WorldWideScience

Sample records for initiate high-frequency oscillatory

  1. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  2. High frequency oscillatory ventilation in meconium aspiration syndrome

    Directory of Open Access Journals (Sweden)

    José Nona

    2009-03-01

    Full Text Available Objective: To evaluate and compare the management and associated morbidity in inborn and outborn babies with meconium aspiration syndrome admitted to the Neonatal Intensive Care Unit and ventilated with high frequency oscillatory ventilation. Methods: A retrospective cohort study with a review of clinical data from newborns, admitted to the Neonatal Intensive Care Unit during a six-year period (from 1999 to 2004 and ventilated with early high frequency oscillatory ventilation, first intention in inborns and immediately after Neonatal Intensive Care Unit arrival in outborns. Rresults: In the present study, 27 newborns were included: 12 inborn and 15 outborn infants. Severity criteria were similar in both groups. The pulmonary morbidity associated was severe persistent pulmonary hypertension - 12 (seven outborns, pneumothorax - five (three outborns, interstitial emphysema – two (one outborn and pulmonary hemorrhage – one outborn. Hypoxic-ischemic encephalopathy II-III occurred in six newborns (four outborns. The therapeutic procedures were surfactant administration in 22 newborns (13 outborns, nitric oxide in 12 newborns (7 outborns and magnesium sulphate in four newborns (three outborns. The median length of ventilation was six days (inborn infants: four and half days; outborn infants: ten days and the median length of oxygenation supply was ten days (inborn infants: four and half days; outborn infants: 15 days. The median length of stay was 13 days (inborn infants: 11 days; outborn infants: 16 days. One outborn infant died. Cconclusions: With this ventilation strategy, we have found no significant statistical differences between the two newborn groups, except for the length of oxygenation supply that was longer in the Outborn Group.

  3. Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants

    NARCIS (Netherlands)

    Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Veenendaal, Mariëtte B.; van Kaam, Anton H.

    2012-01-01

    To assess the regional respiratory time constants of lung volume changes during stepwise lung recruitment before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. A stepwise oxygenation-guided recruitment procedure was performed before and after surfactant

  4. Assessment of dynamic mechanical properties of the respiratory system during high-frequency oscillatory ventilation*.

    Science.gov (United States)

    Dellacà, Raffaele L; Zannin, Emanuela; Ventura, Maria L; Sancini, Giulio; Pedotti, Antonio; Tagliabue, Paolo; Miserocchi, Giuseppe

    2013-11-01

    1) To investigate the possibility of estimating respiratory system impedance (Zrs, forced oscillation technique) by using high-amplitude pressure oscillations delivered during high-frequency oscillatory ventilation; 2) to characterize the relationship between Zrs and continuous distending pressure during an increasing/decreasing continuous distending pressure trial; 3) to evaluate how the optimal continuous distending pressure identified by Zrs relates to the point of maximal curvature of the deflation limb of the quasi-static pressure-volume curve. Prospective laboratory animal investigation. Experimental medicine laboratory. Eight New Zealand rabbits. The rabbits were ventilated with high-frequency oscillatory ventilation. Zrs was measured while continuous distending pressure was increased and decreased between 2 and 26 cm H2O in 1-minute steps of 4 cm H2O. At each step, a low-amplitude (6 cm H2O) sinusoidal signal was alternated with a high-amplitude (18 cm H2O) asymmetric high-frequency oscillatory ventilation square pressure waveform. Pressure-volume curves were determined at the end of the continuous distending pressure trial. All measurements were repeated after bronchoalveolar lavage. Zrs was estimated from flow and pressure measured at the inlet of the tracheal tube and expressed as resistance (Rrs) and reactance (Xrs). Linear correlation between the values, measured by applying the small-amplitude sinusoidal signal and the ventilator waveform, was good for Xrs (r = 0.95 ± 0.04) but not for Rrs (r = 0.60 ± 0.34). Following lavage, the Xrs-continuous distending pressure curves presented a maximum on the deflation limb, identifying an optimal continuous distending pressure that was, on average, 1.1 ± 1.7 cm H2O below the point of maximal curvature of the deflation limb of the pressure-volume curves. Xrs can be accurately measured during high-frequency oscillatory ventilation without interrupting ventilation and/or connecting additional devices. An optimal

  5. Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Manyoel eLim

    2016-03-01

    Full Text Available Recent human neuroimaging studies have suggested that fibromyalgia (FM, a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC and orbitofrontal cortex (OFC. Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM.

  6. Nasal high-frequency oscillatory ventilation impairs heated humidification: A neonatal bench study.

    Science.gov (United States)

    Ullrich, Tim L; Czernik, Christoph; Bührer, Christoph; Schmalisch, Gerd; Fischer, Hendrik S

    2017-11-01

    Nasal high-frequency oscillatory ventilation (nHFOV) is a novel mode of non-invasive ventilation used in neonates. However, upper airway obstructions due to viscous secretions have been described as specific adverse effects. We hypothesized that high-frequency oscillations reduce air humidity in the oropharynx, resulting in upper airway desiccation. Therefore, we aimed to investigate the effects of nHFOV ventilatory settings on oropharyngeal gas conditions. NHFOV or nasal continuous positive airway pressure (nCPAP) was applied, along with heated humidification, to a previously established neonatal bench model that simulates oropharyngeal gas conditions during spontaneous breathing through an open mouth. A digital thermo-hygro sensor measured oropharyngeal temperature (T) and humidity at various nHFOV frequencies (7, 10, 13 Hz), amplitudes (10, 20, 30 cmH 2 O), and inspiratory-to-expiratory (I:E) ratios (25:75, 33:66, 50:50), and also during nCPAP. Relative humidity was always >99%, but nHFOV resulted in lower mean T and absolute humidity (AH) in comparison to nCPAP (P humidification during nHFOV. © 2017 Wiley Periodicals, Inc.

  7. Elective high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome: an individual patient data meta-analysis

    NARCIS (Netherlands)

    Cools, Filip; Askie, Lisa M.; Offringa, Martin; Cools, F.; Askie, L.; Henderson-Smart, D.; Asselin, J.; Calvert, S.; Courtney, S.; Craft, A.; Dani, C.; Durand, D.; Finer, N.; Fischer, D.; Greenough, A.; Marlow, N.; Moriette, G.; Peacock, J.; Plavka, R.; Raju, T.; Rettwitz-Volk, W.; Schreiber, M.; Tamura, M.; Thome, U.; Truffert, P.; van Reempts, P.; Vendettuoli, V.; Vento, G.; Pillow, J.; Stewart, L.; Soll, R.; Bollen, C.

    2009-01-01

    BACKGROUND: Despite the considerable amount of evidence from randomized controlled trials and meta-analyses, uncertainty remains regarding the efficacy and safety of high-frequency oscillatory ventilation as compared to conventional ventilation in the early treatment of respiratory distress syndrome

  8. Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    Xiaofei Qin

    2013-01-01

    Full Text Available Alveolar epithelial type II cells (AECIIs containing lamellar bodies (LBs are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI. After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group, namely, control (no mechanical ventilation, conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.

  9. Tesla’s high voltage and high frequency generators with oscillatory circuits

    Directory of Open Access Journals (Sweden)

    Cvetić Jovan M.

    2016-01-01

    Full Text Available The principles that represent the basics of the work of the high voltage and high frequency generator with oscillating circuits will be discussed. Until 1891, Tesla made and used mechanical generators with a large number of extruded poles for the frequencies up to about 20 kHz. The first electric generators based on a new principle of a weakly coupled oscillatory circuits he used for the wireless signal transmission, for the study of the discharges in vacuum tubes, the wireless energy transmission, for the production of the cathode rays, that is x-rays and other experiments. Aiming to transfer the signals and the energy to any point of the surface of the Earth, in the late of 19th century, he had discovered and later patented a new type of high frequency generator called a magnifying transmitter. He used it to examine the propagation of electromagnetic waves over the surface of the Earth in experiments in Colorado Springs in the period 1899-1900. Tesla observed the formation of standing electromagnetic waves on the surface of the Earth by measuring radiated electric field from distant lightning thunderstorm. He got the idea to generate the similar radiation to produce the standing waves. On the one hand, signal transmission, i.e. communication at great distances would be possible and on the other hand, with more powerful and with at least three magnifying transmitters the wireless transmission of energy without conductors at any point of the Earth surface could also be achieved. The discovery of the standing waves on the surface of the Earth and the invention of the magnifying transmitter he claimed his greatest inventions. Less than two years later, at the end of 1901, he designed and started to build a much stronger magnifying transmitter on Long Island near New York City (the Wardenclyffe tower wishing to become a world telecommunication center. During the tower construction, he elaborated the plans for an even stronger transmitter based on

  10. Humidification during high-frequency oscillatory ventilation for adults: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Imanaka, Hideaki; Ueta, Masahiko; Nishimura, Masaji

    2010-12-01

    High-frequency oscillatory ventilation (HFOV) has recently been applied to acute respiratory distress syndrome patients. However, the issue of humidification during HFOV has not been investigated. In a bench study, we evaluated humidification during HFOV for adults to test if adequate humidification was achieved in 2 different HFOV systems. We tested 2 brands of adult HFOV ventilators, the R100 (Metran, Japan) and the 3100B (SensorMedics, CA), under identical bias flow. A heated humidifier consisting of porous hollow fiber (Hummax II, Metran) was set for the R100, and a passover-type heated humidifier (MR850, Fisher & Paykel) was set for the 3100B, while inspiratory heating wire was applied to both systems. Each ventilator was connected to a lung model in an incubator. Absolute humidity, relative humidity and temperature at the airway opening were measured using a hygrometer under a variety of ventilatory settings: 3 stroke volumes/amplitudes, 3 frequencies, and 2 mean airway pressures. The R100 ventilator showed higher absolute humidity, higher relative humidity, and lower temperature than the 3100B. In the R100, as stroke volume and frequency increased, absolute humidity and temperature increased. In the 3100B, amplitude, frequency, and mean airway pressure minimally affected absolute humidity and temperature. Relative humidity was almost 100% in the R100, while it was 80.5±2.3% in the 3100B. Humidification during HFOV for adults was affected by stroke volume and frequency in the R100, but was not in the 3100B. Absolute humidity was above 33 mgH_2 O/L in these 2 systems under a range of settings.

  11. Cardiovascular responses to high-frequency oscillatory ventilation during acute lung injury in sheep.

    Science.gov (United States)

    Nakagawa, Rikimaru; Koizumi, Tomonobu; Ono, Koichi; Tsushima, Kenji; Yoshikawa, Sumiko; Kubo, Keishi; Otagiri, Tetutarou

    2007-01-01

    The present study was designed to evaluate pulmonary and systemic hemodynamics and blood gas changes on switching from conventional mechanical ventilation (CMV) to high-frequency oscillatory ventilation (HFOV) in a large animal model of acute lung injury. Eleven anesthetised sheep chronically instrumented with vascular monitoring were prepared. Animals received oleic acid (0.08 ml x kg(-1)) intravenously and were ventilated for 4 h h after the administration of oleic acid. The animals were then randomized into the two following different ventilation modes: CMV (tidal volume [V(T)], 6 ml x kg(-1); respiratory rate [RR], 25 x min(-1)) with positive end-expiratory pressure (PEEP) of 12 cmH(2)O; or CMV under the same settings without PEEP. HFOV was then switched. The setting of mean airway pressure with a fixed stroke volume was changed between 25, 18, and 12 cmH(2)O every 20 min. Mean pulmonary artery pressure, pulmonary artery occlusive pressure (Paop), left atrium pressure, systemic arterial pressure, cardiac output (CO), and blood gas composition under each setting were measured before and after HFOV. Switching to HFOV, from without PEEP, resulted in significant increases in Paop and PaO2 and a decrease in CO at higher (25, 18 cmH(2)O) mean airway pressure. However, when changed from low V(T) and PEEP, HFOV produced further improvements in oxygenation without any deterioration of cardiovascular depression. Thus, switching to HFOV from CMV with low V(T) and high PEEP may have little influence on pulmonary or systemic hemodynamics in acute lung injury. We conclude that hemodynamic responses are dependent on the predefined setting of PEEP during CMV, and on applied mean airway pressure during HFOV.

  12. First intention high-frequency oscillatory and conventional mechanical ventilation in premature infants without antenatal glucocorticoid prophylaxis.

    Science.gov (United States)

    Salvo, Vincenzo; Zimmermann, Luc J; Gavilanes, Antonio W; Barberi, Ignazio; Ricotti, Alberto; Abella, Raul; Frigiola, Alessandro; Giamberti, Alessandro; Florio, Pasquale; Tagliabue, Paolo; Tina, Lucia G; Nigro, Francesco; Temporini, Francesca; Gazzolo, Diego

    2012-01-01

    Data comparing the effectiveness of high-frequency oscillatory ventilation and of conventional mechanical ventilation in the treatment of respiratory distress syndrome of very low birth weight infants are, to date, still matter of debate. We investigated the effects of first intention high-frequency oscillatory ventilation or conventional mechanical ventilation support on selected primary and secondary outcomes in very low birth weight infants complicated by respiratory distress syndrome in which antenatal glucocorticoid prophylaxis was not performed. Multicenter randomized control trial. Three tertiary centers of neonatal intensive care units from December 2004 to December 2007. Eighty-eight very low birth weight infants complicated by respiratory distress syndrome, without antenatal glucocorticoids, supported by first intention high-frequency oscillatory ventilation (n = 44) or conventional mechanical ventilation (n = 44). All newborns were monitored by standard monitoring procedure, including routine laboratory variables, neurologic patterns, and ultrasound imaging. Primary outcomes were: the length of ventilatory support, the need of reintubation, and the length of nasal continuous positive airway pressure support in the postextubation period. Secondary outcomes were: the length of stay in neonatal intensive care unit and in hospital, death before discharge, adverse short- and long-term pulmonary and neonatal outcomes, and the need for a second dose of surfactant and of postnatal glucocorticoid treatment. High-frequency oscillatory ventilation infants showed a significant lower duration (p ventilator dependency, lower need of reintubation and of duration of nasal continuous positive airway pressure support in the postextubation period. Among secondary outcomes in the high-frequency oscillatory ventilation infants, the need of a second dose of surfactant administration, and the length of stay in the neonatal intensive care unit and in hospital were significantly

  13. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  14. A translational cellular model to study the impact of high-frequency oscillatory ventilation on human epithelial cell function.

    Science.gov (United States)

    Mowes, Anja; de Jongh, Beatriz E; Cox, Timothy; Zhu, Yan; Shaffer, Thomas H

    2017-01-01

    High-frequency oscillatory ventilation (HFOV) has been proposed as gentle ventilation strategy to prevent lung injury in the preterm infant. High-frequency jet ventilation leads to dimensional and mechanical airway deformation in animal airway models, which is consistent with translational studies demonstrating the impact of oxygen and biophysical stresses on normal airway cellular function. There is an overall paucity of clinical and cellular data on the impact of HFOV on the conducting airway. We developed an innovative method to test the impact of the clinical HFO Ventilator (SensorMedics 3100A) on human epithelial cell function. In this translational model, we were able to study the differential effects of biophysical stress due to HFOV independently and in combination with hyperoxia on a direct cellular level of the conducting airway system. Additionally, we could demonstrate that hyperoxia and pressure by HFOV independently resulted in significant cell dysfunction and inflammation, while the combination of HFOV and hyperoxia had a synergistic effect, resulting in greater cell death. Traditionally, large-animal models are used to analyze the impact of clinical ventilators on lung cellular function. In our dual-chamber model, we interface high-frequency oscillatory ventilation (HFOV) directly with airway cells to study the effects of HFOV independently and combined with hyperoxia. Therefore, it is possible to study the preclinical impact of interventional factors without the high cost of animal models, thus reducing staff, time, as well as animal sparing. Copyright © 2017 the American Physiological Society.

  15. Early activation of inflammation and clotting in the preterm lamb with neonatal RDS : Comparison of conventional ventilation and high frequency oscillatory ventilation

    NARCIS (Netherlands)

    Jaarsma, AS; Geven, WB; Van Oeveren, W; Oetomo, SB

    2001-01-01

    In neonatal respiratory distress syndrome activation of inflammation and clotting is demonstrated. High frequency oscillatory ventilation (HFOV) is considered to be less damaging to the human preterm lung, resulting in less activation of inflammation and clotting compared with conventional

  16. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position

    Science.gov (United States)

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    Objective To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Methods Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Results Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. Conclusion High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation. PMID:29236845

  17. Are All Oscillators Created Equal? In vitro Performance Characteristics of Eight High-Frequency Oscillatory Ventilators.

    Science.gov (United States)

    Tingay, David G; John, Jubal; Harcourt, Edward R; Black, Don; Dargaville, Peter A; Mills, John F; Davis, Peter G

    2015-01-01

    The mode of waveform generation and circuit characteristics differ between high-frequency oscillators. It is unknown if this influences performance. To describe the relationships between set and delivered pressure amplitude (x0394;P), and the interaction with frequency and endotracheal tube (ETT) diameter, in eight high-frequency oscillators. Oscillators were evaluated using a 70-ml test lung at 1.0 and 2.0 ml/cm H2O compliance, with mean airway pressures (PAW) of 10 and 20 cm H2O, frequencies of 5, 10 and 15 Hz, and an ETT diameter of 2.5 and 3.5 mm. At each permutation of PAW, frequency and ETT, the set x0394;P was sequentially increased from 15 to 50 cm H2O, or from 20 to 100% maximum amplitude (10% increments) depending on the oscillator design. The x0394;P at the ventilator (x0394;PVENT), airway opening (x0394;PAO) and within the test lung (x0394;PTRACH), and tidal volume (V(T)) at the airway opening were determined at each set x0394;P. In two oscillators the relationships between set and delivered x0394;P were non-linear, with a plateau in x0394;P thresholds noted at all frequencies (Dräger Babylog 8000) or ≥10 Hz (Dräger VN500). In all other devices there was a linear relationship between x0394;PVENT, x0394;PAO and x0394;PTRACH (all r2 >0.93), with differing attenuation of the pressure wave. Delivered V(T) at the different settings tested varied between devices, with some unable to deliver V(T) >3 ml at 15 Hz, and others generating V(T)>20 ml at 5 Hz and a 1:1 inspiratory-to-expiratory time ratio. Clinicians should be aware that modern high-frequency oscillators exhibit important differences in the delivered x0394;P and V(T). © 2015 S. Karger AG, Basel.

  18. New generation neonatal high frequency ventilators: effect of oscillatory frequency and working principles on performance.

    Science.gov (United States)

    Grazioli, Serge; Karam, Oliver; Rimensberger, Peter C

    2015-03-01

    Several new generation neonatal ventilators that incorporate conventional as well as high frequency ventilation (HFOV) have appeared on the market. Most of them offer the possibility to use HFOV in a volume-targeted mode, despite absence of any preclinical data. With a bench test, we evaluated the performances of 4 new neonatal HFOV devices and compared them to the SensorMedics HFOV device. Expiratory tidal volumes (V(T)) were measured for various ventilator settings and lung characteristics (ie, modifications of compliance and resistance of the system), to mimic several clinical conditions of pre-term and term infants. Increasing the frequency proportionally decreased the V(T) for all the ventilators, although the magnitude of the decrease was highly variable between ventilators. At 15 Hz and a pressure amplitude of 60 cm H2O, the delivered V(T) ranged from 3.5 to 5.9 mL between devices while simulating pre-term infant conditions and from 2.6 to 6.3 mL while simulating term infant conditions. Activating the volume-targeted mode in the 3 machines that offer this mode allowed the V(T) to remain constant over the range of frequencies and with changes of lung mechanical properties, for pre-term infant settings only while targeting a V(T) of 1 mL. These new generation neonatal ventilators were able to deliver adequate V(T) under pre-term infant, but not term infant respiratory system conditions. The clinical relevance of these findings will need to be determined by further studies. Copyright © 2015 by Daedalus Enterprises.

  19. [Clinical efficacy of high-frequency oscillatory ventilation combined with pulmonary surfactant in treatment of neonatal pulmonary hemorrhage].

    Science.gov (United States)

    Lin, Xin-Zhu; Lai, Ji-Dong; Lv, Mei; Zhu, Yao; Wang, Lian; Chen, Chao

    2015-04-01

    To explore the clinical efficacy of high-frequency oscillatory ventilation (HFOV) combined with pulmonary surfactant (PS) in the treatment of neonatal pulmonary hemorrhage (NPH). A total of 122 neonates diagnosed with NPH between January 2010 and June 2014 were enrolled. After being stratified by gestational age, the neonates were randomly divided into treatment (HFOV+PS) and control (HFOV alone) groups (n=61 each). Both groups were treated with HFOV after the onset of NPH. After 2-4 hours of HFOV treatment, the treatment group received PS via intratracheal injections, followed by continuous use of HFOV. Dynamic changes in the blood gas, oxygenation index (OI), and PaO2/FiO2 (P/F) values of the neonates were determined before HFOV treatment and after 6, 12, and 24 hours of HFOV treatment. The time to hemostasis, duration of ventilation, incidence of complications, and cure rate were compared between groups. After 6, 12, and 24 hours of HFOV treatment, the treatment group had significantly improved PaO2, PaCO2, O/I, and P/F values compared with the control group (P0.05). HFOV combined with PS is an effective treatment to improve oxygenation, shorten the time to hemostasis and the duration of ventilation, and reduce the incidence of complications in neonates with NPH. However, the dual therapy is unable to reduce the mortality of neonates compared with HFOV monotherapy.

  20. [Clinical efficacy of preferred use of high-frequency oscillatory ventilation in treatment of neonatal pulmonary hemorrhage].

    Science.gov (United States)

    Wang, Hua; Du, Li-Zhong; Tang, Jun; Wu, Jin-Lin; Mu, De-Zhi

    2015-03-01

    To investigate the clinical efficacy and safety of preferred use of high-frequency oscillatory ventilation (HFOV) in the treatment of neonatal pulmonary hemorrhage. The clinical efficacy of preferred use of HFOV (preferred use group) and rescue use of HFOV after conventional mechanical ventilation proved ineffective (rescue use group) in the treatment of 26 cases of neonatal pulmonary hemorrhage was retrospectively analyzed. The oxygenation index (OI), pulmonary hemorrhage time, hospitalization time, ventilation time, oxygen therapy time, complications, and outcome of the two groups were compared. Compared with the rescue use group, the preferred use group had significantly lower IO values at 1, 6, 12, 24, 48, and 72 hours after treatment (Phemorrhage, and digestive tract hemorrhage between the two groups (P>0.05). Compared with those in the rescue use group, children who survived in the preferred use group had significantly shorter pulmonary hemorrhage time, hospitalization time, ventilation time, and oxygen therapy time (P<0.05). Compared with the rescue use of HFOV, preferred use of HFOV can better improve oxygenation function, reduce the incidence of VAP, shorten the course of disease, and increase cure rate while not increasing the incidence of adverse effects.

  1. Gentamicin pharmacokinetics in term newborn infants receiving high-frequency oscillatory ventilation or conventional mechanical ventilation: a case-controlled study.

    Science.gov (United States)

    Bhatt-Mehta, Varsha; Donn, Steven M

    2003-10-01

    To compare the pharmacokinetics of gentamicin in infants receiving high-frequency oscillatory ventilation (HFOV) with infants receiving conventional mechanical ventilation. A case-controlled study design was used to compare the pharmacokinetics of gentamicin in critically ill infants receiving HFOV and conventional mechanical ventilation. Medical records of all full-term newborn infants (> or =37 weeks gestational age) who received either high-frequency mechanical ventilation or conventional mechanical ventilation between 1991 and 2001 were reviewed and relevant patient demographics, renal function tests and gentamicin administration and plasma concentration data collected. Elimination rate constant, half-life, volume of distribution and clearance for both groups were calculated using standard kinetics equations. A tertiary care children's hospital. Newborn infants, > or =37 weeks gestational age, receiving gentamicin and high-frequency mechanical ventilation or conventional mechanical ventilation. In total, 18 patients were included in the conventional mechanical ventilation group and 15 in the HFOV group. The mean gentamicin dose for conventional mechanical ventilation and HFOV groups infants were 2.52+/-0.07 and 2.5+/-0.07 mg/kg/dose, respectively. Initial dosing interval was 12 hours in all of the conventional mechanical ventilation infants and 13 of the 15 HFOV infants. The dosing interval for the remaining two HFOV infants was 18 hours. No patient in either group demonstrated oliguria. Statistical analysis using the Student t-test for unequal variances yielded significant differences between the two groups with regard to elimination rate constant, half-life, volume of distribution and clearance, with a p value of mechanical ventilation group (13.4+2.23) (p>0.05). Infants receiving HFOV had reduced gentamicin clearance. Full-term infants receiving HFOV should be initiated at gentamicin dosing intervals of 18 hours rather than the traditional 12 hours

  2. Humidification of base flow gas during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    Science.gov (United States)

    Shiba, Naoki; Nagano, Osamu; Hirayama, Takahiro; Ichiba, Shingo; Ujike, Yoshihito

    2012-01-01

    In adult high-frequency oscillatory ventilation (HFOV) with an R100 artificial ventilator, exhaled gas from patient's lung may warm the temperature probe and thereby disturb the humidification of base flow (BF) gas. We measured the humidity of BF gas during HFOV with frequencies of 6, 8 and 10 Hz, maximum stroke volumes (SV) of 285, 205, and 160 ml at the respective frequencies, and, BFs of 20, 30, 40 l/min using an original lung model. The R100 device was equipped with a heated humidifier, Hummax Ⅱ, consisting of a porous hollow fiber in circuit. A 50-cm length of circuit was added between temperature probe (located at 50 cm proximal from Y-piece) and the hollow fiber. The lung model was made of a plastic container and a circuit equipped with another Hummax Ⅱ. The lung model temperature was controlled at 37℃. The Hummax Ⅱ of the R100 was inactivated in study-1 and was set at 35℃ or 37℃ in study-2. The humidity was measured at the distal end of the added circuit in study-1 and at the proximal end in study-2. In study-1, humidity was detected at 6 Hz (SV 285 ml) and BF 20 l/min, indicating the direct reach of the exhaled gas from the lung model to the temperature probe. In study-2 the absolute humidity of the BF gas decreased by increasing SV and by increasing BF and it was low with setting of 35℃. In this study setting, increasing the SV induced significant reduction of humidification of the BF gas during HFOV with R100.

  3. High-frequency oscillatory ventilation in pediatric acute hypoxemic respiratory failure: disease-specific morbidity survival analysis.

    Science.gov (United States)

    Babbitt, Christopher J; Cooper, Michael C; Nussbaum, Eliezer; Liao, Eileen; Levine, Glenn K; Randhawa, Inderpal S

    2012-12-01

    Multiple ventilatory strategies for acute hypoxemic respiratory failure (AHRF) in children have been advocated, including high-frequency oscillatory ventilation (HFOV). Despite the frequent deployment of HFOV, randomized controlled trials remain elusive and currently there are no pediatric trials looking at its use. Our longitudinal study analyzed the predictive clinical outcome of HFOV in pediatric AHRF given disease-specific morbidity. A retrospective 8-year review on pediatric intensive care unit admissions with AHRF ventilated by HFOV was performed. Primary outcomes included survival, morbidity, length of stay (LOS), and factors associated with survival or mortality. A total of 102 patients underwent HFOV with a 66 % overall survival rate. Survivors had a greater LOS than nonsurvivors (p = 0.001). Mortality odds ratio (OR) for patients without bronchiolitis was 8.19 (CI = 1.02, 65.43), and without pneumonia it was 3.07 (CI = 1.12, 8.39). A lower oxygenation index (OI) after HFOV commencement and at subsequent time points analyzed predicted survival. After 24 h, mortality was associated with an OI > 35 [OR = 31.11 (CI = 3.25, 297.98)]. Sepsis-related mortality was associated with a higher baseline FiO(2) (0.88 vs. 0.65), higher OI (42 vs. 22), and augmented metabolic acidosis (pH of 7.25 vs. 7.32) evaluated 4 h on HFOV (p pediatric AHRF of various etiologies. Patients with morbidity limited to the respiratory system and optimized oxygenation indices are most likely to survive on HFOV.

  4. Efficiency of high-frequency oscillatory ventilation combined with pulmonary surfactant in the treatment of neonatal meconium aspiration syndrome.

    Science.gov (United States)

    Chen, Dong-Mei; Wu, Lian-Qiang; Wang, Rui-Quan

    2015-01-01

    The aim of this study was to investigate the clinical efficiency of the use high-frequency oscillatory ventilation (HFOV) combined with pulmonary surfactant (PS) for the treatment of neonatal meconium aspiration syndrome (MAS). Clinical data of 53 MAS patients admitted to neonatal intensive care unit (NICU) was collected and the patients were divided into 3 groups according to the different treatment approach: group 1 conventional mechanical ventilation (CMV); group 2 HFOV; group 3 HFOV + PS. By monitoring the changes in oxygenation function indicators such as inhaled oxygen concentration (FiO2), oxygenation index (OI) and arterial oxygen tension/alveolar arterial oxygen tension (a/ApO2) of three groups after 2, 12, 24, 48 h of treatment, the usage of the ventilator, duration of hospitalization, changes in clinical manifestations and outcomes of three groups were analyzed. As compared to group 1, the difference in all the oxygenation function indicators after treatment in group 2 and group 3 was statistically significant at different points in time (P < 0.05). However, the timing and extent of the change in the indicators in group 3 were more significant than in group 2; as compared to group 1, the ventilation time, duration of the oxygen therapy and hospitalization time of group 2 and group 3 were significantly shorter and the difference was statistically significant (P < 0.05). Early use of HFOV combined with PS to treat MAS has significant therapeutic effect, especially for the treatment of severe MAS where it can be used as a safer and more effective rescue measure.

  5. Numerical integrators for Stiff and Stiff oscillatory First Order initial ...

    African Journals Online (AJOL)

    Numerical integrators for Stiff and Stiff oscillatory First Order initial value problems. ... Journal of the Nigerian Association of Mathematical Physics ... In this paper, efforts are geared towards the numerical solution of the first order initial value problem (I.V.P) of the form Y\\' = F(X,Y), X∈[ a, b] , Y(a) = Y0, where Y\\' is the total ...

  6. Effects on Lung Function of Small-Volume Conventional Ventilation and High-Frequency Oscillatory Ventilation in a Model of Meconium Aspiration Syndrome.

    Science.gov (United States)

    Mikusiakova, L Tomcikova; Pistekova, H; Kosutova, P; Mikolka, P; Calkovska, A; Mokra, D

    2015-01-01

    For treatment of severe neonatal meconium aspiration syndrome (MAS), lung-protective mechanical ventilation is essential. This study compared short-term effects of small-volume conventional mechanical ventilation and high-frequency oscillatory ventilation on lung function in experimentally-induced MAS. In conventionally-ventilated rabbits, MAS was induced by intratracheal instillation of meconium suspension (4 ml/kg, 25 mg/ml). Then, animals were ventilated conventionally with small-volume (f-50/min; VT-6 ml/kg) or with high frequency ventilation (f-10/s) for 4 h, with the evaluation of blood gases, ventilatory pressures, and pulmonary shunts. After sacrifice, left lung was saline-lavaged and cells in bronchoalveolar lavage fluid (BALF) were determined. Right lung was used for the estimation of lung edema formation (wet/dry weight ratio). Thiobarbituric acid-reactive substances (TBARS), oxidative damage markers, were detected in lung tissue and plasma. Meconium instillation worsened gas exchange, and induced inflammation and lung edema. Within 4 h of ventilation, high frequency ventilation improved arterial pH and CO2 elimination compared with conventional ventilation. However, no other significant differences in oxygenation, ventilatory pressures, shunts, BALF cell counts, TBARS concentrations, or edema formation were observed between the two kinds of ventilation. We conclude that high frequency ventilation has only a slight advantage over small-volume conventional ventilation in the model of meconium aspiration syndrome in that it improves CO2 elimination.

  7. Ventilação oscilatória de alta freqüência em pediatria e neonatologia High-frequency oscillatory ventilation in pediatrics and neonatology

    Directory of Open Access Journals (Sweden)

    José Roberto Fioretto

    2009-03-01

    frequency oscillatory ventilation and describe its main clinical applications for children and neonates. Articles from the last 15 years were selected using MedLine and SciElo databases. The following key words were used: high frequency oscillatory ventilation, mechanical ventilation, acute respiratory distress syndrome, children, and new-born. The review describes high frequency oscillatory ventilation in children with acute respiratory distress syndrome, air leak syndrome, and obstructive lung disease. Respiratory distress syndrome, bronchopulmonary dysplasia, intracranial hemorrhage, periventricular leukomalacia, and air leak syndrome were reviewed in neonates. Transition from conventional mechanical ventilation to high frequency ventilation and its adjustments relating to oxygenation, CO2 elimination, chest radiography, suctioning, sedatives and use of neuromuscular blocking agents were described. Weaning and complications were also reported. For children, high frequency oscillatory ventilation is a therapeutic option, particularly in acute respiratory distress syndrome, and should be used as early as possible. It may be also useful in the air leak syndrome and obstructive pulmonary disease. Evidence that, in neonates, high frequency oscillatory ventilation is superior to conventional mechanical ventilation is lacking. However there is evidence that better results are only achieved with this ventilatory mode to manage the air leak syndrome.

  8. Sustained inflation and incremental mean airway pressure trial during conventional and high-frequency oscillatory ventilation in a large porcine model of acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Wunder Christian

    2006-06-01

    Full Text Available Abstract Background To compare the effect of a sustained inflation followed by an incremental mean airway pressure trial during conventional and high-frequency oscillatory ventilation on oxygenation and hemodynamics in a large porcine model of early acute respiratory distress syndrome. Methods Severe lung injury (Ali was induced in 18 healthy pigs (55.3 ± 3.9 kg, mean ± SD by repeated saline lung lavage until PaO2 decreased to less than 60 mmHg. After a stabilisation period of 60 minutes, the animals were randomly assigned to two groups: Group 1 (Pressure controlled ventilation; PCV: FIO2 = 1.0, PEEP = 5 cmH2O, VT = 6 ml/kg, respiratory rate = 30/min, I:E = 1:1; group 2 (High-frequency oscillatory ventilation; HFOV: FIO2 = 1.0, Bias flow = 30 l/min, Amplitude = 60 cmH2O, Frequency = 6 Hz, I:E = 1:1. A sustained inflation (SI; 50 cmH2O for 60s followed by an incremental mean airway pressure (mPaw trial (steps of 3 cmH2O every 15 minutes were performed in both groups until PaO2 no longer increased. This was regarded as full lung inflation. The mPaw was decreased by 3 cmH2O and the animals reached the end of the study protocol. Gas exchange and hemodynamic data were collected at each step. Results The SI led to a significant improvement of the PaO2/FiO2-Index (HFOV: 200 ± 100 vs. PCV: 58 ± 15 and TAli: 57 ± 12; p 2-reduction (HFOV: 42 ± 5 vs. PCV: 62 ± 13 and TAli: 55 ± 9; p Ali: 6.1 ± 1 vs. T75: 3.4 ± 0.4; PCV: TAli: 6.7 ± 2.4 vs. T75: 4 ± 0.5; p Conclusion A sustained inflation followed by an incremental mean airway pressure trial in HFOV improved oxygenation at a lower mPaw than during conventional lung protective ventilation. HFOV but not PCV resulted in normocapnia, suggesting that during HFOV there are alternatives to tidal ventilation to achieve CO2-elimination in an "open lung" approach.

  9. [Clinical effect of high-frequency oscillatory ventilation combined with pulmonary surfactant in treatment of neonatal severe meconium aspiration syndrome complicated by pulmonary hemorrhage].

    Science.gov (United States)

    Huang, Jing; Lin, Xin-Zhu; Zheng, Zhi

    2016-11-01

    To study the clinical effect and safety of high-frequency oscillatory ventilation (HFOV) combined with pulmonary surfactant (PS) in the treatment of neonatal severe meconium aspiration syndrome (MAS) complicated by neonatal pulmonary hemorrhage (NPH). A total of 48 children with severe MAS complicated by NPH were enrolled, and a retrospective analysis was performed for the clinical effects of HFOV+PS (trial group, 25 children) and HFOV alone (control group, 23 children). The blood gas parameters, oxygenation index (OI), PaO 2 /FiO 2 (P/F) value, duration of pulmonary hemorrhage, ventilation time, length of hospital stay, incidence of complications, and outcome were compared between the two groups. At 6, 12, 24, and 48 hours after treatment, the trial group had significantly better PaO 2 , OI, and P/F value than the control group (Phemorrhage (P0.05). HFOV combined with PS can better improve oxygenation function and shorten the duration of NPH and ventilation time. Meanwhile, it does not increase the incidence of adverse events. Therefore, it is a safe and effective therapy.

  10. On the Existence of Non-Oscillatory Phase Functions for Second Order Ordinary Differential Equations in the High-Frequency Regime

    Science.gov (United States)

    2014-08-04

    L2 pRq and ensures the convergence of the improper Riemann integrals (140). 7. Fourier estimate In this section, we derive a pointwise estimate on...improper Riemann integral . If, however, we assume the function p appearing in (122) is an element of L1 pRq and impose the hypotheses of Theorem 18 on the...decomposed as the sum of a nonoscillatory function h0 and a highly oscillatory function h1 of small magnitude. However, the solution of (15) is actually

  11. Clinical experience in treatment of five H1N1 flu patients with respiratory failure with high-frequency oscillatory mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Zhi-gang ZHANG

    2011-08-01

    Full Text Available Objective To investigate the application and safety of high-frequency oscillation ventilation(HFOV in the treatment of patients suffering from H1N1 influenza with respiratory failure.Methods Self-control study was conducted.The treatment of five H1N1 influenza patients with respiratory failure was switched to HFOV after failure of conventional mechanical ventilation(CMV.Blood gas [partial pressure of oxygen(PaO2,partial pressure of carbon dioxide(PCO2,pH],respiratory mechanics indices [oxygen concentration(FiO2,mean airway pressure(Paw,static response(Cst,oxygenation index(PaO2/FiO2] before and after treatment were observed.Lung biopsy and clinical treatment data were also analyzed.Results Oxygenation was improved in 3 patients 6 to 8 hours after HFOV treatment,and marked improvement was observed after 24-48h.48-72h later,HFOV was replaced by CMV,and the patients weaned from mechanical ventilation successfully at 144h.In two patients symptoms were exacerbated after HFOV for 8 hours and the treatment was switched to CMV.Among them one died at 75h,and another one was treated with extracorporeal membrane oxygenation(ECMO and died at 145h.Conclusions HFOV can significantly improve the outcome of H1N1 flu patients with respiratory failure.The sequential treatment with HFOV followed by CMV can reduce complications and mortality.

  12. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    Science.gov (United States)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation

  13. High Frequency Jet Ventilation during Initial Management, Stabilization, and Transport of Newborn Infants with Congenital Diaphragmatic Hernia: A Case Series

    Directory of Open Access Journals (Sweden)

    Qianshen Zhang

    2013-01-01

    Full Text Available Objective. To review experience of the transport and stabilization of infants with CDH who were treated with high frequency jet ventilation (HFJV. Study Design. Retrospective chart review was performed of infants with antenatal diagnosis of CDH born between 2004 and 2009, at Mount Sinai Hospital Toronto, Ontario, Canada. Detailed information was abstracted from the charts of all infants who received HFJV. Results. Of the 55 infants, 25 were managed with HFJV at some point during resuscitation and stabilization prior to transport. HFJV was the initial ventilation mode in six cases and nineteen infants were placed on HFJV as rescue therapy. Blood gases procured from the umbilical artery before and/or after the initiation of HFJV. There was a significant difference detected for both PaCO2 (P=0.0002 and pH (P<0.0001. The pre- and posttransport vital signs remained stable and no transport related deaths or significant complications occurred. Conclusion. HFJV appears to be safe and effective providing high frequency rescue therapy for infants with CDH failing conventional mechanical ventilation. This paper supports the decision to utilize HFJV as it likely contributed to safe transport of many infants that would not otherwise have tolerated transport to a surgical centre.

  14. High frequency FEM-based power transformer modeling: Investigation of internal stresses due to network-initiated overvoltages

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, E.; Hoeidalen, H.K. [Department of Electrical Power Engineering, NTNU (Norwegian University of Science and Technology), 7491 Trondheim (Norway)

    2007-09-15

    This paper presents a method of how to obtain both terminal and internal high frequency models of power transformers using FEM. The model is established from construction information and the approach implements frequency-dependent phenomena on a physical basis. Eddy current effects are represented accurately even with a relatively coarse mesh by using a frequency-dependent complex permeability representation for the core and windings. The model can be employed in EMTP-like programs for a variety of applications, such as analysis for FRA, internal/terminal stresses and transformer network interaction. Analyses of internal stresses are elucidated in this paper. (author)

  15. High Frequency Voltage Injection Methods and Observer Design for Initial Position Detection of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Jin, Xinhai; Ni, Ronggang; Chen, Wei

    2018-01-01

    The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position at stands...

  16. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  17. High frequency oscillations in brain hemodynamic response

    Science.gov (United States)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  18. A Sparse Stochastic Collocation Technique for High-Frequency Wave Propagation with Uncertainty

    KAUST Repository

    Malenova, G.

    2016-09-08

    We consider the wave equation with highly oscillatory initial data, where there is uncertainty in the wave speed, initial phase, and/or initial amplitude. To estimate quantities of interest related to the solution and their statistics, we combine a high-frequency method based on Gaussian beams with sparse stochastic collocation. Although the wave solution, uϵ, is highly oscillatory in both physical and stochastic spaces, we provide theoretical arguments for simplified problems and numerical evidence that quantities of interest based on local averages of |uϵ|2 are smooth, with derivatives in the stochastic space uniformly bounded in ϵ, where ϵ denotes the short wavelength. This observable related regularity makes the sparse stochastic collocation approach more efficient than Monte Carlo methods. We present numerical tests that demonstrate this advantage.

  19. Initial report of the High Frequency Analyzer (HFA) onboard the ARASE (ERG) Satellite: Observations of the plasmasphere evolution and auroral kilometric radiation from the both hemisphere

    Science.gov (United States)

    Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.

    2017-12-01

    High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we

  20. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  1. High-frequency oscillatory ventilation — a clinical approach | Hamel ...

    African Journals Online (AJOL)

    During HFOV, the lungs are recruited and stabilised to avoid the cyclic stretch and shear exerted on the alveoli which occur during conventional ventilation by repeated alveolar collapse and re-expansion. Patients with deteriorating gas exchange despite increasing ventilatory settings can be successfully managed with ...

  2. High-frequency isotopic analysis of liquid water samples in the field - initial results from continuous water sampling and cavity ring-down spectroscopy

    Science.gov (United States)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James

    2016-04-01

    Studying rapidly changing hydrochemical signals in catchments can help to improve our mechanistic understanding of their water flow pathways and travel times. For these purposes, stable water isotopes (18O and 2H) are commonly used as natural tracers. However, high-frequency isotopic analyses of liquid water samples are challenging. One must capture highly dynamic behavior with high precision and accuracy, but the lab workload (and sample storage artifacts) involved in collecting and analyzing thousands of bottled samples should also be avoided. Therefore, we have tested Picarro, Inc.'s newly developed Continuous Water Sampler Module (CoWS), which is coupled to their L2130-i Cavity Ring-Down Spectrometer to enable real-time on-line measurements of 18O and 2H in liquid water samples. We coupled this isotope analysis system to a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as a UV-Vis spectroscopy system (s::can Messtechnik GmbH, Vienna, Austria) and electrochemical probes for characterization of basic water quality parameters. The system was run unattended for up to a week at a time in the laboratory and at a small catchment. At the field site, stream-water and precipitation samples were analyzed, alternating at sub-hourly intervals. We observed that measured isotope ratios were highly sensitive to the liquid water flow rate in the CoWS, and thus to the hydraulic head difference between the CoWS and the samples from which water was drawn. We used a programmable high-precision dosing pump to control the injection flow rate and eliminate this flow-rate artifact. Our experiments showed that the precision of the CoWS-L2130-i-system for 2-minute average values was typically better than 0.06‰ for δ18O and 0.16‰ for δ2H. Carryover effects were 1% or less between isotopically contrasting water samples for 30-minute sampling intervals. Instrument drift could be minimized through periodic analysis of

  3. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  4. Binaural beats at high frequencies.

    Science.gov (United States)

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  5. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    that although HFT does not render humans irrelevant, it is leading to a reconfiguration of both the ideal trading subject and the human–machine relations. Drawing on interviews with and ethnographic observations of high-frequency traders, as well as HFT ‘how to’ books, we analyze the subjectivity and self...

  6. A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    OpenAIRE

    Ngwane, F. F.; Jator, S. N.

    2017-01-01

    In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one...

  7. A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    F. F. Ngwane

    2017-01-01

    Full Text Available In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM, whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs, including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs. Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

  8. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  9. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  10. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  11. High frequency power distribution system

    Science.gov (United States)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  12. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  13. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  14. Separation of transient and oscillatory cerebral activities using over-complete rational dilation wavelet transforms

    International Nuclear Information System (INIS)

    Chaibi, S.; Lajnef, T.; Samet, M.; Kachouri, A.

    2011-01-01

    Many natural signals EEG are comprised frequency overlapping of oscillatory and transient components. In our study the intracranial EEG signals of epilepsy are composed of the superposition of oscillatory signals (HFOs: High Frequency oscillations) and a transient signals (spikes and sharp waves, etc.). The oscillatory components (HFOs) exist in the frequency band 80-500Hz. The transient components comes from nonrhythmic brain activities (spikes, sharp waves and vertex waves of varying amplitude, shape and duration) and cover a continuous wide bandwidth from low to high frequencies and resemble an HFOs events when filtered using a band pass classical filter. The classical filtering methods based on FIR filters, Wavelet transforms and the Matching Pursuit cannot separate the oscillatory from transient activities. This paper describes an approach for decomposing an iEEG signals of epilepsy into the sum of oscillatory components and a transient components based on overcomplete rational dilation wavelet transforms (overcomplete RADWT) in conjunction with morphological component analysis (MCA).

  15. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  16. Mechanical ventilation in the newborn; a simplified approach. Part 2: High-frequency ventilation.

    Science.gov (United States)

    Muhlethaler, Vincent; Malcolm, Girvan

    2014-10-01

    High frequency oscillatory ventilation (HFOV) is becoming an increasingly popular intervention in the neonatal intensive care unit. This article will attempt to explain the principles of HFOV. It is inherently more difficult to become skilled in this technique than in other forms of mechanical ventilation, so caution is warranted. © 2010 The Author. Journal of Paediatrics and Child Health © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  17. The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation.

    Science.gov (United States)

    Tingay, David G; Mills, John F; Morley, Colin J; Pellicano, Anastasia; Dargaville, Peter A

    2006-02-15

    The importance of applying high-frequency oscillatory ventilation with a high lung volume strategy in infants is well established. Currently, a lack of reliable methods for assessing lung volume limits clinicians' ability to achieve the optimum volume range. To map the pressure-volume relationship of the lung during high-frequency oscillatory ventilation in infants, to determine at what point ventilation is being applied clinically, and to describe the relationship between airway pressure, lung volume, and oxygenation. In 12 infants, a partial inflation limb and the deflation limb of the pressure-volume relationship were mapped using a quasi-static lung volume optimization maneuver. This involved stepwise airway pressure increments to total lung capacity, followed by decrements until the closing pressure of the lung was identified. Lung volume and oxygen saturation were recorded at each airway pressure. Lung volume was measured using respiratory inductive plethysmography. A distinct deflation limb could be mapped in each infant. Overall, oxygenation and lung volume were improved by applying ventilation on the deflation limb. Maximal lung volume and oxygenation occurred on the deflation limb at a mean airway pressure of 3 and 5 cm H(2)O below the airway pressure approximating total lung capacity, respectively. Using current ventilation strategies, all infants were being ventilated near the inflation limb. It is possible to delineate the deflation limb in infants receiving high-frequency oscillatory ventilation; in doing so, greater lung volume and oxygenation can be achieved, often at lower airway pressures.

  18. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  19. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  20. Emergence of Oscillatory Dynamics

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund; Mosekilde, Erik

    2012-01-01

    Besides their systems nature, as described in the preceding chapters, the single most characteristic feature of a living organism is the self-sustained activity it displays in the form of a wide variety of different oscillatory processes [25, 9, 22, 23]. The respiratory cycle and the beating of t...

  1. Imposed work of breathing during high-frequency oscillatory ventilation : a bench study

    NARCIS (Netherlands)

    van Heerde, Marc; van Genderingen, Huib R.; Leenhoven, Tom; Roubik, Karel; Ploetz, Frans B.; Markhorst, Dick G.

    2006-01-01

    Introduction The ventilator and the endotracheal tube impose additional workload in mechanically ventilated patients breathing spontaneously. The total work of breathing (WOB) includes elastic and resistive work. In a bench test we assessed the imposed WOB using 3100 A/3100 B SensorMedics

  2. Self Consistent Ambipolar Transport and High Frequency Oscillatory Transient in Graphene Electronics

    Science.gov (United States)

    2015-08-17

    presents an opportunity to study quantum electrodynamics at the nanoscale level.28,29 Other exciting properties of graphene include excellent electrical...electron dynamics is investigated with a semi- classical Boltzmann formalism, where the effects of electron-electron interactions are ignored for low

  3. High frequency system project implementation plan

    International Nuclear Information System (INIS)

    Moon, L.L.

    1976-01-01

    The High Frequency System is a new mobile, digital diagnostic recording system for use at the Nevada Test Site. Many different kinds of event data will be digitized in real-time by this system, and these data will be recorded and stored for later read-out and transmission to NADCEN. The hardware and software requirements of the High Frequency System are examined, and the parameters of the system are proposed

  4. Synchronization in oscillatory networks

    CERN Document Server

    Osipov, Grigory V; Zhou, Changsong

    2007-01-01

    The formation of collective behavior in large ensembles or networks of coupled oscillatory elements is one of the oldest and most fundamental aspects of dynamical systems theory. Potential and present applications span a vast spectrum of fields ranging from physics, chemistry, geoscience, through life- and neurosciences to engineering, the economic and the social sciences. This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or the heart muscle - to name but a few. This book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.

  5. Oscillatory high hydrostatic pressure inactivation of Zygosaccharomyces bailii.

    Science.gov (United States)

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Swanson, B G

    1998-09-01

    Zygosaccharomyces bailii inactivation was evaluated in oscillatory high hydrostatic pressure (HHP) treatments at sublethal pressures (207, 241, or 276 MPa) and compared with continuous HHP treatments in laboratory model systems with a water activity (aw) of 0.98 and pH 3.5. The yeast was inoculated into laboratory model systems and subjected to HHP in sterile bags. Two HHP treatments were conducted: continuous (holding times of 5, 10, 15, 20, 30, 60, or 90 min) and oscillatory (two, three, or four cycles with holding times of 5 min and two cycles with holding times of 10 min). Oscillatory pressure treatments increased the effectiveness of HHP processing. For equal holding times, Z. bailii counts decreased as the number of cycles increased. Holding times of 20 min in HHP oscillatory treatments at 276 MPa assured inactivation (bailii initial inoculum. Oscillatory pressurization could be useful to decrease Z. bailii inactivation time.

  6. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  7. Sedimentation of an elliptical particle in periodic oscillatory pressure driven flow

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenjun; Deng, Jianqiang; Cao, Zheng; Mei, Mei, E-mail: dengjq@mail.xjtu.edu.cn [Department of Process Equipment and Control Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 710049, Xi’an (China)

    2015-12-15

    The sedimentation of a heavy elliptical particle in a two-dimensional channel filled with Newtonian fluid under oscillatory pressure driven flow has been numerically investigated by using the finite element arbitrary Lagrangian–Eulerian method. The effects of particle Reynolds number, initial position, blockage ratio, as well as oscillation frequency and amplitude on the flow patterns during sedimentation have been studied. The results show that there exists an equilibrium position for high frequency flow, and the position of the heavier particle is closer to the centerline. As rotation contributes to non-uniform pressure on particle surface, the further initial position and lower amplitude lead to the larger scale zigzag migration; however, the maximum lateral displacements of these low frequency zigzag motions are nearly the same due to the consistent lubrication limit. Moreover, our simulation results indicate that there are five distinct modes of settling in oscillatory flow: horizontal with offset, oscillating, tumbling throughout channel, tumbling at one side and the special ‘resonance’ phenomenon. The ‘resonance’ induced by the wall is shown to have a close association with the harmonious change of drag and lift on particle surface, and be sensitive to the oscillation in the wake and the periodic discharge of vorticity from behind the body. (paper)

  8. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  9. High frequency III-V nanowire MOSFETs

    Science.gov (United States)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  10. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  11. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... to be applied, especially at low power levels where gating loss becomes a significant percentage of the total loss budget. Various resonant gate drive methods have been proposed to address this design challenge, with varying size, cost, and complexity. This dissertation presents a self-oscillating resonant gate...

  12. High Frequency Guided Wave Virtual Array SAFT

    Science.gov (United States)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  13. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy.

    Science.gov (United States)

    Liu, Su; Gurses, Candan; Sha, Zhiyi; Quach, Michael M; Sencer, Altay; Bebek, Nerses; Curry, Daniel J; Prabhu, Sujit; Tummala, Sudhakar; Henry, Thomas R; Ince, Nuri F

    2018-01-30

    High-frequency oscillations in local field potentials recorded with intracranial EEG are putative biomarkers of seizure onset zones in epileptic brain. However, localized 80-500 Hz oscillations can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or frequency, physiological high-frequency oscillations are indistinguishable from pathological ones, which limit their application in epilepsy presurgical planning. We hypothesized that pathological high-frequency oscillations occur in a repetitive fashion with a similar waveform morphology that specifically indicates seizure onset zones. We investigated the waveform patterns of automatically detected high-frequency oscillations in 13 epilepsy patients and five control subjects, with an average of 73 subdural and intracerebral electrodes recorded per patient. The repetitive oscillatory waveforms were identified by using a pipeline of unsupervised machine learning techniques and were then correlated with independently clinician-defined seizure onset zones. Consistently in all patients, the stereotypical high-frequency oscillations with the highest degree of waveform similarity were localized within the seizure onset zones only, whereas the channels generating high-frequency oscillations embedded in random waveforms were found in the functional regions independent from the epileptogenic locations. The repetitive waveform pattern was more evident in fast ripples compared to ripples, suggesting a potential association between waveform repetition and the underlying pathological network. Our findings provided a new tool for the interpretation of pathological high-frequency oscillations that can be efficiently applied to distinguish seizure onset zones from functionally important sites, which is a critical step towards the translation of these signature events into valid clinical biomarkers.awx374media15721572971001. © The Author(s) (2018). Published by Oxford University Press on

  14. High frequency x-ray generator basics.

    Science.gov (United States)

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  15. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  16. Oscillatory neural networks.

    Science.gov (United States)

    Selverston, A I; Moulins, M

    1985-01-01

    Despite the fact that a large number of neuronal oscillators have been described, there are only a few good examples that illustrate how they operate at the cellular level. For most, there is some isolated information about different aspects of the oscillator network, but too little to explain the whole mechanism. Two quite remarkable features do seem to be emerging from ongoing studies, however. One is that there are very few generalizable features common to neural oscillators. Many utilize reciprocal inhibitory circuits and endogenous burst-generating currents to some extent. All that have been well worked out utilize a combination of both cellular and network properties, but little else in the way of common mechanism is noteworthy. Perhaps the most interesting aspect of recent work is the ability of a particular oscillator to produce a large repertoire of different outputs. This is separate and in addition to changes occurring via phasic sensory feedback. It is in fact a radical functional "rewiring" of the network in response to neuromodulators. The CPG circuits represent only the most basic form of a given pattern. Finally, concerning the role of sensory feedback in generating oscillatory patterns, the concept of the CPG as a group of neurons able to produce oscillatory patterns without any sensory feedback is, in our opinion, still valid. There is no doubt that some oscillators may be quite weak when isolated, but they can still produce bursts with firing sequences similar to those seen in vivo. The fact that sensory feedback can both control and enhance the oscillations has never been in doubt. Similarly, entrainment of the pattern by sensory feedback does not mean that the receptor is part of the generator, only that it has access to it (as do command and coordinating fibers). The real question remains: Can a group of cells produce an oscillatory pattern without phasic sensory input? We must answer this affirmatively even for the insect-flight motor CPG

  17. High Frequency Components in Bottlenose Dolphin Echolocation Signals

    National Research Council Canada - National Science Library

    Toland, Ronald

    1998-01-01

    .... To assess the importance of these high frequencies in dolphin echolocation and target identification, experiments were performed in which an acoustic filter, used to suppress the high frequencies...

  18. Oscillatory Threshold Logic

    Science.gov (United States)

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  19. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  20. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  1. Ion sources for high-frequency accelerators

    International Nuclear Information System (INIS)

    Keller, R.

    1985-01-01

    Ion sources are being applied increasingly in many areas of physics and technology, from basic research in nuclear and atomic physics to energy research, isotope separation, implanation technology, surface processing and analysis all the way to biomedicine. It is impossible within the framework of this discussion to provide a comprehensive survey of the variety of avialable source types. The function and problems of the types important for high-frequency accelerators are to be explained using a few individual examples in order to stimulate a basic understanding for this technically sophisticated and little-known equipment. The sources discussed here supply singly or multiply charged, positive ions. 54 refs., 18 figs

  2. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  3. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  4. Motion of a sphere in an oscillatory boundary layer: an optical ...

    Indian Academy of Sciences (India)

    Shankar Ghosh

    2006-11-12

    Nov 12, 2006 ... Introduction. WATER. Strong distortion of motion of the sphere at high frequencies. GLYCEROL. Motion of the sphere is sinusoidal and monochromatic. Shankar Ghosh. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based study ...

  5. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  6. Encapsulation Efficiency, Oscillatory Rheometry

    Directory of Open Access Journals (Sweden)

    Z. Mohammad Hassani

    2014-01-01

    Full Text Available Nanoliposomes are one of the most important polar lipid-based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using a modified thermal method. Only one melting peak in DSC curve of gamma oryzanol bearing liposomes was observed which could be attributed to co-crystallization of both compounds. The addition of gamma oryzanol, caused to reduce the melting point of 5% (w/v lecithin-based liposome from 207°C to 163.2°C. At high level of lecithin, increasing of liposome particle size (storage at 4°C for two months was more obvious and particle size increased from 61 and 113 to 283 and 384 nanometers, respectively. The encapsulation efficiency of gamma oryzanol increased from 60% to 84.3% with increasing lecithin content. The encapsulation stability of oryzanol in liposome was determined at different concentrations of lecithin 3, 5, 10, 20% (w/v and different storage times (1, 7, 30 and 60 days. In all concentrations, the encapsulation stability slightly decreased during 30 days storage. The scanning electron microscopy (SEM images showed relatively spherical to elliptic particles which indicated to low extent of particles coalescence. The oscillatory rheometry showed that the loss modulus of liposomes were higher than storage modulus and more liquid-like behavior than solid-like behavior. The samples storage at 25°C for one month, showed higher viscoelastic parameters than those having been stored at 4°C which were attributed to higher membrane fluidity at 25°C and their final coalescence.Nanoliposomes are one of the most important polar lipid based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using modified thermal method. Only one

  7. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    Directory of Open Access Journals (Sweden)

    W.J.E.M. Zweiphenning

    2016-01-01

    Significance: ‘Baseline’ high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the ‘architecture’ of epileptogenic networks and help unravel the pathophysiology of HFOs.

  8. High frequency, high power capacitor development

    Science.gov (United States)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  9. Oscillatory integration windows in neurons

    Science.gov (United States)

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  10. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  11. Control of high-frequency AC link electronic transformer

    OpenAIRE

    Krishnaswami, H; Ramanarayanan, V

    2005-01-01

    An isolated high-frequency link AC/AC converter is termed an electronic transformer.The electronic transformer has size and cost advantages over a conventional transformer because of high-frequency operation of the magnetic core. Of the various topologies of electronic transformer, the high-frequency AC link electronic transformer achieves high-frequency AC power transformation without a DC link. The circuit uses the standard H-bridge, one on either side of the high-frequency transformer. A n...

  12. Extended high-frequency partial liquid ventilation in lung injury: gas exchange, injury quantification, and vapor loss.

    Science.gov (United States)

    Doctor, Allan; Al-Khadra, Eman; Tan, Puay; Watson, Kenneth F; Diesen, Diana L; Workman, Lisa J; Thompson, John E; Rose, Charles E; Arnold, John H

    2003-09-01

    High-frequency oscillatory ventilation with perflubron (PFB) reportedly improves pulmonary mechanics and gas exchange and attenuates lung injury. We explored PFB evaporative loss kinetics, intrapulmonary PFB distribution, and dosing strategies during 15 h of high-frequency oscillation (HFO)-partial liquid ventilation (PLV). After saline lavage lung injury, 15 swine were rescued with high-frequency oscillatory ventilation (n = 5), or in addition received 10 ml/kg PFB delivered to dependent lung [n = 5, PLV-compartmented (PLV(C))] or 10 ml/kg distributed uniformly within the lung [n = 5, PLV(U)]. In the PLV(C) group, PFB vapor loss was replaced. ANOVA revealed an unsustained improvement in oxygenation index in the PLV(U) group (P = 0.04); the reduction in oxygenation index correlated with PFB losses. Although tissue myeloperoxidase activity was reduced globally by HFO-PLV (P PFB distribution optimized gas exchange during HFO-PLV; additionally, monitoring PFB evaporative loss appears necessary to stabilize intrapulmonary PFB volume.

  13. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, hi...

  14. High-Frequency Gravitational Wave Induced Nuclear Fusion

    International Nuclear Information System (INIS)

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials

  15. On-clip high frequency reliability and failure test structures

    Science.gov (United States)

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  16. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  17. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O 2 ) injected and hydrogen peroxide (H 2 O 2 ) added discharge in water was achieved. The effect of H 2 O 2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H 2 O 2 addition with O 2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH • , H, and O). Interestingly, the results demonstrated that O 2 injected and H 2 O 2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  18. Multifunctional Magnetodielectric Composites for Antenna and High Frequency Applications

    National Research Council Canada - National Science Library

    Zhang, Xiaokai; Golt, Michael C; Ekiert, Jr., Thomas F; Yarlagadda, Shridhar; Unruh, Karl M; Xaio, John Q

    2006-01-01

    Miniaturization of high frequency antennas while maintaining desirable bandwidth, impedance, and loss characteristics has recently attracted great attention in part due to the development of metamaterials...

  19. High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders.

    Science.gov (United States)

    Stroganova, Tatiana A; Orekhova, Elena V; Prokofyev, Andrey O; Tsetlin, Marina M; Gratchev, Vitaliy V; Morozov, Alexey A; Obukhov, Yuriy V

    2012-06-01

    Illusory contour (IC) perception, a fruitful model for studying the automatic contextual integration of local image features, can be used to investigate the putative impairment of such integration in children with autism spectrum disorders (ASD). We used the illusory Kanizsa square to test how the phase-locked (PL) gamma and beta electroencephalogram (EEG) responses of typically developing (TD) children aged 3-7 years and those with ASD were modulated by the presence of IC in the image. The PL beta and gamma activity strongly differentiated between IC and control figures in both groups of children (IC effect). However, the timing, topography, and direction of the IC effect differed in TD and ASD children. Between 40 msec and 120 msec after stimulus onset, both groups demonstrated lower power of gamma oscillations at occipital areas in response to IC than in response to the control figure. In TD children, this relative gamma suppression was followed by relatively higher parieto-occipital gamma and beta responses to IC within 120-270 msec after stimulus onset. This second stage of IC processing was absent in children with ASD. Instead, their response to IC was characterized by protracted (40-270 msec) relative reduction of gamma and beta oscillations at occipital areas. We hypothesize that children with ASD rely more heavily on lower-order processing in the primary visual areas and have atypical later stage related to higher-order processes of contour integration. Copyright © 2011 Elsevier Srl. All rights reserved.

  20. Electrocorticography and the early maturation of high-frequency suppression within the default mode network.

    Science.gov (United States)

    Weaver, Kurt E; Poliakov, Andrew; Novotny, Edward J; Olson, Jared D; Grabowski, Thomas J; Ojemann, Jeffrey G

    2018-02-01

    OBJECTIVE The acquisition and refinement of cognitive and behavioral skills during development is associated with the maturation of various brain oscillatory activities. Most developmental investigations have identified distinct patterns of low-frequency electrophysiological activity that are characteristic of various behavioral milestones. In this investigation, the authors focused on the cross-sectional developmental properties of high-frequency spectral power from the brain's default mode network (DMN) during goal-directed behavior. METHODS The authors contrasted regionally specific, time-evolving high gamma power (HGP) in the lateral DMN cortex between 3 young children (age range 3-6 years) and 3 adults by use of electrocorticography (ECoG) recordings over the left perisylvian cortex during a picture-naming task. RESULTS Across all participants, a nearly identical and consistent response suppression of HGP, which is a functional signature of the DMN, was observed during task performance recordings acquired from ECoG electrodes placed over the lateral DMN cortex. This finding provides evidence of relatively early maturation of the DMN. Furthermore, only HGP relative to evoked alpha and beta band power showed this level of consistency across all participants. CONCLUSIONS Regionally specific, task-evoked suppression of the high-frequency components of the cortical power spectrum is established early in brain development, and this response may reflect the early maturation of specific cognitive and/or computational mechanisms.

  1. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakag...

  2. High frequency plant regeneration from desiccated calli of indica rice

    African Journals Online (AJOL)

    An efficient and reproducible protocol is required to achieve high frequency transformation from transformed calli. We report here high frequency plant regeneration from mature seed derived embryogenic calli of two recalcitrant indica rice cultivars HKR-46 and HKR-126 after partial desiccation treatment. Embryogenic and ...

  3. The VICI-trial: high frequency oscillation versus conventional mechanical ventilation in newborns with congenital diaphragmatic hernia: an international multicentre randomized controlled trial.

    Science.gov (United States)

    van den Hout, Lieke; Tibboel, Dick; Vijfhuize, Sanne; te Beest, Harma; Hop, Wim; Reiss, Irwin

    2011-11-02

    Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly of the diaphragm resulting in pulmonary hypoplasia and pulmonary hypertension. It is associated with a high risk of mortality and pulmonary morbidity. Previous retrospective studies have reported high frequency oscillatory ventilation (HFO) to reduce pulmonary morbidity in infants with CDH, while others indicated HFO to be associated with worse outcome. We therefore aimed to develop a randomized controlled trial to compare initial ventilatory treatment with high-frequency oscillation and conventional ventilation in infants with CDH. This trial is designed as a multicentre trial in which 400 infants (200 in each arm) will be included. Primary outcome measures are BPD, described as oxygen dependency by day 28 according to the definition of Jobe and Bancalari, and/or mortality by day 28. All liveborn infants with CDH born at a gestational age of over 34 weeks and no other severe congenital anomalies are eligible for inclusion. Parental informed consent is asked antenatally and the allocated ventilation mode starts within two hours after birth. Laboratory samples of blood, urine and tracheal aspirate are taken at the first day of life, day 3, day 7, day 14 and day 28 to evaluate laboratory markers for ventilator-induced lung injury and pulmonary hypertension. To date, randomized clinical trials are lacking in the field of CDH. The VICI-trial, as the first randomized clinical trial in the field of CDH, may provide further insight in ventilation strategies in CDH patient. This may hopefully prevent mortality and morbidity. Netherlands Trial Register (NTR): NTR1310.

  4. The VICI-trial: high frequency oscillation versus conventional mechanical ventilation in newborns with congenital diaphragmatic hernia: an international multicentre randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van den Hout Lieke

    2011-11-01

    Full Text Available Abstract Background Congenital diaphragmatic hernia (CDH is a severe congenital anomaly of the diaphragm resulting in pulmonary hypoplasia and pulmonary hypertension. It is associated with a high risk of mortality and pulmonary morbidity. Previous retrospective studies have reported high frequency oscillatory ventilation (HFO to reduce pulmonary morbidity in infants with CDH, while others indicated HFO to be associated with worse outcome. We therefore aimed to develop a randomized controlled trial to compare initial ventilatory treatment with high-frequency oscillation and conventional ventilation in infants with CDH. Methods/design This trial is designed as a multicentre trial in which 400 infants (200 in each arm will be included. Primary outcome measures are BPD, described as oxygen dependency by day 28 according to the definition of Jobe and Bancalari, and/or mortality by day 28. All liveborn infants with CDH born at a gestational age of over 34 weeks and no other severe congenital anomalies are eligible for inclusion. Parental informed consent is asked antenatally and the allocated ventilation mode starts within two hours after birth. Laboratory samples of blood, urine and tracheal aspirate are taken at the first day of life, day 3, day 7, day 14 and day 28 to evaluate laboratory markers for ventilator-induced lung injury and pulmonary hypertension. Discussion To date, randomized clinical trials are lacking in the field of CDH. The VICI-trial, as the first randomized clinical trial in the field of CDH, may provide further insight in ventilation strategies in CDH patient. This may hopefully prevent mortality and morbidity. Trial registration Netherlands Trial Register (NTR: NTR1310

  5. Automatic control of oscillatory penetration apparatus

    Science.gov (United States)

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  6. Algorithmic and high-frequency trading in Borsa Istanbul

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2016-12-01

    Full Text Available This paper investigates the levels of algorithmic trading (AT and high-frequency trading (HFT in an emerging market, Borsa Istanbul (BIST, utilizing a dataset of 354 trading days between January 2013 and May 2014. We find an upward trend in AT by using common proxies: number of messages per minute and algo_trad of Hendershott et al. (2011. Mean algo_trad for BIST 100 index constituents varies between −18 and −13 which is parallel to 2003–2005 levels of NASDAQ large cap stocks. Initially, we measure HFT involvement by detecting linked messages as in the way proposed in Hasbrouck and Saar (2013. Next, we propose an extended HFT measure which captures various HFT strategies. This measure attributes approximately 6% of the orders to HFT. HFT involvement is higher in large orders (11.96%, in orders submitted by portfolio/fund management firms (10.40%, after improvement of BIST's order submission platform and tick size reduction for certain stocks.

  7. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  8. Molybdenum (6) determination by the method of high-frequency and pH titration

    International Nuclear Information System (INIS)

    Lukianets, I.G.; Kulish, N.G.

    1981-01-01

    A possibility to determine Mo(6) using the method of high frequency and pH-metric titration is investigated. By means of the high frequency contact R-cell Mo(6) titration is performed using different precipitators: 8-oxiquinoline, lead nitrate and acetate and silver nitrate. It is established that the best conditions are achieved during titration of 67.2-1343 mg/10 ml Mo(6) with lead acetate (pH 4.5-6.5). Relative standard deviation Ssub(r) constitutes 0.005 pH-metric titration of Mo(6) with complexone 3 is studied. The range of Mo(6) concentrations determined constitutes 13.43-134.3 mg at pH initial value of 3.5-5.5. Relative standard deviation Ssub(r) constitutes 0.003. Techniques of molybdenum determination in ferromolybdenum using the method of high frequency and pH-metric titration are developed [ru

  9. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  10. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  11. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  12. Quantum inductance and high frequency oscillators in graphene nanoribbons

    Science.gov (United States)

    Begliarbekov, Milan; Strauf, Stefan; Search, Christopher P.

    2011-04-01

    Here we investigate high frequency AC transport through narrow graphene nanoribbons with top-gate potentials that form a localized quantum dot. We show that as a consequence of the finite dwell time of an electron inside the quantum dot (QD), the QD behaves like a classical inductor at sufficiently high frequencies \\omega \\gtrsim 50 GHz. When the geometric capacitance of the top-gate and the quantum capacitance of the nanoribbon are accounted for, the admittance of the device behaves like a classical serial RLC circuit with resonant frequencies ω ~ 100-900 GHz and Q-factors greater than 106. These results indicate that graphene nanoribbons can serve as all-electronic ultra-high frequency oscillators and filters, thereby extending the reach of high frequency electronics into new domains.

  13. High-frequency monitoring of stream water physicochemistry on sub ...

    African Journals Online (AJOL)

    2018-04-03

    Antarctic Marion Island, continuous high-resolution studies of the ... Findings highlight the advantages of continuous high-frequency monitoring in capturing the range ..... integration of telemetered data with process models for glacial.

  14. High Temperature, High Frequency Fuel Metering Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  15. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  16. Spontaneous spiral formation in two-dimensional oscillatory media

    Science.gov (United States)

    Kettunen, Petteri; Amemiya, Takashi; Ohmori, Takao; Yamaguchi, Tomohiko

    1999-08-01

    Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is connected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to spontaneous spiral formation and phase waves.

  17. Oscillatory Reinstatement Enhances Declarative Memory.

    Science.gov (United States)

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval

  18. Neonatal air leak syndrome and the role of high-frequency ventilation in its prevention

    Directory of Open Access Journals (Sweden)

    Mei-Jy Jeng

    2012-11-01

    Full Text Available Air leak syndrome includes pulmonary interstitial emphysema, pneumothorax, pneumomediastinum, pneumopericardium, pneumoperitoneum, subcutaneous emphysema, and systemic air embolism. The most common cause of air leak syndrome in neonates is inadequate mechanical ventilation of the fragile and immature lungs. The incidence of air leaks in newborns is inversely related to the birth weight of the infants, especially in very-low-birth-weight and meconium-aspirated infants. When the air leak is asymptomatic and the infant is not mechanically ventilated, there is usually no specific treatment. Emergent needle aspiration and/or tube drainage are necessary in managing tension pneumothorax or pneumopericardium with cardiac tamponade. To prevent air leak syndrome, gentle ventilation with low pressure, low tidal volume, low inspiratory time, high rate, and judicious use of positive end expiratory pressure are the keys to caring for mechanically ventilated infants. Both high-frequency oscillatory ventilation (HFOV and high-frequency jet ventilation (HFJV can provide adequate gas exchange using extremely low tidal volume and supraphysiologic rate in neonates with acute pulmonary dysfunction, and they are considered to have the potential to reduce the risks of air leak syndrome in neonates. However, there is still no conclusive evidence that HFOV or HFJV can help to reduce new air leaks in published neonatal clinical trials. In conclusion, neonatal air leaks may present as a thoracic emergency requiring emergent intervention. To prevent air leak syndrome, gentle ventilations are key to caring for ventilated infants. There is insufficient evidence showing the role of HFOV and HFJV in the prevention or reduction of new air leaks in newborn infants, so further investigation will be necessary for future applications.

  19. High frequency radiation from dynamic earthquake fault models

    International Nuclear Information System (INIS)

    Madariaga, R.

    1983-01-01

    We study the radiation of high frequency waves from a simple antiplane model of an earthquake source. In this model only antiplane waves are generated so that the mathematics is relatively simple, but the physics is the same as in the more complex plane or three dimensional models where P and S waves are radiated. An exact solution is found for the problem of an arbitrary moving semi-infinite crack in the presence of a general dynamic stress drop. In the case when friction is independent of time, an algebraic expression is obtained for particle velocity. This result is exploited to understand the origin of high frequency waves, and the role of rupture velocity and stress intensity on the radiation. We show that barriers and asperities dominate the radiation, but that they are indistinguishable from a high frequency point of view

  20. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  1. A MEMS-based high frequency x-ray chopper.

    Science.gov (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  2. A MEMS-based high frequency x-ray chopper

    International Nuclear Information System (INIS)

    Siria, A; Schwartz, W; Chevrier, J; Dhez, O; Comin, F; Torricelli, G

    2009-01-01

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  3. Extracting cardiac myofiber orientations from high frequency ultrasound images

    Science.gov (United States)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (pig hearts.

  4. Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain

    Directory of Open Access Journals (Sweden)

    David W. Holdsworth

    2012-03-01

    Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  5. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  6. Modelling financial high frequency data using point processes

    DEFF Research Database (Denmark)

    Hautsch, Nikolaus; Bauwens, Luc

    In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997...

  7. High frequency induction of somatic embryos and plantlet ...

    African Journals Online (AJOL)

    High frequency induction of somatic embryos and plantlet regeneration from nodal explants of Hygrophila spinosa T. Anders. A Varshney, A Shahzad, M Anis. Abstract. An efficient protocol is described for the rapid in vitro plant regeneration of a medicinally important plant, Hygrophila spinosa through direct somatic ...

  8. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545...

  9. Practical techniques for enhancing the high-frequency MASW method

    Science.gov (United States)

    For soil exploration in the vadose zone, a high-frequency multi-channel analysis of surface waves (HF-MASW) method has been developed. In the study, several practical techniques were applied to enhance the overtone image of the HF-MASW method. They included (1) the self-adaptive MASW method using a ...

  10. Free-field calibration of measurement microphones at high frequencies

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Torras Rosell, Antoni

    2011-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most of sound measurement applications related with noise assessment. However, other applications such as assessment of the noise emitted by ultrasound clean...

  11. Music students: conventional hearing thresholds and at high frequencies.

    Science.gov (United States)

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Music students: conventional hearing thresholds and at high frequencies

    Directory of Open Access Journals (Sweden)

    Débora Lüders

    2014-07-01

    Full Text Available INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry. RESULTS: Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. CONCLUSION: The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians.

  13. High-frequency ultrasonographic examination of the finger pulley system.

    Science.gov (United States)

    Boutry, Nathalie; Titécat, Marie; Demondion, Xavier; Glaude, Eddy; Fontaine, Christian; Cotten, Anne

    2005-10-01

    The purpose of this study was to determine the ability of high-frequency ultrasonography to provide for direct evaluation of the annular and cruciform finger pulley system. In the first part of the work, a cadaveric study was performed to outline the normal anatomy of the annular and cruciform finger pulley system. Eighteen cadaveric hands were cut (n = 10) or dissected (n = 8). Two musculoskeletal radiologists retrospectively reviewed in consensus the photographs of anatomic sections and dissections. This cadaveric study gave the 2 readers the opportunity to learn the normal anatomy of the finger pulley system. In the second part of the work, the annular and cruciform finger pulley system of 20 hands of volunteers was evaluated by ultrasonography with a 17-MHz linear transducer. Images were retrospectively analyzed by means of consensus of the 2 radiologists with respect to the visibility of each finger pulley. For annular (A) pulleys, high frequency ultrasonography showed A1, A2, A3, and A4 in 100%, 100%, 65%, and 100% of cases, respectively. For cruciform (C) pulleys, high-frequency ultrasonography showed only C1 in 45% of cases. Direct visualization of A5, C2, and C3 was not possible. High-frequency ultrasonography allows excellent depiction of finger pulleys except for annular pulley A5 and cruciform pulleys C2 and C3.

  14. High frequency in vitro shoot regeneration of Momordica balsamina ...

    African Journals Online (AJOL)

    A protocol was developed for in vitro propagation by multiple shoot induction of Momordica balsamina (Cucurbitaceae), a climber with high medicinal and nutritional values. High frequencies of multiple shoot regeneration were achieved from auxillary bud of nodal explants. The bud explants were cultured on MS media ...

  15. Design and development of ITER high-frequency magnetic sensor

    Czech Academy of Sciences Publication Activity Database

    Ma, Y.; Vayakis, G.; Begrambekov, L.B.; Cooper, J.-J.; Ďuran, Ivan; Hirsch, M.; Laqua, H.P.; Moreau, P.; Oosterbeek, J.W.; Spuig, P.; Stange, T.; Walsh, M.

    2016-01-01

    Roč. 112, November (2016), s. 594-612 ISSN 0920-3796 Institutional support: RVO:61389021 Keywords : ITER * High-frequency * Magnetic diagnostics * ECHa Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016

  16. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  17. Vacuum amplification of the high-frequency electromagnetic radiation

    OpenAIRE

    Vilkovisky, G. A.

    1998-01-01

    When an electrically charged source is capable of both emitting the electromagnetic waves and creating charged particles from the vacuum, its radiation gets so much amplified that only the backreaction of the vacuum makes it finite. The released energy and charge are calculated in the high-frequency approximation. The technique of expectation values is advanced and employed.

  18. High-frequency Trading, Algorithmic Finance, and the Flash Crash

    DEFF Research Database (Denmark)

    Borch, Christian

    2016-01-01

    automated trading algorithms are prone to run amok in unanticipated frenzy. In this paper, I discuss how and why the Flash Crash is being invoked as a significant event in debates about high-frequency trading and algo-financial markets. I analyse the mediatization of the event, as well as the variety...... about resonance in quantitative finance....

  19. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  20. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    forms of solitary bipolar electric field pulses which are called electrostatic solitary waves. (ESW) [1]. Karovsky et al [5] have used a BGK analysis to theoretically describe the high-frequency. ESW. Using counter-streaming electron and ion beams in a computer simulation experi- ment, Omura et al [6] have shown that the ...

  1. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  2. Oscillatory activity in the basal ganglia.

    Science.gov (United States)

    Eusebio, Alexandre; Brown, Peter

    2007-01-01

    The exact mechanisms underlying the dysfunction of the basal ganglia (BG) that leads to movement disorders such as Parkinson's disease (PD) and dystonia still remain unclear. The classic model, based on two distinct pathways and described nearly 20 years ago by Albin and Delong, fails to explain why lesion or stimulation of the globus pallidus interna improves dyskinesias and why lesion or stimulation of the thalamus does not cause prominent bradykinesia. These paradoxes, initially highlighted out by Marsden and Obeso, led to the proposition that the pattern of neuronal discharge determines pathological function. Accordingly, over the past decade, attention has switched from considerations of discharge rate to the characterisation of synchronised activity within BG networks. Here we would like to briefly review current knowledge about synchronised oscillatory activity in the BG and focus on its relationship to abnormal motor function. In particular, we hypothesise that the frequency of synchronisation helps determine the nature of any motor deficit, perhaps as a consequence of the different tuning properties of basal ganglia-cortical sub-circuits.

  3. Novel oscillatory flow reactors for biotechnological applications

    OpenAIRE

    Reis, N.

    2006-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis explores the biotechnological applications of two novel scale-down oscillatory flow reactors (OFRs). A micro-bioreactor (working mostly in batch) and a continuous meso-reactor systems were developed based on a 4.4 mm internal diameter tube with smooth periodic constrictions (SPC), both operating under oscillatory flow mixing (OFM). The first part is dedicated to the flow characterisation in the novel SPC geom...

  4. Characterization of Oscillatory Lift in MFC Airfoils

    OpenAIRE

    Lang Jr, Joseph Reagle

    2014-01-01

    The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component du...

  5. Automated screening for high-frequency hearing loss.

    Science.gov (United States)

    Vlaming, Marcel S M G; MacKinnon, Robert C; Jansen, Marije; Moore, David R

    2014-01-01

    Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies above 2000 Hz. The Internet-delivered, speech-in noise tests used closed target-word sets of digit triplets or consonant-vowel-consonant (CVC) words presented against a speech-shaped noise masker. The digit triplet test uses the digits 0 to 9 (excluding the disyllabic 7), grouped in quasi-random triplets. The CVC test uses simple words (e.g., "cat") selected for the high-frequency spectral content of the consonants. During testing, triplets or CVC words were identified in an adaptive procedure to obtain the speech reception threshold (SRT) in noise. For these new, high-frequency (HF) tests, the noise was low-pass filtered to produce greater masking of the low-frequency speech components, increasing the sensitivity of the test for HF hearing loss. Individual test tokens (digits, CVCs) were first homogenized using a group of 10 normal-hearing (NH) listeners by equalizing intelligibility across tokens at several speech-in-noise levels. Both tests were then validated and standardized using groups of 24 NH listeners and 50 listeners with hearing impairment. Performance on the new high frequency digit triplet (HF-triplet) and CVC (HF-CVC) tests was compared with audiometric hearing loss, and with that on the unfiltered, broadband digit triplet test (BB-triplet) test, and the ASL (Adaptive Sentence Lists) speech-in-noise test. The HF-triplet and HF-CVC test results (SRT) both correlated positively and highly with high-frequency audiometric hearing loss and with the ASL test. SRT for both tests as a function of high-frequency hearing loss increased at nearly three times the rate as that of the BB-triplet test. The intraindividual variability (SD) on the tests was about 2.1 (HF-triplet) and 1

  6. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  7. Newly developed electrical steel for high-frequency use

    Science.gov (United States)

    Komatsubara, M.; Sadahiro, K.; Kondo, O.; Takamiya, T.; Honda, A.

    2002-04-01

    For high-frequency appliances, a new magnetic material was developed, and its properties were investigated and compared with conventional electrical steel and 6.5% Si steel. The new material has extremely low iron loss at high frequencies over 5 kHz as well as 6.5% Si steel, which was obtained by increasing electric resistivity, or by reducing its eddy current loss. Generally, increasing resistivity makes steels brittle and deteriorates their workability. However, the developed material showed a good workability with the effect of Cr addition. This material has a good property of pulse response, and also showed an excellent performance for power electronics device using an active filter operated at 15 kHz.

  8. Peripheral Circulatory Features during High-Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    M. B. Kontorovich

    2010-01-01

    Full Text Available The paper gives the results of a study of peripheral circulatory features during high-frequency jet ventilation (HFJV. The main specific features of peripheral circulation and oxygen transport during HFJV are formulated on the basis of a study of cardiac output (impedance cardiography, peripheral vascular resistance, peripheral vascular blood filling (photoplethysmogram analysis, adaptive peripheral blood flow reactions (spectral analysis of peripheral vascular pulsation. HFJV gives rise to the peculiar pattern of peripheral hemodynamics and tissue gas exchange, which is characterized by higher oxygen uptake without a decrease in mixed venous blood saturation, with normal extraction coefficient and preserved low peripheral vascular resistance. During HFJV, unlike traditional ventilation, the main peripheral hemodynamic feature is the increased capillary bed blood volume caused by the blood flow involvement of reserve capillaries under control of volume (parasympathetic regulation of adaptive peripheral hemodynamic reactions. Key words: high-frequency jet ventilation, oxygen transport, peripheral hemodynamics.

  9. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  10. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  11. High-frequency response heat-flux gauge

    Science.gov (United States)

    Epstein, A. H.; Guenette, G. R.; Norton, R. J. G.; Cao, Y.

    1986-04-01

    A double-sided, high-frequency response heat-flux gauge has been developed which allows measurement of heat flux from dc to 100 kHz. The instrument is designed for heat-flux magnitudes ranging from one to several hundred kW/sq m at temperatures up to 400 C, and is independent of the test article material. The gauges consist of metal thin (1500 A) resistance thermometers sputtered on both sides of a thin (25 micron) polyimide sheet. The sheet, which can contain many gauges, is then adhesively bonded to a test article. The temperature difference across the polyimide is a direct measure of the heat flux at low frequencies, while a quasi-one-dimensional analysis is used to infer the high-frequency heat flux from the upper surface temperature history. The design criteria, construction and application techniques, and a novel, ratiometric calibration procedure are discussed in detail.

  12. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  13. Estimation of underwater acoustic fields at high frequencies

    OpenAIRE

    Temsamani, A.B.; Vandenplas, S.; Van Biesen, L.

    2001-01-01

    In this work a parametric modeling of the underwater acoustic field is investigated in a laboratory scale at high frequencies (150-850 kHz). The aim is to develop experimentally verifiable theoretical models to investigate the acoustic field propagation in elastic and viscoelastic or porous media. To achieve this goal, the efforts have been directed to three integral parts pertaining to the development of the methods. The first part deals with the modeling of the underwater acoustic field fol...

  14. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Meluzín, J.; Plešinger, Filip; Postránecká, T.; Lipoldová, J.; Novák, M.; Vondra, Vlastimil; Viščor, Ivo; Soukup, L.; Klimeš, Petr; Veselý, P.; Šumbera, J.; Zeman, K.; Asirvatham, R.S.; Tri, J.; Asirvatham, S.J.; Leinveber, Pavel

    2017-01-01

    Roč. 49, č. 3 (2017), s. 245-254 ISSN 1383-875X R&D Projects: GA ČR(CZ) GA17-13830S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : ventricular dyssynchrony * cardiac resynchronization therapy * high-frequency electrocardiography * left bundle branch block * depolarization Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 1.826, year: 2016

  15. Investigation of Combined High-Frequency and Arc Discharges

    International Nuclear Information System (INIS)

    Taran, V.S.; Nezovibatko, Yu.N.; Marinin, V.G.; Shvets, O.M.; Ridozub, V.N.; Gasilin, V.V.

    2001-01-01

    In this paper we analyze experiment with arc and high-frequency (HF) plasma sources carried out in modified devise of the ''Bulat'' type. The HF-sources and combined discharges have attracted considerable attention for surface cleaning and coating. The utilization of such discharges allows decreasing droplet fraction formation and providing better adhesion and microhardness values. The existence of HF-field in plasma allows obtaining either conductive or dielectric coatings and they can be deposited on any substrates. (author)

  16. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... be estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  17. High frequency plant regeneration from mature seedderived callus ...

    African Journals Online (AJOL)

    In the present study, we have developed a high-frequency plant regeneration system for Italian ryegrass via callus culture using mature seeds as explants. Optimal embryogenic callus induction was found to occur in MS medium containing 5 mg l-1 2,4-D, 0.5 mg l-1 BA, 500 mg l-1 L-proline, 1 g l-1 casein hydrolysate, 30 g ...

  18. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  19. High frequency microseismic noise as possible earthquake precursor

    OpenAIRE

    Ivica Sović; Kristina Šariri; Mladen Živčić

    2013-01-01

    Before an earthquake occurs, microseismic noise in high frequency (HF) range, i.e. 2-25 Hz, is being generated during preparation process. These signals change the microseismic noise and, consequently, the spectrum of microseismic noise. Time variation of spectra recorded at the same seismological station could imply the change of the state of noise source. We propose the image moment analysis approach to objectively compare microseismic noise spectra. The result could be used for earthquake ...

  20. Asynchronous BCI control using high-frequency SSVEP

    Directory of Open Access Journals (Sweden)

    Laciar Leber Eric

    2011-07-01

    Full Text Available Abstract Background Steady-State Visual Evoked Potential (SSVEP is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz, medium (12-30 and high frequency (> 30 Hz. SSVEP-based Brain-Computer Interfaces (BCI are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. Methods This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult. The signal processing method is based on Fourier transform and three EEG measurement channels. Results The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Conclusions Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.

  1. Performance Improvement of High Frequency Aluminum Nitride Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yangjie Wei

    2013-01-01

    Full Text Available This paper presents three methods to improve the performance of a high frequency aluminum nitride (AlN ultrasonic transducer. For a high frequency AlN ultrasonic transducer, its properties are related with its top electrode size, electrical impedance matching and layers of the piezoelectric plate. However, until now, no research has been published to analyze their influence on the performance of AlN ultrasonic transducers, especially in the frequency range above 200 MHz. First, two factors related with the top electrode size are proposed based on transmission coefficient and stored energy, and analysis is performed on an Al-AlN-Al on silicon wafers with different electrode sizes. The result proves when the electrode size is 1mm2, the transducer can provide the maximum output voltage and the maximal signal- to-noise ratio (SNR. Then, electrical impedance matching is conducted to improve the performance of transducers, and the experiment result shows that after matching, the resolution and sensitivity have been improved. Finally, a stacked AlN transducer is developed and its model is constructed to analyze its properties in time domain and frequency domain. The comparison between the simulation and the experiment shows the effectiveness of the proposed model, and a stacked structure can be used to improve the sensitivity of a high frequency AlN ultrasonic transducer.

  2. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  3. Occupational hearing loss: tonal audiometry X high frequencies audiometry

    Directory of Open Access Journals (Sweden)

    Lauris, José Roberto Pereira

    2009-09-01

    Full Text Available Introduction: Studies on the occupational exposure show that noise has been reaching a large part of the working population around the world, and NIHL (noise-induced hearing loss is the second most frequent disease of the hearing system. Objective: To review the audiometry results of employees at the campus of the University of São Paulo, Bauru. Method: 40 audiometry results were analyzed between 2007 and 2008, whose ages comprised between 32 and 59 years, of both sexes and several professions: gardeners, maintenance technicians, drivers etc. The participants were divided into 2 groups: those with tonal thresholds within acceptable thresholds and those who presented auditory thresholds alterations, that is tonal thresholds below 25 dB (NA in any frequency (Administrative Rule no. 19 of the Ministry of Labor 1998. In addition to the Conventional Audiologic Evaluation (250Hz to 8.000Hz we also carried out High Frequencies Audiometry (9000Hz, 10000Hz, 11200Hz, 12500Hz, 14000Hz and 16000Hz. Results: According to the classification proposed by FIORINI (1994, 25.0% (N=10 they presented with NIHL suggestive audiometric configurations. The results of high frequencies Audiometry confirmed worse thresholds than those obtained in the conventional audiometry in the 2 groups evaluated. Conclusion: The use of high frequencies audiometry proved to be an important register as a hearing alteration early detection method.

  4. High-frequency hearing loss among mobile phone users.

    Science.gov (United States)

    Velayutham, P; Govindasamy, Gopala Krishnan; Raman, R; Prepageran, N; Ng, K H

    2014-01-01

    The objective of this study is to assess high frequency hearing (above 8 kHz) loss among prolonged mobile phone users is a tertiary Referral Center. Prospective single blinded study. This is the first study that used high-frequency audiometry. The wide usage of mobile phone is so profound that we were unable to find enough non-users as a control group. Therefore we compared the non-dominant ear to the dominant ear using audiometric measurements. The study was a blinded study wherein the audiologist did not know which was the dominant ear. A total of 100 subjects were studied. Of the subjects studied 53% were males and 47% females. Mean age was 27. The left ear was dominant in 63%, 22% were dominant in the right ear and 15% did not have a preference. This study showed that there is significant loss in the dominant ear compared to the non-dominant ear (P mobile phone revealed high frequency hearing loss in the dominant ear (mobile phone used) compared to the non dominant ear.

  5. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    Science.gov (United States)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via

  6. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...

  7. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  8. High frequency generation in the corona: Resonant cavities

    Science.gov (United States)

    Santamaria, I. C.; Van Doorsselaere, T.

    2018-03-01

    Aims: Null points are prominent magnetic field singularities in which the magnetic field strength strongly decreases in very small spatial scales. Around null points, predicted to be ubiquitous in the solar chromosphere and corona, the wave behavior changes considerably. Null points are also responsible for driving very energetic phenomena, and for contributing to chromospheric and coronal heating. In previous works we demonstrated that slow magneto-acoustic shock waves were generated in the chromosphere propagate through the null point, thereby producing a train of secondary shocks escaping along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 MHz. The present work aims to investigate this high frequency region around a coronal null point to give a plausible explanation to its generation at that particular frequency. Methods: We carried out a set of two-dimensional numerical simulations of wave propagation in the neighborhood of a null point located in the corona. We varied both the amplitude of the driver and the atmospheric properties to investigate the sensitivity of the high frequency waves to these parameters. Results: We demonstrate that the wave frequency is sensitive to the atmospheric parameters in the corona, but it is independent of the strength of the driver. Thus, the null point behaves as a resonant cavity generating waves at specific frequencies that depend on the background equilibrium model. Moreover, we conclude that the high frequency wave train generated at the null point is not necessarily a result of the interaction between the null point and a shock wave. This wave train can be also developed by the interaction between the null point and fast acoustic-like magneto-acoustic waves, that is, this interaction within the linear regime.

  9. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  10. High-Frequency-Induced Cathodic Breakdown during Plasma Electrolytic Oxidation

    Science.gov (United States)

    Nominé, A.; Nominé, A. V.; Braithwaite, N. St. J.; Belmonte, T.; Henrion, G.

    2017-09-01

    The present communication shows the possibility of observing microdischarges under cathodic polarization during plasma electrolytic oxidation at high frequency. Cathodic microdischarges can ignite beyond a threshold frequency found close to 2 kHz. The presence (respectively, absence) of an electrical double layer is put forward to explain how the applied voltage can be screened, which therefore prevents (respectively, promotes) the ignition of a discharge. Interestingly, in the conditions of the present study, the electrical double layer requires between 175 and 260 μ s to form. This situates the expected threshold frequency between 1.92 and 2.86 kHz, which is in good agreement with the value obtained experimentally.

  11. Electromagnetic Modelling of MMIC CPWs for High Frequency Applications

    Science.gov (United States)

    Sinulingga, E. P.; Kyabaggu, P. B. K.; Rezazadeh, A. A.

    2018-02-01

    Realising the theoretical electrical characteristics of components through modelling can be carried out using computer-aided design (CAD) simulation tools. If the simulation model provides the expected characteristics, the fabrication process of Monolithic Microwave Integrated Circuit (MMIC) can be performed for experimental verification purposes. Therefore improvements can be suggested before mass fabrication takes place. This research concentrates on development of MMIC technology by providing accurate predictions of the characteristics of MMIC components using an improved Electromagnetic (EM) modelling technique. The knowledge acquired from the modelling and characterisation process in this work can be adopted by circuit designers for various high frequency applications.

  12. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    of technologies for very high frequency switch mode power supplies. At these highly elevated frequencies normal bulky magnetics with heavy cores consisting of rare earth materials, can be replaced by air core inductors embedded in the printed circuit board. This is investigated thoroughly and both spirals......, solenoids and toroids are considered, both for use as inductors and transformers. Two control methods are also investigated, namely burst mode control and outphasing. It is shown that a very flat efficiency curve can be achieved with burst mode. A 89.5% efficient converter is implemented and the efficiency...

  13. Therapeutic possibilities of electromagnetic radiation of very high frequency

    OpenAIRE

    Chwaleba, Augustyn; Jatsunenko, Anatoly; Kamkov, V.; Szczurko, Jan; Szmitkowski, Józef; Yatsunenko, Sergey; Wilczkowski, Stefan

    2012-01-01

    Virtually the entire spectrum of electromagnetic radiation is applied in medicine, with the fact tha t the radiation in the frequency band from 30 GHz to 300 GHz has been used recently. The authors developed (and continue to improve) the therapeutic method that uses electromagnetic fields of very high frequency (vhf) in the band from 40 GHz to 70 GHz and sublow intensity the power flux density does not exceed 1 μW / cm ². This field acts informationally on cells, causing the reactivation proc...

  14. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...... of parameters in the drift coefficient, and for efficiency. The conditions turn out to be equal to those implying small Δ-optimality in the sense of Jacobsen and thus gives an interpretation of this concept in terms of classical sta- tistical concepts. Optimal martingale estimating functions in the sense...

  15. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    International Nuclear Information System (INIS)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges; Fleming, Austin; Ban, Heng

    2016-01-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  16. High Frequency Modulation Method for Measuring of Birefringence

    Directory of Open Access Journals (Sweden)

    Šulc M.

    2013-05-01

    Full Text Available A method of optical birefringence measurement is presented. It uses an el ectro-optic modulator for the high frequency modulation of polarization of the laser beam. The developed optical apparatus exhibits high sensitivity. It is able to measure very small birefringence of samples down to 10-3 rad. The accuracy and sensitivity of the method was checked by measurement of calibrated Sol eil – Babi net compensator. Method can be also used for online and accurate measurement of an optical components birefringence. This application was developed with the aim to measure Cotton-Mouton effect in air and nitrogen.

  17. [Cerebral perfusion in newborn infants treated with high-frequency oscillation ventilation].

    Science.gov (United States)

    Schlösser, R L; Voigt, B; von Loewenich, V

    2000-01-01

    The effects of high-frequency oscillatory ventilation (HFOV) on hemodynamic parameters have been shown in animal as well as in clinical studies. In a further study we could demonstrate, that after change of a conventional positive pressure ventilation (CMV) to HFOV flow velocities in cerebral arteries decreased. In the following we added to the dopplerflow method the continuous examination of cerebral oxygenation with near infrared spectroscopy (NIRS). 19 measurements were prospectively conducted in 18 neonates. The infants were mechanically ventilated with HFOV and were in a stable condition. Before change from HFOV to CMV doppler signals of the anterior cerebral artery were measured. We repeated this at the end of the study in each patient. NIRS-optodes were placed on the front and the os parietale of each infant. After stabilization of the system we changed from HFOV to CMV without disconnection of the patient from the machine. PCO2 was registered continuously via a transcutaneous probe, as well as oxygen saturation via pulse oxymetry. Statistical analysis was performed with Wilcoxon test. There were no significant changes of doppler-signals during the study (median vs. 25 cm/s (+/- 6) during HFOV, 28 cm/s (+/-/) during CMV). The parameter of NIRS, oxygenated hemoglobin HbO [-1.5 U (+/- 22.78)] at 15 minutes after change), reduced hemoglobin HbR [-1.17 U (+/- 5.26)] and total hemoglobin HbT [-2.68 U (+/- 18.7)] remained stable during the change from HFOV to CMV, too. In five infants there was a decrease and in two an increase of HbO 15 minutes after change, which correlated with decrease or increase of pCO2. In a combined measurement of dopplerflow and NIRS we found no special effect of HFOV on cerebral hemodynamics comparing with CMV. Changes of cerebral oxygenation in NIRS correlated with pCO2.

  18. Planck 2013 results. VI. High Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.

  19. Features of the high frequency power transformer calculation

    Directory of Open Access Journals (Sweden)

    D.A. Zabarilo

    2013-06-01

    Full Text Available Purpose. The windings of power transformers have low resistance value and a most inductance, which reduces the rate of rise of current in the windings. Therefore, when the estimated amount of current is set one should make sure of the possibility of achieving it. As inductance is characterized by a short-circuit voltage, it is necessary to develop a technique for determining the maximum magnitude of the current in the windings of the transformer according to the short-circuit voltage and operating frequency. Methodology. The classical method of calculation of transient processes to determine the value of the transient current of the transformer windings to achieve purpose is used. Findings. The nature of the transient current in the windings of high-frequency transformer, which is powered by a voltage inverter is investigated and analyzed. Originality. The method for determining the maximum amount of current depending on the short-circuit voltage and frequency of the applied voltage with other set-up parameters was proposed. Practical value. The proposed method allows determining the maximum value of the current in the windings of the high-frequency transformer including its RL-parameters. This will let compare the value of a given current with possible depending on short-circuit voltage and frequency of the applied voltage. Research material may be applied for power transformers design.

  20. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  1. Wavelet based transformer protection using high frequency power directional signals

    Energy Technology Data Exchange (ETDEWEB)

    Valsan, Simi P.; Swarup, K.S. [Department of Electrical Engineering, Indian Institute of Technology Madras (India)

    2008-04-15

    This paper proposes a novel wavelet transform based relaying scheme for power transformer protection. The relay logic consists of two parts: disturbance detection based on first level high frequency details of the voltage signals only and fault discrimination using a power based directional signal derived from the first level high frequency details of both voltage and current signals. The logic is deterministic, computationally efficient, fast, secure and highly reliable. The operating time is 6 ms, about 1/3rd of power frequency cycle (20 ms). The scheme uses only the sign of the directional signals, rather than the difference in their magnitudes, hence it can work reliably in the presence of transformer tap variation, fault resistance and CT saturation. The validity of the proposed logic was exhaustively tested by simulating various types of internal and external faults, energization conditions and load variations on a 132 kV system modeled in ATP/EMTP with a 31.5 MVA, 132/33 kV, Y-{delta} transformer. The proposed logic was able to correctly discriminate between internal faults, external faults and non-fault disturbances for all the 880 test cases. (author)

  2. Thermal history of the plasma and high-frequency gravitons

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the $\\Lambda$CDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma is smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three la...

  3. High-frequency filtering of strong-motion records

    Science.gov (United States)

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  4. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hangin...... is shown to affect the nonlinear behavior of the system, e.g. bifurcation types can change from supercritical to subcritical, creating several coexisting stable solutions and also anti-symmetrical flutter may appear.......Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  5. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  6. Origin of spontaneous wave generation in an oscillatory chemical system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi-Xue; Foerster, P.; Ross, J. [Stanford Univ., CA (United States)

    1992-10-29

    The origin of spontaneously generated chemical waves in an oscillatory Belousov-Zhabotinskii reaction has been investigated by numerical calculations of the deterministic reaction-diffusion equations of a modified Oregonator model and by equilibrium stochastic calculations. From numerical calculations, we obtain threshold perturbations in the phase of oscillations and in the concentrations of HBrO{sub 2} and Br{sup {minus}} within areas of space with varying radii necessary to initiate trigger waves. Inward propagating trigger waves initiated by a phase shift in the perturbed region with respect to the bulk solution have been observed in the calculations for the first time. Perturbations smaller than the threshold perturbations or in regions with smaller radii lead to phase-diffusion waves. Our equilibrium stochastic calculations show that the recurrence time for a thermal fluctuation to induce a change in the HBrO{sub 2} concentration of sufficient magnitude within a sufficient volume for a trigger wave to propagate is many orders of magnitude larger than the observation time of traveling wave experiments. We concluded that an internal thermal fluctuation is highly unlikely to generate a trigger wave in an oscillatory chemical solution. 22 refs., 5 figs., 7 tabs.

  7. Oscillatory regime of avalanche particle detectors

    International Nuclear Information System (INIS)

    Lukin, K.A.; Cerdeira, H.A.; Colavita, A.A.

    1995-06-01

    We describe the model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. We show that this detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out. (author). 15 refs, 7 figs

  8. Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion

    DEFF Research Database (Denmark)

    Aho, Johanna; Edinger, Magnus; Botker, Johan

    2016-01-01

    ), ibuprofen (IBU), or indomethacin (IND), and 70% of polyethylene oxide, by using small amplitude oscillatory shear rheology. The initial evaluation of the drug:polyethylene oxide solubility was estimated by differential scanning calorimetry of the physical mixtures containing a wide range of weight fractions...

  9. Solution of IVP of Second Order ODE with Oscillatory Solutions ...

    African Journals Online (AJOL)

    Solution of IVP of Second Order ODE with Oscillatory Solutions using Variational Iterative Method (VIM) ... Abstract. A Numerical method for solution of IVP of second order with oscillatory solutions using VIM is developed. The method ... Keywords: Variational Iteration Method, Lagrange multiplier, oscillatory solutions, ODE.

  10. Resent developments in high-frequency surface-wave techniques

    Science.gov (United States)

    Xia, J.; Pan, Y.; Zeng, C.

    2012-12-01

    High-frequency Rayleigh-wave methods, such as Multi-channel Analysis of Surface Waves (MASW), are getting increasingly attention in the near-surface geophysics and geotechnique community in the last 20 years because of their non-invasive, non-destructive, efficient, and low-cost advantages and their success in environmental and engineering applications. They are viewed by near-surface geophysics community as the one of most promise techniques in the future. However, they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions, for example, highway, foundation, dam, levee, jetty, etc., which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration. We present solutions to the problems associated with near-surface materials that possess velocity inverse and high Poisson's ratio. Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer). Two velocity models are most common in near-surface applications. One is a low-velocity half space model and the other a high-velocity topmost layer. The former model results in a complex matrix that no roots can be found in the real number domain, which implies that no phase velocities can be calculated in certain frequency ranges based on current exist algorithms. A solution is to use the real part of the root of the complex number. It is well-known that phase velocities approach about 91% of the shear (S)-wave velocity of the topmost layer when wavelengths are much shorter than the thickness of the topmost layer. The later model, however, results in that phase velocities in a high-frequency range calculated using the current algorithms approach a velocity associated with the S-wave velocity of the second layer NOT the topmost layer. A solution to this problem is to use a two-layer model to

  11. Complex correlation approach for high frequency financial data

    Science.gov (United States)

    Wilinski, Mateusz; Ikeda, Yuichi; Aoyama, Hideaki

    2018-02-01

    We propose a novel approach that allows the calculation of a Hilbert transform based complex correlation for unevenly spaced data. This method is especially suitable for high frequency trading data, which are of a particular interest in finance. Its most important feature is the ability to take into account lead-lag relations on different scales, without knowing them in advance. We also present results obtained with this approach while working on Tokyo Stock Exchange intraday quotations. We show that individual sectors and subsectors tend to form important market components which may follow each other with small but significant delays. These components may be recognized by analysing eigenvectors of complex correlation matrix for Nikkei 225 stocks. Interestingly, sectorial components are also found in eigenvectors corresponding to the bulk eigenvalues, traditionally treated as noise.

  12. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  13. Optimized tissue heating by adopting high frequency electrotherapy

    Directory of Open Access Journals (Sweden)

    Jae-cheol Lee

    2015-11-01

    Full Text Available We have developed an electronics circuit that generates a high voltage with a frequency of 0.3–2 MHz to build an electro therapy system that can optimize tissue heating characteristics. These characteristics are used in medical applications. This paper is focused on the analysis of high frequency electro-therapy system to optimize tissue heating with the help of a high voltage pulse signal, which peak voltage is almost 2 kV. This optimized tissue heating between the inner tissue and the thermal distributions has examined in terms of frequency and voltage. The target tissue heating is composed of a single electrode in an experiment that has especially conducted to find the tissue heating characteristics. In the end, a new method for electro-therapy is developed, which is applicable to a specific tissue depth.

  14. High frequency ultrasound evaluation of traumatic peripheral nerve injuries.

    Science.gov (United States)

    Hollister, Anne M; Simoncini, Alberto; Sciuk, Adam; Jordan, Jenee'

    2012-01-01

    Accurate diagnosis and localization of peripheral nerve traumatic injury remains difficult. Early diagnosis and repair of nerve discontinuity lesions lead to better outcome than delayed repair. We used new high frequency ultrasound to evaluate 24 patients with 29 traumatic nerve injuries. There were a variety of causes including gunshot wounds, blunt injuries, burns, stabbings, and motor vehicle accidents. The patients were then either treated surgically with nerve status directly observed or followed clinically for recovery of nerve function. The ultrasound findings correspond with the clinical outcome of 28 of the 29 nerves. While this is a study limited by a small patient number, ultrasound evaluation should be considered in the evaluation of nerve injury and can lead to early diagnosis and treatment of surgical nerve injuries.

  15. High frequency modulation circuits based on photoconductive wide bandgap switches

    Science.gov (United States)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  16. High frequency techniques an introduction to RF and microwave engineering

    CERN Document Server

    White, Joseph F

    2004-01-01

    A practical guide for today's wireless engineerHigh Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover: *The origins and current uses of wireless transmission *A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software*Resonators, Q definitions, and Q-based impedance matching *Transmission lines, waves, VSWR, reflection phenomena, Fano's reflection bandwidth limits, telegrapher, and impedance transformation equations*Development and in-depth use of the Smith Chart *Matrix algebra with Z, Y, ABCD, S, and T matrix applications*An unusually thorough introduction to electromagnetic field theory, step-by-step development of vector calculus, Maxwell's equations, waveguides, propagation, and antennas*Backward wave, branch line, rat race and Wilkinson couplers, impedance measurements, a...

  17. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  18. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  19. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-01

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  20. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  1. The Influence of High-Frequency Gravitational Waves Upon Muscles

    International Nuclear Information System (INIS)

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-01

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells

  2. High Frequency Stimulation of the Pelvic Nerve Inhibits Urinary Voiding in Anesthetized Rats.

    Science.gov (United States)

    Crook, Jonathan J; Lovick, Thelma A

    2017-01-01

    Urge Urinary Incontinence: "a sudden and uncontrollable desire to void which is impossible to defer" is extremely common and considered the most bothersome of lower urinary tract conditions. Current treatments rely on pharmacological, neuromodulatory, and neurotoxicological approaches to manage the disorder, by reducing the excitability of the bladder muscle. However, some patients remain refractory to treatment. An alternative approach would be to temporarily suppress activity of the micturition control circuitry at the time of need i.e., urgency. In this study we investigated, in a rat model, the utility of high frequency pelvic nerve stimulation to produce a rapid onset, reversible suppression of voiding. In urethane-anesthetized rats periodic voiding was induced by continuous infusion of saline into the bladder whilst recording bladder pressure and electrical activity from the external urethral sphincter (EUS). High frequency (1-3 kHz), sinusoidal pelvic nerve stimulation initiated at the onset of the sharp rise in bladder pressure signaling an imminent void aborted the detrusor contraction. Urine output was suppressed and tone in the EUS increased. Stimulating the right or left nerve was equally effective. The effect was rapid in onset, reversible, and reproducible and evoked only minimal "off target" side effects on blood pressure, heart rate, respiration, uterine pressure, or rectal pressure. Transient contraction of abdominal wall was observed in some animals. Stimulation applied during the filling phase evoked a small, transient rise in bladder pressure and increased tonic activity in the EUS, but no urine output. Suppression of micturition persisted after section of the contralateral pelvic nerve or after ligation of the nerve distal to the electrode cuff on the ipsilateral side. We conclude that high frequency pelvic nerve stimulation initiated at the onset of an imminent void provides a potential means to control urinary continence.

  3. High Frequency Stimulation of the Pelvic Nerve Inhibits Urinary Voiding in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    Jonathan J. Crook

    2017-08-01

    Full Text Available Urge Urinary Incontinence: “a sudden and uncontrollable desire to void which is impossible to defer” is extremely common and considered the most bothersome of lower urinary tract conditions. Current treatments rely on pharmacological, neuromodulatory, and neurotoxicological approaches to manage the disorder, by reducing the excitability of the bladder muscle. However, some patients remain refractory to treatment. An alternative approach would be to temporarily suppress activity of the micturition control circuitry at the time of need i.e., urgency. In this study we investigated, in a rat model, the utility of high frequency pelvic nerve stimulation to produce a rapid onset, reversible suppression of voiding. In urethane-anesthetized rats periodic voiding was induced by continuous infusion of saline into the bladder whilst recording bladder pressure and electrical activity from the external urethral sphincter (EUS. High frequency (1–3 kHz, sinusoidal pelvic nerve stimulation initiated at the onset of the sharp rise in bladder pressure signaling an imminent void aborted the detrusor contraction. Urine output was suppressed and tone in the EUS increased. Stimulating the right or left nerve was equally effective. The effect was rapid in onset, reversible, and reproducible and evoked only minimal “off target” side effects on blood pressure, heart rate, respiration, uterine pressure, or rectal pressure. Transient contraction of abdominal wall was observed in some animals. Stimulation applied during the filling phase evoked a small, transient rise in bladder pressure and increased tonic activity in the EUS, but no urine output. Suppression of micturition persisted after section of the contralateral pelvic nerve or after ligation of the nerve distal to the electrode cuff on the ipsilateral side. We conclude that high frequency pelvic nerve stimulation initiated at the onset of an imminent void provides a potential means to control urinary

  4. Multifrequency Oscillatory Ventilation in the Premature Lung: Effects on Gas Exchange, Mechanics, and Ventilation Distribution.

    Science.gov (United States)

    Kaczka, David W; Herrmann, Jacob; Zonneveld, C Elroy; Tingay, David G; Lavizzari, Anna; Noble, Peter B; Pillow, J Jane

    2015-12-01

    Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. The authors hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared with traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed "multifrequency oscillatory ventilation" (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Thirteen intubated preterm lambs were randomly assigned to either SFOV or MFOV for 1 h, followed by crossover to the alternative regimen for 1 h. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, whereas the customized MFOV waveform consisted of a 5-Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening ((Equation is included in full-text article.)) and inspired oxygen fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted at 15-min intervals. A ventilatory cost function for SFOV and MFOV was defined as (Equation is included in full-text article.), where Wt denotes body weight. Averaged over all time points, MFOV resulted in significantly lower VC (246.9 ± 6.0 vs. 363.5 ± 15.9 ml mmHg kg) and (Equation is included in full-text article.)(12.8 ± 0.3 vs. 14.1 ± 0.5 cm H2O) compared with SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared with traditional single-frequency HFOV.

  5. High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook.

    Science.gov (United States)

    Lemay, Serge G; Laborde, Cecilia; Renault, Christophe; Cossettini, Andrea; Selmi, Luca; Widdershoven, Frans P

    2016-10-18

    We have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65 536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time. These capabilities are made possible by fabricating the electrodes on a complementary metal-oxide-semiconductor (CMOS) chip together with the associated control and readout electronics, thus minimizing parasitic capacitance and maximizing the signal-to-noise ratio. This combination of features offers several advantages for a broad range of experiments. First, in contrast to alternative CMOS-based electrical systems based on field-effect detection, high-frequency operation is sensitive beyond the electrical double layer and can probe entities at a range of micrometers in electrolytes with high ionic strength such as water at physiological salt concentrations. Far from being limited to single- or few-channel recordings like conventional electrochemical impedance spectroscopy, the massively parallel design of the array permits electrically imaging micrometer-scale entities with each electrode serving as a separate pixel. This allows observation of complex kinetics in heterogeneous environments, for example, the motion of living cells on the surface of the array. This imaging aspect is further strengthened by the ability to distinguish between analyte species based on the sign and magnitude of their AC response. Finally, we show here that sensitivity down to the attofarad level combined with the small electrode size permits detection of individual 28 nm diameter particles as they land on the sensor surface. Interestingly, using finite-element methods, it is also possible to calculate accurately the full three-dimensional electric field and current distributions during operation at the level of the

  6. Stepwise oscillatory circuits of a DNA molecule.

    Science.gov (United States)

    Xu, Kunming

    2009-08-01

    A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the circuitry is a well-defined charge transport mechanism reflecting the great reliability of the genetic substance in delivering electrons. Stepwise oscillatory charge transport through a nucleotide sequence that directly modulates the oscillation frequency may have significant biological implications.

  7. Fantoni’s Tracheostomy using Catheter High Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    P. Török

    2012-01-01

    Full Text Available Background: It has been shown previously that conventional ventilation delivered through a long cuffed endotracheal tube is associated with a high flow-resistance and frequent perioperative complications. Aim: We attempted to supersede the conventional ventilation by high-frequency jet ventilation through a catheter (HFJV-C and assess safety of the procedure. Material and methods: Using a translaryngeal tracheostomy kit, we performed a translaryngeal (Fantoni tracheostomy (TLT. Subsequently, we introduced a special 2-way prototype ventilatory catheter into the trachea via the TLT under bronchoscopic control. Satisfactory HFJV-C ventilation through the catheter was achieved in 218 patients. Results: There were no significant adverse effects on vital signs observed in the cohort during the study. The pH, SpO2, PaO2, and PaCO2 did not change significantly following the HFJV-C. The intrinsic PEEPi measured in trachea did not exceed 4—5 cm H2O during its application, which was significantly less than during the classical ventilation via the endotracheal tube fluctuating between 12 and 17 cm H2O. No serious medical complications occurred. Conclusion: The HFJV during Fantoni’s tracheostomy using the catheter HFJV-C proved to be a safe and effective method of lung ventilation at the intensive care unit. Key words: Translaryngeal tracheostomy, HFJV via catheter.

  8. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  9. Refractivity variations and propagation at Ultra High Frequency

    Directory of Open Access Journals (Sweden)

    I. Alam

    Full Text Available Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD and ITU (International Telecommunication Union refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research. Keywords: Refractive index, Refractivity, Parabolic wave equation, Propagation, UHF, Antennas

  10. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  11. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    Science.gov (United States)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  12. Effect of high-frequency electromagnetic fields on trophoblastic connexins.

    Science.gov (United States)

    Cervellati, Franco; Franceschetti, Guido; Lunghi, Laura; Franzellitti, Silvia; Valbonesi, Paola; Fabbri, Elena; Biondi, Carla; Vesce, Fortunato

    2009-07-01

    Connexins (Cx) are membrane proteins able to influence trophoblast functions. Here we investigated the effect of high-frequency electromagnetic fields (HF-EMF) on Cx expression and localization in extravillous trophoblast cell line HTR-8/SVneo. We also analysed cell ultrastructural changes induced by HF-EMF exposure. Samples were exposed to pulse-modulated 1817 MHz sinusoidal waves (GSM-217 Hz; 1h: SAR of 2 W/kg). Cx mRNA expression was assessed through semi-quantitative RT-PCR, protein expression by Western blotting, protein localization by indirect immunofluorescence, cell ultrastructure using electron microscopy. HF-EMF exposure significantly and selectively increased Cx40 and Cx43, without altering protein expression. Nevertheless, Cx40 and Cx43 lost their punctuate fluorescence within the cell membrane, becoming diffuse after HF-EMF exposure. Electron microscopy evidenced a sharp decrease in intercellular gap junction-like structures. This study is the first to indicate that exposure of extravillous trophoblast to GSM-217 Hz signals can modify Cx gene expression, Cx protein localization and cellular ultrastructure.

  13. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  14. High-frequency boundary layer profiling with reusable radiosondes

    Directory of Open Access Journals (Sweden)

    D. Legain

    2013-08-01

    Full Text Available A new system for high-frequency boundary layer profiling based upon radiosondes and free balloons was tested during the field phases of the Boundary Layer Late Afternoon and Sunset Turbulence experiment (BLLAST 2011, Lannemezan, France and of the Hydrological cycle in the Mediterranean Experiment (HyMeX, 2012. The system consists of a conventional Vaisala receiver and a GPS radiosonde (pressure, wind, humidity and temperature, that is tied to a couple of inflated balloons. The principle of the sounding system is to permit the first balloon to detach from the rawinsonde at a predetermined altitude, allowing for the rawinsonde to slowly descend with the second balloon to perform a second, new sounding. The instrumentation is then eventually recovered. The expecting landing area is anticipated before the flight by estimating the trajectory of the probe from a forecasted wind profile and by specifying both the balloon release altitude and the mean ascent and descent rates of the system. The real landing point is determined by the last transmission of the radiosonde GPS and the visual landmark provided by the second balloon. Seventy-two soundings were performed during BLLAST (62 and HyMeX (10, with a recovery rate of more than 80% during the BLLAST field campaign. Recovered radiosondes were generally reused several times, often immediately after recovery, which definitely demonstrates the high potential of this system.

  15. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    Field, E.C. Jr.; Bloom, R.M.; Kossey, P.A.

    1990-01-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  16. Very High Frequency Galvanic Isolated Offline Power Supply

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf

    During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...... to eliminate the switching losses. The topologies used, are inspired by radio frequency amplifiers, which are used to generate high fre-quency current for an antenna. In VHF converters this antenna is replaced by a rectifier to generate a DC voltage. Driving these type of converters can be a challenge as hard...... inverters with a single combined rectifier. The converter designed to deliver 9 W to a 60 V LED load and is achieving an efficiency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that offline VHF converter can be implemented with high efficiencies even for low power applications...

  17. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  18. High frequency alternating current chip nano calorimeter with laser heating.

    Science.gov (United States)

    Shoifet, E; Chua, Y Z; Huth, H; Schick, C

    2013-07-01

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (~1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm(2)). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10(-3) Hz and 10(6) Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  19. High frequency of BRAF V600E mutations in ameloblastoma.

    Science.gov (United States)

    Kurppa, Kari J; Catón, Javier; Morgan, Peter R; Ristimäki, Ari; Ruhin, Blandine; Kellokoski, Jari; Elenius, Klaus; Heikinheimo, Kristiina

    2014-04-01

    Ameloblastoma is a benign but locally infiltrative odontogenic neoplasm. Although ameloblastomas rarely metastasise, recurrences together with radical surgery often result in facial deformity and significant morbidity. Development of non-invasive therapies has been precluded by a lack of understanding of the molecular background of ameloblastoma pathogenesis. When addressing the role of ERBB receptors as potential new targets for ameloblastoma, we discovered significant EGFR over-expression in clinical samples using real-time RT-PCR, but observed variable sensitivity of novel primary ameloblastoma cells to EGFR-targeted drugs in vitro. In the quest for mutations downstream of EGFR that could explain this apparent discrepancy, Sanger sequencing revealed an oncogenic BRAF V600E mutation in the cell line resistant to EGFR inhibition. Further analysis of the clinical samples by Sanger sequencing and BRAF V600E-specific immunohistochemistry demonstrated a high frequency of BRAF V600E mutations (15 of 24 samples, 63%). These data provide novel insight into the poorly understood molecular pathogenesis of ameloblastoma and offer a rationale to test drugs targeting EGFR or mutant BRAF as novel therapies for ameloblastoma. © 2013 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  20. Software for Displaying High-Frequency Test Data

    Science.gov (United States)

    Elmore, Jason L.

    2003-01-01

    An easy-to-use, intuitive computer program was written to satisfy a need of test operators and data requestors to quickly view and manipulate high-frequency test data recorded at the East and West Test Areas at Marshall Space Flight Center. By enabling rapid analysis, this program makes it possible to reduce times between test runs, thereby potentially reducing the overall cost of test operations. The program can be used to perform quick frequency analysis, using multiple fast- Fourier-transform windowing and amplitude options. The program can generate amplitude-versus-time plots with full zoom capabilities, frequency-component plots at specified time intervals, and waterfall plots (plots of spectral intensity versus frequency at successive small time intervals, showing the changing frequency components over time). There are options for printing of the plots and saving plot data as text files that can be imported into other application programs. The program can perform all of the aforementioned plotting and plot-data-handling functions on a relatively inexpensive computer; other software that performs the same functions requires computers with large amounts of power and memory.

  1. Why high-frequency pulse tubes can be tipped

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Gregory W092710 [Los Alamos National Laboratory; Backhaus, Scott N [Los Alamos National Laboratory

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  2. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  3. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  4. High-frequency behavior of amorphous microwires and its applications

    International Nuclear Information System (INIS)

    Marin, P.; Cortina, D.; Hernando, A.

    2005-01-01

    A magnetic microwire is a continuous filament of total diameter less than 100 μm consisting of an inner metallic magnetic nuclei covered by a glassy outer shell, usually obtained by Taylor's technique, with interesting magnetic properties connected with its high axial magnetic anisotropy. Magnetic sensors based on microwires used, as operating principle, the strong connection between the composition and the uniaxial anisotropy through a magnetostriction constant such as the large Barkhausen effect, Mateucci effect and giant magneto-impedance effect. The study of the microwave properties is also very promising technologically. In the microwave region (approaching GHz range), the ferromagnetic resonance (FMR) occurs and it is connected with the spin precession of the magnetisation vector due to the effect of the high-frequency electromagnetic field applied such that the magnetic component is perpendicular to the magnetisation vector. The natural ferromagnetic resonance (NFMR) has been also observed. The frequency depends upon the value of magnetic anisotropy and it is characterised by the single well-distinguished line in the 2-10 GHz range. Tags detector based on the microwires FMR and a new kind of electromagnetic radiation absorbers based on the microwires NFMR have been developed

  5. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  6. Stability of Armour Units in Oscillatory Flow

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Thompson, A. C.

    Despite numerous breakwater model tests very little is known today about the various phenomena and parameters that determine the hydraulic stability characteristics of different types of armour. This is because separation of parameters is extremely difficult in traditional tests.With the object...... of separating some of the factors a deterministic test, in which horizontal beds of armour units were exposed to oscillatory flow, was performed in a pulsating water tunnel....

  7. Digital data reduction of oscillatory signals

    Science.gov (United States)

    Bebelaar, F.; Schoyer, H. F. R.

    1981-11-01

    A newly developed procedure for determining in an efficient, digital manner the amplitudes and frequencies of the oscillatory components of arbitrary signals is presented. The method is found to be especially useful in those cases where varying amplitudes and frequencies are encountered. The possibility of assigning a noise level criterion, such as minimum double amplitude (MDA) or minimum relative amplitude (MRA), enlarges the versatility of this procedure in comparison with other methods. Even for large amounts of data, computer times remain limited.

  8. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  9. Oscillatory Onset and Offset in Young Vocally Healthy Adults Across Various Measurement Methods.

    Science.gov (United States)

    Patel, Rita R; Walker, Reuben; Döllinger, Michael

    2017-07-01

    This study aimed to investigate the relationship between (1) oscillatory onset-offset time across various approaches that use different measurement criteria and (2) oscillatory onset and offset times in vocally healthy young adults. Oscillatory onset-offset times were obtained from 71 vocally normal adults, using high-speed videoendoscopy. Comparisons between the different onset methods involved measurement of the oscillatory onset time (OOT), voice initiation period (VIP), and the phonation onset time (POT), and for offset methods involved computation of the oscillatory offset time (OOT off ) and the phonation offset time. Correlation of the OOT with the VIP was 0.240 (P = 0.04) and with the POT form glottal area waveform was 0.248 (P = 0.04); however, correlation between the VIP and the POT glottal area waveform was 0.661 (P time was longest for the OOT followed by the VIP and the POT. There was no correlation between onset and offset for all methods. A framework for quantification of oscillatory onset-offset time was developed for /hi/ tasks, which can be used for future measurements of disordered voice. A positive relationship was observed between VIP and POT and between OOT off and vocal offset period. There was a nonlinear relationship between the OOT, VIP, and POT measures. Onset-offset times are strongly influenced by the calculation method used, the pros and cons of which are discussed in this paper. Vibratory onset and offset represent physiologically different phenomena. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Arteriovenous extracorporeal lung assist allows for maximization of oscillatory frequencies: a large-animal model of respiratory distress

    Directory of Open Access Journals (Sweden)

    Kranke Peter

    2008-11-01

    Full Text Available Abstract Background Although the minimization of the applied tidal volume (VT during high-frequency oscillatory ventilation (HFOV reduces the risk of alveolar shear stress, it can also result in insufficient CO2-elimination with severe respiratory acidosis. We hypothesized that in a model of acute respiratory distress (ARDS the application of high oscillatory frequencies requires the combination of HFOV with arteriovenous extracorporeal lung assist (av-ECLA in order to maintain or reestablish normocapnia. Methods After induction of ARDS in eight female pigs (56.5 ± 4.4 kg, a recruitment manoeuvre was performed and intratracheal mean airway pressure (mPaw was adjusted 3 cmH2O above the lower inflection point (Plow of the pressure-volume curve. All animals were ventilated with oscillatory frequencies ranging from 3–15 Hz. The pressure amplitude was fixed at 60 cmH2O. At each frequency gas exchange and hemodynamic measurements were obtained with a clamped and de-clamped av-ECLA. Whenever the av-ECLA was de-clamped, the oxygen sweep gas flow through the membrane lung was adjusted aiming at normocapnia. Results Lung recruitment and adjustment of the mPaw above Plow resulted in a significant improvement of oxygenation (p Conclusion In this animal model of ARDS, maximization of oscillatory frequencies with subsequent minimization of VT leads to hypercapnia that can only be reversed by adding av-ECLA. When combined with a recruitment strategy, these high frequencies do not impair oxygenation

  11. Arteriovenous Extracorporeal Lung Assist Allows For Maximization Of Oscillatory Frequencies: A Large-animal Model Of Respiratory Distress.

    Science.gov (United States)

    Muellenbach, Ralf M; Kuestermann, Julian; Kredel, Markus; Johannes, Amélie; Wolfsteiner, Ulrike; Schuster, Frank; Wunder, Christian; Kranke, Peter; Roewer, Norbert; Brederlau, Jörg

    2008-11-14

    Although the minimization of the applied tidal volume (VT) during high-frequency oscillatory ventilation (HFOV) reduces the risk of alveolar shear stress, it can also result in insufficient CO₂-elimination with severe respiratory acidosis. We hypothesized that in a model of acute respiratory distress (ARDS) the application of high oscillatory frequencies requires the combination of HFOV with arteriovenous extracorporeal lung assist (av-ECLA) in order to maintain or reestablish normocapnia. After induction of ARDS in eight female pigs (56.5 ± 4.4 kg), a recruitment manoeuvre was performed and intratracheal mean airway pressure (mPaw) was adjusted 3 cmH₂O above the lower inflection point (Plow) of the pressure-volume curve. All animals were ventilated with oscillatory frequencies ranging from 3-15 Hz. The pressure amplitude was fixed at 60 cmH₂O. At each frequency gas exchange and hemodynamic measurements were obtained with a clamped and de-clamped av-ECLA. Whenever the av-ECLA was de-clamped, the oxygen sweep gas flow through the membrane lung was adjusted aiming at normocapnia. Lung recruitment and adjustment of the mPaw above Plow resulted in a significant improvement of oxygenation (p < 0.05). Compared to lung injury, oxygenation remained significantly improved with rising frequencies (p < 0.05). Normocapnia during HFOV was only maintained with the addition of av-ECLA during frequencies of 9 Hz and above. In this animal model of ARDS, maximization of oscillatory frequencies with subsequent minimization of VT leads to hypercapnia that can only be reversed by adding av-ECLA. When combined with a recruitment strategy, these high frequencies do not impair oxygenation.

  12. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  13. National High Frequency Radar Network (hfrnet) and Pacific Research Efforts

    Science.gov (United States)

    Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.

    2016-12-01

    The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research

  14. Very high frequency plasma reactant for atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Tae Hyung; Yeom, Geun Young [Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Kangsik; Lee, Zonghoon [School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Jung, Hanearl; Lee, Chang Wan [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Han-Bo-Ram, E-mail: hbrlee@inu.ac.kr [Department of Materials Science and Engineering, Incheon National University, 406-840 Incheon (Korea, Republic of)

    2016-11-30

    Highlights: • Fundamental research plasma process for thin film deposition is presented. • VHF plasma source for PE-ALD Al{sub 2}O{sub 3} was employed to reduce plasma damage. • The use of VHF plasma improved all of the film qualities and growth characteristics. - Abstract: Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al{sub 2}O{sub 3} were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al{sub 2}O{sub 3} shows superior physical and electrical properties over RF PE-ALD Al{sub 2}O{sub 3}, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al{sub 2}O{sub 3} on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  15. High frequency percussive ventilation in pediatric patients with inhalation injury.

    Science.gov (United States)

    Cortiella, J; Mlcak, R; Herndon, D

    1999-01-01

    The objective of this study was to present data that showed high frequency percussive ventilation (HFPV) was superior to traditional mechanical ventilation for the treatment of children with inhalation injuries. Inhalation injuries continue to be the number one cause of death of patients with thermal injuries in the United States. Therapy for this condition has consisted of conservative pulmonary toilet and mechanical ventilation. Despite improvements in the management of burn injury, patients with inhalation injury develop pneumonia and pneumothorax, leading to adult respiratory distress syndrome. Unfortunately, inhalation injury that is complicated by pneumonia has been shown to increase mortality by 60% in these patients. Cioffi has shown that prophylactic use of HFPV in adult patients with inhalation injury has been a successful method of reducing the incidence of pneumonia and mortality. The effects of HFPV on the incidence of pneumonia, peak inspiratory pressures, and arterial partial pressure of oxygen/fraction of inspired concentration of oxygen (P/F) ratios were retrospectively studied in 13 children with inhalation injuries and compared with historic controls treated with conventional mechanical ventilation. All patients were treated with our standard inhalation injury protocol and extubated when they met standard extubation criteria. Patients ranged in age from 6 to 9 years, and most had burns covering greater than 50% of their total body surface areas. No deaths occurred in either group, but the patients who were treated with HFPV had no cases of pneumonia (P < .05), better P/F ratios (P < .05), lower peak inspiratory pressures, and less work of breathing (P < .05) as compared with our control group. On the basis of our clinical experience and data, the use of HFPV seems to be an effective treatment for the reduction of pulmonary morbidity in pediatric patients with inhalation injuries.

  16. High frequency oscillations and infraslow activity in epilepsy

    Directory of Open Access Journals (Sweden)

    Pradeep N Modur

    2014-01-01

    Full Text Available In pre-surgical evaluation of epilepsy, there has been an increased interest in the study of electroencephalogram (EEG activity outside the 1-70 Hz band of conventional frequency activity (CFA. Research over the last couple of decades has shown that EEG activity in the 70-600 Hz range, termed high frequency oscillations (HFOs, can be recorded intracranially from all brain regions both interictally and at seizure onset. In patients with epilepsy, HFOs are now considered as pathologic regardless of their frequency band although it may be difficult to distinguish them from the physiologic HFOs, which occur in a similar frequency range. Interictal HFOs are likely to be confined mostly to the seizure onset zone, thus providing a new measure for localizing it. More importantly, several studies have linked HFOs to underlying epileptogenicity, suggesting that HFOs can serve as potential biomarkers for the illness. Along with HFOs, analysis of ictal baseline shifts (IBS; or direct current shifts and infraslow activity (ISA (ISA: <0.1 Hz has also attracted attention. Studies have shown that: IBSs can be recorded using the routine AC amplifiers with long time constants; IBSs occur at the time of conventional EEG onset, but in a restricted spatial distribution compared with conventional frequencies; and inclusion of IBS contacts in the resection can be associated with favorable seizure outcome. Only a handful of studies have evaluated all the EEG frequencies together in the same patient group. The latter studies suggest that the seizure onset is best localized by the ictal HFOs, the IBSs tend to provide a broader localization and the conventional frequencies could be non-localizing. However, small number of patients included in these studies precludes definitive conclusions regarding post-operative seizure outcome based on selective or combined resection of HFO, IBS and CFA contacts. Large, preferably prospective, studies are needed to further evaluate the

  17. High frequency oscillations and infraslow activity in epilepsy.

    Science.gov (United States)

    Modur, Pradeep N

    2014-03-01

    In pre-surgical evaluation of epilepsy, there has been an increased interest in the study of electroencephalogram (EEG) activity outside the 1-70 Hz band of conventional frequency activity (CFA). Research over the last couple of decades has shown that EEG activity in the 70-600 Hz range, termed high frequency oscillations (HFOs), can be recorded intracranially from all brain regions both interictally and at seizure onset. In patients with epilepsy, HFOs are now considered as pathologic regardless of their frequency band although it may be difficult to distinguish them from the physiologic HFOs, which occur in a similar frequency range. Interictal HFOs are likely to be confined mostly to the seizure onset zone, thus providing a new measure for localizing it. More importantly, several studies have linked HFOs to underlying epileptogenicity, suggesting that HFOs can serve as potential biomarkers for the illness. Along with HFOs, analysis of ictal baseline shifts (IBS; or direct current shifts) and infraslow activity (ISA) (ISA: AC amplifiers with long time constants; IBSs occur at the time of conventional EEG onset, but in a restricted spatial distribution compared with conventional frequencies; and inclusion of IBS contacts in the resection can be associated with favorable seizure outcome. Only a handful of studies have evaluated all the EEG frequencies together in the same patient group. The latter studies suggest that the seizure onset is best localized by the ictal HFOs, the IBSs tend to provide a broader localization and the conventional frequencies could be non-localizing. However, small number of patients included in these studies precludes definitive conclusions regarding post-operative seizure outcome based on selective or combined resection of HFO, IBS and CFA contacts. Large, preferably prospective, studies are needed to further evaluate the implications of different EEG frequencies in epilepsy.

  18. Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block

    Science.gov (United States)

    Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.

    2010-12-01

    High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.

  19. Model of oscillatory instability in vertically-homogeneous atmosphere

    Directory of Open Access Journals (Sweden)

    P. B. Rutkevich

    2009-02-01

    Full Text Available Existence and repeatability of tornadoes could be straightforwardly explained if there existed instability, responsible for their formation. However, it is well known that convection is the only instability in initially stable air, and the usual convective instability is not applicable for these phenomena. In the present paper we describe an instability in the atmosphere, which can be responsible for intense vortices. This instability appears in a fluid with Coriolis force and dissipation and has oscillatory behaviour, where the amplitude growth is accompanied by oscillations with frequency comparable to the growth rate of the instability. In the paper, both analytical analysis of the linear phase of the instability and nonlinear simulation of the developed stage of the air motion are addressed. This work was supported by the RFBR grant no. 09-05-00374-a.

  20. Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow

    Science.gov (United States)

    Nakielski, Paweł; Zembrzycki, Krzysztof

    2017-01-01

    The recent progress in bioengineering has created great interest in the dynamics and manipulation of long, deformable macromolecules interacting with fluid flow. We report experimental data on the cross-flow migration, bending, and buckling of extremely deformable hydrogel nanofilaments conveyed by an oscillatory flow into a microchannel. The changes in migration velocity and filament orientation are related to the flow velocity and the filament’s initial position, deformation, and length. The observed migration dynamics of hydrogel filaments qualitatively confirms the validity of the previously developed worm-like bead-chain hydrodynamic model. The experimental data collected may help to verify the role of hydrodynamic interactions in molecular simulations of long molecular chains dynamics. PMID:29141043

  1. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...... injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...

  2. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    Science.gov (United States)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  3. Temporal Characteristics of High-Frequency Lower-Limb Oscillation during Freezing of Gait in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Don A. Yungher

    2014-01-01

    Full Text Available A cardinal feature of freezing of gait (FOG is high frequency (3–8 Hz oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson’s disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso.

  4. Temporal Characteristics of High-Frequency Lower-Limb Oscillation during Freezing of Gait in Parkinson's Disease

    Science.gov (United States)

    Yungher, Don A.; Morris, Tiffany R.; Dilda, Valentina; Shine, James M.; Naismith, Sharon L.; Lewis, Simon J. G.; Moore, Steven T.

    2014-01-01

    A cardinal feature of freezing of gait (FOG) is high frequency (3–8 Hz) oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson's disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline) followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms) between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso. PMID:25101189

  5. The 2011 Tohoku tsunami south of Oahu: High-frequency Doppler radio observations and model simulations of currents

    Science.gov (United States)

    Benjamin, L. R.; Flament, P.; Cheung, K. F.; Luther, D. S.

    2016-02-01

    A 16 MHz high-frequency Doppler radio (HFDR) deployed on the south shore of Oahu (Hawaii) detected oscillatory radial currents following the arrival of the 2011 Tohoku tsunami. The observations over a two-dimensional area provided an opportunity for intercomparison with the spatial patterns of currents and the resonant modes predicted by a nonhydrostatic model. Over the 50 m deep Penguin Bank, extending west from Molokai, the observed currents are intensified in two areas: 43 min period currents of 0.27 m s-1 lasting 6 h are observed on the south part of the bank, while 27 min period currents of 0.14 m s-1 lasting 2 h are observed on the north. The spatial EOFs suggest that standing full-waves and 3/2 waves formed over the bank. Modeled currents over Penguin Bank are similar to the observations but their north-south asymmetry is less pronounced than observed. Nearshore, observed alongshore currents showed long-period oscillations of 43 min that stretched along the entire coastline, while modeled currents show strong evidence for edge waves. EOF analysis of the nearshore signal suggests that the HFDR and model reveal different processes. The discrepancy might be attributed to the fact that both the Penguin Bank and nearshore observations are limited by HFDR sensitivity to azimuthal sidelobe contamination and decreased angular resolution at high steering angles.

  6. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    Science.gov (United States)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  8. Frequency-offset separated oscillatory fields technique

    Science.gov (United States)

    Bezginov, N.; Vutha, A. C.; Ferchichi, I.; Storry, C. H.; Hessels, E. A.

    2015-05-01

    Improved measurements in atomic hydrogen are needed to shed light on the proton radius puzzle. We are measuring the Lamb shift in hydrogen (n = 2 ,S1 / 2 -->P1 / 2) using a frequency-offset separated oscillatory fields (FOSOF) method. The advantages of this method include its insensitivity to atomic beam intensity fluctuations and the microwave-system frequency response. We present experimental results obtained with this method, towards a new measurement of the proton charge radius. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  9. Power System Oscillatory Behaviors: Sources, Characteristics, & Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dosiek, Luke A. [Union College, Schenectady, NY (United States); Pierre, John W. [Univ. of Wyoming, Laramie, WY (United States)

    2017-05-17

    This document is intended to provide a broad overview of the sources, characteristics, and analyses of natural and forced oscillatory behaviors in power systems. These aspects are necessarily linked. Oscillations appear in measurements with distinguishing characteristics derived from the oscillation’s source. These characteristics determine which analysis methods can be appropriately applied, and the results from these analyses can only be interpreted correctly with an understanding of the oscillation’s origin. To describe oscillations both at their source within a physical power system and within measurements, a perspective from the boundary between power system and signal processing theory has been adopted.

  10. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  11. High frequency of early colorectal cancer in inflammatory bowel disease

    NARCIS (Netherlands)

    Lutgens, M. W. M. D.; Vleggaar, F. P.; Schipper, M. E. I.; Stokkers, P. C. F.; van der Woude, C. J.; Hommes, D. W.; de Jong, D. J.; Dijkstra, G.; van Bodegraven, A. A.; Oldenburg, B.; Samsom, M.

    Background and aim: To detect precancerous dysplasia or asymptomatic cancer, patients suffering from inflammatory bowel disease often undergo colonoscopic surveillance based on American or British guidelines. It is recommended that surveillance is initiated after 8-10 years of extensive colitis, or

  12. High frequency of early colorectal cancer in inflammatory bowel disease

    NARCIS (Netherlands)

    Lutgens, M. W. M. D.; Vleggaar, F. P.; Schipper, M. E. I.; Stokkers, P. C. F.; van der Woude, C. J.; Hommes, D. W.; de Jong, D. J.; Dijkstra, G.; van Bodegraven, A. A.; Oldenburg, B.; Samsom, M.

    2008-01-01

    To detect precancerous dysplasia or asymptomatic cancer, patients suffering from inflammatory bowel disease often undergo colonoscopic surveillance based on American or British guidelines. It is recommended that surveillance is initiated after 8-10 years of extensive colitis, or after 15-20 years

  13. Meiosis in a triploid hybrid of Gossypium: high frequency of ...

    Indian Academy of Sciences (India)

    ... in a cell, meiosis I proceeded normally, with polyad formation. These observations strongly support the view that in plant meiocytes bilateral kinetochore symmetry is not required for establishing a bipolar spindle and that single unpaired chromosomes can initiate and stabilize the formation of a functional bipolar spindle.

  14. Oscillatory synchrony between head direction cells recorded bilaterally in the anterodorsal thalamic nuclei.

    Science.gov (United States)

    Butler, William N; Taube, Jeffrey S

    2017-05-01

    The head direction (HD) circuit is a complex interconnected network of brain regions ranging from the brain stem to the cortex. Recent work found that HD cells corecorded ipsilaterally in the anterodorsal nucleus (ADN) of the thalamus displayed coordinated firing patterns. A high-frequency oscillation pattern (130-160 Hz) was visible in the cross-correlograms of these HD cell pairs. Spectral analysis further found that the power of this oscillation was greatest at 0 ms and decreased at greater lags, and demonstrated that there was greater synchrony between HD cells with similar preferred firing directions. Here, we demonstrate that the same high-frequency synchrony exists in HD cell pairs recorded contralaterally from one another in the bilateral ADN. When we examined the cross-correlograms of HD cells that were corecorded bilaterally, we observed the same high-frequency (~150- to 200-Hz) oscillatory relationship. The strength of this synchrony was similar to the synchrony seen in ipsilateral HD cell pairs, and the degree of synchrony in each cross-correlogram was dependent on the difference in tuning between the two cells. Additionally, the frequency rate of this oscillation appeared to be independent of the firing rates of the two cross-correlated cells. Taken together, these results imply that the left and right thalamic HD network are functionally related despite an absence of direct anatomical projections. However, anatomical tracing has found that each of the lateral mammillary nuclei (LMN) project bilaterally to both of the ADN, suggesting the LMN may be responsible for the functional connectivity observed between the two ADN. NEW & NOTEWORTHY This study used bilateral recording electrodes to examine whether head direction cells recorded simultaneously in both the left and right thalamus show coordinated firing. Cross-correlations of the cells' spike trains revealed a high-frequency oscillatory pattern similar to that seen in cross-correlations between pairs

  15. Learning in AN Oscillatory Cortical Model

    Science.gov (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  16. Three-dimensional Oscillatory Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2017-07-20

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  17. Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems

    OpenAIRE

    Cohen, David

    2017-01-01

    Modulated Fourier expansion is used to show long-time near-conservation of the total and oscillatory energies of numerical methods for Hamiltonian systems with highly oscillatory solutions. The numerical methods considered are an extension of the trigonometric methods. A brief discussion of conservation properties in the continuous problem and in the multi-frequency case is also given

  18. Structure-preserving algorithms for oscillatory differential equations

    CERN Document Server

    Wu, Xinyuan; Wang, Bin

    2013-01-01

    Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.

  19. Parkinsonism and vigilance: alteration in neural oscillatory activity and phase-amplitude coupling in the basal ganglia and motor cortex.

    Science.gov (United States)

    Escobar Sanabria, David; Johnson, Luke A; Nebeck, Shane D; Zhang, Jianyu; Johnson, Matthew D; Baker, Kenneth B; Molnar, Gregory F; Vitek, Jerrold L

    2017-11-01

    Oscillatory neural activity in different frequency bands and phase-amplitude coupling (PAC) are hypothesized to be biomarkers of Parkinson's disease (PD) that could explain dysfunction in the motor circuit and be used for closed-loop deep brain stimulation (DBS). How these putative biomarkers change from the normal to the parkinsonian state across nodes in the motor circuit and within the same subject, however, remains unknown. In this study, we characterized how parkinsonism and vigilance altered oscillatory activity and PAC within the primary motor cortex (M1), subthalamic nucleus (STN), and globus pallidus (GP) in two nonhuman primates. Static and dynamic analyses of local field potential (LFP) recordings indicate that 1 ) after induction of parkinsonism using the neurotoxin MPTP, low-frequency power (8-30 Hz) increased in the STN and GP in both subjects, but increased in M1 in only one subject; 2 ) high-frequency power (~330 Hz) was present in the STN in both normal subjects but absent in the parkinsonian condition; 3 ) elevated PAC measurements emerged in the parkinsonian condition in both animals, but in different sites in each animal (M1 in one subject and GPe in the other); and 4 ) the state of vigilance significantly impacted how oscillatory activity and PAC were expressed in the motor circuit. These results support the hypothesis that changes in low- and high-frequency oscillatory activity and PAC are features of parkinsonian pathophysiology and provide evidence that closed-loop DBS systems based on these biomarkers may require subject-specific configurations as well as adaptation to changes in vigilance. NEW & NOTEWORTHY Chronically implanted electrodes were used to record neural activity across multiple nodes in the basal ganglia-thalamocortical circuit simultaneously in a nonhuman primate model of Parkinson's disease, enabling within-subject comparisons of electrophysiological biomarkers between normal and parkinsonian conditions and different

  20. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  1. Laser velocimeter application to oscillatory liquid flows

    Science.gov (United States)

    Gartrell, L. R.

    1978-01-01

    A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.

  2. Common oscillatory mechanisms across multiple memory systems

    Science.gov (United States)

    Headley, Drew B.; Paré, Denis

    2017-01-01

    The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a "slow" or "fast" mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.

  3. The Sensitivity of Adolescent School-Based Hearing Screens Is Significantly Improved by Adding High Frequencies

    Science.gov (United States)

    Sekhar, Deepa L.; Zalewski, Thomas R.; Beiler, Jessica S.; Czarnecki, Beth; Barr, Ashley L.; King, Tonya S.; Paul, Ian M.

    2016-01-01

    High frequency hearing loss (HFHL), often related to hazardous noise, affects one in six U.S. adolescents. Yet, only 20 states include school-based hearing screens for adolescents. Only six states test multiple high frequencies. Study objectives were to (1) compare the sensitivity of state school-based hearing screens for adolescents to gold…

  4. Three-dimensional inverse scattering: High-frequency analysis of Newton's Marchenko equation

    International Nuclear Information System (INIS)

    Cheney, M.; Rose, J.H.

    1985-01-01

    We obtain a high-frequency asymptotic expansion of Newton's Marchenko equation for three-dimensional inverse scattering. We find that the inhomogeneous term contains the same high-frequency information as does the Born approximation. We show that recovery of the potential via Newton's Marchenko equation plus the ''miracle'' depends on low-frequency information

  5. A CMOS transconductance-C filter technique for very high frequencies

    NARCIS (Netherlands)

    Nauta, Bram

    1992-01-01

    CMOS circuits for integrated analog filters at very high frequencies, based on transconductance-C integrators, are presented. First a differential transconductance element based on CMOS inverters is described. With this circuit a linear, tunable integrator for very-high-frequency integrated filters

  6. High frequency electromagnetic processes in induction motors supplied from PWM inverters

    Directory of Open Access Journals (Sweden)

    Ioan Ţilea

    2010-12-01

    Full Text Available The paper presents the electromagnetic interference between induction motors and inverters when at high frequency electromagnetic process appears in induction motors having a parallel resonant effect because of parasitic capacitive coupling between windings and ground, using a numerical model in simulink and a high frequency induction motor equivalent circuit model this effect is shown.

  7. Automatic detection and treatment of oscillatory and/or stiff ordinary differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gear, C. W.

    1980-06-01

    The next generation of ODE software can be expected to detect special problems and to adapt to their needs. The low-cost, automatic detection of oscillatory behavior, the determination of its period, and methods for its subsequent efficient integration are addressed here, along with stiffness detection. In the first phase, the method for oscillatory problems discussed examines the output of any integrator to determine if the output is nearly periodic. At the point this answer is positive, the second phase is entered and an automatic, nonstiff, multirevolutionary method is invoked. This requires the occasional solution of a nearly periodic initial-value problem over one period by a standard method and the re-determination of its period. Because the multirevolutionary method uses a very large step, the problem has a high probability of being stiff in this second phase. Hence, it is important to detect if stiffness is present so that an appropriate stiff, multirevolutionary method can be selected. 6 figures.

  8. Recent developments in structure-preserving algorithms for oscillatory differential equations

    CERN Document Server

    Wu, Xinyuan

    2018-01-01

    The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addre...

  9. Imaging of the skin and subcutaneous tissue using classical and high-frequency ultrasonographies in anti-cellulite therapy.

    Science.gov (United States)

    Mlosek, Robert Krzysztof; Dębowska, Renata Maria; Lewandowski, Marcin; Malinowska, Sylwia; Nowicki, Andrzej; Eris, Irena

    2011-11-01

    The development of ultrasonography allowed for skin imaging used in dermatology and esthetic medicine. By means of classic and high-frequency ultrasonographies, changes within the dermis and subcutaneous tissue can be presented. The aim of this study was to show the possibilities of applying classic and high-frequency ultrasonographies in esthetic dermatology based on monitoring various types of anti-cellulite therapies. Sixty-one women with cellulite were assigned to two smaller groups. One group was using anti-cellulite cream and the second group was a placebo group. The ultrasound examination was carried out before the initiation and after the completion of the treatment and evaluated epidermal echoes, the thickness of the subcutaneous tissue and the dermis, dermis echogenicity, the length and surface area of the subcutaneous tissue fascicles growing into the dermis, and the presence or absence of edemas. After the completion of the treatment, a statistically significant difference was observed. The most useful parameters were as follows: the thickness of the subcutaneous tissue, echogenicity, the surface area and length of the subcutaneous tissue, as well as the presence of edemas. The discussed changes were not observed in the placebo group. Classic and high-frequency ultrasonographies are useful methods for monitoring anti-cellulite therapies. © 2011 John Wiley & Sons A/S.

  10. MULTI-FREQUENCY OSCILLATORY VENTILATION IN THE PREMATURE LUNG: EFFECTS ON GAS EXCHANGE, MECHANICS, AND VENTILATION DISTRIBUTION

    Science.gov (United States)

    Kaczka, David W.; Herrmann, Jacob; Zonneveld, C. Elroy; Tingay, David G.; Lavizzari, Anna; Noble, Peter B.; Pillow, J. Jane

    2015-01-01

    Background Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. We hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared to traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed ‘multi-frequency oscillatory ventilation’ (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Methods Thirteen intubated preterm lambs were randomized to either SFOV or MFOV for 1 hour, followed by crossover to the alternative regimen for 1 hour. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, while the customized MFOV waveform consisted of a 5 Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening (P̅ao) and inspired O2 fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted 15-minute intervals. A ventilatory cost function for SFOV and MFOV was defined as VC=(Vrms2PaCO2)Wt−1, where Wt denotes body weight. Results Averaged over all time points, MFOV resulted in significantly lower VC (246.9±6.0 vs. 363.5±15.9 mL2 mmHg kg−1) and P̅ao (12.8±0.3 vs. 14.1±0.5 cmH2O) compared to SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Conclusions Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared to traditional single-frequency HFOV. PMID:26495977

  11. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.

    Science.gov (United States)

    Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong

    2017-12-01

    Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.

  12. The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering

    International Nuclear Information System (INIS)

    El-Danaf, Ehab A; Almajid, Abdulhakim A; Soliman, Mahmoud S; Baig, Muneer

    2014-01-01

    Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ∼ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10 −4 s −1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured

  13. MIMO High Frequency Surface Wave Radar Using Sparse Frequency FMCW Signals

    Directory of Open Access Journals (Sweden)

    Mengguan Pan

    2017-01-01

    Full Text Available The heavily congested radio frequency environment severely limits the signal bandwidth of the high frequency surface wave radar (HFSWR. Based on the concept of multiple-input multiple-output (MIMO radar, we propose a MIMO sparse frequency HFSWR system to synthesize an equivalent large bandwidth waveform in the congested HF band. The utilized spectrum of the proposed system is discontinuous and irregularly distributed between different transmitting sensors. We investigate the sparse frequency modulated continuous wave (FMCW signal and the corresponding deramping based receiver and signal processor specially. A general processing framework is presented for the proposed system. The crucial step is the range-azimuth processing and the sparsity of the carrier frequency causes the two-dimensional periodogram to fail when applied here. Therefore, we introduce the iterative adaptive approach (IAA in the range-azimuth imaging. Based on the initial 1D IAA algorithm, we propose a modified 2D IAA which particularly fits the deramping processing based range-azimuth model. The proposed processing framework for MIMO sparse frequency FMCW HFSWR with the modified 2D IAA applied is shown to have a high resolution and be able to provide an accurate and clear range-azimuth image which benefits the following detection process.

  14. Non-Steady Oscillatory Flow in Coarse Granular Materials

    DEFF Research Database (Denmark)

    Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der

    1992-01-01

    Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have...

  15. Processing Oscillatory Signals by Incoherent Feedforward Loops.

    Science.gov (United States)

    Zhang, Carolyn; Tsoi, Ryan; Wu, Feilun; You, Lingchong

    2016-09-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose.

  16. Plant shoots exhibit synchronized oscillatory motions.

    Science.gov (United States)

    Ciszak, Marzena; Masi, Elisa; Baluška, František; Mancuso, Stefano

    2016-01-01

    In animals, the ability to move has evolved as an important means of protection from predators and for enhancing nutrient uptake. In the animal kingdom, an individual's movements may become coordinated with those of other individuals that belong to the same group, which leads, for example, to the beautiful collective patterns that are observed in flocks of birds and schools of fish or in animal migration. Land plants, however, are fixed to the ground, which limits their movement and, apparently, their interactions and collective behaviors. We show that emergent maize plants grown in a group exhibit synchronized oscillatory motions that may be in-phase or anti-phase. These oscillations occur in short bursts and appear when the leaves rupture from the coleoptile tip. The appearance of these oscillations indicates an abrupt increase in the plant growth rate, which may be associated with a sudden change in the energy uptake for photosynthesis. Our results suggest that plant shoots behave as a complex network of biological oscillators, interacting through biophysical links, e.g. chemical substances or electric signals.

  17. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Matthew S. [Department; Ding, Wendu [Department; Li, Yuxiu [Center; College; Chapman, Craig T. [Department; Lei, Aiwen [College; Lin, Xiao-Min [Center; Chen, Lin X. [Department; Chemical; Schatz, George C. [Department; Schaller, Richard D. [Department; Center

    2017-12-08

    We demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result, change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.

  18. Oscillatory Stokes Flow Past a Slip Cylinder

    Science.gov (United States)

    Palaniappan, D.

    2013-11-01

    Two-dimensional transient slow viscous flow past a circular cylinder with Navier slip boundary conditions is considered in the limit of low-Reynolds number. The oscillatory Stokes flow problem around a cylinder is solved using the stream function method leading to an analytic solution in terms of modified Bessel functions of the second kind. The corresponding steady-state behavior yields the familiar paradoxical result first detected by Stokes. It is noted that the two key parameters, viz., the frequency λ, and the slip coefficient ξ have a significant impact on the flow field in the vicinity of the cylinder contour. In the limit of very low frequency, the flow is dominated by a term containing a well-known biharmonic function found by Stokes that has a singular behavior at infinity. Local streamlines for small times show interesting flow patterns. Attached eddies due to flow separation - observed in the no-slip case - either get detached or pushed away from the cylinder surface as ξ is varied. Computed asymptotic results predict that the flow exhibits inviscid behavior far away from the cylinder in the frequency range 0 < λ << 1 . Although the frequency of oscillations is finite, our exact solutions reveal fairly rapid transitions in the flow domain. Research Enhancement grant, TAMUCC.

  19. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    Science.gov (United States)

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  20. Killer whale (Orcinus orca) whistles from the western South Atlantic Ocean include high frequency signals.

    Science.gov (United States)

    Andriolo, Artur; Reis, Sarah S; Amorim, Thiago O S; Sucunza, Federico; de Castro, Franciele R; Maia, Ygor Geyer; Zerbini, Alexandre N; Bortolotto, Guilherme A; Dalla Rosa, Luciano

    2015-09-01

    Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.

  1. Development of Numerical Codes for Modeling Electromagnetic Behavior at High Frequencies Near Large Objects

    Science.gov (United States)

    Joshi, R. P.; Deshpande, M. D. (Technical Monitor)

    2003-01-01

    A study into the problem of determining electromagnetic solutions at high frequencies for problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been initiated. Typical applications include the behavior of antennas (and radiators) installed on complex conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility control. This includes the overall performance evaluation and control of all on-board radiating systems, electromagnetic interference, and personnel radiation hazards. Electromagnetic computational capability exists at NASA LaRC, and many of the codes developed are based on the Moment Method (MM). However, the MM is computationally intensive, and this places a limit on the size of objects and structures that can be modeled. Here, two approaches are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii) an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone (MMZ) which can be used over any part of the given geometry, but is most essential over irregular and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering and reflecting surfaces can then be computed in two ways depending on whether the region belonged to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the mutual induction from conduction within the MMZ. This effectively leads to

  2. Effect of prolonged wakefulness on electroencephalographic oscillatory activity during sleep

    OpenAIRE

    2013-01-01

    The human sleep electroencephalogram (EEG) is characterized by the occurrence of distinct oscillatory events such as delta waves sleep spindles and alpha activity. We applied a previously proposed algorithm for the detection of such events and investigated their incidence and frequency in baseline and recovery sleep after 40 h of sustained wakefulness in 27 healthy young subjects. The changes in oscillatory events induced by sleep deprivation were compared to the corresponding spectral change...

  3. DNA in nanopores: negative capacitance and delta-relaxation at high frequency.

    Science.gov (United States)

    Mandal, S K

    2006-05-01

    We measured the high frequency dielectric relaxation behavior of DNA molecules confined in nanopores of polycarbonate membrane. The data revealed the existence of a critical frequency omega(c) approximately GHz at which the ac conductivity showed delta-relaxation. Interestingly, the DNA molecules also exhibited a crossover from positive to negative capacitance corresponding to omega(c). The negative capacitance at the critical frequency suggested a strong inductive behavior of DNA molecules in the high frequency regime. The results are interpreted in terms of the confined geometry of the DNA molecules in the nanopores. The interfacial water H-bonded to DNA played a crucial role in determining the high frequency relaxation of DNA molecules. The results indicated that the DNA in nanopores could be designed for application in high frequency bandpass/notch filters.

  4. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  5. High-Frequency Electrocardiography: Optimizing the Diagnosis of the Acute Myocardial Infarct with ST-Elevation

    Science.gov (United States)

    Naydenov, S.; Donova, T.; Matveev, M.; Gegova, A.; Popdimitrova, N.; Zlateva, G.; Vladimirova, D.

    2007-04-01

    The analysis of the received digital signal by computer microprocessor in high-frequency electrocardiography, used in our research, makes possible synthesis of vectorcardiographic images and loops, allowing improved qualitative and quantitative diagnosing of the myocardial injury.

  6. High Sensitivity, High Frequency Sensors for Hypervelocity Testing and Analysis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would develop high sensitivity, high frequency nanomembrane based surface sensors for hypervelocity testing and analysis on wind...

  7. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  8. Low and High-Frequency Field Potentials of Cortical Networks Exhibit Distinct Responses to Chemicals

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between differ...

  9. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    NARCIS (Netherlands)

    de Weerd, N.; van Langevelde, F.; van Oeveren, H.; Nolet, Bart A.; Kölzsch, Andrea; Prins, H.H.T.; De Boer, W.F.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable

  10. High Frequency Radar Locations in the United States as of February 2016.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset show the point locations of High Frequency (HF) radar systems across the US. HF radars measure the speed and direction of ocean surface currents in near...

  11. Calibration and Validation of High Frequency Radar for Ocean Surface Current Mapping

    National Research Council Canada - National Science Library

    Kim, Kyung

    2004-01-01

    High Frequency (HF) radar backscatter instruments are being developed and tested in the marine science and defense science communities for their abilities to sense surface parameters remotely in the coastal ocean over large areas...

  12. An Investigation of Surface Current Patterns Related to Upwelling in Monterey Bay, Using High Frequency Radar

    National Research Council Canada - National Science Library

    Enriquez, Andres

    2004-01-01

    High Frequency (HF) radar backscatter instruments are under development and testing in the marine science and defense science communities for their abilities to remotely sense surface parameters in the coastal ocean over large areas...

  13. High Sensitivity, High Frequency Sensors for Hypervelocity Testing and Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would develop high sensitivity, high frequency nanomembrane (NM) based surface sensors for hypervelocity testing and analysis on wind...

  14. Prediction of high frequency core loss for electrical steel using the data provided by manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rakesh [National Institute of Technology Meghalaya, Shillong (India); Dalal, Ankit; Kumar, Praveen [Indian Institute of Technology Guwahati, Assam (India)

    2016-07-15

    This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency. - Highlights: • A curve fitting algorithm is proposed to predict core loss at high frequency. • The loss data given by the steel manufacturers are used in curve fitting algorithm. • The algorithm is tested on nine different material’s data set given by the manufacturer.

  15. Advanced Gun System (AGS) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis

    National Research Council Canada - National Science Library

    Berman, Morris

    1999-01-01

    Dynamic characterization tests were performed on the Advanced Gun System (AGS) vehicle. The tests were designed to provide modeling information for high-frequency shock prediction codes, as well as finite element codes...

  16. MODELLING AND SIMULATION OF HIGH FREQUENCY INVERTER FOR INDUCTION HEATING APPLICATION

    OpenAIRE

    SACHIN S. BANKAR; Dr. PRASAD M. JOSHI

    2016-01-01

    This paper presents modelling and simulation of high frequency inverter for induction heating applications. Induction heating has advantages like higher efficiency, controlled heating, safety and pollution free therefore this technology is used in industrial, domestic and medical applications. The high frequency full bridge inverter is used for induction heating, also MOSFET is used as a switching device for inverter and the control strategy used for inverter is Bipolar PWM control. The size ...

  17. The effect of high-frequency ground motion on the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Bhan, S.; Dunbar, S.

    1989-06-01

    The effect of high-frequency ground motion on structures and equipment in nuclear reactors is examined by subjecting simple linear models to selected recorded ground motions which exhibit low and high frequencies. Computed damage measures indicate that high-frequency short-duration ground motion, such as that observed in eastern North America, have a minimal effect on structures with low natural frequencies. Response spectra of high-frequency ground motion indicate that higher forces are induced in structures with high natural frequencies as compared to those induced by low-frequency ground motion. However, reported observations of earthquake damage in eastern North America suggest that high-frequency ground motion causes little of no damage to structures. This may be due to the energy absorption capability of structures. It is concluded that the response spectrum representative of ground motion observed in eastern North America may give an over-conservative measure of the response of structures with high natural frequencies, since it does not account for the typically observed short duration of high-frequency ground motion and for the energy absorption capability of structures. Detailed nonlinear analysis of specific structures with high natural frequencies should be performed to better predict the actual response. Recommendations for a nonlinear analysis of typical structures with high natural frequencies are made

  18. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)

  19. Exposure to loud noise, bilateral high-frequency hearing loss and coronary heart disease.

    Science.gov (United States)

    Gan, Wen Qi; Moline, Jacqueline; Kim, Hyun; Mannino, David M

    2016-01-01

    Bilateral high-frequency hearing loss is an indicator for chronic exposure to loud noise. This study aimed to examine the association between bilateral high-frequency hearing loss and the presence of coronary heart disease (CHD). This study included 5223 participants aged 20-69 years who participated in the audiometry examination of the National Health and Nutrition Examination Survey 1999-2004. Bilateral high-frequency hearing loss was defined as the average high-frequency (3, 4 and 6 kHz) hearing threshold ≥25 dB in both ears. CHD was defined as self-reported diagnoses by doctors or other health professionals. Compared with those with normal high-frequency hearing, participants with bilateral high-frequency hearing loss were more likely to have CHD (OR 1.91; 95% CI 1.28 to 2.85) after adjustment for various covariates. This association was particularly strong for currently employed workers who were exposed to loud occupational noise (OR 4.23; 95% CI 1.32 to 13.55). For this subgroup, there was no significant association of CHD with unilateral high-frequency hearing loss, and unilateral or bilateral low-frequency hearing loss. Furthermore, there was no significant association of CHD with any types of hearing loss for participants who were not exposed to loud noise. Stratified analyses for participants exposed to loud noise showed that the observed association was particularly strong for those who were less than 50 years of age, less educated and current smokers. On the basis of an objective indicator for personal chronic exposure to loud noise, this study confirmed that exposure to loud occupational noise is associated with the presence of CHD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Defibrillation success with high frequency electric fields is related to degree and location of conduction block.

    Science.gov (United States)

    Weinberg, Seth H; Chang, Kelly C; Zhu, Renjun; Tandri, Harikrishna; Berger, Ronald D; Trayanova, Natalia A; Tung, Leslie

    2013-05-01

    We recently demonstrated that high frequency alternating current (HFAC) electric fields can reversibly block propagation in the heart by inducing an oscillating, elevated transmembrane potential (Vm) that maintains myocytes in a refractory state for the field duration and can terminate arrhythmias, including ventricular fibrillation (VF). To quantify and characterize conduction block (CB) induced by HFAC fields and to determine whether the degree of CB can be used to predict defibrillation success. Optical mapping was performed in adult guinea pig hearts (n = 14), and simulations were performed in an anatomically accurate rabbit ventricular model. HFAC fields (50-500 Hz) were applied to the ventricles. A novel power spectrum metric of CB-the loss of spectral power in the 1-30 Hz range, termed loss of conduction power (LCP)-was assessed during the HFAC field and compared with defibrillation success and VF vulnerability. LCP increased with field strength and decreased with frequency. Optical mapping experiments conducted on the epicardial surface showed that LCP and the size of CB regions were significantly correlated with VF initiation and termination. In simulations, subsurface myocardial LCP and CB sizes were more closely correlated with VF termination than surface values. Multilinear regression analysis of simulation results revealed that while CB on both the surface and the subsurface myocardium was predictive, subsurface myocardial CB was the better predictor of defibrillation success. HFAC fields induce a field-dependent state of CB, and defibrillation success is related to the degree and location of the CB. Copyright © 2013. Published by Elsevier Inc.

  1. Brain oscillatory signatures of motor tasks.

    Science.gov (United States)

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  2. Brain oscillatory signatures of motor tasks

    Science.gov (United States)

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  3. Effect of near-surface topography on high-frequency Rayleigh-wave propagation

    Science.gov (United States)

    Wang, Limin; Xu, Yixian; Xia, Jianghai; Luo, Yinhe

    2015-05-01

    Rayleigh waves, which are formed due to interference of P- and Sv-waves near the free surface, propagate along the free surface and vanish exponentially in the vertical direction. Their propagation is strongly influenced by surface topography. Due to the high resolution and precision requirements of near-surface investigations, the high-frequency Rayleigh waves are usually used for near-surface structural detecting. Although there are some numerical studies on high-frequency Rayleigh-wave propagation on topographic free surface, detailed analysis of characters of high-frequency Rayleigh-wave propagation on topographic free surface remains untouched. Hence, research of propagation of Rayleigh waves on complex topographic surface becomes critical for Rayleigh-wave methods in near-surface applications. To study the propagation of high-frequency Rayleigh waves on topographic free surface, two main topographic models are designed in this study. One of the models contains a depressed topographic surface, and another contains an uplifted topographic surface. We numerically simulate the propagation of high-frequency Rayleigh waves on these two topographic surfaces by finite-difference method. Soon afterwards, we analyze the propagation character of high-frequency Rayleigh waves on such topographic models, and compare the variations on its energy and frequency before and after passing the topographic region. At last, we discuss the relationship between the variations and topographical steepness of each model. Our numerical results indicate that influence of depressed topography for high-frequency Rayleigh waves is more distinct than influence of uplifted topography. Rayleigh waves produce new scattering body waves during passing the depressed topography with reduction of amplitude and loss of high-frequency components. Moreover, the steeper the depressed topography is, the more energy of Rayleigh waves is lost. The uplifted topography with gentle slope produces similar

  4. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    International Nuclear Information System (INIS)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-01-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1–10 kHz and 10–125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status. (letter)

  5. System constitution of plasma high frequency heating device and element equipment

    International Nuclear Information System (INIS)

    Nagashima, Takashi

    1988-01-01

    On the high frequency heating device used for nuclear fusion experiment, the system constitution and the main items of development for the element equipment are described. As for the high frequency heating device, large technical progress was observed in the past 10 years as the second stage heating for tokamaks and one of the main means of current drive. At present, three frequency zones are regarded as promising for plasma high frequency heating in large nuclear fusion devices, and the experiment of 10 MW class is in progress at JT-60, JET and so on. There are electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frquency heating. The basic constitution of these heating devices includes a high frequency source, a transmission system, a connection system, and a common system for control, cooling, record and others. The ECH device using gyrotrons of several tens GHz, the LHRF heating device using large power klystrons up to several GHz and the ICRF heating device up to 200 MHz are briefly explained. The main element equipments composing the high frequency heating systems of several tens MW are discussed. (Kako, I.)

  6. Comparison of low and high frequency transducers in the detection of liver metastases.

    Science.gov (United States)

    Schacherer, D; Wrede, C; Obermeier, F; Schölmerich, J; Schlottmann, K; Klebl, F

    2006-09-01

    To evaluate the benefit of the additional use of a high frequency ultrasound probe (7.5 MHz) in finding suspicious liver lesions compared to the examination using a 3.5-MHz transducer only. One hundred and fifty-seven patients with underlying malignant disease were examined with both transducers using one of three ultrasound machines (Siemens Sonoline Elegra, GE Healthcare Logic 9, or Hitachi EUB-8500). Findings on hepatic lesions were collected on a standardised documentation sheet and evaluated by descriptive statistics. Ninety-three patients (59.2% of all patients) showed no evident liver lesion on conventional ultrasound with the 3.5 MHz probe. In 29 patients (18.5%) new suspicious liver lesions were found by using the high frequency transducer. Thirteen of these 29 patients (44.8%) were suspected to suffer from diffuse infiltration of the liver with malignant lesions or at least 10 additional visible lesions. In 14 patients, no liver lesion had been known before high frequency ultrasound examination. The size of newly described liver lesions ranged from 2 mm to 1.5 cm. Time needed for the additional examination with the high frequency transducer ranged between 1 and 15 min with an average of 4.0 min. The additional use of a high frequency transducer in patients with underlying malignant disease slightly extends the examination time, but reveals new, potentially malignant hepatic lesions in almost every fifth patient.

  7. Measures of extents of laterality for high-frequency ``transposed'' stimuli under conditions of binaural interference

    Science.gov (United States)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-09-01

    Our purpose in this study was to determine whether across-frequency binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs, rather than extents of laterality, suggested that high-frequency transposed stimuli might be ``immune'' to binaural interference effects resulting from the addition of a spectrally remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets are susceptible to binaural interference. Nevertheless, high-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did high-frequency Gaussian noise targets presented in isolation. That is, the ``enhanced potency'' of ITDs conveyed by transposed stimuli persisted, even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for across-frequency binaural interference obtained with conventional Gaussian noise targets but, in all but one case, overpredicted the amounts of interference found with the transposed targets.

  8. Enhancing interaural-delay-based extents of laterality at high frequencies by using ``transposed stimuli''

    Science.gov (United States)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2003-06-01

    An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.

  9. Research for the jamming mechanism of high-frequency laser to the laser seeker

    Science.gov (United States)

    Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming

    2013-08-01

    High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.

  10. High frequency magnetic properties of Fe-based nanocrystalline alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.K. [Seoul National University of Technology, Seoul 139-743 (Korea); Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Yoon B.; Jee, K.K. [Korea Institute of Science and Technology, Seoul 136-791 (Korea); Choi, G.B. [R and D Center, Changsung Corporation, Incheon (Korea)

    2007-12-15

    Toroidal shape Fe-based nanocrystalline alloy powder cores were prepared from the melt spun Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} ribbons by cold pressing using silicon and phenol resin as an insulating material, respectively. The effect of the insulating materials and their content on the high-frequency magnetic properties of the compacted cores were investigated. The Fe-based nanocrystalline alloy powder cores using phenol resin exhibit stable permeability over 1 MHz, showing excellent high-frequency characteristics. The core loss was reduced significantly and the dc-bias property was improved by using phenol resin. Uniform and good insulation by phenol resin leads to the excellent high-frequency characteristics of the cores. Silicon resin as an insulating material was also effective in improving the high frequency characteristics of the Fe-based nanocrystalline alloy powder cores. However, an appropriate coating process for silicon resin should be applied in order to achieve more improved high frequency characteristics of the nanocrystalline alloy powder cores by controlling the thickness of coated layer. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Occupational Noise Exposure, Bilateral High-Frequency Hearing Loss, and Blood Pressure.

    Science.gov (United States)

    Gan, Wen Qi; Mannino, David M

    2017-11-13

    The aim of this study was to investigate the relationships between occupational noise exposure and blood pressure using self-reported occupational exposure and bilateral high-frequency hearing loss. This study included 4548 participants aged 20 to 69 years from the National Health and Nutrition Examination Survey 1999 to 2004. On the basis of self-reported exposure status, participants were divided into the current, former, or never exposed groups. Bilateral high-frequency hearing loss was defined as the average high-frequency hearing threshold at least 25 dB in both ears. The currently exposed participants had slightly increased diastolic blood pressure compared with those never exposed. Among previously exposed participants, those with bilateral high-frequency hearing loss had increased systolic blood pressure, heart rate, and the prevalence of hypertension compared with those with normal high-frequency hearing. Although there were some significant results, the evidence was not consistent to support the associations between occupational noise exposure and blood pressure.

  12. Electrosmog. Effects of high-frequency electromagnetic waves on health. Pt. 1

    International Nuclear Information System (INIS)

    Matthes, R.

    1993-01-01

    1) The concept of Electrosmog concerns technically electromagnetic waves and fields of variable frequency and intensity. In our environment, high frequency fields come almost entirely from man-made sources. 2) High frequency electromagnetic fields can cause physical effects either directly or indirectly - eg through conductive materials. Thermal effects are the most prominent. The action of force mediated by the field can cause the loadig of there electric charges in the body. 3) The amount of energy absorbed by a fabric can be calculated from the intensity of the yield and the conductivity of the material. 4) In-vitro studies have suggested that high frequency fields affect the cell membranes and can cause changes in their permeability, enzyme activity and immune responses; although there are no proven results blaming high frequency fields for such mutations, and effects on cell proliferation have not been ascertained. 5) A basic limit of O-4 W/kg has been set internationally for work-related exposure, according to public health considerations, and the limit for the general public is 0.08 W/kg. 6) These basic limits are generally kept as a minimum requirement, and generally exposure is a hot lower. When high frequency equipment is in use nearby, measures must be taken to ensure that sefety limits are upheld and injury avoided, to the eyes in particular. (orig./MG) [de

  13. Oscillatory instability of interstellar medium radiative shock waves

    International Nuclear Information System (INIS)

    Imamura, J.N.

    1984-01-01

    Observations of the radiative shock waves produced during the late stages of supernova remnant evolution cannot be understood in the context of steady state shock models. As a result, several more complicated scenarios have been suggested. For example, it has been proposed that several shocks are producing the emission or that one shock, which is in the process of making the transition between the adiabatic and the radiative phases of its evolution, produces the emission. In this paper, we suggest another explanation. We propose that supernova remnant shock waves are subject to an oscillatory instability. By an oscillatory instability, we mean one where the postshock cooling region periodically varies in size on a time scale determined by the postshock plasma cooling time. An oscillatory instability may be able to produce the types of behavior exhibited by supernova remnant radiative shocks in a natural way. 16 refs., 1 fig

  14. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  15. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    Science.gov (United States)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  16. Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data

    Science.gov (United States)

    2015-01-01

    The recent availability of high frequency data has permitted more efficient ways of computing volatility. However, estimation of volatility from asset price observations is challenging because observed high frequency data are generally affected by noise-microstructure effects. We address this issue by using the Fourier estimator of instantaneous volatility introduced in Malliavin and Mancino 2002. We prove a central limit theorem for this estimator with optimal rate and asymptotic variance. An extensive simulation study shows the accuracy of the spot volatility estimates obtained using the Fourier estimator and its robustness even in the presence of different microstructure noise specifications. An empirical analysis on high frequency data (U.S. S&P500 and FIB 30 indices) illustrates how the Fourier spot volatility estimates can be successfully used to study intraday variations of volatility and to predict intraday Value at Risk. PMID:26421617

  17. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  18. Energy conservation and high-frequency damping in numerical time integration

    DEFF Research Database (Denmark)

    Krenk, Steen

    2008-01-01

    this often leads to a fairly large number of high-frequency modes, that are not represented well – and occasionally directly erroneously – by the model. It is desirable to cure this problem by devising algorithms that include the possibility of introducing algorithmic energy dissipation of the high-frequency...... to introduce so-called α-damping, and an improved form leading only to high-frequency damping can be obtained by suitable averaging of the equilibrium equation at onsecutive time steps. Conservative time integration algorithms are obtained by use of an integral of the equation of motion and the acceleration...... of variables related to the displacement and velocity vectors by a suitable first order filter with scalar coefficients. By this device an algorithmic damping can be obtained that is of third order in the low-frequency regime. It is an important feature of both algorithms that they can be arranged to require...

  19. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...... (series RL + shunt C). In order to improve the performance of the DFIG system as well as other units and loads connected to the weak grid, the high frequency resonance needs to be effectively damped. In this paper, the proposed active damping control strategy is able to implement effective damping either...... in the Rotor Side Converter (RSC) or in the Grid Side Converter (GSC), through the introduction of virtual positive capacitor or virtual negative inductor to reshape the DFIG system impedance and mitigate the high frequency resonance. A detailed theoretical explanation on the virtual positive capacitor...

  20. High-frequency radar observations of PMSE modulation by radio heating

    Science.gov (United States)

    Senior, Andrew; Rietveld, Michael; Mahmoudian, Alireza; La Hoz, Cesar; Kosch, Michael; Scales, Wayne; Pinedo, Henry

    The first observations using high-frequency (8 MHz) radar of modulation of polar mesospheric summer echoes (PMSE) by radio heating of the ionosphere are presented. The experiment was performed at the EISCAT facility near Tromsø, Norway. The observations are compared with simultaneous radar measurements at 224 MHz and with a model of the dusty plasma response to electron heating. Agreement between the model and observations is good considering technical limitations on the 8 MHz radar measurements. Predictions made about the response of high-frequency PMSE to heating where dust charging dominates over diffusion, opposite to the situation at very high-frequencies are confirmed. Suggestions are made about improving the 8 MHz observations to overcome the current limitations.

  1. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang

    2017-05-01

    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  2. Calibration of semi-stochastic procedure for simulating high-frequency ground motions

    Science.gov (United States)

    Seyhan, Emel; Stewart, Jonathan P.; Graves, Robert

    2013-01-01

    Broadband ground motion simulation procedures typically utilize physics-based modeling at low frequencies, coupled with semi-stochastic procedures at high frequencies. The high-frequency procedure considered here combines deterministic Fourier amplitude spectra (dependent on source, path, and site models) with random phase. Previous work showed that high-frequency intensity measures from this simulation methodology attenuate faster with distance and have lower intra-event dispersion than in empirical equations. We address these issues by increasing crustal damping (Q) to reduce distance attenuation bias and by introducing random site-to-site variations to Fourier amplitudes using a lognormal standard deviation ranging from 0.45 for Mw  100 km).

  3. Accumulated Source Imaging of Brain Activity with Both Low and High-Frequency Neuromagnetic Signals

    Directory of Open Access Journals (Sweden)

    Jing eXiang

    2014-05-01

    Full Text Available Recent studies have revealed the importance of high-frequency brain signals (>70 Hz. One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB, which is beyond the upper limits of a typical computer workstation’s memory (<196 GB. The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz and high-frequency (70~200 Hz ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 hours by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory.

  4. Hearing thresholds at high frequency in patients with cystic fibrosis: a systematic review

    Directory of Open Access Journals (Sweden)

    Debora T.M. Caumo

    Full Text Available Abstract Introduction: High-frequency audiometry may contribute to the early detection of hearing loss caused by ototoxic medications. Many ototoxic drugs are widely used in the treatment of patients with cystic fibrosis. Early detection of hearing loss should allow known harmful drugs to be identified before the damage affects speech frequencies. The damage caused by ototoxicity is irreversible, resulting in important social and psychological consequences. In children, hearing loss, even when restricted to high frequencies, can affect the development of language. Objective: To investigate the efficacy and effectiveness of hearing monitoring through high-frequency audiometry in pediatric patients with cystic fibrosis. Methods: Electronic databases PubMed, MedLine, Web of Science and LILACS were searched, from January to November 2015. The selected studies included those in which high-frequency audiometry was performed in patients with cystic fibrosis, undergoing treatment with ototoxic drugs and published in Portuguese, English and Spanish. The GRADE system was chosen for the evaluation of the methodological quality of the articles. Results: During the search process carried out from January 2015 to November 2015, 512 publications were identified, of which 250 were found in PubMed, 118 in MedLine, 142 in Web of Science and 2 in LILACS. Of these, nine articles were selected. Conclusion: The incidence of hearing loss was identified at high frequencies in cystic fibrosis patients without hearing complaints. It is assumed that high-frequency audiometry can be an early diagnostic method to be recommended for hearing investigation of patients at risk of ototoxicity.

  5. Oscillatory and Steady Dynamics of a Cylindrical Body Near the Border of Vibrating Cavity Filled with Liquid

    Science.gov (United States)

    Schipitsyn, V. D.; Kozlov, V. G.

    2018-02-01

    The results of experimental study of vibrational dynamics of cylindrical solid in a rectangular cavity filled with viscous incompressible fluid are generalized. The cavity performs high-frequency translational oscillations in a horizontal plane. Experiments are carried out with bodies of different relative density: more or less than liquid's density. The cylinder oscillates in the cavity under the influence of oscillating inertia force. An averaged force repels the body from the boundary and holds a heavy body over the bottom of the cavity and the light one at some distance from the ceiling. The vibrational lift force depends on the amplitude and frequency of vibrations as well as on the properties of liquid. It is shown that the value of the averaged lift force decreases with increasing dimensionless amplitude. Special attention is paid to the oscillatory behavior of a solid. The rotational oscillations of the body, observed in experiments simultaneously with the translational ones, and fluid motion, excited by an oscillating body, are investigated. The different modes of interaction of the body with the container's boundary were found. The oscillatory dynamics of bodies with different relative density is studied by high-speed video-registration.

  6. Large Amplitude Oscillatory Extension of Soft Polymeric Networks

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2010-01-01

    sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsilox......sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly...

  7. Oscillatory dependence of tunneling conductance on the barrier thickness

    Science.gov (United States)

    Lee, B. C.

    2017-11-01

    Oscillatory dependence of tunneling conductance on the barrier thickness is investigated theoretically for the metal/insulator/metal junctions. The tunneling transmission is expressed with the reflection and the transmission amplitudes of each separated metal/insulator interface and the wavevectors inside the barrier. An analytical formula is obtained for the tunneling conductance. The oscillatory behavior of the tunneling conductance is possible with the complex band structure of the insulator. The oscillation period is determined not directly from the real part of the complex wavevector in the insulator, but from the extremal complex spanning vector of the complex Fermi surface of the insulator.

  8. A study and classification of non-linear high frequency ionospheric instabilities by coupled mode theory.

    Science.gov (United States)

    Harker, K. J.

    1972-01-01

    Two basic high-frequency ionospheric instabilities are discussed - i.e., the three-wave parametric interaction, and the oscillating two-stream instability. In the parametric instability, the ion-acoustic wave has a complex frequency, whereas in the oscillating two-stream instability the ion-acoustic frequency is purely imaginary. The parametric instability is shown to be the only one whose threshold depends on the ion collision frequency. A coupled-mode theory is proposed which permits study and classification of high-frequency instabilities on a unified basis.

  9. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  10. High-frequency impedance of small-angle tapers and collimators

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2010-10-01

    Full Text Available Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya’s formula (for axisymmetric geometry, much less is known about the behavior of the impedance in the high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  11. Generation, detection and spectroscopic studies of high-frequency nonequilibrium phonons in crystals

    International Nuclear Information System (INIS)

    Dennis, W.M.; Yen, W.M.

    2007-01-01

    In this article we will review studies conducted in the past two decades on the dynamic properties of high-frequency (THz) phonons generated monochromatically with high power far infrared (FIR) laser pulses using defect-induced phonon absorption and detected using a vibronic sideband spectrometer fashioned after that devised by Kaplyanskii, the honoree of this special issue. The temporal and spectral evolution of the phonon signature provides information on the mechanisms that dominate the relaxation of high-frequency phonons in real crystals

  12. A Markov Chain Estimator of Multivariate Volatility from High Frequency Data

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Horel, Guillaume; Lunde, Asger

    We introduce a multivariate estimator of financial volatility that is based on the theory of Markov chains. The Markov chain framework takes advantage of the discreteness of high-frequency returns. We study the finite sample properties of the estimation in a simulation study and apply it to highf......We introduce a multivariate estimator of financial volatility that is based on the theory of Markov chains. The Markov chain framework takes advantage of the discreteness of high-frequency returns. We study the finite sample properties of the estimation in a simulation study and apply...

  13. A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2005-01-01

    We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show that the opti......We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show...

  14. The influence of a high-frequency magnetic field on the neutron diffraction by perfect crystals

    International Nuclear Information System (INIS)

    Michalec, R.; Chalupa, B.; Vavra, J.

    1989-01-01

    Measurements of the influence of a high-frequency magnetic field on the neutron diffraction by perfect monocrystals of InSb were performed at a frequency of 25 MHz. The ratios of the integrated reflectivities with and without a magnetic field as a function of the output voltage from the amplifier are shown for different parts of the crystal. The time dependence of the integrated reflectivity after switching on and off the high-frequency field is given. Results may be interpreted on the basis of the dynamical theory of diffraction on elastically deformed crystals (caused by the temperature gradient). Similar phenomena were observed also with a perfect Si monocrystal

  15. Spatio-temporal dynamics of oscillatory heterogeneous catalysis: CO oxidation on platinum

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.; Pina, R. K.

    1995-06-01

    Reaction-rate oscillations in the oxidation of carbon monoxide on the surface of platinum catalysts are studied in a continuous flow reactor at atmospheric pressure using infrared imaging. Small-amplitude temperature oscillations (0.2-8 K) result in approximately isothermal conditions, where changes in rate constants, for typical activation energies and temperatures, are small. The catalysts are in the form of platinum thin films on quartz substrates and provide highly repeatable oscillatory behavior. The platinum films are fabricated in the form of annular rings which provide a quasi-one-dimensional geometry in order to simplify comparison to theoretical models. Time-series measurements by means of thermocouples are used to characterize the oscillations. The infrared images show that most oscillations are spatially synchronized to within the 0.25 s time resolution of the experiment. The images also show that ``fine structure'' oscillations (i.e., small-amplitude, high frequency oscillations superimposed on larger-amplitude waveforms) are associated with spatially desynchronized patterns.

  16. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  17. Propagation of ultrasonic waves in bulk gallium nitride (GaN) semiconductor in the presence of high-frequency electric field II

    International Nuclear Information System (INIS)

    Elloh, V.W.; Banini, G.K.; Sam, Frederick; Twum, A.K.

    2006-12-01

    We report the calculations of the electron mobility and electron drift-velocity in the propagation of ultrasound in bulk GaN semiconductor in the presence of a strong ac field oscillating at a frequency much higher than that of the ultrasound. Analytical expressions have been obtained for the attenuation coefficient (α) and the renormalized velocity (v) of the acoustic wave. It is shown that the dependencies of the ultrasonic absorption coefficient of the conduction electrons and the renormalized sound velocity on the field amplitude and the sound frequency have an oscillatory character which can be used to determine the effective mass and mobility of the material. The threshold field E min = 3.3 x 10 2 V / cm needed to observe the oscillations is two orders smaller than that needed in the case of CdS. The electron mobility μ = 1500cm 2 / Vs and electron drift-velocity v D 2.7 x 10 7 cm/s are obtained for bulk GaN in the presence of the high-frequency electric field. (author)

  18. High-frequency field-deployable isotope analyzer for hydrological applications

    Science.gov (United States)

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  19. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  20. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  1. [The dental soldering by means of high frequency induction heating (author's transl)].

    Science.gov (United States)

    Ichimaru, T; Kameda, T

    1977-04-01

    The authors examined the methods of high frequency induction soldering, especially Loop-method, other than the gas flame soldering which was known generally. The details which was done are: (1) about the form of induction coil, and the relative places of the coil and restrative appliance, and some supplementary appliances of them. (2) about strength of soldered joints of Co-Cr wire using silver solder and Pd-solder, and observation on the corrosion of soldered-joints by the scanning electron-microscope. (3) about the comparison of the characteristics of Co-Cr wire by means of high-frequency induction heating and gas-flame one. (4) about the examples of soldering of porcelain crown-bridge and clasp wire attached on the dental cast, and possibility of soldering techniques of them on the dental cast. The authors found that the high frequency induction method was preeminent from the other method on the point of (a) the characteristic of heated wire, (b) the strength of soldered joints, (c) the easiness of operating of them, and (d) the possibility of soldering using the high-melting point of Pd-solder, and the soldering of them on the dental cast. Therefore we can enough respect the application on the dental area of this apparatus and this techniques of the high-frequency induction soldering.

  2. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  3. Respiratory Control in Stuttering Speakers: Evidence from Respiratory High-Frequency Oscillations.

    Science.gov (United States)

    Denny, Margaret; Smith, Anne

    2000-01-01

    This study examined whether stuttering speakers (N=10) differed from fluent speakers in relations between the neural control systems for speech and life support. It concluded that in some stuttering speakers the relations between respiratory controllers are atypical, but that high participation by the high frequency oscillation-producing circuitry…

  4. Treatment of Chronic Refractory Neuropathic Pelvic Pain with High-Frequency 10-kilohertz Spinal Cord Stimulation.

    Science.gov (United States)

    Simopoulos, Thomas; Yong, Robert J; Gill, Jatinder S

    2017-11-06

    Chronic neuropathic pelvic pain remains a recalcitrant problem in the field of pain management. Case series on application of 10 kHz spinal cord stimulation is presented. High frequency stimulation can improve chronic neuropathic pain states that are known to be mediated at the conus medullaris and offers another avenue for the treatment of these patients. © 2017 World Institute of Pain.

  5. Planck 2015 results: VII. High Frequency Instrument data processing: Time-ordered information and beams

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing...

  6. Accelerated high-frequency repetitive transcranial magnetic stimulation enhances motor activity in rats

    NARCIS (Netherlands)

    El Arfani, Anissa; Parthoens, Joke; Demuyser, Thomas; Servaes, Stijn; De Coninck, Mattias; De Deyn, Peter Paul; Van Dam, Debby; Wyckhuys, Tine; Baeken, Chris; Smolders, Ilse; Staelens, Steven

    2017-01-01

    High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is currently accepted as an evidence-based treatment option for treatment-resistant depression (TRD). Additionally, HF-rTMS showed beneficial effects on psychomotor retardation in patients. The classical HF-rTMS paradigms however

  7. Removal of conjunctival cyst with high-frequency radio-wave electrosurgery.

    Science.gov (United States)

    Park, Jongyeop; Lee, Seungwoo; Suh, Eoksoo

    2015-10-01

    To introduce a new simple surgical approach for removal of conjunctival cysts with high-frequency radio-wave electrosurgery. Retrospective, noncomparative, interventional case series analysis. Twenty-one eyes of 21 patients. Symptomatic conjunctival cysts, which did not show improvement despite conventional medical management or other surgical procedures were included. The conjunctival cysts were treated using a high-frequency radio-wave electrosurgical unit (Ellman Surgitron; Ellman International Inc, Oceanside, N.Y.). The conjunctiva surrounding the conjunctival cyst was grasped and lifted up using a smooth forcep and a fine-needle electrode (Ellman Insulated Needle Electrodes D6A; Ellman International Inc) was inserted into the cyst. A power setting of 0.5 to 1 was used for coagulation of cysts, without charring the tissue. After surgery, none of the patients had recurrence of conjunctival cysts during the follow-up period of 6 months, and symptoms also disappeared. The surgery did not exceed 5 minutes in all cases, and subconjunctival hemorrhage was observed in 1 case. Subconjunctival hemorrhage had completely resolved within 2 weeks and no other complications were observed. A surgical approach with high-frequency radio-wave electrosurgery successfully removed conjunctival cysts and produced improvement in symptoms. High-frequency radio-wave surgical techniques might be a favourable alternative to surgical treatment of conjunctival cysts. Copyright © 2015 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  8. Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2015-01-01

    Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.

  9. Effectiveness of a prolonged incarceration and rehabilitation measure for high-frequency offenders

    NARCIS (Netherlands)

    Tollenaar, N.; van der Laan, A. M.; van der Heijden, P. G M

    2014-01-01

    Objectives: To estimate the incapacitation effect and the impact on post-release recidivism of a measure combining prolonged incarceration and rehabilitation, the ISD measure for high frequency offenders (HFOs) was compared to the standard practice of short-term imprisonment. Methods: We applied a

  10. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...

  11. Automatic seizure detection in SEEG using high frequency activities in wavelet domain.

    Science.gov (United States)

    Ayoubian, L; Lacoma, H; Gotman, J

    2013-03-01

    Existing automatic detection techniques show high sensitivity and moderate specificity, and detect seizures a relatively long time after onset. High frequency (80-500 Hz) activity has recently been shown to be prominent in the intracranial EEG of epileptic patients but has not been used in seizure detection. The purpose of this study is to investigate if these frequencies can contribute to seizure detection. The system was designed using 30 h of intracranial EEG, including 15 seizures in 15 patients. Wavelet decomposition, feature extraction, adaptive thresholding and artifact removal were employed in training data. An EMG removal algorithm was developed based on two features: Lack of correlation between frequency bands and energy-spread in frequency. Results based on the analysis of testing data (36 h of intracranial EEG, including 18 seizures) show a sensitivity of 72%, a false detection of 0.7/h and a median delay of 5.7 s. Missed seizures originated mainly from seizures with subtle or absent high frequencies or from EMG removal procedures. False detections were mainly due to weak EMG or interictal high frequency activities. The system performed sufficiently well to be considered for clinical use, despite the exclusive use of frequencies not usually considered in clinical interpretation. High frequencies have the potential to contribute significantly to the detection of epileptic seizures. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Spot Variance Path Estimation and its Application to High Frequency Jump Testing

    NARCIS (Netherlands)

    Bos, C.S.; Janus, P.; Koopman, S.J.

    2012-01-01

    This paper considers spot variance path estimation from datasets of intraday high-frequency asset prices in the presence of diurnal variance patterns, jumps, leverage effects, and microstructure noise. We rely on parametric and nonparametric methods. The estimated spot variance path can be used to

  13. High-frequency CMUT arrays for high-resolution medical imaging

    Science.gov (United States)

    Yeh, David T.; Oralkan, Omer; Ergun, Arif S.; Zhuang, Xuefeng; Wygant, Ira O.; Khuri-Yakub, Butrus T.

    2005-04-01

    Applications of ultrasonic imaging in fields such as dermatology, ophthalmology, and cardiovascular medicine require very high resolution. Limitations in existing transducer technologies inhibit the development of high-frequency arrays, which would allow the use of dynamic focusing and enable higher frame rates. As an alternative, capacitive micromachined ultrasonic transducer (CMUT) technology, using integrated circuit fabrication techniques, can provide arrays with the small dimensions required for high-frequency operation. We have designed and fabricated several linear and ring arrays of CMUTs to operate in the 10 to 50 MHz range. These new arrays are made with the wafer bonding process. The ring arrays in particular demonstrate the feasibility of thinning the transducer to aid packaging in intravascular applications. This study shows that CMUTs can be made for high-frequency operation. Both transducers for use in conventional and collapse-mode operation have been designed and characterized. The results demonstrate that CMUT is an appropriate technology for building high-frequency arrays. A linear array of high-voltage pulser and amplifier circuits has also been designed for use with an array of CMUTs to enable real-time imaging applications. Pulse-echo results from the sixteen-channel array have been demonstrated.

  14. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, including...

  15. Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies.

    Science.gov (United States)

    Robillard, Tony; Montealegre-Z, Fernando; Desutter-Grandcolas, Laure; Grandcolas, Philippe; Robert, Daniel

    2013-06-01

    Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts causes harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short-winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (>8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterised the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrated that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We placed these specialisations in a phylogenetic framework and show that they serve to exploit high-frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high-frequency songs evolved stepwise, by a form of punctuated evolution that could be related to functional constraints, rather than by only the progressive increase of the ancestral fundamental frequency.

  16. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...

  17. High-frequency precursors to P-wave arrivals in New Zealand : implications for slab structure

    NARCIS (Netherlands)

    Hilst, R.D. van der; Snieder, R.K.

    1996-01-01

    This report revisits the very early high-frequency slab phases from earthquakes in the Kermadec slab (between −25°S and −37°S) that arrive as a precursor to the P wave onset at stations in New Zealand. The analysis of short-period digital records for station SNZO (South Karori New Zealand) for the

  18. Fabrication of High-Frequency pMUT Arrays on Silicon Substrates

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Zawada, Tomasz; Hansen, Karsten

    2010-01-01

    A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate...

  19. High-frequency asymptotics of solutions of ODE in a Banach space

    Science.gov (United States)

    Sazonov, L. I.

    2017-12-01

    We construct and justify high-frequency asymptotic expansions of solutions for some class of linear ODE in a Banach space. In particular, we obtain new results in the case when the averaged ODE are degenerate. The author is deceased. The editors are grateful to A. B. Morgulis, who finished the paper after the author’s death.

  20. Cluster observations of high-frequency waves in the exterior cusp

    Directory of Open Access Journals (Sweden)

    Y. Khotyaintsev

    2004-07-01

    Full Text Available We study wave emissions, in the frequency range from above the lower hybrid frequency up to the plasma frequency, observed during one of the Cluster crossings of a high-beta exterior cusp region on 4 March 2003. Waves are localized near narrow current sheets with a thickness a few times the ion inertial length; currents are strong, of the order of 0.1-0.5μA/m2 (0.1-0.5mA/m2 when mapped to ionosphere. The high frequency part of the waves, frequencies above the electron-cyclotron frequency, is analyzed in more detail. These high frequency waves can be broad-band, can have spectral peaks at the plasma frequency or spectral peaks at frequencies below the plasma frequency. The strongest wave emissions usually have a spectral peak near the plasma frequency. The wave emission intensity and spectral character change on a very short time scale, of the order of 1s. The wave emissions with strong spectral peaks near the plasma frequency are usually seen on the edges of the narrow current sheets. The most probable generation mechanism of high frequency waves are electron beams via bump-on-tail or electron two-stream instability. Buneman and ion-acoustic instability can be excluded as a possible generation mechanism of waves. We suggest that high frequency waves are generated by electron beams propagating along the separatrices of the reconnection region.

  1. Applying the Multisim Technology to Teach the Course of High Frequency Power Amplifier

    Science.gov (United States)

    Lv, Gang; Xue, Yuan-Sheng

    2011-01-01

    As one important professional base course in the electric information specialty, the course of "high frequency electronic circuit" has strong theoretical characteristic and abstract content. To enhance the teaching quality of this course, the computer simulation technology based on Multisim is introduced into the teaching of "high…

  2. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1998-01-01

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV

  3. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  4. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    Science.gov (United States)

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  5. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  6. Evaluation of high frequency ground motion effects on the seismic capacity of NPP equipments

    International Nuclear Information System (INIS)

    Choi, In Kil; Seo, Jeong Moon; Choun, Young Sun

    2003-04-01

    In this study, the uniform hazard spectrum for the example Korean nuclear power plants sites were developed and compared with various response spectra used in past seismic PRA and SMA. It shows that the high frequency ground motion effects should be considered in seismic safety evaluations. The floor response spectra were developed using the direct generation method that can develop the floor response spectra from the input response spectrum directly with only the dynamic properties of structures obtained from the design calculation. Most attachment of the equipments to the structure has a minimum distortion capacity. This makes it possible to drop the effective frequency of equipment to low frequency before it is severely damaged. The results of this study show that the high frequency ground motion effects on the floor response spectra were significant, and the effects should be considered in the SPRA and SMA for the equipments installed in a building. The high frequency ground motion effects are more important for the seismic capacity evaluation of functional failure modes. The high frequency ground motion effects on the structural failure of equipments that attached to the floor by welding can be reduced by the distortion capacity of welded anchorage

  7. How to record high-frequency oscillations in epilepsy : A practical guideline

    NARCIS (Netherlands)

    Zijlmans, Maeike; Worrell, Gregory A.; Dümpelmann, Matthias; Stieglitz, Thomas; Barborica, Andrei; Heers, Marcel; Ikeda, Akio; Usui, Naotaka; Le Van Quyen, Michel

    2017-01-01

    Objective: Technology for localizing epileptogenic brain regions plays a central role in surgical planning. Recent improvements in acquisition and electrode technology have revealed that high-frequency oscillations (HFOs) within the 80–500 Hz frequency range provide the neurophysiologist with new

  8. Decreased echolocation performance following high-frequency hearing loss in the false killer whale (Pseudorca crassidens).

    Science.gov (United States)

    Kloepper, L N; Nachtigall, P E; Gisiner, R; Breese, M

    2010-11-01

    Toothed whales and dolphins possess a hypertrophied auditory system that allows for the production and hearing of ultrasonic signals. Although the fossil record provides information on the evolution of the auditory structures found in extant odontocetes, it cannot provide information on the evolutionary pressures leading to the hypertrophied auditory system. Investigating the effect of hearing loss may provide evidence for the reason for the development of high-frequency hearing in echolocating animals by demonstrating how high-frequency hearing assists in the functioning echolocation system. The discrimination abilities of a false killer whale (Pseudorca crassidens) were measured prior to and after documented high-frequency hearing loss. In 1992, the subject had good hearing and could hear at frequencies up to 100 kHz. In 2008, the subject had lost hearing at frequencies above 40 kHz. First in 1992, and then again in 2008, the subject performed an identical echolocation task, discriminating between machined hollow aluminum cylinder targets of differing wall thickness. Performances were recorded for individual target differences and compared between both experimental years. Performances on individual targets dropped between 1992 and 2008, with a maximum performance reduction of 36.1%. These data indicate that, with a loss in high-frequency hearing, there was a concomitant reduction in echolocation discrimination ability, and suggest that the development of a hypertrophied auditory system capable of hearing at ultrasonic frequencies evolved in response to pressures for fine-scale echolocation discrimination.

  9. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch...

  10. Environmental Assessment for the Advanced Extremely High Frequency Satellite Beddown and Deployment Program

    Science.gov (United States)

    2010-07-01

    percent of the annual 48 inches (122 centimeters) of rain occurs during the Advanced Extremely High Frequency Satellite Final Environmental... Studio Leaves Rustling Physically Painful Extremely Loud Threshold of Physical Discomfort Hearing Damage Criteria...Found in the Vicinity of the Proposed Action Areas at CCAFS, FL Common Name Scientific Name Status Federal State Birds Florida Scrub-jay

  11. US Mains Stacked Very High Frequency Self-oscillating Resonant Power Converter with Unified Rectifier

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Mønster, Jakob Døllner

    2016-01-01

    This paper describes a Very High Frequency (VHF) converter made with three Class-E inverters and a single ClassDE rectifier. The converter is designed for the US mains (120 V, 60 Hz) and can deliver 9 W to a 60 V LED. The converter has a switching frequency of 37 MHz and achieves an efficiency...

  12. High frequency audiometry in prospective clinical research of ototoxicity due to platinum derivatives

    NARCIS (Netherlands)

    van der Hulst, R. J.; Dreschler, W. A.; Urbanus, N. A.

    1988-01-01

    The results of clinical use of routine high frequency audiometry in monitoring the ototoxic side effects of platinum and its derivatives are described in this prospective study. After demonstrating the reproducibility of the technique, we discuss the first results of an analysis of ototoxic side

  13. Pre- and postoperative high-frequency audiometry in otosclerosis. A study of 53 cases

    NARCIS (Netherlands)

    Tange, R. A.; Dreschler, W. A.

    1990-01-01

    A study was carried out to evaluate the results of stapes surgery in 53 cases of otosclerosis. The hearing function was measured pre- and postoperatively by means of conventional and high-frequency audiometry (Demlar 20K). The operative findings of the gradation of otosclerosis were compared with

  14. High-frequency oscillations and seizure activity and in the human anterior nucleus of the thalamus

    Czech Academy of Sciences Publication Activity Database

    Rektor, I.; Doležalová, I.; Chrastina, J.; Jurák, Pavel; Halámek, Josef; Brázdil, M.

    2015-01-01

    Roč. 56, S1 (2015), s. 29-30 ISSN 0013-9580. [International Epilepsy Congress /31./. 05.09.2015-09.09.2015, Istanbul] Institutional support: RVO:68081731 Keywords : high-frequency oscillations * anterior nucleus of the thalamus Subject RIV: FS - Medical Facilities ; Equipment

  15. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating...

  16. Bilateral high frequency subthalamic stimulation in Parkinson's disease: long-term neurological follow-up

    NARCIS (Netherlands)

    Romito, L. M.; Scerrati, M.; Contarino, M. F.; Iacoangeli, M.; Bentivoglio, A. R.; Albanese, A.

    2003-01-01

    AIM: High frequency stimulation of the subthalamic nucleus (STN) is gaining recognition as a new symptomatic treatment for Parkinson's disease (PD). The first available long-term observations show the stability of the efficacy of this procedure in time. METHODS: Quadripolar leads were implanted

  17. High-frequency internal waves near the Luzon Strait observed by underwater gliders

    Science.gov (United States)

    Rudnick, Daniel L.; Johnston, T. M. Shaun; Sherman, Jeffrey T.

    2013-02-01

    flow through the Luzon Strait produces large internal waves that propagate westward into the South China Sea and eastward into the Pacific. Underwater gliders gathered sustained observations of internal waves during seven overlapping missions from April 2007 through July 2008. A particular focus is the high-frequency internal waves, where the operational definition of high involves periods shorter than a glider profile taking 3-6 h. Internal wave vertical velocity is estimated from measurements of pressure and glider orientation through two methods: (1) use of a model of glider flight balancing buoyancy and drag along the glider path and (2) high-pass filtering of the observed glider vertical velocity. By combining high-frequency vertical velocities from glider flight with low-frequency estimates from isopycnal depth variations between dives, a spectrum covering five decades of frequency is constructed. A map of the standard deviation of vertical velocity over the survey area shows a decay from the Luzon Strait into the Pacific. The growth of high-frequency vertical velocity with propagation into the South China Sea is observed through two 2-week time series stations. The largest observed vertical velocities are greater than 0.2 m s-1 and are associated with displacements approaching 200 m. The high-frequency waves are observed at regular intervals of 1 day as they ride on diurnal tidal internal waves generated in the Strait.

  18. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  19. High frequency microphone measurements for transition detection on airfoils. NACA-0015 appendix report

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given to tran...

  20. Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry

    Science.gov (United States)

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer

    2009-01-01

    We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...

  1. Effect of ischemia and cooling on the response to high frequency stimulation in rat tail nerves

    DEFF Research Database (Denmark)

    Andersen, Henning; Feldbæk Nielsen, Jørgen; Sørensen, Bodil

    2000-01-01

    In normal rat tail nerves the effect of temperature and ischemia on the response to long-term high frequency stimulation (HFS) (143 Hz) was studied. The effect of temperature was studied in two consecutive tests at 14 degrees C and 35 degrees C. Prior to the HFS the peak-to-peak amplitude (PP...

  2. High-frequency electro-thermal processing of secondary nonmetallic raw materials

    Directory of Open Access Journals (Sweden)

    A. V. Livshits

    2014-01-01

    Full Text Available Despite a large number of studies in industrial waste processing, this field is still a challenge. In this regard, new processing capabilities emerging from the use of high frequency (RF and microwave (MW heat equipment are a positive factor to be researched.In HF and MW processing the heating process is determined by absorption of electromagnetic wave power through the processed material. This electromagnetic wave power is transmitted by the substance atoms and spent for heating a sample, polarization, and initiation of chemical reactions. The non-conductor (dielectric and semiconductor material heat is explained by the existing effect of dielectric losses due to losses caused by the through electrical conductivity and slow processes of polarization. The dielectric losses due to electrical conductivity result from the Joule heat released when through-current flows through the dielectric.The differences in frequency radiation of HF and microwave equipment define their different technological capabilities. HF-radiation represents almost homogeneous field between the plates of a running capacitor. With multiple reflection from the chamber walls MW-radiation is randomly distributed within the chamber. Thus, radiation partly returns to the generator, thereby affecting the equipment performance capability and life time. Microwave heating is uneven. The depth of penetration into the material is much less to HF-processing. HF heating features are high penetration of radiation and uniform heating of the material. Together with pre-pressing it can afford an opportunity to join the non-standard pieces of plastic to have the larger insulating items.The fact of the selective effect on the material is positive when processing the waste. Since the tangent of angle of dielectric losses of materials such as wood is directly proportional to humidity, the heating automatically stops as wood dries. This fact was used to produce for the fuel briquettes, which were

  3. Oscillatory and electrohydrodynamic instabilities in flow over a ...

    Indian Academy of Sciences (India)

    The stability of oscillatory flows over compliant surfaces is studied analytically and numerically. The type of compliant surfaces studied is the incompressible viscoelastic gel model. The stability is determined using the Floquet analysis, where amplitude of perturbations at time intervals separated by one time period is ...

  4. Oscillatory and electrohydrodynamic instabilities in flow over a ...

    Indian Academy of Sciences (India)

    is encountered in the flow of cardiovascular fluids through flexible blood vessels which are driven by the pumping of the heart. The Reynolds numbers for these flows vary over a wide range between Re < 1 and Re = 4000 (Ku 1997). The oscillatory nature of the blood flow in the vascular system is characterized by a number ...

  5. On stellar collapse: continual or oscillatory. A short comment

    International Nuclear Information System (INIS)

    Leung, P.T.

    1980-01-01

    We comment on a previously published paper on the oscillatory dynamics of stellar collapse and conclude that the Schwarzschild interior solution applied to the 'inflection points' can never give rise to a 'turning back' motion, in spite of the fact that the geodesic equation really does not always describe an attractive gravitational acceleration

  6. Unstable oscillatory Pierce modes of neutralized electron beams

    International Nuclear Information System (INIS)

    Cary, J.R.; Lemons, D.S.

    1982-01-01

    Oscillatory modes of the Pierce system have been calculated. These modes are found to have growth rates comparable to the previously investigated purely growing modes. When these modes are included, it is found that the Pierce system is unstable for most values of ω/sub p/ L/V 0 >π

  7. Oscillatory and electrohydrodynamic instabilities in flow over a ...

    Indian Academy of Sciences (India)

    and oscillatory experiments on the flow past a gel, the gel is placed on the bottom Peltier plate, and the fluid is placed on the gel. The top plate is lowered to obtain a fluid film of the desired thickness, and the viscosity measurements are conducted. The stress is increased at a constant rate, and the viscosity is calculated by ...

  8. Strobes: Pyrotechnic Compositions That Show a Curious Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.|info:eu-repo/dai/nl/341356034; van Lingen, J.N.J.|info:eu-repo/dai/nl/311441769; Zevenbergen, J.F.; Gijzeman, O.L.J.|info:eu-repo/dai/nl/073464708; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2013-01-01

    Strobes are pyrotechnic compositions which show an oscillatory combustion; a dark phase and a flash phase alternate periodically. The strobe effect has applications in various fields, most notably in the fireworks industry and in the military area. All strobe compositions mentioned in the literature

  9. New insights into strobe reactions: An intriguing oscillatory combustion phenomenon

    NARCIS (Netherlands)

    Corbel, J.M.L.

    2013-01-01

    Strobes are self-sustained oscillatory combustions that have various applications in the fireworks industry and also in the military area (signaling, missile decoys and crowd control). However, most of the strobe compositions were discovered using trial and error methods. The fundamentals mechanisms

  10. Effect of vertical oscillatory pressure on disability of patients with ...

    African Journals Online (AJOL)

    Effect of vertical oscillatory pressure on disability of patients with chronic mechanical low back pain using Roland Morris Disability questionnaire. ... VOP was then administered to each patient twice in a week for 6 weeks making 12 treatment sessions. Pain intensity and disability were assessed regularly every week of ...

  11. Oscillatory interlayer magnetic coupling and induced magnetism in ...

    Indian Academy of Sciences (India)

    Unknown

    Oscillatory interlayer magnetic coupling and induced magnetism in. Fe/Nb multilayers. NITYA NATH SHUKLA and R PRASAD*. Department of Physics, Indian Institute of Technology, Kanpur 208 016, India. Abstract. We present an ab initio calculation of interlayer magnetic coupling for Fe/Nb multilayers using the.

  12. Oscillatory variation of anomalous diffusion in pendulum systems

    Indian Academy of Sciences (India)

    ... exponent , which is the rate of divergence of the mean square displacement with time, is found to vary in an oscillatory manner. We show the presence of such a variation in other statistical measures such as variance of position, kurtosis, and exponents in the power-exponential law of probability distribution of position.

  13. oscillatory ripples, evaluation of ancient wave climates and ...

    African Journals Online (AJOL)

    DJFLEX

    the ripples have provided useful data in the evaluation of local paleowave climates and trends in ancient wave dominated environments as well as in the prediction of epierogenic movement related to basin subsidence. (Harms, 1969; Diem, 1985). Evans (1941) on the basis of studies on wave–induced oscillatory ripples, ...

  14. Oscillatory behaviour of solutions of linear neutral differential ...

    African Journals Online (AJOL)

    The paper considers the contribution of space-time noise to the oscillatory behaviour of solutions of a linear neutral stochastic delay differential equation. It was established that under certain conditions on the time lags and their speed of adjustments, the presence of noise generates oscillation in the solution of the equation ...

  15. Oscillatory Dynamics Related to the Unagreement Pattern in Spanish

    Science.gov (United States)

    Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel

    2012-01-01

    Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…

  16. Deterministic oscillatory search: a new meta-heuristic optimization ...

    Indian Academy of Sciences (India)

    N Archana

    and UPSEB 75 bus system. Results show better performance over other standard algorithms in terms of voltage stability, real power loss and sizing and cost of FACTS devices. Keywords. Artificial intelligence; global optimization; oscillatory search; meta-heuristic optimization; power system problem. 1. Introduction.

  17. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound.

    Science.gov (United States)

    Sikes, Anita L; Mawson, Raymond; Stark, Janet; Warner, Robyn

    2014-11-01

    The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600kHz at 48kPa and 65kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7days at 4°C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7days at 4°C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2MHz at 48kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3weeks at 0°C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. [Application of high frequency color Doppler ultrasound in anterolateral thigh flap surgery].

    Science.gov (United States)

    Xiao, Haitao; Shi, Yingyu; Wang, Huaisheng; Liu, Yong; Zhang, Yange; Cen, Ying

    2013-02-01

    To investigate the effectiveness of high frequency color Doppler ultrasound for detecting perforators in the anterolateral thigh (ALT) flap surgery. Between February 2011 and July 2012, 8 patients underwent high frequency color Doppler ultrasound to detect the perforator anatomy before ALT flap surgery. There were 5 males and 3 females, aged 21-46 years (mean, 34 years). Defects were caused by excision of squamous cell carcinoma in 2 cases, by scalp avulsion in 2 cases, by soft tissue necrosis after neck trauma in 1 case, by excision of groin fibrosarcoma in 1 case, by excision of groin melanoma in 1 case, and by malformation of the face in 1 case. The defect size varied from 12 cm x 7 cm to 22 cm x 18 cm. The perforator with wider caliber, faster flow speed, and shorter intramuscular trajectory was selected, and the flap was designed according to the observed results, which size varied from 14 cm x 9 cm to 25 cm x 20 cm. The donnor sites were repaired by free skin graft. Totally, 19 perforators in the flap area were detected by high frequency color Doppler ultrasound, and 18 were identified during operation, with an accuracy rate of 94.7%. The point going out muscle, the travel and direction of perforators observed during operation were basically in accordance with those detected by high frequency color Doppler ultrasound. The other flaps survived, and obtained healing by first intention except 1 flap which had partial fat necrosis with healing by second intention. The skin graft at donor site survived. All patients followed up 4-16 months (mean, 8 months). The flaps had good color and texture. High frequency color Doppler ultrasound is a valuable imaging modality for the preoperative assessment of the vascular supply for ALT flap.

  19. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals

    Science.gov (United States)

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

  20. Oscillatory Störmer-Cowell methods

    NARCIS (Netherlands)

    P.J. van der Houwen; E. Messina; B.P. Sommeijer (Ben)

    1998-01-01

    textabstractWe consider explicit methods for initial-value problems for special second-order ordinary differential equations where the righthand side does not contain the derivative of ${bf y$ and where the solution components are known to be periodic with frequencies $|omega_j$ lying in a given

  1. The origin of high frequency radiation in earthquakes and the geometry of faulting

    Science.gov (United States)

    Madariaga, R.

    2004-12-01

    In a seminal paper of 1967 Kei Aki discovered the scaling law of earthquake spectra and showed that, among other things, the high frequency decay was of type omega-squared. This implies that high frequency displacement amplitudes are proportional to a characteristic length of the fault, and radiated energy scales with the cube of the fault dimension, just like seismic moment. Later in the seventies, it was found out that a simple explanation for this frequency dependence of spectra was that high frequencies were generated by stopping phases, waves emitted by changes in speed of the rupture front as it propagates along the fault, but this did not explain the scaling of high frequency waves with fault length. Earthquake energy balance is such that, ignoring attenuation, radiated energy is the change in strain energy minus energy released for overcoming friction. Until recently the latter was considered to be a material property that did not scale with fault size. Yet, in another classical paper Aki and Das estimated in the late 70s that energy release rate also scaled with earthquake size, because earthquakes were often stopped by barriers or changed rupture speed at them. This observation was independently confirmed in the late 90s by Ide and Takeo and Olsen et al who found that energy release rates for Kobe and Landers were in the order of a MJ/m2, implying that Gc necessarily scales with earthquake size, because if this was a material property, small earthquakes would never occur. Using both simple analytical and numerical models developed by Addia-Bedia and Aochi and Madariaga, we examine the consequence of these observations for the scaling of high frequency waves with fault size. We demonstrate using some classical results by Kostrov, Husseiny and Freund that high frequency energy flow measures energy release rate and is generated when ruptures change velocity (both direction and speed) at fault kinks or jogs. Our results explain why super shear ruptures are

  2. Modeling of high-frequency wave propagation in the heterogenous Earth using screen method

    Science.gov (United States)

    Ding, Y.; Zheng, Y.

    2017-12-01

    High-frequency (1Hz) wave propagation modeling in the heterogenous Earth is difficult due to computation cost. We have developed one alternative method to do high-frequency wave propagation locally in the Earth. First, we divide the heterogeneous Earth model into two parts: the background gradient velocity model, and the velocity perturbation. Then we trace rays from the source to the Earth surface and make screens perpendicular to the rays. We propagate the wavefield in each screen by Kirchhoff surface integral and account for the velocity perturbations with a phase shift. Recursively, the algorithm will propagate the wavefield locally from the source to the surface. The result is compared with that from the finite difference method.

  3. High-frequency signal paths in the TMR-86.1 experimental tomography apparatus

    International Nuclear Information System (INIS)

    Obrcian, J.; Jellus, V.; Weis, J.; Frollo, I.

    1990-01-01

    The NMR-based TMR-86.1 tomography apparatus, developed at the Institute of Measurement and Measuring Instrumentation, Slovak Academy of Sciences in Bratislava, Czechoslovakia, enables imaging of the inner structure of biological samples and human limbs no more than 110 mm in diameter, using a measuring matrix containing at most 128x128 elements. The imaged matrix can possess a maximum of 256x256 image elements with 256 brightness steps. The signal paths of the high-frequency excitation-imaging complex of the apparatus are described. Some functional blocks of the apparatus can be used without substantial modifications for the imaging of larger objects such as the human body. From the point of view of the high-frequency pulses for nonselective excitation (so-called 180deg-pulses), the excitation pulse power will have to be increased to at least 1 kW. (author). 5 figs, 7 refs

  4. Design and Measurement of Planar Toroidal Transformers for Very High Frequency Power Applications

    DEFF Research Database (Denmark)

    Knott, Arnold; Pejtersen, Jens

    2012-01-01

    -core toroidal transformer configuration for use in very high frequency power conversion applications. Two prototype transformers (10:10 and 12:12) have been implemented using conventional four layer printed circuit board technology. The transformers have been characterized by two port Z-parameters, which have...... been measured using a vector network analyzer. The inductances, magnetic coupling factor and effective turns ratio of the transformers have been extracted from the the measured Z-parameters. The measurements of the proposed transformer configuration shows promising properties for the use in resonant...... power converters for very high frequencies. The magnetic coupling factor of both transformers is approx. 60 % and the mutual coupling inductance is dominant up to a frequency of 50 MHz....

  5. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    Science.gov (United States)

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  6. Multicompartment retinal ganglion cells response to high frequency bi-phasic pulse train stimulation: Simulation results.

    Science.gov (United States)

    Maturana, Matias I; Grayden, David B; Burkitt, Anthony N; Meffin, Hamish; Kameneva, Tatiana

    2013-01-01

    Retinal ganglion cells (RGCs) are the sole output neurons of the retina that carry information about a visual scene to the brain. By stimulating RGCs with electrical stimulation, it is possible to elicit a sensation of light for people with macular degeneration or retinitis pigmentosa. To investigate the responses of RGCs to high frequency bi-phasic pulse train stimulation, we use previously constrained models of multi-compartment OFF RGCs. The morphologies of mouse RGCs are taken from the Chalupa set of the NeuroMorpho database. The cell models are divided into compartments representing the dendrites, soma and axon that vary between the cells. A total of 132 cells are simulated in the NEURON environment. Results show that the cell morphology plays an important role in the response characteristics of the cell to high frequency bi-phasic pulse train stimulation.

  7. The Effect of High-Frequency Parametric Excitation on a Stochastically Driven Pantograph-Catenary System

    Directory of Open Access Journals (Sweden)

    R. H. Huan

    2014-01-01

    Full Text Available In high-speed electric trains, a pantograph is mounted on the roof of the train to collect power through contact with an overhead catenary wire. The effect of fast harmonic and parametric excitation on a stochastically driven pantograph-catenary system is studied in this paper. A single-degree-of-freedom model of the pantograph-catenary system is adopted, wherein the stiffness of the nonlinear spring has a time-varying component characterized by both low and high frequencies. Using perturbation and harmonic averaging, a Fokker-Planck-Kolmogorov equation governing the stationary response of the pantograph-catenary system is set up. Based on the transition probability density of the stationary response, it is found that even small high-frequency parametric excitation has an appreciable effect on the system response. Among other things, it shifts the resonant frequency and often changes the response characteristics markedly.

  8. High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective

    International Nuclear Information System (INIS)

    Eckardt, André; Anisimovas, Egidijus

    2015-01-01

    We derive a systematic high-frequency expansion for the effective Hamiltonian and the micromotion operator of periodically driven quantum systems. Our approach is based on the block diagonalization of the quasienergy operator in the extended Floquet Hilbert space by means of degenerate perturbation theory. The final results are equivalent to those obtained within a different approach (Rahav et al 2003 Phys. Rev. A 68 013820), (Goldman and Dalibard 2014 Phys. Rev. X 4 031027) and can also be related to the Floquet–Magnus expansion (Casas et al 2001 J. Phys. A 34 3379). We discuss that the dependence on the driving phase, which plagues the latter, can lead to artifactual symmetry breaking. The high-frequency approach is illustrated using the example of a periodically driven Hubbard model. Moreover, we discuss the nature of the approximation and its limitations for systems of many interacting particles. (paper)

  9. The role of high-frequency envelope fluctuations for speech masking release

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    modulation filters tuned to frequencies above 16 Hz might be important in the case of fluctuating maskers. In the present study, the role of high-frequency envelope fluctuations for speech masking release was further investigated in conditions of speech-on-speech masking. Simulations were compared to various...... measured data from normal-hearing listeners (Festen and Plomp, 1990; Christiansen et al., 2013). The results support the hypothesis that high-frequency envelope fluctuations (>30 Hz) are essential for speech intelligibility in conditions with speech interferers. While the sEPSM reflects effects...... of energetic and modulation masking in speech intelligibility, the remaining unexplored effect in some conditions may be attributed to, and defined as, "informational masking"....

  10. Price duration versus trading volume in high-frequency data for selected DAX companies

    Directory of Open Access Journals (Sweden)

    Christoph Mitterer

    2016-12-01

    Full Text Available The properties of the time series of durations between consecutive trades of a particular stock have been studied by many contributors in the literature of financial econometrics. Among them are highly prominent scientists like Engle (2000 and Gourieroux and Jasiak (2001. The importance of this topic, accompanied by the growing availability of (ultra-high-frequency data, has prompted an increase of contributions in recent years. Intensive research based on high-frequency data has several financial motivations. First of all, it is linked with microstructure theory. Secondly, it contributes to the literature on stochastic time deformation. But the most important need for research on the dynamics of trade durations is the necessity to manage liquidity risk. The reason is that durations between the following trades are a widely accepted measures of market liquidity. In addition, their volatility reflects the liquidity risk.

  11. Thermal insulation and confinement of plasma with a high-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Vedenov, A.A.; Volkov, T.F.; Rudakov, L.I.; Sagdeyev, R.Z.; Glagolev, V.M.; Yeliseyev, G.A.; Khilil, V.V.

    1958-01-01

    At the Institute of Atomic Energy (Academy of Sciences, USSR) the problem of creating and thermally insulating plasma by means of high-frequency electromagnetic fields has been studied. Electromagnetic alternating fields which do not penetrate into plasma set up a pressure difference on the plasma boundary. There may be various ways of exciting alternating fields. One of the ways, most convenient from the radio engineering standpoint, is the setting up of a standing electromagnetic wave in a volume resonator partly filled with plasma. Such electromagnetic oscillations can be excited between the conductive walls of the resonator and the surface of plasma in such a way that the electromagnetic pressure, averaged over the high-frequency oscillations, with geometry specially selected, is the same at every point of the plasma surface

  12. Interaural time sensitivity of high-frequency neurons in the inferior colliculus.

    Science.gov (United States)

    Yin, T C; Kuwada, S; Sujaku, Y

    1984-11-01

    Recent psychoacoustic experiments have shown that interaural time differences provide adequate cues for lateralizing high-frequency sounds, provided the stimuli are complex and not pure tones. We present here physiological evidence in support of these findings. Neurons of high best frequency in the cat inferior colliculus respond to interaural phase differences of amplitude modulated waveforms, and this response depends upon preservation of phase information of the modulating signal. Interaural phase differences were introduced in two ways: by interaural delays of the entire waveform and by binaural beats in which there was an interaural frequency difference in the modulating waveform. Results obtained with these two methods are similar. Our results show that high-frequency cells can respond to interaural time differences of amplitude modulated signals and that they do so by a sensitivity to interaural phase differences of the modulating waveform.

  13. Reconstructing grasping motions from high-frequency local field potentials in primary motor cortex.

    Science.gov (United States)

    Zhuang, Jun; Truccolo, Wilson; Vargas-Irwin, Carlos; Donoghue, John P

    2010-01-01

    Recent developments in neural interface systems hold the promise to restore movement in people with paralysis. In search of neural signals for control of neural interface systems, previous studies have investigated primarily single and multiunit activity, as well as low frequency local field potentials (LFPs). In this paper, we investigate the information content about grasping motion of a broad band high frequency LFP (200 Hz - 400 Hz) by classifying discrete grasp aperture states and decoding continuous aperture trajectories. LFPs were recorded via 96-microelectrode arrays in the primary motor cortex (M1) of two monkeys performing free 3-D reaching and grasping towards moving objects. Our results indicate that broad band high frequency LFPs could serve as useful signals for restoring a motor function such as grasp control.

  14. Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    2016-01-01

    Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.

  15. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  16. On board electronic devices safety subject to high frequency electromagnetic radiation effects

    Science.gov (United States)

    Nikitin, V. F.; Smirnov, N. N.; Smirnova, M. N.; Tyurenkova, V. V.

    2017-06-01

    Spacecraft on board electronic devices are subjected to the effects of Space environment, in particular, electromagnetic radiation. The weight limitations for spacecraft pose an important material and structures problem: developing effective protection for on board electronic devices from high frequency electromagnetic radiation. In the present paper the problem of the effect of external high frequency electromagnetic field on electronic devices shielding located on orbital platforms is investigated theoretically. It is demonstrated that the characteristic time for the unsteady stage of the process is negligibly small as compared with characteristic time of electromagnetic field diffusion into a conductor for the studied range of governing parameters. A system of governing material parameters is distinguished, which contribute to protecting electronic devices from induced electrical currents.

  17. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Brown, F.A.; Davie, N.T. [and others

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  18. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2017-11-01

    Full Text Available Synaptotagmin 7 (Syt7 is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC-Purkinje cell (PC synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission.

  19. On the use of high-frequency SCADA data for improved wind turbine performance monitoring

    Science.gov (United States)

    Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. J.

    2017-11-01

    SCADA-based condition monitoring of wind turbines facilitates the move from costly corrective repairs towards more proactive maintenance strategies. In this work, we advocate the use of high-frequency SCADA data and quantile regression to build a cost effective performance monitoring tool. The benefits of the approach are demonstrated through the comparison between state-of-the-art deterministic power curve modelling techniques and the suggested probabilistic model. Detection capabilities are compared for low and high-frequency SCADA data, providing evidence for monitoring at higher resolutions. Operational data from healthy and faulty turbines are used to provide a practical example of usage with the proposed tool, effectively achieving the detection of an incipient gearbox malfunction at a time horizon of more than one month prior to the actual occurrence of the failure.

  20. Calculation of high frequency ultrasonic signals for shear wave insonification in solid material.

    Science.gov (United States)

    Schmitz, V; Langenberg, K J; Chakhlov, S

    2004-04-01

    The goal of the theoretical part is to simulate an automatic ultrasonic inspection with contact technique shear wave probes, where the high frequency signals are captured and used to perform a reconstruction based on the synthetic aperture focusing method "SAFT". Therefore the ultrasonic probe, the scanning path and the defects are parameters in a CAD model. The scattering behavior of the defect is calculated by the Kirchhoff approximation in its elastodynamic version. The result of the simulation--the high frequency data--and the result of the SAFT-reconstructions are compared with experimental results on a steel test block with side drilled and flat bottom holes. The model is validated by the experiment. One of the applications of the model is to identify multiple reflections.

  1. Design and construction of high-frequency magnetic probe system on the HL-2A tokamak

    Science.gov (United States)

    Liang, S. Y.; Ji, X. Q.; Sun, T. F.; Xu, Yuan; Lu, J.; Yuan, B. S.; Ren, L. L.; Yang, Q. W.

    2017-12-01

    A high-frequency magnetic probe system is designed, calibrated and constructed on the HL-2A tokamak. To investigate the factors which affect the probe frequency response, the inductance and capacitance in the probe system are analyzed using an equivalent circuit. Suitable sizes and turn number of the coil, and the length of transmission cable are optimized based on the theory and detailed test in the calibration. To deal with the frequency response limitation and bake-out, the ceramic grooved technique is used and the probe is wound with a bare copper wire. A cascade filter is manufactured with a suitable bandwidth as well as a good phase consistency between channels. The system has been used in the experiment to measure high frequency (≤300 kHz) magnetohydrodynamic fluctuations, which can meet the requirement of physical analysis on HL-2A.

  2. High aspect ratio MEMS capacitor for high frequency impedance matching applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    We present a microelectromechanical tunable capacitor with a low control voltage, a wide tuning range and adequate electrical quality factor. The device is fabricated in a single-crystalline silicon layer using deep reactive ion etching (DRIE) for obtaining high-aspect ratio (> 20) parallel comb......-drive structures with vertical sidewalls. The process sequence for fabrication of the devices uses only one lithographic masking step and can be completed in a short time. The fabricated device was characterized with respect to electrical quality factor, tuning range, self-resonance frequency and transient...... response and it was found that the device is a suitable passive component to be used in impedance matching applications, band-pass filtering or voltage controlled oscillators in the Very High Frequency (VHF) and Ultra High Frequency (UHF) bands....

  3. Broadband measurements of high-frequency electric field levels and exposure ratios determination

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2017-01-01

    Full Text Available The exposure of people to high-frequency electromagnetic fields (over 100 kHz that emanate from modern wireless information transmission systems is inevitable in modern times. Due to the rapid development of new technologies, measuring devices and their connection to measuring systems, the first fifteen years of the 21st century are characterized by the appearance of different approaches to measurements. This prompts the need for the assessment of the exposure of people to these fields. The main purpose of this paper is to show how to determine the exposure ratios based on the results of broadband measurements of the high-frequency electric field in the range of 3 MHz to 18 GHz in the environment.

  4. Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt; Sørensen, Michael

    Parametric estimation for diffusion processes is considered for high frequency observations over a fixed time interval. The processes solve stochastic differential equations with an unknown parameter in the diffusion coefficient. We find easily verified conditions on approximate martingale...... estimating functions under which estimators are consistent, rate optimal, and efficient under high frequency (in-fill) asymptotics. The asymptotic distributions of the estimators are shown to be normal variance-mixtures, where the mixing distribution generally depends on the full sample path of the diffusion...... process over the observation time interval. Utilising the concept of stable convergence, we also obtain the more easily applicable result that for a suitable data dependent normalisation, the estimators converge in distribution to a standard normal distribution. The theory is illustrated by a small...

  5. Laboratory measurements of high-frequency, acoustic broadband backscattering from sea ice and crude oil

    OpenAIRE

    Bassett, Christopher; Lavery, Andone C.; Maksym, Ted; Wilkinson, Jeremy P.

    2015-01-01

    Recent decreases in summer sea ice cover are spurring interest in hydrocarbon extraction and shipping in Arctic waters, increasing the risk of an oil spill in ice covered waters. With advances in unmanned vehicle operation, there is an interest in identifying techniques for remote, underwater detection of oil spills from below. High-frequency (200–565 kHz), broadband acoustic scattering data demonstrate that oil can be detected and quantified under laboratory grown sea ice and may be of use i...

  6. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    Science.gov (United States)

    2015-09-30

    on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine Physical Laboratory , Scripps Institution of Oceanography UCSD La Jolla, CA...long-term science objective is to develop a physical model of high-frequency scattering of underwater acoustic signals from the sea surface under a... acoustic communications problem. The scattering of sound from the sea surface is important for the operation of underwater sonar and underwater

  7. Design and Fabrication of Nanoscale IDTs Using Electron Beam Technology for High-Frequency SAW Devices

    Directory of Open Access Journals (Sweden)

    Wei-Che Shih

    2014-01-01

    Full Text Available High-frequency Rayleigh-mode surface acoustic wave (SAW devices were fabricated for 4G mobile telecommunications. The RF magnetron sputtering method was adopted to grow piezoelectric aluminum nitride (AlN thin films on the Si3N4/Si substrates. The influence of sputtering parameters on the crystalline characteristics of AlN thin films was investigated. The interdigital transducer electrodes (IDTs of aluminum (Al were then fabricated onto the AlN surfaces by using the electron beam (e-beam direct write lithography method to form the Al/AlN/Si3N4/Si structured SAW devices. The Al electrodes were adopted owing to its low resistivity, low cost, and low density of the material. For 4G applications in mobile telecommunications, the line widths of 937 nm, 750 nm, 562 nm, and 375 nm of IDTs were designed. Preferred orientation and crystalline properties of AlN thin films were determined by X-ray diffraction using a Siemens XRD-8 with CuKα radiation. Additionally, the cross-sectional images of AlN thin films were obtained by scanning electron microscope. Finally, the frequency responses of high-frequency SAW devices were measured using the E5071C network analyzer. The center frequencies of the high-frequency Rayleigh-mode SAW devices of 1.36 GHz, 1.81 GHz, 2.37 GHz, and 3.74 GHz are obtained. This study demonstrates that the proposed processing method significantly contributes to high-frequency SAW devices for wireless communications.

  8. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  9. A study of the high-frequency hearing thresholds of dentistry professionals

    Directory of Open Access Journals (Sweden)

    Lopes, Andréa Cintra

    2012-01-01

    Full Text Available Introduction: In the dentistry practice, dentists are exposed to harmful effects caused by several factors, such as the noise produced by their work instruments. In 1959, the American Dental Association recommended periodical hearing assessments and the use of ear protectors. Aquiring more information regarding dentists', dental nurses', and prosthodontists' hearing abilities is necessary to propose prevention measures and early treatment strategies. Objective: To investigate the auditory thresholds of dentists, dental nurses, and prosthodontists. Method: In this clinical and experimental study, 44 dentists (Group I; GI, 36 dental nurses (Group II; GII, and 28 prosthodontists (Group III; GIII were included, , with a total of 108 professionals. The procedures that were performed included a specific interview, ear canal inspection, conventional and high-frequency threshold audiometry, a speech reception threshold test, and an acoustic impedance test. Results: In the 3 groups that were tested, the comparison between the mean hearing thresholds provided evidence of worsened hearing ability relative to the increase in frequency. For the tritonal mean at 500 to 2,000 Hz and 3,000 to 6,000 Hz, GIII presented the worst thresholds. For the mean of the high frequencies (9,000 and 16,000 Hz, GII presented the worst thresholds. Conclusion: The conventional hearing threshold evaluation did not demonstrate alterations in the 3 groups that were tested; however, the complementary tests such as high-frequency audiometry provided greater efficacy in the early detection of hearing problems, since this population's hearing loss impaired hearing ability at frequencies that are not tested by the conventional tests. Therefore, we emphasize the need of utilizing high-frequency threshold audiometry in the hearing assessment routine in combination with other audiological tests.

  10. Planck 2015 results: VIII. High Frequency Instrument data processing: Calibration and maps

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI....... Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal....

  11. High frequency Analysis of Stream Chemistry to Establish Elemental Cycling Regimes of High latitude Catchments

    Science.gov (United States)

    2017-02-13

    FINAL REPORT High-frequency Analysis of Stream Chemistry to Establish Elemental Cycling Regimes of High-latitude Catchments SERDP Project RC-2507... ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Strategic Environmental... organic matter. Technical considerations and improvements for implementing instream sensors as part of an environmental monitoring program include

  12. Use of a high-frequency aspiration-biopsy transducer for direct ultrasound-guided amniocentesis.

    Science.gov (United States)

    Bree, R L

    1979-04-01

    The techniques and applications of amniocentesis performed with a new high-frequency aspiration-biopsy transducer are described in detail. The advantages of this technique are greatest in third-trimester patients where active fetal motion and diminished amniotic fluid volumes make unguided punctures difficult or impossible. The ability to visualize small-caliber needles within the fluid space further enhances the effectiveness of this technique.

  13. Reconstructing Grasping Motions from High-Frequency Local Field Potentials in Primary Motor Cortex

    OpenAIRE

    Zhuang, Jun; Truccolo, Wilson; Vargas-Irwin, Carlos; Donoghue, John P.

    2010-01-01

    Recent developments in neural interface systems hold the promise to restore movement in people with paralysis. In search of neural signals for control of neural interface systems (NISs), previous studies have investigated primarily single and multiunit activity, as well as low frequency local field potentials (LFPs). In this paper, we investigate the information content about grasping motion of a broad band high frequency LFP (200 Hz – 400 Hz) by classifying discrete grasp aperture states and...

  14. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    Lake City, Utah; July 27, 2016 Prepared in collaboration with Sierra Lobo, Inc. 14. ABSTRACT An experimental study has been conducted to explore...visually prominent, the impingement sheet was subjected to incremental pressure amplitudes in a pressure anti-node (PAN) and pressure node (PN...been conducted to explore the coupling between the impact waves created by impinging jets and high frequency acoustic pressure perturbations. High

  15. Music Instruments That Produce Sounds with Inaudible High-Frequency Components

    OpenAIRE

    栗林, 龍馬; 入戸野, 宏

    2015-01-01

    Many kinds of audio-visual information from daily life have been digitized. Digitization accuracy is important to perceptions or evaluations of audio naturalness, and to listener comfort during the listening experience. High-resolution digital sound sources with inaudible high-frequency components (>20 kHz) have become available, owing to recent advances in information and communications technology. However, the effects of sounds that feature such components on human psychophysiological proce...

  16. Rolling estimations of long range dependence volatility for high frequency S&P500 index

    Science.gov (United States)

    Cheong, Chin Wen; Pei, Tan Pei

    2015-10-01

    This study evaluates the time-varying long range dependence behaviors of the S&P500 volatility index using the modified rescaled adjusted range (R/S) statistic. For better computational result, a high frequency rolling bipower variation realized volatility estimates are used to avoid possible abrupt jump. The empirical analysis findings allow us to understand better the informationally market efficiency before and after the subprime mortgage crisis.

  17. Time delay generation at high frequency using SOA based slow and fast light.

    Science.gov (United States)

    Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi

    2011-10-24

    We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America

  18. Power conversion distribution system using a resonant high-frequency AC link

    Science.gov (United States)

    Sood, P. K.; Lipo, T. A.

    1986-01-01

    Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

  19. Physical model for GaN HEMT design optimization in high frequency switching applications

    OpenAIRE

    Cucak, Dejana; Vasic, Miroslav; García, Oscar; Bouvier, Yann; Oliver Ramírez, Jesús Angel; Alou Cervera, Pedro; Cobos Márquez, José Antonio; Wang, Ashu; Martin Horcajo, Sara; Romero Rojo, Fátima; Calle Gómez, Fernando

    2014-01-01

    In this paper, physical modeling of a GaN HEMT is proposed, with the objective of device design optimization for application in a high frequency DC/DC converter. From the point of view of a switching application, physical model for input, output and reverse capacitance as well as for channel resistance is very important, since the aforementioned parameters determine power losses in the circuit. The obtained physical model of the switching device can be used for simulation models such as PSpic...

  20. Development of radioactive waste disposal of high efficiency and safety. High-frequency induction melting system

    International Nuclear Information System (INIS)

    Kuchiki, Norikazu; Fukuda, Seishi; Kakuta, Toshiya; Satou, Kouji; Yamazaki, Seiichiro

    2007-01-01

    The amount of low level radioactive solid waste is expected to increase because of dismantling of nuclear power plants and nuclear science research facilities. Kawasaki Plant Systems, Ltd. has developed melting techniques for waste volume reduction on a pilot scale. This report gives an outline of R and D results for a high-frequency induction melting system using a nonconductive canister and Al-ring. (author)

  1. Approximate Separability of Green’s Function for High Frequency Helmholtz Equations

    Science.gov (United States)

    2014-09-01

    closer and closer. This is true in general for Green’s function as long as G(x,y) is Lipschitz in y. Actually for strictly elliptic operator of the...APPROXIMATE SEPARABILITY OF GREEN’S FUNCTION FOR HIGH FREQUENCY HELMHOLTZ EQUATIONS BJÖRN ENGQUIST AND HONGKAI ZHAO Abstract. Approximate separable...representations of Green’s functions for differential operators is a basic and an important aspect in the analysis of differential equations and in

  2. Stimulus induced high frequency oscillations are present in neuronal networks on microelectrode arrays.

    Directory of Open Access Journals (Sweden)

    Chadwick M Hales

    2012-05-01

    Full Text Available Pathological high frequency oscillations (250-600Hz are present in the brains of epileptic animals and humans. The etiology of these oscillations and how they contribute to the diseased state remains unclear. This work identifies the presence of microstimulation-evoked high frequency oscillations (250-400Hz in dissociated neuronal networks cultured on microelectrode arrays (MEAs. Oscillations are more apparent with higher stimulus voltages. As with in vivo studies, activity is isolated to a single electrode, however the MEA provides improved spatial resolution with no spread of the oscillation to adjacent electrodes 200µm away. Oscillations develop across 4 weeks in vitro. Oscillations still occur in the presence of tetrodotoxin and synaptic blockers, and they cause no apparent disruption in the ability of oscillation-presenting electrodes to elicit directly evoked action potentials (dAPs or promote the spread of synaptic activity throughout the culture. Chelating calcium with ethylene glycol tetraacetic acid (EGTA causes a temporal prolongation of the oscillation. Finally, carbenoxolone significantly reduces or eliminates the high frequency oscillations. Gap junctions may play a significant role in maintaining the oscillation given the inhibitory effect of carbenoxolone, the propagating effect of reduced calcium conditions and the isolated nature of the activity as demonstrated in previous studies. This is the first demonstration of stimulus evoked high frequency oscillations in dissociated cultures. Unlike current models that rely on complex in vivo recording conditions, this work presents a simple controllable model in neuronal cultures on MEAs to further investigate how the oscillations occur at the molecular level and how they may contribute to the pathophysiology of disease.

  3. A numerical and experimental investigation of the performance of sound intensity probes at high frequencies

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Cutanda, Vicente; Juhl, Peter Møller

    1998-01-01

    The high-frequency performance of a p-p intensity probe with a solid spacer between the two microphones is examined. It is shown theoretically and verified experimentally that with a spacer length that equals the diameter of the microphones, the finite difference error is almost perfectly cancell...... by a cavity resonance. It is concluded that the usable frequency range of sound intensity probes can be doubled with this configuration....

  4. Enhanced current quantization in high-frequency electron pumps in a perpendicular magnetic field

    International Nuclear Information System (INIS)

    Wright, S. J.; Blumenthal, M. D.; Gumbs, Godfrey; Thorn, A. L.; Pepper, M.; Anderson, D.; Jones, G. A. C.; Nicoll, C. A.; Ritchie, D. A.; Janssen, T. J. B. M.; Holmes, S. N.

    2008-01-01

    We present experimental results of high-frequency quantized charge pumping through a quantum dot formed by the electric field arising from applied voltages in a GaAs/AlGaAs system in the presence of a perpendicular magnetic field B. Clear changes are observed in the quantized current plateaus as a function of applied magnetic field. We report on the robustness in the length of the quantized plateaus and improvements in the quantization as a result of the applied B field

  5. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids

    OpenAIRE

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The impedance-based model of Doubly Fed Induction Generator (DFIG) systems, including the rotor part (Rotor Side Converter (RSC) and induction machine), and the grid part (Grid Side Converter (GSC) and its output filter), has been developed for analysis and mitigation of the Sub- Synchronous Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus...

  6. Analysis and Comparison of High Frequency Resonance in Small and Large Scale DFIG System

    OpenAIRE

    Song, Yipeng; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    When connected to a parallel compensated weak grid network, both the small and large power scale Doubly Fed Induction Generator (DFIG) system may suffer high frequency resonance (HFR) due to the impedance interaction between the DFIG system and the parallel compensated weak network. Since the parameters of the small and large scale DFIG systems, including DFIG machine parameters and the LCL filter parameters, may vary between 10 to 100 times, the impedance modeling results of small and large ...

  7. Haplotypic Background of a Private Allele at High Frequency in the Americas

    OpenAIRE

    Schroeder, Kari B.; Jakobsson, Mattias; Crawford, Michael H.; Schurr, Theodore G.; Boca, Simina M.; Conrad, Donald F.; Tito, Raul Y.; Osipova, Ludmilla P.; Tarskaia, Larissa A.; Zhadanov, Sergey I.; Wall, Jeffrey D.; Pritchard, Jonathan K.; Malhi, Ripan S.; Smith, David G.; Rosenberg, Noah A.

    2009-01-01

    Recently, the observation of a high-frequency private allele, the 9-repeat allele at microsatellite D9S1120, in all sampled Native American and Western Beringian populations has been interpreted as evidence that all modern Native Americans descend primarily from a single founding population. However, this inference assumed that all copies of the 9-repeat allele were identical by descent and that the geographic distribution of this allele had not been influenced by natural selection. To invest...

  8. Localization estimates for a random discrete wave equation at high frequency

    International Nuclear Information System (INIS)

    Faris, W.G.

    1987-01-01

    It is shown that at high frequencies matrix elements of the Green's function of a random discrete wave equation decay exponentially at long distances. This is the input to the proof of dense point spectrum with localized eigenfunctions in this frequency range. The proof uses techniques of Froehlich and Spencer. A sequence of renormalization transformations shows that large regions where wave propagation is easily maintained become increasingly sparse as resonance is approached

  9. Combined effects of extremely high frequency electromagnetic field and antibiotics on Enterococcus Hirae growth and survival

    International Nuclear Information System (INIS)

    Ohanyan, V.A.

    2012-01-01

    Combined effects of extremely high frequency electromagnetic field and antibiotics on Enterococcus hirae ATCC 9790 bacterial growth and survival were investigated using 51.8 GHz and 53 GHz frequencies in combination with two commonly used antibiotics: ampicillin and dalacin. Results revealed that, despite bacterial type and membrane structure and properties, the combined effect, especially with 53 GHz and dalacin, suppresses bacterial growth and decreases their survival

  10. Intracerebrally recorded high frequency oscillations: Simple visual assessment versus automated detection

    Czech Academy of Sciences Publication Activity Database

    Pail, M.; Halámek, Josef; Daniel, P.; Kuba, R.; Tyrlíková, I.; Chrastina, J.; Jurák, Pavel; Rektor, I.; Brázdil, M.

    2013-01-01

    Roč. 124, č. 10 (2013), s. 1935-1942 ISSN 1388-2457 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : High frequency oscillations * Spikes * Ripples * Temporal lobe epilepsy * Extratemporal lobe epilepsy * Seizure onset zone * Epileptogenic zone Subject RIV: FH - Neurology Impact factor: 2.979, year: 2013

  11. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders

    Czech Academy of Sciences Publication Activity Database

    Jiruška, Přemysl; Alvarado-Rojas, C.; Schevon, C.A.; Staba, R.; Stacey, W.; Wendling, F.; Avoli, M.

    2017-01-01

    Roč. 58, č. 8 (2017), s. 1330-1339 ISSN 0013-9580 R&D Projects: GA MZd(CZ) NV15-29835A; GA ČR(CZ) GA14-02634S Institutional support: RVO:67985823 Keywords : high-frequency oscillations * epilepsy * ripples * fast ripples * ictogenesis * epileptogenesis * seizures * interneurons * computer models Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 5.295, year: 2016

  12. High-frequency Oscillations in the Atmosphere above a Sunspot Umbra

    Science.gov (United States)

    Wang, Feng; Deng, Hui; Li, Bo; Feng, Song; Bai, Xianyong; Deng, Linhua; Yang, Yunfei; Xue, Zhike; Wang, Rui

    2018-03-01

    We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time–frequency analysis method, namely, the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable of resolving weak signals even when their strength is comparable to the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12 mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 Å illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time–distance diagram, coupled with a subsonic wave speed (∼49 km s‑1), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.

  13. Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields.

    Science.gov (United States)

    Wolke, S; Neibig, U; Elsner, R; Gollnick, F; Meyer, R

    1996-01-01

    The intracellular calcium concentration ([Ca(2+)]i) of isolated ventricular cardiac myocytes of the guinea pig was measured during the application of pulsed high-frequency electromagnetic fields. The high-frequency fields were applied in a transverse electromagnetic cell designed to allow microscopic observation of the myocytes during the presence of the high-frequency fields. The [Ca(2+)]i was measured as fura-2 fluorescence by means of digital image analysis. Both the carrier frequency and the square-wave pulse-modulation pattern were varied during the experiments (carrier frequencies: 900, 1,300, and 1,800 MHz pulse modulated at 217Hz with 14 percent duty cycle; pulsation pattern at 900 MHz: continuous wave, 16 Hz, and 50 Hz modulation with 50 percent duty cycle and 30 kHz modulation with 80 percent duty cycle). The mean specific absorption rate (SAR) values in the solution were within one order of magnitude of 1 mW/kg. They varied depending on the applied carrier frequency and pulse pattern. The experiments were designed in three phases: 500 s of sham exposure, followed by 500 s of field exposure, then chemical stimulation without field. The chemical stimulation (K+ -depolarization) indicated the viability of the cells. The K+ depolarization yielded a significant increase in [Ca(2+)]i. Significant differences between sham exposure and high-frequency field exposure were not found except when a very small but statistically significant difference was detected in the case of 900 MHz/50 Hz. However, this small difference was not regarded as a relevant effect of the exposure.

  14. Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit

    Science.gov (United States)

    2014-05-01

    UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a

  15. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  16. High frequency magnetotelluric and geoelectric researches in the Provita de Sus landslide area

    Science.gov (United States)

    Diacopolos, Constantin

    2010-05-01

    In the Provita de Sus area, high frequency magnetotelluric and geoelectric (Vertical Electric Soundings) measurements have been performed in order to delineate the landslide area. The high frequency magnetotelluric method uses the time variations of the natural electromagnetic field propagating inside the Earth and induces a secondary electromagnetic field, measured at the surface by special devices, in order to investigate the Earth's shallow electric conductivity structure. We performed these measurements aiming to point out the slide interface, as well as its the depth, and to establish the dip and strike of a relatively evident fault system from the studied area. The high frequency magnetotelluric data have been obtained in the frequency range 24 KHz - 1Hz by using a GMS 06 devices and the MAPROS software. For the geoelectric measurements we used the IntV3 resistivimeter, Schlumberger type array. This device version is designed for geophysical appliances allowing the soil resistivity measurements, under natural conditions of climate and land morphology. The field measurements led to a series of potential difference values expressed in micro V. The interpretation is based on the apparent resistivity resulting from the field measurements by using standard relation. The results highlight the usefulness of the geoelectric method for the landslide areas delineation, taking into account its user-friendliness, having all the technical facilities for measurement, processing and interpretation. The results are presented along two resistivity cross-sections, placed perpendicular and parallel to landslide surface.

  17. Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Heather C Jensen-Smith

    Full Text Available Aminoglycosides (AG, including gentamicin (GM, are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs preferentially succumb to multiple HL pathologies while inner hair cells (IHCs are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH fluorescence during acute (1 h GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies.

  18. High-frequency binge eating predicts weight gain among veterans receiving behavioral weight loss treatments.

    Science.gov (United States)

    Masheb, Robin M; Lutes, Lesley D; Kim, Hyungjin Myra; Holleman, Robert G; Goodrich, David E; Janney, Carol A; Kirsh, Susan; Richardson, Caroline R; Damschroder, Laura J

    2015-01-01

    To assess for the frequency of binge eating behavior and its association with weight loss in an overweight/obese sample of veterans. This study is a secondary analysis of data from the ASPIRE study, a randomized effectiveness trial of weight loss among veterans. Of the 481 enrolled veterans with overweight/obesity, binge eating frequency was obtained by survey for 392 (82%). The majority (77.6%) reported binge eating, and 6.1% reported high-frequency binge eating. Those reporting any binge eating lost 1.4% of body weight, decreased waist circumference by 2.0 cm, and had significantly worse outcomes than those reporting never binge eating who lost about double the weight (2.7%) and reduced waist circumference by twice as much (4.2 cm). The high-frequency binge group gained 1.4% of body weight and increased waist circumference by 0.3 cm. High rates of binge eating were observed in an overweight/obese sample of veterans enrolled in weight loss treatment. The presence of binge eating predicted poorer weight loss outcomes. Furthermore, high-frequency binge eating was associated with weight gain. These findings have operational and policy implications for developing effective strategies to address binge eating in the context of behavioral weight loss programs for veterans. © 2014 The Obesity Society.

  19. Investigating DOC export dynamics using high-frequency instream concentration measurements

    Science.gov (United States)

    Oosterwoud, Marieke; Keller, Toralf; Musolff, Andreas; Frei, Sven; Park, Ji-Hyung; Fleckenstein, Jan H.

    2014-05-01

    Being able to monitor DOC concentrations using in-situ high frequency measurements makes it possible to better understand concentration-discharge behavior under different hydrological conditions. We developed a UV-Vis probe setup for modified/adapted use under field conditions. The quasi mobile probe setup allows a more flexible probe deployment. New or existing monitoring sites can easily be equipped for quasi-continuous monitoring or measurements can be performed at changing locations, without the need for additional infrastructure. We were able to gather high frequency data on DOC dynamics for one year in two streams in the Harz mountains in Germany. It proved that obtaining accurate DOC concentrations from the UV-Vis probes required frequent maintenance and probe calibration. The advantage of the setup over standard monitoring protocols becomes evident when comparing net exports over a year. In addition to mass improved balance calculations the high-frequency measurements can reveal intricate hysteretic relationships between discharge and concentrations that can provide valuable insights into the hydrologic dynamics and mechanisms that govern the delivery of DOC to the receiving waters. Measurements with similar probes from two additional catchments in Southern Germany and South Korea will be used to illustrate different discharge-concentration relationships and what can be learned from them about the hydrologic mechanisms that control the dynamics of DOC export.

  20. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    Science.gov (United States)

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing) when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from “The Star-Spangled Banner”) with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants) and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners. PMID:25400613

  1. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus.

    Directory of Open Access Journals (Sweden)

    Roland Frey

    Full Text Available Biphonation, i.e. two independent fundamental frequencies in a call spectrum, is a prominent feature of vocal activity in dog-like canids. Dog-like canids can produce a low (f0 and a high (g0 fundamental frequency simultaneously. In contrast, fox-like canids are only capable of producing the low fundamental frequency (f0. Using a comparative anatomical approach for revealing macroscopic structures potentially responsible for canid biphonation, we investigated the vocal anatomy for 4 (1 male, 3 female captive dholes (Cuon alpinus and for 2 (1 male, 1 female wild red fox (Vulpes vulpes. In addition, we analyzed the acoustic structure of vocalizations in the same dholes that served postmortem as specimens for the anatomical investigation. All study dholes produced both high-frequency and biphonic calls. The anatomical reconstructions revealed that the vocal morphologies of the dhole are very similar to those of the red fox. These results suggest that the high-frequency and biphonic calls in dog-like canids can be produced without specific anatomical adaptations of the sound-producing structures. We discuss possible production modes for the high-frequency and biphonic calls involving laryngeal and nasal structures.

  2. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  3. High-frequency ultrasound to grade disease progression in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Ahmad, Nabeel; Bygrave, Mike; Chhem, Rethy; Hoffman, Lisa; Welch, Ian; Grange, Robert; Fenster, Aaron; Hill, David; Lee, Ting-Yim

    2009-06-01

    This study used high-frequency ultrasound (HFU) imaging to assess muscle damage noninvasively in a longitudinal study of 2 transgenic murine models of Duchenne muscular dystrophy (DMD): mdx, which has mutated cytoskeletal protein dystrophin; and udx, which has mutated dystrophin and lacks another cytoskeleton protein, utrophin. The mdx group was further subdivided into exercised and nonexercised subgroups to assess exercise-induced damage. Muscle damage was assessed with HFU imaging (40 MHz) at biweekly intervals for 16 weeks. The assessment was based on the number of hyperechoic lesions, the lesion diameter, and muscle disorganization, giving a combined grade according to a 5-point scale. High-frequency ultrasound discriminated the severity of muscle damage between wild-type and transgenic models of DMD and between mdx and udx models. Qualitative comparisons of 3-dimensional HFU images with serial histologic sections of the skeletal muscle showed the ability of ultrasound to accurately depict changes seen in the muscle architecture in vivo. High-frequency ultrasound images soft tissue in mice at high contrast and spatial resolution, thereby showing that this microimaging modality has the capability to assess architectural changes in muscle fibers due to myotonic dystrophy-related diseases such as DMD.

  4. Effects of local high-frequency perturbation on a turbulent boundary layer by synthetic jet injection

    International Nuclear Information System (INIS)

    Guo, Hao; Huang, Qian-Min; Liu, Pei-qing; Qu, Qiu-Lin

    2015-01-01

    An experimental study is performed to investigate the local high-frequency perturbation effects of a synthetic jet injection on a flat-plate turbulent boundary layer. Parameters of the synthetic jet are designed to force a high-frequency perturbation from a thin spanwise slot in the wall. In the test locations downstream of the slot, it is found that skin-friction is reduced by the perturbation, which is languishingly evolved downstream of the slot with corresponding influence on the near-wall regeneration mechanism of turbulent structures. The downstream slot region is divided into two regions due to the influence strength of the movement of spanwise vortices generated by the high-frequency perturbation. Interestingly, the variable interval time average technique is found to be disturbed by the existence of the spanwise vortices’ motion, especially in the region close to the slot. Similar results are obtained from the analysis of the probability density functions of the velocity fluctuation time derivatives, which is another indirect technique for detecting the enhancement or attenuation of streamwise vortices. However, both methods have shown consistent results with the skin-friction reduction mechanism in the far-away slot region. The main purpose of this paper is to remind researchers to be aware of the probable influence of spanwise vortices’ motion in wall-bounded turbulence control. (paper)

  5. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators

    Science.gov (United States)

    Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.

    2017-11-01

    Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.

  7. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis.

    Science.gov (United States)

    Rodríguez Valiente, Antonio; Roldán Fidalgo, Amaya; Villarreal, Ithzel M; García Berrocal, José R

    2016-01-01

    Early detection and appropriate treatment of hearing loss are essential to minimise the consequences of hearing loss. In addition to conventional audiometry (125-8,000 Hz), extended high-frequency audiometry (9,000-20,000 Hz) is available. This type of audiometry may be useful in early diagnosis of hearing loss in certain conditions, such as the ototoxic effect of cisplatin-based treatment, noise exposure or oral misunderstanding, especially in noisy environments. Eleven examples are shown in which extended high-frequency audiometry has been useful in early detection of hearing loss, despite the subject having a normal conventional audiometry. The goal of the present paper was to highlight the importance of the extended high-frequency audiometry examination for it to become a standard tool in routine audiological examinations. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  8. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    Directory of Open Access Journals (Sweden)

    Brian B Monson

    2014-10-01

    Full Text Available Humans routinely create acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward HD voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from The Star-Spangled Banner with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners.

  9. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  10. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  11. An MRI-Compatible High Frequency AC Resistive Heating System for Homeothermic Maintenance in Small Animals.

    Science.gov (United States)

    Gilchrist, Stuart; Gomes, Ana L; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D; Smart, Sean C

    2016-01-01

    To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10-100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Images and spectra acquired in the presence and absence of 50-100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse's temperature approached the set target. The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality.

  12. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    Science.gov (United States)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  13. An MRI-Compatible High Frequency AC Resistive Heating System for Homeothermic Maintenance in Small Animals.

    Directory of Open Access Journals (Sweden)

    Stuart Gilchrist

    Full Text Available To develop an MRI-compatible resistive heater, using high frequency alternating current (AC, for temperature maintenance of anaesthetised animals.An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10-100 kHz AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice.Images and spectra acquired in the presence and absence of 50-100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse's temperature approached the set target.The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality.

  14. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  15. High frequency, high amplitude and low energy earthquake study of nuclear power plants

    International Nuclear Information System (INIS)

    Bernero, R.M.; Lee, A.J.H.; Sobel, P.A.

    1988-01-01

    Nuclear power plants are designed for a seismic input spectrum based on U.S. acceleration time histories. However, data recorded near several earthquakes, mostly in the Eastern U.S., are richer in high frequency energy. This paper focuses on the evaluation of one of these events, i.e., the 1986 Ohio earthquake approximately 10 miles from the Perry nuclear power plant. The Perry Seismic Category I structures were reanalyzed using the in-structure recorded earthquake motions. The calculated in-structure response spectra and recorded response spectra have the same general trends, which shows the buildings are capable of responding to high frequency earthquake motion. Dynamic stresses calculated using the Ohio earthquake recorded motions are substantially lower than the design stresses. The seismic qualification of a wide sample of equipment was reassessed using the Ohio earthquake recorded motions and the margins were found to be larger than one. The 1986 Ohio earthquake was also shown to possess much lower energy content and ductility demand than the design spectra. For the Perry case, the seismic design was shown to have adequate safety margins to accommodate the 1986 Ohio earthquake, even though the design spectra were exceeded at about 20 Hz. The NRC is evaluating the need to generically modify design spectra in light of the recent high frequency recordings. (orig.)

  16. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  17. Some novel power-conversion schemes employing pulse-width modulated high-frequency links

    Energy Technology Data Exchange (ETDEWEB)

    Manias, S.

    1984-01-01

    Static power conversion schemes employing Pulse-Width Modulated high-frequency (HF) links, are investigated. The employment of HF links in power conversion schemes results in substantial size, weight, and cost reduction of the power converter isolation transfer and reactive components. Therefore, in applications where density is of prime importance the employment of HF links is the natural choice. The following power conversion schemes employing an HF link are investigated: (1) a voltage source DC to AC inverter consisting of an HF link and a DC to AC inverter stage: its main advantage over conventional inverter configurations is the drastic size and weight reduction of the magnetic components; (2) a three-phase Current Source DC to AC inverter consisting of an HF link and a DC to AC inverter stage: the current source is created by the HF link stage which together with a high frequency transformer provides isolation between the source and the load; (3) an AC to DC converter consisting of an HF link stage: the proposed power conversion scheme employs an AC to AC cyclo-converter as an HF link which together with a high frequency isolation transfer provides isolation between the source and the load; and (4) a bilateral HF link power converter: the proposed power conversion scheme incorporates a battery charger into an inverter by using the existing power circuit components.

  18. Characteristics Comparison of High-Frequency Multi-Level Inverter Connected with Filter Inverters

    Science.gov (United States)

    Iwaya, Kazuki; Noguchi, Toshihiko

    This paper presents characteristics comparison of a high-frequency multi-level inverter connected with small capacity filter inverters. In general, PWM inverters require a low-pass filter in order to reduce switching harmonics. However, in the high-frequency systems such as class D power amplifiers, the cut-off frequency of the low-pass filter must set at high frequency. Thus, harmonic distortion of the output voltage harmfully enlarges. Increasing the number of output voltage levels is effective to reduce the harmonic distortion of the output voltage and the low-pass filter size. The proposed systems consist of a 5-level inverter and several cascade-connected low-voltage full bridge inverters without any external DC power sources for filtering the output voltage. The 5-level inverter generates a stepwise waveform with 5-level voltage, and the low voltage filter inverter superimposes harmonic components to compensate for the voltage waveform distortion. Therefore, the proposed system can reduce its total switching loss and can increase the number of the output voltage levels. In this paper, effectiveness of the proposed systems is verified through several experiments.

  19. Alignment-free and high-frequency compensation in face hallucination.

    Science.gov (United States)

    Chen, Yen-Wei; Sasatani, So; Han, Xian-Hua

    2014-01-01

    Face hallucination is one of learning-based super resolution techniques, which is focused on resolution enhancement of facial images. Though face hallucination is a powerful and useful technique, some detailed high-frequency components cannot be recovered. It also needs accurate alignment between training samples. In this paper, we propose a high-frequency compensation framework based on residual images for face hallucination method in order to improve the reconstruction performance. The basic idea of proposed framework is to reconstruct or estimate a residual image, which can be used to compensate the high-frequency components of the reconstructed high-resolution image. Three approaches based on our proposed framework are proposed. We also propose a patch-based alignment-free face hallucination. In the patch-based face hallucination, we first segment facial images into overlapping patches and construct training patch pairs. For an input low-resolution (LR) image, the overlapping patches are also used to obtain the corresponding high-resolution (HR) patches by face hallucination. The whole HR image can then be reconstructed by combining all of the HR patches. Experimental results show that the high-resolution images obtained using our proposed approaches can improve the quality of those obtained by conventional face hallucination method even if the training data set is unaligned.

  20. Efficacy of high frequency ultrasound in postoperative evaluation of carpal tunnel syndrome treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2016-03-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leave because of work-related hand overload. The main treatment is operation. Aim: The aim of the study is to assess the usefulness of high frequency ultrasound in the postoperative evaluation of CTS treatment efficacy. Material and methods: Sixty-two patients (50 women and 12 men aged 28–70, mean age 55.2 underwent surgical treatment of CTS. Ultrasound examinations of the wrist in all carpal tunnel sufferers were performed 3 months after the procedure with the use of a high frequency broadband linear array transducer (6–18 MHz, using 18 MHz band of MyLab 70/Esaote. On the basis of the collected data, the author has performed multiple analyses to confirm the usefulness of ultrasound imaging for postoperative evaluation of CTS treatment efficacy. Results: Among all 62 patients, 3 months after surgical median nerve decompression: in 40 patients, CTS symptoms subsided completely, and sonographic evaluation did not show median nerve entrapment signs; in 9 patients, CTS symptoms persisted or exacerbated, and ultrasound proved nerve compression revealing preserved flexor retinaculum fibers; in 13 patients, scar tissue symptoms occurred, and in 5 of them CTS did not subside completely (although ultrasound showed no signs of compression. Conclusions: Ultrasound imaging with the use of a high frequency transducer is a valuable diagnostic tool for postoperative assessment of CTS treatment efficacy.

  1. Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection*

    Science.gov (United States)

    Fan, Jianqing; Li, Yingying; Yu, Ke

    2012-01-01

    Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations among vast number of assets and to increase significantly the sample size for estimating the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of “pairwise-refresh time” and “all-refresh time” methods based on the concept of “refresh time” proposed by Barndorff-Nielsen et al. (2008) for estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross exposure constraints. Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low frequency daily data, our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index. PMID:23264708

  2. Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection.

    Science.gov (United States)

    Fan, Jianqing; Li, Yingying; Yu, Ke

    2012-01-01

    Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations among vast number of assets and to increase significantly the sample size for estimating the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of "pairwise-refresh time" and "all-refresh time" methods based on the concept of "refresh time" proposed by Barndorff-Nielsen et al. (2008) for estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross exposure constraints. Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low frequency daily data, our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index.

  3. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  4. High frequency jet ventilation and intermittent positive pressure ventilation. Effect of cerebral blood flow in patients after open heart surgery

    International Nuclear Information System (INIS)

    Pittet, J.F.; Forster, A.; Suter, P.M.

    1990-01-01

    Attenuation of ventilator-synchronous pressure fluctuations of intracranial pressure has been demonstrated during high frequency ventilation in animal and human studies, but the consequences of this effect on cerebral blood flow have not been investigated in man. We compared the effects of high frequency jet ventilation and intermittent positive pressure ventilation on CBF in 24 patients investigated three hours after completion of open-heart surgery. The patients were investigated during three consecutive periods with standard sedation (morphine, pancuronium): a. IPPV; b. HFJV; c. IPPV. Partial pressure of arterial CO 2 (PaCO 2 : 4.5-5.5 kPa) and rectal temperature (35.5 to 37.5 degree C) were maintained constant during the study. The CBF was measured by intravenous 133 Xe washout technique. The following variables were derived from the cerebral clearance of 133 Xe: the rapid compartment flow, the initial slope index, ie, a combination of the rapid and the slow compartment flows, and the ratio of fast compartment flow over total CBF (FF). Compared to IPPV, HFJV applied to result in the same mean airway pressure did not produce any change in pulmonary gas exchange, mean systemic arterial pressure, and cardiac index. Similarly, CBF was not significantly altered by HFJV. However, important variations of CBF values were observed in three patients, although the classic main determinants of CBF (PaCO 2 , cerebral perfusion pressure, Paw, temperature) remained unchanged. Our results suggest that in patients with normal systemic hemodynamics, the effects of HFJV and IPPV on CBF are comparable at identical levels of mean airway pressure

  5. From small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HI.

    Science.gov (United States)

    Isakova, Anna; Murdoch, Billy J; Novakovic, Katarina

    2018-04-04

    The oscillatory palladium-catalysed carbonylation reaction opens new horizons for applications in smart materials due to the versatility of its conditions and substrates, as well as the adjustability of amplitude and period of pH oscillations. A variety of viable substrates have been demonstrated, including polymeric alkyne-terminated substrates. However, so far, there have not been any reports of polymer-based palladium catalysts in oscillatory mode. In this paper, we demonstrate pH oscillations in various systems, using commercially available palladium acetate, a triphenylphosphine palladium acetate complex and a polymer-bound palladium catalyst. While palladium acetate was able to generate oscillations under the conditions already established in our previous research on PdI2-catalysed oscillators, the other two catalysts needed the addition of HI to induce oscillations. HI forced an initial pH drop, bringing pH into the range where oscillations generally occur. Addition of HI had a significant effect on all catalysts, modifying the amplitude and period of oscillations, oscillation mode, as well as starting material conversion and product distribution.

  6. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  7. Standards for Measurements in the Field of High Frequency Electromagnetic Radiation for the Purpose of Protection Against Adverse Health Effects

    International Nuclear Information System (INIS)

    Tanatarec, B.; Nikolic, N.

    2011-01-01

    In this paper standards for measurements in the field of high frequency electromagnetic radiation are described with a view to protection from its hazardous action. Beside the standards which directly deal with high frequency electromagnetic radiation measurements, guidelines which describe hazardous influences of high frequency electromagnetic radiation on human body in the form of specific absorption rate (SAR) are given. Special attention is dedicated to standards and regulations, which are dealing with social responsibility, as well as with social responsibility in the field of high frequency radiation. This area is new and insufficiently known, rarely extended in everyday life. (author)

  8. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Martin eSchecklmann

    2015-10-01

    within the thalamocortical dysrhythmia model assuming that slow waves represent processes of deafferentiation and that high frequencies might be indicators for tinnitus loudness. Moreover our findings confirm the role of the left temporal and the right frontal areas as relevant hubs in tinnitus related neuronal network. Our results underscore the value of combined TMS-EEG measurements for investigating disease related changes in neuroplasticity.

  9. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Science.gov (United States)

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    interpreted within the thalamocortical dysrhythmia model assuming that slow waves represent processes of deafferentiation and that high frequencies might be indicators for tinnitus loudness. Moreover our findings confirm the role of the left temporal and the right frontal areas as relevant hubs in tinnitus related neuronal network. Our results underscore the value of combined TMS-EEG measurements for investigating disease related changes in neuroplasticity. PMID:26557055

  10. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  11. Role of synchronized oscillatory brain activity for human pain perception.

    Science.gov (United States)

    Hauck, Michael; Lorenz, Jürgen; Engel, Andreas K

    2008-01-01

    The understanding of cortical pain processing in humans has significantly improved since the development of modern neuroimaging techniques. Non-invasive electrophysiological approaches such as electro- and magnetoencephalography have proven to be helpful tools for the real-time investigation of neuronal signals and synchronous communication between cortical areas. In particular, time-frequency decomposition of signals recorded with these techniques seems to be a promising approach because different pain-related oscillatory changes can be observed within different frequency bands, which are likely to be linked to specific sensory and motor functions. In this review we discuss the latest evidence on pain-induced time-frequency signals and propose that changes in oscillatory activity reflect an essential communication mechanism in the brain that is modulated during pain processing. The importance of synchronization processes for normal and pathological pain processing, such as chronic pain states, is discussed.

  12. Changes of spontaneous oscillatory activity to tonic heat pain.

    Directory of Open Access Journals (Sweden)

    Weiwei Peng

    Full Text Available Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A resting condition; (B innoxious-distracted condition; (C noxious-distracted condition; (D noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  13. Oscillatory thermocapillary instability in liquid layer with insoluble surfactant

    Science.gov (United States)

    Allias, Razihan; Nasir, Mohd. Agos Salim; Kechil, Seripah Awang

    2017-11-01

    Oscillatory convective flow is undesirable because it can produce bubbles, striation and dendrites in the manufactured products. The ability to control the complex convective flow patterns is important in technological processes and fundamental science. One of the factors that can alter the dynamics of the surface tension of thin fluid film is the surface-active agents. In this work, the influence of the insoluble surface-active agents on thermocapillary convective instability in a liquid layer for non-deformable free surface is examined. Uniform temperature and uniform heat flux for the temperature condition at the bottom surface are considered. The linear stability analysis is used to assess the effects of elasticity number, Lewis number, Prandtl number and Biot number on the onset of oscillatory convection. The existence of insoluble surfactant stabilizes the fluid layer system. The system is more stable in the case of uniform temperature. The presence of surfactant and temperature setting at the bottom boundary can suppress the onset of oscillatory instability.

  14. Enhanced heat transfer using oscillatory flows in solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, A.A.; Cuevas, S.; Rio, J.A. del [Centro de Investigacion en Energia, UNAM, A.P. 34, 62580 Temixco, Mor. (Mexico)

    2006-10-15

    In this work, we propose the use of oscillatory laminar flows to enhance the transfer of heat from solar collectors. The idea is to explore the possibility of transferring the heat collected from a solar device to a storage tank by means of a zero-mean oscillating fluid contained in a tube. This method takes advantage of the fact that the effective thermal diffusivity of a fluid in oscillatory motion is several orders of magnitude higher than the fluid molecular diffusivity. Therefore, the axial transport of heat along the tube is substantially higher when the fluid oscillates than when the fluid is static. Also, preliminary estimations show a dramatic heat transfer enhancement using oscillatory flows compared with the forced convection of heat by standard unidirectional flows. We explore the behavior of the effective thermal diffusivity using both Newtonian and viscoelastic fluids. For the Newtonian fluid a single maximum value of this quantity is exhibited for a given oscillation frequency. In contrast, several maxima for different resonant frequencies are observed for the viscoelastic fluid. Further, the absolute maximum of the enhanced thermal diffusivity for the viscoelastic fluid is several orders of magnitude larger than that of the Newtonian fluid. (author)

  15. Dynamics of the Davydov–Scott soliton with location or velocity mismatch of its high-frequency component

    Energy Technology Data Exchange (ETDEWEB)

    Blyakhman, L.G.; Gromov, E.M.; Onosova, I.V.; Tyutin, V.V., E-mail: vtyutin@hse.ru

    2017-05-03

    The dynamics of a two-component Davydov–Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg–de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton's component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations. - Highlights: • The dynamics of the Davydov–Scott soliton with initial location or velocity mismatch of the HF component was investigated. • The study was performed within the framework of coupled linear Schrödinger and KdV equations for the HF and LF fields. • Analytical and numerical approaches were used. • The frequency of the DS soliton component oscillation was found. • Stability of the perturbed DS solitons was demonstrated.

  16. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand

    2010-01-01

    This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design...

  17. Pharmacological characterization of the involvement of protein kinase C in oscillatory and non-oscillatory calcium increases in astrocytes

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Morita

    2015-09-01

    Full Text Available Evidence increasingly shows that astrocytes play a pivotal role in brain physiology and pathology via calcium dependent processes, thus the characterization of the calcium dynamics in astrocytes is of growing importance. We have previously reported that the epidermal growth factor and basic fibroblast growth factor up-regulate the oscillation of the calcium releases that are induced by stimuli, including glutamate in cultured astrocytes. This calcium oscillation is assumed to involve protein kinase C (PKC, which is activated together with the calcium releases as a consequence of inositol phospholipid hydrolysis. In the present study, this issue has been investigated pharmacologically by using astrocytes cultured with and without the growth factors. The pharmacological activation of PKC largely reduced the glutamate-induced oscillatory and non-oscillatory calcium increases. Meanwhile, PKC inhibitors increased the total amounts of both calcium increases without affecting the peak amplitudes and converted the calcium oscillations to non-oscillatory sustained calcium increases by abolishing the falling phases of the repetitive calcium increases. Furthermore, the pharmacological effects were consistent between both glutamate- and histamine-induced calcium oscillations. These results suggest that PKC up-regulates the removal of cytosolic calcium in astrocytes, and this up-regulation is essential for calcium oscillation in astrocytes cultured with growth factors.

  18. Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies

    Science.gov (United States)

    García-Jerez, Antonio; Luzón, Francisco; Sánchez-Sesma, Francisco J.; Lunedei, Enrico; Albarello, Dario; Santoyo, Miguel A.; Almendros, Javier

    2013-10-01

    reliability of usual assumptions regarding the wavefield composition in applications of the Diffuse Field Approach (DFA) to passive seismic prospecting is investigated. Starting from the more general formulation of the DFA for full wavefield (FW), the contribution of each wave to the horizontal- and vertical-component power spectra at surface are analyzed for a simple elastic waveguide representing the continental crust-upper mantle interface. Special attention is paid to their compositions at low and high frequencies, and the relative powers of each surface wave (SW) type are identified by means of a semianalytical analysis. If body waves are removed from the analysis, the high-frequency horizontal asymptote of the H/V spectral ratio decreases slightly (from 1.33 for FW to around 1.14 for SW) and shows dependence on both the Poisson's ratio of the crust and the S wave velocity contrast (while FW-H/V asymptote depends on the former only). Experimental tests in a local broadband network provide H/V curves compatible with any of these values in the band 0.2-1 Hz, approximately, supporting the applicability of the DFA approximation. Coexistence of multiple SW modes produces distortion in the amplitudes of vertical and radial component Aki's coherences, in comparison with the usual predictions based on fundamental modes. At high frequencies, this effect consists of a decrement by a constant scaling factor, being very remarkable in the radial case. Effects on the tangential coherence are severe, including a - π/4 phase shift, slower decay rate of amplitude versus frequency, and contribution of several velocities for large enough distances.

  19. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was <9% and <16% lower than U.S. Geological Survey's (USGS) estimates using their LOADEST or composite methods, respectively. USGS methods generally overestimated nitrate loads during rising stages and underestimated the loads during falling stages. While changes in nitrate concentrations in large rivers are generally not as responsive to alterations in diurnal inputs and/or watershed hydrology as small rivers, high-frequency water quality sampling would help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  20. ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES

    International Nuclear Information System (INIS)

    Erkut, M. Hakan

    2011-01-01

    We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency κ to the orbital frequency Ω the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches Ω + κ and Ω to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio (Ω + κ)/(Ω) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.