyapatite has been investigated in batch experiments with low REE 3+ initial concentrations in constant 0.1 M NaClO 4 , at room temperature and in N 2 (g) atmosphere to avoid carbonate complex formation. The initial kinetic experiments indicated that a short contact time is needed to reach equilibrium ( 4 .nH 2 O, where a 0.83 4 .nH 2 O with 1.78 4 medium and under N 2 (g) atmosphere. The experimental data indicate that the solubility equilibria is mainly controlled by the aqueous species REE 3+ until approximately pH=5 where the formation of aqueous complexes of the form REEHPO 4 + , REEPO 4 and REE(PO 4 ) 2 3- must be considered. (authors)

  2. Complex formation of calcium with humic acid and polyacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kirishima, A.; Tanaka, K.; Niibori, Y.; Tochiyama, O. [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku Univ., Sendai (Japan)

    2002-07-01

    In order to understand the migration behavior of radionuclides in the underground, it is also important to estimate the effect of the competing cations originally present in the groundwater. In this connection, the complexation of Ca(II) with Aldrich humic acid has been examined. For the study at trace concentrations ({proportional_to} 10{sup -10} M) of Ca(II), the solvent extraction of {sup 45}Ca with TTA and TOPO in cyclohexane has been used. At macro concentrations (10{sup -4} M) of Ca(II), the measurement of the free Ca{sup 2+} ion concentration with a calcium selective electrode has been conducted. To estimate the polyelectrolyte effect of humic acid separately from its heterogeneous composition effect, polyacrylic acid ([-CH{sub 2}CH(COOH)-]{sub n}) has been selected as a representative of the homogeneous polymeric weak acids and its complexation with Ca(II) has also been examined. The values of log {beta}{sub {alpha}} have been obtained at pH 5 {proportional_to} 7 in 0.1, 0.4 and 1.0 M NaCl, where {beta}{sub {alpha}} is the apparent formation constants defined by {beta}{sub {alpha}} = [ML]/([M][R]). In this definition, [ML] and [M] are the concentrations of bound and free Ca{sup 2+} respectively, [R] is the concentration of dissociated proton exchanging sites. log {beta}{sub {alpha}} of humate decreases from 2.19 {proportional_to} 2.92 (depending on pH and ionic strength 1.0 < I < 0.4) at pCa = 10 to 1.98 {proportional_to} 2.44 at pCa = 4, while the variation of pCa has no appreciable influence on the log {beta}{sub {alpha}} of polyacrylate (1.36 {proportional_to} 3.24 for I = 0.1 {proportional_to} 1.0). For both humate and polyacrylate, log {beta}{sub {alpha}} decreases linearly with log[Na{sup +}], where [Na{sup +}] is the bulk concentration of sodium ion. Their dependences of log {beta}{sub {alpha}} on ionic strength are stronger than those of log {beta} of monomeric carboxylates such as oxalate and EDTA, indicating the large electrostatic effect of

  3. Effect of the defect-phosphorus atom complex interaction on the formation of the properties of neutron-doped silicon

    International Nuclear Information System (INIS)

    Kolesnik, L.I.; Lejferov, B.M.

    1984-01-01

    Radiation-induced defect annealing and changes in the concentration of substituting phosphorus atoms in silicon irradiated with different neutron doses have been studied by the low-temperature photoluminescence (PL) method at 4 K. Based on the PL spectrum character dependence on the fast-to-thermal neutron ration in a flux, series of lines and bands associated with the preferential formation of radiation-induced defects (within the 1.100 eV energy range) and with the presence of phosphorus impurity (1.15-1.12 eV) are identified. Some peculiarities are studied of the stage-by-stage annealing (250-500, 430-600, 600-800 deg C) of recombination-active centers (RAC) determining the radiation in the mentioned spectrum region. The relation between the RAC variations within the 1.12-1.15 eV range and the substituting phosphorus atom concentration in the 400-500 deg C temperature range is found. Activation energy of the substituting phosphorus atom concentration variation is estimated (approximately 0.5 eV). It is shown that the formation of defect-phosphorus complexes plays an important role in the formation of neutron-doped silicon properties, the presence of fast neutron in a flux being most importants

  4. 87Sr enrichment of ophiolitic sulphide deposits in Cyprus confirms ore formation by circulating seawater

    International Nuclear Information System (INIS)

    Chapman, H.J.; Spooner, E.T.C.

    1977-01-01

    The hypothesis that seawater was the source of the hydrothermal fluid which formed the Upper Cretaceous ophiolitic cupriferous pyrite ore deposits of the Troodos Massif (Cyprus) has been tested by analysing the strontium isotopic composition of thirteen mineralized samples from four mines. Initial 87 Sr/ 86 Sr ratios range from 0.7052+-0.0001 to 0.7075+-0.00002, the latter value being indistinguishable from that of Upper Cretaceous seawater at 0.7076+-0.0006 (2 sigma). Hence, the mineralized metabasalt samples have been contaminated with 87 Sr, relative to initial magmatic strontium isotope ratios of the Troodos ophiolitic complex (0.70338+-0.00010 to 0.70365+-0.00005). Since seawater was the only source of strontium available during formation of the Troodos Complex which was isotopically relatively enriched in 87 Sr, the data confirm that seawater was the source of the hydrothermal oreforming fluid. (Auth.)

  5. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    Science.gov (United States)

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  6. Complexity of clay mineral formation during 120,000 years of soil development along the Franz Josef chronosequence, New Zealand

    International Nuclear Information System (INIS)

    Dietel, J.; Dohrmann, R.; Guggenberger, G.; Meyer-Stueve, S.; Turner, S.; Schippers, A.; Kaufhold, S.; Butz-Braun, R.; Condron, L.M.; Mikutta, R.

    2017-01-01

    Weathering of primary silicates to secondary clay minerals over time affects multiple soil functions such as the accumulation of organic matter and nutrient cations. However, the extent of clay mineral (trans)formation as a function of soil development is poorly understood. In this study, the degree of weathering of sediments along a 120 kyr soil formation gradient was investigated using X-ray diffraction, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy. Irrespective of site age, mica and chlorite were the dominant clay minerals. During weathering, a remarkable suite of transitional phases such as vermiculite and several interstratifications with vermiculitic, smectitic, chloritic and micaceous layers developed. The degree of weathering was correlated with soil pH and depletion of K, Ca, Na, Fe and Al, regarding both soil depth and site age. Kaolinite occurred especially at the 120 kyr site, indicating slow formation via transitional phases. The findings of this study revealed that long-term soil development caused complex clay mineral assemblages, both temporally and spatially, and linking this variability to soil functioning warrants further research. (author).

  7. Comparative study of the efficiency of complex formation and extraction of thorium by solutions of certain alkylaromatic α-hydroxy acids in heptanol

    International Nuclear Information System (INIS)

    Charykov, A.K.; Aleksandrova, E.A.; Vasil'eva, O.N.

    1986-01-01

    The constants for the extraction of thorium by solutions of alkylaromatic α-hydroxy acids in heptanol occur in the order log K/sub ex/ (hydroxydiphenylacetic acid) > log K/sub ex/ (phenoxyacetic acid) > log K/sub ex/ (hydroxyphenylacetic acid). For the example of extraction equilibria involving the participation of thorium carboxylate complexes an extraction efficiency parameter is introduced which enables the efficiency of extraction to be predicted on the basis of information on the formation constants of the neutral complexes and the dissociation constants of the extractant acids in the aqueous phase

  8. Effects of Ligands on a Ternary Hydroxo Complex Formation with Eu(III) in a Aqueous Solution: Comparison of a Pyridine-2,6-dicarboxylate with a Phthalate

    International Nuclear Information System (INIS)

    Park, K. K.; Cho, H. R.; Kim, W. H.; Jung, E. C.

    2008-01-01

    The interaction of a radionuclide with ligands in a groundwater influences its migration through a hydrogeological system due to a change in the characteristics of a dissolution and a sorption. Actinide ions are classified as a hard acid and strongly interact with ligands having an oxygen donor atom of a hard base such as a hydroxide, carbonate and carboxylate. These ligands reveal a large ionic bonding character. A number of experimental results on a binary complex formation of actinides have been reported. However, actinides may easily form a ternary complex by interacting simultaneously with two different ligands, since an ionic bonding does not restrict the spatial orientation of a ligand. In previous studies, a ternary hydroxo complex formation was investigated by using pyridine-2,6-dicarboxylate (PDA) or phthalate as an organic ligand and Eu(III) as an analogue of an actinide(III) ion. Although these organic ligands equally contain two carboxylate groups that interact with an Eu(III) ion, their stabilities reveal big differences. PDA is a tridentate ligand forming two 5-membered chelates, while phthalate is a bidentate ligand forming a 7-membered chelate. The latter reveals a lower stability than the former due to an angle strain. This is one of the reasons for the lower stability of the Eu(III)-phthalate than that of the Eu(III)- PDA. The difference in the stabilities of binary complexes, EuL + (L=organic ligand), influences the stabilities of the ternary hydroxo complexes, Eu(OH)L. The coordination of a phenylic or pyridine ligand can greatly enhance the fluorescence of an Eu(III) ion due to the high absorbance of a ligand by a π → π * transition and the transfer of this energy to an Eu(III) ion. These fluorescence characteristics in a binary complex system could be changed in a ternary complex. In this study, the effect of a ligand on the stability of a ternary hydroxo complex is reported by comparing the stabilities of Eu-PDA with Eu-phthalate systems

  9. Initiation of Meiotic Recombination in Mammals

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2010-12-01

    Full Text Available Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs. DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs, which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization.

  10. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab

  11. Quality Enhancement by Inclusion Complex Formation of Simvastatin Tablets

    Directory of Open Access Journals (Sweden)

    Emőke Rédai

    2013-08-01

    Full Text Available Introduction: Simvastatin is an inhibitor of hydroxy-methyl-glutaryl-coenzyme A reductase, used in the treatment of hypercholesterolemia. To enhance its bioavailability by inclusion complexation, as host molecule randommethyl-β-cyclodextrin had been used. After evaluating the complexes we chose the kneading product in 1:2 molar ratio for incorporation of 10 mg simvastatin tablets. Materials and methods: We prepared homogenous mixtures of the inclusion complex and some excipients. The tablets were prepared by direct compression. The tablets were evaluated in regard to: weight uniformity, thickness, diameter, hardness, friability, disintegration and dissolution profile. Results: Weights are in the range of 196-208 mg, diameter 6.83-6.86 mm, height 3.86-4.01 mm, hardness 78.3-113.1 N, friability 0.75- 1.19 %, disintegration above 15 minutes. The dissolved amounts of simvastatin from the tablets are higher compared to the dissolution of pure simvastatin, but lower than the dissolution of the complex itself. Excipients, like disintegrants and lubricants greatly influence the dissolution properties of the tablets. Conclusions: According to our results, tablets containing inclusion complex of simvastatin exhibit better solubility, according to the dissolved amount of simvastatin, than pure drug alone. Proper physical parameters of the tablets are obtained by application of 5 % Primellose

  12. Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II, 4-(2-Pyridylazoresorcinol, and Nitron

    Directory of Open Access Journals (Sweden)

    Petya Vassileva Racheva

    2013-01-01

    Full Text Available Complex formation and liquid-liquid extraction were studied in a system containing cobalt(II, 4-(2-pyridylazoresorcinol (PAR, 1,4-diphenyl-3-(phenylamino-1H-1,2,4-triazole (Nitron, Nt, water, and chloroform. The effect of some experimental parameters (pH, shaking time, concentration of PAR, and concentration of Nt was systematically investigated, and the optimum conditions for cobalt extraction as an ion-association complex, (NtH+[Co3+(PAR2], were found. The following key equilibrium constants were calculated: constant of association (Log β=4.77±0.06, constant of distribution (LogKD=1.34±0.01, and constant of extraction (LogKex=6.11±0.07. Beer’s law was obeyed for Co concentrations up to 1.7 μg mL−1 with a molar absorptivity of 6.0×104 L mol−1 cm−1 at λmax=520 nm. Some additional characteristics, such as limit of detection, limit of quantification, and Sandell’s sensitivity, were estimated as well.

  13. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    International Nuclear Information System (INIS)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N.

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability consta nt of the complex is 1.12x10 21 , the conditional molar absorptivitis 1.80x10 0 . This complex formation reaction was used for photometric determination of boron in natural water

  14. Evolution of multi-mineral formation evaluation using LWD data in complex carbonates offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, Paolo; Borovskaya, Irina [Schlumberger, Houston, TX (United States)

    2012-07-01

    Petrophysical Formation Evaluation using Logging While Drilling (LWD) measurements is a new requisite when drilling in carbonates reservoirs offshore Brazil. These reservoirs are difficult to characterize due to an unusual mixture of the minerals constituting the matrix and affecting rock texture. As wells are getting deeper and more expensive, an early identification of the drilled targets potential is necessary for valuable decisions. Brazil operators have been especially demanding towards service providers, pushing for development of suitable services able to positively identify and quantify not only the presence of hydrocarbons but also their flowing capability. In addition to the standard gamma ray / resistivity / porosity and density measurements, three new measurements have proven to be critical to evaluate complex carbonate formations: Nuclear Magnetic Resonance (NMR), Spectroscopy and Capture Cross-Section (sigma). Under appropriate logging conditions, NMR data provides lithology independent porosity, bound and free fluids fractions, reservoir texture and permeability. Capture Spectroscopy allows assessment of mineral composition in terms of calcite, dolomite, quartz and clay fractions, and in addition highlights presence of other heavier minerals. Finally, sigma allows performing a volumetric formation evaluation without requiring custom optimization of the classical exponents used in all forms of resistivity saturation equations. All these new measurements are inherently statistical and if provided by wireline after drilling the well they may result in significant usage of rig time. When acquired simultaneously while drilling they have three very clear advantages: 1) no extra rig time, 2) improved statistics due to long formation exposure (drilling these carbonates is a slow process and rate of penetration (ROP) rarely exceeds 10 m/hr), 3) less invasion effect and better hole condition. This paper describes the development of two LWD tools performing the

  15. Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles.

    Science.gov (United States)

    Coelho, Paula A; Bury, Leah; Sharif, Bedra; Riparbelli, Maria G; Fu, Jingyan; Callaini, Giuliano; Glover, David M; Zernicka-Goetz, Magdalena

    2013-12-09

    During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Creation of initial breeding material of potato with complex resistance to Fusarium dry rot and tuber late blight

    Directory of Open Access Journals (Sweden)

    В. В. Гордієнко

    2017-09-01

    Full Text Available Purpose. To select the initial breeding material with complex resistance to Fusarium dry rot and tuber late blight among the created potato of secondary interspecific hyb­rids. Methods. Interspecific hybridization, laboratory test, analytical approach. Results. Based on the interspecific hybridization, the initial breeding material was created and the degree of its resistance to the above pathogens was determined by way of artificial infection of tubers with the inoculum of such fungi as Fusarium sambucinum Fuck and Phytophthora infestans (Mont. De Bary. During interspecific hybridization based on schemes of saturating and enriching crosses, using forms of various species with a high phenotypic expression of resistance to Fusarium dry rot, the result of the cumulative effect of genes that control resistance to the pathogen was observed. Crossing combinations differed significantly for the degree of population average manifestation of resistance to the diseases. Conclusions. Combinations В54, В53, В61 with a mean resistance (above 7 grades to Fusarium dry rot have been selected. Such combinations as B52, B50 and B54 had increased resistance to tuber late blight. It was found that the combination В54 is characterized by complex resistance to both diseases. For further work, the following samples with complex resistance to Fusarium dry rot and tuber late blight (7 grades or more were selected: В59с42, В59с43, В50с16, В50с19, В50с44, В51с1, В51с26, В51с28, В52с11, В52с23, В52с24, В52с29, В53с1, В53с11, В53с17 , В53с23, В54с13, В54с14.

  17. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    Science.gov (United States)

    Gratton, Steven

    2011-09-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain “Youngness Paradox”-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  18. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    International Nuclear Information System (INIS)

    Gratton, Steven

    2011-01-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain ''Youngness Paradox''-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  19. Reductive Elimination Leading to C-C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study.

    Science.gov (United States)

    Rocchigiani, Luca; Fernandez-Cestau, Julio; Budzelaar, Peter H M; Bochmann, Manfred

    2018-06-21

    The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C 6 F 5 , CH=CMe 2 , Me and p-C 6 H 4 X, where X=OMe, F, H, tBu, Cl, CF 3 , or NO 2 ) as starting materials (C^N^C=2,6-(4'-tBuC 6 H 3 ) 2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe 2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe 2 )] + . Upon addition of a second SMe 2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C 6 F 5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10 -3  L mol -1  s -1 at 221 K, whereas both C 6 F 5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) 3 in place of SMe 2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp 2 )-C(sp 2 ) elimination from three-coordinate ions [(Ar 1 )(Ar 2 )AuL] + is almost barrier-free, particularly if L=phosphine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    Science.gov (United States)

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782