WorldWideScience

Sample records for inhalable particulate matter

  1. Spatial distribution of respirable and inhalable particulate matter concentration in sawmills of South-South Region of Nigeria

    Directory of Open Access Journals (Sweden)

    T.F. Ediagbonya

    2013-06-01

    Full Text Available Dust particles in the air that can be respired into the nose or mouth during normal breathing are known as inhalable particle. Inhalation decreases gradually with increasing particle diameter. The respirable and inhalable sawdust were collected from nine different sawmills in Benin City from November 2009 to February 2010 using portable programmable SKC Air Check XR5000 High Volume Gravimetric Sampler Model 210-5000 Serial No. 20537 and I.O.M (Institute Occupational Medicine Edinburg Multi dust sampler, Batch No. 221442/1. The objective of this study is to know the concentration of inhalable suspended particulate matter fraction and the respirable suspended particulate matter fraction in sawmill particulate. The mean concentration range of the respirable suspended particulate matter was 173.61-520.83 g/m3 and the inhalable suspended particulate matter was in a range of 555.56-2,013.98 g/m3. A strong positive correlation existed for inhalable suspended particulate matter and respirable suspended particulate matter. And the spatial variation was significant and remarkable.

  2. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  3. Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways.

    Science.gov (United States)

    Kleinman, M T; Araujo, J A; Nel, A; Sioutas, C; Campbell, A; Cong, P Q; Li, H; Bondy, S C

    2008-05-05

    In addition to evidence that inhalation of ambient particulate matter (PM) can increase cardiopulmonary morbidity and mortality, the brain may also constitute a site adversely effected by the environmental presence of airborne particulate matter. We have examined the association between exposure to PM and adverse CNS effects in apolipoprotein E knockout (ApoE-/-) mice exposed to two levels of concentrated ultrafine particulate matter in central Los Angeles. Mice were euthanized 24h after the last exposure and brain, liver, heart, lung and spleen tissues were collected and frozen for subsequent bioassays. There was clear evidence of aberrant immune activation in the brains of exposed animals as judged by a dose-related increase in nuclear translocation of two key transcription factors, NF-kappaB and AP-1. These factors are involved in the promotion of inflammation. Increased levels of glial fibrillary acidic protein (GFAP) were also found consequent to particulate inhalation suggesting that glial activation was taking place. In order to determine the mechanism by which these events occurred, levels of several MAP kinases involved in activation of these transcription factors were assayed by Western blotting. There were no significant changes in the proportion of active (phosphorylated) forms of ERK-1, IkB and p38. However, the fraction of JNK in the active form was significantly increased in animals receiving the lower concentration of concentrated ambient particles (CAPs). This suggests that the signaling pathway by which these transcription factors are activated involves the activation of JNK.

  4. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    Directory of Open Access Journals (Sweden)

    Yauk Carole L

    2009-03-01

    Full Text Available Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF-α under the control of the surfactant protein C promoter and wildtype littermates (C57BL/6 background were exposed by inhalation for 4 h to particulate matter (0 or 42 mg/m3 EHC-6802 and euthanized 0 or 24 h post-exposure. The low alveolar dose of particles (16 μg did not provoke an inflammatory response in the lungs of wildtype mice, nor exacerbate the chronic inflammation in TNF animals. Real-time PCR confirmed particle-dependent increases of CYP1A1 (30–100%, endothelin-1 (20–40%, and metallothionein-II (20–40% mRNA in wildtype and TNF mice (p Conclusion Our data support the hypothesis that health effects of acute exposure to urban particles are dominated by activation of specific physiological response cascades rather than widespread changes in gene expression.

  5. EFFECTS OF INHALATION OF SOLUBLE METALLIC CONSTITUENTS OF PARTICULATE MATTER ON CARDIOPULMONARY, THERMOREGULATORY, AND BIOCHEMICAL PARAMETERS IN GUINEA PIGS

    Science.gov (United States)

    EFFECTS OF INHALATION OF SOLUBLE METALLIC CONSTITUENTS OF PARTICULATE MATTER ON CARDIOPULMONARY, THERMOREGULATORY, AND BIOCHEMICAL PARAMETERS IN GUINEA PIGS. JP Nolan1, LB Wichers2, J Stanek3, UP Kodavanti1, MCJ Schladweiler1, PA Evansky1, ER Lappi1, DL Costa1, and WP Watkinson1...

  6. Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment

    Directory of Open Access Journals (Sweden)

    Lin-Yu Xu

    2014-11-01

    Full Text Available Inhalable particulate matter (PM10 is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI, and Normalized Difference Water Index (NDWI. With the correlation between difference vegetation index (DVI and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144 from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones.

  7. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    Directory of Open Access Journals (Sweden)

    Hussein Traboulsi

    2017-01-01

    Full Text Available Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood, fossil fuels (e.g., cars and trucks, incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene, metals, sulphur and nitrogen oxides, ozone and particulate matter (PM. PM0.1 (ultrafine particles (UFP, those particles with a diameter less than 100 nm (includes nanoparticles (NP are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB and nuclear factor (erythroid-derived 2-like 2 (Nrf2. Epigenetic mechanisms including non-coding RNA (ncRNA may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.

  8. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    Science.gov (United States)

    Traboulsi, Hussein; Guerrina, Necola; Iu, Matthew; Maysinger, Dusica; Ariya, Parisa; Baglole, Carolyn J.

    2017-01-01

    Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease. PMID:28125025

  9. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy

    Science.gov (United States)

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...

  10. Mapping acute systemic effects of inhaled particulate matter and ozone: multiorgan gene expression and glucocorticoid activity.

    Science.gov (United States)

    Thomson, Errol M; Vladisavljevic, Djordje; Mohottalage, Susantha; Kumarathasan, Prem; Vincent, Renaud

    2013-09-01

    Recent epidemiological studies have demonstrated associations between air pollution and adverse effects that extend beyond respiratory and cardiovascular disease, including low birth weight, appendicitis, stroke, and neurological/neurobehavioural outcomes (e.g., neurodegenerative disease, cognitive decline, depression, and suicide). To gain insight into mechanisms underlying such effects, we mapped gene profiles in the lungs, heart, liver, kidney, spleen, cerebral hemisphere, and pituitary of male Fischer-344 rats immediately and 24h after a 4-h exposure by inhalation to particulate matter (0, 5, and 50mg/m(3) EHC-93 urban particles) and ozone (0, 0.4, and 0.8 ppm). Pollutant exposure provoked differential expression of genes involved in a number of pathways, including antioxidant response, xenobiotic metabolism, inflammatory signalling, and endothelial dysfunction. The mRNA profiles, while exhibiting some interorgan and pollutant-specific differences, were remarkably similar across organs for a set of genes, including increased expression of redox/glucocorticoid-sensitive genes and decreased expression of inflammatory genes, suggesting a possible hormonal effect. Pollutant exposure increased plasma levels of adrenocorticotropic hormone and the glucocorticoid corticosterone, confirming activation of the hypothalamic-pituitary-adrenal axis, and there was a corresponding increase in markers of glucocorticoid activity. Although effects were transient and presumably represent an adaptive response to acute exposure in these healthy animals, chronic activation and inappropriate regulation of the hypothalamic-pituitary-adrenal axis are associated with adverse neurobehavioral, metabolic, immune, developmental, and cardiovascular effects. The experimental data are consistent with epidemiological associations of air pollutants with extrapulmonary health outcomes and suggest a mechanism through which such health effects may be induced.

  11. Inhalation exposures to particulate matter and carbon monoxide during Ethiopian coffee ceremonies in Addis Ababa: a pilot study.

    Science.gov (United States)

    Keil, Chris; Kassa, Hailu; Brown, Alexander; Kumie, Abera; Tefera, Worku

    2010-01-01

    The unique Ethiopian cultural tradition of the coffee ceremony increases inhalation exposures to combustion byproducts. This pilot study evaluated exposures to particulate matter and carbon monoxide in ten Addis Ababa homes during coffee ceremonies. For coffee preparers the geometric mean (57 μg/m³) and median (72 μg/m³) contributions to an increase in a 24-hour time-weighted average exposure were above World Health Organization (WHO) guidelines. At 40% of the study sites the contribution to the 24-hour average exposure was greater than twice the WHO guideline. Similar exposure increases existed for ceremony participants. Particulate matter concentrations may be related to the use of incense during the ceremony. In nearly all homes the WHO guideline for a 60-minute exposure to carbon monoxide was exceeded. Finding control measures to reduce these exposures will be challenging due to the deeply engrained nature of this cultural practice and the lack of availability of alternative fuels.

  12. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

    Directory of Open Access Journals (Sweden)

    Erdely Aaron

    2012-07-01

    Full Text Available Abstract Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10. In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3 were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88 to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

  13. 用于可吸入颗粒物采样器校准的标准微粒研制和定值%Development and certified value of standard particulate matters for calibrating inhalable particulate matter sampler

    Institute of Scientific and Technical Information of China (English)

    卓春凤; 李绍海; 曹放; 黄玉虎; 杨书义

    2013-01-01

    An inhalable particulate matter (PM10) sampler is the necessary device for monitoring PM10 in air. The accuracy of the device is a primary character in evaluation of the apparatus' metro-logical performance. Spherical standard particulate matter is ideal for the calibration of samplers. Five kinds of monodisperse microsphere size particulate matters which are made from polystyrene cross-linked with divinylbenzene were developed and certified. The technical specifications of the developed standard particulate matters meet the requirements for cutting test of inhalable particulate matter PM10 sampler.%可吸入颗粒物PM10采样器(切割器)适用于大气中PM10可吸入颗粒物监测,采样器的准确性是评价其计量性能的主要指标.校准采样器需使用球形标准微粒,介绍5种微米级单分散交联聚苯乙烯球形微粒的研制和定值.所研制的5种微粒粒度标准物质,其技术指标满足我国对可吸入颗粒物PM10采样器的切割测试要求.

  14. Inhalation Exposures to Particulate Matter and Carbon Monoxide during Ethiopian Coffee Ceremonies in Addis Ababa: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chris Keil

    2010-01-01

    Full Text Available The unique Ethiopian cultural tradition of the coffee ceremony increases inhalation exposures to combustion byproducts. This pilot study evaluated exposures to particulate matter and carbon monoxide in ten Addis Ababa homes during coffee ceremonies. For coffee preparers the geometric mean (57 μg/m3 and median (72 μg/m3 contributions to an increase in a 24-hour time-weighted average exposure were above World Health Organization (WHO guidelines. At 40% of the study sites the contribution to the 24-hour average exposure was greater than twice the WHO guideline. Similar exposure increases existed for ceremony participants. Particulate matter concentrations may be related to the use of incense during the ceremony. In nearly all homes the WHO guideline for a 60-minute exposure to carbon monoxide was exceeded. Finding control measures to reduce these exposures will be challenging due to the deeply engrained nature of this cultural practice and the lack of availability of alternative fuels.

  15. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors

    DEFF Research Database (Denmark)

    Hodas, Natasha; Loh, Miranda; Shin, Hyeong-Moo;

    2015-01-01

    , human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier......, a literature review was conducted and data characterizing factors influencing iFin,total were compiled. In addition to providing data for the calculation of iFin,total in various indoor environments and for a range geographic regions, this paper discusses remaining limitations to the incorporation of PM2......Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures...

  16. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors

    DEFF Research Database (Denmark)

    Hodas, Natasha; Loh, Miranda; Shin, Hyeong-Moo

    2016-01-01

    Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures...... per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building......-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier...

  17. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease.

    Science.gov (United States)

    Wang, Yan; Xiong, Lilin; Tang, Meng

    2017-03-16

    Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Correlation between plasmid DNA damage induced by PM10 and trace metals in inhalable particulate matters in Beijing air

    Institute of Scientific and Technical Information of China (English)

    Lü; Senlin

    2006-01-01

    ,Zhang L G,Dai S,et al.Generation of reactive oxygen species mediated by iron on inhalable particles and effects on lung injury.Adv Environ Sci (in Chinese),1999,(S):118-123[14]Valavanidis A,Salika A,Theodoropoulou A.Generation of hydroxyl radicals by urban suspended particulate air matter:the role of iron ions.Atmos Environ,2000,34:2379-2386[15]Ambroz H B,Bradshaw T K,Kemp T J,et al.Role of iron ions in damage to DNA:influence of ionizing radiation,UV light and H2O2.J Photochem Photobiol A:Chemistry,2000,142:9-18[16]Kim B Y,Han M J,Chung A S.Effects of reactive oxygen species on proliferation of Chinese hamster lung fibroblast (V79) cells.Free Radical Biol & Medi,2001,30(6):686-698[17]Gilmour P S,Brown D M,Beswick P H,et al.Free radical activity of industrial fibers:role of iron in oxidative stress and activation of transcription factors.Environ Health Perspect,1997,105(S5):1313-1317[18]Beijing Environmental Protection Bureau.Ann Environ Bull (1996-2000) (in Chinese).2001[19]Chang H,Yang S J,Dong J Q,et al.Study on the element species of atmosphere aerosol.Environ Chem (in Chinese),2000,19(6):485-499[20]Huang X,Olmez I,Aras N K,et al.Emissions of trace elements from motor vehicles:Potential marker elements and source composition profile.Atmos Environ,1994,28:1385-1391[21]Zhang R J,Xu Y F,Han Z U.Inorganic chemical composition and source signature of PM2.5 in Beijing during ACE-Asia period.Chin Sci Bull,2003,48(10):1002-1005[22]Xie H,Wang G C,Ren L X,et al.Study on chemical composition of the atmospheric fine aerosol in Beijing city.Chin Environ Sci (in Chinese),2001,21:432-435[23]Derrick E.Smog alarm (in Chinese).Beijing:Science Press,1999.32-75[24]Zhuang G S,Guo J H,Yuan H,et al.Coupling and feedback between iron and sulphur in air-sea exchange.Chin Sci Bull,2003,48(11):1080-1086[25]Imrich A,Ning Y Y,Kobzik L.Insoluble components of concentrated air particles mediated alveolar macrophage responses in Vitro.Toxicol and Appl Pharmacol,2000,167:140-150[1]Shi Z B.PM10 and PM

  19. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Science.gov (United States)

    Bhatt, Dhaval P; Puig, Kendra L; Gorr, Matthew W; Wold, Loren E; Combs, Colin K

    2015-01-01

    Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  20. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dhaval P Bhatt

    Full Text Available Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5 exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE, oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS, nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1, glial markers (GFAP, Iba-1, pre- and post- synaptic markers (synaptophysin and PSD-95, cyclooxygenase (COX-1, COX-2 levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.

  1. Characterization of an area of reference for inhalable particulate matter (PM2.5) associated with genetic biomonitoring in children.

    Science.gov (United States)

    Silva da Silva, Cristiane; Rossato, Juliana Marzari; Vaz Rocha, Jocelita Aparecida; Vargas, Vera Maria Ferrão

    2015-01-15

    Humans are exposed to health-impairing air pollutants, especially children who are more sensitive to cancer-causing toxins. This study described an area of reference for inhalable particulates (PM2.5) by chemical (polycyclic aromatic hydrocarbons) and mutagenic characterization associated with the genetic biomonitoring of children (aged 5-11 years). The area studied was in a small town in Brazil, used as reference in previous studies. Organic matter of PM2.5 (extracted with dichloromethane) was evaluated for mutagenesis in a Salmonella/microsome (microsuspension) assay, in strains measuring frameshift error (TA98, YG1021 and YG1024) and base pair substitution (TA100) of DNA, in the presence and absence of rat liver metabolization fraction (S9). Exposure was studied analyzing a sample of 45 children using comet assay (peripheral blood lymphocytes) and micronucleus (exfoliated buccal mucosa cells). PM2.5 concentration for the period was 9% (25.89-64.71 μg/m3) events above WHO limit value (25 μg/m3). Mutagenesis responses (revertants/m3) varied from negative (spring) to 8.3±0.69 (autumn) (-S9) and 5.4±0.36 (winter) (+S9), in strain TA98, and for TA100, in spring, from negative to 14.8±4.23 (-S9) and 17.5±2.72 (+S9). YG strain results show mononitroarenes and aromatic amines. Mean biomonitoring values were established for MN, 0.3±0.41 (‰) and for other cell types a variation from 0.6±0.73 (‰), nuclear buds to 57.5±24.92 (‰), karyorrhexis. Comet assay means were 23.1±12.44; 7.3±11.66 and 0.9±2.30 for tail length, intensity and moment, respectively. There was no difference for sex and age for the different parameters. A significant difference in confounding factors was observed for passive smoking and MN induction. PAHs and mutagenesis in the air may be related to local vehicular emissions. These results challenge the definition of areas of reference for air pollution associated with human biomonitoring including the region studied. Copyright © 2014

  2. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... affect the heart and lungs and cause serious health effects. December 1, 2016 - EPA proposes air quality determinations for eleven areas designated "nonattainment" for the 24-hour fine particle standards. Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  3. Zinc toxicology following particulate inhalation

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2008-01-01

    Full Text Available The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl 2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  4. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  5. Co-exposure to inhaled ambient particulate matter and acrolein alters myocardial synchrony in mice: evidence for TRPA1 involvement

    Science.gov (United States)

    Because air pollution is a complex mixture of constituents, often including particulates and aldehydes, attributing health effects to air pollutants in a given ambient air shed can be difficult when pollutants are studied in isolation. The purpose of this study was to examine the...

  6. [Study on the Relationship between the Inhalable Fine Particulate Matter of Xuanwei Coal Combustion and Lung Cancer].

    Science.gov (United States)

    Yang, Jiapeng; Cao, Yu; Huang, Yunchao; Li, Guangjian; Ye, Lianhua; Zhao, Guangqiang; Lei, Yujie; Chen, Xiaobo; Tian, Linwei

    2015-07-01

    背景与目的 云南省宣威地区是中国乃至世界肺癌的高发区,肺癌已成为制约当地社会经济发展和影响社会民生的重要因素。煤炭是当地主要的生活燃料,燃煤是当地室内污染的主要来源。本研究探讨云南宣威不同肺癌发病率地区烟煤燃烧过程中可吸入细颗粒物(fine particulate matter, PM2.5)产出情况,以及不同地区PM2.5成分异同。探讨吸入细颗粒物与当地肺癌高发的关系。方法 收集宣威市来宾镇老林煤矿C1煤层、宝山镇虎场煤矿K7煤层、文兴镇太平煤矿M30煤层的煤矿进行燃烧试验。收集室内的空气中的PM2.5进行称重,元素分析,用电子显微镜观察其形态,对比三种PM2.5异同。对宣威地区的肺癌患者的术后标本进行电子显微镜观察。结果 室内空气中的PM2.5浓度分别为C1煤(8.244±1.460)mg/m³,K7煤(5.066±0.984)mg/m³,K7煤(5.071±1.460)mg/m³;三组空气中PM2.5浓度两两比较差异有统计学意义(Ρ=0.029)。C1煤层中滤膜上的杂质有(Silicon, Si)和氧(Oxygen, O)元素富集,三组滤膜上均发现了碳(Carbon, C),硫(Sulfur, S)的聚集,在部分的滤膜上可见游离的二氧化硅(SiO2),部分滤膜上有铝(Aluminium, Al)、钙(Calcium, Ca)元素的聚集。C1煤层与其他煤层相比所产生颗粒物形态不规则,成团块状,杂质较多。在部分的宣威来宾地区的肺癌患者术后标本中,发现纳米级细颗粒的杂质。结论 C1煤与K7和M30煤燃烧产生的PM2.5不同,PM2.5的成分可能与当地肺癌高发相关。.

  7. Airways Hyperresponsiveness Following a Single Inhalation Exposure to Doxorubicin-Induced Heart Failure Prevents Airways Transition Metal-Rich Particulate Matter in Hypertensive Rats

    Science.gov (United States)

    Exposure to particulate matter (PM) air pollution results in airways hyperresponsiveness (AHR), however it also results in adverse cardiovascular effects, particularly in individuals with underlying cardiovascular disease. The impact of pre-existing cardiac deficit on PM-induced ...

  8. Inhalable particulate matter characterization in a medium-sized urban region in Brazil (São José dos Campos Town) - Part I: Morphology

    OpenAIRE

    Tatiane Morais Ferreira; Maria Cristina Forti; Roberta Lee Maciviero Alcaide

    2013-01-01

    In this study, the concentration and morphological characteristics of inhalable particulate material (PM10) were evaluated and associated with climatic conditions. The mean annual concentration was 11.0 µg m−3, varying between 0,647 µg m−3 and 36.8 µg m−3. Wind speed has a higher influence on PM10 dispersion, but direction was associated with particle source. During the wet period, wind speed is the main dispersion factor, while speed and direction both are important during ...

  9. PARTICULATE MATTER, OXIDATIVE STRESS AND ...

    Science.gov (United States)

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary disorders. Clinical and experimental studies have historically focused on the cardiopulmonary effects of PM. However, since PM particles carry numerous biocontaminants that are capable of triggering free radical production and cytokine release, the possibility that PM may affect organs systems sensitive to oxidative stress must be considered. Four independent studies that summarize the neurochemical and neuropathological changes found in the brains of PM exposed animals are described here. These were recently presented at two 2007 symposia sponsored by the Society of Toxicology (Charlotte, NC) and the International Neurotoxicology Association (Monterey, CA). Particulates are covered with biocontaminants (e.g., endotoxins, mold, pollen) which convey free radical activity that can damage the lipids, nucleic acids, and proteins of target cells on contact and stimulate inflammatory cytokine release. Although, the historical focus of PM toxicity has been cardiopulmonary targets, it is now appreciated that inhaled nano-size (liver, kidneys, testes, lymph nodes) (Takenaka et aI

  10. Assessing the inhalation cancer risk of particulate matter bound polycyclic aromatic hydrocarbons (PAHs) for the elderly in a retirement community of a mega city in North China.

    Science.gov (United States)

    Han, Bin; Liu, Yating; You, Yan; Xu, Jia; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Zhang, Nan; He, Fei; Ding, Xiao; Bai, Zhipeng

    2016-10-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is limited by the lack of environmental exposure data among different subpopulations. To assess the exposure cancer risk of particulate carcinogenic polycyclic aromatic hydrocarbon pollution for the elderly, this study conducted a personal exposure measurement campaign for particulate PAHs in a community of Tianjin, a city in northern China. Personal exposure samples were collected from the elderly in non-heating (August-September, 2009) and heating periods (November-December, 2009), and 12 PAHs individuals were analyzed for risk estimation. Questionnaire and time-activity log were also recorded for each person. The probabilistic risk assessment model was integrated with Toxic Equivalent Factors (TEFs). Considering that the estimation of the applied dose for a given air pollutant is dependent on the inhalation rate, the inhalation rate from both EPA exposure factor book was applied to calculate the carcinogenic risk in this study. Monte Carlo simulation was used as a probabilistic risk assessment model, and risk simulation results indicated that the inhalation-ILCR values for both male and female subjects followed a lognormal distribution with a mean of 4.81 × 10(-6) and 4.57 × 10(-6), respectively. Furthermore, the 95 % probability lung cancer risks were greater than the USEPA acceptable level of 10(-6) for both men and women through the inhalation route, revealing that exposure to PAHs posed an unacceptable potential cancer risk for the elderly in this study. As a result, some measures should be taken to reduce PAHs pollution and the exposure level to decrease the cancer risk for the general population, especially for the elderly.

  11. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  12. Inhalable particulate matter characterization in a medium-sized urban region in Brazil (São José dos Campos Town - Part I: Morphology

    Directory of Open Access Journals (Sweden)

    Tatiane Morais Ferreira

    2013-01-01

    Full Text Available In this study, the concentration and morphological characteristics of inhalable particulate material (PM10 were evaluated and associated with climatic conditions. The mean annual concentration was 11.0 µg m−3, varying between 0,647 µg m−3 and 36.8 µg m−3. Wind speed has a higher influence on PM10 dispersion, but direction was associated with particle source. During the wet period, wind speed is the main dispersion factor, while speed and direction both are important during the dry period. Based on the morphological characteristics, it is concluded that biogenic particles prevail during the rainy season and terrigenous particles during the dry period, depending on the wind direction and intensity.

  13. Particulate matter and preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  14. Particulate matter and preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  15. Particulate Matter: a closer look

    NARCIS (Netherlands)

    Buijsman E; Beck JP; Bree L van; Cassee FR; Koelemeijer RBA; Matthijsen J; Thomas R; Wieringa K; LED; MGO

    2005-01-01

    The summary in booklet form 'Fijn stof nader bekeken' (Particulate Matter: a closer look) , published in Dutch by the Netherlands Environmental Assessment Agency (MNP) and the Environment and Safety Division of the National Institute for Public Health and the Environment (RIVM), has been designed to

  16. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  17. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  18. Subchronic inhalation of coal dust particulate matter 10 induces bronchoalveolar hyperplasia and decreases MUC5AC expression in male Wistar rats.

    Science.gov (United States)

    Kania, Nia; Setiawan, Bambang; Widjadjanto, Edi; Nurdiana, Nurdiana; Widodo, M Aris; Kusuma, H M S Chandra

    2014-10-01

    Coal dust is a pollutant found in coal mines that are capable of inducing oxidative stress and inflammation, but the effects on lung metaplasia as an early step of carcinogenesis remain unknown. The purpose of the present study was to evaluate the effects of PM10 coal dust on lung histology, MUC5AC expression, epidermal growth factor (EGF) expression, and epidermal growth factor receptor (EGFR) expression. An experimental study was done on male Wistar rats, which were divided into the following groups: control groups exposed to coal dust for 14 days (at doses of 6.25 mg/m(3), 12.5 mg/m(3), and 25 mg/m(3)), and the groups exposed to coal dust for 28 days (at doses of 6.25 mg/m(3), 12.5 mg/m(3), and 25 mg/m(3)). EGF expressions in rat lungs were measured by ELISA. EGFR and MUC5AC were measured by a confocal laser scanning microscope. The bronchoalveolar epithelial image of the group exposed to coal dust for 14 and 28 days showed a epithelial rearrangement, hyperplastic (metaplastic) goblet cells, and scattered massive inflammatory cells. The pulmonary parenchymal image of the group of exposed to coal dust for 14 and 28 days showed scattered inflammatory cells filling up the pulmonary alveolar networks, leading to an appearance of thickened parenchymal alveoli until emphysema-like structure. There was no significant difference in MUC5AC, EGF, and EGFR expressions for 14-d exposure (p>0.05). There was no significant difference in EGF and EGFR expressions for 28-d exposure (p>0.05), but there was a significant difference in MUC5AC expression (pcoal dust particulate matter 10 induces bronchoalveolar reactive hyperplasia and rearrangement of epithelial cells which accompanied by decrease expression MUC5AC in male rats.

  19. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study

    Science.gov (United States)

    Morakinyo, Oyewale Mayowa; Adebowale, Ayo Stephen; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley

    2017-01-01

    Objective To assess the health risks associated with exposure to particulate matter (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3). Design The study is an ecological study that used the year 2014 hourly ambient pollution data. Setting The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. Data and method Estimate of possible health risks from exposure to airborne PM10, SO2, NO2, CO and O3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. Outcome measures Presence or absence of adverse health effects from exposure to airborne pollutants. Results Average annual ambient concentration of PM10, NO2 and SO2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m3, respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m3 for PM10, NO2 and SO2, respectively. Exposure to an hour's concentration of NO2, SO2, CO and O3, an 8-hour concentration of CO and O3, and a 24-hour concentration of PM10, NO2 and SO2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM10, NO2 and SO2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. Conclusions Long-term chronic exposure to airborne PM10, NO2 and SO2 pollutants may result in health risks among the study population. PMID:28289048

  20. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yuan-Horng [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Charles, Chou C.-K. [Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan (China); Wang, Jyh-Seng [Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Tung, Chun-Liang [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Li, Ya-Ru; Lo, Kai [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2014-12-01

    Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM{sub 2.5} exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM{sub 2.5} in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m{sup 3}, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic

  1. Assessment of the Halogen Content of Brazilian Inhalable Particulate Matter (PM10) Using High Resolution Molecular Absorption Spectrometry and Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, with Direct Solid Sample Analysis.

    Science.gov (United States)

    de Gois, Jefferson S; Almeida, Tarcisio S; Alves, Jeferson C; Araujo, Rennan G O; Borges, Daniel L G

    2016-03-15

    Halogens in the atmosphere play an important role in climate change and also represent a potential health hazard. However, quantification of halogens is not a trivial task, and methods that require minimum sample preparation are interesting alternatives. Hence, the aim of this work was to evaluate the feasibility of direct solid sample analysis using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for F determination and electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for simultaneous Cl, Br, and I determination in airborne inhalable particulate matter (PM10) collected in the metropolitan area of Aracaju, Sergipe, Brazil. Analysis using HR-CS MAS was accomplished by monitoring the CaF molecule, which was generated at high temperatures in the graphite furnace after the addition of Ca. Analysis using ETV-ICP-MS was carried out using Ca as chemical modifier/aerosol carrier in order to avoid losses of Cl, Br, and I during the pyrolysis step, with concomitant use of Pd as a permanent modifier. The direct analysis approach resulted in LODs that were proven adequate for halogen determination in PM10, using either standard addition calibration or calibration against a certified reference material. The method allowed the quantification of the halogens in 14 PM10 samples collected in a northeastern coastal city in Brazil. The results demonstrated variations of halogen content according to meteorological conditions, particularly related to rainfall, humidity, and sunlight irradiation.

  2. Complexity analysis in particulate matter measurements

    OpenAIRE

    Luciano Telesca; Michele Lovallo

    2011-01-01

    We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS) information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  3. Ultrafine particulate matter exposure in vitro impairs vasorelaxant response in superoxide dismutase 2 deficient and aged murine aortic rings

    Science.gov (United States)

    Epidemiological studies positively associate exposure to inhaled ultrafine particulate matter (UFPM) and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure....

  4. The impact of ambient particulate matter (PM10) on the population mortality for cerebrovascular diseasesa case-crossover study

    Institute of Scientific and Technical Information of China (English)

    王旭英

    2013-01-01

    Objective To analyze the association between the concentration of ambient inhalable particulate matter(PM10) and population mortality for cerebrovascular diseases and to explore the impact of PM10 on cerebrovascular

  5. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  6. PARTICULATE MATTER, OXIDATIVE STRESS AND NEUROTOXICITY

    Science.gov (United States)

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary dis...

  7. 23 Elemental Composition of Suspended Particulate Matter ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    coarse and fine particulate matter fractions at the higher height. The elements Cu, Zn, ... dense population, high density housing, the ..... could be in the vapor phase at the higher height. .... precipitation from a remote background site in. India.

  8. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  9. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    Science.gov (United States)

    2011-12-01

    Ethynylcylcopentadiene (C5H5C2H) C CH m-Formylphenyl radical (C6H4CHO) C O Formyl cyclopentadiene (C5H5CHO) O Table 12. Structures of the species...FINAL REPORT Aromatic Radicals -Acetylene Particulate Matter Chemistry SERDP Project WP-1575 DECEMBER 2011 Kenneth Brezinsky University... Radicals -Acetylene Particulate Matter Chemistry W912HQ-07-C-0019 WP-1575Dr. Kenneth Brezinsky University of Illinois DBA: Office of Business and Financial

  10. Geochemical Investigations of Respirable Particulate Matter

    OpenAIRE

    Jurinski, Joseph Bernard Jr.

    1998-01-01

    GEOCHEMICAL INVESTIGATIONS OF RESPIRABLE PARTICULATE MATTER Joseph Bernard Jurinski (Abstract) Over the course of our lives we are exposed to airborne particulate matter in the workplace, home, and environment that results in the deposition of millions of particles in the lung. These exposures may result in disease if they are significant enough. The potential for harmful exposure depends in part on the dust's biodurability and the bioavailability of harmful constituents d...

  11. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  12. Design of Inhalable Particulate Matters Measurement Based on the Mie Scattering Extinction%基于Mie散射的可吸入颗粒检测仪的设计

    Institute of Scientific and Technical Information of China (English)

    张棚; 刘路路; 李传亮; 邱选兵; 魏计林

    2014-01-01

    system.Finally,the data were transmitted and shared in network through the 3G wireless module.The average particle size and concentration of inhalable particles were measured by this device at the same time. The technical specifications of the detector were verified by experiment,the experimental results indicate that the detection sensi-tivity of the system is 0. 01μg·m-3 ,the responsive time of system is approximately 90 s and it is suitable for measuring partic-ulate matter concentrations of atmosphere.

  13. METHODOLOGICAL ISSUES IN THE USE OF GENERALIZED ADDITIVE MODELS FOR THE ANALYSIS OF PARTICULATE MATTER; CONFERENCE PROCEEDINGS FOR 9TH INT'L. INHALATION SYMPOSIUM ON EFFECTS OF AIR CONTAMINANTS ON THE RESPIRATORY TRACT - INTERPRETATIONS FROM MOLECULES TO META ANALYSIS

    Science.gov (United States)

    Open cohort ("time-series") studies of the adverse health effects of short-term exposures to ambient particulate matter and gaseous co-pollutants have been essential in the standard setting process. Last year, a number of serious issues were raised concerning the fitting of Gener...

  14. Particulate matter pollution in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, E.; Mora P, V. [Instituto Mexicano del Petroleo, Mexico Distrito Federal (Mexico); Mugica A, V. [Universidad Autonoma Metropolitana-Azcapotzalco, Mexico Distrito Federal (Mexico)

    1998-12-31

    The levels of particulate matter are of concern since they may induce severe effects on public health and is the second atmospheric pollution problem in Mexico City. Another noticeable effect in large cities attributable to particulate matter, is the deterioration of visibility. In this paper the analysis of the data of TSP and PM10 during 1988 to 1996 is presented. The seasonal variation of particulate matter, the typical ratios of PM10/TSP and relationships of the two variables were determined. It was found that PM10 concentrations show an important tendency to decrease during this period, due to some control strategies, although this is not the case for TSP. The monthly trend exhibits a clear relationship with the dry (October through April) and wet (May through September) seasons. The particulate matter concentrations are lower during the wet season. The hourly behavior shows that the highest concentrations are correlated with the traffic rush hours. The most TSP polluted area was the northeast, meanwhile the southeast is the most PM10 polluted area. There is a clear evidence of the particulate matter transportation from these areas to other sites of the City.

  15. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  16. Evaluation of diesel particulate matter sampling techniques

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-09-01

    Full Text Available The study evaluated diesel particulate matter (DPM) sampling methods used in the South African mining industry. The three-piece cassette respirable, open face and stopper sampling methods were compared with the SKC DPM cassette method to find a...

  17. Source apportionment of particulate matter in Denmark

    Science.gov (United States)

    Moenster, J.; Glasius, M.; Nielsen, O. J.; Bilde, M.; Jensen, F. P.

    2005-12-01

    Atmospheric particulate matter (PM) has received considerable attention over the last decade as an important component of air pollution, particularly due to its health effects on the exposed population. Typically the mass of particles with diameters smaller that 10 μm (PM10) has been used in large cohort studies to estimate health effects such as increase in hospitalization rate, asthma attacks and premature deaths. Particles smaller than 2.5 μm (PM2.5) and ultra fine particles have been used in various epidemiological studies and correlations between exposure to fine and ultra fine particles and health effects have been found. Limits of acceptable concentrations of PM10, PM2.5 and some carcinogenic species have been made, and it is important to find the origin of the particulate matter to prevent exceeds of these limits. This can be done by measuring particle mass, organic/inorganic fractions of particles, the chemical components and other relevant factors, and then use receptor modeling for source apportionment of the particulate matter. We have done measurements at street level and urban background in Copenhagen, Denmark, to determine the origin of different sizes of particulate matter and the toxic organic compounds connected to these particles. We also did measurements in a small village with less traffic and more residential wood combustion for a comparison between traffic and wood combustion generated pollution. Our results show a significant amount of particulate matter coming from non local sources and are dominated by long-range transported inorganic salts. The amount of these is highly depended on the wind direction and thus on the origin of the wind plume. The origin of the carcinogenic organic compound benzo(a)pyrene was found to be local combustion sources. To prevent events of high particulate matter concentration in Copenhagen, Denmark, a reduction of emission from the local traffic will only lead to a minor effect, since the majority of the

  18. 40 CFR 60.402 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed (0...) Contain particulate matter in excess of 0.12 kilogram per megagram of phosphate rock feed (0.23 lb/ton... beneficiated rock any gases which: (i) Contain particulate matter in excess of 0.055 kilogram per megagram...

  19. Particulate matters from diesel engine exhaust emission

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.

    2008-01-01

    Full Text Available Air pollution caused by diesel engine emissions, especially particulate matters and nitric oxides emissions, is one of the biggest problems of current transportation. In the near future the emission of diesel particulate matters will become one of the most important factors that will affect the trend of engine development. Ambient airborne particles have adverse environmental and health effects and therefore their concentration in the air is regulated. Recent medical studies showed that different particle properties are important (for example: number/concentration, active surface, chemical composition/morphology and may take role in the responsibility for their human health impact. Thus, diesel engines are one of the most important sources of particles in the atmosphere, especially in urban areas. Studying health effects and diesel engine particulate properties, it has been concluded that they are a complex mixture of solids and liquids. Biological activity of particulate matter may be related to particle sizes and their number. The paper presents the activities of UN-ECE working group PMP on defining the best procedure and methodology for the measurement of passenger cars diesel engines particle mass and number concentrations. The results of inter-laboratory emissions testing are presented for different engine technologies with special attention on repeatability and reproducibility of measured data. .

  20. Small things make a big difference: particulate matter and exercise.

    Science.gov (United States)

    Cutrufello, Paul T; Smoliga, James M; Rundell, Kenneth W

    2012-12-01

    The increased risk of morbidity and mortality among adults and children with pre-existing cardiovascular or respiratory illness from emission-derived particulate matter (PM) is well documented. However, the detrimental effects of PM inhalation on the exercising, healthy population is still in question. This review will focus on the acute and chronic responses to PM inhalation during exercise and how PM exposure influences exercise performance. The smaller ultrafine PM (population is not immune to the effects of PM inhalation, especially during exercise. This population, including the competitive athlete, is susceptible to pulmonary inflammation, decreased lung function (both acute and chronic in nature), the increased risk of asthma, vascular endothelial dysfunction, mild elevations in pulmonary artery pressure and diminished exercise performance. PM exposure is usually associated with vehicular traffic, but other sources of PM, including small engines from lawn and garden equipment, cigarette smoke, wood smoke and cooking, may also impair health and performance. The physiological effects of PM are dependent on the source of PM, various environmental factors, physical attributes and nature of exercise. There are a number of measures an athlete can take to reduce exposure to PM, as well as the deleterious effects that result from the inevitable exposure to PM. Considering the acute and chronic physiological responses to PM inhalation, individuals living and exercising in urban areas in close proximity to major roadways should consider ambient air pollution levels (in particular, PM and ozone) prior to engaging in vigorous exercise, and those exposed to PM through other sources may need to make lifestyle alterations to avoid the deleterious effects of PM inhalation. Although it is clear that PM exposure is detrimental to healthy individuals engaging in exercise, further research is necessary to better understand the role of PM on athlete health and performance, as

  1. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2015-12-15

    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  2. Characterization of iron in airborne particulate matter

    Science.gov (United States)

    Tavares, F. V. F.; Ardisson, J. D.; Rodrigues, P. C. H.; Brito, W.; Macedo, W. A. A.; Jacomino, V. M. F.

    2014-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Mössbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Mössbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area.

  3. Evaluation of Economic Cost of Health Effect Due to Inhalant Particulate Matter in Air in the Yellow River Delta%黄河三角洲可吸入颗粒物造成的居民健康经济损失估算

    Institute of Scientific and Technical Information of China (English)

    单长青; 李甲亮; 李超

    2012-01-01

    采用泊松回归模型,选用国内外Meta分析结果的污染物暴露-反应关系系数,参考相关健康效应终点的统计资料,估算了黄河三角洲地区归因于可吸入颗粒物的居民健康经济损失.结果表明,2010年可吸入颗粒物(PM10,参考浓度取40 μg/m3)造成的人群急性健康经济损失为16313.69万元,超额死亡经济损失为3347.42万元,合计19661.11万元,占该地区当年GDP的0.036%,在一定程度上反映了该地区可吸入颗粒物污染危害的严重性,对当地居民健康危害造成的经济损失不容忽视,应采取有效的防治措施控制颗粒物的污染,以提高人们的健康水平.%The health effect due to inhalant particulate matter of the Yellow River Delta was evaluated using Possion regression model. This article selected the exposure-response coefficient of the meta analysis result, combined with the statistical data about diseases. It concluded that the economic cost were 163.1369 million Yuan by acute health effect and 33.4742 million Yuan by the excess death in 2010, for reference concentration of 40 μg/m3.The total economic cost was 196.6111 million Yuan, which accounted for 0.036% gross domestic product of the Yellow River Delta. It reflected the seriousness of the inhalant particulate matter pollution at a certain extent, and it can not be ignored for the economic cost of health effect. Some effective measures should be taken to control the inhalant particulate matter pollution, in order to improve the residents' health level.

  4. Risk assessment of inhalation exposure to Particulate Polycyclic Aromatic Hydrocarbons in school children

    Science.gov (United States)

    Jyethi, D. S.; Khillare, P. S.; Sarkar, S.

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for one year (2009-10) at an urban site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5%) and coal combustion (40.5%) sources accounted for the high levels of PAHs (range 38.1 ng m-3 - 217.3 ng m-3) with four and five ring PAHs having ~80 % contribution. Atmospheric distribution of total PAHs were heavily influenced (~75%) by the carcinogenic species and the B[a]P equivalent concentrations, through both TEF and MEF approach, exhibited highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day-1) followed by monsoon (232.59 ng day-1) and summer (171.08 ng day-1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend: school hours>commuting to school>resting period, in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r=0.94, pindoor air quality. In the apparent absence of any indoor PAH sources, outdoor concentrations and in turn air exchange rates (that are specific for infiltration and natural ventilation pathways) play a key role in assessing PAH exposure. A conservative estimate of ~11 excess cancer cases in children during childhood and ~ 652 cases for a lifetime inhalation exposure of PAHs at the observed concentration have been calculated in Delhi.

  5. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  6. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal.

  7. Spatially resolved intake fraction estimates for primary and secondary particulate matter in the United States

    Science.gov (United States)

    Lamancusa, Carmen; Parvez, Fatema; Wagstrom, Kristina

    2017-02-01

    This study uses intake fraction, the fraction of emissions that are inhaled from a given source, to quantify how emissions from different regions proportionally contribute to human exposure to both primary and secondary particulate matter species. The intake fraction for secondary species is defined using the common atomic constituents between precursor species and products, allowing estimates to include both primary and secondary species. The Particulate Matter Source Apportionment Technology (PSAT) in the Comprehensive Air Quality Model with Extensions (CAMx) regional air quality model is used to calculate the intake fraction for twenty-five source regions throughout the contiguous United States over four seasons. The calculations use spatially explicit emissions and population density to more accurately capture the variation in intake fraction between regions. The spatially explicit emissions allow for the calculation of spatial trends and variations within the intake fraction. More specifically it allows for the calculation of the amount of intake that occurs within a given distance of the emissions source or source region. Based on the results sulfate inhalation occurs over larger distances than other particulate matter species. For most regions, a substantial fraction (>75%) of the inhalation occurs within 50 km for all seasons, demonstrating that efforts to reduce emissions will have the largest health impact on the local community. Furthermore the distance over which 75% of the inhalation occurs increases by 20% for all species during the winter and a larger percentage of pollutants emitted during the winter are inhaled relative to pollutants emitted during other seasons. This demonstrates that emission reductions during the winter will have a greater impact on health than reductions during other seasons.

  8. The origin of ambient particulate matter concentrations in the Netherlands

    NARCIS (Netherlands)

    Hendriks, C.; Kranenburg, R.; Kuenen, J.; Gijlswijk, R. van; Wichink Kruit, R.; Segers, A.; Denier van der Gon, H.; Schaap, M.

    2013-01-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the orig

  9. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  10. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights.

    Science.gov (United States)

    Bai, Yuntao; Sun, Qinghua

    2016-12-01

    Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous plaque in the arteries. Its etiology is very complicated and its risk factors primarily include genetic defects, smoking, hyperlipidemia, hypertension, lack of exercise, and infection. Recent studies suggest that fine particulate matter (PM2.5) air pollution may also contribute to the development of atherosclerosis. The present review integrates current experimental evidence with mechanistic pathways whereby PM2.5 exposure can promote the development of atherosclerosis. PM2.5-mediated enhancement of atherosclerosis is likely due to its pro-oxidant and pro-inflammatory effects, involving multiple organs, different cell types, and various molecular mediators. Studies about the effects of PM2.5inhalation on atherosclerosis may yield a better understanding of the link between air pollution and major cardiovascular diseases, and provide useful information for policy makers to determine acceptable levels of PM2.5 air quality. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lung bioaccessibility of contaminants in particulate matter of geological origin.

    Science.gov (United States)

    Guney, Mert; Chapuis, Robert P; Zagury, Gerald J

    2016-12-01

    Human exposure to particulate matter (PM) has been associated with adverse health effects. While inhalation exposure to airborne PM is a prominent research subject, exposure to PM of geological origin (i.e., generated from soil/soil-like material) has received less attention. This review discusses the contaminants in PM of geological origin and their relevance for human exposure and then evaluates lung bioaccessibility assessment methods and their use. PM of geological origin can contain toxic elements as well as organic contaminants. Observed/predicted PM lung clearance times are long, which may lead to prolonged contact with lung environment. Thus, certain exposure scenarios warrant the use of in vitro bioaccessibility testing to predict lung bioavailability. Limited research is available on lung bioaccessibility test development and test application to PM of geological origin. For in vitro tests, test parameter variation between different studies and concerns about physiological relevance indicate a crucial need for test method standardization and comparison with relevant animal data. Research is recommended on (1) developing robust in vitro lung bioaccessibility methods, (2) assessing bioaccessibility of various contaminants (especially polycyclic aromatic hydrocarbons (PAHs)) in PM of diverse origin (surface soils, mine tailings, etc.), and (3) risk characterization to determine relative importance of exposure to PM of geological origin.

  12. Airborne endotoxin in fine particulate matter in Beijing

    Science.gov (United States)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  13. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  14. Temporal and spatial variations in particulate matter, particulate organic carbon and attenuation coefficient in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.

    Nine stations over a stretch of 21 km of Periyar river estuary were sampled during January to December 1981. Particulate matter varied from 3-253 mg.1 super(1) at the surface and 24.8-257mg.1 super(1) at the bottom. Particulate organic carbon ranged...

  15. Short term variations in particulate matter in Mahi river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Rokade, M.A.; Zingde, M.D.

    The particulate matter (PM) collected from Mahi River Estuary was analysed for organic carbon (POC), nitrogen (PON), and chlorophyll a (Chl a). The concentration of PM, POC, PON and Chl a showed short term variations. Average surface concentration...

  16. Biomonitoring of particulate matter by magnetic properties of Ulmus ...

    African Journals Online (AJOL)

    ... and quality of vegetation in different parts of the city and create sustainable urban ... Four stations in different areas of green space, including, one park, one ... Keywords: Particulate matter, green area, magnetic properties, biomonitoring ...

  17. Trends from the South African historical diesel particulate matter data

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2012-03-01

    Full Text Available Currently, there is no occupational exposure limit (OEL) for diesel particulate matter (DPM) in South Africa. Recently the Department of Mineral Resources and the mining industry have made efforts to determine which concentration of DPM could...

  18. Effect of ambient particulate matter expousre on hemostasis

    Science.gov (United States)

    Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...

  19. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    Science.gov (United States)

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...

  20. Evaluation of airborne particulate matter pollution in Kenitra City Morocco

    OpenAIRE

    2013-01-01

    Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF) and Atomic Absorption Spectroscopy (AAS). The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were...

  1. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Science.gov (United States)

    2010-07-01

    ... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5060 Limit on exposure to diesel particulate matter. (a) A miner's personal exposure to... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Limit on exposure to diesel particulate matter...

  2. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant

    Directory of Open Access Journals (Sweden)

    M. Panahandeh

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives: The dispersion of particulate matter has been known as the most serious environmental pollution of cement plants. In the present work, dispersion of the particulate matter from stack of Kerman Cement Plant was investigated using Computational Fluid Dynamics (CFD modeling."nMaterials and Methods: In order to study the dispersion of particulate matter from the stack, a calculation domain with dimensions of 8000m × 800m × 400m was considered. The domain was divided to 936781 tetrahedral control volumes. The mixture two-phase model was employed to model the interaction of the particulate matter (dispersed phase and air (continuous phase. The Large Eddy Simulation (LES method was used for turbulence modeling."nResults: The concentration of particulate matter in the whole calculation domain was computed. The predicted concentrations were compared to the measured values from the literature and a good agreement was observed. The predicted concentration profiles at different cross sections were analyzed."nConclusion:The results of the present work showed that CFD is a useful tool for understanding the dispersion of particulate matter in air. Although the obtained results were promising, more investigations on the properties of the dispersed phase, turbulent parameters and the boundary layer effect is needed to obtain more accurate results.

  3. Caracterización de Partículas Suspendidas (PST y Partículas Respirables (PM 10 producidas en Áreas de Explotación Carbonífera a Cielo Abierto Characterization of Total Suspended Particles (TSP and Inhalable Particulate Matter (PM 10 generated in Open Pit Coal Mining Areas

    Directory of Open Access Journals (Sweden)

    Luis C Angulo

    2011-01-01

    Full Text Available Se presenta una revisión de la literatura sobre la cuantificación y caracterización de partículas suspendidas (PST y partículas respirables (PM10 producidas en áreas de explotación carbonífera a cielo abierto. El material particulado es un contaminante complejo por sus características físicas (distribución de tamaño de partícula, morfología y densidad y por sus características químicas (compuestos orgánicos e inorgánicos, metales y contaminantes primarios y secundarios. Estas características son críticas para determinar el tipo y magnitud de los efectos sobre la salud humana. Se encontró que los trabajos realizados, han empleado experimentos de laboratorio y de campo, así como estudios de modelación. Esta revisión bibliográfica contribuye a una mejor comprensión y evaluación de las tecnologías que se deben usar para encontrar soluciones a este problema de contaminación.This article presents a literature review about the quantification and characterization of total suspended particles (TSP and inhalable particulate matter (PM 10 generated in open pit coal mining areas. Particle matter is a complex pollutant due to its physical characteristics (particle size distribution, morphology and density and its chemical characteristics (organic and inorganic components, metals, and primary and secondary pollutants. These characteristics are critical to determine the type and the magnitude of their effects on human health. It was found that the different works published in the literature have used lab and field experiments, and also modeling studies. This literature review contributes to improve the understanding and evaluation of technologies that must be used to find solutions to this atmospheric pollution problem.

  4. Urban airborne particulate matter. Origin, chemistry, fate and health impacts

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ., Frankfurt am Main (Germany). Inst. for Atmospheric and Environmental Sciences; Wiseman, Clare L.S. (eds.) [Toronto Univ., ON (CA). Adaptation and Impacts Research Group (AIRG)

    2010-07-01

    This book presents the most up-to-date research and information regarding the origin, chemistry, fate and health impacts of airborne particulate matter in urban areas, a topic which has received a great deal of attention in recent years due to documented relationships between exposure and health effects such as asthma. With internationally recognised researchers and academics presenting their work and key concepts and approaches from a variety of disciplines, including environmental and analytical chemistry, biology, toxicology, mineralogy and the geosciences, this book addresses the topic of urban airborne particulate matter in a comprehensive, multidisciplinary manner. Topics and research addressed in the book range from common methodological approaches used to sample and analyse the composition of airborne particulates to our knowledge regarding their potential to impact human health and the various policy approaches taken internationally to regulate particulate matter levels. (orig.)

  5. Driver exposure to particulate matter in Bangkok.

    Science.gov (United States)

    Jinsart, W; Kaewmanee, C; Inoue, M; Hara, K; Hasegawa, S; Karita, K; Tamura, K; Yano, E

    2012-01-01

    The aims of this study were to determine the particulate matter with aerodynamic diameters > or = 2.5 microm (PM2.5) and 2.5-10 microm (PM10-2.5) exposure levels of drivers and to analyze the proportion of elemental carbon (EC) and organic carbon (OC) in PM2.5 in Bangkok, Thailand. Four bus routes were selected. Measurements were conducted over 10 days in August (rainy season) 2008 and 8 days in January (dry season) 2009. The mean PM2.5 exposure level of the Tuk-tuk drivers was 86 microg/m3 in August and 198 microg/m3 in January. The mean for the non-air-conditioned bus drivers was 63 microg/m3 in August and 125 microg/m3 in January. The PM2.5 and PM10-2.5 exposure levels of the drivers in January were approximately twice as high as those in August. The proportion of total carbon (TC) in PM2.5 to the PM2.5 level in August (0.97 +/- 0.28 microg/m3) was higher than in January (0.65 +/- 0.13 microg/m3). The proportion of OC in the TC of the PM2.5 in August (0.51 +/- 0.08 microg/m3) was similar to that in January (0.65 +/- 0.07 microg/m3). The TC exposure by PM25 in January (81 +/- 30 microg/m3) remained higher than in August (56-21 microg/m3). The mean level of OC in the PM2.5 was 29 +/- 13 microg/m3 in August and 50 +/- 24 microg/m3 in January. In conclusion, the PM exposure level in Bangkok drivers was higher than that in the general environment, which was already high, and it varied with the seasons and vehicle type. This study also demonstrated that the major component of the PM was carbon, likely derived from vehicles.

  6. Emissions of particulate matter from animal houses in the Netherlands

    Science.gov (United States)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  7. Particulate matter air pollution and liver cancer survival.

    Science.gov (United States)

    Deng, Huiyu; Eckel, Sandrah P; Liu, Lihua; Lurmann, Frederick W; Cockburn, Myles G; Gilliland, Frank D

    2017-08-15

    Particulate matter (PM) air pollution exposure has been associated with cancer incidence and mortality especially with lung cancer. The liver is another organ possibly affected by PM due to its role in detoxifying xenobiotics absorbed from PM. Various studies have investigated the mechanistic pathways between inhaled pollutants and liver damage, cancer incidence, and tumor progression. However, little is known about the effects of PM on liver cancer survival. Twenty thousand, two hundred and twenty-one California Cancer Registry patients with hepatocellular carcinoma (HCC) diagnosed between 2000 and 2009 were used to examine the effect of exposure to ambient PM with diameter liver cancer-specific mortality linearly and nonlinearly-overall and stratified by stage at diagnosis (local, regional and distant)-adjusting for potential individual and geospatial confounders.PM2.5 exposure after diagnosis was statistically significantly associated with HCC survival. After adjustment for potential confounders, the all-cause mortality HR associated with a 1 standard deviation (5.0 µg/m(3) ) increase in PM2.5 was 1.18 (95% CI: 1.16-1.20); 1.31 (95% CI:1.26-1.35) for local stage, 1.19 (95% CI:1.14-1.23) for regional stage, and 1.05 (95% CI:1.01-1.10) for distant stage. These associations were nonlinear, with substantially larger HRs at higher exposures. The associations between liver cancer-specific mortality and PM2.5 were slightly attenuated compared to all-cause mortality, but with the same patterns.Exposure to elevated PM2.5 after the diagnosis of HCC may shorten survival, with larger effects at higher concentrations. © 2017 UICC.

  8. Particulate matter in urban areas: health-based economic assessment.

    Science.gov (United States)

    El-Fadel, M; Massoud, M

    2000-08-10

    The interest in the association between human health and air pollution has grown substantially in recent years. Based on epidemiological studies in several countries, there is conclusive evidence of a link between particulate air pollution and adverse health effects. Considering that particulate matter may be the most serious pollutant in urban areas and that pollution-related illness results in financial and non-financial welfare losses, the main objective of this study is to assess the economic benefits of reducing particulate air pollution in Lebanese urban areas. Accordingly, the extent and value of health benefits due to decreasing levels of particulate in the air are predicted. Health impacts are expressed in both physical and monetary terms for saved statistical lives, and productivity due to different types of morbidity endpoints. Finally, the study concludes with a range of policy options available to mitigate particulate air pollution in urban areas.

  9. The nature of particulate organic matter settled on solid substrata

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, M.O.; Wagh, A.B.

    of the particulate material recovered from these two surfaces. Highly significant correlations were observed between the bacterial numbers and the measured parameters. This probably suggests that bacteria were the major source of the particulate matter settled... immerges dans un estuaire a ete analysce: bacteries, chlorophylle a, poids sec, matiere organique, carbone organique, azote, proteines, glueides et lipides. Aucune difference n'a etc dccelee dans lacomposition de la matiere organique et dans les...

  10. Association between maternal exposure to particulate matter and premature birth

    Directory of Open Access Journals (Sweden)

    Thaiza Agostini Córdoba de Lima

    2014-01-01

    Full Text Available The objective of this time-series study carried out in São José dos Campos, a southeastern Brazilian city, between 01.01.2005 and 31.12.2009, was to estimate the role of maternal exposure to air pollutants and preterm births. Preterm newborns of mothers aged between 18 and 34 years, with at least eight years of schooling, singleton pregnancies and whose delivery was vaginal were included in the study. Logistic regression was used to estimate the role of particulate matter, ozone and sulfur dioxide on preterm delivery with lags of zero up to 30 days. Exposure to particulate matter was associated significantly with preterm newborns in lags of 0, 1 and 3 days; but no association was found between cumulative maternal exposure in lags of 7, 15 and 30 days and the outcome. Maternal exposure to particulate matter therefore has an acute effect on preterm births in a medium-sized Brazilian town.

  11. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Science.gov (United States)

    Fullová, Daša; Đurčanská, Daniela

    2016-12-01

    The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  12. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  13. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    Directory of Open Access Journals (Sweden)

    Katsumi Hirose

    2004-01-01

    Full Text Available Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL and uranium in particulate matter (PM. The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M, and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in surface PM was examined. The result reveals that particulate Th in surface PM was well correlated with the SOL concentration in PM. The concentrations of particulate Th in surface water were linearly related to those of particulate U. Mass balance analysis suggests that the dominant chemical form of Th(IV, as well as of U, in surface PM is a surface complex with the SOL in PM. Our findings suggest that the SOL in PM is a nonmetal-specific chelator originating from the cell surface of microorganisms.

  14. [Fine particulate matter and nonalcoholic fatty liver disease].

    Science.gov (United States)

    Li, M; Li, Y M

    2016-09-20

    Fine particulate matter is defined as the particulate matter with an aerodynamic diameter of liver disease(NAFLD)has similar risk factors as these diseases, as well as obesity, hyperlipidemia, and type 2 diabetes, and it is considered a part of metabolic syndrome. In this view, many studies focus on the possible association between PM2.5 and NAFLD in recent years, including epidemiological study and experimental study, so as to investigate possible pathogenic mechanisms. With reference to the research advances in PM2.5 and NAFLD, this article reviews the association between PM2.5 and NAFLD from the aspects of lipid deposition, oxidative stress, and insulin resistance.

  15. Beryllium Concentrations at European Workplaces: Comparison of 'Total' and Inhalable Particulate Measurements.

    Science.gov (United States)

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-07-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) 'total' particulate method into exposure concentration values to be expected when sampling using the 'Gesamtstaubprobenahmesystem' (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germany and the EU were monitored revealing a broad spectrum of prevailing Be size distributions. In total, 39 personal samples were taken using a 37-mm CFC and a GSP worn side by side for simultaneous collection of the 'total' dust and the inhalable particulates, respectively. In addition, 20 static general area measurements were carried out using GSP, CFC, and Respicon samplers in parallel, the latter one providing information on the extra-thoracic fraction of the workplace aerosol. The study showed that there is a linear relationship between the concentrations measured with the CFC and those measured with the GSP sampler. The geometric mean value of the ratios of time-weighted average concentrations determined from GSP and CFC samples of all personal samples was 2.88. The individual values covered a range between 1 and 17 related to differences in size distributions of the Be-containing particulates. This was supported by the area measurements showing that the conversion factor increases with increasing values of the extra-thoracic fraction covering a range between 0 and 79%.

  16. Monitoring Particulate Matter with Commodity Hardware

    Science.gov (United States)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  17. Particulate matter in exhaled breath condensate: A promising indicator of environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Teresa, E-mail: murmur@itn.pt [ITN, E.N. 10, 2685-953 Sacavem (Portugal); CFN-UL, Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Alexandra Barreiros, M. [LNEG, Estrada Paco do Lumiar, 22, 1649-038 Lisboa (Portugal); Alves, Luis C. [ITN, E.N. 10, 2685-953 Sacavem (Portugal); CFN-UL, Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Felix, Pedro M.; Franco, Cristiana; Sousa, Joana; Almeida, S.M. [ITN, E.N. 10, 2685-953 Sacavem (Portugal)

    2011-10-15

    Assessing the retention of aerosol particles in the human lung, one of the most important pathways of absorption, is a demanding issue. At present, there is no direct biomarker of exposure for the respiratory system. The collection of exhaled breath condensate (EBC) constitutes a new non-invasive method for sampling from the lung. However, the heterogeneity of the sample due to particulate matter suspended in the condensed phase may influence the quality of analytical results in occupational assessments. The main objective of the study was to confirm the presence of particulate matter in the condensate, to investigate how large the particles in suspension could be and to determine their elemental contents relative to those of EBC matrix. This paper reports on preliminary nuclear microprobe data of particulate matter in EBC. The sizes and the elemental contents of particles suspended in EBC of workers of a lead processing industry and in EBC of non-exposed individuals were inspected. Results demonstrated that EBC of workers contain large aerosol particles, isolated and in agglomerates, contrasting with non-exposed individuals. The particles contained high concentrations of Cl, Ca, Zn and Pb that are elements associated to the production process. These elements were also present in the EBC matrix although in much lower levels, suggesting that a fraction of the inhaled particulate matter was solubilised or their size-ranges were below the nuclear microprobe resolution. Therefore, the morphological characterization of individual particles achieved with nuclear microprobe techniques helped describing EBC constituents in detail, to comprehend their origin and enabled to delineate methodological procedures that can be recommended in occupational assessments. These aspects are critical to the validation of EBC as a biomarker of exposure to metals for the respiratory system.

  18. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  19. Oxidative Potential of ambient particulate matter in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Bougiatioti, Aikaterini; Fang, Ting; Liakakou, Eleni; Weber, Rodney; Nenes, Athanasios; Mihalopoulos, Nikolaos

    2017-04-01

    Exposure of populations to airborne particulate matter (PM) is a leading cause of premature death worldwide. Oxidative stress resulting from exposure of chemical species present in PM is a mechanism thought to cause adverse health effects. Apart from radicals present in aerosol, species that can catalytically deplete the antioxidant buffering capacity of cells, called Oxidative Potential (OP), are thought to be particularly toxic. The variability of OP over location, particle age, source and environmental conditions is virtually unknown for most populated regions of the world. Motivated by this, we have built and deployed one of the first operational measurements of OP in Europe at the National Observatory of Athens site in downtown Athens, Greece. OP for fine and coarse mode is measured using a semi-automated dithiothreitol (DTT) assay developed at the Georgia Institute of Technology; the assay measures the oxidation rate of DTT by water-soluble aerosol constituents, and simulates the rate at which the same compounds would deplete antioxidants in-vivo. The DTT oxidation rate per unit volume of air (water-soluble "DTT activity") and aerosol size class (fine, coarse) are used as a measure of aerosol toxicity. We present continuous (24hr average) OP measurements in downtown Athens from July 2016 to January 2017, conducted through quartz fiber filter analysis. The dataset covers a broad range of aerosol sources (pollution from Europe, regional and local biomass burning, dust, marine aerosol, biogenic aerosol) and meteorological conditions. The daily water-soluble DTT activity ranges between 0.02-0.81 nmolmin-1 m-3 (averaging at 0.24 nmolmin-1 m-3) for fine aerosol and between 0.01-0.52 nmolmin-1 m-3 (averaging at 0.08 nmolmin-1 m-3) for coarse particulate matter, indicating that water-soluble fine mode aerosol components possess a significant fraction of the OP. The seasonal variability demonstrates a higher DTT activity during the coldest period of the year for both

  20. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  1. 40 CFR 266.105 - Standards to control particulate matter.

    Science.gov (United States)

    2010-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.105 Standards to control particulate matter. (a) A boiler or industrial furnace burning hazardous waste may not...

  2. Particulate matter urban air pollution from traffic car

    Science.gov (United States)

    Filip, G. M.; Brezoczki, V. M.

    2017-05-01

    The particulate matters (PM) are very important compounds of urban air pollution. There are a lot of air pollution sources who can generate PM and one of the most important of them it is urban traffic car. Air particulate matters have a major influence on human health so everywhere are looking for PM reducing solutions. It is knows that one of the solution for reduce the PM content from car traffic on ambient urban air is the fluidity of urban traffic car by introduction the roundabout intersections. This paper want to present some particulate matter determinations for PM10 and PM2.5 conducted on the two types of urban intersection respectively traffic light and roundabout intersections in Baia Mare town in the approximate the same work conditions. The determinations were carried out using a portable particulate matter monitor Haz - Dust model EPAM - 5000, who can provide a real time data for PM10, PM 2.5.Determinations put out that there are differences between the two locations regarding the PM content on ambient air. On roundabout intersection the PM content is less than traffic light intersection for both PM10 and PM 2.5 with more than 30%.

  3. 40 CFR 60.102 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator. (2) Gases exhibiting greater than 30 percent opacity, except for one six-minute average opacity reading in any one hour period. (b) Where the gases discharged by the fluid catalytic cracking...

  4. 40 CFR 60.122 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  5. 40 CFR 60.132 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  6. Health Effects of Airborne Particulate Matter Trace Elements

    Institute of Scientific and Technical Information of China (English)

    XIANG GAO; QI YU; LI-MIN CHEN

    2005-01-01

    The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses, describes the effects of exposure to PM trace elements on health epidemiological evidence, toxicology findings, and raises some questions for future studies.

  7. 40 CFR 60.732 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Calciners and... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and for calciners and dryers installed in series and in excess of 0.057 g/dscm (0.025 gr/dscf) for dryers; and...

  8. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction

    Science.gov (United States)

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...

  9. Seasonal and spatial distribution of particulate organic matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.; Bhosle, N.B.; Matondkar, S.G.P.; Bhushan, R.

    The temporal, spatial and depth related variation of suspended particulate organic matter (POM) in the Bay of Bengal are assessed in this paper. For this purpose, suspended particulate matter (SPM) samples were collected from eight depths (2 to 1000...

  10. Distribution, origin and transformation of amino sugars sand bacterial contribution to estuarine particulate organic matter

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.

    Amino sugars including bacterial biomarker muramic acid(Mur) were investigated in suspended particulate matter(SPM) to understand their distribution, origin, and biogeochemical cycling and the contribution of bacteria to particulate organic matter...

  11. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  12. A new technology for the reduction of particulate matter from diesel engines in ships

    NARCIS (Netherlands)

    Van Rens, G.L.M.A.

    2008-01-01

    In this thesis the focus is on the particulate matter reduction of ships, as ships contribute significantly to the particulate matter concentration in ambient air. Because the fuel of sea ships contains a lot of ash, the emitted particulate matter will also contain a lot of ash. In car and truck app

  13. A new technology for the reduction of particulate matter from diesel engines in ships

    NARCIS (Netherlands)

    Van Rens, G.L.M.A.

    2008-01-01

    In this thesis the focus is on the particulate matter reduction of ships, as ships contribute significantly to the particulate matter concentration in ambient air. Because the fuel of sea ships contains a lot of ash, the emitted particulate matter will also contain a lot of ash. In car and truck app

  14. Characterization of particulate matter size distributions and indoor concentrations from kerosene and diesel lamps.

    Science.gov (United States)

    Apple, J; Vicente, R; Yarberry, A; Lohse, N; Mills, E; Jacobson, A; Poppendieck, D

    2010-10-01

    Over one-quarter of the world's population relies on fuel-based lighting. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel-based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM(2.5) concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM(2.5) and PM(10) concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM(2.5) and PM(10), but will be exposed to elevated 0.02-0.3 μm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM(2.5) mass if they switched from a simple wick lamp to an electric lighting technology. Changing lighting technologies to achieve increased efficiency and energy service levels can provide ancillary health benefits. The cheapest, crudest kerosene lamps emit the largest amounts of PM(2.5). Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.

  15. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  16. Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models.

    Science.gov (United States)

    Zheng, Ze; Zhang, Xuebao; Wang, Jiemei; Dandekar, Aditya; Kim, Hyunbae; Qiu, Yining; Xu, Xiaohua; Cui, Yuqi; Wang, Aixia; Chen, Lung Chi; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2015-12-01

    Hepatic fibrosis, featured by the accumulation of excessive extracellular matrix in liver tissue, is associated with metabolic disease and cancer. Inhalation exposure to airborne particulate matter in fine ranges (PM2.5) correlates with pulmonary dysfunction, cardiovascular disease, and metabolic syndrome. In this study, we investigated the effect and mechanism of PM2.5 exposure on hepatic fibrogenesis. Both inhalation exposure of mice and in vitro exposure of specialized cells to PM2.5 were performed to elucidate the effect of PM2.5 exposure on hepatic fibrosis. Histological examinations, gene expression analyses, and genetic animal models were utilized to determine the effect and mechanism by which PM2.5 exposure promotes hepatic fibrosis. Inhalation exposure to concentrated ambient PM2.5 induces hepatic fibrosis in mice under the normal chow or high-fat diet. Mice after PM2.5 exposure displayed increased expression of collagens in liver tissues. Exposure to PM2.5 led to activation of the transforming growth factor β-SMAD3 signaling, suppression of peroxisome proliferator-activated receptor γ, and expression of collagens in hepatic stellate cells. NADPH oxidase plays a critical role in PM2.5-induced liver fibrogenesis. Exposure to PM2.5 exerts discernible effects on promoting hepatic fibrogenesis. NADPH oxidase mediates the effects of PM2.5 exposure on promoting hepatic fibrosis. Copyright © 2015. Published by Elsevier B.V.

  17. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Parks, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Prikhodko, Vitaly Y. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sappok, Alex [Filter Sensing Technologies, Malden, MA (United States); Ragaller, Paul [Filter Sensing Technologies, Malden, MA (United States); Bromberg, Leslie [Filter Sensing Technologies, Malden, MA (United States)

    2016-10-30

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on a GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.

  18. Electrochemical Impedance Spectra of Particulate Matter and Smoke

    Energy Technology Data Exchange (ETDEWEB)

    Osite, A; Katkevich, J; Viksna, A; Vaivars, G, E-mail: agnese.osite@lu.lv [Department of Chemistry, University of Latvia, Riga, Valdemara Street 48, Latvia, LV-1013 (Latvia)

    2011-06-23

    Particularly aerosol particles of fine dimensions are recognized to have a strong impact on the climate change, on the atmospheric energy budget, on the environment and on human health. In this study coarse aerosol particles with different black carbon mass concentrations were investigated by electrochemical impedance spectroscopy. Present work describes preparation of particulate matter samples for impedance measurements, the principles of the structure of electrochemical cell and the relationship between parameters obtained from impedance spectra and black carbon mass concentration. Using complex electrode it is possible to obtain qualitative impedance spectra of particulate matter which were sampled on glass fibre filters. The values of equivalent circuit's elements (R, Q and n) are depending on sampled mass of black carbon and mass of other carbonaceous components which are not black as well as they depend on filter pore packing with solid particles.

  19. Establishing the origin of particulate matter across Europe

    Science.gov (United States)

    Schaap, Martijn; Kranenburg, Richard; Hendriks, Carlijn; Kuenen, Jeroen

    2016-04-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. In this paper we like to provide an overview of recent source apportionment studies aimed at PM and its precursors carried out at TNO. The source apportionment module that tracks the origin of modelled particulate matter distributions throughout a LOTOS-EUROS simulation will be explained. To optimally apply this technology dedicated emission inventories, e.g. fuel type specific, need to be generated. Applications to Europe shows that in northwestern Europe the contribution of transport and agricultural emissions dominate the PM mass concentrations, especially during episodic events. In eastern Europe, the domestic and energy sector are much more important. In southern Europe the picture is more mixed, although the frequent high levels of desert dust stand out. Evaluation of the source allocation against experimental data and PMF analyses is challenging as there is only a limited availability of source specific tracers or factors that can be used for direct comparison. Nonetheless, for the available tracers such as vanadium for heavy fuel oil combustion an evaluation is very well possible. The source apportionment technique can also be used to interpret particulate matter formation efficiencies. It will be shown that the conversion rates for the secondary inorganic aerosol precursors (NOx, NH3 and SO2) have changed during the last 20 years. A particular problem is related to the fact that CTMs systematically underestimate observed PM levels, which means that the contribution of certain source categories (natural, agriculture, combustion) are underestimated. Future developments needed to improve the source apportionment information concerning process knowledge, data assimilation as well as model implementation will be discussed. Specific challenges concerning the

  20. Electrically heated particulate matter filter soot control system

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  1. Distribution of particulate organic matter in Rajapur and Vagothan estuarines (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Tulaskar, A.S.; Sawant, S.S.; Wagh, A.B.

    The distribution of particulate organic carbon (POC), particulate carbohydrates (PCHO) and particulate proteins (PP) in the suspended particulate matter was studied. The POC, PCHO and PP concentrations ranged from 176 to 883 mu g.l/1, 115 to 647 mu...

  2. Particulate matter and manganese exposures in Toronto, Canada

    Science.gov (United States)

    Pellizzari, E. D.; Clayton, C. A.; Rodes, C. E.; Mason, R. E.; Piper, L. L.; Fort, B.; Pfeifer, G.; Lynam, D.

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (˜1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM 2.5 and PM 10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM 2.5, PM 10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m -3 for the PM 10 and PM 2.5 fractions, respectively, and 5.50 and 1.83 ng m -3 for Mn in PM 10 and PM 2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM 10, the personal particulate matter levels (median 48.5 μg m -3) were much higher than either indoor (23.1 μg m -3) or outdoor levels (23.6 μg m -3). The median levels for PM 2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m -3, respectively. The correlation between PM 2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16-0.27). Indoor Mn concentration distributions (in PM 2.5 and PM 10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure

  3. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  4. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    Science.gov (United States)

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-06-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects.

  5. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues.

    Science.gov (United States)

    Laing, Suzette; Wang, Guohui; Briazova, Tamara; Zhang, Chunbin; Wang, Aixia; Zheng, Ze; Gow, Alexander; Chen, Alex F; Rajagopalan, Sanjay; Chen, Lung Chi; Sun, Qinghua; Zhang, Kezhong

    2010-10-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM(2.5) exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM(2.5)-induced apoptosis. Furthermore, PM(2.5) exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM(2.5) exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM(2.5) exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis.

  6. Speciation of The Particulate Organic Matter In Three Remote Areas

    Science.gov (United States)

    Masclet, Pierre; Marchand, Nicolas; Jaffrezo, Jean Luc; Besombes, Jean Luc

    Total particulate matter was collected as part of three programs between 1999 and 2001 (EAAS in Finland, ESOMPTE in Marseille/Fos and POVA in french alpine valleys). The speciation of the particulate organic matter (POM) was performed by Gas Chromatography or HPLC coupled with a mass spectrometer. 13 organic families were identified in the 245 samples collected. The presence of some functional groups (- COOH; - OH and - CHO) and the carbon chain length are used in order to identify the sources of the particulate pollutants and the physicochemical behaviour during the long range atmospheric transport of the aerosol. The composition of the POM differs depending on the season (the secondary fraction reaches 27 % in summer and only 6% in winter) and on the remoteness of the sources. Alkanes are always the most abundant compounds. Polycyclic aromatic hydrocarbons, alcohols, esters, carboxylic acids and monoaromatic hydrocarbons are present in significant abundance. Some alkenes, aldehydes, ether oxydes, ketones and halocompounds are also found. Alcohols are more abundant in aerosols collected close to marine sites. Long carbon chain esters are mostly found in aerosols collected in high density vegetation areas and relatively high concentrations of PAH are measured in aerosols collected close to highly populated areas. These three families are good geochemical tracers, respectively of marine, biogenic and anthropic sources.

  7. Emission of particulate matter during aircraft landing operation

    Directory of Open Access Journals (Sweden)

    Jasiński Remigiusz

    2016-01-01

    Full Text Available The article presents the results of studies conducted in the area adjacent to the airport located in Poznan, to determine the impact of aircraft landing operation on the concentration of particulate matter. Measurements were carried out using Engine Exhaust Particle Sizer Spectrometer 3090, enabling the measurement of the particle size distribution. The research allowed to determine the nature of the emitted particles and adds to the evaluation of impact on air quality. The tests were carried out during four aircraft landing operations. In each of the four cases total concentration of particulates number before landing (reference level and during the landing of the aircraft was measured. In addition, the size distribution of reference level particles and its change after the landing operation was measured. Based on the conducted research, it was found that landing aircrafts have a significant impact on the concentration of particulate matter in the area adjacent to the airport. A single landing operation causes an substantially increase of the value of particle number concentration.

  8. Inhalants

    Science.gov (United States)

    ... which open the breathing passages. Inhalers are very safe when used as prescribed by doctors. Inhalants, on the other hand, are common household chemicals that contain a volatile component which can be ...

  9. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  10. Fe, Ni and Zn speciation, in airborne particulate matter

    Science.gov (United States)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  11. Interaction between ozone and airborne particulate matter in office air

    DEFF Research Database (Denmark)

    Mølhave, Lars; Kjærgaard, Søren K.; Sigsgaard, Torben

    2005-01-01

    This study investigated the hypotheses that humans are affected by air pollution caused by ozone and house dust, that the effect of simultaneous exposure to ozone and dust in the air is larger than the effect of these two pollutants individually, and that the effects can be measured as release...... of cytokines and changes of the respiratory function. Experimental exposures of eight atopic but otherwise healthy subjects were performed in a climate chamber under controlled conditions. The three controlled exposures were about 75 microg/m3 total suspended particulate matter, 0.3 p.p.m. ozone...

  12. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  13. Correlation Study Between Suspended Particulate Matter and DOAS Data

    Institute of Scientific and Technical Information of China (English)

    SI Fuqi; LIU Jianguo; XIE Pinghua; ZHANG Yujun; LIU Wenqing; Hiroaki KUZE; Nofel LAGROSAS; Nobuo TAKEUCHI

    2006-01-01

    Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM).A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m2 g-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.

  14. Pulmonary antioxidants exert differential protective effects against urban and industrial particulate matter

    Indian Academy of Sciences (India)

    L L Greenwell; T Moreno; R J Richards

    2003-02-01

    This investigation focuses on the application of an in vitro assay in elucidating the role of lung lining fluid antioxidants in the protection against inhaled particles, and to compare the toxicities of different airborne particulate matter (PM), PM10, collections from South Wales, UK. PM collections from both urban and industrial sites caused 50% oxidative degradation of DNA in vitro at concentrations as low as 12.9 ± 2.1 g ml–1 and 4.9 ± 0.9 mg ml–1 respectively. The primary source of this bioreactivity was found to be the soluble fraction of both particle collections. The coarser PM10–2.5 fraction also showed greater oxidative bioreactivity than the PM2.5–0.1 in both cases. When repeated in the presence of a low molecular weight fraction of fresh pulmonary lavage fluid, as well as in artificial lung lining fluid (200 M urate, glutathione and ascorbate), the DNA damage was significantly reduced in all cases ( < 0.05). The antioxidants exerted a greater effect on the industrial samples than on the urban samples, and on the PM10–2.5 fractions than on the PM2.5–0.1 fractions, supporting the previous findings that respirable PM and urban samples contain fewer free radical sources than inhalable PM and industrial samples.

  15. A new technology for the reduction of particulate matter from diesel engines in ships

    OpenAIRE

    Van Rens, G.L.M.A.

    2008-01-01

    In this thesis the focus is on the particulate matter reduction of ships, as ships contribute significantly to the particulate matter concentration in ambient air. Because the fuel of sea ships contains a lot of ash, the emitted particulate matter will also contain a lot of ash. In car and truck applications the soot filters are cleaned by burning the particulate matter off of the filter. However, ash will not be burned off and accumulates in the filter. In the case of high-ash loads, like se...

  16. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Jacobsen, Nicklas Raun

    2010-01-01

    Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric or in...... indicate that WSPM and CB exert the strongest effect in terms of oxidative stress-induced response, inflammation, and genotoxicity in the organ closest to the port of entry.......Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric...... or intratracheal exposure in terms of oxidative stress, inflammation, genotoxicity, and DNA repair after 24 h in liver and lung tissue of rats. Rats were exposed to WSPM from high or low oxygen combustion and ambient PM collected in areas with and without many operating wood stoves or carbon black (CB) at the dose...

  17. Composition and oxidation state of sulfur in atmospheric particulate matter

    Science.gov (United States)

    Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.

    2016-10-01

    The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  18. Resuspension of particulate matter and PAHs from street dust

    Science.gov (United States)

    Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B.

    2011-01-01

    Winter street sanding activities in northern countries are often associated with elevated pollution by particulate matter. There are indications that street dust may act as a source of particle-bound PAHs. However, very few studies have addressed the resuspension potential of PAHs from street dust. The purpose of this study was to quantitatively assess emissions of particulate matter and PAHs from street dust by laboratory-scale simulation of particle resuspension. Increases in air velocity caused proportional increases in air-borne PM 2.5, PM 10 and PM total concentrations, while the concentrations of PAHs associated with resuspended particles did not show clear statistically significant dependence on air velocity. A substantial difference in particle and PAH resuspension was observed between dust from the city center street and dust from the connecting street. The data obtained in the present study indicate that street dust may be a significant source not only of PMs but also of particle-bound PAHs in ambient air.

  19. Effect of ozonation on particulate matter in broiler houses.

    Science.gov (United States)

    Li, Q; Wang, L; Oviedo-Rondón, E; Parnell, C B

    2010-10-01

    The effects of ozonation on particulate matter were studied on a commercial broiler farm. The farm consisted of 4 identical tunnel-ventilated houses (12.8×152.4 m): 2 houses were treated with O3 (maximum concentration 0.1 ppm) and the other 2 served as control units. The particle size distributions of total suspended particulate (TSP) samples from both control and treated houses were found to have very similar profiles with no statistical difference. The TSP concentrations were significantly higher in treated houses as compared with those in control houses, and the mean of the differences was 5.50 mg/m3. In both treated and control houses, there were substantial vertical TSP concentration gradients and the concentrations decreased with height. At broiler chicken height (0.28 m), TSP concentrations were 13±3 mg/m3 in control houses and 17±2 mg/m3 in treated houses. At human breathing height (1.55 m), TSP concentrations were 8±4 mg/m3 in control houses and 7±2 mg/m3 in treated houses. Particle phase NH4+ concentrations were higher in treated houses (ranging from 0.59 to 42.01 mg/m3 with mean=17.49 mg/m3) than in control houses (ranging from 0.34 to 13.55 mg/m3 with mean=4.42 mg/m3). The TSP samples from locations in the vicinity of the farm showed higher concentrations downwind than that upwind, but there were no significant differences observed among different ambient locations for TSP NH4+ concentrations. The results from this study did not show that direct application of ozonation technique has beneficial effects for particulate matter control in broiler houses.

  20. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    Science.gov (United States)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  1. 75 FR 65567 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Science.gov (United States)

    2010-10-26

    ... requirements. The particulate matter (PM) standards contain the particulate emission control requirements that.... OAC 3745-17-11--Restrictions on Particulate Emissions From Industrial Processes The most significant... instead to a set of rules requiring a specific set of work practices that will control these...

  2. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2012-10-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST reference materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the reference material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  3. Development of emission factors for particulate matter in a school

    Energy Technology Data Exchange (ETDEWEB)

    Scheff, P.A.; Paulius, V.; Conroy, L.M.

    1999-07-01

    Schools have complex indoor environments which are influenced by many factors such as number of occupants, building design, office equipment, cleaning agents, and school activities. Like large office buildings, school environments may be adversely influenced by deficiencies in ventilation which may be due to improper operation of HVAC systems, attempts at energy efficiency that limit the supply of outdoor air, or remodeling of building components. Most importantly, children spend up to a third of their time in these structures, and thus it is desirable to better understand the environmental quality in these buildings. A middle school (grades 6 to 8) in a residential section of Springfield, IL was selected for this baseline indoor air quality survey. The school was characterized as having no health complaints, good maintenance schedules, and did not contain carpeting within the classrooms or hallways. The focus of this paper is on the measurements of air quality in the school. The development of emission factors for particulate matter is also discussed. Four indoor locations including the Cafeteria, a Science Classroom, an Art Classroom, and the Lobby outside of the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February of 1997. Integrated samples (8 hour sampling time) for respirable and total particulate matter, and short-term measurements of bioaerosols (two minute samples, three times per day) on three consecutive days were collected at each of the indoor and outdoor sites. Continuous measurements of carbon dioxide, carbon monoxide, temperature and humidity were logged at all locations for five days. Continuous measurements of respirable particulate matter were also collected in the Lobby area. Detailed logs of occupant activity were also collected at each indoor monitoring location throughout the study. Total particle concentrations ranged from 29 to 177 {micro}g/m{sup 3} in the art

  4. 77 FR 45956 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Science.gov (United States)

    2012-08-02

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is taking final action to approve the 1997 annual fine particulate matter (PM 2... other information whose disclosure is restricted by statute. Certain other material, such as...

  5. Evaluating the effectiveness of vegetative environmental buffers in mitigating particulate matter emissions from poultry houses

    Science.gov (United States)

    Particulate Matter (PM) emissions from animal operations have been identified as a major air pollutant source with health and environmental impacts. Nearly 600 million broilers are produced annually on the Delmarva Peninsula, making it a hot spot for particulate matter emissions from poultry houses....

  6. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  7. Characterisation of particulate matter in different types of archives

    Science.gov (United States)

    Mašková, Ludmila; Smolík, Jiří; Vodička, Petr

    2015-04-01

    To determine the composition of particulate matter (PM) in the indoor environments of four different types of archives (three naturally ventilated and one filtered), intensive size-resolved sampling was performed for four seasons of the year. For reconstituting indoor PM, nine aerosol components were considered. Organic matter was the dominant component of both fine and coarse fractions and represented approximately 50-80% of the PM. In the fine fraction, the next most abundant components were elemental carbon and sulphate, and in the coarse fraction the next most abundant were crustal matter, sulphate and nitrate. The resulting mass closure explained 95(±13)% and 115(±38)% of the gravimetric indoor PM in the fine and coarse size fractions, respectively. The results revealed that all the particles found indoors can be considered to be potentially threatening to the stored materials. The results also showed that the most important source of indoor PM in the naturally ventilated archives was penetration from the outdoor air, whereas in the filtered archive, the concentrations of particles were strongly reduced. In naturally ventilated archives the influence of domestic heating, road traffic and local sources (industrial pollution, camp fires) was observed. Furthermore, activities of the staff were identified as an indoor source of coarse particles in all archives.

  8. Atmospheric Input of Particulate Matter In The Arctic Ocean

    Science.gov (United States)

    Shevchenko, V. P.; Klyuvitkin, A. A.; Kriews, M.; Lisitzin, A. P.; Nothig, E.-M.; Novigatsky, A. N.; Smirnov, V. V.; Stein, R.; Vinogradova, A. A.

    Numerous studies have shown that aerosols in the Arctic are of importance for atmo- spheric chemistry and climate. But up to now atmospheric input of particulate matter in the Arctic Ocean is studied insufficiently. We began aerosol research in the Arctic marine boundary layer in 1991. In this presentation we summarized data on parti- cle size and composition of aerosols and on particulate material in snow cover col- lected during 10 years (1991-2000) onboard of Russian research vessels and German icebreaker "Polarstern". Concentrations of most chemical elements are nearly of the same order as literature data from other Arctic areas. A catastrophic increase of ele- ment content due to anthropogenic factor in the summer-autumn has not been found. The balance calculations based on our and literature data show that the contribution of aerosols to formation of the sedimentary material in the Arctic is close to the con- tribution of the river sediments beyond the marginal filters of rivers. For some chem- ical elements (Pb, Sb, Se, V) the aeolian source is very important. Our studies were financially supported by the Russian Foundation of Basic Research (grants RFBR 96- 05-00043 and 98-05-64279), DFG (grant STE-412/10-2) and by German and Russian Ministries for Science and Technology in the frame of Otto Schmidt Laboratory fel- lowship and "Laptev Sea 2000" project.

  9. Plant species differences in particulate matter accumulation on leaf surfaces.

    Science.gov (United States)

    Sæbø, A; Popek, R; Nawrot, B; Hanslin, H M; Gawronska, H; Gawronski, S W

    2012-06-15

    Particulate matter (PM) accumulation on leaves of 22 trees and 25 shrubs was examined in test fields in Norway and Poland. Leaf PM in different particle size fractions (PM(10), PM(2.5), PM(0.2)) differed among the species, by 10- to 15-folds at both test sites. Pinus mugo and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula were efficient species in capturing PM. Less efficient species were Acer platanoides, Prunus avium and Tilia cordata. Differences among species within the same genus were also observed. Important traits for PM accumulation were leaf properties such as hair and wax cover. The ranking presented in terms of capturing PM can be used to select species for air pollution removal in urban areas. Efficient plant species and planting designs that can shield vulnerable areas in urban settings from polluting traffic etc. can be used to decrease human exposure to anthropogenic pollutants.

  10. AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    John H. Pavlish; Steven A. Benson

    1999-07-01

    This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

  11. Epidemiologic studies of particulate matter and lung cancer

    Institute of Scientific and Technical Information of China (English)

    Yin-Ge Li; Xiang Gao

    2014-01-01

    Particulate matter (PM) plays an important role in air pollution, especially in China. European and American researchers conducted several cohort-based studies to examine the potential relationship between PM and lung cancer and found a positive association between PM and lung cancer mortality. In contrast, the results regarding PM and lung cancer risk remain inconsistent. Most of the previous studies had limitations such as misclassification of PM exposure and residual confounders, diminishing the impact of their findings. In addition, prospective studies on this topic are very limited in Chinese populations. This is an important problem because China has one of the highest concentrations of PM in the world and has had an increased mortality risk due to lung cancer. In this context, more prospective studies in Chinese populations are warranted to investigate the relationship between PM and lung cancer.

  12. Transport of airborne particulate matters originating from Mentougou, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PMio concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PMio concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PMio concentrations in Beijing municipal area are up to 0.1-15 μg/m3.

  13. Simulations of dispersion and deposition of coarse particulate matter

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    In order to study the dispersion and deposition of coarse anthropogenic particulate matter (PMc, aerodynamic diameters> 10 mm), a FORTRAN simulator based on the numerical integrator of Bulirsch and Stoer has been developed. It calculates trajectories of particles of several shapes released into the atmosphere under very general conditions. This first version, fully three-dimensional, models the meteorology under neutral stability conditions. The simulations of such pollutants are also important because the standard software (usually originating in the United States Environmental Protection Agency-EPA-) describe only the behavior of PM10 (diameter less than 10 mm). Bulirsch and Stoer integrator of widespread use in astrophysics, is also very fast and accurate for this type of simulations. We present 2D and 3D trajectories in physical space and discuss the final deposition in function of various parameters. PMc simulations results in the range of 50-100 mm and densities of 5.5 g cm-3 emitted from chimneys, indi...

  14. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  15. Characterization of fine organic particulate matter from Chinese cooking

    Institute of Scientific and Technical Information of China (English)

    HE Ling-yan; HU Min; WANG Li; HUANG Xiao-feng; ZHANG Yuan-hang

    2004-01-01

    PM2.5 samples were collected by a three-stage cascade impactor at two kinds of Chinese restaurants to characterize fine organic particulate matter from Chinese cooking sources. Major individual organic compounds have been quantified by GC/MS, including series of alkanes, n-alkanoic acids, n-alkanals, alkan-2-ones and PAHs.Alkanes and ketones make up a significant fraction of particle-phase organic compounds, ranging from C11 to C26,and C9 to C19, respectively. In addition, other organic compound classes have been identified, such as alkanols,esters, furans, lactones, amides, and nitriles. The mass concentrations of fine particles, alkanes, n-alkanoic acids and PAHs in air emitted from the Uigur style cooking are hundreds times higher than ambient PM2.5 in Beijing.

  16. Systemic and vascular effects of circulating diesel exhaust particulate matter.

    Science.gov (United States)

    Bai, Ni; van Eeden, Stephan F

    2013-11-01

    Numerous studies have found an association between transiently increased particulate matter air pollution and acute adverse cardiovascular health effects; however, the mechanisms underlying these effects are not clear. Translocation of ultra-fine ambient particulate matter has been proposed to play a key role in these acute side effects. This study was designed to determine the contribution of circulating (translocated) diesel exhaust particles (DEPs) to the systemic and vascular effects. C57 mice (10-week) received intravenous DEPs via tail vein injection. Following 1-h post-injection, inflammatory cytokines (IL-1β, IL-6 and TNF-α), peripheral blood cell counts, band cell counts, aortic endothelial function and vascular constriction were assessed. Thoracic aortae were isolated, and endothelial function was examined by measuring acetylcholine (ACh) and sodium nitroprusside (SNP)-stimulated vascular relaxation using a wire myograph. In addition, phenylephrine (PE)-stimulated vasoconstriction was also measured. The amount of DEPs deposited and trapped in tissues (the spleen, liver, lungs and heart) were quantified. Acute systemic DEP exposure caused a significant increase in TNF-α, peripheral neutrophil and band cell counts. ACh and SNP-induced relaxation were not affected by acute systemic DEP exposure, neither was PE-stimulated constriction. There was a significantly increased DEP deposition in the spleen as well as in the liver. No significantly increased DEPs were detected in the lung and heart. Here we show that circulating DEPs induce a systemic response characterized by increased TNF-α, peripheral granulocytes, but does not impact endothelial function. Our study also suggests that circulating particles are rapidly removed from the circulation and predominantly sequestered in the spleen and liver.

  17. Free amino acids in atmospheric particulate matter of Venice, Italy

    Science.gov (United States)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  18. Characterization of particulate matter originating from gas compression stations

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, A.M.; Feng, X.; Skinner, F. [Alberta Research Council, Vegreville, AB (Canada); Fu, L. [Alberta Environment, AB (Canada); Venugopal, S. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2000-07-01

    A study was conducted to obtain an inventory of source emission data for characterization of particulate matter (PM) originating from two gas compression stations at TransCanada Pipelines Ltd. located in Oakland and Princess, Alberta. The objective was to determine source apportionment and to evaluate source emission management on the ambient PM2.5 and PM10 levels. A URG dilution sampler was used for isokinetic sampling of stacks operating at high temperatures. The dilution made it possible to lower the temperature to normal values before collecting particulates. This resulted in condensation of volatile constituents of PM. In this study, a total of 65 elements and 10 water-soluble ions, organics, including polyaromatic hydrocarbons, and inorganics were characterized and quantified. Fine and coarse fractions were collected on filters, quartz and Teflon for analysis using Inductivity Coupled Plasma-Mass Spectrometry (ICP-MS). Water-soluble ions were identified using ion chromatography, while the organics were measured using gas chromatography and mass spectrometry. The study provided information on methods of analysis for heavy metals, water-soluble ions, elemental and organic carbon and extractable organic compounds. The chemical characterization results of the study were also included. Small amounts of aluminum, cobalt, chromium, copper, iron, manganese, nickel, lead, tin, and zinc were detected in fine and coarse PM. Most of the element/metal concentrations were found to be below ICP-MS detection limits. The emission of heavy metals from the stacks of TransCanada Pipelines Ltd. was found to be relatively low because of the use of natural gas fueled turbine engines instead of coal-fired boilers. 14 refs., 5 tabs., 2 figs.

  19. Comparison of particulate matter exposure estimates in young children from personal sampling equipment and a robotic sampler.

    Science.gov (United States)

    Sagona, Jessica A; Shalat, Stuart L; Wang, Zuocheng; Ramagopal, Maya; Black, Kathleen; Hernandez, Marta; Mainelis, Gediminas

    2017-05-01

    Accurate characterization of particulate matter (PM) exposure in young children is difficult, because personal samplers are often too heavy, bulky or impractical to be used. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler was developed to help address this problem. In this study, we measured inhalable PM exposures in 2-year-olds via a lightweight personal sampler worn in a small backpack and evaluated the use of a robotic sampler with an identical sampling train for estimating PM exposure in this age group. PM mass concentrations measured by the personal sampler ranged from 100 to almost 1,200 μg/m(3), with a median value of 331 μg/m(3). PM concentrations measured by PIPER were considerably lower, ranging from 14 to 513 μg/m(3) with a median value of 56 μg/m(3). Floor cleaning habits and activity patterns of the 2-year-olds varied widely by home; vigorous play and recent floor cleaning were most associated with higher personal exposure. Our findings highlight the need for additional characterization of children's activity patterns and their effect on personal exposures.

  20. Particulate matter concentrations and emissions in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-04-01

    Full Text Available The extent of the potential health hazards of particulate matter (PM inside rabbit farms and the magnitude of emission levels to the outside environment are still unknown, as data on PM concentrations and emissions in and from such buildings is scarce.  The purpose of this study was to quantify airborne PM10 and PM2.5 concentrations and emissions on two rabbit farms in Mediterranean conditions and identify the main factors related with farm activities influencing PM generation.  Concentrations of PM10 and PM2.5 were determined continuously using a tapered element oscillating microbalance (TEOM in one farm with fattening rabbits and one reproductive doe farm in autumn.  At the same time as PM sampling, the time and type of human farm activity being performed was recorded. Additionally, temperature, relative humidity and ventilation rate were recorded continuously.  Emissions were calculated using a mass balance on each farm.  Results showed PM concentrations in rabbit farms are low compared with poultry and pig farms.  Average PM10 concentrations were 0.082±0.059 mg/m3 (fattening rabbits, and 0.048 ±0.058 mg/m3 (reproductive does. Average PM2.5 concentrations were 0.012±0.016 mg/m3 (fattening rabbits, and 0.012±0.035 mg/m3 (reproductive does. Particulate matter concentrations were significantly influenced by the type of human farm activity carried out in the building rather than by animal activity.  The main PM-generating activity on the fattening rabbit farm was sweeping, and the major PM-generating activity in reproductive does was sweeping and burning hair from the cages.  Average PM10 emissions were 5.987±6.144 mg/place/day (fattening rabbits, and 14.9±31.5 mg/place/day (reproductive does.  Average PM2.5 emissions were 0.20±1.26 mg/place/day (fattening rabbits, and 2.83±19.54 mg/place/day (reproductive does.  Emission results indicate that rabbit farms can be considered relevant point sources of PM emissions, comparable to

  1. Adolescent Toluene Inhalation in Rats Affects White Matter Maturation with the Potential for Recovery Following Abstinence

    Science.gov (United States)

    Egan, Gary; Kolbe, Scott; Gavrilescu, Maria; Wright, David; Lubman, Dan Ian; Lawrence, Andrew John

    2012-01-01

    Inhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users. This dosing regimen resulted in a significant retardation in weight gain during the exposure period (ptoluene exposure during adolescence and early adulthood resulted in white matter abnormalities, including a decrease in axial (pToluene-induced effects on both body weight and white matter parameters recovered following abstinence. Behaviourally, we observed a progressive decrease in rearing activity following toluene exposure but no difference in motor function, suggesting cognitive function may be more sensitive to the effects of toluene. Furthermore, deficits in rearing were present by 4 weeks suggesting that toluene may affect behaviour prior to detectable white matter abnormalities. Consequently, exposure to inhalants that contain toluene during adolescence and early adulthood appear to differentially affect white matter maturation and behavioural outcomes, although recovery can occur following abstinence. PMID:23028622

  2. Occupational exposure to particulate matter and respiratory symptoms in Portuguese swine barn workers.

    Science.gov (United States)

    Viegas, S; Mateus, V; Almeida-Silva, M; Carolino, E; Viegas, C

    2013-01-01

    Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.

  3. Use of a Robotic Sampler (PIPER) for Evaluation of Particulate Matter Exposure and Eczema in Preschoolers.

    Science.gov (United States)

    Shah, Lokesh; Mainelis, Gediminas; Ramagopal, Maya; Black, Kathleen; Shalat, Stuart L

    2016-02-19

    While the association of eczema with asthma is well recognized, little research has focused on the potential role of inhalable exposures and eczema. While indoor air quality is important in the development of respiratory disease as children in the U.S. spend the majority of their time indoors, relatively little research has focused on correlated non-respiratory conditions. This study examined the relationship between particulate matter (PM) exposures in preschool age children and major correlates of asthma, such as wheeze and eczema. Air sampling was carried out using a robotic (PIPER) child-sampling surrogate. This study enrolled 128 participants, 57 male and 71 female children. Ages ranged from 3 to 58 months with the mean age of 29.3 months. A comparison of subjects with and without eczema showed a difference in the natural log (ln) of PM collected from the PIPER air sampling (p = 0.049). PIPER's sampling observed an association between the ln PM concentrations and eczema, but not an association with wheezing history in pre-school children. Our findings are consistent with the hypothesis of the role of the microenvironment in mediating atopic dermatitis, which is one of the predictors of persistent asthma. Our findings also support the use of PIPER in its ability to model and sample the microenvironment of young children.

  4. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  5. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    Science.gov (United States)

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiologic impact of PM2.5 exposure in the animal model and in cultured primary pulmonary macrophages. We demonstrated that PM2.5 exposure increased the production of reactive oxygen species (ROS) in blood vessels in vivo. Furthermore, in vitro PM2.5 exposure experiment suggested that PM2.5 could trigger oxidative stress response, reflected by an increased expression of the anti-oxidative stress enzymes superoxide dismutase-1 (SOD-1) and heme oxygenase-1(HO-1), in mouse primary macrophages. Together, the results obtained through our “real-world” PM exposure approach demonstrated the pathophysiologic effect of ambient PM2.5 exposure on triggering oxidative stress in the specialized organ and cell type of an animal model. Our results and approach will be informative for the research in air pollution-associated physiology and pathology. PMID:21383899

  6. Use of a Robotic Sampler (PIPER for Evaluation of Particulate Matter Exposure and Eczema in Preschoolers

    Directory of Open Access Journals (Sweden)

    Lokesh Shah

    2016-02-01

    Full Text Available While the association of eczema with asthma is well recognized, little research has focused on the potential role of inhalable exposures and eczema. While indoor air quality is important in the development of respiratory disease as children in the U.S. spend the majority of their time indoors, relatively little research has focused on correlated non-respiratory conditions. This study examined the relationship between particulate matter (PM exposures in preschool age children and major correlates of asthma, such as wheeze and eczema. Air sampling was carried out using a robotic (PIPER child-sampling surrogate. This study enrolled 128 participants, 57 male and 71 female children. Ages ranged from 3 to 58 months with the mean age of 29.3 months. A comparison of subjects with and without eczema showed a difference in the natural log (ln of PM collected from the PIPER air sampling (p = 0.049. PIPER’s sampling observed an association between the ln PM concentrations and eczema, but not an association with wheezing history in pre-school children. Our findings are consistent with the hypothesis of the role of the microenvironment in mediating atopic dermatitis, which is one of the predictors of persistent asthma. Our findings also support the use of PIPER in its ability to model and sample the microenvironment of young children.

  7. Particulate inhalation in rats causes concentration-dependent electrocardiographic, autonomic, and cardiac microRNA expression changes

    Science.gov (United States)

    Recently, investigators in key epidemiologic studies have demonstrated associations between fine particulate matter (PM)-associated metals and increased hospital admissions (Ni and V; Bell et al. 2009) and cardiovascular mortality (Ni and Fe; Ostro et a1. 2007). Residual oil fly ...

  8. Inhalants

    Science.gov (United States)

    Skip to main content En español Researchers Medical & Health Professionals Patients & Families Parents & Educators Children & Teens Search Connect with NIDA : ... get treatment for addiction to inhalants? Some people seeking treatment for ... for positive behaviors such as staying drug-free. More research is ...

  9. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  10. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  11. Particulate matter air pollution components and risk for lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O; Beelen, R; Wang, M.

    2016-01-01

    BACKGROUND: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. METHODS: We used data from 14 cohort studies in eight European countries. We...... geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models.......59; 1.12-2.26 per 2ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed...

  12. Inferring Atmospheric Particulate Matter Concentrations from Chinese Social Media Data

    Science.gov (United States)

    Tao, Zhu; Kokas, Aynne; Zhang, Rui; Cohan, Daniel S.; Wallach, Dan

    2016-01-01

    Although studies have increasingly linked air pollution to specific health outcomes, less well understood is how public perceptions of air quality respond to changing pollutant levels. The growing availability of air pollution measurements and the proliferation of social media provide an opportunity to gauge public discussion of air quality conditions. In this paper, we consider particulate matter (PM) measurements from four Chinese megacities (Beijing, Shanghai, Guangzhou, and Chengdu) together with 112 million posts on Weibo (a popular Chinese microblogging system) from corresponding days in 2011–2013 to identify terms whose frequency was most correlated with PM levels. These correlations are used to construct an Air Discussion Index (ADI) for estimating daily PM based on the content of Weibo posts. In Beijing, the Chinese city with the most PM as measured by U.S. Embassy monitor stations, we found a strong correlation (R = 0.88) between the ADI and measured PM. In other Chinese cities with lower pollution levels, the correlation was weaker. Nonetheless, our results show that social media may be a useful proxy measurement for pollution, particularly when traditional measurement stations are unavailable, censored or misreported. PMID:27649530

  13. Improvements in PIXE analysis of hourly particulate matter samples

    Energy Technology Data Exchange (ETDEWEB)

    Calzolai, G., E-mail: calzolai@fi.infn.it [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Lucarelli, F. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M.; Nava, S. [National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Giannoni, M. [National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Carraresi, L. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Prati, P. [Department of Physics, University of Genoa and INFN Division of Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Vecchi, R. [Department of Physics, Università degli Studi di Milano and INFN Division of Milan, Via Celoria 16, 20133 Milan (Italy)

    2015-11-15

    Most air quality studies on particulate matter (PM) are based on 24-h averaged data; however, many PM emissions as well as their atmospheric dilution processes change within a few hours. Samplings of PM with 1-h resolution can be performed by the streaker sampler (PIXE International Corporation), which is designed to separate the fine (aerodynamic diameter less than 2.5 μm) and the coarse (aerodynamic diameter between 2.5 and 10 μm) fractions of PM. These samples are efficiently analyzed by Particle Induced X-ray Emission (PIXE) at the LABEC laboratory of INFN in Florence (Italy), equipped with a 3 MV Tandetron accelerator, thanks to an optimized external-beam set-up, a convenient choice of the beam energy and suitable collecting substrates. A detailed description of the adopted set-up and results from a methodological study on the detection limits for the selection of the optimal beam energy are shown; the outcomes of the research on alternative collecting substrates, which produce a lower background during the measurements, and with lower contaminations, are also discussed.

  14. Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration

    Directory of Open Access Journals (Sweden)

    Amanda J. Wheeler

    2010-08-01

    Full Text Available Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM2.5 and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.

  15. Exploring variation and predictors of residential fine particulate matter infiltration.

    Science.gov (United States)

    Clark, Nina A; Allen, Ryan W; Hystad, Perry; Wallace, Lance; Dell, Sharon D; Foty, Richard; Dabek-Zlotorzynska, Ewa; Evans, Greg; Wheeler, Amanda J

    2010-08-01

    Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM(2.5)) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.

  16. Improvements in PIXE analysis of hourly particulate matter samples

    Science.gov (United States)

    Calzolai, G.; Lucarelli, F.; Chiari, M.; Nava, S.; Giannoni, M.; Carraresi, L.; Prati, P.; Vecchi, R.

    2015-11-01

    Most air quality studies on particulate matter (PM) are based on 24-h averaged data; however, many PM emissions as well as their atmospheric dilution processes change within a few hours. Samplings of PM with 1-h resolution can be performed by the streaker sampler (PIXE International Corporation), which is designed to separate the fine (aerodynamic diameter less than 2.5 μm) and the coarse (aerodynamic diameter between 2.5 and 10 μm) fractions of PM. These samples are efficiently analyzed by Particle Induced X-ray Emission (PIXE) at the LABEC laboratory of INFN in Florence (Italy), equipped with a 3 MV Tandetron accelerator, thanks to an optimized external-beam set-up, a convenient choice of the beam energy and suitable collecting substrates. A detailed description of the adopted set-up and results from a methodological study on the detection limits for the selection of the optimal beam energy are shown; the outcomes of the research on alternative collecting substrates, which produce a lower background during the measurements, and with lower contaminations, are also discussed.

  17. Climate change, tropospheric ozone and particulate matter, and health impacts.

    Science.gov (United States)

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  18. Foam cell formation by particulate matter (PM) exposure: a review.

    Science.gov (United States)

    Cao, Yi; Long, Jimin; Ji, Yuejia; Chen, Gui; Shen, Yuexin; Gong, Yu; Li, Juan

    2016-11-01

    Increasing evidence suggests that exposure of particulate matter (PM) from traffic vehicles, e.g., diesel exhaust particles (DEP), was associated with adverse vascular effects, e.g., acceleration of atherosclerotic plaque progression. By analogy, engineered nanoparticles (NPs) could also induce similar effects. The formation of lipid laden foam cells, derived predominately from macrophages and vascular smooth muscle cells (VSMC), is closely associated with the development of atherosclerosis and adverse vascular effects. We reviewed current studies about particle exposure-induced lipid laden foam cell formation. In vivo studies using animal models have shown that exposure of air pollution by PM promoted lipid accumulation in alveolar macrophages or foam cells in plaques, which was likely associated with pulmonary inflammation or systemic oxidative stress, but not blood lipid profile. In support of these findings, in vitro studies showed that direct exposure of cultured macrophages to DEP or NP exposure, with or without further exposure to external lipids, promoted intracellular lipid accumulation. The mechanisms remained unknown. Although a number studies found increased reactive oxygen species (ROS) or an adaptive response to oxidative stress, the exact role of oxidative stress in mediating particle-induced foam cell formation requires future research. There is currently lack of reports concerning VSMC as a source for foam cells induced by particle exposure. In the future, it is necessary to explore the role of foam cell formation in particle exposure-induced atherosclerosis development. In addition, the formation of VSMC derived foam cells by particle exposure may also need extensive studies.

  19. Protein oxidation and degradation caused by particulate matter

    Science.gov (United States)

    Lai, Ching-Huang; Lee, Chun-Nin; Bai, Kuan-Jen; Yang, You-Lan; Chuang, Kai-Jen; Wu, Sheng-Ming; Chuang, Hsiao-Chi

    2016-09-01

    Particulate matter (PM) modulates the expression of autophagy; however, the role of selective autophagy by PM remains unclear. The objective of this study was to determine the underlying mechanisms in protein oxidation and degradation caused by PM. Human epithelial A549 cells were exposed to diesel exhaust particles (DEPs), urban dust (UD), and carbon black (CB; control particles). Cell survival and proliferation were significantly reduced by DEPs and UD in A549 cells. First, benzo(a)pyrene diolepoxide (BPDE) protein adduct was caused by DEPs at 150 μg/ml. Methionine oxidation (MetO) of human albumin proteins was induced by DEPs, UD, and CB; however, the protein repair mechanism that converts MetO back to methionine by methionine sulfoxide reductases A (MSRA) and B3 (MSRB3) was activated by DEPs and inhibited by UD, suggesting that oxidized protein was accumulating in cells. As to the degradation of oxidized proteins, proteasome and autophagy activation was induced by CB with ubiquitin accumulation, whereas proteasome and autophagy activation was induced by DEPs without ubiquitin accumulation. The results suggest that CB-induced protein degradation may be via an ubiquitin-dependent autophagy pathway, whereas DEP-induced protein degradation may be via an ubiquitin-independent autophagy pathway. A distinct proteotoxic effect may depend on the physicochemistry of PM.

  20. Warthin-starry Silver Method Showing Particulate Matter in Macrophage

    Institute of Scientific and Technical Information of China (English)

    HONG-GANG LIU

    2008-01-01

    Objective To verify whether Warthin-Starry(WS)silver method could detect the air particulate matter(PM)/dust particles(Ps)located within the macrophages in situ. Methods There were 26 antopsy cases that resulted from cerebral hemorrhage(group A),silicosis(group B),and fetal death during pregnancy(group C).Samples were collected separately and serial sections were prepared from the lungs and lymph nodes and stained with hematoxylin and eosin(HE),WS silver,immunohistochemistry of CD68.Furthermore,ultrathin sections were taken from the WS positive serial sections of groups A and B.Ps were observed under a transmission electron microscope(TEM)and the elements of Ps were measured by X-ray spectrum analysis(X-RSA).Results In both groups A and B,WS staining was positive for the larger and fine Ps,the so called"dust cells",but HE staining Was almost negative for fine Ps.In group C,no larger or fine Ps were found.Immunohistochemical staining of CD68 certified that the"dust cells"containing Ps were macrophages.The results of TEM and X-RSA proved that the structure and elements of Ps belonged to PM indeed.Conclusion WS staining is a better than HE staining in showing the location of PM within macrophages.

  1. Trends of particulate matter in four cities in India

    Science.gov (United States)

    Gupta, Indrani; Kumar, Rakesh

    Particulate matter (PM) in all the four Metropolitan cities in India are higher than the prescribed standards of Central Pollution Control Board, India as well as WHO guidelines. Over last 10 years various changes in fuel quality, vehicle technologies, industrial fuel mix and domestic fuel mix have taken place resulting in changes in air quality in these cities. A set of time series analysis methods viz. t-test adjusted for seasonality, Seasonal Kendall test and Intervention analysis have been applied to identify and estimate the trend in PM 10 and total suspended particles (TSP) levels monitored for about 10 years at three monitoring sites at each of the four cities in India. These tests have indicated that overall PM 10 levels in all four metro cities have been decreasing or stationary. The distinct trends for the monthly averages of PM 10 concentrations at Parel, Kalbadevi in Mumbai and Thiruvattiyar in Chennai for the period 1993-2003 were declining by 10%, 6% and 5% per annum, respectively. This is ascribed to a shift in the magnitude and spatial distribution of emissions in the city. However, the monthly averages of TSP do not have a clear trend over the period 1991-2003.

  2. A cost-effective weighing chamber for particulate matter filters.

    Science.gov (United States)

    Allen, R; Box, M; Liu, L J; Larson, T V

    2001-12-01

    Particulate matter (PM) is a ubiquitous air pollutant that has been receiving increasing attention in recent years due in part to the association between PM and a number of adverse health outcomes, including mortality and increases in emergency room visits and respiratory symptoms, as well as exacerbation of asthma and decrements in lung function. As a result, the ability to accurately sample ambient PM has become important, both to researchers and to regulatory agencies. The federal reference method for the determination of fine PM as PM2.5 in the atmosphere recommends that particle-sampling filters be conditioned and weighed in an environment with constant temperature and relative humidity (RH). It is also recommended that vibration, electrostatic charges, and contamination of the filters from laboratory air be minimized to reduce variability in filter weight measurements. These controls have typically been maintained in small, environmentally controlled "cleanrooms." As an alternative to constructing an elaborate cleanroom, we have designed, and presented in this paper, an inexpensive weighing chamber to maintain the necessary level of humidity control.

  3. Spatial Temporal Modelling of Particulate Matter for Health Effects Studies

    Science.gov (United States)

    Hamm, N. A. S.

    2016-10-01

    Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 μg m-3 and 1.8 μg m-3 respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.

  4. 78 FR 19128 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Science.gov (United States)

    2013-03-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate... particulate matter (PM) rules on February 23, 2012. The PM rule revisions being approved establish work... disclosure is restricted by statute. Certain other material, such as copyrighted material, will be...

  5. 77 FR 50378 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Science.gov (United States)

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is taking direct final action to approve the 1997 annual fine particulate... disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed...

  6. 78 FR 78315 - Revision to the Idaho State Implementation Plan; Approval of Fine Particulate Matter Control...

    Science.gov (United States)

    2013-12-26

    ... AGENCY 40 CFR Part 52 Revision to the Idaho State Implementation Plan; Approval of Fine Particulate... particulate matter (PM 2.5 ) nonattainment area (Logan UT-ID). The EPA is proposing a limited approval of PM 2..., the disclosure of which is restricted by statute. Certain other material, such as copyrighted...

  7. Particulate matter, its elemental carbon fraction, and very early preterm birth

    Science.gov (United States)

    Background: Particulate matter (PM) has been variably associated with preterm birth, with potentially increased vulnerability during weeks 20-27 of gestation (extremely preterm birth (EPTB)), but the role of PM components have been less studied. Objectives: To estimate associati...

  8. Screening of various diesel particulate matter samples from various commodity mines

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2016-09-01

    Full Text Available This paper presents qualitative analysis results of diesel particulate matter (DPM) from various mining commodities in South Africa. The objective of this work was to determine the concentrations of elements in DPM samples. For this screening...

  9. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH HEMATOLOGIC FACTORS IN ADULT ASTHMATICS

    Science.gov (United States)

    Introduction: The elderly and those with cardiovascular disease are susceptible to particulate matter (PM) exposures. Asthmatics are thought to be primarily affected by PM via airway inflammation. We investigated whether factors in blood hemostasis change in response to fluctuat...

  10. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    Science.gov (United States)

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  11. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  12. Natural isotopic composition of nitrogen in suspended particulate matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Ramesh, R.; Bhosle, N.B.; Sardessai, S.; Sheshshayee, M.S.

    The first measurements of nitrogen isotopic composition (delta sup(15) N) in suspended particulate matter (SPM) of the surface Bay of Bengal (BOB) at 24 different locations during pre- (April-May 2003) and post- (September-October 2002) monsoon...

  13. AIR QUALITY CRITERIA FOR PARTICULATE MATTER, VOLUMES I-III, (EXTERNAL REVIEW DRAFT, 1995)

    Science.gov (United States)

    There is no abstract available for these documents. If further information is requested, please refer to the bibliographic citation and contact the Technical Information Staff at the number listed above.Air Quality Criteria for Particulate Matter, Volume I, Extern...

  14. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  15. Particulate matter, its elemental carbon fraction, and very early preterm birth

    Science.gov (United States)

    Background: Particulate matter (PM) has been variably associated with preterm birth, with potentially increased vulnerability during weeks 20-27 of gestation (extremely preterm birth (EPTB)), but the role of PM components have been less studied. Objectives: To estimate associati...

  16. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  17. Short term variation in particulate matter in the shelf waters of the Princess Astrid Coast, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Bhosle, N.B.

    Particulate matter collected at a single station in the shelf waters of Princess Astrid coast (70 degrees S, 11 degrees E) Antarctica, during the austral summer (Jan.-Feb. 1986) was analysed for phytoplankton biomass (Chl @ia@@), living carbon (ATP...

  18. SPONTANEOUSLY HYPERTENSIVE RATS ARE SUSCEPTIBLE TO MICROVASCULAR THROMBOSIS IN RESPONSE TO PARTICULATE MATTER EXPOSURE

    Science.gov (United States)

    SPONTANEOUSLY HYPERTENSIVE RATS ARE SUSCEPTIBLE TO MICROVASCULAR THROMBOSIS IN RESPONSE TO PARTICULATE MATTER EXPOSURE.PS Gilmour, MC Schladweiler, AD Ledbetter, and UP Kodavanti. US EPA, ORD, NHEERL, ETD, PTB, Research Triangle Park, NC USA. Environmental particles (PM...

  19. Relationship between the suspended particulate matter and microorganisms in the White Sea waters

    Science.gov (United States)

    Kravchishina, M. D.; Mitzkevich, I. N.; Veslopolova, E. F.; Shevchenko, V. P.; Lisitzin, A. P.

    2008-12-01

    During the summer periods of 2003-2005, the spatial and vertical distributions of the suspended particulate matter and bacteria in stratified and homogeneous waters of the White Sea was studied. The results of the study of various quantitative characteristics of the suspended particulate matter (first of all, the area of the surface and the volumetric and mass concentrations) and the abundance of microorganisms in the water are discussed. A direct correlation between the value of the surface area of the suspended particulate matter and the total number of bacteria in the water is revealed. However, it was manifested only during the early summer period of the observations and was not expressed at the end of the summer. The enhanced surface area of the suspended particulate matter can indicate the higher biochemical activity of its particles. The influence of the pelitic fraction on the bacteria abundance in different parts of the sea during the summer is estimated.

  20. Exposure to ambient air particulate matter and non-alcoholic fatty liver disease

    National Research Council Canada - National Science Library

    Tarantino, Giovanni; Capone, Domenico; Finelli, Carmine

    2013-01-01

    The present study was designed to alert the public opinion and policy makers on the supposed enhancing effects of exposure to ambient air particulate matter with aerodynamic diameters < 2.5 mm (PM2.5...

  1. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  2. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  3. Root-cause analysis of particulate matter loading. Ion chromatography in employment; Ursachenanalyse der Feinstaubbelastung. Ionenenchromatographie im Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Wolfgang [Technische Univ. Berlin (Germany). Arbeitsgruppe Atmosphaerenforschung

    2012-01-15

    Particulate matter is a component of the atmosphere and repeatedly has made infamous headlines in recent years. Essentially this is attributable to the fact that particulate matter air hygienically is a problem. In numerous major cities and metropolitan areas the limiting values often are exceeded. In recent years, measures to reduce particulate concentrations achieved some successes. Any further reduction in exceeding situations is essential.

  4. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1997-03-01

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  5. Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest

    Science.gov (United States)

    Bateman, Adam P.; Gong, Zhaoheng; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, Antonio O.; Rizzo, Luciana V.; Souza, Rodrigo A. F.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Atmospheric particulate matter influences the Earth’s energy balance directly, by altering or absorbing solar radiation, and indirectly by influencing cloud formation. Whether organic particulate matter exists in a liquid, semi-solid, or solid state can affect particle growth and reactivity, and hence particle number, size and composition. The properties and abundance of particles, in turn, influence their direct and indirect effects on energy balance. Non-liquid particulate matter was identified over a boreal forest of Northern Europe, but laboratory studies suggest that, at higher relative humidity levels, particles can be liquid. Here we measure the physical state of particulate matter with diameters smaller than 1 μm over the tropical rainforest of central Amazonia in 2013. A real-time particle rebound technique shows that the particulate matter was liquid for relative humidity greater than 80% for temperatures between 296 and 300 K during both the wet and dry seasons. Combining these findings with the distributions of relative humidity and temperature in Amazonia, we conclude that near-surface sub-micrometre particulate matter in Amazonia is liquid most of the time during both the wet and the dry seasons.

  6. Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work.

    Science.gov (United States)

    Weggeberg, Hanne; Føreland, Solveig; Buhagen, Morten; Hilt, Bjørn; Flaten, Trond Peder

    2016-10-01

    Tunnel rehabilitation work involves exposure to various air contaminants, including airborne particulate matter (APM). Little is known on the contents of different chemical components of APM generated during tunnel work. The objective of the present study was to characterize exposure to APM and various elements for different job categories in different size fractions of APM during a subsea tunnel rehabilitation project carried out in Western Norway. Personal as well as stationary samples of inhalable, thoracic and respirable dust were collected from workers divided into 11 different job categories based on work operations performed, and air concentrations of a range of elements were determined using high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Overall, APM concentrations were low, but with some measurements exceeding the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for inhalable particles, and considerable proportions of respirable and especially inhalable APM exceeding 10% of the TLVs. For most elements, air concentrations measured were quite low, in the ng/m(3) range, except for the major crustal elements Si, Fe, Al, and Mg, which were found to be in the µg/m(3) range. Asphalt millers overall had the highest exposure levels for APM and most measured elements; for instance, mean concentrations of V, Rb, and Mn were 380, 210, and 2000 ng/m(3) in inhalable and 33, 44, and 310 ng/m(3) in respirable APM. Mounting PVC membrane seemed to generate elevated levels of Cr, Zn, Sn, Pb, Sb, As, Mn, Fe, and Ni, whereas typical bedrock elements were elevated during drilling activities compared to the low exposed categories lead car drivers, foremen/surveyors, drivers of heavy-duty vehicles, and electricians. Overall, stationary samples contained lower amounts of dust and elemental constituents compared to personal samples. Elemental air concentrations were highly variable with occasional elevated

  7. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  8. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM).

    Science.gov (United States)

    Campbell, Arezoo; Daher, Nancy; Solaimani, Parrisa; Mendoza, Kriscelle; Sioutas, Constantinos

    2014-10-01

    Exposure to particulate matter (PM), a component of urban air pollution, may cause adverse effects in the brain. Although the exact mechanisms involved are unknown, both oxidative and inflammatory responses have been reported. Since the main route of exposure to particulate matter is through inhalation, there is a potential for compounds to directly enter the brain and alter normal cellular function. Enhancement in both oxidative stress and neuroinflammatory markers has been observed in neurodegenerative disorders and PM-induced potentiation of these events may accelerate the disease process. The objective of this pilot study was to use normal human brain cells, a model system which has not been previously used, to assess cell-type-specific responses after exposure to ultrafine particles (UFP). Human microglia, neurons, and astrocytes were grown separately or as co-cultures and then exposed to aqueous UFP suspensions. Reactive Oxygen Species (ROS) formation and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were measured as markers of oxidative stress or inflammation respectively. Our results revealed that after exposure to 2 μg/ml of particles, normal human neurons exhibit a decrease in ROS formation and an increase in TNF-α. The observed decrease in ROS formation persisted in the presence of glial cells, which contrasts previous studies done in rodent cells reporting that PM-induced microglial activation modulates neuronal responses. Our study indicates that human CNS cells may respond differently compared to rodent cells and that their use may be more predictive in risk assessment.

  9. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  10. Particulate matter assessment of a wetland in Beijing.

    Science.gov (United States)

    Qiu, Dongdong; Liu, Jiakai; Zhu, Lijuan; Mo, Lichun; Zhang, Zhenming

    2015-10-01

    To increase the knowledge on the particulate matter of a wetland in Beijing, an experimental study on the concentration and composition of PM10 and PM2.5 was implemented in Beijing Olympic Forest Park from 2013 to 2014. This study analyzed the meteorological factors and deposition fluxes at different heights and in different periods in the wetlands. The results showed that the mean mass concentrations of PM10 and PM2.5 were the highest at 06:00-09:00 and the lowest at 15:00-18:00. And the annual concentration of PM10 and PM2.5 in the wetland followed the order of dry period (winter)>normal water period (spring and autumn)>wet period (summer), with the concentration in the dry period significantly higher than that in the normal water and wet periods. The chemical composition of PM2.5 in the wetlands included NH4(+), K(+), Na(+), Mg(2+), SO4(2-), NO3(-), and Cl(-), which respectively accounted for 12.7%, 1.0%, 0.8%, 0.7%, 46.6%, 33.2%, and 5.1% of the average annual composition. The concentration of PM10 and PM2.5 in the wetlands had a significant positive correlation with relative humidity, a negative correlation with wind speed, and an insignificant negative correlation with temperature and radiation. The daily average dry deposition amount of PM10 in the different periods followed the order of dry period>normal water period>wet period, and the daily average dry deposition amount of PM2.5 in the different periods was dry period>wet period>normal water period.

  11. Particulate Matter Fluxes in Cuenca Alfonso During 2002-2005

    Science.gov (United States)

    Silverberg, N.; Aguirre-Bahena, F.

    2007-05-01

    Time-series sediment trap data were collected between 2002 and 2005 from Cuenca Alfonso, a 400m-deep basin in Bahía de La Paz, a large embayment on the southwestern coast of the Gulf of California. Despite the lack of significant land drainage in this semi-dessert environment, terrigenous material, probably wind-born, dominates the sinking particulate matter. Peak lithogenic fluxes appear to be associated with higher frequencies of wind gusts stronger than 5 ms-1. Total mass flux fluctuated from week to week, and between years, averaging 277 gm-2y-1, essentially the same as radiometrically-determined accumulation rates of about 0.4 mmy-1 in cores of the underlying sediment. In 2003, the passage of 2 hurricanes induced high winds and flash flooding and the total mass flux offshore remained very high for two weeks following each event. This unusual sedimentation was equivalent to that of a full year without hurricanes and such events may account for some of the laminations found in cores. During most of 2005, on the other hand, sedimentation rates were lower than average. Although fluxes of all components tended to be highest during late fall and early winter, biogenic fluxes displayed peaks during all seasons of the year in Cuenca Alfonso. This is in contrast to the strong seasonal alternation between terrigenous sedimentation and diatom blooms observed in Guaymas Basin in the central Gulf. Furthermore, calcium carbonate dominated over biogenic silica within the marine component. Average annual fluxes of CaCO3, biogenic silica and POC were 52.5, 32.5 and 13.9 gm-2y-1, respectively.

  12. Airborne Particulate Matter in School Classrooms of Northern Italy

    Directory of Open Access Journals (Sweden)

    Sabrina Rovelli

    2014-01-01

    Full Text Available Indoor size-fractioned particulate matter (PM was measured in seven schools in Milan, to characterize their concentration levels in classrooms, compare the measured concentrations with the recommended guideline values, and provide a preliminary assessment of the efficacy of the intervention measures, based on the guidelines developed by the Italian Ministry of Healthand applied to mitigate exposure to undesirable air pollutants. Indoor sampling was performed from Monday morning to Friday afternoon in three classrooms of each school and was repeated in winter 2011–2012 and 2012–2013. Simultaneously, PM2.5 samples were also collected outdoors. Two different photometers were used to collect the PM continuous data, which were corrected a posteriori using simultaneous gravimetric PM2.5 measurements. Furthermore, the concentrations of carbon dioxide (CO2 were monitored and used to determine the Air Exchange Rates in the classrooms. The results revealed poor IAQ in the school environment. In several cases, the PM2.5 and PM10 24 h concentrations exceeded the 24 h guideline values established by the World Health Organization (WHO. In addition, the indoor CO2 levels often surpassed the CO2 ASHRAE Standard. Our findings confirmed that important indoor sources (human movements, personal clouds, cleaning activities emitted coarse particles, markedly increasing the measured PM during school hours. In general, the mean PM2.5 indoor concentrations were lower than the average outdoor PM2.5 levels, with I/O ratios generally <1. Fine PM was less affected by indoor sources, exerting a major impact on the PM1–2.5 fraction. Over half of the indoor fine particles were estimated to originate from outdoors. To a first approximation, the intervention proposed to reduce indoor particle levels did not seem to significantly influence the indoor fine PM concentrations. Conversely, the frequent opening of doors and windows appeared to significantly contribute to the

  13. Airborne particulate matter in school classrooms of northern Italy.

    Science.gov (United States)

    Rovelli, Sabrina; Cattaneo, Andrea; Nuzzi, Camilla P; Spinazzè, Andrea; Piazza, Silvia; Carrer, Paolo; Cavallo, Domenico M

    2014-01-27

    Indoor size-fractioned particulate matter (PM) was measured in seven schools in Milan, to characterize their concentration levels in classrooms, compare the measured concentrations with the recommended guideline values, and provide a preliminary assessment of the efficacy of the intervention measures, based on the guidelines developed by the Italian Ministry of Healthand applied to mitigate exposure to undesirable air pollutants. Indoor sampling was performed from Monday morning to Friday afternoon in three classrooms of each school and was repeated in winter 2011-2012 and 2012-2013. Simultaneously, PM2.5 samples were also collected outdoors. Two different photometers were used to collect the PM continuous data, which were corrected a posteriori using simultaneous gravimetric PM2.5 measurements. Furthermore, the concentrations of carbon dioxide (CO2) were monitored and used to determine the Air Exchange Rates in the classrooms. The results revealed poor IAQ in the school environment. In several cases, the PM2.5 and PM10 24 h concentrations exceeded the 24 h guideline values established by the World Health Organization (WHO). In addition, the indoor CO2 levels often surpassed the CO2 ASHRAE Standard. Our findings confirmed that important indoor sources (human movements, personal clouds, cleaning activities) emitted coarse particles, markedly increasing the measured PM during school hours. In general, the mean PM2.5 indoor concentrations were lower than the average outdoor PM2.5 levels, with I/O ratios generally <1. Fine PM was less affected by indoor sources, exerting a major impact on the PM1-2.5 fraction. Over half of the indoor fine particles were estimated to originate from outdoors. To a first approximation, the intervention proposed to reduce indoor particle levels did not seem to significantly influence the indoor fine PM concentrations. Conversely, the frequent opening of doors and windows appeared to significantly contribute to the reduction of the average

  14. Air particulate matter and cardiovascular disease: a narrative review.

    Science.gov (United States)

    Martinelli, Nicola; Olivieri, Oliviero; Girelli, Domenico

    2013-06-01

    Consistent evidences from both epidemiological and experimental studies have demonstrated that short- and long-term exposure to particulate matter (PM), in particular to the finest particles (i.e. airborne PM with aerodynamic diameter less than 2.5 μm, PM2.5), is associated with cardiovascular morbidity and mortality. PM concentration has been linked with several clinical manifestations of cardiovascular diseases (CVD), including myocardial infarction, stroke, heart failure, arrhythmias, and venous thromboembolism. Noteworthy, some groups of subjects, like elderly, diabetics, or those with known coronary artery disease, appear specifically susceptible to the harmful effects triggered by PM exposure. Although the PM-related risk for a single individual appears relatively low, the PM-related population attributable risk is impressive. Recent studies indicate that the PM-CVD relationship is likely more complex than a mere quantitative association between overall PM concentration and disease risk. Indeed, the biological effects of PM may vary in function of both the aerodynamic diameter and the chemical composition. Moreover, it has been shown that the influence of air pollution on health is not limited to PM. Indeed, other gaseous pollutants may play an independent role in CVD, suggesting the need to develop multi-pollutant preventive approaches. Causality has been recently strongly supported by observations showing reduced CVD mortality after coordinated community policies resulting in lowering PM exposure at population level. An in-depth knowledge on the heterogeneous sources, chemical compounds, and biological effects of PM may help to propose more accurate and clinically effective recommendations for this important and modifiable factor contributing to CVD burden.

  15. Discrimination of particulate matter emission sources using stochastic methods

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2016-12-01

    Particulate matter (PM) is one of the criteria pollutants which has been determined as harmful to public health and the environment. For this reason the ability to recognize its emission sources is very important. There are a number of measurement methods which allow to characterize PM in terms of concentration, particles size distribution, and chemical composition. All these information are useful to establish a link between the dust found in the air, its emission sources and influence on human as well as the environment. However, the methods are typically quite sophisticated and not applicable outside laboratories. In this work, we considered PM emission source discrimination method which is based on continuous measurements of PM concentration with a relatively cheap instrument and stochastic analysis of the obtained data. The stochastic analysis is focused on the temporal variation of PM concentration and it involves two steps: (1) recognition of the category of distribution for the data i.e. stable or the domain of attraction of stable distribution and (2) finding best matching distribution out of Gaussian, stable and normal-inverse Gaussian (NIG). We examined six PM emission sources. They were associated with material processing in industrial environment, namely machining and welding aluminum, forged carbon steel and plastic with various tools. As shown by the obtained results, PM emission sources may be distinguished based on statistical distribution of PM concentration variations. Major factor responsible for the differences detectable with our method was the type of material processing and the tool applied. In case different materials were processed by the same tool the distinction of emission sources was difficult. For successful discrimination it was crucial to consider size-segregated mass fraction concentrations. In our opinion the presented approach is very promising. It deserves further study and development.

  16. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    Science.gov (United States)

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m(-3)) was much higher than that in the particle phase (62 ± 8 pg m(-3)) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol(-1) at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol(-1)), and ΔS° (-109.22 J mol(-1) K(-1)) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Interim Particulate Matter Test Method for the Determination of Particulate Matter from Gas Turbine Engines, SERDP Project WP-1538 Final Report

    Science.gov (United States)

    Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...

  18. Characteristics of air particulate matter and their sources inurban and rural area of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    During October 1993 and March 1996, the samples of fine and coarse air particulate matter have been collected at representative urban and rural site of Beijing with the Gent Stacked Filter Unit Sampler. Instrumental neutron activation analysis (INAA) and proton induced X-ray emission (PIXE) method were used to determine the elemental composition of the particulate matter. Average elemental concentrations and enrichment factors were calculated for the fine and coarse size fractions. Based on the particulate matter data obtained at urban and rural site together with the chemical constituents of the aerosol from the different sources are discussed. The results show that the relative particulate mass and elemental concentrations of crustal and pollutant elements in the air particulate matter collected over the urban are higher than rural and winter heating period are higher than in ordinary season. Beijing atmosphere is polluted by aerosols from regional and faraway sources. It was noticed that the toxic or harmful elements such as As, Sb, Ph, Cu, Ni, S and Zn were mainly enriched in fine particles with diameter less than 2μm. A receptor model was used to assess the relative contribution of major air pollution sources at receptor sites in Beijing. Trace elements were used as the markers for the above assessment. Factor analysis method was used to identify possible emission sources of air particles. The major sources of dust-soil, coal burning, motor vehicle emission, industry emission and refuse incineration were identified.Key words: atmospheric particulate matter; urban; rural; source; aerosol

  19. [Effects of airborne fine particulate matter on human respiratory symptoms and pulmonary function].

    Science.gov (United States)

    Gao, Zhi-Yi; Li, Peng-Kun; Zhao, Jin-Zhuo; Jiang, Rong-Fang; Yang, Bin-Jie; Zhang, Min-Hua; Song, Wei-Min

    2010-10-01

    to explore effects of airborne fine particulate matter exposure on human respiratory symptoms and pulmonary function. one hundred and seven field traffic policemen were recruited as airborne fine particulate matter high-exposure group and one hundred and one male residents as common exposure group. The individual sampler was used to measure fine particulate matter exposure levels of the two groups. To obtain personal information, especially respiratory symptoms such as cough, sputum, etc. a questionnaire survey was used. The pulmonary ventilation function was detected: forced expiratory vital capacity (FVC), the first 1 second forced expiratory volume (FEV1.0), FVC/FEV1.0% and peak flow values (PEF), and the difference of fine particulate matter exposure level and respiratory function of the two groups was compared. 24 h individual average fine particulate matter exposure concentration of traffic police and residents were respectively (115.4 ± 46.17) microg/m(3) and (74.94 ± 40.09) microg/m(3), the traffic police PM2.5 exposure levels were significantly higher than the residents. In the incidence of respiratory symptoms, compared with high-exposure group and common exposure group, coughing, expectoration, throat unwell, asthma, short of breath and nose discomfort, traffic police group was higher than residents group (P matter exposure, may impact respiratory health and impair pulmonary function.

  20. Study of glyphosate transport through suspended particulate matter

    Science.gov (United States)

    Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz

    2014-05-01

    complete (95% in 2 min). (ii) Kd obtained on the erodible fraction are two times higher than on 2 mm sieved soils. (iii) Desorption showed that glyphosate is desorbed from the erodible fraction at 40% after 25 desorptions. The aim of this study was to show the potential transport of glyphosate through suspended particulate matter. The adsorption on the erodible fraction argued to a significant transport potential of glyphosate on this fraction. The desorption of glyphosate from the erodible water fraction have revealed that the adsorption of glyphosate is reversible but it is much slower. These results demonstrate that glyphosate may be stored on the erodible fraction and be transported by these fractions. Keywords: Adsorption, Desorption, Glyphosate, Suspended Solids, Erosion.

  1. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2015-12-01

    Full Text Available Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV and Heavy (HDV duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol, hydrated ethanol, and diesel (with 5 % of biodiesel. The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5 in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS, and by Thermal-Optical Transmittance (TOT. The organic aerosol (OA desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF organic aerosol (OA and organic carbon (OC were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the

  2. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Science.gov (United States)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  3. Particulate Matter Concentration Levels in South Central Richmond, California (Invited)

    Science.gov (United States)

    Bonner, B.; Byias, C.; Cuff, K. E.; Diaz, J.; Love, K.; Marks-Block, T.; McLane, F.; Mollique, Z.; Montes, E.; Ross, R.; Washington, B.

    2009-12-01

    South Central Richmond, California is the home of one of the nation’s most innovative green workforce training centers, Richmond BUILD - Green Jobs Training facility. A near constant stream of young people engaged in training activities, instructors, invited guests, and journalists of various ages can be seen moving in and out of the facility nearly every day of the week throughout a given year. Additionally, the comings and goings of young children and adults associated with a mid-sized elementary school just north of the facility contributes to the general area’s substantial human traffic. Unfortunately, however, a major highway, Interstate 580, a major thoroughfare, 23rd Street and a railway line operated by Burlington Northern Santa Fe, Union Pacific, and the Richmond Pacific Railroad frame the triangular area within which these two sites are situated. In addition, a major petrochemical complex and several shipping facilities are located less than three kilometers away north and west of this area. As part of a general assessment of air quality in this heavily human traveled area, we conducted a study of particulate matter (PM) concentrations over a five-month period beginning in August of 2009. Measurements were made at a variety of locations, and results were used to map the spatial distribution of PM of various sizes. Regions of high concentration levels were identified, and these particular areas then were monitored over time. Preliminary results of our study indicate that regions with high concentrations are consistent across the range of particle sizes measured, which suggests a common source for PM found in the study area. As these regions are located close to a major thoroughfare and railway line, we believe that diesel-burning vehicles are major contributors to the PM levels found in the study area. Time series results suggest a fairly strong correlation between higher than average PM concentrations and abnormally high wind gusts. On days when wind

  4. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain

    Science.gov (United States)

    Cheng, Hank; Saffari, Arian; Sioutas, Constantinos; Forman, Henry J.; Morgan, Todd E.; Finch, Caleb E.

    2016-01-01

    Background: Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. Objective: We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. Methods: Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. Results: After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. Conclusions: These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. Citation: Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537–1546; http://dx.doi.org/10.1289/EHP134 PMID:27187980

  5. Characteristics and health impacts of particulate matter pollution in China (2001-2011)

    Science.gov (United States)

    Cheng, Zhen; Jiang, Jingkun; Fajardo, Oscar; Wang, Shuxiao; Hao, Jiming

    2013-02-01

    In this study, a systematic overview of inhalable particulate matter (PM10) pollution in China was conducted based on the dataset from national monitoring network from 2001 to 2011. The long-term trend, spatial and temporal distributions, and health impacts of PM10 pollution were evaluated. It was found that the annual PM10 concentration decreased from 116.0 μg m-3 in 2001 to 85.3 μg m-3 in 2011. The days with PM10 concentration above the new Chinese ambient air quality standard dropped from 66 (18%) in 2001 to 28 (7.8%) in 2011, while the days exceeding the World Health Organization (WHO) guideline decreased from 294 (80.5%) in 2001 to 250 (68.5%) in 2011. PM10 pollution in northern China is much worse than that in southern China. Six of nine most polluted cities (>110 μg m-3) are in the north, while six cleanest cities (premature mortality between 2001 and 2011 as an example, the ratio of deaths due to PM10 pollution to all causes of deaths dropped from 13.5% to 11.6% and 511,000 deaths are avoided due to the concentration reduction, though the absolute damage number due to PM10 pollution increased from 418,000 to 514,000 because of increasing urban population. These results indicate that PM10 pollution in China has been eased significantly over the last decade, mainly due to the application of emission control measures. However, the PM10 concentration remains at a high level comparing with the WHO guideline and its health impacts are still significant.

  6. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  7. Exposure levels of farmers and veterinarians to particulate matter and gases uring operational tasks in pig-fattening houses

    Directory of Open Access Journals (Sweden)

    Nele Van Ransbeeck

    2014-09-01

    Full Text Available The main objective of the study was to assess particulate matter (PM exposure levels for both the farmer and the veterinarian during different operational tasks in pig-fattening houses, and to estimate their exposure levels on a daily working basis (time-weighted average (TWA. The measured PM fractions were: inhalable and respirable PM, PM10, PM2.5 and PM1. The effects of pig age, pen floor type (conventional or low emission surface and cleaning of the pens on the personal PM exposure were also investigated. Indoor concentrations of NH[sub]3[/sub], CH[sub]4[/sub], and CO[sub]2[/sub] were additionally measured during some operational tasks. The results showed that personal exposure levels can become extremely high during some operational tasks performed by the farmer or veterinarian. The highest concentration levels were observed during feed shovelling and blood sampling, the lowest during the weighing of the pigs. For the farmer, the estimated TWA exposure levels of inhalable and respirable PM were 6.0 and 0.29 mg m[sup] -3[/sup] , respectively. These exposure levels for the veterinarian were, respectively, 10.6 and 0.74 mg m[sup] -3[/sup] . The PM concentration levels were mainly determined by the performed operational tasks. There was no significant effect of pig age, pen floor type, nor cleaning of the pens on the personal exposure levels.

  8. Exposure levels of farmers and veterinarians to particulate matter and gases during operational tasks in pig-fattening houses.

    Science.gov (United States)

    Van Ransbeeck, Nele; Van Langenhove, Herman; Michiels, Annelies; Sonck, Bart; Demeyer, Peter

    2014-01-01

    The main objective of the study was to assess particulate matter (PM) exposure levels for both the farmer and the veterinarian during different operational tasks in pig-fattening houses, and to estimate their exposure levels on a daily working basis (time-weighted average (TWA)). The measured PM fractions were: inhalable and respirable PM, PM10, PM2.5 and PM1. The effects of pig age, pen floor type (conventional or low emission surface) and cleaning of the pens on the personal PM exposure were also investigated. Indoor concentrations of NH3, CH4, and CO2 were additionally measured during some operational tasks. The results showed that personal exposure levels can become extremely high during some operational tasks performed by the farmer or veterinarian. The highest concentration levels were observed during feed shovelling and blood sampling, the lowest during the weighing of the pigs. For the farmer, the estimated TWA exposure levels of inhalable and respirable PM were 6.0 and 0.29 mg m(-3), respectively. These exposure levels for the veterinarian were, respectively, 10.6 and 0.74 mg m(-3). The PM concentration levels were mainly determined by the performed operational tasks. There was no significant effect of pig age, pen floor type, nor cleaning of the pens on the personal exposure levels.

  9. Metals in Nile perch (Lates niloticus) and suspended particulate matter from Lake Victoria, Tanzania.

    Science.gov (United States)

    Machiwa, John F

    2005-01-01

    A study was conducted to assess the levels of pollutant metals in suspended particulate matter and Nile perch from Lake Victoria. The metals in particulate matter were determined to ascertain their concentrations at the base of the food chain. Nile perch samples were collected in September 2003 from five major fish processing factories at the shores of Lake Victoria in Mwanza and Musoma. The concentrations of total Hg, Pb, Cd, and Cu were generally low in particulate matter and in most locations were close to or below their limits of detection. The concentrations of Zn were high in suspended particulate matter, the highest being 219.4 +/- 153.0 microg L(-1) found in particulate matter from Nungwe Bay in the southern part of Lake Victoria. Nile perch generally contained low levels of heavy metals; the range for Pb was Food and Agriculture Organization of the United Nations/World Health Organization (1000 ng total Hg g(-1) ww for piscivorous fish species) maximum allowable level. Indeed, all Nile perch samples that weighed less than 10 kg had less than 200 ng total Hg g(-1) ww and therefore are safe for regular consumption by at-risk groups such as children and pregnant women. Levels of mercury and other heavy metals in Nile perch at present is, therefore, not a severe environmental issue; however, urgent regulatory measures should be taken to minimize metal input into the lake to maintain the current levels in the fish.

  10. Current state of particulate matter research and management in Serbia (Introductory paper

    Directory of Open Access Journals (Sweden)

    Milena Jovašević-Stojanović

    2010-09-01

    Full Text Available Particulate matter is the air pollutant that currently receives most attention from the atmospheric research community, the legislative authorities and the general public. Limiting particulate matter in the atmosphere which will result in significant benefits for human health, with associated positive economic consequences. Successful management of particulate matter requires scientific knowledge about particulate matter “from cradle to grave”, covering sources of particles, processes that govern their formation, composition, dispersion and fate in the atmosphere, as well as knowledge about human exposure and associated health and well being. Such knowledge allows to design and perform effective and efficient abatement measures and monitoring. This paper provides an introduction to the research and monitoring regarding particulate matter in Serbia. The contributions were first partly presented at the 2nd international workshop of the WeBIOPATR “Outdoor concentration, size distribution and composition of respirable particles in WB urban area” project in September 2009. This information provides context to the contributions in this number, and was part of the rationale of the project WeBIOPATR.

  11. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006-2010.

    Science.gov (United States)

    Yao, Ling; Lu, Ning

    2014-01-01

    Air quality problems caused by atmospheric particulate have drawn broad public concern in the global scope. In the paper, the spatiotemporal distributions of fine particle (PM2.5) and inhalable particle (PM10) concentrations estimated with the artificial neural network (ANN) over China during 2006 to 2010 have been discussed. Most high PM10 concentration appears in Xinjiang, Qinghai, Gansu, Ningxia, Hubei, and parts of Inner Mongolia. The distribution of PM2.5 concentration is consistent with China's three gradient terrains. The seasonal variations of PM2.5 and PM10 concentrations both indicate that they are higher in north China in spring and winter, lowest in summer. In autumn, most provinces in south China appear high value. In particular, high PM2.5 concentration appears in the southeast coastal cities while high PM10 concentration prefers the central regions in south China. On this basis, seasonal Mann-Kendall test method is utilized to analyze the short-term trends. The results also show significant changes of PM2.5 and PM10 concentrations of China in the past 5 years, and most provinces present the tendency of reduction (3-5 μg/m(3) for PM2.5 and 10-20 μg/m(3) for PM10 per year) while a fraction of provinces appear the increasing trend of 8-16 μg/m(3) (PM2.5) and 16-30 μg/m(3) (PM10). Simultaneously, PM2.5 population exposure is discussed with the combination of population density-gridded data. Municipalities get much higher exposure level than other provinces. Shanghai suffers the highest population exposure to PM2.5, followed by Beijing and then Tianjin, Jiangsu province. Most provincial capitals, such as Guangzhou, Nanjing, Chengdu, and Wuhan, face much higher exposure level than other regions of their province. Moreover, the PM2.5 exposure situation is more serious in southeast than northwest regions for Beijing-Tianjin-Hebei region. Also, per capita PM2.5 concentration and population-weighted PM2.5 concentration are calculated. The former shows that

  12. Interaction between Inhalable Particulate Matter and Apparent Temperature on Respiratory Emergency Room Visits of a Hospital in Beijing%PM10与表观温度交互作用对北京市某医院呼吸系统疾病急诊的影响

    Institute of Scientific and Technical Information of China (English)

    李国星; 陶辉; 刘利群; 郭玉明; 潘小川

    2012-01-01

    目的 探讨PM10与表观温度交互作用对北京市某医院呼吸系统疾病急诊的影响.方法 收集北京市某三甲医院急诊料2005年1月至2009年6月每日呼吸系统急诊病例资料、同期北京市环境监测中心大气污染物数据和中国科学数据共享服务网的气象数据.采用广义相加模型,通过惩罚样条函数控制长期趋势、星期几效应及其他可能的混杂因素,对数据进行分析.结果 PM10与平均表观温度和最低表观温度的交互作用在低温时有统计学意义(P<0.05),与日表观温度差值的交互作用在温差较大时有统计学意义(P<0.05).在表观温度为低温、中温、高温3个水平时,PM10对于呼吸系统急诊的超额危险度分别为5.90%(95%CI:2.15%~9.78%),0.01%(95%CI:-0.65%~0.63%),~0.22%(95%CI:-0.63%~0.17%);在最低表观温度为低温、高温水平时,PM10对于呼吸系统急诊的超额危险度分别为1.42% (95%CI:0.37%~2.53%),-0.17% (95%CI:-0.56%~0.20%);在日表观温度差值的高、中、低3个水平时,PM10对于呼吸系统急诊的超额危险度分别为0.05%(95%CI:-0.65%-0 75%),0.01%(95%CI:-0.37%~0.40%),1.75% (95%CI:0.50%~3.02%).结论 在低温和温差比较大的情况下,PM10对呼吸系统疾病的风险较大,应该加强对呼吸系统疾病患者的防护.%Objective To explore the interactive effects between inhalable participate matter and apparent temperature on respiratory diseases (ICD-ID J00-J99) emergency room visits of a hospital in Beijing, China. Methods The data of the daily emergency room visits for respiratory diseases from a grade Ⅲ-A general hospital, the data of relevant ambient air pollution from the Beijing Municipal Environmental Monitoring Center and the data of meteorological index from China meteorological data sharing service system from January, 2005 to June, 2009 were collected. Generalized additive models

  13. Particulate matter and manganese exposures in Indianapolis, Indiana.

    Science.gov (United States)

    Pellizzari, E D; Clayton, C A; Rodes, C E; Mason, R E; Piper, L L; Fort, B; Pfeifer, G; Lynam, D

    2001-01-01

    The distribution of PM(2.5) and manganese (Mn) personal exposures was determined over a 4-month period in Indianapolis, IN, at a time when the gasoline additive, methylcyclopentadienyl manganese tricarbonyl (MMT), was not being used. The data collection period coincided with the data collection period in the Toronto, ON, study, where MMT had been used as a gasoline additive for over 20 years. The inferential or target population consisted of noninstitutionalized residents of the Indianapolis area during the monitoring period (from May 1996 through August 1996) who were at least 16 years old. The survey instruments used in this study (and also in Toronto) included a household screener form (HSF), a study questionnaire (SQ), and a time and activity questionnaire (TAQ). The SQ was administered to elicit information about the participant and his/her activities, occupation, and surroundings that might be relevant to his/her exposure to particles and Mn. In addition to the personal particulate matter (PM) and elemental 3-day monitoring, 240 participants completed a TAQ on a daily basis during the actual monitoring period. Also, a subset of participants had 3-day outdoor and indoor stationary monitoring at their home (approximately 58 observations), and sampling was conducted at a fixed site (approximately thirty-three 3-day observations). The quality of data was assessed and compared to the Toronto study in terms of linearity of measurement, instrument and method sensitivity, measurement biases, and measurement reproducibility. Twenty-six of the sample filters were subjected to two analyses to characterize the within-laboratory component of precision in terms of relative standard deviations (RSDs). The median RSD for Mn was 8.7%, as compared to 2.2% for Toronto. The quality assurance (QA) laboratory exhibited a clear positive bias relative to the primary laboratory for Al and Ca, but no systematic difference was evident for Mn. A high interlaboratory correlation (>0

  14. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air.

    Science.gov (United States)

    Sun, Jian-Lin; Jing, Xin; Chang, Wen-Jing; Chen, Zheng-Xia; Zeng, Hui

    2015-03-01

    Halogenated polycyclic aromatic hydrocarbons (HPAHs) have been reported to occur widely in urban air. Nevertheless, knowledge about the human health risk associated with inhalation exposure to HPAHs is scarce so far. In the present study, nine HPAHs and 16 PAHs were determined in atmospheric particulate matter (PM) collected from Shenzhen, China to address this issue. Concentrations of Σ9HPAHs varied from 0.1 to 1.5 ng/m(3) and from 0.09 to 0.4 ng/m(3) in PM10 and PM2.5 samples, respectively. As for individuals, 9-bromoanthracene, 7-bromobenz(a)anthracene, and 9,10-dibromoanthracene were the dominant congeners. Levels of Σ16PAHs in PM10 and PM2.5 samples ranged from 3.2 to 81 ng/m(3) and from 2.8 to 85 ng/m(3), respectively. Among individual PAHs, chrysene, benzo[b]fluoranthene, and indeno[1,2,3-c,d]pyrene were the main congeners. According to the season, concentrations of HPAHs and PAHs in atmospheric PM10/PM2.5 samples show a similar decreasing trend with an order: winter>autumn>spring>summer. The daily intake (DI) of PM10/PM2.5-bound HPAHs and PAHs were estimated. Our results indicated that children have the highest DI levels via inhalation exposure. The incremental lifetime cancer risk (ILCR) induced by PM10/PM2.5-bound HPAHs and PAHs were calculated. The ILCR values showed a similar decreasing trend with an order: adults>children>seniors>adolescent. Overall, the ILCR values induced by HPAHs and PAHs were far below the priority risk level (10(-4)), indicating no obvious cancer risk. To our knowledge, this is the first study to investigate the human health risk associated with inhalation exposure to PM10/PM2.5-bound HPAHs.

  15. Bayesian Hierarchical Modeling of Cardiac Response to Particulate Matter Exposure

    Science.gov (United States)

    Studies have linked increased levels of particulate air pollution to decreased autonomic control, as measured by heart rate variability (HRV), particularly in populations such as the elderly. In this study, we use data obtained from the 1998 USEPA epidemiology-exposure longitudin...

  16. Distribution of particulate organic matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.C.; Rao, T.S.S.

    Particulate organic carbon (POC) of 161 water samples collected from 8 depths (surface to 1000 m) at 21 stations was measured The POC concentrations ranged from 154 to 554 mu g per litre at the surface and decreased in the upper 300 m water column...

  17. Ultrafine ambient particulate matter enhances cardiac ischemia and reperfusion injury

    Science.gov (United States)

    Epidemiological studies have demonstrated a consistent link between exposure to ambient particulate air pollutant (PM) and the incidence of cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of ambient PM. Mice were exposed to 1...

  18. Particulate matter in ambient air - Assessment of health risks. Partiklar i omgivningsluften - en bedoemning av haelsorisker

    Energy Technology Data Exchange (ETDEWEB)

    Camner, P.

    1986-07-01

    An investigation, based on literature data and research at SML, was made on deposition of particulate matter in lungs. The importance of mouth and nose breathing respectively is illustrated. By nose breathing only substances <10 micrometers reach the lung as compared to mouth breathing where substances >10 micrometers may deposit in the lung. Swedish limit values of total suspended particulate matter (TSP) of 50 micrograms/cubic meter are recommended as a 6 month mean value and 150 micrograms/cubic meter as a day mean value. For the PM/sub 10/ fraction, which is a measure of the mass fraction of particulate matter in the air that is deposited in the lung by mouth breathing, it is not possible to give a corresponding recommendation. Epidemiological data are lacking and the proposed method of measuring the PM/sub 10/ fraction would underestimate the importance of particles larger than 10 micrometers. (O.S.).

  19. Distribution and composition of suspended particulate matter in the Atlantic Ocean: Direct measurements and satellite data

    Science.gov (United States)

    Lisitzin, A. P.; Klyuvitkin, A. A.; Burenkov, V. I.; Kravchishina, M. D.; Politova, N. V.; Novigatsky, A. N.; Shevchenko, V. P.; Klyuvitkina, T. S.

    2016-01-01

    The main purpose of this work is to study the real distribution and spatial-temporal variations of suspended particulate matter and its main components in surface waters of the Atlantic Ocean on the basis of direct and satellite measurements for development of new and perfection of available algorithms for converting satellite data. The distribution fields of suspended particulate matter were calculated and plotted for the entire Atlantic Ocean. It is established that its distribution in the open ocean is subordinate to the latitudinal climatic zonality. The areas with maximum concentrations form latitudinal belts corresponding to high-productivity eutrophic and mesotrophic waters of the northern and southern temperate humid belts and with the equatorial humid zone. Phytoplankton, the productivity of which depends primarily on the climatic zonality, is the main producer of suspended particulate matter in the surface water layer.

  20. HUMAL ALVEOLAR MACROPHAGE RESPONSES TO AIR POLLUTION PARTICULATES ARE ASSOCIATED WITH INSOLUBLE OCMPONENTS OF COARSE MATERIAL, INCLUDING PARTICULATE ENDOTOXIN

    Science.gov (United States)

    Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...

  1. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    Science.gov (United States)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  2. Cytogenetic evaluation of extractable agents from airborne particulate matter generated in the city of Catania (Italy).

    Science.gov (United States)

    Motta, Salvatore; Federico, Concetta; Saccone, Salvatore; Librando, Vito; Mosesso, Pasquale

    2004-07-11

    In order to document cytogenetic damage associated with air pollution and, possibly, with health effects in the city of Catania, Sicily (Italy), we analyzed the induction of chromosomal aberrations by extractable agents from airborne particulate matter in a Chinese hamster epithelial liver (CHEL) cells. These cells retain their metabolic competence to activate different classes of promutagens/procarcinogens into biologically active metabolites. Airborne particulate matter was obtained from two stationary samplers (stations I and II) in two areas endowed by an elevated car transit in the centre of Catania. The results obtained clearly indicated that airborne particulate matter from both stations I and II proved to be clastogens in CHEL cells but not in Chinese hamster ovary (CHO) cells without metabolic activation, indicating that airborne particulate mixtures need to be metabolically converted before exerting their genotoxic potential. On the basis of these results we can assert that the test system employed to identify the cytogenetic potential of airborne particulate matter is useful and profitable for environmental control, and helpful to plan specific actions aimed at reducing the hazards derived from exposure to polluted air.

  3. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Mike Z. He

    2017-02-01

    Full Text Available Background: Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM2.5 concentrations in different regions of China from 2005 to 2016. Methods: We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI. We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results: The mean (SD PM2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27 μg/m3 for all geographic regions and 71.99 (30.20 μg/m3 for all economic regions. A one-way ANOVA shows statistically significant differences in PM2.5 concentrations between the various geographic regions (F = 14.91, p < 0.0001 and the three economic regions (F = 4.55, p = 0.01. Conclusions: This review identifies quantifiable differences in fine particulate matter concentrations across regions of China. The highest levels of fine particulate matter were found in the northern and northwestern regions and especially Beijing. The high percentage of data points exceeding current federal regulation standards suggests that fine particulate matter pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM2.5 estimates.

  4. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    OpenAIRE

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D.; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L.; Gavett, Stephen H

    2003-01-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC...

  5. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    OpenAIRE

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D.; Chen, Lung Chi; Cohen, Mitchell D.; Harkema, Jack R.; Wagner, James G.; Costa, Daniel L.

    2003-01-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)] has detrimental respiratory effects in mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from ...

  6. Particulate Matter Assessment in the Air Based on the Heavy Metals Presence

    Directory of Open Access Journals (Sweden)

    Jandačka Dušan

    2014-05-01

    Full Text Available Particulate matters are the result of various processes in the atmosphere that are part of everyday life. The chemical composition of these particles is mainly influenced by their origin. Their behavior is also dependent on meteorological conditions and other factors as well. The aim of this paper was to identify sources of particulate matters by means of statistical methods due to the presence of 17 heavy metals. The problem solving assumes the knowledge of multivariate statistical data analysis methods as principal components analysis (PCA, factor analysis (FA and multivariate regression and vector algebra. For the application of methodology suitable software may prove appropriate.

  7. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  8. [Particulate matter air pollution effects on the incidence of heart diseases among the urban population].

    Science.gov (United States)

    Tabakaev, M V; Artamonova, G V

    2014-01-01

    Increasing prevalence of cardiovascular diseases induces an urgent need to identify and clear delineation of the most important risk factors for the development and progression of atherosclerosis. Unlike the second part of XXth century, today the World Health Organization considers particulate matter ambient pollution one of the most important predictors of cardiovascular events. However, results of similar studies conducted in the last decades, is highly fragmented. The authors' objective was to try to understand and organize this massive of accumulated information and analyze it to draw conclusions about the impact of particulate matter on the functioning of human cardiovascular system.

  9. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  10. Establishment of Exposure-response Functions of Air Particulate Matter and Adverse Health Outcomes in China and Worldwide

    Institute of Scientific and Technical Information of China (English)

    HAI-DONG KAN; BING-HENG CHEN; CHANG-HONG CHEN; BING-YAN WANG; QING-YAN FU

    2005-01-01

    Objective To obtain the exposure-response functions that could be used in health-based risk assessment of particulate air pollution in China. Methods Meta analysis was conducted on the literatures on air particulate matter and its adverse health outcomes in China and worldwide. Results For each health outcome from morbidity to mortality changes, the relative risks were estimated when the concentration of air particulate matter increased to some certain units. Conclusion The exposure-response functions recommended here can be further applied to health risk assessment of air particulate matter in China.

  11. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    Science.gov (United States)

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Identification of genotoxic compounds in the airborne particulate matter endowed by small aerodynamic diameter in the city of Catania (Italy).

    Science.gov (United States)

    Motta, Salvatore; Librando, Vito; Minniti, Zelica; Federico, Concetta; Saccone, Salvatore

    2006-01-01

    Airborne particulate matter (PM) is one of the most important polluting factors in the atmosphere containing solid particles generated during the combustion processes. PM, due to the particle size, is easily inhaled and constitutes a potential hazard for the human health. We previously documented, using in vitro cell culture systems, cytogenetic damages caused by exposure to a non-fractionated PM in two different areas from the city of Catania (Sicily, Italy). In the present work, the PM was fractionated in six different sub-fractions, and the relative extractable organic matters (EOM) were analyzed in order to quantify the presence of Polycyclic Aromatic Hydrocarbons (PHAs), a well known class of genotoxic agents. More than 70% of the total EOM was found in the PM with aerodynamic diameters less than 3.5 microm (PM35), and about 60% of the total EOM was detected between PM0.14 and PM1.2. Also the large amount of all the analyzed PAHs were found between the PM0.14 and PM1.2. The obtained data indicates that the genotoxic effect previously shown on mammalian cells (Chinese hamster epithelial liver cells) should be due, in the large part, to the PM with smaller particle size, namely less than PM1.2.

  13. Particulate matter-induced lung inflammation increases systemic levels of PAI-1 and activates coagulation through distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    G R Scott Budinger

    Full Text Available BACKGROUND: Exposure of human populations to ambient particulate matter (PM air pollution significantly contributes to the mortality attributable to ischemic cardiovascular events. We reported that mice treated with intratracheally instilled PM develop a prothrombotic state that requires the release of IL-6 by alveolar macrophages. We sought to determine whether exposure of mice to PM increases the levels of PAI-1, a major regulator of thrombolysis, via a similar or distinct mechanism. METHODS AND PRINCIPAL FINDINGS: Adult, male C57BL/6 and IL-6 knock out (IL-6(-/- mice were exposed to either concentrated ambient PM less than 2.5 µm (CAPs or filtered air 8 hours daily for 3 days or were exposed to either urban particulate matter or PBS via intratracheal instillation and examined 24 hours later. Exposure to CAPs or urban PM resulted in the IL-6 dependent activation of coagulation in the lung and systemically. PAI-1 mRNA and protein levels were higher in the lung and adipose tissue of mice treated with CAPs or PM compared with filtered air or PBS controls. The increase in PAI-1 was similar in wild-type and IL-6(-/- mice but was absent in mice treated with etanercept, a TNF-α inhibitor. Treatment with etanercept did not prevent the PM-induced tendency toward thrombus formation. CONCLUSIONS: Mice exposed to inhaled PM exhibited a TNF-α-dependent increase in PAI-1 and an IL-6-dependent activation of coagulation. These results suggest that multiple mechanisms link PM-induced lung inflammation with the development of a prothrombotic state.

  14. Impact of Long-term Exposure to Air Particulate Matter on Life Expectancy and Survival Rate of Shanghai Residents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the impact of long-term air particulate matter exposure on the life expectancy and survival rate of Shanghai residents. Methods Epidemiology - based exposureresponse function was used for the calculation of attributable deaths to air particulate matter in Shanghai, and the effect of long-term exposure to particulate matter on life expectancy and survival rate was estimated using the life table of Shanghai residents in 1999. Results It was shown that in 1999, the long-term air particulate matter exposure caused 1.34-1.69 years reduction of life expectancy and a decrease of survival rate for each age group of Shanghai residents. Conclusion The effect of long-term exposure to air particulate matter on life expectancy is substantial in Shanghai.

  15. Increased Non-conducted P-wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats

    Science.gov (United States)

    Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that ar...

  16. Simulation of Height of Stack Pile using SCREEN3 module for Particulate Matter Pollutants

    Directory of Open Access Journals (Sweden)

    Modi Musalaiah

    2014-12-01

    Full Text Available This study is regarding the air pollution in selected areas near to port (beside stack yards of port interested in particulate matter pollution. In this study, the amount of air pollution due to particulates is analyzed. The amount of air pollution is estimated using SCREEN 3 Methodology. In this study, SCREEN 3 methodology is a predefined software tool which can be used to estimate particulate matter pollution levels at different source release heights, terrain heights and at particular receptor height. The results obtained are reported and finally concluded that to avoid the pollution in the selected area, it is better to construct a periphery along the sides of stack yard (source of pollution

  17. National ambient air quality standards : proposed decisions on particulate matter and ozone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Ontario receives significant levels of transboundary air pollution from the United States. The pollution consists of particulate matter and ozone precursors such as nitrogen oxides and volatile organic compounds. During hot summer days, more than 50 per cent of the ozone affecting Ontario comes from the United States. The Ontario government has reviewed the U.S.`s proposed standards relating to particulate matter and ozone. This report presents Ontario`s analysis of the proposed new U.S. standards for particulates and ozone, and Ontario`s request for more stringent standards than those proposed by the Environmental Protection Agency. The derivation of proposed standards and the risk assessments related to the pollutants is also discussed. 11 tabs.

  18. Suspended particulate organic matter in a Mediterranean submarine cave

    OpenAIRE

    Fichez, Renaud

    1991-01-01

    Les concentrations en carbone et azote organique, glucide, protéine et lipide des particules en suspension ont été déterminées entre juillet 1985 et juillet 1987 dans une grotte sous-marine de Méditerranée. La matière organique particulaire diminue nettement entre l'entrée et la zone terminale obscure. Cet appauvrissement fait appel à trois processus; (i) diminution du seston; (ii) diminution du pourcentage de matière organique; (iii) proportion croissante des géopolymères dans la fraction or...

  19. Particulate organic matter in the sea: the composition conundrum.

    Science.gov (United States)

    Lee, Cindy; Wakeham, Stuart; Arnosti, Carol

    2004-12-01

    As organic matter produced in the euphotic zone of the ocean sinks through the mesopelagic zone, its composition changes from one that is easily characterized by standard chromatographic techniques to one that is not. The material not identified at the molecular level is called "uncharacterized". Several processes account for this transformation of organic matter: aggregation/disaggregation of particles resulting in incorporation of older and more degraded material; recombination of organic compounds into geomacromolecules; and selective preservation of specific biomacromolecules. Furthermore, microbial activities may introduce new cell wall or other biomass material that is not easily characterized, or they may produce such material as a metabolic product. In addition, black carbon produced by combustion processes may compose a fraction of the uncharacterized organic matter, as it is not analyzed in standard biochemical techniques. Despite these poorly-defined compositional changes that hinder chemical identification, the vast majority of organic matter in sinking particles remains accessible to and is ultimately remineralized by marine microbes.

  20. Variation of reactivity of particulate and sedimentary organic matter along the Zhujiang River Estuary

    Institute of Scientific and Technical Information of China (English)

    Chen Jianfang; Jin Haiyan; Yin Kedong; Li Yan

    2003-01-01

    To investigate organic matter source and reactivity in the Zhujiang River (Pearl River)Estuary and its adjacent areas, particulate organic carbon (POC), particulate hydrolysable amino acids (PHAA), and Chl a during two cruises in July 1999 and July 2000 were measured. The highest POC and PHAA concentration was observed in the waters with maximum Chl a. The spectra distribution,relative content (dry weight in milligram per gram), PHAA-C% POC and other indicators such as the ratios of amino acids vs. amino sugars (AA/AS) and glucosamine vs. galactosamine (Glum/Gal) suggested that particulate amino acids in the water column and sediments in the Zhujiang River Estuary were mainly derived from biogenic processes rather than transported from terrestrial erosion. In inner estuary where high turbidity was often observable, organic matter was mainly contributed by re-suspension of bottom sediments with revealed zooplankton, microbial reworked characteristics, which suggest that these organic matters were relatively "old". In the estuarine brackish region, organic matter in water column is mainly contributed by relatively fresh, easily degradable phytoplankton derived organic matter.During physical - biological processes within the eastuary, organic matter derived from phytoplankton was subjected to alteration by zooplankton grazing and bacterial reworking.

  1. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter

    Science.gov (United States)

    ..To the Editor"': Of the three major particulate matter (PM) size fractions (ultrafme, fine and coarse),coarse PM (PM2.5- 10) has been the least examined in terms of its health effects on susceptible populations, this despite having characteristics that make it particula...

  2. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  3. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  4. Comparison of continuous monitor (TEOM) and gravimetric sampler particulate matter concentrations

    Science.gov (United States)

    The Tapered Element Oscillating Microbalance (TEOM) sampler is an EPA designated equivalent method sampler for measuring PM10 concentrations. PM10 refers to the mass fraction of particulate matter suspended in the atmosphere having a nominal aerodynamic diameter less than or equal to 10 micrometers ...

  5. Trends and the effect of management on macronutrients in fractionated particulate matter in rooster house

    Science.gov (United States)

    The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matters (SPM) to serve as carriers for odorous compounds such as ammonium ions and volatile organic compounds. SPM is generated from the feed, anima...

  6. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Illerup, Jytte Boll; Kindbom, Karin

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions ...

  7. Source analysis of fine and coarse particulate matter from livestock houses

    NARCIS (Netherlands)

    Cambra-Lopez, M.; Torres, A.G.; Aarnink, A.J.A.; Ogink, N.W.M.

    2011-01-01

    The analyses of the different sources which can contribute to particulate matter (PM) emissions from livestock houses are essential to develop adequate reduction techniques. The aim of this study was to morphologically and chemically characterize several sources of PM from livestock houses. We colle

  8. Novel Sampling Techniques for Measurement of Turbine Engine Total Particulate Matter Emissions

    Science.gov (United States)

    This is the first progress report of a study to evaluate two different condensation devices for the measurement of the total (volatile + non-volatile) particulate matter (PM) emissions from aircraft turbine engines by direct sampling at the engine exit. The characteristics of th...

  9. Trace metals in suspended particulate matter and sediments from the Severnaya Dvina estuary, Russian Arctic

    NARCIS (Netherlands)

    Koukina, S.E.; Calafat-Frau, A.; Hummel, H.; Palerud, R.

    2001-01-01

    A geochemical study of the Severnaya Dvina estuary was carried out during two oceanographic cruises to the White Sea. The amount and distribution of trace (Mn, Co, Cu, Ni, Pb, and Zn) and major (Al and Fe) elements in suspended particulate matter and sediments were determined. The main source of

  10. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  11. Diesel particulate matter exposure in South African platinum mines: an overview

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2014-08-01

    Full Text Available Personal diesel particulate matter (DPM) sampling was conducted on nearly 300 mine workers in the diesel and non-diesel sections of three platinum mines in South Africa. Respiratory health questionnaires were administered to all of these workers...

  12. Source identification and quantification of particulate matter emitted from livestock houses

    NARCIS (Netherlands)

    Cambra-López, M.; Hermosilla, T.; Lai, T.L.H.; Montero, M.; Aarnink, A.J.A.; Ogink, N.W.M.

    2010-01-01

    There is need to identify and quantify the contribution of different sources to airborne particulate matter (PM) emissions from animal houses. To this end, we compared the chemical and morphological characteristics of fine and coarse PM from known sources collected from animal houses with the

  13. Source analysis of fine and coarse particulate matter from livestock houses

    NARCIS (Netherlands)

    Cambra-Lopez, M.; Torres, A.G.; Aarnink, A.J.A.; Ogink, N.W.M.

    2011-01-01

    The analyses of the different sources which can contribute to particulate matter (PM) emissions from livestock houses are essential to develop adequate reduction techniques. The aim of this study was to morphologically and chemically characterize several sources of PM from livestock houses. We

  14. Selection of particle characteristics to distinguish amongst potential sources of particulate matter in poultry and pigs.

    NARCIS (Netherlands)

    Cambra-Lopez, M.; Hermosilla, T.; Aarnink, A.J.A.; Ogink, N.

    2011-01-01

    The knowledge on the contribution of individual sources to particulate matter (PM) in different size fractions is essential to improve PM reduction from livestock houses. We investigated which input data (particle chemical, morphological or combined characteristics) were best to distinguish amongst

  15. Oxidative potential of particulate matter collected at sites with different source characteristics

    NARCIS (Netherlands)

    Janssen, Nicole A. H.; Yang, Aileen; Strak, Maciej; Steenhof, Maaike; Hellack, Bryan; Gerlofs-Nijland, Miriam E.; Kuhlbusch, Thomas; Kelly, Frank; Harrison, Roy M.; Brunekreef, Bert; Hoek, Gerard; Cassee, Flemming

    2014-01-01

    Background: The oxidative potential (OP) of particulate matter (PM) has been proposed as a more health relevant metric than PM mass. Different assays exist for measuring OP and little is known about how the different assays compare. Aim: To assess the OP of PM collected at different site types and t

  16. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  17. STATISTICAL DISTRIBUTIONS OF PARTICULATE MATTER AND THE ERROR ASSOCIATED WITH SAMPLING FREQUENCY. (R828678C010)

    Science.gov (United States)

    The distribution of particulate matter (PM) concentrations has an impact on human health effects and the setting of PM regulations. Since PM is commonly sampled on less than daily schedules, the magnitude of sampling errors needs to be determined. Daily PM data from Spokane, W...

  18. Laboratory Evaluation of Electrostatic Spray Wet Scrubber to Control Particulate Matter Emissions from Poultry Facilities

    Science.gov (United States)

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  19. Particulate matter fluxes in throughfall and stemflow under oak and pine stands

    Science.gov (United States)

    Cayuela, Carles; Levia, Delphis; Sánchez-Costa, Elisenda; Latron, Jérôme; Llorens, Pilar

    2017-04-01

    The atmospheric particulate deposition (APD) is one source of nutrients for forest ecosystems. Forest canopies offer large deposition surfaces that can enhance the amount of particles reaching the soil as throughfall or as stemflow. However, the influence of the forest canopy on APD is still poorly known. In this study, we aim to compare the fluxes of APD reaching the soil in an open field and below the canopy (via throughfall and stemflow) in Pinus sylvestris L. (Scots pine) and Quercus pubescens Willd. (downy oak) stands located in the Vallcebre research catchments (NE Spain, 42o 12'N, 1o 49'E). After every rainfall, samples of each water flux were collected and filtered (0.45 μm pore size cellulose filters) to determine the particulate matter fluxes. In addition, filters corresponding to 7 rainfall events were selected to analyse the morphometric characteristics of particulates using a confocal microscopy. The APD annual rates were: 66 kg ha-1 year-1 in the open field, 82 kg ha-1 year-1in throughfall for both species and 2.8 and 1.2 kg ha-1 year-1in stemflow for pines and oaks respectively. At the event scale, APD in throughfall increased with increasing rainfall volume and in stemflow with increasing funnelling ratio. The flux of particulate matter in throughfall was strongly linked with the presence or absence of foliage; being higher for oaks during the dormant season. On the other hand, rainfall intensity and the time lag between rainfalls were important factors determining the number of particles below the canopy. These results show the importance of throughfall and stemflow regarding to the transfer of particulate matter to the soil. Despite APD in stemflow per surface area was small, this flux represents a hotspot of particulate matter that reaches the base of the trunks, and is therefore of special interest to understand forest soils biogeochemical cycles.

  20. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait

    Science.gov (United States)

    Lalande, Catherine; Nöthig, Eva-Maria; Bauerfeind, Eduard; Hardge, Kristin; Beszczynska-Möller, Agnieszka; Fahl, Kirsten

    2016-08-01

    Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, β-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

  1. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran

    Science.gov (United States)

    Alizadeh-Choobari, O.; Bidokhti, A. A.; Ghafarian, P.; Najafi, M. S.

    2016-09-01

    Being hemmed in on two sides by high mountains, the urban area of Tehran is characterized by high levels of particulate matter and gaseous pollutants, which have adverse consequences on human health, ecosystems and environment. Using air quality measurements taken in different regions of Tehran, spatial and temporal variations of particulate matter and gaseous pollutants are analyzed to identify the typical climatological aspects of air pollutants. In terms of particulate matter concentrations, South Tehran is more polluted than Central to North Tehran, while West Tehran is more polluted than the East. Concentrations of particles in North Tehran are lower in the midday compared to the midnight, whereas the opposite is true in South Tehran. The observed annual mean concentrations of PM2.5 and PM10 in North Tehran were 37.5 and 76.3 μg m-3, respectively, which are substantially greater than the national annual mean safety limits of 10 μg m-3 for PM2.5 and 20 μg m-3 for PM10. The observed high levels of particulate matter underline the essential need for a coordinated action to reduce the rapidly increasing air pollution over the growing urban area of Tehran. Noticeable monthly (seasonal) variations are evident in the observed PM10 concentrations, with a minimum of 61.5 μg m-3 in March (spring) and a maximum of 82.9 μg m-3 in July (summer), reflecting contribution of weather conditions. Analyzing daily PM2.5 (PM10) concentrations indicate that mid-week Wednesdays (Mondays) are the most polluted days. The higher mid-week concentrations reflect contribution of heavy vehicular traffic, industrial operation and increased commercial activities. Strong diurnal variations in the concentrations of particulate matter in North Tehran are detected, varying from a peak in late night to a minimum in late afternoon, indicating contribution of deeper daytime convective boundary layer and stronger winds in dispersion of particles.

  2. Source profiles of particulate organic matters emitted from cereal straw burnings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-xun; SHAO Min; ZHANG Yuan-hang; ZENG Li-min; HE Ling-yan; ZHU Bin; WEI Yong-jie; ZHU Xian-lei

    2007-01-01

    Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood.In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PM2.5) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed.141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5,and contained approximately equal amounts of guaiacyl and syringyl compounds. β-Sitostrol also made up relatively a large fraction of PM2.5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal aikanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.

  3. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  4. SAFETY HEALTH IMPACTS OF PARTICULATE MATTER FROM EXCAVATION WORK SITES

    Directory of Open Access Journals (Sweden)

    Giuseppe Pizzo

    2012-01-01

    Full Text Available Epidemiological studies have shown a linear relationship between airborne particulates and effects on human health. This study examines the risk that can be run by populations which are exposed to significant pollutant sources such as excavation in urban areas for renovation work. The health risk assessment methodology defined by the WHO air quality guidelines for Europe was applied to assess the possible health effects from exposure to PM10 for daily average concentrations greater than 50 µg m-3 and greater than 100 µg m-3 for three consecutive days and for increments of 10 µg m-3. The methodology adopted was based on daily average concentrations detected in a monitoring period of 8 months in different areas in and around the excavation work site with concentrations of PM10 below or above the legal limits. The exposure estimates calculated show that urban areas with excavation work sites are damaging to human health, due to the large number of people exposed and the already high concentrations of PM10 within cities. It was found that even when in parts of a work site legal limits of PM10 are not exceeded, adverse effects on health still occur. The application, in the present study, of the WHO methodology of exposure assessment indicates the risk ratio for effects on human health. Epidemiological data do not suggest exposition threshold values below which there are no adverse health effects. It is not possible to identify a PM10 concentration value, attributable to an additional source, such as an excavation work site, below which there is no damage. The purpose of this research is therefore to stimulate debate and decisions by public authorities, in order to deepen knowledge and to address issues related to airborne particulates.

  5. Trace elements associated with atmospheric particulate matter in the Upper Hunter Valley, NSW, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Farhana, Biswas Karabi [Bangladesh Institute of Research and Rehabilitation in Diabetes, Endcrine and Metabolic Disorders (BIRDEM), Research Division, Dhaka (Bangladesh); Bridgman, Howard [University of Newcastle, Dept. of Geography and Environmental Science (Australia); McOrist, Gordon [Australian Nuclear Science and Technology Organization (ANSTO), Environment Division, Menai (Australia)

    2002-05-01

    Airbone particulate matter, both total suspended particulate (TSP) and PM{sub 10}, and soil samples from four sampling sites were collected in the Upper Hunter Valley in NSW, Australia in early 1999. This study aimed to measure relative amounts of particulates during this period, and identify associated trace elements and their potential sources. Particulates were analyzed for trace elements using Neutron Activation Analysis technique. Total concentrations ({mu}g m{sup -3}) of TSP and PM{sub 10} varied within 7-135 and 4-19, respectively, among sampling sites. Mean concentrations (ng m{sup -3}) of iron, barium, zinc, lanthanum, bromine, chromium, rubidium, neodymium, cobalt, hafnium, cerium, thorium, uranium, scandium and cesium varied within 2042-2867, 529-1500, 28-40, 5.45-11.44, 5.3-20.6, 10.4-12.7, 4.14-11.56, 5.4-8.1, 1.16-1.98, 1.76-2.17, 0.71-3.9, 0.21-0.50, 0.29-0.84, 0.28-1.23, and 0.18-0.30, respectively. Significant correlation between sites for many elements suggested some common source(s) of some elements. The enrichment levels of the trace elements identified some crustal materials as a predominant source of particulate matter. (author)

  6. Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data.

    Science.gov (United States)

    Onderka, Milan; Pekárová, Pavla

    2008-07-01

    Alternations in river channel morphology result in a disturbed natural transport of suspended particulate matter (SPM). Suspended particulate matter serves as a transport medium for various pollutants, e.g. heavy metals. It is therefore important to understand how artificial obstructions alter the natural transport of suspended matter. Measurements of SPM in rivers are traditionally carried out during in situ sampling campaigns, which can provide only a limited view of the actual spatial distribution of suspended matter over large distances. Several authors have studied how space-borne remote sensing could be used for mapping of water quality in standing waters, but with only little attention paid to rivers. This paper describes the methodology how a Landsat ETM image was used to map the spatial patterns of SPM in the Slovak portion of the Danube River. Results of our investigation reveal that the Danube River in Slovakia exhibits gradual longitudinal decrease in concentrations of SPM. Based on a strong relationship between the Landsat near-infrared band (TM4) and field measurements, we developed a map of suspended particulate matter in the Danube River with a standard error (SE) of 2.92 mg/L. This study aims to show how archived satellite data and historical water quality data can be used for monitoring of SPM in large rivers. A methodology describing the minimum samples required for sufficiently accurate results is discussed in this paper also.

  7. Associations between particulate matter elements and early-life pneumonia in seven birth cohorts: Results from the ESCAPE and TRANSPHORM projects

    NARCIS (Netherlands)

    Fuertes, E.; MacIntyre, E.; Agius, R.; Beelen, R.; Brunekreef, B.; Bucci, S.; Cesaroni, G.; Cirach, M.; Cyrys, J.; Forastiere, F.; Gehring, U.; Gruzieva, O.; Hoffmann, B.; Jedynska, A.; Keuken, M.; Klümper, C.; Kooter, I.; Korek, M.; Krämer, U.; Mölter, A.; Nieuwenhuijsen, M.; Pershagen, G.; Porta, D.; Postma, D.S.; Simpson, A.; Smit, H.A.; Sugiri, D.; Sunyer, J.; Wang, M.; Heinrich, J.

    2014-01-01

    Evidence for a role of long-term particulate matter exposure on acute respiratory infections is growing. However, which components of particulate matter may be causative remains largely unknown. We assessed associations between eight particulate matter elements and early-life pneumonia in seven birt

  8. A preliminary analysis of the inhalable particulate lead in the ambient atmosphere of the city of Riyadh, Saudi Arabia

    Science.gov (United States)

    El-Shobokshy, M. S.

    The inhalable particles in the ambient atmosphere in the city of Riyadh have been sampled during the working day (7 a.m.-4 p.m.) over the test period. Samples were taken every 3 h using an Automatic Dichotomous Sampler placed in the College of Engineering, King Saud University at a height of 25 m above the ground. A weather station 3 m above the sampler was used to record (simultaneously) the meteorological data. These data were used to determine the wind rose and the hourly standard deviation of the horizontal wind direction, which, in turn, gives the hourly atmospheric stability class. The particulates in each size range: coarse (2.5-15 μm) and fine (concentration of lead during the working day is about twice the international standards. The concentration decreases during the weekends (Thursday and Friday) due to the reduction in traffic loads, and decreases to a minimum on Fridays when most of industrial activities are stopped. More than 70% of the lead fluxes passed by the sampler are associated with wind from E to S which is the direction of the city center and the industrial site of Riyadh.

  9. Indoor air pollution by particulate matter; Ryushijo busshitsu ni yoru osen

    Energy Technology Data Exchange (ETDEWEB)

    Irie, T. [Shinshu Univ., Nagano (Japan). Faculty of Education

    1995-07-31

    This paper explains the standards and the purport of the law for maintenance of sanitation in buildings, the outbreak of sickness relating to the sick-building syndrome and its countermeasures, etc., in connection with particulate matters in the indoor environment. The law of 1970 specified 0.15mg/m{sup 3} as the standard of indoor maintenance control for suspended particulate matters. As a number of data were subsequently accumulated, however, it was revealed that tobacco smoke particles were the very cause of the indoor particulate pollution though it was unpredicted at the beginning. As a result, it led to the development of high level filters, improvement of air conditioning operation, measures for smoking, and so on, for which the regulation of 0.15mg/m{sup 3} has been believed to be correct after all. The most frequently disqualified item was particulate matters at the initial enforcement of the law, but the moisture standard has been ranked first in recent years. The problems of tobacco smoke, asbestos and allergens are particularly to be watched among many problems involved. 10 refs., 2 figs., 3 tabs.

  10. Ambient particulate matter induces an exacerbation of airway inflammation in experimental asthma: role of interleukin-33.

    Science.gov (United States)

    Shadie, A M; Herbert, C; Kumar, R K

    2014-08-01

    High levels of ambient environmental particulate matter (PM10 i.e. interleukin (IL)-33 in airway tissues and an increased concentration of IL-33 in bronchoalveolar lavage fluid. Administration of a monoclonal neutralizing anti-mouse IL-33 antibody prior to delivery of particulates significantly suppressed the inflammatory response induced by Sydney PM10, as well as the levels of associated proinflammatory cytokines in lavage fluid. We conclude that IL-33 plays a key role in driving airway inflammation in this novel experimental model of an acute exacerbation of chronic allergic asthma induced by exposure to PM10.

  11. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  12. Hydrodynamic Selection of Particulate Matter Using Pinched-flow Fractionation

    Science.gov (United States)

    Ashley, John F.

    Microfluidic devices have significant potential for use in the separation and isolation of particulates, based on their chemical or physical properties. Implementation of microfluidic devices in the separation of biological components has dramatic potential advantages; however, those advantages are accompanied by equally difficult challenges relating to fabrication, consistency, robustness, and reliability of the device. One technique used to achieve particulate separations employing a microfluidic device based on the size of the particles is pinched-flow fractionation (PFF). PFF provides a simple, efficient methodology for size-based particle separation using fluid mechanics principles. We developed techniques for constructing microfluidic devices having highaspect- ratio features, quality and fidelity. In this work, a modified, confocalmicroscopy technique was developed to quantitatively determine feature quality. Microfluidic devices and independent, photolithographically-defined features were constructed using thiol-ene resins by means of a soft-lithography technique; contact liquid photolithographic polymerization (CLiPP). Resin cure times and initiator-toinhibitor ratio were found to have a strong impact on feature quality. A correlation between aspect ratio and feature thickness for thiol-enes was established, as well. Combining the optimization technique with thiol-ene materials led to the formulation of a photopolymerizable resin capable of fabricating high quality, highaspect- ratio microfluidic channels that were used to fabricate a PFF device. The final aim of this dissertation was to utilize moving-frame boundary-Integral method (MFBIM) developed in this work to assist in the design of a microfluidic iv device with enhanced separation efficiency. Previous studies of PFF devices have shown that channel geometry, flow rate and particle size all affect particle trajectories, and hence, separation efficiency. To study the effects of channel geometry

  13. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 microg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 microg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 x 10-5/m), diesel cars (7.9 x 10-5/m), and diesel buses (7.4 x 10-5/m) and lowest along the low-traffic bicycle route (4.9 x 10-5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  14. Differences in the Chemical Composition of the Particulate Phase of Inhaled and Exhaled Cigarette Mainstream Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available In this study, a comparison between the chemical composition of the particulate-phase of exhaled smoke and that of smoke generated with a smoking machine has been performed. For this purpose, eight human subjects smoked a common Lights (10.6 mg ‘tar’/cig commercial cigarette and the exhaled particulate-phase smoke from three cigarettes was collected on Cambridge pads for each smoker. The smoke collection from the human subjects was vacuum assisted. The cigarette butts from the smokers were collected and analyzed for nicotine. The machine smoking was performed with a Borgwaldt RM20 CSR smoking machine working under conditions recommended by the U.S. Federal Trade Commission (FTC. The nicotine levels for the cigarette butts from the smokers were used to normalize the level of exhaled smoke condensate to that of the FTC smoking conditions. The smoke condensates from exhaled smoke as well as that from the machine smoking were analyzed by a gas chromatographic technique with mass spectral peak identification. The retention efficiency for 160 compounds was calculated from the ratio of the compound peak areas in the exhaled smoke (normalized by the corresponding butt nicotine level vs. the areas of the corresponding peaks from the chromatogram of the smoke generated by the smoking machine. In the calculation of the results, it was assumed that the composition of mainstream smoke remains practically constant at different smoking regimes. All compounds found in the machine-generated smoke were also present in the exhaled smoke, but at different levels. About one third of the compounds were retained more than 66% by the smoker. Another third of the compounds were retained between 33% and 66%, and the rest of the compounds were retained very little from the mainstream particulate-phase of the cigarette smoke. The compounds retained more than 66% were in general compounds with lower molecular weight and with higher water solubility, which eluted first

  15. [Analyzer Design of Atmospheric Particulate Matter's Concentration and Elemental Composition Based on β and X-Ray's Analysis Techniques].

    Science.gov (United States)

    Ge, Liang-quan; Liu, He-fan; Zeng, Guo-qiang; Zhang, Qing-xian; Ren, Mao-qiang; Li, Dan; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Monitoring atmospheric particulate matter requires real-time analysis, such as particulate matter's concentrations, their element types and contents. An analyzer which is based on β and X rays analysis techniques is designed to meet those demands. Applying β-ray attenuation law and energy dispersive X-ray fluorescence analysis principle, the paper introduces the analyzer's overall design scheme, structure, FPGA circuit hardware and software for the analyzer. And the analyzer can measure atmospheric particulate matters' concentration, elements and their contents by on-line analysis. Pure elemental particle standard samples were prepared by deposition, and those standard samples were used to set the calibration for the analyzer in this paper. The analyzer can monitor atmospheric particulate matters concentration, 30 kinds of elements and content, such as TSP, PM10 and PM2.5. Comparing the measurement results from the analyzer to Chengdu Environmental Protection Agency's monitoring results for monitoring particulate matters, a high consistency is obtained by the application in eastern suburbs of Chengdu. Meanwhile, the analyzer are highly sensitive in monitoring particulate matters which contained heavy metal elements (such as As, Hg, Cd, Cr, Pb and so on). The analyzer has lots of characteristics through technical performance testing, such as continuous measurement, low detection limit, quick analysis, easy to use and so on. In conclusion, the analyzer can meet the demands for analyzing atmospheric particulate matter's concentration, elements and their contents in urban environmental monitoring.

  16. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue.

    Science.gov (United States)

    Abbas, Yasmine; Azzazy, Hassan M E; Tammam, Salma; Lamprecht, Alf; Ali, Mohamed Ehab; Schmidt, Annette; Sollazzo, Silvio; Mathur, Sanjay

    2016-10-01

    Lung cancer, the deadliest solid tumor among all types of cancer, remains difficult to treat. This is a result of unavoidable exposure to carcinogens, poor diagnosis, the lack of targeted drug delivery platforms and limitations associated with delivery of drug to deep lung tissues. Development of a non-invasive, patient-convenient formula for the targeted delivery of chemotherapeutics to cancer in deep lung tissue is the aim of this study. The formulation consisted of inhalable polyvinylpyrrolidone (PVP)/maltodextrin (MD)-based microparticles (MPs) encapsulating chitosan (CS) nanoparticles (NPs) loaded with either drug only or drug and magnetic nanoparticles (MNPs). Drug release from CS NPs was enhanced with the aid of MNPs by a factor of 1.7 in response to external magnetic field. Preferential toxicity by CS NPs was shown towards tumor cells (A549) in comparison to cultured fibroblasts (L929). The prepared spray freeze dried (SFD) powders for CS NPs and CS MNPs were of the same size at ∼6μm. They had a fine particle fraction (FPF≤5.2μm) of 40-42% w/w and mass median aerodynamic diameter (MMAD) of 5-6μm as determined by the Next Generation Impactor (NGI). SFD-MPs of CS MNPs possess higher MMAD due to the high density associated with encapsulated MNPs. The developed formulation demonstrates several capabilities including tissue targeting, controlled drug release, and the possible imaging and diagnostic values (due to its MNPs content) and therefore represents an improved therapeutic platform for drug delivery to cancer in deep lung tissue.

  17. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  18. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter.

    Science.gov (United States)

    Velali, Ekaterini; Papachristou, Eleni; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Argyrou, Nikoleta; Tsourouktsoglou, Theodora; Lialiaris, Stergios; Constantinidis, Alexandros; Lykidis, Dimitrios; Lialiaris, Thedore S; Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini

    2016-11-01

    Three organic fractions of different polarity, including a non polar organic fraction (NPOF), a moderately polar organic fraction (MPOF), and a polar organic fraction (POF) were obtained from size-segregated (3 μm) urban particulate matter (PM) samples, and tested for cytotoxicity and genotoxicity using a battery of in vitro assays. The cytotoxicity induced by the organic PM fractions was measured by the mitochondrial dehydrogenase (MTT) cell viability assay applied on MRC-5 human lung epithelial cells. DNA damages were evaluated through the comet assay, determination of the poly(ADP-Ribose) polymerase (PARP) activity, and the oxidative DNA adduct 8-hydroxy-deoxyguanosine (8-OHdG) formation, while pro-inflammatory effects were assessed by determination of the tumor necrosis factor-alpha (TNF-α) mediator release. In addition, the Sister Chromatid Exchange (SCE) inducibility of the solvent-extractable organic matter was measured on human peripheral lymphocyte. Variations of responses were assessed in relation to the polarity (hence the expected composition) of the organic PM fractions, particle size, locality, and season. Organic PM fractions were found to induce rather comparable Cytotoxicity and genotoxicity of PM appeared to be rather independent from the polarity of the extractable organic PM matter (EOM) with POF often being relatively more toxic than NPOF or MPOF. All assays indicated stronger mass-normalized bioactivity for fine than coarse particles peaking in the 0.97-3 and/or the 0.49-0.97 μm size ranges. Nevertheless, the air volume-normalized bioactivity in all assays was highest for the size range highlighting the important human health risk posed by the inhalation of these quasi-ultrafine particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    Science.gov (United States)

    Carter, Shannon E.

    within their total suspended and respirable regulatory categories are "inert" or nuisance, which infers that particles under this classification would not lead to any significant health problems. This is not the case with PM generated from a broiler poultry operation, which can carry with it a number of contaminants that have been proven to cause various health disorders from exposure. These classifications also apply to inhalable arsenic standards and are also questionable when determining whether arsenic concentrations in PM from a poultry operation are permissible. Arsenic oxidation state and speciation in PM10 and PM 2.5 was investigated using X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) spectroscopy. The results indicate that there is a mix of organic species present, as well as, oxidized As(V) and reduced As(III) in all samples analyzed. The main organic species found were in the form of Roxarsone, 4-hydroxy-3-aminophenylarsonic acid (HAPA), and dimethylarsinic acid (DMA(V)). This indicates that much of the organic form that was originally administered has degraded into more toxic by-products that are then becoming incorporated into airborne particulate matter.

  20. Acute effects of particulate matter on respiratory diseases, symptoms and functions:. epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP)

    Science.gov (United States)

    Neuberger, Manfred; Schimek, Michael G.; Horak, Friedrich; Moshammer, Hanns; Kundi, Michael; Frischer, Thomas; Gomiscek, Bostjan; Puxbaum, Hans; Hauck, Helger; Auphep-Team

    To examine hypotheses regarding health effects of particulate matter, we conducted time series studies in Austrian urban and rural areas. Of the pollutants measured, ambient PM 2.5 was most consistently associated with parameters of respiratory health. Time series studies applying semiparametric generalized additive models showed significant increases of respiratory hospital admissions (ICD 490-496) at age 65 and older. The early increase of 5.5% in Vienna at a lag of 2 days in males and of 5.6% per 10 μg/m 3 at a lag of 3 days in females was not observed in a nearby rural area. Another increase of respiratory admissions (mainly COPD) was observed after a lag of 10-11 days. A time series on a panel of 56 healthy preschool children showed a significant impact of the carbonaceous fraction of PM 2.5 on tidal breathing pattern assessed by inductive plethysmography. In repeated oscillometric measurements of respiratory resistance in 164 healthy elementary school children not only immediate responses to fine particulates were found but also latent ones, possibly indicating inflammatory changes in airways. It may be speculated that the improvements of urban air quality prevented measurable effects on respiratory mortality. More sensitive indicators, however, still show acute impairments of respiratory function and health in elderly and children which are associated with fine particulates and subfractions related to motor traffic.

  1. Analysis of concentration levels of particulate matter (PM10, total suspended particulates and black smoke in the city of Zrenjanin

    Directory of Open Access Journals (Sweden)

    Vujić Bogdana B.

    2010-01-01

    Full Text Available Air quality monitoring on the territory of AP Vojvodina was initiated in mid 90s. During the last decade of the 20th century the development of the air quality monitoring in Serbia didn’t keep up with the pace of the other countries in the region due to political isolation and severe economic crisis. Monitoring of the particular pollutants was conducted unsystematically and sporadically. Data presented in this paper were obtained on the territory of the city of Zrenjanin, which represents typical agglomeration in the region in regard to its geographical location, population, level of industry development and the presence of natural gas as energy product in the remote and domestic heating system of residential objects. Available data on the concentration levels of PM10 (particulate matter with aerodynamic diameter less than 10 μm, TSP (total suspended particulates and BS (black smoke during the period of 2005-2007 (three cold and three warm seasons have been used in this work in order to carry out analysis and comparison of the daily concentration levels of PM10, TSP and BS and their seasonal variation.

  2. Particulate Matter and Respiratory Symptoms among Adults Living in Windhoek, Namibia: A Cross Sectional Descriptive Study

    Directory of Open Access Journals (Sweden)

    Ndinomholo Hamatui

    2017-01-01

    Full Text Available This study aimed to estimate the prevalence of respiratory symptoms and to assess respiratory health risks associated with Particulate Matter (PM exposure among the residents of Windhoek, Namibia. Objectives: To measure particulate pollution concentration in Windhoek through monitoring of particulate matter concentration and to identify any associations between particulate pollution, individual location, and respiratory health among the Windhoek resident’s. Methods: an adapted standardized self-administered questionnaire was used to collect respiratory health related data as well as previous exposure, while PM monitoring was done using the ASTM (American Standard Test Method D1739 reference method. Results: A high prevalence was observed for cough (43%, breathlessness (25%, and asthma (11.2%. PM was found to be a significant risk factor for episodes of coughing and phlegm, while high PM exposure category had an increased odds ratio (OR for episodes of phlegm and cough (OR: 2.5, 95% CI (95% confidence intervals: 0.8–8.0. No association was observed between location and respiratory health outcomes. Conclusions: The study found high levels of PM concentration across all Windhoek suburbs which were above the German, American, and Environmental Protection Agency (EPA. Enactment of legislation relating to the control and monitoring of PM related emissions at the point of generation is required at both a country and city level.

  3. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  4. Development of a Low-Cost Particulate Matter Monitor

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  5. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  6. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F., E-mail: ferufv@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and {sup 57}Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. {sup 57}Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  7. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes.

    Science.gov (United States)

    Radzi bin Abas, M; Oros, Daniel R; Simoneit, B R T

    2004-05-01

    The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, alpha- and beta-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and beta-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas.

  8. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes

    Energy Technology Data Exchange (ETDEWEB)

    Abas, M. Radzi bin [Malaya Univ., Dept. of Chemistry, Kuala Lumpur (Malaysia); Oros, Daniel R.; Simoneit, B.R.T. [Oregon State Univ., Environmental and Petroleum Geochemistry Group, Corvallis, OR (United States)

    2004-05-01

    The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, {alpha}- and {beta}-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and {beta}-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas. (Author)

  9. Industrial Responsibility in the Emission of Particulate Matter in the Atmosphere

    Science.gov (United States)

    de Souza, Paulo A.; Rodrigues, O. D.; Morimoto, T.; Garg, Vijayendra K.

    1998-12-01

    The present investigation consists of the application of several techniques such as Mössbauer spectroscopy, X-ray diffraction, atomic absorption, electron probe micro analysis (EPMA), and thermo-gravimetric analysis, to the identification of the particulate matter in atmospheric aerosols in the metropolitan region of Vitória (MRV), ES, Brazil. The main sources of particulate matter and its emission characteristics within the steel industry have been studied to identify its contribution to air particles in Vitória region. The analysis reveals the total amount of industrial emission of the iron containing components in the atmosphere. The presence of goethite, hematite, magnetite, pyrite, silicates, marine chloride and total absence of heavy metals could be confirmed.

  10. Organ specific metabolic activation of five extracts of indoor and outdoor particulate matter.

    Science.gov (United States)

    van Houdt, J J; Coenen, P W; Alink, G M; Boleij, J S; Koeman, J H

    1988-01-01

    In this study liver and lung homogenates of untreated and Aroclor 1254-pretreated rats (Wistar) and mice (Swiss) were compared for their P-450 content and their capacity to activate extracts of airborne particulate matter, sampled indoors and outdoors. Results show that in addition to liver, lung homogenates of rat (Wistar) and mouse (Swiss) are also able to activate extracts of airborne particulate matter in a comparative way. Uninduced liver and lung homogenates showed only minor differences in activation capacity in the metabolism of airborne particles. In contrast to liver homogenates, Aroclor 1254 pretreatment of test animals did not give strong induction of metabolic activation capacity of lung homogenates. P-450 content was observed in all liver and lung homogenates of mouse and rat and in human lung homogenates. The results obtained in this study suggest that the respiratory tract may be an important site for in vivo bioactivation of respirable particles.

  11. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants

    OpenAIRE

    Gawrońska, H.; Bakera, B.

    2014-01-01

    Higher plants, including spider plants, are able to take up and degrade/detoxify various pollutants in the air. Although nearly 120 plant species have been tested for indoor air phytoremediation, to the best of the authors’ knowledge, data on particulate matter (PM) phytoremediation from indoor air are not yet available in literature. This work determined the ability of spider plants to take up PM, one of the most harmful pollutants to man, in the indoor air of five rooms housing different ac...

  12. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...... substrates and mixed populations. Most mathematical models use a simple one-step process to describe hydrolysis. In this article, mechanisms of hydrolysis and mathematical models to describe these processes in wastewater treatment processes are reviewed. Experimental techniques to determine mechanisms...

  13. Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion

    OpenAIRE

    2009-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contra...

  14. Genotoxicity and Mutagenicity of Suspended Particulate Matter of River Water and Waste Water Samples

    Directory of Open Access Journals (Sweden)

    Georg Reifferscheid

    2002-01-01

    Full Text Available Suspended particulate matter of samples of river water and waste water treatment plants was tested for genotoxicity and mutagenicity using the standardized umu assay and two versions of the Ames microsuspension assay. The study tries to determine the entire DNA-damaging potential of the water samples and the distribution of DNA-damaging substances among the liquid phase and solid phase. Responsiveness and sensitivity of the bioassays are compared.

  15. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress

    OpenAIRE

    2009-01-01

    Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM) component and that in urban areas, the smaller particles could be more pathogenic, as a result of their gre...

  16. Integrated assessment and management of ambient particulate matter: International perspective and current research in Serbia

    Directory of Open Access Journals (Sweden)

    Bartonova Alena

    2012-01-01

    Full Text Available Air pollution mitigation is a necessity in Serbia, due to its high levels of criteria pollutants in ambient environment. Successful implementation of mitigation measures requires access to sufficient information from national research, and well running and efficient local participatory processes. To support air pollution mitigation in the West Balkan region, the WeBIOPATR project started a series of bi-annual conferences in 2007. They bring together an inter-disciplinary research community and local and national administrations from Serbia and its neighborhood, to present research results from Serbia and countries all over the world, and to share knowledge and best practices of mitigation. The conferences promote research that may support integrated assessment of particulate matter, and further refinement of the “Pressures-State-Impact“ (PSI part of the “Drivers-Pressures-State-Impact-Response“ (DPSIR framework. Integrated approach needs to be underpinned by solid disciplinary research covering e.g. air quality monitoring technologies, atmospheric and further ambient composition, atmospheric modeling, biological effects and human health. WeBIOPATR conferences report on recently performed studies of particulate matter in Serbia and abroad. Through the breadth of subjects and audience, they bring together a wide inter-disciplinary and cross-sectoral expertise in support of translation of research to practice. They also allow to present examples of successful mitigation achieved with the help of strong local participatory environmental governance, demonstrating the increasing recognition of the need to involve both public and private actors. This paper gives the main features of a full chain approach and elements of integrated approach to particulate matter research, summarizes the proceedings of the 3rd WeBIOPATR conference, and in addition, reviews the results of particulate matter monitoring and source identification studies in Serbia

  17. Evaluation of a Portable Photometer for Estimating Diesel Particulate Matter Concentrations in an Underground Limestone Mine

    OpenAIRE

    Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; David B. Kittelson

    2010-01-01

    A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated wit...

  18. Heavy metal composition of particulate matter in rural and urban residential built environments in Pakistan

    OpenAIRE

    Nasar, ZA; Colbeck, I.; Ali, Z; Ahmed, S

    2015-01-01

    Heavy metals in outdoor and indoor airborne particulate matter (PM) and dust in different residential built environmentsat two rural and one urban site in Pakistan were analysed. An eight stage non-viable impactor (Thermo Fisher Scientific Inc., USA) loaded with EMP 2000 glass microfiber filter papers (Whatman, England) was used to collect airborne PM.The indoordust samples (settled dust) were collected from different indoor surfaces (floor, cupboards) in living rooms and kitchens...

  19. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  20. Study of Hydrothermal Particulate Matter from a Shallow Venting System, offshore Nayarit, Mexico

    Science.gov (United States)

    Ortega-Osorio, A.; Prol-Ledesma, R. M.; Reyes, A. G.; Rubio-Ramos, M. A.; Torres-Vera, M. A.

    2001-12-01

    A shallow (30 ft) hydrothermal site named ``Cora'' (after the indigenous people thereby) was surveyed and sampled throughout direct observation with SCUBA diving during November 25 to December 4, 2000. A total of 10 dives were conducted in order to obtain representative samples from an 85oC fluid source of approximately 10 cm in diameter. Inherent difficulties to the sampling, such as poor visibility and strong bottom currents were overcome and samples of hydrothermal fluid, gas, rocks, and particulate matter were collected directly from the vent. Water samples and hydrothermal fluid were taken with a homemade 1 l cylindrical bottles of two lines by flushing in from the bottom for about ten minutes until total displacement of the seawater; similar procedure was carried out for gas samples. Particulate matter was collected with 0.4mm polycarbonate membrane filters and preserved in a desiccators at a fridge temperature until analysis onshore. Preliminary description of the rock samples suggest that pyritization is the main mineralisation process. Filters containing hydrothermal particulate matter were surveyed under the scanning electron microscope in order to identify the nature (inorganic and organic), as well as the chemistry of the particles. SEM examination revealed the presence of particles of different kind that suggests high degree of mixing and re-suspension: Planctonic organisms and organic matter appeared to be abundant; 25 micron particles of different carbonate faces and inorganic particles of silicates were also recognized. Distinctive euhedral colloidal grains were identified as the resulting process of precipitation from the solution. Microanalysis of iron and sulfur content of 10 micron particles indicate a very likely sulphide mineral face (greigite); 8 micron cinnabar particles are consistent with the mineralization conditions, observed as well in the inner walls of the vent. Analyses of dissolved and particulate trace metals are still ongoing at

  1. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules

    OpenAIRE

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy; Ashley, Kevin

    2014-01-01

    An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were ...

  2. Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus.

    Science.gov (United States)

    Liu, Cuiqing; Bai, Yuntao; Xu, Xiaohua; Sun, Lixian; Wang, Aixia; Wang, Tse-Yao; Maurya, Santosh K; Periasamy, Muthu; Morishita, Masako; Harkema, Jack; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay

    2014-05-30

    Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (liver of the KKay mice. Concentrated ambient PM2.5 exposure impairs energy metabolism, concomitant with abnormalities in glucose homeostasis, increased inflammation in insulin responsive organs, brown adipose inflammation and results in imbalance in circulating leptin/adiponectin levels in a genetically susceptible diabetic model. These results provide additional insights into the mechanisms surrounding air pollution mediated susceptibility to Type II DM.

  3. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    OpenAIRE

    Elizabeth Huerta-García; Angélica Montiél-Dávalos; Ernesto Alfaro-Moreno; Gisela Gutiérrez-Iglesias; Rebeca López-Marure

    2013-01-01

    Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture...

  4. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    OpenAIRE

    2013-01-01

    The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF) spectroscopic technique in Germany. Spatial and temporal variations of...

  5. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review

    Science.gov (United States)

    He, Mike Z.; Zeng, Xiange; Zhang, Kaiyue; Kinney, Patrick L.

    2017-01-01

    Background: Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM2.5) concentrations in different regions of China from 2005 to 2016. Methods: We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI). We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results: The mean (SD) PM2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27) μg/m3 for all geographic regions and 71.99 (30.20) μg/m3 for all economic regions. A one-way ANOVA shows statistically significant differences in PM2.5 concentrations between the various geographic regions (F = 14.91, p pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM2.5 estimates. PMID:28216601

  6. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  7. Characterization of particulate matter concentrations and bioaerosol on each floor at a building in Seoul, Korea.

    Science.gov (United States)

    Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul

    2015-10-01

    Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria.

  8. Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model.

    Science.gov (United States)

    Liu, Qinghai; Babadjouni, Robin; Radwanski, Ryan; Cheng, Hank; Patel, Arati; Hodis, Drew M; He, Shuhan; Baumbacher, Peter; Russin, Jonathan J; Morgan, Todd E; Sioutas, Constantinos; Finch, Caleb E; Mack, William J

    2016-01-01

    This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles, impacted primarily by traffic emissions. Re-aerosolized nPM or filtered air was then administered to mice through whole body exposure chambers for forty-five cumulative hours. Exposed mice then underwent middle cerebral artery occlusion/ reperfusion. Following cerebral ischemia/ reperfusion, mice exposed to nPM exhibited significantly larger infarct volumes and less favorable neurological deficit scores when compared to mice exposed to filtered air. Mice exposed to nPM also demonstrated increases in markers of inflammation and oxidative stress in the region of the ischemic core. The findings suggest a detrimental effect of urban airborne particulate matter exposure in the setting of acute ischemic stroke.

  9. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  10. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  11. Lipid composition in particulate and dissolved organic matter in the Delaware Estuary: Sources and diagenetic patterns

    Energy Technology Data Exchange (ETDEWEB)

    Mannino, A.; Harvey, H.R. [Univ. of Maryland Center for Environmental Science, Solomons, MD (United States). Chesapeake Biological Lab.

    1999-08-01

    Dissolved organic matter (DOM) was isolated from surface waters of Delaware Bay along a transect from freshwater to the coastal ocean and fractionated by tangential flow ultrafiltration into high (1--30 kDa; HDOM) and very high (30 kDa--0.2 {micro}m; VHDOM) nominal molecular mass fractions. Carbon content, stable carbon isotopes, and lipid composition were measured for each DOM fraction, and particles collected in parallel. Lipids, excluding hydrocarbons, comprised up to 0.33% of HDOM organic carbon, 1.6% of VHDOM carbon, and 10% of POC, the majority of which were fatty acids. Although lipids comprised a small fraction of HDOM, fatty acids and sterols provided valuable information on the origins of DOM. Molecular composition of particulate and dissolved lipids and bulk stable carbon isotopes demonstrated differences in organic sources along the estuarine gradient with distinct terrestrial signals in the river and turbid middle estuary and an algal signal in the lower estuary and coastal ocean. Both particulate organic matter and VHDOM samples were enriched in lipids on a carbon basis compared to the HDOM fraction, which suggests that the HDOM fraction was less labile than particulate organic matter or VHDOM. Selective degradation of labile lipids by the microbial community can account for the depletions of unsaturated fatty acids, sterols, and phytol within HDOM relative to particles.

  12. In vitro estrogenicity of ambient particulate matter: contribution of hydroxylated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wenger, Daniela; Gerecke, Andreas C; Heeb, Norbert V; Schmid, Peter; Hueglin, Christoph; Naegeli, Hanspeter; Zenobi, Renato

    2009-04-01

    Atmospheric particulate matter (PM1) was collected at an urban and a rural site in Switzerland during a hibernal high air pollution episode and was investigated for estrogenicity using an estrogen-sensitive reporter gene assay (ER-CALUX). All samples that were tested induced estrogen receptor-mediated gene expression in T47D human breast adenocarcinoma cells. Observed estrogenic activities corresponded to 17beta-estradiol (E2) CALUX equivalent concentrations ranging from 2 to 23 ng E2-CEQ per gram of PM1 (particulate matter of 2-hydroxyphenanthrene > 1-hydroxypyrene > 2-hydroxynaphthalene > 1-hydroxynaphthalene. Three of these hydroxy-PAHs, namely 2-hydroxyphenanthrene, 2-hydroxynaphthalene and 1-hydroxynaphthalene, were detected in all PM1 extracts. However, they contributed only 0.01-0.2% to the overall estrogenic activity. Hence, mainly other estrogenic compounds not yet identified by chemical analysis must be responsible for the observed activity. The temporal trend of PM1 estrogenicity at the urban and rural site, respectively, was compared with the time course of several air pollutants (NO2, NO, SO2, O3, CO) and meteorological parameters (temperature, humidity, air pressure, solar irradiation, wind velocity). However, specific emission sources and formation processes of atmospheric xenoestrogens could not be elucidated. This study showed that ambient particulate matter contains compounds that are able to interact with estrogen receptors in vitro and potentially also interfere with estrogen-regulated pathways in vivo.

  13. Does the composition of streamwater colloidal and particulate matter change during monsoon storms?

    Science.gov (United States)

    Prescott-Smith, J.; Pohlmann, M. A.; Perdrial, J. N.; Perdrial, N.; Troch, P. A.; Chorover, J.

    2012-12-01

    Streams draining mountain catchments are an important pathway for carbon and weathering products to leave the critical zone (CZ). During intense events such as North American monsoon related storms, shallow flow paths may dominate and introduce soil-derived particulate organic matter (POM), mineral particles and organo-mineral heteroaggregates, into the streams. However, it is not yet well understood how the composition of colloidal and particulate matter (PM) changes during the storm-fed hydrograph. We hypothesized that during small, low intensity storms (small hydrograph response) both organic and organo-mineral aggregates will dominate the suspended particulate load, and that during larger high intensity storms (distinct rise of stream water levels) there will be a significant increase in organic polysaccharide particulates during the rising limb and peak of the storm, with higher levels of minerals being re-introduced during the falling limb of the hydrograph. A headwater stream draining a small (1.3km2) watershed in the Santa Catalina Mountain Critical Zone Observatory (SCM-CZO) was sampled at high resolution (5 minute) intervals during monsoon storms, and solutions were cascade-filtered through polycarbonate filters of 8, 1.2, 0.4 and 0.025 μm pore size. The PM mass was determined and particles >8um were further analyzed using Fourier Transform Infrared (FTIR) microscopy. These qualitative spectral results were supplemented by the ultra-violet/visible and fluorescence spectra of the colloidal and dissolved (minerals and iii) OM-mineral aggregates. POM was most abundant and chemical functional group composition resembled that of the minerals were present in the particulate load (>8um) but not in the 8μm) mass per liter did not show a consistent trend of change over the course of the hydrograph. This suggests that the low intensity storm may not have moved enough particulate material into the stream to detect a shift in flow path using this method. Additional

  14. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    Science.gov (United States)

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  15. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  16. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  17. A Simplified and Rapid Screening Assay using Zebrafish to Assess Cardiac Effects of Air Pollution-derived Particulate Matter

    Science.gov (United States)

    Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...

  18. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    Science.gov (United States)

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  19. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  20. Can particulate organic matter reveal emerging changes in soil organic carbon?

    DEFF Research Database (Denmark)

    Simonsson, Magnus; Kirchmann, Holger; Magid, Jakob

    2014-01-01

    . Although organic matter in Fraction B had a higher intrinsic sensitivity to soil management, which was partly able to overcome the larger errors, we concluded that an observer would be more likely to detect changes by measuring total organic C and N, when monitoring decadal changes in C and N pools......This study assessed whether particulate organic matter (POM) in sand fractions, isolated by wet sieving after treatment with Na hexametaphosphate, can be a sensitive indicator of incipient changes in the content and composition of soil organic matter. In five long-term field experiments including....... This makes the investigated POM fractions less suitable as indicators for changes in soil C stocks. However, the C/N ratio of Fraction B showed a distinct signature of the history of organic matter input to the soil, which was absent in the C/N ratio of the total fine earth....

  1. From Source to City: Particulate Matter Concentration and Size Distribution Data from an Icelandic Dust Storm

    Science.gov (United States)

    Thorsteinsson, T.; Mockford, T.; Bullard, J. E.

    2015-12-01

    Dust storms are the source of particulate matter in 20%-25% of the cases in which the PM10health limit is exceeded in Reykjavik; which occurred approximately 20 times a year in 2005-2010. Some of the most active source areas for dust storms in Iceland, contributing to the particulate matter load in Reykjavik, are on the south coast of Iceland, with more than 20 dust storm days per year (in 2002-2011). Measurements of particle matter concentration and size distribution were recorded at Markarfljot in May and June 2015. Markarfljot is a glacial river that is fed by Eyjafjallajokull and Myrdalsjokull, and the downstream sandur areas have been shown to be significant dust sources. Particulate matter concentration during dust storms was recorded on the sandur area using a TSI DustTrak DRX Aerosol Monitor 8533 and particle size data was recorded using a TSI Optical Particle Sizer 3330 (OPS). Wind speed was measured using cup anemometers at five heights. Particle size measured at the source area shows an extremely fine dust creation, PM1 concentration reaching over 5000 μg/m3 and accounting for most of the mass. This is potentially due to sand particles chipping during saltation instead of breaking uniformly. Dust events occurring during easterly winds were captured by two permanent PM10 aerosol monitoring stations in Reykjavik (140 km west of Markarfljot) suggesting the regional nature of these events. OPS measurements from Reykjavik also provide an interesting comparison of particle size distribution from source to city. Dust storms contribute to the particular matter pollution in Reykjavik and their small particle size, at least from this source area, might be a serious health concern.

  2. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  3. Spatial Correlation Analysis between Particulate Matter 10 (PM10) Hazard and Respiratory Diseases in Chiang Mai Province, Thailand

    Science.gov (United States)

    Trang, N. Ha; Tripathi, N. K.

    2014-11-01

    Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in

  4. Behavior of different phosphorus species in suspended particulate matter in the Changjiang estuary

    Institute of Scientific and Technical Information of China (English)

    HE Huijun; Chen Hongtao; Yao Qingzhen; Qin Yanwen; MI Tiezhu; YU Zhigang

    2009-01-01

    Suspended particulate matter (SPM) collected in the Changjiang (Yangtze River) estuary in June 2006 was separated into five fractions via water elutriation: clay-very fine silt (63 μm). The SPM and fractionated particles were sequentially analyzed by a modified SEDEX sequential extraction method to obtain six species of phosphorus: exchangeable or loosely-sorbed P, organic P, Fe-bound P, authigenic P, detrital P and refractory P. The results indicated that all particulate phosphorus species except for detrital P were negatively correlated to particle size; a high detrital P content was found in coarse silt and very coarse silt. From the inside of the river mouth to the gate of the river mouth, organic P, Fe-bound P and refractory P in the suspended particles decreased and a higher amount of exchangeable P appeared around the gate of the river mouth. From the gate of the river mouth to the sea, exchangeable P and organic P in suspended particles increased distinctly. The total particulate P flux into the estuary from the Changjiang River was about 45.45×10~8 μmol/s during sampling. Of this, about 8.27×10~8 μmol/s was associated with the "truly suspended" fraction. The bio-available particulate P flux was about 13.58×10~8 μmol/s. Of this, about 4.24×10~8 μmol/s was transported by "truly suspended" particles.

  5. Particulate matter emissions from combustion of wood in district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [Delta Research Corporation

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  6. CHARACTERISTIC OF AIRBORNE PARTICULATE MATTER SAMPLES COLLECTED FROM TWO SEMI INDUSTRIAL SITES IN BANDUNG, INDONESIA

    Directory of Open Access Journals (Sweden)

    Diah Dwiana Lestiani

    2013-12-01

    Full Text Available Air particulate matter concentrations, black carbon as well as elemental concentrations in two semi industrial sites were investigated as a preliminary study for evaluation of air quality in these areas. Sampling of airborne particulate matter was conducted in July 2009 using a Gent stacked filter unit sampler and a total of 18 pairs of samples were collected. Black carbon was determined by reflectance measurement and elemental analysis was performed using particle induced X-ray emission (PIXE. Elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn and As were detected. Twenty four hour PM2.5 concentration at semi industrial sites Kiaracondong and Holis ranged from 4.0 to 22.2 µg m-3, while the PM10 concentration ranged from 24.5 to 77.1 µg m-3. High concentration of crustal elements, sulphur and zinc were identified in fine and coarse fractions for both sites. The fine fraction data from both sites were analyzed using a multivariate principal component analysis and for Kiaracondong site, identified factors are attributed to sea-salt with soil dust, vehicular emissions and biomass burning, non ferrous smelter, and iron/steel work industry, while for Holis site identified factors are attributed to soil dust, industrial emissions, vehicular emissions with biomass burning, and sea-salt. Although particulate samples were collected from semi industrial sites, vehicular emissions constituted with S, Zn and BC were identified in both sites.

  7. Changes to the structure of blood clots formed in the presence of fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Metassan, Sofian; Routledge, Michael N [Molecular Epidemiology Unit, Leeds Institute for Health, Genetics and Therapeutics, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT (United Kingdom); Ariens, Robert A S; Scott, D Julian, E-mail: umphsp@leeds.ac.u [Cardiovascular and Diabetes Research Division, Leeds Institute for Health, Genetics and Therapeutics, The LIGHT Laboratories, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-02-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  8. Indoor exposure to environmental cigarette smoke, but not other inhaled particulates associates with respiratory symptoms and diminished lung function in adults

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise L N; Sigsgaard, Torben

    2010-01-01

    Exposure to particulate matter (PM) can induce airway inflammation and exacerbation of asthma. However, there is limited knowledge about the effects of exposure to indoor sources of PM. We investigated the associations between self-reported exposure to indoor sources of PM and lower airway sympto...

  9. Source contributions to radiocesium contaminated particulate matter deposited in a reservoir after the Fukushima accident

    Science.gov (United States)

    Laceby, J. Patrick; Huon, Sylvain; Hayashi, Seiji; Onda, Yuichi; Evrard, Olivier

    2017-04-01

    The Fukushima nuclear accident resulted in the deposition of radiocesium over forested and rural landscapes northwest of the power plant. Although there have been several investigations into the dynamics of contaminated river sediment, less attention has been paid to the sources of deposited particulate matter in dams and reservoirs. In the Fukushima Prefecture, there are 10 significant dams and over a 1,000 reservoirs for both agricultural and surface water management. These reservoirs may have trapped a significant volume of radiocesium contaminated sediment, and understanding the sources of this material is important for the ongoing management of contamination in the region. Accordingly, the source of contaminated particulate matter (i.e. cultivated, forest and subsoils) deposited in the Mano Dam reservoir, Japan, was investigated with the analyses and modelling of carbon and nitrogen stable isotope ratios, total organic carbon and total nitrogen concentrations. Four sediment cores with lengths ranging from 29-41 cm were sampled in the Mano Dam, approximately 40 km northwest of the FDNPP. Source samples were taken from 46 forest soils, 28 cultivated soils and 25 subsoils in the region. Carbon-nitrogen parameters were analysed on all samples and a concentration-dependent distribution modelling approach was used to apportion source contributions. Three of the four cores sampled in the Mano Dam reservoir had distinct radiocesium peaks representative of the initial post-accident wash-off phase. Cultivated sources were responsible for 48% (SD 7%) of the deposited fine particulate matter in the three cores with the radiocesium peaks, whereas forests were modelled to contribute 27% (SD 6%) and subsoil sources 25% (SD 4%). Ongoing decontamination of cultivated sources in the Fukushima region should result in a decrease of contaminated matter deposited in reservoirs. More research is required to understand the potential ongoing source contributions from forested

  10. Chlorophyll a in suspended particulate matter of the Caspian Sea as an indicator of biogenic sedimentation conditions

    Science.gov (United States)

    Kravchishina, M. D.; Klyuvitkin, A. A.; Pautova, L. A.; Politova, N. V.; Lein, A. Yu.; Lisitzin, A. P.

    2015-11-01

    The conditions of biogenic sedimentation (concentration of chlorophyll a (chl a), particulate organic carbon (POC), and its isotope composition (δ13CPOC)), as well as the quantitative characteristics of phytoplankton, and the total concentration of suspended particulate matter have been studied in the Caspian Sea in May and June 2012. The vertical (from the surface layer to bottom) distribution and precipitation of the biogenic component of suspended particulate matter have been determined. It was found that only 5% of the particulate matter and around 3% of POC reached the Middle Caspian after passing through a marginal filter (Volga River delta-Northern Caspian). The subsurface chl a maximum layer (around 20-60 m) with a cold-water phytoplankton community was revealed in the Middle and Southern Caspian. The subsurface region of accumulation of chl a and phytoplankton in the subthermocline layer has been extended from the southern periphery of the Derbent Depression to the Absheron Sill.

  11. Enhanced rates of particulate organic matter remineralization by microzooplankton are diminished by added ballast minerals

    Directory of Open Access Journals (Sweden)

    F. A. C. Le Moigne

    2013-02-01

    Full Text Available To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths and microzooplankton (rotifers. Concentrations of particulate organic matter (POM, suspended or in aggregates, of dissolved organic matter (DOM, and of dissolved inorganic nutrients were monitored over 8 days. The presence of rotifers enhanced the remineralization of ammonium and phosphate, but not dissolved silicon, from the biogenic material, up to 40% of which became incorporated into aggregates early in the experiment. Added calcite resulted in rates of excretion of ammonium and phosphate by rotifers that were depressed by 67% and 36%, respectively, demonstrating the potential for minerals to inhibit the destruction of POM in the water column by zooplankton. Lastly, the presence of the rotifers and added calcite minerals resulted in more rapid kinetics of aggregation, although not a greater overall amount of aggregation during the experiment.

  12. Electron microscopic time-lapse visualization of surface pore filtration on particulate matter trapping process.

    Science.gov (United States)

    Sanui, Ryoko; Hanamura, Katsunori

    2016-09-01

    A scanning electron microscope (SEM) was used to dynamically visualize the particulate matter (PM) trapping process on diesel particulate filter (DPF) walls at a micro scale as 'time-lapse' images corresponding to the increase in pressure drop simultaneously measured through the DPF. This visualization and pressure drop measurement led to the conclusion that the PM trapping in surface pores was driven by PM bridging and stacking at constricted areas in porous channels. This caused a drastic increase in the pressure drop during PM accumulation at the beginning of the PM trapping process. The relationship between the porous structure of the DPF and the depth of the surface pore was investigated in terms of the porosity distribution and PM penetration depth near the wall surface with respect to depth. The pressure drop calculated with an assumed surface pore depth showed a good correspondence to the measured pressure drop.

  13. Upwelled spectral radiance distribution in relation to particulate matter in sea water

    Science.gov (United States)

    Clark, D. K.; Strong, A. E.; Baker, E. T.

    1980-01-01

    Spectral analysis of water color and concurrent measurements of the relative concentration of various particulate and dissolved constituents within a broad range of water types are necessary to quantify ocean color observations and successfully relate them to various biological and physical processes that can be monitored by remote sensing. Some of the results of a Nimbus-G prelaunch cruise in connection with the Coastal Zone Color Scanner (CZCS) experiment, which was carried out in the Gulf of Mexico in October 1977, are presented and discussed. Based upon a small but diverse sample of near-surface measurements, it appears possible to estimate total suspended particulate matter (SPM) to useful accuracies by forming ratios of the spectral radiances measured at wavelengths falling near the centers of certain CZCS bands, viz., 440 nm:550 nm and 440 nm:520 nm. Furthermore, the analysis suggests a very high degree of covariation between SPM and phytoplankton pigments except for certain well-defined special cases.

  14. Exposure to ambient air particulate matter and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Tarantino, Giovanni; Capone, Domenico; Finelli, Carmine

    2013-07-07

    The present study was designed to alert the public opinion and policy makers on the supposed enhancing effects of exposure to ambient air particulate matter with aerodynamic diameters liver disease (NAFLD), the most common chronic liver disease in Western countries. For far too long literature data have been fixated on pulmonary diseases and/or cardiovascular disease, as consequence of particulate exposure, ignoring the link between the explosion of obesity with related syndromes such as NAFLD and air pollution, the worst characteristics of nowadays civilization. In order to delineate a clear picture of this major health problem, further studies should investigate whether and at what extent cigarette smoking and exposure to ambient air PM2.5 impact the natural history of patients with obesity-related NAFLD, i.e., development of non alcoholic steatohepatitis, disease characterized by a worse prognosis due its progression towards fibrosis and hepatocarcinoma.

  15. How Do Biology Teacher Candidates Know Particulate Movements & Random Nature of Matter and Their Effects to Diffusion

    Science.gov (United States)

    Oztas, Fulya; Oztas, Haydar

    2016-01-01

    The previous researches results seem to suggest that some aspects of learning of diffusion and osmosis concepts such as membranes, kinetic energy of matter, and elements of the particulate and random nature of matter could lead to misconceptions. The concept of diffusion is very common in science instruction, and understanding the concept is an…

  16. Land-use impacts on fatty acid profiles of suspended particulate organic matter along a larger tropical river

    DEFF Research Database (Denmark)

    Boëchat, Iola; Krüger, Angela; Chavez, R.C.

    2014-01-01

    . Here, we analyzed land-use effects on the fatty acid (FA) composition and concentrations in suspended particulate organic matter (SPOM) along a fourth-order tropical river, the Rio das Mortes. Thereby, we aimed at testing the potential of fatty acids in riverine suspended particulate organic matter...... (SPOM-FAs) as indicators of land-use change in tropical catchments, and at identifying major human impacts on the biochemical composition of SPOM, which represents an important basal energy and organic matter resource for aquatic consumers. River water SPOM and total FA concentrations ranged between 2...

  17. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  18. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California

    Science.gov (United States)

    Ham, Walter A.; Kleeman, Michael J.

    2011-08-01

    Very little is currently known about the relationship between exposure to different sources of ambient ultrafine particles (PM 0.1) and human health effects. If human health effects are enhanced by PM 0.1's ability to cross cell membranes, then more information is needed describing the sources of ultrafine particles that are deposited in the human respiratory system. The current study presents results for the source apportionment of airborne particulate matter in six size fractions smaller than 1.8 μm particle diameter including ultrafine particles (PM 0.1) in one of the most polluted air basins in the United States. Size-resolved source apportionment results are presented at an urban site and rural site in central California's heavily polluted San Joaquin Valley during the winter and summer months using a molecular marker chemical mass balance (MM-CMB) method. Respiratory deposition calculations for the size-resolved source apportionment results are carried out with the Multiple Path Particle Dosimetry Model ( MPPD v 2.0), including calculations for ultrafine (PM 0.1) source deposition. Diesel engines accounted for the majority of PM 0.1 and PM 1.8 EC at both the urban and rural sampling locations during both summer and winter seasons. Meat cooking accounted for 33-67% and diesel engines accounted for 15-21% of the PM 0.1 OC at Fresno. Meat cooking accounted for 22-26% of the PM 0.1 OC at the rural Westside location, while diesel engines accounted for 8-9%. Wood burning contributions to PM 0.1 OC increased to as much as 12% of PM 0.1 OC during the wintertime. The modest contribution of wood smoke reflects the success of emissions control programs over the past decade. In contrast to PM 0.1, PM 1.8 OC had a higher fraction of unidentified source contributions (68-85%) suggesting that this material is composed of secondary organic aerosol (SOA) or primary organic aerosol (POA) that has been processed by atmospheric chemical reactions. Meat cooking was the largest

  19. Formation of particulate matter monitoring during combustion of wood pellete with additives

    Science.gov (United States)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  20. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  1. The biogeochemical reactivity of suspended particulate matter at nested sites in the Dee basin, NE Scotland.

    Science.gov (United States)

    Dawson, J J C; Adhikari, Y R; Soulsby, C; Stutter, M I

    2012-09-15

    Variation in the organic matter content associated with suspended particulate matter (SPM) is an often overlooked component of carbon cycling within freshwater riverine systems. The potential biogeochemical reactivity of particulate organic carbon (POC) that affect its interactions and fate, i.e. respired and lost to the atmosphere along river continua or ultimately exported to estuarine and oceanic pools was assessed. Eleven contrasting sites draining nested catchments (5-1837 km(2)) in the River Dee basin, NE Scotland were sampled during summer 2008 to evaluate spatio-temporal variations in quantity and quality (biogeochemical reactivity) of SPM during relatively low flow conditions. Mean SPM concentrations increased from 0.21 to 1.22 mg L(-1) between the uppermost and lowest mainstem sites. Individually, POC concentrations ranged from 0.08 to 0.55 mg L(-1) and accounted for ca. 3-15% of total aqueous organic carbon transported. The POC content was partitioned into autotrophic (2.78-73.0 mg C g(-1) SPM) and detrital (119-388 mg C g(-1) SPM) biomass carbon content. The particulate respired CO(2)-C as a % of the total carbon associated with SPM, measured by MicroResp™ over 18 h, varied in recalcitrance from 0.49% at peat-dominated sites to 3.20% at the lowermost mainstem site. Significant (p<0.05) relationships were observed between SPM biogeochemical reactivity measures (% respired CO(2)-C; chlorophyll α; bioavailable-phosphorus) and arable and improved grassland area, associated with increasing biological productivity downstream. Compositional characteristics and in-stream processing of SPM appear to be related to contributory land use pressures, that influence SPM characteristics and biogeochemistry (C:N:P stoichiometry) of its surrounding aqueous environment. As moorland influences declined, nutrient inputs from arable and improved grasslands increasingly affected the biogeochemical content and reactivity of both dissolved and particulate matter. This

  2. Source contributions and regional transport of primary particulate matter in China.

    Science.gov (United States)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-12-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50-80%), POC (60%-90%), and PPM (30-70%). For summer/fall, industrial contributes 30-50% for EC/POC and 40-60% for PPM. Transportation is more important for EC (20-30%) than POC/PPM (90% in Beijing.

  3. Particulate matter in the indoor environment of museums in the megacity of São Paulo

    Directory of Open Access Journals (Sweden)

    Andrea Cavicchioli

    2014-01-01

    Full Text Available Atmospheric pollutants can have serious impacts on the preservation of São Paulo's tangible cultural heritage. The purpose of this paper is to report the results of a monitoring campaign focussed on particulate matter (PM that was conducted in three of the most important museums of the São Paulo megacity (Brazil: the Museu de Arqueologia e Etnologia (MAE-USP, the Museu Paulista (MP-USP, and the Pinacoteca do Estado de São Paulo (PE. These museums exhibit indoor PM and black carbon (BC concentrations consistent with their urban locations and their specific methods for managing the indoor environment.

  4. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    McKone, T.E.; Fantke, Peter

    2016-01-01

    Fine particulate matter (PM2.5) pollution has been estimated to contribute more than 7% to the total global human disease burden from 1990 to 2013 (http://healthdata.org/gbd). Ambient (outdoor) and household indoor PM2.5 exposures are reported to account for 41% and 58% of this impact, respectively....... Model and parameters are tested in a case study on the production and rocessing of rice in three distinct scenarios covering urban China, rural India and U.S.-Europe. Recommendations are to use this coupled, generic framework whenever emission locations are unknown and to apply spatial models henever...

  5. Oxidant production from source-oriented particulate matter – Part 1: Oxidative potential using the dithiothreitol (DTT assay

    Directory of Open Access Journals (Sweden)

    J. G. Charrier

    2014-09-01

    Full Text Available Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these endpoints are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA using the dithiothreitol (DTT assay. We collected PM from different sources or source combinations into different ChemVol (CV samplers in real time using a novel source-oriented sampling technique based on single particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions – ultrafine (Dp ≤ 0.17 μm and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm – and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a actor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular Emissions, Regional Source Mix, Commute Hours, Daytime Mixed Layer and Nighttime Inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion the volume-normalized oxidative potential, which also accounts for the source's prevalence, cooking sources account for 18–29% of the total DTT loss while mobile (traffic sources account for 16–28%. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely

  6. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  7. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.

  8. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition.

    Science.gov (United States)

    Osornio-Vargas, Alvaro R; Bonner, James C; Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Ponce-de-León Rosales, Sergio; Miranda, Javier; Rosas, Irma

    2003-08-01

    Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to reach the distal lung after inhalation. In this study, we compared the cytotoxic and proinflammatory effects of Mexico City PM10 with those of PM2.5 using the murine monocytic J774A.1 cell line in vitro. PMs were collected from the northern zone or the southeastern zone of Mexico City. Elemental composition and bacterial endotoxin on PMs were measured. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production by J774A.1 cells was measured in the presence or absence of recombinant endotoxin-neutralizing protein (rENP). Both northern and southeastern PMs contained endotoxin and a variety of transition metals. Southeastern PM10 contained the highest endotoxin levels, 2-fold higher than that in northern PM10. Northern and southeastern PM2.5 contained the lowest endotoxin levels. Accordingly, southeastern PM10 was the most potent in causing secretion of the proinflammatory cytokines TNF-alpha and IL-6. All PM2.5 and PM10 samples caused cytotoxicity, but northern PMs were the most toxic. Cytokine secretion induced by southeastern PM10 was reduced 50-75% by rENP. These results indicate major differences in PM10 and PM2.5. PM2.5 induces cytotoxicity in vitro through an endotoxin-independent mechanism that is likely mediated by transition metals. In contrast, PM10 with relatively high levels of endotoxin induces proinflammatory cytokine release via an endotoxin-dependent mechanism.

  9. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  10. Particulate Matter Pollution and Population Exposure Assessment over Mainland China in 2010 with Remote Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yao

    2014-05-01

    Full Text Available The public is increasingly concerned about particulate matter pollution caused by respirable suspended particles (PM10 and fine particles (PM2.5. In this paper, PM10 and PM2.5 concentration are estimated with remote sensing and individual air quality indexes of PM10 and PM2.5 (IPM10 and IPM2.5 over mainland China in 2010 are calculated. We find that China suffered more serious PM2.5 than PM10 pollution in 2010, and they presented a spatial differentiation. Consequently, a particulate-based air quality index (PAQI based on a weighting method is proposed to provide a more objective assessment of the particulate pollution. The study demonstrates that, in 2010, most of mainland China faced a lightly polluted situation in PAQI case; there were three areas obviously under moderate pollution (Hubei, Sichuan-Chongqing border region and Ningxia-Inner Mongolia border region. Simultaneously, two indicators are calculated with the combination of population density gridded data to reveal Chinese population exposure to PM2.5. Comparing per capita PM2.5 concentration with population-weighted PM2.5 concentration, the former shows that the high-level regions are distributed in Guangdong, Shanghai, and Tianjin, while the latter are in Hebei, Chongqing, and Shandong. By comparison, the results demonstrate that population-weighted PM2.5 concentration is more in line with the actual situation.

  11. Mutagenic and genotoxic activity of particulate matter MP2,5, in Pamplona, North Santander, Colombia

    Directory of Open Access Journals (Sweden)

    Martínez Montañez, Mónica Liseth

    2012-10-01

    Full Text Available Objective: To study the mutagenic and genotoxic activities of particulate material (MP2,5 collected in Pamplona, Norte de Santander, Colombia.Materials and methods: MP2,5 was monitored by means of a Partisol 2025 sequential air sampler with Plus Palmflex quartz filters. The latter were subjected to two extraction procedures: Soxhlet extraction using dichloromethane-acetone; and ultrasonic extraction using dichloromethane, acetone and dichloromethane/ acetone mix. The mutagenic and genotoxic activities were determined for each extract.Results: This is the first study conducted in Colombia that reports the mutagenic and genotoxic activities associated with particulate matter (MP2,5 taken from vehicular emissions in Pamplona, Norte de Santander. The mutagenic assay determined by the Ames test using Salmonella typhimurium strains TA98 and TA100 showed a high direct mutagenic activity in the analyzed extracts. On the other hand, the genotoxic activity, determined by means of the comet assay, was high too.Conclusion: Particulate material (MP2,5 present in air samples in Pamplona (northeastern Colombia is a risk factor for the exposed population because it can directly induce mutations and also cause genotoxic damage.

  12. Particulate matter pollution and population exposure assessment over mainland China in 2010 with remote sensing.

    Science.gov (United States)

    Yao, Ling; Lu, Ning

    2014-05-14

    The public is increasingly concerned about particulate matter pollution caused by respirable suspended particles (PM10) and fine particles (PM2.5). In this paper, PM10 and PM2.5 concentration are estimated with remote sensing and individual air quality indexes of PM10 and PM2.5 (IPM10 and IPM2.5) over mainland China in 2010 are calculated. We find that China suffered more serious PM2.5 than PM10 pollution in 2010, and they presented a spatial differentiation. Consequently, a particulate-based air quality index (PAQI) based on a weighting method is proposed to provide a more objective assessment of the particulate pollution. The study demonstrates that, in 2010, most of mainland China faced a lightly polluted situation in PAQI case; there were three areas obviously under moderate pollution (Hubei, Sichuan-Chongqing border region and Ningxia-Inner Mongolia border region). Simultaneously, two indicators are calculated with the combination of population density gridded data to reveal Chinese population exposure to PM2.5. Comparing per capita PM2.5 concentration with population-weighted PM2.5 concentration, the former shows that the high-level regions are distributed in Guangdong, Shanghai, and Tianjin, while the latter are in Hebei, Chongqing, and Shandong. By comparison, the results demonstrate that population-weighted PM2.5 concentration is more in line with the actual situation.

  13. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  14. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.

    Science.gov (United States)

    Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong

    2014-08-30

    Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source.

  15. Deposition of heavy metals from particulate settleable matter in soils of an industrialized area

    Science.gov (United States)

    Sanfeliu, Teófilo

    2010-05-01

    Particulate air pollutants from industrial emissions and natural resource exploitation represent an important contribution to soil contamination. These atmospheric particles, usually settleable particulate matter form (which settle by gravity) are deposited on soil through both dry and wet. The most direct consequences on soil of air pollutants are acidification and salinization, not to mention the pollution that can cause heavy metals as components of suspended particulate matter. The main objective of this study was to evaluate the influence of air pollution in soil composition. For this purpose, has been conducted a study of the composition of heavy metals in the settleable particulate matter in two locations (Almazora and Vila-real) with high industrial density (mainly ceramic companies) located in the ceramic cluster of Castellón (Spain). Settleable air particles samples were collected with a PS Standard Britannic captor (MCV-PS2) for monthly periods between January 2007 and December 2009. We analyzed the following elements: Cd, Pb, Cu, Ni, Sb and Bi which are highly toxic and have the property of accumulating in living organisms. It has been determined the concentration of heavy metals in the soluble fraction of settleable air particles by ICP-MS. The annual variation of the results obtained in both populations shows a decline over the study period the concentrations of heavy metals analyzed. This fact is associated with the steady implementation of corrective measures in the main industrial sector in the area based on the treatment of mineral raw materials. Moreover, this decline is, in turn, a lower intake of heavy metals to the soil. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330 Moral R., Gilkes R.J.; Jordán M.M. (2005) "Distribution of heavy

  16. Physicochemical characterization of airborne particulate matter at a mainline underground railway station.

    Science.gov (United States)

    Loxham, Matthew; Cooper, Matthew J; Gerlofs-Nijland, Miriam E; Cassee, Flemming R; Davies, Donna E; Palmer, Martin R; Teagle, Damon A H

    2013-04-16

    Underground railway stations are known to have elevated particulate matter (PM) loads compared to ambient air. As these particles are derived from metal-rich sources and transition metals may pose a risk to health by virtue of their ability to catalyze generation of reactive oxygen species (ROS), their potential enrichment in underground environments is a source of concern. Compared to coarse (PM10) and fine (PM2.5) particulate fractions of underground railway airborne PM, little is known about the chemistry of the ultrafine (PM0.1) fraction that may contribute significantly to particulate number and surface area concentrations. This study uses inductively coupled plasma mass spectrometry and ion chromatography to compare the elemental composition of size-fractionated underground PM with woodstove, roadwear generator, and road tunnel PM. Underground PM is notably rich in Fe, accounting for greater than 40% by mass of each fraction, and several other transition metals (Cu, Cr, Mn, and Zn) compared to PM from other sources. Importantly, ultrafine underground PM shows similar metal-rich concentrations as the coarse and fine fractions. Scanning electron microscopy revealed that a component of the coarse fraction of underground PM has a morphology indicative of generation by abrasion, absent for fine and ultrafine particulates, which may be derived from high-temperature processes. Furthermore, underground PM generated ROS in a concentration- and size-dependent manner. This study suggests that the potential health effects of exposure to the ultrafine fraction of underground PM warrant further investigation as a consequence of its greater surface area/volume ratio and high metal content.

  17. Intraurban-scale dispersion modelling of particulate matter concentrations: Applications for exposure estimates in cohort studies

    Science.gov (United States)

    Gaines Wilson, J.; Zawar-Reza, Peyman

    Epidemiological studies relating air pollution to health effects often estimate personal exposure to particulate matter using values from a central ambient monitoring site as a proxy. However, when there is a significant amount of variation in particulate concentrations across an urban area, the use of central sites may result in exposure misclassification that induces error in long-term cohort epidemiological study designs. When spatially dense monitoring data are not available, advanced dispersion models may offer one solution to the problem of accurately characterising intraurban particulate concentrations across an area. This study presents results from an intraurban assessment of The Air Pollution Model (TAPM)—an Integrated Meteorological-Emission (IME) Model. Particles less than 10 μm in aerodynamic diameter (PM 10) were modelled and compared with a dense intraurban monitoring network in Christchurch, New Zealand, a city with high winter levels of particulate air pollution. Despite the area's high intraurban concentration variability, and meteorological and topographical complexity, the model performed satisfactorily overall, with mean observed and modelled concentrations of 42.9 and 43.4 μg m -3, respectively, while the mean Index of Agreement (IOA) between individual sites was 0.60 and the mean systematic RMSE was 16.9 μg m -3. Most of the systematic error in the model was due to coarse spatial resolution of the local emission inventory and complex meteorology attributed to localised convergence of drainage flows, especially on the western and southern fringes of the urban area. Given further improvements in site-specific estimates within urban areas, IME models such as TAPM may be a viable alternative to central sites for estimating personal exposure in longer-term (monthly or annual) cohort epidemiological studies.

  18. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik

    2015-07-01

    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  19. Air emission in France. Metropolitan area particulate matter; Emissions dans l'air en France. Metropole poussieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Substances and index currently in survey are: Particulate matter: Total suspended particulates (TSP), Fine particulates with an equivalent aerodynamic diameter less than 10 {mu}m (PM{sub 10}), 2.5 {mu}m (PM{sub 2.5}) and 1.0 {mu}m (PM{sub 1.0}). Density ratios relating to population, area, gross product, primary energy consumption, etc. Annual emissions are provided for each substance since 1990. Dates corresponding to the maximum and minimum values are also included. Results are provisional for 2001. (author)

  20. Microbiota and Particulate Matter Assessment in Portuguese Optical Shops Providing Contact Lens Services.

    Science.gov (United States)

    Viegas, Carla; Faria, Tiago; Pacífico, Cátia; Dos Santos, Mateus; Monteiro, Ana; Lança, Carla; Carolino, Elisabete; Viegas, Susana; Cabo Verde, Sandra

    2017-05-15

    The aim of this work was to assess the microbiota (fungi and bacteria) and particulate matter in optical shops, contributing to a specific protocol to ensure a proper assessment. Air samples were collected through an impaction method. Surface and equipment swab samples were also collected side-by-side. Measurements of particulate matter were performed using portable direct-reading equipment. A walkthrough survey and checklist was also applied in each shop. Regarding air sampling, eight of the 13 shops analysed were above the legal requirement and 10 from the 26 surfaces samples were overloaded. In three out of the 13 shops fungal contamination in the analysed equipment was not detected. The bacteria air load was above the threshold in one of the 13 analysed shops. However, bacterial counts were detected in all sampled equipment. Fungi and bacteria air load suggested to be influencing all of the other surface and equipment samples. These results reinforce the need to improve air quality, not only to comply with the legal requirements, but also to ensure proper hygienic conditions. Public health intervention is needed to assure the quality and safety of the rooms and equipment in optical shops that perform health interventions in patients.

  1. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  2. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  3. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Canteras, Felippe B.; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2011-07-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  4. Coarse particulate matter in the atmosphere: what do we really know?

    Science.gov (United States)

    Wiedinmyer, C.; Li, R.; Hannigan, M.; Baker, K.; Hallar, A. G.; Clements, N.

    2011-12-01

    Particulate matter in the coarse mode (PMc) is defined as particles with aerodynamic diameters between 2.5 and 10 microns. These particles have been associated with detrimental health impacts, air quality issues, and can play a role in atmospheric processes that contribute to climate forcings. Atmospheric concentrations of particulate matter with aerodynamic diameters less than 10 and 2.5 microns are regulated in the United States; yet the knowledge about PMc is very uncertain and few studies have characterized the nature, chemistry, and sources of these particles. This presentation will review the current understanding of the characteristics of PMc in the atmosphere, including an overview of a recent study to understand the temporal and spatial patterns of PMc mass concentrations across the western U.S. Routinely measured concentrations of PMc are compared to modeled values to identify the current gaps in our ability to simulate PMc. Current models that simulate PMc not only underestimate the magnitude of the emissions of particles in the coarse size range, but also misrepresent the spatial heterogeneity and the temporal variations in the atmospheric concentrations of PMc in both rural and urban atmospheres. Recent measurements show that organic compounds contribute significantly to PMc mass concentrations in the western U.S. The results from chemical and biological measurements suggest some sources of PMc are currently not included in the emission inventories and chemical transport models. Suggested improvements to existing models of PMc include new emission factors, temporal allocations, and chemical speciation.

  5. Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris.

    Science.gov (United States)

    Baulig, Augustin; Poirault, Jean-Jacques; Ausset, Patrick; Schins, Roel; Shi, Tingming; Baralle, Delphine; Dorlhene, Pascal; Meyer, Martine; Lefevre, Roger; Baeza-Squiban, Armelle; Marano, Francelyne

    2004-11-15

    Fine particulate matter present in urban areas seems to be incriminated in respiratory disorders. The aim of this study was to relate physicochemical characteristics of PM2.5 (particulate matter collected with a 50% efficiency for particles with an aerodynamic diameter of 2.5 microm) to their biological activities toward a bronchial epithelial cell line 16-HBE. Two seasonal sampling campaigns of particles were realized, respectively, in a kerbside and an urban background station in Paris. Sampled-PM2.5 mainly consist of particles with a size below 1 microm and are mainly composed of soot as assessed by analytical scanning electron microscopy. The different PM2.5 samples contrasted in their PAH content, which was the highest in the kerbside station in winter, as well as in their metal content. Kerbside station samples were characterized by the highest Fe and Cu content, which appears correlated to their hydroxyl radical generating properties measured by electron paramagnetic resonance. Particles were compared by their capacity to induce cytotoxicity, intracellular ROS production, and proinflammatory cytokine release (GM-CSF and TNF-alpha). At a concentration of 10 microg/cm2, all samples induced peroxide production and cytokine release to the similar extent in the absence of cytotoxicity. In conclusion, whereas the PM2.5 samples differ by their PAH and metal composition, they induce the same biological responses likely either due to components bioavailability and/ or interactions between PM components.

  6. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    Science.gov (United States)

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-07

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.

  7. Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter.

    Science.gov (United States)

    Micallef, A; Deuchar, C N; Colls, J J

    1998-05-04

    Vertical concentration profiles of various particle size ranges of airborne particulate matter were measured from ground level up to 3 m, in outdoor and indoor environments. Indoor measurements were carried out in an electronics workshop, while two outdoor environments were chosen: a street canyon cutting across a town and an open field situated in a semi-rural environment. The novel measurement technique employed in this experimental work, which can also be used to determine vertical concentration gradients of pollutants other than airborne particles in different environments, is given particular attention. Analyses of the collected data for the environments considered are presented and some conclusions and plausible explanations of the profiles are discussed. The workshop and street canyon environments exhibited larger concentrations and vertical concentration gradients as compared to the sports field. This indicates that people breathing at different heights are subjected to different concentrations of airborne particulate matter, which has implications for sitting air pollution monitors intended for protection of public health and estimation of human exposure.

  8. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    Directory of Open Access Journals (Sweden)

    Durukan I.

    2013-04-01

    Full Text Available The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF spectroscopic technique in Germany. Spatial and temporal variations of air particulate matter (APM levels in the city were examined. In some stations, APM sampled in according to their size distribution such as PM10 and PM2.5. Elemental characterization of size distributed PM were achieved and evaluated. It was detected that the elements mainly originated from soil in Beytepe station, from soil and solid fuel usage in Kayas station and from traffic and a variety of human activities in Sıhhiye station in air samplings. While the elements of natural origin observed in PM10 fraction, the elements from traffic and human activities were in PM2.5. Eventually, enrichment calculations were performed in order to identify the pollution sources.

  9. Composition and distribution of particulate matter (PM10) in a mechanically ventilated University building

    Science.gov (United States)

    Ali, Mohamed Yasreen Mohamed; Hanafiah, Marlia Mohd; Latif, Mohd Talib

    2016-11-01

    This study analyses the composition and distribution of particulate matter (PM10) in the Biology department building, in UKM. PM10 were collected using SENSIDYNE Gillian GilAir-5 Personal Air Sampling System, a low-volume sampler, whereas the concentration of heavy metals was determined using Inductively coupled plasma-mass spectrometry (ICP-MS). The concentration of PM10 recorded in the mechanically ventilated building ranges from 89 µgm-3 to 910 µgm-3. The composition of the selected heavy metals in PM10 were dominated by zinc, followed by copper, lead and cadmium. It was found that the present of indoor-related particulate matter were originated from the poorly maintained ventilation system, the activity of occupants and typical office equipments such as printers and photocopy machines. The haze event occured during sampling periods was also affected the PM10 concentration in the building. This results can serve as a starting point to assess the potential human health damage using the life cycle impact assessment, expressed in term of disability adjusted life year (DALY).

  10. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy).

    Science.gov (United States)

    Tositti, L; Brattich, E; Masiol, M; Baldacci, D; Ceccato, D; Parmeggiani, S; Stracquadanio, M; Zappoli, S

    2014-01-01

    This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33% by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70% (PCA-MLRA) and 67% (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution.

  11. Comparison of discriminant analysis methods: Application to occupational exposure to particulate matter

    Science.gov (United States)

    Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra

    2016-06-01

    Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.

  12. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Science.gov (United States)

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  13. Chemical compositions of fine particulate organic matter emitted from Chinese cooking.

    Science.gov (United States)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    2007-01-01

    Food cooking can be a significant source of atmospheric particulate organic matter. In this study, the chemical composition of particulate organic matter (POM) in PM2.5 emitted from four different Chinese cooking styles were examined by gas chromotography-mass spectrometry (GC-MS). The identified species are consistent in the emissions from different Chinese cooking styles and the quantified compounds account for 5-10% of total POM in PM2.5. The dominant homologue is fatty acids, constituting 73-85% of the quantified compounds. The pattern of n-alkanes and the presence of beta-sitosterol and levoglucosan indicate that vegetables are consumed during Chinese cooking operations. Furthermore, the emissions of different compounds are impacted significantly by the cooking ingredients. The candidates of organic tracers used to describe and distinguish emissions from Chinese cooking in Guangzhou are tetradecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, levoglucosan, mannosan, galactosan, nonanal, and lactones. During the sampling period, the relative contribution of Chinese cooking to the mass concentration of atmospheric hexadecanoic acid should be less than 1.3% in Guangzhou.

  14. Fate of the Evros River suspended particulate matter in the northern Aegean Sea

    Science.gov (United States)

    Kanellopoulos, Theodore D.; Angelidis, Michael O.; Georgopoulos, Dimitrios; Karageorgis, Aristomenis P.

    2009-06-01

    Evros River is the most important river flowing into the North Aegean Sea (eastern Mediterranean) in terms of freshwater discharge, and the second largest one of Eastern Europe after the Danube River. Salinity and temperature measurements, together with suspended particulate matter concentrations were obtained in various depths at 14 stations in the adjacent Alexandroupolis Gulf during four seasons (June 1998, September 1998, February 1999 and March 2000) in order to investigate the particle dynamics and distributions in the northern Aegean Sea. Analysis of the collected data, together with particle observations under the scanning electron microscope and study of satellite images showed that, under certain circumstances driven by the hydrological and wind regime of the area, the Evros River particulate matter, with the associated pollutants, can be transferred far away from the estuary and implicitly comprise a hazardous factor for the environmental status of the northern Aegean Sea. This fact, combined with the future construction of the Burgas-Alexandroupolis pipeline, may cause a negative impact on the studied natural ecosystem.

  15. A review of the effects of particle types on oil-suspended particulate matter aggregate formation

    Science.gov (United States)

    Loh, Andrew; Yim, Un Hyuk

    2016-12-01

    Oil-suspended particulate matter aggregate (OSA) can form naturally when oil and particles interact. The interaction between oil and suspended particulate matter makes oil less sticky, and facilitates its dispersion in the water column. The high oil-water surface contact enhances the biodegradation of oil and thus increases the efficiency of remediation processes. There are many factors that affect OSA formation, but, particle type is one of the most important. Because different particle types have different physical, chemical, and biological properties, their interactions with oil differ greatly. Particle properties such as interlayer spaces, hydrophobicity, surface charges, polarity, organic content, and size affect the interactions between materials and oil. These different interactions determine the type, buoyancy, size, and stability of OSA that forms, thus determining its fate in the environment. This review provides a current understanding of (1) OSA formation mechanisms, (2) sources and classes of marine materials, (3) oil-particle interactions, (4) material properties and their effects on oil interaction, and (5) future research needs.

  16. Collection of airborne particulate matter for a subsequent analysis by total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Klockenkaemper, R.; Bayer, H.; Bohlen, A. von; Schmeling, M.; Klockow, D. [Institut fuer Spektrochemie und Angewandte Spektroskopie, Dortmund (Germany)

    1995-06-01

    The collection of airborne particulate matter by filtration and impaction was adapted to total reflection X-ray fluorescence analysis (TXRF). Cellulose nitrate filters were used for collecting in a Berner impactor. Single filter spots were punched out, placed on quartz-glass carriers, dissolved by tetrahydrofuran and re-precipitated prior to element determinations by TXRF. In a Battelle-type impactor, airborne dust was collected on Plexiglass carriers coated with medical Vaseline. The loaded carriers were directly analyzed by TXRF. In both cases, quantification was simply performed by the addition of an internal standard after sampling. Impactors were made of a suitable material in order to investigate high blank values, collection losses and memory effects. It could be shown that stainless steel, even coated with TiN, is less suitable and should be avoided as an impactor material. Although aluminum is partly recommendable, titanium and the polymer Makrolon are quite appropriate. By using an impactor made of these materials, a reliable multielement determination in airborne dust is made possible with low detection limits as low as 1 ng/m{sup 3} and a satisfactory repeatability of a few %. Short sampling times of only 1 h or less can be realized. The total procedure is simple and time-saving, and can be recommended for routine investigations of airborne particulate matter. (author).

  17. Measuring Sub-micron Size Fractionated Particulate Matter on Aluminum Impactor Disks

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Zermeno, P; Hwang, H; Young, T M

    2009-07-28

    Sub-micron sized airborne particulate matter is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to size fractionate particulate matter (PM) into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56-100 nm, 100-180 nm, 180-320 nm, 320-560 nm, 560-1000 nm, and 1000-1800 nm. Since MOUDI have low flow rates, it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20-200 microgram C) and large aluminum substrate ({approx}25 mg Al) presents several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for {sup 14}C-AMS analysis of PM deposited on Al impact foils.

  18. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    Science.gov (United States)

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  19. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  20. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  1. MOLAR RATIOS OF C,N,P OF PARTICULATE MATTER AND THEIR VERTICAL FLUXES IN THE YELLOW SEA

    Institute of Scientific and Technical Information of China (English)

    王保栋; 战闰; 徐明德

    2002-01-01

    The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking particles obtained by use of moored sediment traps. The POC:PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.

  2. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  3. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  4. TLR2 and TLR4 as Potential Biomarkers of Environmental Particulate Matter Exposed Human Myeloid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Marc A. Williams

    2007-01-01

    Full Text Available In many subjects who are genetically susceptible to asthma, exposure to environmental stimuli may exacerbate their condition. However, it is unknown how the expression and function of a family of pattern-recognition receptors called toll-like receptors (TLR are affected by exposure to particulate pollution. TLRs serve a critical function in alerting the immune system of tissue damage or infection—the so-called “danger signals”. We are interested in the role that TLRs play in directing appropriate responses by innate immunity, particularly dendritic cells (DC, after exposing them to particulate pollution. Dendritic cells serve a pivotal role in directing host immunity. Thus, we hypothesized that alterations in TLR expression could be further explored as potential biomarkers of effect related to DC exposure to particulate pollution. We show some preliminary data that indicates that inhaled particulate pollution acts directly on DC by down-regulating TLR expression and altering the activation state of DC. While further studies are warranted, we suggest that alterations in TLR2 and TLR4 expression should be explored as potential biomarkers of DC exposure to environmental particulate pollution.

  5. Observations and Modeling of the Green Ocean Amazon (GOAMAZON). Particulate Matter and Gases Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, R. H.M. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Federal Univ. of Parana (Brazil); Barbosa, C. G.G. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Federal Univ. of Parana (Brazil); Kurzlop, P. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Souza, R. A.F. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Amazonas State Univ. (Brazil); Paralovo, S. L. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Federal Univ. of Parana (Brazil); Carneiro, I. P. S. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States)

    2016-03-01

    Because of their proven adverse effects on human health and vegetation, and also considering their influence over the local and regional climate, inhalable fine particles (PM2.5) and NO2, SO2, and O3 have been collected at the ARM site located in Manacapuru, Amazon, Brazil, as a part of the GoAmazon 2014/5 project. PM2.5 samples were analyzed through gravimetry, black carbon transmittance, elemental composition by energy dispersive x-ray fluorescence, and ionic concentration (cations) by ion chromatography. NO2 and SO2 samples were analyzed by ion chromatography, whereas O3 samples were analyzed through ultraviolet-vis spectrophotometry. Sampling of both particulate and gaseous pollutants took place during the two intensive operation periods (IOP1 from February to March 2014, and IOP2 from August to October 2014). Results are interpreted both separately and as a whole with the specific goal of identifying compounds that could affect the population’s health and/or could act as cloud condensation nuclei. Chemical analysis supports the elucidation of the possible origins, transport mechanisms, health effects, and main effects of the assessed pollutants in those environments

  6. The Stable and Radio- Carbon Isotopic Content of Labile and Refractory Carbon in Atmospheric Particulate Matter

    Science.gov (United States)

    McNichol, A. P.; Rosenheim, B. E.; Gerlach, D. S.; Hayes, J. M.

    2006-12-01

    Studies of the isotopic content of atmospheric particulate matter are hampered by difficulties in chemically defining the pools of carbon and analytically isolating the different pools. We are conducting studies on reference materials and atmospheric aerosol samples to develop a method to measure stable and radio- carbon isotopes on the labile and refractory carbon. We are using a flow-through combustion system that allows us to combust, collect and measure the isotopic content of the gases produced at all stages of heating/oxidizing. We compare our results to those measured using a chemothermal oxidation method (CTO) (Gustafsson et al., 2001). In this method, refractory carbon is defined as the material remaining after pre- combusting a sample at 375°C in the presence of oxygen for 24 hours. The reference materials are diesel soot, apple leaves and a hybrid of the two (DiesApple), all from NIST. These provide carbon with two well-defined fractions -- the soot provides refractory carbon that is radiocarbon dead and the apple leaves provide organic carbon that is radiocarbon modern. Radiocarbon results from DiesApple indicate that the "refractory" carbon defined by the CTO method is actually a mixture of old and modern carbon that contains over 25% modern carbon. This suggests that charred material formed from the apples leaves during the pre-combustion step is contributing to the fraction we identify as refractory carbon. We are studying this by analyzing the individual materials and the mixture using our flow-through system. First results with this system indicate that the refractory fraction trapped from the DiesApple contains much less modern carbon than the CTO method, less than 7%. We will present detailed concentration and isotopic results of the generation of carbon dioxide during programmed combustion of each of the reference materials. We studied the radiocarbon content of both the total carbon (TC) and refractory carbon in the fine particulate matter (PM

  7. Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication

    Science.gov (United States)

    Büks, Frederick; Kaupenjohann, Martin

    2016-10-01

    The stability of soil aggregates against shearing and compressive forces as well as water-caused dispersion is an integral marker of soil quality. High stability results in less compaction and erosion and has been linked to enhanced water retention, dynamic water transport and aeration regimes, increased rooting depth, and protection of soil organic matter (SOM) against microbial degradation. In turn, particulate organic matter is supposed to support soil aggregate stabilization. For decades the importance of biofilm extracellular polymeric substances (EPSs) regarding particulate organic matter (POM) occlusion and aggregate stability has been canonical because of its distribution, geometric structure and ability to link primary particles. However, experimental proof is still missing. This lack is mainly due to methodological reasons. Thus, the objective of this work is to develop a method of enzymatic biofilm detachment for studying the effects of EPSs on POM occlusion. The method combines an enzymatic pre-treatment with different activities of α-glucosidase, β-galactosidase, DNAse and lipase with a subsequent sequential ultrasonic treatment for disaggregation and density fractionation of soils. POM releases of treated samples were compared to an enzyme-free control. To test the efficacy of biofilm detachment the ratio of bacterial DNA from suspended cells and the remaining biofilm after enzymatic treatment were measured by quantitative real-time PCR. Although the enzyme treatment was not sufficient for total biofilm removal, our results indicate that EPSs may attach POM within soil aggregates. The tendency to additional POM release with increased application of enzymes was attributed to a slight loss in aggregate stability. This suggests that an effect of agricultural practices on soil microbial populations could influence POM occlusion/aggregate stability and thereby carbon cycle/soil quality.

  8. Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China

    Institute of Scientific and Technical Information of China (English)

    Xinyuan Feng; Shigong Wang

    2012-01-01

    The formation and development of weather events has a great impact on the diffusion,accumulation and transport of air pollutants,and causes great changes in the particulate pollution level.It is very important to study their influence on particulate pollution.Lanzhou is one of the most particulate-polluted cities in China and even in the world.Particulate matter (PM) including TSP,PM>10,PM2.5-10,PM2.5 and PM1.0 concentrations were simultaneously measured during 2005-2007 in Lanzhou to evaluate the influence of three kinds of weather events - dust,precipitation and cold front - on the concentrations of PM with different sizes and detect the temporal evolution.The main results are as follows:(1) the PM pollution in Lanzhou during dust events was very heavy and the rate of increase in the concentration of PM2.5-10 was the highest of the five kinds of particles.During dust-storm events,the highest peaks of the concentrations of fine particles (PM2.5 and PM1.0) occurred 3 hr later than those of coarse particles (PM>10 and PM2.5-10).(2) The major effect of precipitation events on PM is wet scavenging.The scavenging rates of particles were closely associated with the kinds of precipitation events.The scavenging rates of TSP,PM>10 and PM2.5-10 by convective precipitation were several times as high as those caused by frontal precipitation for the same precipitation amount,the reason being the different formation mechanism and precipitation characteristics of the two kinds of precipitation.Moreover,there exists a limiting value for the scavenging rates of particles by precipitation.(3) The major effect of cold-front events on particles is clearance.However,during cold-front passages,the PM concentrations could sometimes rise first and decrease afterwards,which is the critical difference in the influence of cold fronts on the concentrations of particulate pollutants vs.gaseous pollutants.

  9. Aerosol particulate matter in the Baltimore metropolitan area: Temporal variation over a six-year period.

    Science.gov (United States)

    Orozco, Daniel; Delgado, Ruben; Wesloh, Daniel; Powers, Richard J; Hoff, Raymond

    2015-09-01

    This study investigates the sources of fine particulate matter (aerodynamic diameter ≤2.5 μm; PM(2.5)) composition for the Baltimore, Maryland, metropolitan area, covering a 6-year period (2008-2013). Data obtained from the U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) were used for the identification of eight chemical speciation clusters (factors), which, as a percentage of the average concentration, were identified as secondary sulfate (31.9%), secondary nitrate (14.3%), gasoline (17.4%), diesel (10.1%), soil (4.0%), biomass burning (11%), marine aerosol (4.1%), and industrial processing (7.2%). The results show predominant influence from vehicle emissions transiting major highways I-695 and I-95 located in the vicinity of the sampling site. Strong influence on PM2.5 mass from biomass burning was found in the first 2 years (2008-2009) due to particulate matter remnants from forest fire events in North Carolina and a strong contribution in 2013 that was due mainly to wood burning during winter. Sulfate, nitrate, soil, and marine aerosol fractions registered very low variability over the 6-year period analyzed. In addition, this study shows a significant reduction in particulate matter from industrial origins after a major industrial source in Baltimore shut down. The results obtained from Baltimore were compared with those from the Beltsville, Maryland, sampling station located 25 miles south of Baltimore for 2011 and 2012, where good agreement was found for most of the factors. This paper presents the first long-term aerosol speciation analysis in a Mid-Atlantic United States metropolitan area, which is essential for the air quality management agencies in order to revise regulations and reduce human exposure to adverse air quality conditions. The results suggest that although a declining trend in the overall PM2.5 was observed, no significant tendency was observed in the identified sources besides exceptional events such as the impact of

  10. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  11. Spatial and seasonal variability of particulate matter optical and size properties in the Eastern Mediterranean Sea

    Science.gov (United States)

    Karageorgis, A. P.; Georgopoulos, D.; Kanellopoulos, T. D.; Mikkelsen, O. A.; Pagou, K.; Kontoyiannis, H.; Pavlidou, A.; Anagnostou, Ch.

    2012-12-01

    Particulate matter plays a paramount role in the biogeochemical processes taking place in the marine environment. We report seasonal (spring and summer 2008) distribution of particulate matter in the Eastern Mediterranean, along a transect extending from the open Ionian Sea to the North Aegean Sea, including measurements in the Levantine Sea. A suite of optical instruments measuring beam attenuation (beam cp), fluorescence and particle size, the latter obtained with the innovative in-situ laser particle sizer LISST-Deep are used in concert with traditional measurements of particulate matter concentration (PMC), and total chlorophyll α from bottle samples. PMCs were generally low during both seasons (range: 0.02-0.85 mg L- 1), with values substantially higher in the euphotic zone during spring. The deep waters (> 200 m) in the Eastern Mediterranean exhibit extremely low PMCs, well-below 0.1 mg L- 1. Total chlorophyll α concentrations ranged from 0.003 to 0.28 μg L- 1 in spring and from 0.08 to 0.19 μg L- 1 in summer, verifying the ultra-oligotrophic character of the area. A significant correlation of beam cp and fluorescence in spring suggests that sources of particles are primarily biogenic in the surface waters. Deep water formation triggered the development of a ~ 900-m thick benthic nepheloid layer in the N. Aegean Sea. LISST-Deep revealed valuable information on the particle volume concentrations and the median particle size. It is striking that large particles (range: 31-230 μm; median ~ 85 μm) predominate in the entire region, from the surface up to the deep waters. In addition, accumulation of particles in the pycnocline is observed during summer; however, it is possible that schlieren (increase in beam attenuation due to scattering off of density gradients) could be responsible for the high particle volume concentrations and large median particle diameters recorded. These measurements, conducted for the first time in the Eastern Mediterranean

  12. Chemical characterisation of total suspended particulate matter from a remote area in Amazonia

    Science.gov (United States)

    Gonçalves, Cátia; Figueiredo, Bernardino R.; Alves, Célia A.; Cardoso, Arnaldo A.; da Silva, Rodrigo; Kanzawa, Simone H.; Vicente, Ana Margarida

    2016-12-01

    This research had as study object the total suspended particulate matter collected in the Alenquer region, a remote area in the Pará state. The main objectives were the characterisation of the inorganic and organic chemical composition of the aerosol, looking for seasonal patterns and the identification of probable emission sources and formation processes. A set of 30 samples were collected in the rainy (April-May) and dry season (August-September) of 2014. The analytical methods included gravimetric analysis, water-soluble ions analysis by ion chromatography (IC), elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) equipped with collision cell technology, carbonaceous content determination with a thermal-optical system and organic speciation by gas chromatography-mass spectrometry (GC-MS). The average concentrations of particulate matter ranged from 14 ± 1.3 μg·m- 3 to 31 ± 7.8 μg·m- 3, in the rainy and dry season, respectively. The carbonaceous content represented, on average, approximately 27% and 21% of the particulate matter in the rainy and dry season, respectively. Na+, Cl-, SO₄2 -, and NO₃- yield the highest concentrations in both seasons. Na was the dominant element, reflecting the transport of air masses from the Atlantic. An increase in concentrations between the rainy and dry seasons was especially noted for the terrigenous elements such Mn, Fe and Al. The chromatographically resolved organics included n-alkanes, n-alkenes, PAHs, n-alkanoic acids, n-di-acids, resin acids and some phenolic compounds. The primary inputs of organic constituents to the aerosols of Alenquer based on the homologous compound series and biomarkers were: (i) natural emissions from terrestrial higher plants waxes, particularly in dry season; (ii) anthropogenic emissions from diesel fuel combustion and biomass combustion, predominating during the dry season. The chemical characterisation along with the backward trajectory cluster analysis

  13. Physical properties of particulate matter from animal houses-empirical studies to improve emission modelling.

    Science.gov (United States)

    Mostafa, Ehab; Nannen, Christoph; Henseler, Jessica; Diekmann, Bernd; Gates, Richard; Buescher, Wolfgang

    2016-06-01

    Maintaining and preserving the environment from pollutants are of utmost importance. Particulate matter (PM) is considered one of the main air pollutants. In addition to the harmful effects of PM in the environment, it has also a negative indoor impact on human and animal health. The specific forms of damage of particulate emission from livestock buildings depend on its physical properties. The physical properties of particulates from livestock facilities are largely unknown. Most studies assume the livestock particles to be spherical with a constant density which can result in biased estimations, leading to inaccurate results and errors in the calculation of particle mass concentration in livestock buildings. The physical properties of PM, including difference in density as a function of particle size and shape, can have a significant impact on the predictions of particles' behaviour. The aim of this research was to characterize the physical properties of PM from different animal houses and consequently determine PM mass concentration. The mean densities of collected PM from laying hens, dairy cows and pig barns were 1450, 1520 and 2030 kg m(-3), respectively, whilst the mass factors were 2.17 × 10(-3), 2.18 × 10(-3) and 5.36 × 10(-3) μm, respectively. The highest mass concentration was observed in pig barns generally followed by laying hen barns, and the lowest concentration was in dairy cow buildings. Results are presented in such a way that they can be used in subsequent research for simulation purposes and to form the basis for a data set of PM physical properties.

  14. Filter-based control of particulate matter from a lean gasoline direct injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Lewis Sr, Samuel Arthur [ORNL; DeBusk, Melanie Moses [ORNL; Prikhodko, Vitaly Y [ORNL; Storey, John Morse [ORNL

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The

  15. Assessment of impact distances for particulate matter dispersion: A stochastic approach

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, S.M.; Mores, P.L.; Santa Cruz, A.S.M. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); Scenna, N.J. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); INGAR - Instituto de Desarrollo y Diseno (Fundacion ARCIEN - CONICET), Avellaneda 3657, S3002 GJC Santa Fe (Argentina)], E-mail: nscenna@santafe-conicet.gov.ar

    2009-10-15

    It is known that pollutants can be dispersed from the emission sources by the wind, or settled on the ground. Particle size, stack height, topography and meteorological conditions strongly affect particulate matter (PM) dispersion. In this work, an impact distance calculation methodology considering different particulate sizes is presented. A Gaussian-type dispersion model for PM that handles size particles larger than 0.1 {mu}m is used. The model considers primary particles and continuous emissions. PM concentration distribution at every affected geographical point defined by a grid is computed. Stochastic uncertainty caused by the natural variability of atmospheric parameters is taken into consideration in the dispersion model by applying a Monte Carlo methodology. The prototype package (STRRAP) that takes into account the stochastic behaviour of atmospheric variables, developed for risk assessment and safe distances calculation [Godoy SM, Santa Cruz ASM, Scenna NJ. STRRAP SYSTEM - A software for hazardous materials risk assessment and safe distances calculation. Reliability Engineering and System Safety 2007;92(7):847-57] is enlarged for the analysis of the PM air dispersion. STRRAP computes distances from the source to every affected receptor in each trial and generates the impact distance distribution for each particulate size. In addition, a representative impact distance value to delimit the affected area can be obtained. Fuel oil stack effluents dispersion in Rosario city is simulated as a case study. Mass concentration distributions and impact distances are computed for the range of interest in environmental air quality evaluations (PM{sub 2.5}-PM{sub 10})

  16. Concentrations and composition of aerosols and particulate matter in surface waters along the transatlantic section

    Science.gov (United States)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Novigatsky, A. N.; Redzhepova, Z. U.; Dara, O. M.

    2016-07-01

    Along the transatlantic section from Ushuaia to Gdańsk (March 26-May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237-111 739 particles/L for the fraction of 0.3-1 μm and to 0.02-34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river-sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.

  17. Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars.

    Science.gov (United States)

    Cheung, Ka Lam; Polidori, Andrea; Ntziachristos, Leonidas; Tzamkiozis, Theodoros; Samaras, Zissis; Cassee, Flemming R; Gerlofs, Miriam; Sioutas, Constantinos

    2009-08-15

    Three light-duty vehicles in five different configurations [a Honda Accord operating with diesel with a closed-coupled oxidation catalyst and an underfloor catalyst replaced in some tests with a diesel particle filter (DPF), a Toyota Corolla operating with gasoline, and a VW Golf alternatively operating with petrodiesel or biodiesel] were tested in a dynamometer facility to develop an improved understanding of the factors affecting the toxicity of particulate exhaust emissions. The vehicles were tested using a variety of real-world driving cycles, more than the certification test (New European Driving Cycle). Particle samples were collected and analyzed for elemental and organic carbon (EC and OC, respectively), water soluble and water insoluble organic carbon (WSOC and WISOC, respectively), and inorganic ions, and the emission rates (mg/km) for each vehicle/configuration were determined. A dithiothreitol (DTT) assay was used to assess the oxidative potential of the particulate matter (PM) samples. The DPF-equipped diesel and gasoline vehicles were characterized by the lowest overall PM mass emissions, while the diesel and biodiesel cars produced the most potent exhaust in terms of oxidative activity. When the DPF was fitted on the Honda Accord diesel vehicle, the mass emission rates and distance-based oxidative potential were both decreased by 98%, compared to the original configuration. Correlation analysis showed that the DTT consumption rate was highly associated with WSOC, WISOC, and OC (R = 0.98, 0.93, and 0.94, respectively), consistent with previous findings.

  18. Long-term particulate matter exposure and mortality: a review of European epidemiological studies

    Directory of Open Access Journals (Sweden)

    Boffetta Paolo

    2009-12-01

    Full Text Available Abstract Background Several studies considered the relation between long-term exposure to particulate matter (PM and total mortality, as well as mortality from cardiovascular and respiratory diseases. Our aim was to provide a comprehensive review of European epidemiological studies on the issue. Methods We searched the Medline database for epidemiological studies on air pollution and health outcomes published between January 2002 and December 2007. We also examined the reference lists of individual papers and reviews. Two independent reviewers classified the studies according to type of air pollutant, duration of exposure and health outcome considered. Among European investigations that examined long-term PM exposure we found 4 cohort studies (considering total and cardiopulmonary mortality, 1 case-control study (considering mortality from myocardial infarction, and 4 ecologic studies (2 studies considering total and cardiopulmonary mortality and 2 studies focused on cardiovascular mortality. Results Measurement indicators of PM exposure used in European studies, including PM10, PM2.5, total suspended particulate and black smoke, were heterogeneous. This notwithstanding, in all analytic studies total mortality was directly associated with long-term exposure to PM. The excesses in mortality were mainly due to cardiovascular and respiratory causes. Three out of 4 ecologic studies found significant direct associations between PM indexes and mortality. Conclusion European studies on long-term exposure to PM indicate a direct association with mortality, particularly from cardiovascular and respiratory diseases.

  19. Suspended particulate matter in Jiaozhou Bay:Properties and variations in response to hydrodynamics and pollution

    Institute of Scientific and Technical Information of China (English)

    YANG Shilun; YANG Hua; WANG Liang; ZHANG Wenxiang; MENG Yi; ZHANG Jing; XUE Yuanzhong; CHEN Hongtao; WEI Hao; LIU Zhe; WU Ruiming; WANG Lingxiang

    2004-01-01

    Based on water samples collected and observations of currents, tidal levels as well as turbidities taken, respectively over a period of 15 and 7 d, in southwestern Jiaozhou Bay on August, 2001, it was found that: (ⅰ) the average content of non mineral component amounted to 87% of the suspended sediment matter (SPM) in Jiaozhou Bay, much higher than in estuaries and bays where turbidity is high and mineral particulates dominates; (ⅱ) in contrast to high turbid bays, SPM was generally coarser than bed deposits and in upper water column than in lower water column in Jiaozhou Bay; (ⅲ) in fair weathers, suspended sediment concentration (SPC) varied regularly within tidal cycles and neap-spring cycles, but the regularity was deformed in storms; and (ⅳ) SPC was controlled by settling/ resuspension near the bed and by advection at the surface at the study site with a depth of 20 m, suggesting weak vertical exchanges. It was concluded that SPM property of a low turbid bay is sensitive to pollution, and that the maintenance of low turbidity in the bay depends on less SPM supply, low waves and currents, and controlling on discharge of particulate pollutants.

  20. Vascular function, inflammation, and variations in cardiac autonomic responses to particulate matter among welders.

    Science.gov (United States)

    Fang, Shona C; Cavallari, Jennifer M; Eisen, Ellen A; Chen, Jiu-Chiuan; Mittleman, Murray A; Christiani, David C

    2009-04-01

    Patients with health conditions associated with impaired vascular function and inflammation may be more susceptible to the adverse health effects of fine particulate (particulate matter with a mass median aerodynamic diameter of personal PM(2.5) exposure information was collected over a total of 36 person-days, including either or both welding and nonwelding days. Linear mixed models were used to examine the 5-minute standard deviation of normal-to-normal intervals (SDNN) in relation to the moving PM(2.5) averages in the preceding 1-4 hours. C-reactive protein levels and 3 measures of vascular function (augmentation index, mean arterial pressure, and pulse pressure) were determined at baseline. The authors observed an inverse association between the 1-hour PM(2.5) and 5-minute SDNN. Greater SDNN declines were observed among those with C-reactive protein (P(interaction) values at or above the 75th percentile and pulse pressure values below the 75th percentile (P < 0.001). Systemic inflammation and poorer vascular function appear to aggravate particle-related declines in heart rate variability among workers.

  1. Contrasting biological potency of particulate matter collected at sites impacted by distinct industrial sources.

    Science.gov (United States)

    Thomson, Errol M; Breznan, Dalibor; Karthikeyan, Subramanian; MacKinnon-Roy, Christine; Vuong, Ngoc Q; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Charland, Jean-Pierre; Kumarathasan, Prem; Brook, Jeffrey R; Vincent, Renaud

    2016-12-01

    Industrial sources contribute a significant proportion of anthropogenic particulate matter (PM) emissions, producing particles of varying composition that may differentially impact health. This study investigated the in vitro toxicity of ambient PM collected near industrial sites in relation to particle size and composition. Size-fractionated particles (ultrafine, PM0.1-2.5, PM2.5-10, PM>10) were collected in the vicinity of steel, copper, aluminium, and petrochemical industrial sites. Human lung epithelial-like A549 and murine macrophage-like J774A.1 cells were exposed for 24 h to particle suspensions (0, 30, 100, 300 μg/cm(2)). Particle potency was assessed using cytotoxic (resazurin reduction, lactate dehydrogenase (LDH) release) and inflammatory (cytokine release) assays, and regressed against composition (metals, polycyclic aromatic hydrocarbons (PAHs), endotoxin). Coarse (PM2.5-10, PM>10) particle fractions were composed primarily of iron and aluminium; in contrast, ultrafine and fine (PM0.1-2.5) fractions displayed considerable variability in metal composition (especially water-soluble metals) across collection sites consistent with source contributions. Semi-volatile and PM-associated PAHs were enriched in the fine and coarse fractions collected near metal industry. Cell responses to exposure at equivalent mass concentrations displayed striking differences among sites (SITE x SIZE and SITE x DOSE interactions, p Industrial sources produce particulate emissions with varying chemical composition that differ in their in vitro potency in relation to particle size and the levels of specific constituents.

  2. Characterization of ultrafine particulate matter from traditional and improved biomass cookstoves.

    Science.gov (United States)

    Just, Brian; Rogak, Steven; Kandlikar, Milind

    2013-04-02

    Biomass combustion in cookstoves has a substantial impact on human health, affects CO2 levels in the atmosphere, and black carbon (BC) and organic carbon (OC) affect the earth's radiative balance. Various initiatives propose to replace traditional fires with "improved" (nontraditional) cookstoves to offset negative local and global effects. In this laboratory study, we compared the size, composition, and morphology of ultrafine particulate emissions from a "three-stone" traditional fire to those from two improved stove designs (one "rocket", one "gasifier"). Measurement tools included a scanning mobility particle sizer, PTFE and quartz filter samples, and transmission electron microscopy. In the improved stoves, particulate mass (PM) emissions factors were much lower although median particle size was also lower: 35 and 24 nm for the rocket and gasifier, respectively, vs 61 nm for the three-stone fire. Particles from improved stoves formed clearly defined chain agglomerates and independent spheres with little evidence of volatile matter and had a higher proportion of BC to total PM, although overall BC emissions factors were fairly uniform. The 3-fold increase in quantities of sub-30 nm particles from improved cookstoves warrants further consideration by health scientists, with due consideration to the higher combustion efficiencies of improved cookstoves.

  3. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress

    Directory of Open Access Journals (Sweden)

    Nel Andre E

    2009-09-01

    Full Text Available Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM component and that in urban areas, the smaller particles could be more pathogenic, as a result of their greater propensity to induce systemic prooxidant and proinflammatory effects. Much is still unknown about the toxicology of ambient particulates as well as the pathogenic mechanisms responsible for the induction of adverse cardiovascular health effects. It is expected that better understanding of these effects will have large implications and may lead to the formulation and implementation of new regulatory policies. Indeed, we have found that ultrafine particles ( Extensive epidemiological evidence supports the association of air pollution with adverse health effects 123. It is increasingly being recognized that such effects lead to enhanced morbidity and mortality, mostly due to exacerbation of cardiovascular diseases and predominantly those of ischemic character 4. Indeed, in addition to the classical risk factors such as serum lipids, smoking, hypertension, aging, gender, family history, physical inactivity and diet, recent data have implicated air pollution as an important additional risk factor for atherosclerosis. This has been the subject of extensive reviews 56 and a consensus statement from the American Heart Association 7. This article reviews the supporting epidemiological and animal data, possible pathogenic mechanisms and future perspectives.

  4. Mutagenicity of particulate matter fractions in areas under the impact of urban and industrial activities.

    Science.gov (United States)

    Lemos, Andréia Torres; Coronas, Mariana Vieira; Rocha, Jocelita Aparecida Vaz; Vargas, Vera Maria Ferrão

    2012-11-01

    Organisms in the environment are exposed to a mixture of pollutants. Therefore the purpose of this study was to analyze the mutagenicity of organic and inorganic responses in two fractions of particulates (TSP and PM2.5) and extracts (organic and aqueous). The mutagenicity of organic and aqueous particulate matter extracts from urban-industrial and urban-residential areas was evaluated by Salmonella/microsome assay, through the microsuspension method, using strain TA98 with and without liver metabolization. Additionally, strains YG1021 and YG1024 (nitro-sensitive) were used for organic extracts. Aqueous extracts presented negative responses for mutagenesis and cytotoxicity was detected in 50% of the samples. In these extracts the presence of potential bioavailable metals was identified. All organic extracts presented mutagens with a higher potential associated with PM2.5. This study presents a first characterization of PM2.5 in Brazil, through the Salmonella/microsome assay. The evaluation strategy detected the anthropic influence of groups of compounds characteristically found in urban and industrial areas, even in samples with PM values in accordance with quality standards. Thus, the use of a genotoxic approach in areas under different anthropic influences will favor the adoption of preventive measures in the health/environment relation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter.

    Science.gov (United States)

    Danielsen, Pernille Høgh; Loft, Steffen; Jacobsen, Nicklas Raun; Jensen, Keld Alstrup; Autrup, Herman; Ravanat, Jean-Luc; Wallin, Håkan; Møller, Peter

    2010-12-01

    Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric or intratracheal exposure in terms of oxidative stress, inflammation, genotoxicity, and DNA repair after 24 h in liver and lung tissue of rats. Rats were exposed to WSPM from high or low oxygen combustion and ambient PM collected in areas with and without many operating wood stoves or carbon black (CB) at the dose of 0.64 mg/kg body weight. The levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine, 1,N(6)-etheno-2'-deoxyadenosine, and 1-N(2)-etheno-2'-deoxyguanosine (εdG) were significantly increased with 23% (95% confidence interval [CI]: 0.1-45%), 54% (95% CI:18-90%), and 73% (95% CI: 31-134%) in the liver of rats exposed orally to CB, respectively. Rats orally exposed to PM from the wood stove area and low oxygen combustion WSPM (LOWS) had 35% (95% CI: 0.1-71%) and 45% (95% CI: 10-82%) increased levels of εdG in the liver, respectively. No significant differences were observed for bulky DNA adducts. Increased gene expression of proinflammatory cytokines, heme oxygenase-1, and oxoguanine DNA glycosylase 1 was observed in the liver following intragastric exposure and in the lung following instillation in particular of LOWS. Exposure to LOWS also increased the proportion of neutrophils in BAL fluid. These results indicate that WSPM and CB exert the strongest effect in terms of oxidative stress-induced response, inflammation, and genotoxicity in the organ closest to the port of entry.

  6. Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the Fukushima nuclear accident.

    Science.gov (United States)

    Huon, Sylvain; Hayashi, Seiji; Laceby, J Patrick; Tsuji, Hideki; Onda, Yuichi; Evrard, Olivier

    2017-09-06

    The Fukushima nuclear accident in Japan resulted in the deposition of radiocesium over forested and rural landscapes northwest of the power plant. Although there have been several investigations into the dynamics of contaminated river sediment, less attention has been paid to the sources of deposited particulate matter in dams and reservoirs. In the Fukushima Prefecture, there are 10 significant dams and over a 1000 reservoirs for both agricultural and surface water management. These reservoirs may have trapped a significant volume of radiocesium-contaminated sediment. Therefore, characterizing the sources of contaminated particulate matter is important for the ongoing management of contamination in the region. Accordingly, the composition of particulate matter deposited in the Mano Dam reservoir, approximately 40km northwest of the power plant, was investigated with the analyses and modelling of carbon and nitrogen stable isotope ratios (δ(13)C and δ(15)N), total organic carbon (TOC) and total nitrogen (TN) concentrations. Four sediment cores, with lengths ranging 29-41cm, were sampled in the Mano Dam. Source samples from 46 forest soils, 28 cultivated soils and 25 subsoils were used to determine the source contributions of particulate matter. Carbon and nitrogen parameters were analyzed on all samples and a concentration-dependent distribution modelling approach was used to apportion source contributions. Three of the four cores sampled in the Mano Dam reservoir had distinct radiocesium peaks representative of the initial post-accident wash-off phase. Cultivated sources were responsible for 48±7% of the deposited fine particulate matter whereas forests were modelled to contribute 27±6% and subsoil sources 25±4%. Ongoing decontamination of cultivated sources in the Fukushima region should result in a decrease of contaminated matter deposition in reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. HC-PM COUPLING MODEL FOR PARTICULATE MATTER EMISSION OF DIESEL ENGINES

    Institute of Scientific and Technical Information of China (English)

    Tan Piqiang; Lu Jiaxiang; Deng Kangyao

    2005-01-01

    A rapid, phenomenological model that predicts particulate matter (PM) emission of diesel engines is developed and formulated. The model is a chemical equilibrium composition model, and is based on the formation mechanisms of PM and unburned hydrocarbon (HC) emissions of diesel engines. It can evaluate the emission concentration of PM via the emission concentration of HC. To validate the model, experiments are carried out in two research diesel engines. Comparisons of the model results with the experimental data show good agreement. The model can be used to evaluate the concentration of PM emission of diesel engines under lack of PM measuring instruments. In addition, the model is useful for computer simulations of diesel engines, as well as electronic control unit (ECU) designs for electronically controlled diesel engines.

  8. New Leakage Current Particulate Matter Sensor for On-Board Diagnostics

    Directory of Open Access Journals (Sweden)

    Jiawei Wang

    2016-01-01

    Full Text Available Structure and principle of the new leakage current particulate matter (PM sensor are introduced and further study is performed on the PM sensor with the combination of numerical simulation and bench test. High voltage electrode, conductive shell, and heaters are all built-in. Based on the principle of Venturi tube and maze structure design, this sensor can detect transient PM concentrations. Internal flow field of the sensor and distribution condition of PM inside the sensor are analyzed through gas-solid two-phase flow numerical simulation. The experiment was also carried out on the whole sensor system (including mechanical and electronic circuit part and the output signals were analyzed. The results of simulation and experiment reveal the possibility of PM concentration (mass detection by the sensor.

  9. Effect of auxiliary ventilations on diesel particulate matter dispersion inside a dead-end entry

    Institute of Scientific and Technical Information of China (English)

    Zheng Yi; Thiruvengadam Magesh; Lan Hai; Tien C. Jerry

    2015-01-01

    Diesel particulate matter (DPM) is considered carcinogenic after prolonged exposure. This paper used computational fluid dynamics (CFD) method to study the effect of four auxiliary ventilation systems on DPM distribution in a dead-end entry with loading operation. The auxiliary ventilation systems con-sidered include:blower fan and tubing;exhaust fan and tubing, jet fan, and push–pull system. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of the loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup of local ventilation. It can also be used for selection of DPM control strategies and DPM annual training for underground miners.

  10. Liquid chromatographic determination of benzo(a)pyrene in total particulate matter of cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.A.; Jenkins, R.A.; Griest, W.H.; Reagan, R.R.; Holladay, S.K.

    1985-09-01

    The benzo(a)pyrene (BaP) delivery of reference and commercially available tobacco cigarettes, as well as reference and placebo marijuana cigarettes, is determined using a sequential liquid chromatographic/liquid chromatographic procedure. The total particulate matter of sample cigarette smoke is collected using a Cambridge filter pad, which is ultrasonically extracted with acetone. The resulting extract is filtered, then fractionated using semipreparative-scale normal phase liquid chromatography (LC). Quantitative determination is achieved using analytical-scale reverse phase LC equipped with a fluorescence detector. The method is precise (+/- 10-15% relative standard deviation) and yields 85% or better BaP recovery at the ng/cig. level. A single pad may be analyzed in 8 person-hours, while a more typical lot of 12 pads (6 pads each for 2 cigarette brands) may be analyzed in 10 person-days.

  11. An update on mortality in Denmark caused by fine particulate matter air pollution

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Andersen, Mikael Skou; Brandt, Jørgen

    .5 concentration and distribution in Denmark (and elsewhere) has increased tremendously and new calculations of its’ health effects have been reported. Since 2002 not only the air pollution data and the models have changed, so has the demography of the population and the baseline mortality rates. It is not clear...... at the Copenhagen street level (http://envs.au.dk/en/knowledge/air/monitoring/). Results from the different methods of calculation of effects on mortality will be presented and discussed. Conclusions Estimation of health effects from long term PM exposure has developed tremendously over the past decade. Rigouros...... comparisons of how these different methods perform has rarely been done. This study compare methods using Denmark as an example, and gives an update on mortality caused by fine particulate matter air pollution. This work was funded by the DCE – National Centre for Environment and Energy project ”Health...

  12. Estimation on dynamic release of phosphorus from wind-induced suspended particulate matter in Lake Taihu

    Institute of Scientific and Technical Information of China (English)

    FAN; Chengxin; ZHANG; Lu; QIN; Boqiang; WANG; Sumin; HU; We

    2004-01-01

    Through man-made disturbance experiments, the corresponding relationships between suspended particulate matter (SPM) and wind speed in different lake areas were simulated, the physicochemical formal transformation and biological mineralizing and decaying processes of phosphorus in SPM were studied, the contribution of phosphorus transformation to phosphorus loading of the water of Lake Taihu was quantitatively estimated. The results show SPM in physicochemical transformed to soluble reactive phosphorus (SRP), and the contribution of the total external loading of Lake Taihu, namely 4.7-7.5 times as much as SRP loading entering the lake by the rivers; thus it is the important source in dynamical internal loading of the lake. The determining factors for dynamical internal loading in lakes are organic phosphorus content in suspended solid and its biological transition availability.

  13. Impacts of changes in North Atlantic atmospheric circulation on particulate matter and human health in Europe

    Science.gov (United States)

    Pausata, Francesco S. R.; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Cavalli, Fabrizia; Dentener, Frank J.

    2013-08-01

    In this study we use a global climate model to assess particulate matter (PM) variability induced by the North Atlantic Oscillation (NAO) in Europe during winter and the potential impact on human health of a future shift in the NAO mean state. Our study shows that extreme NAO phases in the 1990s modulated most of the interannual variability of winter PM concentrations in several European countries. Increased PM concentrations as a result of a positive shift in the mean winter NAO of one standard deviation would lead to about 5500 additional premature deaths in Mediterranean countries, compared to the simulated average PM health impact for the year 2000. In central-northern Europe, instead, higher wind speed and increased PM removal by precipitation lead to negative PM concentration anomalies with associated health benefits. We suggest that the NAO index is a useful indicator for the role of interannual atmospheric variability on large-scale pollution-health impacts.

  14. Triboelectric Nanogenerator Enhanced Nanofiber Air Filters for Efficient Particulate Matter Removal.

    Science.gov (United States)

    Gu, Guang Qin; Han, Chang Bao; Lu, Cun Xin; He, Chuan; Jiang, Tao; Gao, Zhen Liang; Li, Cong Ju; Wang, Zhong Lin

    2017-06-27

    We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG) enhanced polyimide (PI) nanofiber air filter for particulate matter (PM) removal in ambient atmosphere. The PI electrospinning nanofiber film exhibited high removal efficiency for the PM particles that have diameters larger than 0.5 μm. When the R-TENG is connected, the removal efficiency of the filter is enhanced, especially when the particle diameters of the PM are smaller than 100 nm. The highest removal efficiency is 90.6% for particles with a diameter of 33.4 nm and the highest efficiency enhancement reaches 207.8% at the diameter of 76.4 nm where the removal efficiency enhanced from 27.1% to 83.6%. This technology with zero ozone release and low pressure drop offers an approach for air cleaning and haze treatment.

  15. A novel methodology for determining low-cost fine particulate matter street sweeping routes.

    Science.gov (United States)

    Blazquez, Carola A; Beghelli, Alejandra; Meneses, Veronica P

    2012-02-01

    This paper addresses the problem of low-cost PM10 (particulate matter with aerodynamic diameter arc routing problem into a node routing problem is proposed in this paper. This is accomplished by building a graph that represents the area to sweep in such a way that the problem can be solved by applying any known solution to the Traveling Salesman Problem (TSP). As a way of illustration, the proposed method was applied to the northeast area of the Municipality of Santiago (Chile). Results show that the proposed methodology achieved up to 37% savings in kilometers traveled by the sweeping vehicle when compared to the solution obtained by solving the TSP problem with Geographic Information Systems (GIS)--aware tools.

  16. Monitoring of tobacco smoke particulate matter air pollution in the universities of Kazan city

    Directory of Open Access Journals (Sweden)

    Vasylyev, V.A.

    2011-04-01

    Full Text Available Particulate matter (PM measurements were conducted in the premises of eight universities in Kazan city. Where smoking is allowed, PM concentrations reach dangerous levels. Smoking mostly takes place in rest-rooms, hallways, corridors, and kitchens of student dormitories. In premises where nobody smokes of the buildings where smoking is not fully forbidden, PM concentrations may be dangerous even for healthy people. Smoke-free policies in university buildings do not cause compensatory smoking at the entrances. PM concentrations at the upper floors of the buildings are generally higher, which needs to be taken in to account while interpreting the results of PM measurements. Smoke-free policies must cover both university buildings and student dormitories. (Full text is in Russian

  17. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  18. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.

    Science.gov (United States)

    Manivannan, K; Aggarwal, P; Devabhaktuni, V; Kumar, A; Nims, D; Bhattacharya, P

    2012-07-15

    An efficient and highly reliable automatic selection of optimal segmentation algorithm for characterizing particulate matter is presented in this paper. Support vector machines (SVMs) are used as a new self-regulating classifier trained by gray level co-occurrence matrix (GLCM) of the image. This matrix is calculated at various angles and the texture features are evaluated for classifying the images. Results show that the performance of GLCM-based SVMs is drastically improved over the previous histogram-based SVMs. Our proposed GLCM-based approach of training SVM predicts a robust and more accurate segmentation algorithm than the standard histogram technique, as additional information based on the spatial relationship between pixels is incorporated for image classification. Further, the GLCM-based SVM classifiers were more accurate and required less training data when compared to the artificial neural network (ANN) classifiers.

  19. Satellite-based retrieval of particulate matter concentrations over the United Arab Emirates (UAE)

    Science.gov (United States)

    Zhao, Jun; Temimi, Marouane; Hareb, Fahad; Eibedingil, Iyasu

    2016-04-01

    In this study, an empirical algorithm was established to retrieve particulate matter (PM) concentrations (PM2.5 and PM10) using satellite-derived aerosol optical depth (AOD) over the United Arab Emirates (UAE). Validation of the proposed algorithm using ground truth data demonstrates its good accuracy. Time series of in situ measured PM concentrations between 2014 and 2015 showed high values in summer and low values in winter. Estimated and in situ measured PM concentrations were higher in 2015 than 2014. Remote sensing is an essential tool to reveal and back track the seasonality and inter-annual variations of PM concentrations and provide valuable information on the protection of human health and the response of air quality to anthropogenic activities and climate change.

  20. Simulation of the transport of suspended particulate matter in the Rio de la Plata

    Energy Technology Data Exchange (ETDEWEB)

    Hausstein, H.

    2008-11-06

    Numerical simulations of the transport of Suspended Particulate Matter in the Rio de la Plata estuary were performed with a three dimensional model for coastal waters driven by wave sand currents. Aturbulence based flocculation approach is implemented to the model. The model is for the first time applied under heavy conditions, since the Rio de la Plata has discharges up to 25000 m{sup 3}/s and SPM concentrations up to 300-400 mg/l. Such concentrations are also difficult to compute from satellite measurements. SeaWiFs satellite images served for the validation of the model results. The model is able to reproduce the shape and the position of the front as well as the zone of the turbidity maximum. It also identifies the zones of erosion and deposition which is of significant importance because of the dense ship traffic along the navigational channels towards Buenos Aires and the cities upstream the rivers. (orig.)

  1. A method for monitoring mass concentration of black carbon particulate matter using photothermal interferometry.

    Science.gov (United States)

    Li, Baosheng; Wang, Yicheng; Li, Zhengqiang

    2016-03-01

    A method for measurements of mass concentration of black carbon particulate matter (PM) is proposed based on photothermal interferometry (PTI). A folded Jamin photothermal interferometer was used with a laser irradiation of particles deposited on a filter paper. The black carbon PM deposited on the filter paper was regarded as a film while the quartz filter paper was regarded as a substrate to establish a mathematical model for measuring the mass concentration of PM using a photothermal method. The photothermal interferometry system was calibrated and used to measure the atmospheric PM concentration corresponding to different dust-treated filter paper. The measurements were compared to those obtained using β ray method and were found consistent. This method can be particularly relevant to polluted atmospheres where PM is dominated by black carbon.

  2. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Illerup, Jytte Boll; Kindbom, Karin;

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions...... in charge of the work on emission inventories in the Nordic countries have participated in this project together with researchers performing PM measurements in the residential and transport sectors in the Nordic countries in order to increase the quality of the PM national inventories. The ratio between...... the reported emissions of PM10 and PM2.5 was calculated for each country. Norway has the largest share of PM2.5 compared to PM10 (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed...

  3. Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment

    Science.gov (United States)

    Loh, Andrew; Shim, Won Joon; Ha, Sung Yong; Yim, Un Hyuk

    2014-12-01

    Oil suspended particulate matter (SPM) aggregates (OSA) are naturally occurring phenomena where oil droplets and particles interact to form aggregates. This aggregation could aid cleanup processes of oil contaminated waters. When OSA is formed, it makes oil less sticky and would facilitate the dispersion of oil into the water column. Increased oil-water surface contact by OSA formation enhances biodegradation of oil. Its applicability as a natural oil clean-up mechanism has been effectively demonstrated over past decades. There are many factors affecting the formation of OSA and its stability in the natural environment that need to be understood. This review provides a current understanding of (1) types of OSA that could be formed in the natural environment; (2) controlling factors and environmental parameters for the formation of OSA; (3) environmental parameters; and (4) fate of OSA and its applicability for oil spill remediation processes.

  4. Development of particulate matter speciation profiles for major sources in six cities in India

    Science.gov (United States)

    Patil, Rashmi S.; Kumar, Rakesh; Menon, Ratish; Shah, Munna Kumar; Sethi, Virendra

    2013-10-01

    A nationwide study was carried out to develop air pollution source profiles specific to India. Chemical speciation profiles are reported for 27 major non-vehicular sources of particulate matter (combustion and non-combustion) in six cities in India viz. Bengaluru, Chennai, Delhi, Kanpur, Mumbai and Pune. PM10 and PM2.5 samples were collected from these sources using three different modes of sampling viz. dilution, resuspension and source dominated sampling, depending on the nature of the source. Filter samples were analyzed for mass by gravimetric analysis, elements by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), water soluble ions by ion chromatography and elemental (EC) and organic carbon (OC) by thermal/optical reflectance. Reported profiles include 39 elements, 12 ions, EC and OC. Developed profiles are compared with similar profiles that have been reported previously.

  5. Secondary Ion Mass Spectrometry: The Application in the Analysis of Atmospheric Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di; Hua, Xin; Xiu, Guangli; Zheng, Yongjie; Yu, Xiao-Ying; Long, Yi-Tao

    2017-07-24

    Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization of PM is important since the chemical heterogeneity between the surface and bulk may vary its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, capable of high spatial chemical imaging and depth profiling. Recent research shows that SIMS holds great potential in analyzing both surface and bulk chemical information of PM. In this review, we presented the working principal of SIMS in PM characterization, summarized recent applications in PM analysis from different sources, discussed its advantages and limitations, and proposed the future development of this technique with a perspective in environmental sciences.

  6. Elemental Constituents of Particulate Matter and Newborn's Size in Eight European Cohorts

    DEFF Research Database (Denmark)

    Pedersen, Marie; Gehring, Ulrike; Beelen, Rob

    2016-01-01

    % confidence interval: 1.17, 1.58). Increased nickel and zinc in PM2.5 concentrations were also associated with an increased risk of LBW. Head circumference was reduced at higher exposure to all elements except potassium. All associations with sulfur were most robust to adjustment for PM2.5 mass concentration......BACKGROUND: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn's size have been little examined. AIM: We aimed to investigate the associations of exposure to elemental...... cohorts comprising 34,923 singleton births in 1994-2008. Annual average concentrations of elemental constituents of PM smaller than 2.5 and 10 µm (PM2.5 and PM10) at maternal home addresses during pregnancy were estimated using land-use regression models. Adjusted associations between each birth...

  7. Characterization of Particulate Matter Transport across the Lung-Surfactant Barrier using Langmuir Monolayers

    Science.gov (United States)

    Eaton, Jeremy; Dennin, Michael; Levine, Alex; George, Steven

    2014-03-01

    We investigate the transport of particulate matter acros the lung using a monolayer of bovine lung surfactant tagged with NBD in conjunction with alveolar lung cells below the air-water interface. The monolaye dynamically compressed and expanded to induce phase transitions as well as buckling and folding. Polystyrene spheres ranging from 20 to 500 nm in diameter were tagged with fluorescent molecules and deposited on the monolayer. We will present results of preliminary studies of the transport of beads from the air-water surface to the lung cells through the monolayer. Characterization of the transfer will focus on differential fluorescence microscopy to distinguish uncoated beads from beads from beads coated with surfactant monolayers. The presence or absence of surfactant associated with the beads provides insight into potential transfer mechanisms and will serve as an input into models of the bead transfer. We gladly acknowledge the support of NSF grant DMR-1309402.

  8. On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations.

    Science.gov (United States)

    Tan, Phillip V; Evans, Greg J; Tsai, Julia; Owega, Sandy; Fila, Michael S; Malpica, Oscar; Brook, Jeffrey R

    2002-08-15

    A 10-day winter sampling campaign was conducted in downtown Toronto for particulate matter (PM) air pollution in the fine (z peaks 58(C3HeN)+, 86(C5H2N)+, and nitrates, increased in number concentration while Ca and hydrocarbon particle classes concurrently decreased. On another day, sulfates were found to have increased significantly. The third event was only 4 h in duration and exhibited an increase in the number of submicron-sized K/hydrocarbons and sulfate-containing particles. In this last event, the hydrocarbons and a K to Fe ratio enrichment indicated there was likely a contribution from a combustion source. This work offers some of the first insights into single particle size and chemistry in a cold winter climate.

  9. Carbon-centered free radicals in particulate matter emissions from wood and coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Linwei Tian; Catherine P. Koshland; Junko Yano; Vittal K. Yachandra; Ignatius T.S. Yu; S.C. Lee; Donald Lucas [Chinese University of Hong Kong, Hong Kong (China). School of Public Health

    2009-05-15

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contrast with the pattern of radical intensities in the source coals. The strong correlation between intensities of free radical and elemental carbon in PM emissions suggests that the radical species may be carbon-centered. The increased g-factors, 2.0029-2.0039, over that of purely carbon-centered radicals may indicate the presence of vicinal oxygen heteroatom. The redox and biology activities of these carbon-centered radicals are worthy of evaluation. 22 refs., 4 figs., 1 tab.

  10. Hydrophobic and porous cellulose nanofibrous screen for efficient particulate matter (PM2.5) blocking

    Science.gov (United States)

    Chen, Liping; Guo, Yi; Peng, Xinsheng

    2017-10-01

    Particulate matter (PM2.5) pollution in air seriously affects public health. However, both bulk thickness and the accumulation of PM particles typically lead to a quick decline in the air permeability and large pressure drops of the conventional air clean membranes. In this work, we choose cellulose nanofibers (CNFs, a low cost, biodegradable and sustainable material) to form a hydrophobic and porous CNF thin layer on a stainless steel screen (300 mesh with pore size of 48 µm) through a simple filtration-assisted gelation process and subsequent polydimethylsiloxane modification. The prepared hydrophobic CNFs/stainless steel screen demonstrates highly efficient PM2.5 blocking based on size-sieving effect, fast air permeability and long-term durability under natural ventilation conditions in the relative humidity range from 45% to 93%. This technique holds great potential for indoor PM2.5 blocking under natural ventilation conditions.

  11. Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents.

    Science.gov (United States)

    Schantz, Michele M; Cleveland, Danielle; Heckert, N Alan; Kucklick, John R; Leigh, Stefan D; Long, Stephen E; Lynch, Jennifer M; Murphy, Karen E; Olfaz, Rabia; Pintar, Adam L; Porter, Barbara J; Rabb, Savelas A; Vander Pol, Stacy S; Wise, Stephen A; Zeisler, Rolf

    2016-06-01

    Two new Standard Reference Materials (SRMs), SRM 2786 Fine Particulate Matter (Particulate Matter (particulate matter (PM). These materials have been characterized for the mass fractions of selected polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs, brominated diphenyl ether (BDE) congeners, hexabromocyclododecane (HBCD) isomers, sugars, polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners, and inorganic constituents, as well as particle-size characteristics. These materials are the first Certified Reference Materials available to support measurements of both organic and inorganic constituents in fine PM. In addition, values for PAHs are available for RM 8785 Air Particulate Matter on Filter Media. As such, these SRMs will be useful as quality control samples for ensuring compatibility of results among PM monitoring studies and will fill a void to assess the accuracy of analytical methods used in these studies. Graphical Abstract Removal of PM from filter for the preparation of SRM 2786 Fine Particulate Matter.

  12. Assessment of particulate matter variation during 2011-2015 over a tropical station Agra, India

    Science.gov (United States)

    Gogikar, Priyanjali; Tyagi, Bhishma

    2016-12-01

    Air quality over Agra is deteriorating and causing a serious threat to people residing in the city as well as to World heritage site- Tajmahal. In the present study, daily average concentrations of Suspended Particulate Matter (SPM) and Respirable Suspended Particulate Matter (RSPM) were analysed over a period of 2011-2015 at four stations in Agra city, namely: Taj, Itmad-Ud-Daula, Rambagh and Nunhai. The concentrations are above threshold values when compared to specify standards for a healthy environment (by India, US, WHO, EU and China - Class I and Class II) for all the seasons except monsoon and the values are highest in the month of November and lowest in the month of August and September. Variation of RSPM and SPM were found to be positively correlated with each other with values of 0.76 (Taj), 0.72 (Itmad-Ud-Daula), 0.69 (Rambagh), 0.77 (Nunhai). The study illustrates that the levels of SPM and RSPM are not showing any decreasing trend over Agra even after closing of industries and taking other precautions inside the city by Government of India. The study clearly identifies that local control of pollution sources are not enough and pollution is being transported from nearby regions to keep the daily pollution value higher than threshold. Source regions of transported pollutants over Agra have been analysed by using Weighted Potential Source Contribution Function (WPSCF) for both SPM and RSPM. Wavelet analysis of monthly averaged values of RSPM and SPM data sets has shown the existence of semi-annual and annual periodicity over the study region.

  13. Providing Context for Ambient Particulate Matter and Estimates of Attributable Mortality.

    Science.gov (United States)

    McClellan, Roger O

    2016-09-01

    Four papers on fine particulate matter (PM2.5 ) by Anenberg et al., Fann et al., Shin et al., and Smith contribute to a growing body of literature on estimated epidemiological associations between ambient PM2.5 concentrations and increases in health responses relative to baseline notes. This article provides context for the four articles, including a historical review of provisions of the U.S. Clean Air Act as amended in 1970, requiring the setting of National Ambient Air Quality Standards (NAAQS) for criteria pollutants such as particulate matter (PM). The substantial improvements in both air quality for PM and population health as measured by decreased mortality rates are illustrated. The most recent revision of the NAAQS for PM2.5 in 2013 by the Environmental Protection Agency distinguished between (1) uncertainties in characterizing PM2.5 as having a causal association with various health endpoints, and as all-cause mortality, and (2) uncertainties in concentration--excess health response relationships at low ambient PM2.5 concentrations below the majority of annual concentrations studied in the United States in the past. In future reviews, and potential revisions, of the NAAQS for PM2.5 , it will be even more important to distinguish between uncertainties in (1) characterizing the causal associations between ambient PM2.5 concentrations and specific health outcomes, such as all-source mortality, irrespective of the concentrations, (2) characterizing the potency of major constituents of PM2.5 , and (3) uncertainties in the association between ambient PM2.5 concentrations and specific health outcomes at various ambient PM2.5 concentrations. The latter uncertainties are of special concern as ambient PM2.5 concentrations and health morbidity and mortality rates approach background or baseline rates.

  14. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    Directory of Open Access Journals (Sweden)

    Ana Cristina Gobbo César

    2016-03-01

    Full Text Available Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5 and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088; lag 2 (RR=1.066, 95%CI: 1.023 to 1.113; lag 3 (RR=1.053, 95%CI: 1.015 to 1.092; lag 4 (RR=1.043, 95%CI: 1.004 to 1.088 and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106. The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes.

  15. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  16. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region

    Science.gov (United States)

    Kumar, Ajay; Attri, Arun K.

    2016-10-01

    Fungal spores as a constituent of ambient particulate matter (PM) is of concern; they not only display the physical traits of a particle, but are also potential allergens and health risk. An investigation over fourteen month was undertaken at a rural site located in the Western Himalayan region, to evaluate the PM associated fungal spores' concentration and diversity. The season-wise change in the fungal spores concentration in the Coarse Particulate Matter (CPM) fraction (aerodynamic diameter > 10 μm) varied from 500 to 3899 spores m-3. Their average concentration over 14 months was 1517 spores m-3. Significant diversity of fungal spores in the CPM samples was observed; 27 individual genera of fungal spores were identified, of which many were known allergens. Presence of Ascomycota and Basidiomycota fungal spores was dominant in the samples; ∼20% of the spores were un-characterized. The season-wise variability in fungal spores showed a statistically significant high correlation with CPM load. Maximum number concentration of the spores in CPM was recorded in the summer, while minimum in the winter. The high diversity of spores occurred during monsoon and post monsoon months. The meteorological factors played an important role in the fungal spores' distribution profile. The temporal profile of the spores showed significant correlation with the ambient temperature (T), relative humidity (RH), wind speed (WS) and planetary boundary layer (PBL) height. Strong correlation of WS with fungal spores and CPM, and wind back trajectories suggest that re-suspension and wind assisted transport of PM contributes to ambient CPM associated fungal spores.

  17. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    Science.gov (United States)

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.

  18. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    Science.gov (United States)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  19. Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores.

    Science.gov (United States)

    Zhang, Chunxia; Huang, Baochun; Piper, John D A; Luo, Rensong

    2008-04-01

    Magnetic properties of atmospheric particulate matter collected by both natural and artificial dust receptors are increasingly being used as proxy parameters for environmental analyses. This study reports the first investigation of the relationship between smelting factory activity and the impact on the environment as recorded by the magnetic signature in Salix matsudana tree rings. Magnetic techniques including low-temperature experiments, successive acquisition of isothermal remanent magnetisation (IRM), hysteresis loops and measurements of saturated IRM (SIRM) indicated that magnetic particles were omnipresent in tree bark and trunk wood, and that these particles were predominantly magnetite with multidomain properties. The magnetic properties of tree trunk and branch cores sampled from different directions and heights implied that the acquisition of magnetic particles by a tree depends on both orientation and height. The differences of SIRM values of tree ring cores indicated that pollution source-facing tree trunk wood contained significantly more magnetic particles than other faces. The results indicated that magnetic particles are most likely to be intercepted and collected by tree bark and then enter into tree xylem tissues during the growing season to become finally enclosed into the tree ring by lignification. There was a significant correlation between time-dependent SIRM values of tree ring cores and the annual iron production of the smelting factory. From the dependence of magnetic properties with sampling direction and height, it is argued that magnetic particles in the xylem cannot move between tree rings. Accordingly, the SIRM of tree ring cores from the source-facing side can contribute to historic studies of atmospheric particulate matter produced by heavy metal smelting activities.

  20. Spatial and temporal variations in traffic-related particulate matter at New York City high schools

    Science.gov (United States)

    Patel, Molini M.; Chillrud, Steven N.; Correa, Juan C.; Feinberg, Marian; Hazi, Yair; Deepti, K. C.; Prakash, Swati; Ross, James M.; Levy, Diane; Kinney, Patrick L.

    Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM 2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM 2.5 and BC were monitored continuously for 4-6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2-3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM 2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM 2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m 3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM 2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM 2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.

  1. Residential Proximity to Major Roadways, Fine Particulate Matter, and Hepatic Steatosis: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Long, Michelle T; Schwartz, Joel; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Fox, Caroline S; Mittleman, Murray A

    2017-10-01

    We examined associations between ambient air pollution and hepatic steatosis among 2,513 participants from the Framingham (Massachusetts) Offspring Study and Third Generation Cohort who underwent a computed tomography scan (2002-2005), after excluding men who reported >21 drinks/week and women who reported >14 drinks/week. We calculated each participant's residential-based distance to a major roadway and used a spatiotemporal model to estimate the annual mean concentrations of fine particulate matter. Liver attenuation was measured by computed tomography, and liver-to-phantom ratio (LPR) was calculated. Lower values of LPR represent more liver fat. We estimated differences in continuous LPR using linear regression models and prevalence ratios for presence of hepatic steatosis (LPR ≤ 0.33) using generalized linear models, adjusting for demographics, individual and area-level measures of socioeconomic position, and clinical and lifestyle factors. Participants who lived 58 m (25th percentile) from major roadways had lower LPR (β = -0.003, 95% confidence interval: -0.006, -0.001) and higher prevalence of hepatic steatosis (prevalence ratio = 1.16, 95% confidence interval: 1.05, 1.28) than those who lived 416 m (75th percentile) away. The 2003 annual average fine particulate matter concentration was not associated with liver-fat measurements. Our findings suggest that living closer to major roadways was associated with more liver fat. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    Science.gov (United States)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  3. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City

    Science.gov (United States)

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  4. Temporal variations in C-13 and C-14 concentrations in particulate organic matter from the southern North Sea

    NARCIS (Netherlands)

    Megens, L.; Plicht, J. van der; Leeuw, J.W. de

    2001-01-01

    As a new approach for the characterization and determination of the origin of particulate organic matter (POM) in coastal waters, we measured the 14C activity and 13C/12C isotope ratios and applied molecular analysis by means of AMS, IRMS and pyrolysis-GCMS for both bulk samples and isolated fractio

  5. A COMPUTER-CONTROLLED SYSTEM FOR GENERATING UNIFORM SURFACE DEPOSITS TO STUDY THE TRANSPORT OF PARTICULATE MATTER

    Science.gov (United States)

    Improved methods for measuring and assessing microenvironmental exposure in individuals are needed. How human activities affect particulate matter in the personal cloud is poorly understood. A quality assurance tool to aid the study of particle transport mechanisms (e.g., re-en...

  6. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Science.gov (United States)

    2010-07-01

    ... pressure drop and liquid flow-rate at or above the operating levels established during the performance test... emission limit for particulate matter. 2. Fabric filter control a. Install and operate a bag leak detection system according to § 63.7525 and operate the fabric filter such that the bag leak detection system...

  7. Teachers' Understanding of the Particulate Nature of Matter: The Case of Zambian Pre-Service Science Teachers

    Science.gov (United States)

    Banda, Asiana; Mumba, Frackson; Chabalengula, Vivien M.; Mbewe, Simeon

    2011-01-01

    This study assessed Zambian Junior High School pre-service science teachers' understanding of the particulate nature of matter. A sample comprised 30 pre-service science teachers at a teacher training college. Data was collected through a questionnaire adopted from Ozmen and Kenan (2007). Results show that most teachers had correct views on the…

  8. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    NARCIS (Netherlands)

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether th

  9. Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation

    NARCIS (Netherlands)

    Ulrich, M.M.W.; Alink, G.M.; Kumarathasan, P.; Vincent, R.; Boere, A.J.F.; Cassee, F.R.

    2002-01-01

    Recent epidemiological studies associate health effects and particulate matter in ambient air. Exacerbation of the particle-induced inflammation can be a mechanism responsible for increased hospitalization and death due to cardiopulmonary events in high-risk groups of the population. Systems regulat

  10. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    Science.gov (United States)

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  11. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    NARCIS (Netherlands)

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether th

  12. Zebrafish Locomotor Responses Demonstrate Irritant Effects of Fine Particulate Matter Sources and a Role for TRPA1

    Science.gov (United States)

    Fine particulate matter (PM) air pollution is a complex mixture of chemicals, the composition of which is determined by contributing sources, and has been linked to cardiopulmonary dysfunction. These effects stem in part from the irritating properties of PM constituents, which ...

  13. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    Science.gov (United States)

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  14. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  15. A methodology to select particle morpho-chemical characteristics to use in source apportionment of particulate matter from livestock houses

    NARCIS (Netherlands)

    Cambra-Lopez, M.; Hermosilla, T.; Aarnink, A.; Ogink, N.W.M.

    2012-01-01

    Intensive poultry and pig houses are major point sources of particulate matter (PM) emissions. The knowledge on the contribution of individual sources to PM in different fractions is essential to improve PM reduction from livestock houses. We developed a methodology to investigate which input data

  16. The Impact of Designing and Evaluating Molecular Animations on How Well Middle School Students Understand the Particulate Nature of Matter

    Science.gov (United States)

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph S.

    2010-01-01

    In this study, we investigated whether the understanding of the particulate nature of matter by students was improved by allowing them to design and evaluate molecular animations of chemical phenomena. We developed Chemation, a learner-centered animation tool, to allow seventh-grade students to construct flipbook-like simple animations to show…

  17. Development of 2-channel (532 nm and 355 nm) mobile LIDAR for mapping particulate matter in the atmosphere

    CSIR Research Space (South Africa)

    Sivakumar, V

    2010-09-01

    Full Text Available In this paper, the authors describe the developmentof 2-Channel (532 nm and 355 nm) mobile LIDAR system for studying atmospheric particulate matter. The system is currently tested in house at the Council for Scientific and Industrial Research...

  18. Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Evans, John S.;

    2015-01-01

    Purpose Fine particulate matter (PM2.5) is considered to be one of the most important environmental factors contributing to the global human disease burden. However, due to the lack of broad consensus and harmonization in the life cycle assessment (LCA) community, there is no clear guidance on how...

  19. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    NARCIS (Netherlands)

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether

  20. Estuarine suspended particulate matter concentrations from sun-synchronous satellite remote sensing: tidal and meteorological effects and biases

    NARCIS (Netherlands)

    Eleveld, M.A.; van der Wal, D.; van Kessel, T.

    2014-01-01

    Optical data from a sun-synchronous satellite were used to investigate how large-scale estuarine suspended particulate matter (SPM) concentrations were affected by tidal and bulk meteorological drivers, and how retrieved SPM is biased by tidal aliasing and sampling under clear sky conditions. Local

  1. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    Science.gov (United States)

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  2. Nonseparable dynamic nearest neighbor Gaussian process models for large spatio-temporal data with an application to particulate matter analysis

    NARCIS (Netherlands)

    Datta, A.; Banerjee, S.; Finley, A.O.; Hamm, N.A.S.; Schaap, M.

    2016-01-01

    Particulate matter (PM) is a class of malicious environmental pollutants known to be detrimental to human health. Regulatory efforts aimed at curbing PM levels in different countries often require high resolution space–time maps that can identify red-flag regions exceeding statutory concentration

  3. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    Science.gov (United States)

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  4. Chemical characterization and source apportionment estimates of particulate matter collected within the framework of EU project HEPMEAP

    NARCIS (Netherlands)

    Bloemen HJT; Gerlofs-Nijland ME; Janssen NAH; Sandstrom T; Bree L van; Cassee FR; Umea University, Sweden; LMV; MGO; LOK

    2005-01-01

    The chemical composition of fine (0.1 - 2.5 um) and coarse mode (2.5 - 10 um) particulate matter is determined with specific attention paid to indicators of traffic emissions. Inorganic ions nitrate, sulphate and ammonium sum to 34% of PM mass and the measured organics from combustion processes up t

  5. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  6. Seasonal variation in particulate organic matter and its cnstituent fractions under the ice covered sea near the shelf, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.

    Particulate organic matter (POM) collected at a single station in the shelf waters of Princess Astrid coast (70 degrees S : 11 degrees E), Antarctica from May to December, 1986 was analyzed for chl @ia@@, POC and other constituent fractions at three...

  7. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  8. Seasonal Contribution of Mineral Dust and Otlher Major Components to Particulate Matter at Two Remote Sites in Central Asia

    Science.gov (United States)

    Dust storms are significant contributors to ambient levels of particulate matter (PM) in many areas of the world. Central Asia, an area that is relatively understudied in this regard, is anticipated to be affected by dust storms due to its proximity to several major deserts that ...

  9. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

    Science.gov (United States)

    Makar, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A.

    2003-01-01

    A new classification scheme for the speciation of organic compound emissions for use in air quality models is described. The scheme uses 81 organic compound classes to preserve both net gas-phase reactivity and particulate matter (PM) formation potential. Chemical structure, vapor pressure, hydroxyl radical (OH) reactivity, freezing point/boiling point, and solubility data were used to create the 81 compound classes. Volatile, semivolatile, and nonvolatile organic compounds are included. The new classification scheme has been used in conjunction with the Canadian Emissions Processing System (CEPS) to process 1990 gas-phase and particle-phase organic compound emissions data for summer and winter conditions for a domain covering much of eastern North America. A simple postprocessing model was used to analyze the speciated organic emissions in terms of both gas-phase reactivity and potential to form organic PM. Previously unresolved compound classes that may have a significant impact on ozone formation include biogenic high-reactivity esters and internal C6-8 alkene-alcohols and anthropogenic ethanol and propanol. Organic radical production associated with anthropogenic organic compound emissions may be 1 or more orders of magnitude more important than biogenic-associated production in northern United States and Canadian cities, and a factor of 3 more important in southern U.S. cities. Previously unresolved organic compound classes such as low vapour pressure PAHs, anthropogenic diacids, dialkyl phthalates, and high carbon number alkanes may have a significant impact on organic particle formation. Primary organic particles (poorly characterized in national emissions databases) dominate total organic particle concentrations, followed by secondary formation and primary gas-particle partitioning. The influence of the assumed initial aerosol water concentration on subsequent thermodynamic calculations suggests that hydrophobic and hydrophilic compounds may form external

  10. Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview

    Directory of Open Access Journals (Sweden)

    Célia A. Alves

    2008-03-01

    Full Text Available In spite of accounting for 10-70% of the atmospheric aerosol mass, particulate-phase organic compounds are not well characterised, and many aspects of aerosol formation and evolution are still unknown. The growing awareness of the impact of particulate aerosols on climate, and the incompletely recognised but serious effects of anthropogenic constituents on air quality and human health, have conducted to several scientific studies. These investigations have provided information about the behaviour of atmospheric particulate matter and the description of the character of its carbonaceous content. The compilation of such results is important as they append to the emergent global-wide dataset of the organic composition of atmospheric aerosols. The contribution of the major emission sources to regional particulate pollution can be diagnosed by using specific molecular markers. This overview is mainly focused on results obtained with gas chromatography coupled with mass spectrometry, since it is the analytical method of choice in elucidating the solvent-extractable organic compounds in atmospheric particulate matter. A synopsis of the selection of organic tracers and the application of geochemical parameters to the analysis of organic constituents as a tool for source apportionment is shown here. Besides the assessment of current knowledge, this paper also presents the identification of further areas of concern.Apesar de constituirem 10-70% da massa do aerosol atmosférico, a caracterização dos compostos orgânicos particulados permanece ainda deficitária e vários aspectos relativos à formação e evolução do aerossol são ainda desconhecidos. A crescente preocupação com o impacto do aerosol particulado no clima e os reconhecidos efeitos dos constituintes antropogênicos na qualidade do ar e na saúde humana têm motivado a realização de numerosos estudos. Estas investigações têm fornecido informações relevantes sobre o comportamento

  11. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City.

    Science.gov (United States)

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui

    2015-01-01

    Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing.

  12. Health impact caused by exposure to particulate matter in the air of Tehran in the past decade

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2017-03-01

    Full Text Available Background: Air pollution, especially the phenomenon of dust and particulate matter can cause mortality of many civilians, and causes various diseases including cardiovascular and respiratory diseases. One of the major pollutants in the air is particulate matter that concentration has increased over recent years. So, present study with aim of Quantification Health Endpoints Attributed to particulate matter in Tehran, Capital of Iran during the past decade (2005-2014 by AirQ software, version 2.2.3 (WHO European Centre for Environment and Health was performed. Methods: This study is a descriptive-analytic investigation. The process of performance this study lasted 12 months. Subject of this the study and research was in Environmental Health Engineering Department of Iran University of Medical Sciences. Exact data of every hour pollutants were taken from Department of environmental (DOE Islamic Republic Iran and Air Quality Control Company of Tehran. Then validated according to the World Health Organization (WHO guidelines and Statistical parameters for quantifying health effects were calculated in excel software. Finally, assessment of cases total mortality, cardiovascular mortality, respiratory mortality and cardiovascular disease and respiratory disease, with AirQ software was performed. Results: The results of this study showed that the number of total mortality, cardiovascular mortality and respiratory mortality caused by exposure to Particulate matter smaller than 10 microns (PM10 in the past decade is 11776, 12121 and 33066 cases respectively. Also the total number of hospital admission due to cardiovascular disease and respiratory disease in the past decade is 20990 and 54352 cases in 2005-2014 years. Conclusion: According to the results of this study, during the last decade the level of air pollution and Concentration of pollutants in Tehran Increased. Effects and health consequences due to exposure to Particulate matter smaller than 10

  13. Seasonal dynamics of particulate organic matter in the Changjiang Estuary and adjacent coastal waters illustrated by amino acid enantiomers

    Science.gov (United States)

    Wu, Ying; Liu, Zongguang; Hu, Jun; Zhu, Zhuoyi; Liu, Sumei; Zhang, Jing

    2016-02-01

    Total suspended matter (TSM) was collected in the Changjiang Estuary and adjacent areas of the East China Sea in July, August, and November 2011, to study the composition and fate of particulate organic nitrogen (PON) during an August typhoon event and bottom trawling activities. Concentrations of particulate organic carbon (POC), particulate nitrogen (PN), and hydrolyzable particulate amino acids (PAA, D- and L-enantiomers) were higher during July and August than during November; however, D-arginine and alanine levels were significantly higher in November. Seasonal trends in the composition of PAAs indicate that in situ production is a key factor in their temporal distribution. No significant increase in TSM or decrease in labile organic matter was observed during the transit period following a typhoon event in August. In contrast, higher primary production was observed at this time as a result of the penetration of Changjiang Diluted Water caused by the typhoon event. Trawling effects were studied by comparing the calm season (July) with the bottom-trawling period (November) at similar sampling sites. The effect of trawling on the composition of bottom organic matter was studied by comparing D-amino acids concentrations and C/N ratios in the calm season (July) with the bottom-trawling period (November). A substantial contribution of microbial organic matter during the November cruise was indicated by a decrease in glutamic acid, an increase in TSM and D-alanine, and a lower carbon/nitrogen (C/N) ratio. In shallow coastal regions, anthropogenic activities (bottom trawling) may enhance the transfer of low-nutritional-value particulate organic matter into the benthic food chain.

  14. Effects of particulate matter on inflammatory markers in the general adult population

    Directory of Open Access Journals (Sweden)

    Tsai Dai-Hua

    2012-07-01

    Full Text Available Abstract Background Particulate air pollution is associated with increased risk of cardiovascular disease and stroke. Although the precise mechanisms underlying this association are still unclear, the induction of systemic inflammation following particle inhalation represents a plausible mechanistic pathway. Methods We used baseline data from the CoLaus Study including 6183 adult participants residing in Lausanne, Switzerland. We analyzed the association of short-term exposure to PM10 (on the day of examination visit with continuous circulating serum levels of high-sensitive C-reactive protein (hs-CRP, interleukin 1-beta (IL-1β, interleukin 6 (IL-6, and tumor-necrosis-factor alpha (TNF-α by robust linear regressions, controlling for potential confounding factors and assessing effect modification. Results In adjusted analyses, for every 10 μg/m3 elevation in PM10, IL-1ß increased by 0.034 (95 % confidence interval, 0.007-0.060 pg/mL, IL-6 by 0.036 (0.015-0.057 pg/mL, and TNF-α by 0.024 (0.013-0.035 pg/mL, whereas no significant association was found with hs-CRP levels. Conclusions Short-term exposure to PM10 was positively associated with higher levels of circulating IL-1ß, IL-6 and TNF-α in the adult general population. This positive association suggests a link between air pollution and cardiovascular risk, although further studies are needed to clarify the mechanistic pathway linking PM10 to cardiovascular risk.

  15. Tracking Particulate Organic Matter Characteristics in Major Arctic Rivers: Indicators of Watershed-Scale Climate Impacts

    Science.gov (United States)

    McClelland, J. W.; Griffin, C. G.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Spencer, R. G.; Striegl, R. G.; Tank, S. E.

    2015-12-01

    Six large rivers, including the Yukon and Mackenzie in North America and the Yenisey, Ob', Lena, and Kolyma in Eurasia, drain the majority of the watershed area surrounding the Arctic Ocean. Parallel sampling programs were initiated at downstream locations on these rivers in 2003 to improve estimates of fluvial export and track large-scale perturbations associated with climate change. Over a decade later, synthesis of water chemistry data from these ongoing sampling efforts provides an unprecedented opportunity to 1) examine similarities and differences among the major Arctic rivers, and 2) think critically about how changes in various water chemistry parameters may or may not inform us about climate change impacts. River-borne organic matter characteristics may be particularly telling because mass flux values and composition/source indicators vary with hydrology and permafrost coverage. However, separating climate impacts that occur within river corridors from those that occur beyond them may be difficult, especially when considering changes in particulate organic matter (POM) loads. Data on suspended POM yields, C:N ratios, stable isotope ratios, and radiocarbon content in the major Arctic rivers show marked spatial, seasonal, and interannual variability that is helpful for thinking about how climate change effects may manifest in the future, but it will be challenging to separate changes in POM related to bank erosion and suspension/deposition of in situ sediment stocks from changes in POM that may be linked to processes such as permafrost thaw occurring across the broader landscape.

  16. Particle size distributions and organic-inorganic compositions of suspended particulate matters around the Bohai Strait

    Science.gov (United States)

    Wang, Xiao; Bian, Changwei; Bi, Rong; Jiang, Wensheng; Zhang, Hua; Zhang, Xueqing

    2017-02-01

    Laser in situ scattering and transmissometry (LISST) significantly improves our ability to assess particle size distribution (PSD) in seawater, while wide-ranging measurements of the organic-inorganic compositions of suspended particulate matters (SPM) are still difficult by using traditional methods such as microscopy. In this study, PSD properties and SPM compositions around the Bohai Strait (China) were investigated based on the measurements by LISST in combination with hydro-biological parameters collected from a field survey in summer 2014. Four typical PSD shapes were found in the region, namely right-peak, left-peak, double-peak and negative-skew shapes. The double-peak and negative-skew shapes may interconvert into each other along with strong hydrodynamic variation. In the upper layer of the Bohai Sea, organic particles were in the majority, with inorganic particles rarely observed. In the bottom layer, SPM were the mixture of organic and inorganic matters. LISST provided valuable baseline information on size-resolved organic-inorganic compositions of SPM: the size of organic particles mainly ranged from 4 to 20 μm and 40 to 100 μm, while most SPM ranging from 20 to 40 μm were composed of inorganic sediment.

  17. Influence of Acidification on the Partitioning of Steroid Hormones among Filtrate, Filter Media, and Retained Particulate Matter.

    Science.gov (United States)

    Havens, Sonya M; Hedman, Curtis J; Hemming, Jocelyn D C; Mieritz, Mark G; Shafer, Martin M; Schauer, James J

    2016-09-01

    Hormone contamination of aquatic systems has been shown to have deleterious effects on aquatic biota. However, the assessment of hormone contamination of aquatic environments requires a quantitative evaluation of the potential effects of sample preservation on hormone concentrations. This study investigated the influence of acidification (pH 2) of surface water samples on the partitioning of hormones among filtrate, filter media, and filter-retained particulate matter. Hormones were spiked into unpreserved and sulfuric acid-preserved ultrapure water and surface water runoff samples. The samples were filtered, and hormones were extracted from the filter and filtrate and analyzed by high-performance liquid chromatography. Acidification did not influence the partitioning of hormones onto the filter media. For the majority of the hormones investigated in this study, the partitioning of hormones to the filter-retained particulate matter was not influenced by acidification. Acidification increased the partitioning of progesterone and melengestrol acetate onto the retained particulate matter (about 25% for both analytes). Incorporation of an isotopically labeled internal standard (ISTD) for progesterone accounted for the loss of progesterone to the filter-retained particulates and resulted in accurate concentrations of progesterone in the filtrate. The incorporation of an ISTD for melengestrol acetate, however, was unable to account for the loss of melengestrol acetate to the retained particulates and resulted in underestimations of melengestrol acetate in the filtrate. Our results indicate that the analysis of melengestrol acetate in acid preserved surface runoff samples should be conducted on the filter-retained particulates as well as the filtrate.

  18. Particulate organic matter in rivers of Fukushima: An unexpected carrier phase for radiocesiums.

    Science.gov (United States)

    Naulier, Maud; Eyrolle-Boyer, Frédérique; Boyer, Patrick; Métivier, Jean-Michel; Onda, Yuichi

    2017-02-01

    The role of particulate organic matter in radiocesium transfers from soils to rivers was investigated in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Suspended and deposited sediments, filtered water, macro organic debris and dead leaves were sampled along the six most contaminated coastal river catchments of the Fukushima prefecture in the early autumns 2013 and 2014. Radiocesium concentrations of river samples and total organic carbon concentrations in suspended and deposited sediments were measured. Radiocesium concentrations of suspended and deposited sediments were significantly correlated to (137)Cs inventories in soils and total organic carbon. The distributions of radiocesium between the organic and mineral phases of both types of sediment were assessed by using a modelling approach. The results suggest that, during the early autumn season, the organic fraction was the main phase that carried the radiocesiums in deposited sediments and in suspended sediments for suspended loads organic matter. Since it is well known that organic compounds generally do not significantly adsorb radiocesium onto specific sites, several hypotheses are suggested: 1) Radiocesiums may have been absorbed into organic components at the early stage of atmospheric radioactive deposits and/or later due to biomass recycling and 2) Those elements would be partly carried by glassy hot particles together with organic matter transported by rivers in Fukushima. Both hypotheses would lead to conserve the amount of radiocesiums associated with particles during their transfers from the contaminated areas to the marine environment. Finally, such organically bound radiocesium would lead to significant deliveries of bioavailable radiocesium for living organisms at Fukushima.

  19. Effect of fuel composition on poly aromatic hydrocarbons in particulate matter from DI diesel engine; Particulate chu no PAH ni oyobosu nenryo sosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S.; Tatani, T.; Yoshida, H.; Takizawa, H.; Miyoshi, K.; Ikebe, H. [COSMO Research Institute, Tokyo (Japan)

    1997-10-01

    The effect of fuel composition on poly aromatic hydrocarbons (PAH) in particulate matter from DI diesel engine was investigated by using deeply desulfurized fuel and model fuel which properties are not interrelated. It was found that the deeply desulfurized fuel have effect on reducing PAH emissions. Furthermore, it was suggested that poly aromatics in the fuel affect PAH emissions and the influence of tri-aromatics in the fuel was promoted by the coexistence of mono-aromatics or naphthene. PAH formation scheme from each fuel component was proposed by chemical thermodynamic data. 4 refs., 8 figs., 3 tabs.

  20. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.