WorldWideScience

Sample records for infrared galaxy mergers

  1. Galaxy-Wide Shocks in Late-Merger Stage Luminous Infrared Galaxies

    CERN Document Server

    Rich, Jeffrey A; Dopita, Michael A

    2011-01-01

    We present an integral field spectroscopic study of two nearby Luminous Infrared Galaxies (LIRGs) that exhibit evidence of widespread shock excitation induced by ongoing merger activity, IC 1623 and NGC 3256. We show the importance of carefully separating excitation due to shocks vs. excitation by HII regions and the usefulness of IFU data in interpreting the complex processes in LIRGs. Our analysis focuses primarily on the emission line gas which is extensive in both systems and is a result of the abundant ongoing star formation as well as widespread LINER-like excitation from shocks. We use emission-line ratio maps, line kinematics, line-ratio diagnostics and new models as methods for distinguishing and analyzing shocked gas in these systems. We discuss how our results inform the merger sequence associated with local U/LIRGs and the impact that widespread shock excitation has on the interpretation of emission-line spectra and derived quantities of both local and high-redshift galaxies.

  2. Galaxy pairs in the Sloan digital sky survey - VII: The merger -- luminous infra-red galaxy connection

    CERN Document Server

    Ellison, Sara L; Scudder, Jillian M; Patton, David R; Palmer, Michael J D

    2013-01-01

    We use a sample of 9397 low z galaxies with a close companion to investigate the connection between mergers and luminous infra-red (IR) galaxies (LIRGs). The pairs are selected from the SDSS and have projected separations rp 10.5), likely because the SFR enhancement required to produce LIRG luminosities is more modest than at low masses. The Delta SFR offers a redshift-independent metric for the identification of the galaxies with the most enhanced star forming rates that does not rely on fixed LIR boundaries.

  3. Distribution of Luminosity, Gas, and Stellar Populations in Local Luminous Infrared Galaxies as a Function of Merger Stage

    Science.gov (United States)

    Larson, Kirsten L.

    Luminous infrared galaxies (LIRGs) are galaxies where intense infrared emission is driven by star formation and active galactic nuclei. In the local universe it is clear that many LIRGs are major mergers of gas rich spiral galaxies. I have performed a careful visual classification of local (z 1011:5Lsun are merging galaxies, while below this luminosity threshold, minor mergers and secular processes dominate. The mean molecular gas fraction ( MGF = MH2=(M* + MH2)) has an average value of 18+/-2% for non-interacting and early stage major merger LIRGs, which increases to 33±3% for intermediate stage major merger LIRGs. This is consistent with the hypotheses that during the early-mid stages of major mergers, atomic gas (H I) at large galactocentric radii is swept inward where it is converted into molecular gas (H2). The interactions also drive star formation throughout the galaxy as is evident by the blue B -- I color for LIRGs at every merger stage. Late stage mergers show a reddening in their nuclear 2 kpc region, presumably also from increase in nuclear gas and dust as the galaxy nuclei coalesce. Using deep Spitzer 3.6 and 4.5 mum imaging, I find that these interactions form tidal tails and debris that extend out to 80 kpc from the galaxy nuclei. This large scale tidal debris builds up over the course of a major merger and forms up-bending infrared surface brightness profiles. I further investigate the utility of automated morphology parameters and present a refined surface brightness method for gini, M20, and concentration indices. With this new method the M20 parameter correlates with merger stage and, in combination with gini and concentration, provides a more reliable automated separation between interacting and non-interacting galaxies than previous schemes.

  4. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    CERN Document Server

    Larson, Kirsten L; Barnes, Joshua E; Ishida, Cathy M; Evans, Aaron S; U, Vivian; Mazzarella, Joseph M; Kim, Don-Chan; Privon, George C; Mirabel, I Felix; Flewelling, Heather A

    2016-01-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions for a complete sample of 65 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey (GOALS) using high resolution $I$-band images from The Hubble Space Telescope, the University of Hawaii 2.2m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with $L_{\\rm IR} > 10^{11.5} L_\\odot $; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach $L_{\\rm IR} > 10^{12.0} L_\\odot $ until late in the merger process when both disks are near final coalescence. The mean molecular gas fraction (MGF $= M_{\\rm H_2} / (M_* + M_{\\rm H_2})$) for non-inter...

  5. A CO-rich merger shaping a powerful and hyper-luminous infrared radio galaxy at z=2: the Dragonfly Galaxy

    CERN Document Server

    Emonts, B H C; Stroe, A; Pentericci, L; Villar-Martin, M; Norris, R P; Miley, G; De Breuck, C; van Moorsel, G A; Lehnert, M D; Carilli, C L; Rottgering, H J A; Seymour, N; Sadler, E M; Ekers, R D; Drouart, G; Feain, I; Colina, L; Stevens, J; Holt, J

    2015-01-01

    In the low-redshift Universe, the most powerful radio sources are often associated with gas-rich galaxy mergers or interactions. We here present evidence for an advanced, gas-rich (`wet') merger associated with a powerful radio galaxy at a redshift of z~2. This radio galaxy, MRC 0152-209, is the most infrared-luminous high-redshift radio galaxy known in the southern hemisphere. Using the Australia Telescope Compact Array, we obtained high-resolution CO(1-0) data of cold molecular gas, which we complement with HST/WFPC2 imaging and WHT long-slit spectroscopy. We find that, while roughly M(H2) ~ 2 x 10$^{10}$ M$_{\\odot}$ of molecular gas coincides with the central host galaxy, another M(H2) ~ 3 x 10$^{10}$ M$_{\\odot}$ is spread across a total extent of ~60 kpc. Most of this widespread CO(1-0) appears to follow prominent tidal features visible in the rest-frame near-UV HST/WFPC2 imaging. Ly$\\alpha$ emission shows an excess over HeII, but a deficiency over L(IR), which is likely the result of photo-ionisation by ...

  6. Magnetic fields during galaxy mergers

    CERN Document Server

    Rodenbeck, Kai

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength reported by Drzazga et al. (2011) in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, there is a physical enhancement of t...

  7. DATA MINING THE GALAXY ZOO MERGERS

    Data.gov (United States)

    National Aeronautics and Space Administration — DATA MINING THE GALAXY ZOO MERGERS STEVEN BAEHR, ARUN VEDACHALAM, KIRK BORNE, AND DANIEL SPONSELLER Abstract. Collisions between pairs of galaxies usually end in the...

  8. The host galaxy and environment of a neutron star merger

    CERN Document Server

    Postigo, A de Ugarte; Rowlinson, A; Garcia-Benito, R; Levan, A J; Gorosabel, J; Goldoni, P; Schulze, S; Zafar, T; Wiersema, K; Sanchez-Ramirez, R; Melandri, A; D'Avanzo, P; Oates, S; D'Elia, V; De Pasquale, M; Kruehler, T; van der Horst, A J; Xu, D; Watson, D; Piranomonte, S; Vergani, S; Milvang-Jensen, B; Kaper, L; Malesani, D; Fynbo, J P U; Cano, Z; Covino, S; Flores, H; Greiss, S; Hammer, F; Hartoog, O E; Hellmich, S; Heuser, C; Hjorth, J; Jakobsson, P; Mottola, S; Sparre, M; Sollerman, J; Tagliaferri, G; Tanvir, N R; Vestergaard, M; Wijers, R A M J

    2013-01-01

    The mergers of neutron stars have been predicted to cause an r-process supernova - a luminous near-infrared transient powered by the radioactive decay of freshly formed heavy metals. An r-process supernova, or kilonova, has recently been discovered coincident with the short-duration gamma-ray burst GRB 130603B, simultaneously confirming the widely-held theory of the origin of most short-durations GRBs in neutron star mergers. We report here the absorption spectrum of the afterglow of this GRB. From it we determine the redshift of the burst and the properties of the host galaxy and the environment in which the merger occurred. The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the neutron star binary.

  9. Creating lenticular galaxies with major mergers

    CERN Document Server

    Querejeta, Miguel; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    2016-01-01

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular galaxies (e.g. photometric bulge-disc coupling) seemed to rule out a potential merger origin. Here, we summarise our recent work in which we have shown, through N-body numerical simulations, that disc-dominated lenticulars can emerge from major mergers of spiral galaxies, in good agreement with observational photometric scaling relations. Moreover, we show that mergers simultaneously increase the light concentration and reduce the angular momentum relative to their spiral progenitors. This explains the mismatch in angular momentum and concentration between spirals and lenticulars recently revealed by CALIFA observations, which is hard to reconcile with simple fading mechanisms (e.g. ram-pressure stripping).

  10. Relics as Probes of Galaxy Cluster Mergers

    Indian Academy of Sciences (India)

    R. J. van Weeren; M. Brüggen; H. J. A. Röttgering; M. Hoeft

    2011-12-01

    Galaxy clusters grow by mergers with other clusters and galaxy groups. These mergers create shocks within the intracluster medium (ICM). It is proposed that particles can be accelerated to extreme energies within the shocks. In the presence of a magnetic field these particles should then form large regions emitting synchrotron radiation, creating the so-called radio relics. An example of a cluster with relics is CIZA J2242.8+5301. Here we present hydrodynamical simulations of idealized binary cluster collisions with the aim of constraining the merger scenario for this cluster. We conclude that by using the location, size and width of double radio relics we can set constraints on the mass ratios, impact parameters, time scales, and viewing geometries of binary cluster merger events.

  11. NGC 5523: An Isolated Product of Soft Galaxy Mergers?

    CERN Document Server

    Fulmer, Leah M; Kotulla, Ralf

    2016-01-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger: (1) Near-infrared (NIR) images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk. (2) The bulge is offset by ~1.8 kpc from a brightness minimum at the center of the optically bright inner disk. (3) A tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions.

  12. Galaxy Zoo: Multi-Mergers and the Millennium Simulation

    CERN Document Server

    Darg, D W; Lintott, C J; Schawinski, K; Silk, J; Lynn, S; Bamford, S; Nichol, R C

    2010-01-01

    We present a catalogue of 39 multiple-mergers found using the mergers catalogue of the Galaxy Zoo project for $z<0.1$ and compare them to corresponding semi-analytical galaxies from the Millennium Simulation. We estimate the (volume-limited) multi-merger fraction of the local Universe using our sample and find it to be at least two orders of magnitude less than binary-mergers - in good agreement with the simulations (especially the Munich group). We then investigate the properties of galaxies in binary- and multi-mergers (morphologies, colours, stellar masses and environment) and compare these results with those predicted by the semi-analytical galaxies. We find that multi-mergers favour galaxies with properties typical of elliptical morphologies and that this is in qualitative agreement with the models. Studies of multi-mergers thus provide an independent (and largely corroborating) test of the Millennium semi-analytical models.

  13. Gravitational Fragmentation in Galaxy Mergers: A Stability Criteria

    CERN Document Server

    Escala, Andres; del Valle, Luciano; Castillo, Esteban

    2012-01-01

    We study the gravitational stability of gaseous streams in the complex environment of a galaxy merger, because mergers are known to be places of ongoing massive cluster formation and bursts of star formation. We find an analytic stability parameter for case of gaseous streams orbiting around the merger remnant. We test our stability criteria using hydrodynamical simulations of galaxy mergers, obtaining satisfactory results. We find that our criteria successfully predicts the streams that will be gravitationally unstable to fragment into clumps.

  14. Fully compressive tides in galaxy mergers

    CERN Document Server

    Renaud, Florent; Naab, Thorsten; Theis, Christian

    2009-01-01

    The disruptive effect of galactic tides is a textbook example of gravitational dynamics. However, depending on the shape of the potential, tides can also become fully compressive. When that is the case, they might trigger or strengthen the formation of galactic substructures (star clusters, tidal dwarf galaxies), instead of destroying them. We perform N-body simulations of interacting galaxies to quantify this effect. We demonstrate that tidal compression occurs repeatedly during a galaxy merger, independently of the specific choice of parameterization. With a model tailored to the Antennae galaxies, we show that the distribution of compressive tides matches the locations and timescales of observed substructures. After extending our study to a broad range of parameters, we conclude that neither the importance of the compressive tides (~15% of the stellar mass) nor their duration (~ 10 Myr) are strongly affected by changes in the progenitors' configurations and orbits. Moreover, we show that individual clumps ...

  15. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  16. Interaction-Triggered Star Formation in Distant Galaxies and the Role of Mergers in Galaxy Evolution

    CERN Document Server

    Lin, Lihwai

    2009-01-01

    The evolution of galaxy merger rates and its impact on galaxy properties have been studied intensively over the last decade. It becomes clear now that various types of mergers, i.e. gas-rich (wet), gas-poor (dry), or mixed mergers, affect the merger products in different ways. The epoch when each type of merger dominates also differs. In this talk, I review the recent progress on the measurements of galaxy merger rates out to z ~ 3 and the level of interaction-triggered star formation using large samples from various redshift surveys. These results provide insights to the importance of mergers in the mass assembly history of galaxies and in the evolution of galaxy properties. I also present new results in characterizing the environment of galaxy mergers, and discuss their implications in the built up of red-sequence galaxies.

  17. Galaxy Zoo: Mergers - Dynamical Models of Interacting Galaxies

    CERN Document Server

    Holincheck, Anthony J; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M; Bamford, Steven; Keel, William C; Parrish, Michael

    2016-01-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of Citizen Scientists, we sample 10^5 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the ...

  18. 2MASS/SDSS Close Major-Merger Galaxy Pairs: Luminosity Functions and Merger Mass Dependence

    CERN Document Server

    Domingue, Donovan L; Jarrett, T H; Cheng, Y

    2009-01-01

    We select a close "major-merger candidate" galaxy pair sample in order to calculate the K_{s} luminosity function (LF) and pair fraction representative of the merger/interaction component of galaxy evolution in the local universe. The pair sample (projected separation 5 h$^{-1}$ kpc $\\leq$ r $\\leq$ 20 h$^{-1}$ kpc, $K_{s}$-band magnitude difference $\\Delta

  19. Shell Galaxies: Dynamical Friction, Gradual Satellite Decay and Merger Dating

    CERN Document Server

    Ebrova, Ivana; Canalizo, Gabriela; Bennert, Nicola; Jilkova, Lucie

    2009-01-01

    With the goal to refine modelling of shell galaxies and the use of shells to probe the merger history, we develop a new method for implementing dynamical friction in test-particle simulations of radial minor mergers. The friction is combined with a gradual decay of the dwarf galaxy. The coupling of both effects can considerably redistribute positions and luminosities of shells; neglecting them can lead to significant errors in attempts to date the merger.

  20. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies

    Science.gov (United States)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael

    2016-06-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at http://data.galaxyzoo.org/mergers.html. Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  1. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    CERN Document Server

    Stewart, Kyle R; Barton, Elizabeth J; Wechsler, Risa H

    2008-01-01

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies--such as close pair counts, starburst counts, and the morphologically disturbed fraction--likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z=0 to z=4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M>0.3 mass ratio events into typical L > f L* galaxies follows the simple relation dN/dt=0.03(1+f)(1+z)^2.1 Gyr^-1. Despite the rapid increase in merger rate with redshift, only a small fraction of >0.4 L* high-redshift galaxies (~3% at z=2) should have experienced a major merger (m/M >0.3) in the very recent past (t0.3) in t...

  2. NGC 5523: An isolated product of soft galaxy mergers?

    Science.gov (United States)

    Fulmer, Leah M.; Gallagher, John S.; Kotulla, Ralf

    2017-02-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger. (1) Near-infrared images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk; (2) the bulge is offset by 1.8 kpc from a brightness minimum at the center of the optically bright inner disk; (3) a tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A119

  3. Galaxy Merger Candidates in High-redshift Cluster Environments

    Science.gov (United States)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  4. Local Ultraluminous Infrared Galaxies and Quasars

    CERN Document Server

    Veilleux, S

    2006-01-01

    This paper reviews the recent results from a comprehensive investigation of the most luminous mergers in the local universe, the ultraluminous infrared galaxies (ULIRGs) and the quasars. First, the frequency of occurrence and importance of black hole driven nuclear activity in ULIRGs are discussed using the latest sets of optical, near-infrared, mid-infrared, and X-ray spectra on these objects. Obvious trends with luminosity, infrared color, and morphology are pointed out. Next, the host galaxy properties of ULIRGs are described in detail and then compared with local quasar hosts and inactive spheroids. By and large, these data are consistent with the scenario where ULIRGs are intermediate-mass elliptical galaxies in formation and in the process of becoming moderate-luminosity optical quasars. The powerful galactic winds detected in many ULIRGs may help shed any excess gas during this transformation. However, this evolutionary scenario does not seem to apply to all ULIRGs and quasars: Ultraluminous infrared m...

  5. Characterising Nearby Luminous Infrared Galaxies

    Science.gov (United States)

    Ramphul, R.; Vaisanen, P.; Van der Heyden, K.

    2017-06-01

    Luminous InfraRed Galaxies (LIRGs) in the local universe are known to be highly interacting galaxies with strong star-formation in obscured environments. LIRGs have diversity in terms of morphology and mode and location of SF, while their even more energetic counterparts, the Ultra-Luminous IR galaxies, ULIRGs, (LIR ≥ 10^12 Lsol ) are normally (remnants of) gas rich major mergers with centralised starbursts and AGN. I will present ongoing work on a survey of >40 (U)LIRGs, in a distance range of 40 to 300Mpc, observed with SALT/RSS in long-slit mode. The sample of galaxies are in various stages of interaction and merging, some with strong AGN contribution. The reduction of the SALT/RSS data, was performed efficiently with our custom-built pipeline written in python/iraf/pyraf and handles error-frames propagation. We are performing a rigorous stellar populations analysis of our sample using Starlight (Cid Fernandes, 2005) which will ultimately lead to understanding the star formation history of these galaxies. We also use automatic line intensity measurements to derive chemical abundances, star formation rates, metallicity and emission line diagnostic. The talk will showcase the latest results that we just obtained for this dataset and discuss some of the future works.

  6. Connections between galaxy mergers and Starburst: evidence from local Universe

    CERN Document Server

    Luo, Wentao; Zhang, Youcai

    2014-01-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFR five times larger than the median value found for "star forming" galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ~50% of the "starburst" populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ~19% of galaxies are associated with evident mergers. The interaction rates may increa...

  7. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2009-08-03

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a

  8. The pair and major merger history of galaxies up to z=6 over 3 square degrees

    Science.gov (United States)

    Conselice, Christopher; Mundy, Carl; Duncan, Kenneth

    2017-01-01

    A major goal in extragalactic astronomy is understanding how stars and gas are put into galaxies. As such we present the pair fraction and derived major merger and stellar mass assembly histories of galaxies up to z = 6. We do this using new techniques from photometric redshift probability distribution functions, and state of the art deep near-infrared data from the UDS, VIDEO and UltraVISTA COSMOS fields for galaxies at z 1 there must be a very important unknown mode of baryonic acquisition within galaxies that is not associated with major mergers. We further discuss how the merger history stays relatively constant at higher redshifts, and show the comparison of our results to theoretical predictions.

  9. Recent galaxy mergers and residual star formation of red sequence galaxies in galaxy clusters

    CERN Document Server

    Sheen, Yun-Kyeong; Ree, Chang H; Jaffé, Yara; Demarco, Ricardo; Treister, Ezequiel

    2016-01-01

    This study explored the GALEX ultraviolet (UV) properties of optical red sequence galaxies in 4 rich Abell clusters at z \\leq 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r' colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r' \\leq 5), and that number was doubled (~ 72%) when using a generous criterion (NUV - r' \\leq 5.4). The trend was the same when we restricted the sample to galaxies within 0.5xR_{200}. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R_{200}. We performed a Dressler-Shectman test to check whether the RSF galaxies had any correlation with the sub-structures in ...

  10. Metallicity evolution in mergers of disk galaxies with black holes

    Science.gov (United States)

    Rantala, Antti; Johansson, Peter H.

    2016-10-01

    We use the TreeSPH simulation code Gadget-3 including a recently improved smoothed particle hydrodynamics (SPH) module, a detailed metallicity evolution model and sophisticated subresolution feedback models for supernovae and supermassive black holes in order to study the metallicity evolution in disk galaxy mergers. In addition, we examine the simulated morphology, star formation histories, metallicity gradients and kinematic properties of merging galaxies and merger remnants. We will compare our simulation results with observations of the early-type Centaurus A galaxy and the currently colliding Antennae galaxies.

  11. Evolution of the major merger galaxy pair fraction at z < 1

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, R. C.; Hsieh, B. C.; Lin, L.; Chou, R. C. Y.; Huang, S.; Lin, J. H.; Chang, K. H. [Academia Sinica Institute for Astronomy and Astrophysics, Taipei, Taiwan (China); Foucaud, S. [Shanghai Jiao Tong University, Shanghai (China); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland)

    2014-11-10

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies and is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).

  12. Galaxy Pairs in COSMOS -- Merger Rate Evolution Since z=1

    CERN Document Server

    Xu, C Kevin; Scoville, N; Capak, P; Drory, N; Gao, Y

    2011-01-01

    We present results of a statistical study of the cosmic evolution of mass dependent major-merger rate since z=1. A stellar mass limited sample of major-merger pairs (CPAIR sample) was selected from the archive of the COSMOS survey, based on photo-z and visual inspections of the HST-ACS images. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting evolutionary index m=2.2+-0.2. The best-fitting function for the merger rate implies that galaxies with stellar mass between 1E+10 -- 3E+11 M_sun have undergone 0.4 -- 1.2 major-mergers since z=1. Our results show that, for massive galaxies at z<1, major mergers involving star forming galaxies (i.e. wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation ...

  13. GALAXY MERGERS DRIVE SHOCKS: AN INTEGRAL FIELD STUDY OF GOALS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rich, J. A. [IPAC, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kewley, L. J.; Dopita, M. A., E-mail: jrich@ipac.caltech.edu [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia)

    2015-12-15

    We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph focuses on determining the detailed properties of the emission-line gas, including a careful treatment of multicomponent emission-line profiles. The resulting information obtained from the spectral fits is used to map the kinematics of the gas, sources of ionizing radiation, and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission-line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the Hα luminosity in the latest-stage mergers in our sample. We discuss some possible implications of our result and consider the presence of active galactic nuclei and their effects on the spectra in our sample.

  14. Galaxy pairs as a probe for mergers at z ~ 2

    DEFF Research Database (Denmark)

    Man, A.W.S.; Zirm, Andrew Wasmuth; Toft, Sune

    2011-01-01

    In this work I investigate the redshift evolution of pair fraction of a sample of 196 massive galaxies from z = 0 to 3, selected from the COSMOS field. We find that on average a massive galaxy undergoes ~ 1.1 \\pm 0.5 major merger since z = 3. I will review the current limitations of using the pair...

  15. Galaxy And Mass Assembly (GAMA): Refining the Local Galaxy Merger Rate using Morphological Information

    CERN Document Server

    Casteels, Kevin R V; Bamford, Steven P; Salvador-Sole, Eduard; Norberg, Peder R; Agius, Nicola K; Baldry, Ivan; Brough, Sarah; Brown, Michael J I; Drinkwater, Michael J; Driver, Simon P; Graham, Alister W; Bland-Hawthorn, Joss; Hopkins, Andrew M; Kelvin, Lee S; Lopez-Sanchez, Angel R; Loveday, Jon; Robotham, Aaron S G; Vazquez-Mata, Jose A

    2014-01-01

    We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass dependent merger fraction and merger rate using galaxy pairs and the CAS structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies, and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to $M_{*} = 10^{8}M_{\\odot}$ with mass ratios of $$4:1) the lower mass companion becomes highly asymmetric, while the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass dependent major merger fraction is fairly constant at $\\sim1.3-2\\%$ between $10^{9.5}

  16. Hyperluminous Infrared Galaxies

    CERN Document Server

    Rowan-Robinson, M

    1999-01-01

    (39) galaxies are now known, from follow-up of faint IRAS sources and from submm observations of high redshift AGN, with far infrared luminosities > 10^{13} Lo. 13 of these, which have been found in 60 or 850 mu surveys, form an important unbiased sub-sample. 12 have been found by comparison of 60 mu surveys with quasar or radio-galaxy catalogues, or from infrared surveys with colour selection biased towards AGN, while a further 14 have been found through submm observations of known high redshift AGN. In this paper I argue, on the basis of detailed modelling of the spectral energy distributions of hyperluminous galaxies with accurate radiative transfer models, and from evidence of high gas-mass in several cases, that the bulk of the emission from these galaxies at rest-frame wavelengths >= 50 mu is due to star formation. Even after correction for the effects of lensing, hyperluminous galaxies with emission peaking at rest-frame wavelengths >= 50 mu are therefore undergoing star-formation at rates > 1000 Mo/yr...

  17. Late-stage galaxy mergers in COSMOS to z~1

    CERN Document Server

    Lackner, C N; Salvato, M; Kampczyk, P; Kartaltepe, J S; Sanders, D; Capak, P; Civano, F; Ilbert, O; Jahnke, K; Koekemoer, A M; Lee, N; Fevre, O Le; Liu, C T; Scoville, N; Sheth, K; Toft, S

    2014-01-01

    The role of major mergers in galaxy and black hole formation is not well constrained. To help address this, we develop an automated method to identify late-stage galaxy mergers before coalescence of the galactic cores. The resulting sample of mergers is distinct from those obtained using pair-finding and morphological indicators. Our method relies on median-filtering of high-resolution images in order to distinguish two concentrated galaxy nuclei at small separations. Using mock images, we derive statistical contamination and incompleteness corrections for the fraction of late-stage mergers. We apply our new method to a magnitude-limited (I 10.6$ and $0.25 < z \\leq 1.00$, we find ~5% of systems are late-stage mergers with separations between 2.2 and 8 kpc. Correcting for incompleteness and contamination, the fractional merger rate increases strongly with redshift as $(1+z)^{3.8\\pm0.9}$, in agreement with earlier studies and with dark matter halo merger rates. Separating the sample into star-forming and qu...

  18. The Galaxy Cluster Merger Catalog: An Online Repository of Mock Observations from Simulated Galaxy Cluster Mergers

    CERN Document Server

    ZuHone, J A

    2016-01-01

    We present the first release of the "Galaxy Cluster Merger Catalog". This catalog provides an extensive suite of mock observations and related data for N-body and hydrodynamical simulations of galaxy cluster mergers. These mock observations consist of projections of a number of important observable quantities in several different wavebands, for the entire evolution of each simulation as well as along different lines of sight through the three-dimensional simulation domain. The web interface to the catalog consists of easily browseable images over epoch and projection direction, as well as download links for the raw data and a JS9 interface for interactive data exploration. All of the data products are provided in the standard FITS file format, in image and table form. Data is being stored on the yt Hub (http://hub.yt), which allows for remote access and analysis using a Jupyter notebook server. Future versions of the catalog will include simulations from a number of research groups and a variety of research t...

  19. Mergers of Unequal Mass Galaxies: Supermassive Black Hole Binary Evolution and Structure of Merger Remnants

    CERN Document Server

    Khan, Fazeel Mahmood; Berczik, Peter; Berentzen, Ingo; Just, Andreas; Spurzem, Rainer

    2012-01-01

    Galaxy centers are residing places for Super Massive Black Holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves for the Laser Interferometer Space Antenna (LISA). In spherical galaxy models, SMBH binaries stall at a separation of approximately one parsec, leading to the "final parsec problem" (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the...

  20. Metallicity in the merger Seyfert galaxy NGC 6240

    CERN Document Server

    Contini, M

    2012-01-01

    We have calculated the physical conditions throughout the NLR of the merger Seyfert galaxy NGC 6240 by modelling the observed optical and infrared line ratios. We have found that the optical spectra are emitted by clouds photoionised by the power-law radiation flux from the AGN (or AGNs), and heated mainly by the shock accompanying the propagation of the clouds outwards. The infrared line ratios are emitted from clouds ejected from a starburst which photoionises the gas by the black-body radiation flux corresponding to a stellar colour temperature of about 50,000 K. Both the flux from the AGN and the ionization parameters are low. The most characteristic physical parameters are the relatively high shock velocities (>400 km/s) and low preshock densities (about 40-60 cm-3) of the gas. The C/H, N/H, O/H relative abundances are higher than solar by a factor lower or about 1.5. We suggest that those high relative abundances indicate trapping of H into H2 molecules rather than high metallicities. Adopting an initia...

  1. Angular momenta, dynamical masses, and mergers of brightest cluster galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Jimmy; Tran, Kim-Vy [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Brough, Sarah [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Gebhardt, Karl [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Couch, Warrick J. [Centre for Astrophysics and Supercomputing, Swinburne University, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Sharp, Rob [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2013-12-01

    Using the VIMOS integral field unit (IFU) spectrograph on the Very Large Telescope, we have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) and 4 BCG companion galaxies located within a redshift of z = 0.1. In the hierarchical formation model, these massive galaxies (10{sup 10.5} M {sub ☉} < M {sub dyn} < 10{sup 11.9} M {sub ☉}) are expected to undergo more mergers than lower mass galaxies, and simulations show that dry minor mergers can remove angular momentum. We test whether BCGs have low angular momenta by using the λ {sub Re} parameter developed by the SAURON and ATLAS{sup 3D} teams and combine our kinematics with Sloan Digital Sky Survey photometry to analyze the BCGs' merger status. We find that 30% (3/10) of the BCGs and 100% of the companion galaxies (4/4) are fast rotators as defined by the ATLAS{sup 3D} criteria. Our fastest rotating BCG has a λ {sub Re} = 0.35 ± 0.05. We increase the number of BCGs analyzed from 1 in the combined SAURON and ATLAS{sup 3D} surveys to 11 BCGs total and find that above M {sub dyn} ∼ 11.5 M {sub ☉}, virtually all galaxies, regardless of environment, are slow rotators. To search for signs of recent merging, we analyze the photometry of each system and use the G – M {sub 20} selection criteria to identify mergers. We find that 40% ± 20% of our BCGs are currently undergoing or have recently undergone a merger (within 0.2 Gyr). Surprisingly, we find no correlation between galaxies with high angular momentum and morphological signatures of merging.

  2. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Schawinski, Kevin; Urry, C. Megan; Bonning, Erin W. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Oh, Kyuseok [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Cardamone, Carolin N. [Harriet W. Sheridan Center for Teaching and Learning, Brown University, P.O. Box 1912, Providence, RI 02912 (United States); Keel, William C. [Department of Physics and Astronomy, 206 Gallalee Hall, 514 University Boulevard, University of Alabama, Tuscaloosa, AL 35487-034 (United States); Simmons, Brooke D. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Treister, Ezequiel, E-mail: stacy.h.teng@nasa.gov [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  3. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Science.gov (United States)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  4. Galaxy Mergers Drive Shocks: an Integral Field Study of GOALS galaxies

    CERN Document Server

    Rich, J A; Dopita, M A

    2015-01-01

    We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph (WiFeS) focuses on determining the detailed properties of the emission line gas, including a careful treatment of multi- component emission line profiles. The resulting information obtained from the spectral fits are used to map the kinematics of the gas, sources of ionizing radiation and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the...

  5. Intermediate-age globular clusters in four galaxy merger remnants

    Energy Technology Data Exchange (ETDEWEB)

    Trancho, Gelys [Giant Magellan Telescope Organization, 251 South Lake Avenue, Pasadena, CA 91101 (United States); Miller, Bryan W. [Gemini Observatory, Casilla 603, La Serena (Chile); Schweizer, François [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Burdett, Daniel P. [The University of Adelaide, South Australia 5005 (Australia); Palamara, David, E-mail: gtrancho@gmto.org [Monash University, Clayton, Victoria 3800 (Australia)

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based K{sub s} -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIK{sub s} GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ∼1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  6. When galaxy clusters collide : the impact of merger shocks on cluster gas and galaxy evolution

    NARCIS (Netherlands)

    Stroe, Andra

    2015-01-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to cluster-wide traveling shocks, which can be detected at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. The 'Sausage' cluste

  7. Kinematics of Galaxy Mergers in The FIRE Simulation

    Science.gov (United States)

    Flores, Jose Antonio; Moreno, Jorge

    2017-01-01

    The morphology of galaxies is a field of science still under current investigation. Today, galaxy merger simulations provide us with crucial information that plays an important role in describing the morphology of today and future galaxies. Using the Calar Alto Legacy Integral Field Area (CALIFA) survey, Barrera-Ballesteros et al. find morpho-kinematic misalignments in the stellar and ionized gas’s line of sight velocity when comparing the axis of symmetry to the axis of rotation (2015). Similarly, using the Feedback in Realistic Environment (FIRE) simulation we are able to measure stellar and ionized gas’s line of sight velocities of various galaxy mergers. The aim of this work is to determine if the observed morpho-kinematic misalignments between the axis of symmetry and axis of rotation appears in our simulations. The cause of such morpho-kinematic misalignments is yet unresolved, but by exploring various galaxy merger simulations with different properties on FIRE we plan to find a plausible explanation. This unexplained phenomenon raises awareness in determining whether current simulations match current observations and offer a better insight in understanding the morphology of galaxies.

  8. From discs to bulges: effect of mergers on the morphology of galaxies

    NARCIS (Netherlands)

    Kannan, Rahul; Macciò, Andrea V.; Fontanot, Fabio; Moster, Benjamin P.; Karman, Wouter; Somerville, Rachel S.

    2015-01-01

    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evo

  9. Merger Histories of Galaxy Halos and Implications for Disk Survival

    CERN Document Server

    Stewart, Kyle R; Wechsler, Risa H; Maller, Ariyeh H; Zentner, Andrew R

    2007-01-01

    We study the merger histories of galaxy dark matter halos using a high resolution LCDM N-body simulation. Our merger trees follow ~17,000 halos with masses M_0 = (10^11--10^13) Msun at z=0 and track accretion events involving objects as small as m = 10^10 Msun. We find that mass assembly is remarkably self-similar in m/M_0, and dominated by mergers that are ~10% of the final halo mass. While very large mergers, m > 0.4 M_0, are quite rare, sizeable accretion events, m ~ 0.1 M_0, are common. Over the last 10 Gyr, an overwhelming majority (~95%) of Milky Way-sized halos with M_0 = 10^12 Msun have accreted at least one object with greater total mass than the Milky Way disk (m > 5x10^10 Msun), and approximately 70% have accreted an object with more than twice that mass (m > 10^11 Msun). Our results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a CDM universe. In order to achieve a ~70% disk-dominated fraction in Milky Way-sized CDM ha...

  10. Resolving The Generation of Starburst Winds in Galaxy Mergers

    CERN Document Server

    Hopkins, Philip F; Murray, Norman; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C

    2013-01-01

    We study galaxy super-winds driven in major mergers, using pc-resolution simulations with detailed models for stellar feedback that can self-consistently follow the formation/destruction of GMCs and generation of winds. The models include molecular cooling, star formation at high densities in GMCs, and gas recycling and feedback from SNe (I&II), stellar winds, and radiation pressure. We study mergers of systems from SMC-like dwarfs and Milky Way analogues to z~2 starburst disks. Multi-phase super-winds are generated in all passages, with outflow rates up to ~1000 M_sun/yr. However, the wind mass-loading efficiency (outflow rate divided by SFR) is similar to that in isolated galaxy counterparts of each merger: it depends more on global galaxy properties (mass, size, escape velocity) than on the dynamical state of the merger. Winds tend to be bi- or uni-polar, but multiple 'events' build up complex morphologies with overlapping, differently-oriented bubbles/shells at a range of radii. The winds have complex...

  11. Galaxy Merger Morphologies and Time-Scales from Simulations of Equal-Mass Gas-Rich Disc Mergers

    CERN Document Server

    Lotz, Jennifer M; Cox, T J; Primack, Joel R

    2008-01-01

    A key obstacle to understanding the galaxy merger rate and its role in galaxy evolution is the difficulty in constraining the merger properties and time-scales from instantaneous snapshots of the real universe. The most common way to identify galaxy mergers is by morphology, yet current theoretical calculations of the time-scales for galaxy disturbances are quite crude. We present a morphological analysis of a large suite of GADGET N-Body/hydro-dynamical equal-mass gas-rich disc galaxy mergers which have been processed through the Monte-Carlo radiative transfer code SUNRISE. With the resulting images, we examine the dependence of quantitative morphology (G, M20, C, A) in the SDSS g-band on merger stage, dust, viewing angle, orbital parameters, gas properties, supernova feedback, and total mass. We find that mergers appear most disturbed in G-M20 and asymmetry at the first pass and at the final coalescence of their nuclei, but can have normal quantitative morphologies at other merger stages. The merger observa...

  12. THE MAJOR AND MINOR GALAXY MERGER RATES AT z < 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, Jennifer M. [National Optical Astronomical Observatories, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Jonsson, Patrik [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cox, T. J. [Carnegie Observatories, Pasadena, CA (United States); Croton, Darren [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Primack, Joel R. [Department of Physics, University of California, Santa Cruz, CA (United States); Somerville, Rachel S. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Stewart, Kyle, E-mail: lotz@stsci.edu [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2011-12-01

    Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates and a cosmologically averaged 'observability' timescale (T{sub obs}(z)) for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, (T{sub obs}(z)) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate (T{sub obs}(z)) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G - M{sub 20}, and (3) the morphology indicator asymmetry A. Then, we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the ranges of the mass ratio measured by different techniques and differing parent galaxy selection. The major merger rate per unit comoving volume for samples selected with constant number density evolves much more strongly with redshift ({proportional_to}(1 + z){sup +3.0{+-}1.1}) than samples selected with constant stellar mass or passively evolving luminosity ({proportional_to}(1 + z){sup +0.1{+-}0.4}). We calculate the minor merger rate (1:4 merger rate from close pairs from the 'total' merger rate determined by G - M{sub 20}. The implied minor merger rate is {approx}3 times the major merger rate at z {approx} 0.7 and shows little evolution with redshift.

  13. Modelling Galaxy Merger Timescales and Tidal Destruction

    CERN Document Server

    Simha, Vimal

    2016-01-01

    We present a model for the dynamical evolution of subhaloes based on an approach combining numerical and analytical methods. Our method is based on tracking subhaloes in an N-body simulation up to the last point that it can be resolved, and applying an analytic prescription for its merger timescale that takes dynamical friction and tidal disruption into account. When applied to cosmological N-body simulations with mass resolutions that differ by two orders of magnitude, the technique produces halo occupation distributions that agree to within 3%.

  14. Galaxy mergers with various mass ratios: properties of remnants

    CERN Document Server

    Bournaud, F; Combes, F

    2005-01-01

    We study galaxy mergers with various mass ratios using N-body simulations, with an emphasis on the unequal-mass mergers in the relatively unexplored range of mass-ratios 4:1-10:1. Our recent work (Bournaud et al. 2004) shows that the above range of mass ratio results in hybrid systems with spiral-like luminosity profiles but with elliptical-like kinematics, as observed in the data analysis for a sample of mergers by Jog & Chitre (2002). In this paper, we study the merger-remnants for mass ratios from 1:1 to 10:1 while systematically covering the parameter space. We obtain the morphological and kinematical properties of the remnants, and also discuss the robustness and the visibility of disks in the merger remnants with a random line-of-sight. We show that the mass ratios 1:1-3:1 give rise to elliptical remnants whereas the mass ratios 4.5:1-10:1 produce the hybrid systems with mixed properties. We find that the transition between disk-like and elliptical remnants occurs between a narrow mass-range of 4.5:...

  15. The slowing down of galaxy disks in dissipationless minor mergers

    CERN Document Server

    Qu, Yan; Lehnert, Matthew; van Driel, Wim; Jog, Chanda J

    2010-01-01

    We have investigated the impact of dissipationless minor galaxy mergers on the angular momentum of the remnant. Our simulations cover a range of initial orbital characteristics and the system consists of a massive galaxy with a bulge and disk merging with a much less massive (one-tenth or one-twentieth) gasless companion which has a variety of morphologies (disk- or elliptical-like) and central baryonic mass concentrations. During the process of merging, the orbital angular momentum is redistributed into the internal angular momentum of the final system; the internal angular momentum of the primary galaxy can increase or decrease depending on the relative orientation of the orbital spin vectors (direct or retrograde), while the initially non-rotating dark matter halo always gains angular momentum. The specific angular momentum of the stellar component always decreases independent of the orbital parameters or morphology of the satellite, the decrease in the rotation velocity of the primary galaxy is accompanie...

  16. Nuclear coups: dynamics of black holes in galaxy mergers

    CERN Document Server

    Van Wassenhove, Sandor; Volonteri, Marta; Dotti, Massimo; Bellovary, Jillian M; Mayer, Lucio; Governato, Fabio

    2013-01-01

    We study the dynamical evolution of supermassive black holes (BHs) in merging galaxies on scales of hundreds of kpc to 10 pc, to highlight and identify the physical processes that aid or hinder the orbital decay of BHs down to pc scale. We present hydrodynamical simulations of unequal-mass galaxy mergers ($G_1$ and $G_2$ are the larger and smaller galaxies, respectively), with a variety of orbital configurations, that bridge the gap between large-scale, low-resolution merger simulations and the small-scale, high-resolution simulations of BH-binary evolution. Our simulations resolve $<20$-pc scales in order to accurately track the motion of the nuclei and provide a realistic environment for the evolution of the BHs. We find that, during the late stages of the merger, tidal shocks inject energy in the nuclei ($N_1$ and $N_2$), causing one or both nuclei to be disrupted and leaving their BH 'naked', without any bound gas or stars. In many cases, the nucleus that is ultimately disrupted is $N_1$ ('nuclear coup...

  17. The neutral gas content of post-merger galaxies

    CERN Document Server

    Ellison, Sara L; Rosenberg, Jessica L; Nair, Preethi; Simard, Luc; Torrey, Paul; Patton, David R

    2015-01-01

    Measurements of the neutral hydrogen gas content of a sample of 93 post-merger galaxies are presented, from a combination of matches to the ALFALFA.40 data release and new Arecibo observations. By imposing completeness thresholds identical to that of the ALFALFA survey, and by compiling a mass-, redshift- and environment-matched control sample from the public ALFALFA.40 data release, we calculate gas fraction offsets (Delta f_gas) for the post-mergers, relative to the control sample. We find that the post-mergers have HI gas fractions that are consistent with undisturbed galaxies. However, due to the relative gas richness of the ALFALFA.40 sample, from which we draw our control sample, our measurements of gas fraction enhancements are likely to be conservative lower limits. Combined with comparable gas fraction measurements by Fertig et al. in a sample of galaxy pairs, who also determine gas fraction offsets consistent with zero, we conclude that there is no evidence for significant neutral gas consumption th...

  18. A New Automatic Method to Identify Galaxy Mergers I. Description and Application to the STAGES Survey

    CERN Document Server

    Hoyos, Carlos; Gray, Meghan E; Maltby, David T; Bell, Eric F; Barazza, Fabio D; Boehm, Asmus; Haussler, Boris; Jahnke, Knud; Jogee, Sharda; Lane, Kyle P; McIntosh, Daniel H; Wolf, Christian

    2011-01-01

    We present an automatic method to identify galaxy mergers using the morphological information contained in the residual images of galaxies after the subtraction of a Sersic model. The removal of the bulk signal from the host galaxy light is done with the aim of detecting the fainter minor mergers. The specific morphological parameters that are used in the merger diagnostic suggested here are the Residual Flux Fraction and the asymmetry of the residuals. The new diagnostic has been calibrated and optimized so that the resulting merger sample is very complete. However, the contamination by non-mergers is also high. If the same optimization method is adopted for combinations of other structural parameters such as the CAS system, the merger indicator we introduce yields merger samples of equal or higher statistical quality than the samples obtained through the use of other structural parameters. We explore the ability of the method presented here to select minor mergers by identifying a sample of visually classif...

  19. Mergers in Galaxy Groups. II. The Fundamental Plane of Elliptical Galaxies

    CERN Document Server

    Taranu, Dan S; Yee, H K C

    2014-01-01

    Observations consistently show that elliptical galaxies follow a tight "fundamental plane" scaling relation between size, mean surface brightness and velocity dispersion, with the form R $\\propto {\\sigma}^a {\\mu}^b$. This relation not only has very small (<0.05 dex) intrinsic scatter, but also has significantly different coefficients from the expect virial scaling (a "tilt"). We analyze hundreds of simulations of elliptical galaxies formed from mergers of spiral galaxies in groups to determine if the fundamental plane can emerge from multiple, mostly minor and hierarchical collisionless mergers. We find that these simulated ellipticals lie on a similar fundamental plane with a~1.7 and b~0.3. The scatter about this plane is even smaller than observed, while the tilt is in the correct sense, although a is larger than for typical observations. This demonstrates that collisionless mergers can contribute significantly to the tilt of the fundamental plane, contrary to previous claims that only gas dissipation co...

  20. Normal Galaxies in the Infrared

    CERN Document Server

    Helou, G

    2000-01-01

    This review addresses what can be learned from infrared observations about galaxies powered predominantly by star formation. Infrared techniques mostly probe the interstellar medium of galaxies, yielding physical and chemical information on the medium out of which stars form, which is in turn affected by those stars. Methods traditionally used in the study of such normal galaxies at wavelengths longer than 3 microns are described, and major questions currently pursued in the field are outlined. The most prominent results from the IRAS survey are reviewed. Contributions by ISO in the field of broad-band photometry are then presented, followed by ISO results in spectrospcopy. Normal galaxy studies not directly concerned with the ISM are quickly reviewed. The outlook and challenges in pursuing the interpretation of infrared data on the ISM are discussed.

  1. The merger Seyfert galaxy Arp 220. Line and continuum absorption and emission

    CERN Document Server

    Contini, M

    2012-01-01

    The line and continuum spectra of the merger galaxy Arp 220 are analysed with the aim of investigating the ionizing and heating sources. We refer to radio, optical, infrared and X-ray spectra. The results show that in agreement with other merger galaxies, the optical lines are emitted from gas photoionised by the AGN and heated by the shocks in the extended NLR. The infrared lines are better explained by the emission from gas close to the starburst. The starburst dominates the infrared emission. [OI] and [CI] lines in the far-infrared are formed in the internal region of extended clouds and are therefore absorbed, while [CII] lines are emitted from the external edges of outflowing clouds. The O/H relative abundances are about solar and N/H are higher than solar by a factor of 1.5, throughout the starburst region, while in the AGN extended NLR the O/H ratio is half solar. A relatively high dust-to-gas ratio is indicated by modelling the dust reprocessed radiation peak consistently with bremsstrahlung emitted f...

  2. Star-forming galaxies in the infrared

    Science.gov (United States)

    Weedman, Daniel W.

    1988-01-01

    The infrared properties from IRAS of galaxy samples previously observed in the optical and ultraviolet are summarized in order to predict quantitatively the infrared fluxes corresponding to galaxies of given fluxes in other wavebands. An infrared luminosity function of galaxies is presented and used to predict galaxy counts and redshift ranges at the flux limits expected for SIRTF. Depending on the precise limit and whether or not galaxies evolve, SIRTF will see as many as 2200 galaxies/sq deg at 30 microns.

  3. Simulated Galaxy Interactions as Probes of Merger Spectral Energy Distributions

    CERN Document Server

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A; Ashby, Matthew L N; Brassington, Nicola; Fazio, Giovanni G; Hernquist, Lars

    2014-01-01

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey, and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sa...

  4. The Influence of Cluster Mergers on Galaxy Evolution

    Science.gov (United States)

    Rawle, T. D.; Altieri, B.; Bouy, H.; Egami, E.; Pérez-González, P. G.; Richard, J.; Valtchanov, I.; Walth, G.

    2016-06-01

    The rich environment of galaxy clusters is understood to have a profound effect on the evolution of constituent galaxies. However, even clusters of a similar mass and at fixed redshift are not homogeneous, displaying a range in structural complexity. Here we concentrate on the effect of cluster merging, the most massive dynamic process in the Universe. Two spectacular cluster mergers at z~0.3 are explored: the archetypal Bullet cluster (1E0657-558; Rawle et al. 2012), and the HST Frontier Field, Pandora's cluster (Abell 2744; Rawle et al. 2014, 2016). We present detailed analysis of their total star formation, derived from multi-wavelength observations of both dusty and unobscured activity from Herschel, Spitzer, WISE and GALEX. Examination of the morphologies of individual cluster galaxies reveals striking evidence for transformation and enhanced star formation, triggered by the merger-induced shock front. This includes several galaxies identified as having "jellyfish" morphologies caused by the passing shock. We discuss the implications, and preview future work exploring a large sample of clusters covering a range of dynamic states and redshifts.

  5. Merger Histories of Galaxy Halos and Implications for Disk Survival

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; Zentner, Andrew R.

    2008-05-16

    The authors study the merger histories of galaxy dark matter halos using a high resolution {Lambda}CDM N-body simulation. The merger trees follow {approx} 17,000 halos with masses M{sub 0} = (10{sup 11} - 10{sup 13})h{sup -1}M{sub {circle_dot}} at z = 0 and track accretion events involving objects as small as m {approx_equal} 10{sup 10} h{sup -1}M{sub {circle_dot}}. They find that mass assembly is remarkably self-similar in m/M{sub 0}, and dominated by mergers that are {approx}10% of the final halo mass. While very large mergers, m {approx}> 0.4 M{sub 0}, are quite rare, sizeable accretion events, m {approx} 0.1 M{sub 0}, are common. Over the last {approx} 10 Gyr, an overwhelming majority ({approx} 95%) of Milky Way-sized halos with M{sub 0} = 10{sup 12} h{sup -1}M{sub {circle_dot}} have accreted at least one object with greater total mass than the Milky Way disk (m > 5 x 10{sup 10} h{sup -1}M{sub {circle_dot}}), and approximately 70% have accreted an object with more than twice that mass (m > 10{sup 11} h{sup -1}M{sub {circle_dot}}). The results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a {Lambda}CDM universe. in order to achieve a {approx} 70% disk-dominated fraction in Milky Way-sized {Lambda}CDM halos, mergers involving m {approx_equal} 2 x 10{sup 11} h{sup -1}M{sub {circle_dot}} objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.

  6. The Major and Minor Galaxy Merger Rates at z < 1.5

    CERN Document Server

    Lotz, Jennifer M; Cox, T J; Croton, Darren; Primack, Joel R; Somerville, Rachel S; Stewart, Kyle

    2011-01-01

    Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged `observability' timescale T_obs(z) for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, T_obs(z) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate T_obs(z) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G-M20, and (3) the morphology indicator asymmetry A. Then we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically-motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the range of mass-ratio measured by different techniques and...

  7. Back to the green valley: how to rejuvenate an S0 galaxy through minor mergers

    CERN Document Server

    Mapelli, Michela

    2015-01-01

    About half of the S0 galaxies in the nearby Universe show signatures of recent or ongoing star formation. Whether these S0 galaxies were rejuvenated by the accretion of fresh gas is still controversial. We study minor mergers of a gas-rich dwarf galaxy with an S0 galaxy, by means of N-body smoothed-particle hydrodynamics simulations. We find that minor mergers trigger episodes of star formation in the S0 galaxy, lasting for ~10 Gyr. One of the most important fingerprints of the merger is the formation of a gas ring in the S0 galaxy. The ring is reminiscent of the orbit of the satellite galaxy, and its lifetime depends on the merger properties: polar and counter-rotating satellite galaxies induce the formation of long-lived smooth gas rings.

  8. Back to the Green Valley: How to Rejuvenate an S0 Galaxy through Minor Mergers

    Directory of Open Access Journals (Sweden)

    Michela Mapelli

    2015-11-01

    Full Text Available About half of the S0 galaxies in the nearby Universe show signatures of recent or ongoing star formation. Whether these S0 galaxies were rejuvenated by the accretion of fresh gas is still controversial. We study minor mergers of a gas-rich dwarf galaxy with an S0 galaxy, by means of N-body smoothed-particle hydrodynamics simulations. We find that minor mergers trigger episodes of star formation in the S0 galaxy, lasting for \\(\\sim\\10 Gyr. One of the most important fingerprints of the merger is the formation of a gas ring in the S0 galaxy. The ring is reminiscent of the orbit of the satellite galaxy, and its lifetime depends on the merger properties: polar and counter-rotating satellite galaxies induce the formation of long-lived smooth gas rings.

  9. Lopsidedness and Sloshing in Centres of Advanced Mergers of Galaxies

    CERN Document Server

    Jog, Chanda J

    2007-01-01

    We measure the non-axisymmetry in the luminosity distribution in the central few kpc of a sample of advanced mergers of galaxies, by analyzing their 2MASS images. All mergers show a high central asymmetry: the centres of isophotes show a striking sloshing pattern with a spatial variation of upto 30 % within the central 1 kpc; and the Fourier amplitude for lopsidedness (m=1) shows high values upto 0.2 within the central 5 kpc. The central asymmetry is estimated to be long-lived, lasting for ~ a few Gyr or ~ 100 local dynamical timescales. This will significantly affect the dynamical evolution of this region, by helping fuel the central active galactic nucleus, and also by causing the secular growth of the bulge driven by lopsidedness.

  10. Unveiling multiple AGN activity in galaxy mergers

    CERN Document Server

    De Rosa, A; Bogdanovic, T; Decarli, R; Heidt, J; Herrero-Illana, R; Husemann, B; Komossa, S; Kun, E; Loiseau, N; Guainazzi, M; Paragi, Z; Perez-Torres, M; Piconcelli, E; Schawinski, K; Vignali, C

    2016-01-01

    In this paper we present an overview of the MAGNA (Multiple AGN Activity) project aiming at a comprehensive study of multiple supemassive black hole systems. With the main goal to characterize the sources in merging systems at different stages of evolution, we selected a sample of objects optically classified as multiple systems on the basis of emission line diagnostics and started a massive multiband observational campaign. Here we report on the discovery of the exceptionally high AGN density compact group SDSS~J0959+1259. A multiband study suggests that strong interactions are taking place among its galaxies through tidal forces, therefore this system represents a case study for physical mechanisms that trigger nuclear activity and star formation. We also present a preliminary analysis of the multiple AGN system SDSS~J1038+3921.}

  11. Secular- and merger-built bulges in barred galaxies

    CERN Document Server

    Mendez-Abreu, J; Corsini, E M; Aguerri, J A L

    2014-01-01

    (Abridged) We study the incidence, as well as the nature, of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterised. We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We call secular-built to composite bulges made of entirely by structures associated with secular processes such as pseudo bulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built b...

  12. Ultraluminous Infrared Galaxies in the AKARI All Sky Survey

    CERN Document Server

    Eser, E Kilerci; Doi, Y

    2014-01-01

    We present a new catalog of 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG) by crossmatching AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of the Two-Degree Field Galaxy Redshift Survey (2dFGRS). 40 of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing/post mergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the AGN fraction and IR luminosity. We show that ULIRGs have a large off-set from the 'main sequence' up to z~1; their off-set from the z~2 'main sequence' is relatively smaller. We find a consistent result with the previous studies showing that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We for the first time demonstrate that ULIRGs follow the fundamental metallicity relation (...

  13. The effect of galaxy mass ratio on merger--driven starbursts

    CERN Document Server

    Cox, T J; Somerville, Rachel S; Primack, Joel R; Dekel, Avishai

    2007-01-01

    We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger--driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disk galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local Universe. We find that the merger--driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger--driven star formation and test that it is insensitive to uncertainties in the feedback parameterization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disk and suppresses merger--driven star formation for large mass ratio mergers. Dire...

  14. Dynamical analysis of galaxy cluster merger Abell 2146

    CERN Document Server

    White, J A; King, L J; Lee, B E; Russell, H R; Baum, S A; Clowe, D I; Coleman, J E; Donahue, M; Edge, A C; Fabian, A C; Johnstone, R M; McNamara, B R; ODea, C P; Sanders, J S

    2015-01-01

    We present a dynamical analysis of the merging galaxy cluster system Abell 2146 using spectroscopy obtained with the Gemini Multi-Object Spectrograph on the Gemini North telescope. As revealed by the Chandra X-ray Observatory, the system is undergoing a major merger and has a gas structure indicative of a recent first core passage. The system presents two large shock fronts, making it unique amongst these rare systems. The hot gas structure indicates that the merger axis must be close to the plane of the sky and that the two merging clusters are relatively close in mass, from the observation of two shock fronts. Using 63 spectroscopically determined cluster members, we apply various statistical tests to establish the presence of two distinct massive structures. With the caveat that the system has recently undergone a major merger, the virial mass estimate is M_vir = 8.5 +4.3 -4.7 x 10 ^14 M_sol for the whole system, consistent with the mass determination in a previous study using the Sunyaev-Zeldovich signal....

  15. The Modes of Star Formation in Luminous and Ultraluminous Infrared Galaxies

    Science.gov (United States)

    Kartaltepe, Jeyhan S.; Candels Team

    2015-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, LIR>1012 Lsun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z~2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers?

  16. Ultraluminous infrared galaxies in the AKARI all-sky survey

    Energy Technology Data Exchange (ETDEWEB)

    Kilerci Eser, E., E-mail: ecekilerci@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Goto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Doi, Y., E-mail: tomo@phys.nthu.edu.tw, E-mail: doi@ea.c.u-tokyo.ac.jp [The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902 (Japan)

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  17. Merging Galaxy Cluster A2255 in Mid-infrared

    Science.gov (United States)

    Shim, Hyunjin; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Hwang, Ho Seong; Hwang, Narae; Ko, Jongwan; Lee, Jong Chul; Lim, Sungsoon; Matsuhara, Hideo; Seo, Hyunjong; Wada, Takehiko; Goto, Tomotsugu

    2011-01-01

    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, A2255, by the AKARI space telescope. Using AKARI's continuous wavelength coverage between 3 and 24 μm and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR (~11 μm) flux is a good indicator for discriminating galaxies at different evolutionary stages and for dividing galaxies into three classes accordingly: strong MIR-excess (N3 - S11>0.2) galaxies that include both unobscured and obscured star-forming galaxies; weak MIR-excess (-2.0 S11 5 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars; and intermediate MIR-excess (-1.2 S11 < 0.2) galaxies in between the two classes that are less than a few Gyr old past the prime star formation activity. With the MIR-excess diagnostics, we investigate how local and cluster-scale environments affect the individual galaxies. We derive the total star formation rate (SFR) and the specific SFR of A2255 using the strong MIR-excess galaxies. The dust-free, total SFR of A2255 is ~130 M sun yr-1, which is consistent with the SFRs of other clusters of galaxies at similar redshifts and with similar masses. We find no strong evidence that supports enhanced star formation either inside the cluster or in the substructure region, suggesting that the infall or the cluster merging activities tend to suppress star formation. The intermediate MIR-excess galaxies, representing galaxies in transition from star-forming galaxies to quiescent galaxies, are located preferentially at the medium density region or cluster substructures with higher surface density of galaxies. Our findings suggest that galaxies are being transformed from star-forming galaxies into red, quiescent galaxies from the infall region through near the core which can be explained

  18. ISM Properties of Local Luminous Infrared Galaxies

    Science.gov (United States)

    Diaz-Santos, Tanio; Armus, Lee; Stierwalt, Sabrina; Elbaz, David; Malhotra, Sangeeta

    2015-08-01

    Luminous and Ultra-luminous Infrared Galaxies ((U)LIRGs) represent the most important galaxy population at redshifts z > 1 as they account for more than 50% of all star formation produced in the Universe at those epochs; and encompass what it is called the main-sequence (MS) of star-forming galaxies. Investigating their local counterparts -low luminosity LIRGs- is therefore key to understand the physical properties and phases of their inter-stellar medium (ISM) - a task that is rather challenging in the distant Universe. On the other hand, high-z star-bursting (out of the MS) systems, although small in number, account for a modest yet still significant fraction of the total energy production. Here I present far-IR line emission observations ([CII]158μm, [OI]63μm, [OIII]88μm and [NII]122μm) obtained with Herschel for two large samples of nearby LIRGs: The Great Observatories All-sky LIRG Survey (GOALS), a sample of more than 240 relatively cold LIRGs, and a survey of 30 LIRGs selected to have very warm mid- to far-IR colors, suggestive of an ongoing intense nuclear starburst and/or an AGN. Using photo-dissociation region (PDR) models we derive the basic characteristics of the ISM (ionization intensity and density) for both samples and study differences among systems as a function of AGN activity, merger stage, dust temperature, and compactness of the starburst - parameters that are thought to control the life cycle of galaxies moving in and out of the MS, locally and at high-z.

  19. Achieving Convergence in Galaxy Formation Models by Augmenting N-body Merger Trees

    CERN Document Server

    Benson, Andrew J; Cole, Shaun

    2016-01-01

    Accurate modeling of galaxy formation in a hierarchical, cold dark matter universe requires the use of sufficiently high-resolution merger trees to obtain convergence in the predicted properties of galaxies. When semi-analytic galaxy formation models are applied to cosmological N-body simulation merger trees, it is often the case that those trees have insufficient resolution to give converged galaxy properties. We demonstrate a method to augment the resolution of N-body merger trees by grafting in branches of Monte Carlo merger trees with higher resolution, but which are consistent with the pre-existing branches in the N-body tree. We show that this approach leads to converged galaxy properties.

  20. The Most Bound Halo Particle-Galaxy Correspondence Model: Comparison between Models with Different Merger Timescales

    CERN Document Server

    Hong, Sungwook E; Kim, Juhan

    2016-01-01

    We develop a galaxy assignment scheme that populates dark matter halos with galaxies by tracing the most bound member particles (MBPs) of simulated halos. Several merger-timescale models based on analytic calculations and numerical simulations are adopted as the survival time of mock satellite galaxies. We build mock galaxy samples from halo merger data of the Horizon Run 4 $N$-body simulation from $z = 12-0$. We compare group properties and two-point correlation functions (2pCFs) of mock galaxies with those of volume-limited SDSS galaxies, with $r$-band absolute magnitudes of $\\mathcal{M}_r - 5 \\log h 10^{14} h^{-1} M_{\\odot}$) and the small-scale 2pCF ($r_{\\rm p} < 10 h^{-1} {\\rm Mpc}$) quite well for the majority of the merger timescale models adopted. The new scheme outperforms the previous subhalo-galaxy correspondence scheme by more than $2\\sigma$.

  1. The Role of Galaxy Mergers and Molecular Gas in the Early Phase of Galaxy Cluster Assembly

    Science.gov (United States)

    Hung, Chao-Ling

    2017-08-01

    High-redshift protoclusters are ideal places to study the formation of the largest structures in the Universe and the early environmental influences on galaxy evolution. Recent discoveries of z>2 protoclusters with extremely rich populations of dusty star-forming galaxies (DSFGs; SFR>100 Msun/yr) represent the most active assembly phases of massive galaxy clusters. Understanding the triggering mechanisms of these unusual concentrations of extreme star-forming galaxies can provide critical insights into the formation of most massive galaxies in these clusters and the assembly of massive clusters themselves. For example, an increased probability of galaxy interactions and/or enhanced gas supply may trigger an excess of DSFGs. Using the extensive ancillary data in the COSMOS field, we study the role of galaxy mergers through measuring the frequency of galaxy pairs in two such DSFG-rich protoclusters at z=2.10 and 2.47, respectively. We also investigate the mean molecular gas content of protocluster galaxies by stacking SCUBA-2 850 micron images. These independent investigations provide complementary views into the physical nature of these DSFG-rich protoclusters.

  2. First ALMA Detection of a Galaxy Cluster Merger Shock

    Science.gov (United States)

    Basu, K.; Sommer, M.; Erler, J.; Eckert, D.; Vazza, F.; Magnelli, B.; Bertoldi, F.; Tozzi, P.

    2016-12-01

    We report on the first ALMA measurement of a galaxy cluster merger shock, observed at the location of a radio relic in the famous El Gordo galaxy cluster at redshift z 0.9. Located at about half the current age of the Universe, this is also the most distant example of a directly measured astrophysical shock. ALMA Band 3 was utilised to measure the Sunyaev-Zel'dovich (SZ) effect signature that confirms a small-scale change in pressure as expected from the passage of a shock in the intracluster medium. The results support a previous radio-based estimate of the shock Mach number and display similarities, and also some mild tensions, with the X-ray based results. Most importantly, these results show the potential of ALMA to detect galaxy cluster shocks, observations that will advance our knowledge of cluster formation, non-thermal particle acceleration and amplification of magnetic fields across the entire observable Universe where such relic shocks can be found.

  3. Late-stage galaxy mergers in cosmos to z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, C. N.; Silverman, J. D. [Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany); Kampczyk, P. [Institute of Astronomy, Department of Physics, ETH Zürich, CH-8093 Zürich (Switzerland); Kartaltepe, J. S. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Sanders, D.; Lee, N. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Capak, P.; Scoville, N. [California Institute of Technology, Pasadena, CA 91125 (United States); Civano, F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Halliday, C. [23, rue d’Yerres, F-91230 Montgeron (France); Ilbert, O.; Le Fèvre, O. [Aix Marseille Université, CNRS, LAM (Laboratoire dAstrophysique de Marseille), F-13388, Marseille (France); Jahnke, K. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Koekemoer, A. M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Liu, C. T. [Astrophysical Observatory, CUNY, College of Staten Island, NY 10314 (United States); Sheth, K. [National Radio Astronomy Observatory/NAASC, Charlottesville, VA 22903 (United States); Toft, S., E-mail: claire.lackner@ipmu.jp [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Copenhagen, DK-2100 (Denmark)

    2014-12-01

    The role of major mergers in galaxy and black hole formation is not well-constrained. To help address this, we develop an automated method to identify late-stage galaxy mergers before coalescence of the galactic cores. The resulting sample of mergers is distinct from those obtained using pair-finding and morphological indicators. Our method relies on median-filtering of high-resolution images to distinguish two concentrated galaxy nuclei at small separations. This method does not rely on low surface brightness features to identify mergers, and is therefore reliable to high redshift. Using mock images, we derive statistical contamination and incompleteness corrections for the fraction of late-stage mergers. The mock images show that our method returns an uncontaminated (<10%) sample of mergers with projected separations between 2.2 and 8 kpc out to z∼1. We apply our new method to a magnitude-limited (m{sub FW} {sub 814}<23) sample of 44,164 galaxies from the COSMOS HST/ACS catalog. Using a mass-complete sample with logM{sub ∗}/M{sub ⊙}>10.6 and 0.25mergers. Correcting for incompleteness and contamination, the fractional merger rate increases strongly with redshift as r{sub merge}∝(1+z){sup 3.8±0.9}, in agreement both with earlier studies and with dark matter halo merger rates. Separating the sample into star-forming and quiescent galaxies shows that the merger rate for star-forming galaxies increases strongly with redshift, (1+z){sup 4.5±1.3}, while the merger rate for quiescent galaxies is consistent with no evolution, (1+z){sup 1.1±1.2}. The merger rate also becomes steeper with decreasing stellar mass. Limiting our sample to galaxies with spectroscopic redshifts from zCOSMOS, we find that the star formation rates and X-ray selected active galactic nucleus (AGN) activity in likely late-stage mergers are higher by factors of ∼2 relative to those of a control sample. Combining our sample with more

  4. Merging Galaxy Cluster Abell 2255 in Mid-Infrared

    CERN Document Server

    Shim, Hyunjin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Hwang, Ho Seong; Hwang, Narae; Ko, Jongwan; Lee, Jong Chul; Lim, Sungsoon; Matsuhara, Hideo; Seo, Hyunjong; Wada, Takehiko; Goto, Tomotsugu

    2010-01-01

    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, Abell 2255 by the AKARI space telescope. Using the AKARI's continuous wavelength coverage between 3-24 micron and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR (11 micron) flux is a good indicator to discriminate galaxies at different evolutionary stages, and divide galaxies into three classes accordingly : strong MIR-excess (N3-S11>0.2) galaxies that include both unobscured and obscured star-forming galaxies, weak MIR-excess (-2.05 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars, and intermediate MIR-excess (-1.2galaxies in between the two classes that are less than a few Gyrs old past the prime star formation activity. With the MIR-excess diagnostics, we investigate how local and cl...

  5. The Role of Major Gas-rich Mergers on the Evolution of Galaxies from the Blue Cloud to the Red Sequence

    Science.gov (United States)

    Guo, Rui; Hao, Cai-Na; Xia, X. Y.; Mao, Shude; Shi, Yong

    2016-07-01

    With the aim of exploring the fast evolutionary path from the blue cloud of star-forming galaxies to the red sequence of quiescent galaxies in the local universe, we select a local advanced merging infrared luminous and ultraluminous galaxy (adv-merger (U)LIRGs) sample and perform careful dust extinction corrections to investigate their positions in the star formation rate-M *, u - r, and NUV - r color-mass diagrams. The sample consists of 89 (U)LIRGs at the late merger stage, obtained from cross-correlating the Infrared Astronomical Satellite Point Source Catalog Redshift Survey and 1 Jy ULIRGs samples with the Sloan Digital Sky Survey DR7 database. Our results show that 74 % +/- 5 % of adv-merger (U)LIRGs are localized above the 1σ line of the local star-forming galaxy main sequence. We also find that all adv-merger (U)LIRGs are more massive than and as blue as the blue cloud galaxies after corrections for Galactic and internal dust extinctions, with 95 % +/- 2 % and 81 % +/- 4 % of them outside the blue cloud on the u - r and NUV - r color-mass diagrams, respectively. These results, combined with the short timescale for exhausting the molecular gas reservoir in adv-merger (U)LIRGs (3× {10}7 to 3× {10}8 years), imply that the adv-merger (U)LIRGs are likely at the starting point of the fast evolutionary track previously proposed by several groups. While the number density of adv-merger (U)LIRGs is only ˜ 0.1 % of the blue cloud star-forming galaxies in the local universe, this evolutionary track may play a more important role at high redshift.

  6. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    CERN Document Server

    Deason, Alis; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased towards larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger ...

  7. Multiple minor mergers: formation of elliptical galaxies and constraints for the growth of spiral disks

    CERN Document Server

    Bournaud, Frederic; Combes, Francoise

    2007-01-01

    Multiple, sequential mergers are unavoidable in the hierarchical build-up picture of galaxies, in particular for the minor mergers that are frequent and highly likely to have occured several times for most present-day galaxies. However the effect of repeated minor mergers on galactic structure and evolution has not been studied systematically so far. In this paper, we present a numerical study of multiple, subsequent, minor galaxy mergers, with various mass ratios ranging from 4:1 to 50:1. The N-body simulations include gas dynamics and star formation. We study the morphological and kinematical properties of the remnants, and show that several so-called "minor" mergers can lead to the formation of elliptical-like galaxies, that have global morphological and kinematical properties similar to that observed in real elliptical galaxies. The properties of these systems are compared with that of elliptical galaxies produced by the standard scenario of one single major merger. We thus show that repeated minor merger...

  8. Merger Signatures in the Galaxy Cluster Abell 98

    CERN Document Server

    Paterno-Mahler, Rachel; Bulbul, Esra; Andrade-Santos, Felipe; Blanton, Elizabeth L; Jones, Christine; Murray, Stephen; Johnson, Ryan E

    2014-01-01

    We present results from Chandra and XMM-Newton observations of Abell 98 (A98), a galaxy cluster with three major components: a relatively bright subcluster to the north (A98N), a disturbed subcluster to the south (A98S), and a fainter subcluster to the far south (A98SS). We find evidence for surface brightness and temperature asymmetries in A98N consistent with a shock-heated region to the south, which could be created by an early stage merger between A98N and A98S. Deeper observations are required to confirm this result. We also find that A98S has an asymmetric core temperature structure, likely due to a separate ongoing merger. Evidence for this is also seen in optical data. A98S hosts a wide-angle tail (WAT) radio source powered by a central active galactic nucleus (AGN). We find evidence for a cavity in the intracluster medium (ICM) that has been evacuated by one of the radio lobes, suggesting that AGN feedback is operating in this system. Examples of cavities in non-cool core clusters are relatively rare...

  9. Can supermassive black hole seeds form in galaxy mergers?

    CERN Document Server

    Ferrara, A; Salvaterra, R

    2013-01-01

    It has been recently suggested that supermassive black holes at z = 5-6 might form from super-fast (\\dot M > 10^4 Msun/yr) accretion occurring in unstable, massive nuclear gas disks produced by mergers of Milky-Way size galaxies. Interestingly, such mechanism is claimed to work also for gas enriched to solar metallicity. These results are based on an idealized polytropic equation of state assumption, essentially preventing the gas from cooling. We show that under more realistic conditions, the disk rapidly (< 1 yr) cools, the accretion rate drops, and the central core can grow only to \\approx 100 Msun. In addition, most of the disk becomes gravitationally unstable in about 100 yr, further quenching the accretion. We conclude that this scenario encounters a number of difficulties that possibly make it untenable.

  10. Exploring the Optical and Infrared Evolution of Galaxies Since z=1

    Science.gov (United States)

    Melbourne, Jason

    2006-12-01

    We track the evolution of galaxy optical and mid-infrared luminosity, and half-light radius, for 900 blue galaxies in the Great Observatories Origins Deep Survey (GOODS). We find that since z=1 the total infrared luminosity of a typical spiral galaxies has declined more rapidly than for peculiar/merger types. We suggest that gas consumption in disk galaxies results in lower star formation rates and hence lower total infrared luminosity with time. The optical luminosity of blue galaxies has also declined with time. Assuming a linear shift in MB with z, we use a maximum likelihood method to quantify the luminosity evolution of GOODS-N galaxies with respect to a volume limited local sample from the Sloan Digital Sky Survey. We find that the amount of evolution is dependent on galaxy size. Under these assumptions, large (R1/2 > 5 kpc), and intermediate sized (3 managed by UC Santa Cruz under the cooperative agreement No. AST-9876783.

  11. Subcluster mergers and galaxy infall in A2151

    Science.gov (United States)

    Bird, Christina M.; Davis, David S.; Beers, Timothy C.

    1995-01-01

    We have obtained a 12.5 ks image of the Hercules Cluster, A2151, with the ROSAT PSPC. Comparison of the optical and X-ray emission coincides with the highest-density peak in the distribution, and is bimodal. The northern subclummp, distinct in position and velocity, has no detectable X-ray gas. The eastern subclump, apparent in the optical contour map, is indistinguishable from the clump in velocity space, but is clearly visible in the X-ray image. X-ray spectra derived from the central peak of emission yield a best-fit temperature of 1.6 keV. The emission coincident with the eastern clump of galaxies is cooler, 0.8 keV, and is outside the 90% confidence intervals of the central peak temperature. We suggest that the eastern and central subclusters have recently undergone a merger event. The lack of X-ray emission to the north suggests that those galaxies do not form a physically distinct structure (i.e., they are not located within a distinct gravitational potential), but rather that they are falling into the cluster core along the filament defined by the Hercules Supercluster.

  12. Blue E/S0 galaxies: merger remnants or disk rebuilding galaxies?

    CERN Document Server

    López-Aguerri, J A; Tresse, L

    2009-01-01

    Morphological early-type galaxies residing in the blue cloud (\\emph{blue E/S0s}) could be nice laboratories to understand the physical processes that provoke galaxy migrations in the color-mas space. We define blue E/S0 galaxies as objects having a clear early-type morphology on the HST/ACS images but with a blue rest-frame color. We isolate this way 210 $I_{AB}10^{10}$ in the COSMOS field located in three redshift bins ($0.2merger remnants probably migrating to the red-sequence in a time-scale of $\\sim 3$ Gyr. Below this mass, they seem to be closer to normal late-type galaxies as if they were the result of minor mergers which triggered the central star-formation or were rebuilding a disk from the surrounding gas in a much longer time-scale, suggesting that they are moving back or staying in the blue-cloud.

  13. Mergers and Mass Accretion Rates in Galaxy Assembly: The Millennium Simulation Compared to Observations of z~2 Galaxies

    CERN Document Server

    Genel, S; Bouché, N; Sternberg, A; Naab, T; Förster-Schreiber, N M; Shapiro, K L; Tacconi, L J; Lutz, D; Cresci, G; Buschkamp, P; Davies, R I; Hicks, E K S

    2008-01-01

    Recent observations of UV-/optically selected, massive star forming galaxies at z~2 indicate that the baryonic mass assembly and star formation history is dominated by continuous rapid accretion of gas and internal secular evolution, rather than by major mergers. We use the Millennium Simulation to build new halo merger trees, and extract halo merger fractions and mass accretion rates. We find that even for halos not undergoing major mergers the mass accretion rates are plausibly sufficient to account for the high star formation rates observed in z~2 disks. On the other hand, the fraction of major mergers in the Millennium Simulation is sufficient to account for the number counts of submillimeter galaxies (SMGs), in support of observational evidence that these are major mergers. When following the fate of these two populations in the Millennium Simulation to z=0, we find that subsequent mergers are not frequent enough to convert all z~2 turbulent disks into elliptical galaxies at z=0. Similarly, mergers canno...

  14. The Fundamental Plane and merger scenario; 1, Star formation history of galaxy mergers and origin of the Fundamental Plane

    CERN Document Server

    Bekki, K

    1998-01-01

    We perform numerical simulations of galaxy mergers between star-forming and gas-rich spirals in order to explore the origin of the Fundamental Plane (FP) of elliptical galaxies. We consider particularly that the origin of the slope of the FP is essentially due to the non-homology in structure and kinematics of elliptical galaxies and accordingly investigate structural and kinematical properties of elliptical galaxies formed by dissipative galaxy merging with star formation. We found that the rapidity of star formation, which is defined as the ratio of dynamical time-scale of merger progenitor to the time-scale of gas consumption by star formation, is a key determinant for nonhomology parameters, such as the density profile of stellar component, the relative importance of global rotation in kinematics, and the ratio of total dynamical mass to luminous mass, in merger remnants. We furthermore found that this result does not depend so strongly on initial intrinsic spins of progenitor disks and orbital energy and...

  15. The declining importance of major mergers for galaxy assembly at 1

    CERN Document Server

    Williams, Rik J; Franx, Marijn

    2011-01-01

    Using mass-selected galaxy samples from deep multiwavelength data we investigate the incidence of close galaxy pairs between z=0.4-2. Many such close pairs will eventually merge, and the pair fraction is therefore connected to the merger rate. In this analysis we distinguish between likely progenitors of "dry mergers" (two quiescent red galaxies) and those that include star-forming constituents. Over this redshift range 4-7% of log M/Msun>10.5 quiescent galaxies have a similar-mass quiescent galaxy within 30h^-1 kpc; when minor companions (1:10 mass ratio or greater) are included, the "dry" pair fraction increases to 5-15%. The mean total pair fraction, including both star-forming and quiescent companions to massive "dead" galaxies, is essentially constant (within ~10%) to z=2 for both major and minor merger candidates. If the constant pair fraction to z=2 implies a roughly constant merger rate per unit time, then most mergers in fact occur at z<1. Thus, even though other studies find major mergers to be r...

  16. The dominant role of mergers in the size evolution of massive early-type galaxies since z similar to 1

    NARCIS (Netherlands)

    López-Sanjuan, C.; Le Fèvre, O.; Ilbert, O.; Tasca, L. A. M.; Bridge, C.; Cucciati, O.; Kampczyk, P.; Pozzetti, L.; Xu, C.K.; Carollo, C. M.; Contini, T.; Kneib, J. -P; Lilly, S. J.; Mainieri, V.; Renzini, A.; Sanders, D.; Scodeggio, M.; Scoville, N. Z.; Taniguchi, Y.; Zamorani, G.; Aussel, H.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J. -F; Le Brun, V.; Le Floc'h, E.; Maier, C.; McCracken, H. J.; Mignoli, M.; Pelló, R.; Peng, Y.; Pérez-Montero, E.; Presotto, V.; Ricciardelli, E.; Salvato, M.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.; Barnes, L.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Coppa, G.; Koekemoer, A.; Liu, C.T.; Moresco, M.; Nair, P.; Oesch, P.; Schawinski, K.; Welikala, N.

    2012-01-01

    Aims. The role of galaxy mergers in massive galaxy evolution, and in particular to mass assembly and size growth, remains an open question. In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M-star >= 10(11) M-circle dot) in the COSMOS field,

  17. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    Science.gov (United States)

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.

  18. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, L.; /Zurich U. /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park; Madau, P.; /UC, Santa Cruz /Garching, Max Planck Inst.; Colpi, M.; /Milan Bicocca U.; Quinn, T.; /Washington U., Seattle; Wadsley, J.; /McMaster U.

    2008-03-24

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.

  19. Dynamical masses and non-homology of massive elliptical galaxies grown by dry mergers

    CERN Document Server

    Frigo, Matteo

    2016-01-01

    We study whether dry merger-driven size growth of massive elliptical galaxies depends on their initial structural concentration, and analyse the validity of the homology hypothesis for virial mass determination in massive ellipticals grown by dry mergers. High-resolution simulations of a few realistic merger trees, starting with compact progenitors of different structural concentrations (S\\'ersic indices n), show that galaxy growth has little dependence on the initial S\\'ersic index (larger n leads to slightly larger size growth), and depends more on other particulars of the merger history. We show that the deposition of accreted matter in the outer parts leads to a systematic and predictable breaking of the homology between remnants and progenitors, which we characterize through the evolution, during the course of the merger history, of virial coefficients K = GM/Re \\sigma^2 associated to the most commonly-used dynamical and stellar mass parameters. The virial coefficient for the luminous mass, K , is about ...

  20. The Origin and Evolution of (Ultra)Luminous Infrared Galaxies Over Cosmic Time

    Science.gov (United States)

    Kartaltepe, Jeyhan S.; CANDELS Collaboration

    2014-01-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR>10^12 L_sun) are all interacting and merging systems. To date, studies of ULIRGs at high redshift have found a variety of results due to their varying selection effects and small sample sizes. Some studies have found that mergers still dominate the galaxy morphology while others have found a high fraction of morphologically normal or clumpy star forming disks. Near-infrared imaging is crucial for interpreting galaxy structure at high redshift since it probes the rest frame optical light of a galaxy and thus we can compare directly to studies in the local universe. We explore the evolution of the morphological properties of (U)LIRGs over cosmic time using a large sample of galaxies from Herschel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy's position in the star formation rate - stellar mass plane.

  1. The merger rates and sizes of galaxies across the peak epoch of star formation from the HiZELS survey

    CERN Document Server

    Stott, John P; Smail, Ian; Bower, Richard; Best, Philip N; Geach, James E

    2013-01-01

    We use the HiZELS narrow-band H-alpha survey in combination with CANDELS, UKIDSS and WIRDS near-infrared imaging, to investigate the morphologies, merger rates and sizes of a sample of H-alpha emitting galaxies in the redshift range z=0.40 - 2.23, an epoch encompassing the rise to the peak of the star formation rate density. Merger rates are estimated from space- and ground-based imaging using the M20 coefficient. To account for the increase in the specific star-formation rate (sSFR) of the star forming `main-sequence' with redshift, we normalise the star-formation rate of galaxies at each epoch to the typical value derived from the H-alpha luminosity function. Once this trend in sSFR is removed we see no evidence for an increase in the number density of star-forming galaxies or the merger rate with redshift. We thus conclude that neither is the main driver of the enhanced star-formation rate density at z=1-2, with secular processes such as instabilities within efficiently fuelled, gas-rich discs or multiple ...

  2. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  3. Dark influences II. Gas and star formation in minor mergers of dwarf galaxies with dark satellites

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.; Sales, L. V.

    2016-01-01

    Context. It has been proposed that mergers induce starbursts and lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model.

  4. The role of mergers and halo spin in shaping galaxy morphology

    CERN Document Server

    Rodriguez-Gomez, Vicente; Genel, Shy; Pillepich, Annalisa; Zjupa, Jolanta; Nelson, Dylan; Griffen, Brendan; Torrey, Paul; Snyder, Gregory F; Vogelsberger, Mark; Springel, Volker; Ma, Chung-Pei; Hernquist, Lars

    2016-01-01

    Mergers and the spin of the dark matter halo are factors traditionally believed to determine the morphology of galaxies within a $\\Lambda$CDM cosmology. We study this hypothesis by considering approximately 18,000 central galaxies at $z=0$ with stellar masses $M_{\\ast} > 10^{9} \\, {\\rm M}_{\\odot}$ selected from the Illustris cosmological hydrodynamic simulation. The fraction of accreted stars -- which measures the importance of massive, recent and dry mergers relative to in situ star formation -- increases steeply with galaxy stellar mass, from less than 5 per cent in dwarfs to 80 per cent in the most massive objects, and the impact of mergers on galaxy morphology increases accordingly. For galaxies with $M_{\\ast} > 10^{11} \\, {\\rm M}_{\\odot}$, mergers have the expected effect: if gas-poor they promote the formation of spheroidal galaxies, whereas gas-rich mergers favour the formation and survivability of massive discs. This trend, however, breaks at lower masses. For objects with $M_{\\ast} < 10^{11} \\, {\\...

  5. The Luminosity Dependence of the Galaxy Merger Rate

    CERN Document Server

    Patton, D R

    2008-01-01

    We measure the number of companions per galaxy (Nc) as a function of r-band absolute magnitude for both the Sloan Digital Sky Survey and the Croton et al. (2006) semi-analytic catalog applied to the Millennium Run simulation. For close pairs with projected separations of 5-20 h^{-1} kpc, velocity differences less than 500 km/s, and luminosity ratios between 1:2 and 2:1, we find good agreement between the observations and simulations, with Nc consistently close to 0.02 over the range -22 < M_r < -18. For larger pair separations, Nc(M_r) instead becomes increasingly steep towards the faint end, implying that luminosity-dependent clustering plays an important role on small scales. Using the simulations to assess and correct for projection effects, we infer that the real-space Nc(M_r) for close pairs peaks at about M*, and declines by at least a factor of two as M_r becomes fainter. Conversely, by measuring the number density of close companions, we estimate that at least 90% of all major mergers occur betw...

  6. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

    Science.gov (United States)

    Mazzarella, Joseph M.

    2014-07-01

    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very

  7. A comparison of black hole growth in galaxy mergers with Gasoline and Ramses

    CERN Document Server

    Gabor, J M; Volonteri, Marta; Bournaud, Frédéric; Bellovary, Jillian; Governato, Fabio; Quinn, Thomas

    2015-01-01

    Supermassive black hole dynamics during galaxy mergers is crucial in determining the rate of black hole mergers and cosmic black hole growth. As simulations achieve higher resolution, it becomes important to assess whether the black hole dynamics is influenced by the treatment of the interstellar medium in different simulation codes. We here compare simulations of black hole growth in galaxy mergers with two codes: the Smoothed Particle Hydrodynamics code Gasoline, and the Adaptive Mesh Refinement code Ramses. We seek to identify predictions of these models that are robust despite differences in hydrodynamic methods and implementations of sub-grid physics. We find that the general behavior is consistent between codes. Black hole accretion is minimal while the galaxies are well-separated (and even as they "fly-by" within 10 kpc at first pericenter). At late stages, when the galaxies pass within a few kpc, tidal torques drive nuclear gas inflow that triggers bursts of black hole accretion accompanied by star fo...

  8. Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes

    Science.gov (United States)

    Komossa, S.; Baker, J. G.; Liu, F. K.

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.

  9. Growth of supermassive black holes, galaxy mergers and supermassive binary black holes

    CERN Document Server

    Komossa, S; Liu, F K

    2016-01-01

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift universe.

  10. Unequal-mass galaxy merger remnants: spiral-like morphology but elliptical-like kinematics

    CERN Document Server

    Bournaud, F; Jog, C J

    2004-01-01

    It is generally believed that major galaxy mergers with mass ratios in the range 1:1-3:1 result in remnants that have properties similar to elliptical galaxies, and minor mergers below 10:1 result in disturbed spiral galaxies. The intermediate range of mass ratios 4:1-10:1 has not been studied so far. Using N-body simulations, we show that such mergers can result in very peculiar systems, that have the morphology of a disk galaxy with an exponential profile, but whose kinematics is closer to that of elliptical systems. These objects are similar to those recently observed by Jog & Chitre (2002). We present two cases with mass ratios 4.5:1 and 7:1, and show that the merging causes major heating and results in the appearance of elliptical-type kinematics, while surprisingly the initial spiral-like mass profile is conserved.

  11. From Discs to Bulges: effect of mergers on the morphology of galaxies

    CERN Document Server

    Kannan, Rahul; Fontanot, Fabio; Moster, Benjamin P; Karman, Wouter; Somerville, Rachel S

    2015-01-01

    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localised to the bulge of galaxy, but a substantial fraction takes place i...

  12. Where do Wet, Dry, and Mixed Galaxy Mergers Occur? A Study of the Environments of Close Galaxy Pairs in the DEEP2 Galaxy Redshift Survey

    CERN Document Server

    Lin, Lihwai; Jian, Hung-Yu; Koo, David C; Patton, David R; Yan, Renbin; Willmer, Christopher N A; Coil, Alison L; Chiueh, Tzihong; Croton, Darren J; Gerke, Brian F; Lotz, Jennifer; Guhathakurta, Puragra; Newman, Jeffrey A

    2010-01-01

    We study the environment of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of mixed and dry merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (Nc) is observed to increase with overdensity, using N-body simulations we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the fractional merger rate for wet mergers over the redshift range we have probed. On the other hand, the fractional dry merger rate increases rapidly with local density due to the increased population of red galaxies in dense environments. We also find that the environment distribution of K+A galaxies is similar to tha...

  13. The GalMer database: Galaxy Mergers in the Virtual Observatory

    CERN Document Server

    Chilingarian, Igor; Combes, Francoise; Melchior, Anne-Laure; Semelin, Benoit

    2010-01-01

    We present the GalMer database, a library of galaxy merger simulations, made available to users through tools compatible with the Virtual Observatory (VO) standards adapted specially for this theoretical database. To investigate the physics of galaxy formation through hierarchical merging, it is necessary to simulate galaxy interactions varying a large number of parameters: morphological types, mass ratios, orbital configurations, etc. On one side, these simulations have to be run in a cosmological context, able to provide a large number of galaxy pairs, with boundary conditions given by the large-scale simulations, on the other side the resolution has to be high enough at galaxy scales, to provide realistic physics. The GalMer database is a library of thousands simulations of galaxy mergers at moderate spatial resolution and it is a compromise between the diversity of initial conditions and the details of underlying physics. We provide all coordinates and data of simulated particles in FITS binary tables. Th...

  14. Hunting for Infrared Signatures of Supermassive Black Hole Activity in Dwarf Galaxies

    Science.gov (United States)

    Hainline, Kevin; Reines, Amy; Greene, Jenny; Stern, Daniel

    2016-08-01

    In order to explore the origin of the relationship between the growth of a galaxy and its central supermassive black hole, evidence must be found for black holes in galaxies at a wide range in masses. Searching for supermassive black holes in dwarf galaxies is especially important as these objects have less complicated merger histories, and they may host black holes that are similar to early proposed ``seed'' black holes. However, this selection is complicated by the fact that star formation in these dwarf galaxies can often mask the optical signatures of supermassive black hole growth and active galactic nucleus (AGN) activity in these objects. The all-sky infrared coverage offered by the Wide-field Infrared Survey Explorer (WISE) has been used to great success to select AGNs in more massive galaxies, but great care must be used when using infrared selection techniques on samples of dwarf galaxies. In particular, compact, highly star-forming dwarf galaxies can have infrared colors that may lead them to be erroneously selected as AGNs. In this talk, I will discuss recent work exploring infrared selection of AGN candidates in dwarf galaxies, and present a set of potential IR dwarf-galaxy AGN candidates. I will also outline the importance in these results with respect to future selection of AGNs in low-metallicity galaxies at high-redshift.

  15. Using Galaxy Pairs to Probe Star Formation During Major Halo Mergers

    CERN Document Server

    Behroozi, Peter S; Ferguson, Henry C; Hearin, Andrew P; Lotz, Jennifer; Silk, Joseph; Kassin, Susan; Lu, Yu; Croton, Darren; Somerville, Rachel S; Watson, Douglas F

    2015-01-01

    Currently-proposed galaxy quenching mechanisms predict very different behaviours during major halo mergers, ranging from significant quenching enhancement (e.g., clump-induced gravitational heating models) to significant star formation enhancement (e.g., gas starvation models). To test real galaxies' behaviour, we present an observational galaxy pair method for selecting galaxies whose host haloes are preferentially undergoing major mergers. Applying the method to central L* (10^10 Msun < M* < 10^10.5 Msun) galaxies in the Sloan Digital Sky Survey (SDSS) at z<0.06, we find that major halo mergers can at most modestly reduce the star-forming fraction, from 59% to 47%. Consistent with past research, however, mergers accompany enhanced specific star formation rates for star-forming L* centrals: ~10% when a paired galaxy is within 200 kpc (approximately the host halo's virial radius), climbing to ~70% when a paired galaxy is within 30 kpc. No evidence is seen for even extremely close pairs (<30 kpc se...

  16. The role of major gas-rich mergers on the evolution of galaxies from the blue cloud to the red sequence

    CERN Document Server

    Guo, Rui; Xia, X Y; Mao, Shude; Shi, Yong

    2016-01-01

    With the aim of exploring the fast evolutionary path from the blue cloud of star-forming galaxies to the red sequence of quiescent galaxies in the local universe, we select a local advanced merging infrared luminous and ultraluminous galaxy (adv-merger (U)LIRGs) sample and perform careful dust extinction corrections to investigate their positions in the SFR-$M_{\\ast}$, u-r and NUV-r color-mass diagrams. The sample consists of 89 (U)LIRGs at the late merger stage, obtained from cross-correlating the IRAS Point Source Catalog Redshift Survey and 1 Jy ULIRGs samples with the Sloan Digital Sky Survey DR7 database. Our results show that $74\\%\\pm 5\\%$ of adv-merger (U)LIRGs are localized above the $1\\, \\sigma$ line of the local star-forming galaxy main sequence. We also find that all adv-merger (U)LIRGs are more massive than and as blue as the blue cloud galaxies after corrections of Galactic and internal dust extinctions, with $95\\%\\pm 2\\%$ and $81\\%\\pm 4\\%$ of them outside the blue cloud on the u-r and NUV-r colo...

  17. Spiral-like Light Profiles but Elliptical-like Kinematics in Mergers of Galaxies

    CERN Document Server

    Jog, C J; Jog, Chanda J.; Chitre, Aparna

    2002-01-01

    It is commonly accepted that a merger of two spiral galaxies results in a remnant with an elliptical-like surface-brightness profile. Surprisingly, our recent study (Chitre & Jog 2002) of the 2MASS data for twenty-seven advanced mergers of galaxies has shown that half of these have a light distribution that decreases exponentially with radius. Such a distribution normally characterizes a rotationally supported disk in a spiral galaxy. Here we show from kinematic data for two of these mergers, Arp 224 and Arp 214, that the main support against gravitational collapse comes from pressure due to random motion of stars as seen in an elliptical galaxy rather than from rotation. The origin of the unusual combination of properties seen here is a puzzle. The standard theoretical N-body models in the literature cannot account for these systems. Further observational and dynamical studies of this new class of merger remnants are needed, and would be important for understanding merger dynamics and galaxy evolution.

  18. Studying the Role of Mergers in Black Hole - Galaxy Co-evolution via a Morphological Analysis of Redshift 1 Galaxies

    Science.gov (United States)

    Powell, Meredith; Urry, C. Megan

    2016-06-01

    We study the role of mergers in the quenching of star formation in galaxies at the dominant epoch of their evolution, by examining their color-mass distributions for different morphology types. We use HST ACS data from the CANDELS/GOODS North and South fields for galaxies in the redshift range 0.7 < z < 1.3 and use GALFIT to fit them with sersic profiles, enabling us to classify each as bulge-dominated (early type) or disk-dominated (late type). We find that spirals and ellipticals have distinct color-mass distributions, similar to studies at z=0, in that each have quenching modes of differing time scales. The smooth decay to the red sequence for the disky galaxies corresponds to a slow exhaustion of gas, while the lack of elliptical galaxies in the `green valley' indicates a faster quenching time for galaxies that underwent a major merger. We compare the inactive galaxies to the AGN hosts and find that the AGN phase lasts well into the red sequence for both types of host galaxy, spanning the full color space. The results suggest that the AGN trigger mechanism, as well as the significance of AGN feedback, is dependent on the merger history of the host galaxy.

  19. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    Science.gov (United States)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  20. Post-merger Signatures of Red-sequence Galaxies in Rich Abell Clusters at $z\\lesssim 0.1$

    CERN Document Server

    Sheen, Yun-Kyeong; Ree, Chang H; Lee, Jaehyun

    2012-01-01

    We have investigated the post-merger signatures of red-sequence galaxies in rich Abell clusters at $z \\lesssim$ 0.1: A119, A2670, A3330 and A389. Deep images in u', g', r' and medium-resolution galaxy spectra were taken using MOSAIC 2 CCD and Hydra MOS mounted on a Blanco 4-m telescope at CTIO. Post-merger features are identified by visual inspection based on asymmetric disturbed features, faint structures, discontinuous halo structures, rings and dust lanes. We found that ~ 25% of bright (M_r < -20) cluster red-sequence galaxies show post-merger signatures in four clusters consistently. Most (~ 71%) of the featured galaxies were found to be bulge-dominated, and for the subsample of bulge-dominated red-sequence galaxies, the post-merger fraction rises to ~ 38%. We also found that roughly 4% of bulge-dominated red-sequence galaxies interact (on-going merger). A total of 42% (38% post-merger, 4% on-going merger) of galaxies show merger-related features. Compared to a field galaxy study with a similar limitin...

  1. Simulating the Toothbrush: Evidence for a triple merger of galaxy clusters

    CERN Document Server

    Bruggen, M; Rottgering, H J A

    2012-01-01

    The newly discovered galaxy cluster 1RXS J0603.3+4214 hosts a 1.9 Mpc long, bright radio relic with a peculiar linear morphology. Using hydrodynamical +N-body AMR simulations of the merger between three initially hydrostatic clusters in an idealised setup, we are able to reconstruct the morphology of the radio relic. Based on our simulation, we can constrain the merger geometry, predict lensing mass measurements and X-ray observations. Comparing such models to X-ray, redshift and lensing data will validate the geometry of this complex merger which helps to constrain the parameters for shock acceleration of electrons that produces the radio relic.

  2. The unorthodox evolution of major merger remnants into star-forming spiral galaxies

    CERN Document Server

    Sparre, Martin

    2016-01-01

    Galaxy mergers are believed to play a key role in transforming star-forming disk galaxies into quenched ellipticals. Most of our theoretical knowledge about such morphological transformations does, however, rely on idealised simulations where processes such as cooling of hot halo gas into the disk and gas accretion in the post-merger phase are not treated in a self-consistent cosmological fashion. In this paper we study the morphological evolution of the stellar components of four major mergers occurring at z=0.5 in cosmological hydrodynamical zoom-simulations. In all simulations the merger reduces the disk mass-fraction, but all galaxies simulated at our highest resolution regrow a significant disk by z=0 (with a disk fraction larger than 24%). For runs with our default physics model, which includes galactic winds from star formation and black hole feedback, none of the merger remnants are quenched, but in a set of simulations with stronger black hole feedback we find that major mergers can indeed quench gal...

  3. The role of major mergers in (obscured) black hole growth and galaxy evolution

    Science.gov (United States)

    Treister, E.; Privon, G.; Ricci, C.; Bauer, F.; Schawinski, K.; MODA Collaboration

    2017-10-01

    A clear picture is emerging in which rapid supermassive black hole (SMBH) growth episodes (luminous AGN) are directly linked to major galaxy mergers. Here, we present the first results from our MODA program aimed to obtain optical and near-IR Integral Field Unit (IFU) spectroscopy and mm/sub-mm ALMA maps for a sample of confirmed nearby dual AGN (separation 10 kpc), including the archetypical galaxy NGC6240. Specifically, we will focus here on Mrk 463, a very rich system of two galaxies separated by 3.8 kpc hosting two SMBH growing simultaneously. Clear evidence for complex morphologies and kinematics, outflows and feedback effects can be seen in this system, evidencing the deep connection between major galaxy mergers, SMBH growth and galaxy evolution.

  4. Magnetic field amplification and X-ray emission in galaxy minor mergers

    CERN Document Server

    Geng, Annette; Bürzle, Florian; Dolag, Klaus; Stasyszyn, Federico; Beck, Alexander; Nielaba, Peter

    2011-01-01

    We investigate the magnetic field evolution in a series of galaxy minor mergers using the N-body/smoothed particle hydrodynamics (SPH) code \\textsc{Gadget}. The simulations include the effects of radiative cooling, star formation and supernova feedback. Magnetohydrodynamics (MHD) is implemented using the SPH method. We present 32 simulations of binary mergers of disc galaxies with mass ratios of 2:1 up to 100:1, whereby we have additionally varied the initial magnetic field strengths, disc orientations and resolutions. We investigate the amplification of a given initial magnetic field within the galaxies and an ambient intergalactic medium (IGM) during the interaction. We find that the magnetic field strengths of merger remnants with mass ratios up to 10:1 saturate at a common value of several $\\mu$G. For higher mass ratios, the field strength saturates at lower values. The saturation values correspond to the equipartition value of magnetic and turbulent energy density. The initial magnetization, disc orienta...

  5. Formation of Nuclear Disks and Supermassive Black Hole Binaries in Multi-Scale Hydrodynamical Galaxy Mergers

    CERN Document Server

    Mayer, Lucio; Escala, Andres

    2008-01-01

    (Abridged) We review the results of the first multi-scale, hydrodynamical simulations of mergers between galaxies with central supermassive black holes (SMBHs) to investigate the formation of SMBH binaries in galactic nuclei. We demonstrate that strong gas inflows produce nuclear disks at the centers of merger remnants whose properties depend sensitively on the details of gas thermodynamics. In numerical simulations with parsec-scale spatial resolution in the gas component and an effective equation of state appropriate for a starburst galaxy, we show that a SMBH binary forms very rapidly, less than a million years after the merger of the two galaxies. Binary formation is significantly suppressed in the presence of a strong heating source such as radiative feedback by the accreting SMBHs. We also present preliminary results of numerical simulations with ultra-high spatial resolution of 0.1 pc in the gas component. These simulations resolve the internal structure of the resulting nuclear disk down to parsec sca...

  6. Major galaxy mergers and the growth of supermassive black holes in quasars.

    Science.gov (United States)

    Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan

    2010-04-30

    Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.

  7. A consistent measure of the merger histories of massive galaxies using close-pair statistics - I. Major mergers at z < 3.5

    Science.gov (United States)

    Mundy, Carl J.; Conselice, Christopher J.; Duncan, Kenneth J.; Almaini, Omar; Häußler, Boris; Hartley, William G.

    2017-09-01

    We use a large sample of ∼350 000 galaxies constructed by combining the UKIDSS UDS, VIDEO/CFHT-LS, UltraVISTA/COSMOS and GAMA survey regions to probe the major (1:4 stellar mass ratio) merging histories of massive galaxies (>1010 M⊙) at 0.005 probability distributions, to measure pair fractions of flux-limited, stellar mass selected galaxy samples using close-pair statistics. The pair fraction is found to weakly evolve as ∝ (1 + z)0.8 with no dependence on stellar mass. We subsequently derive major merger rates for galaxies at >1010 M⊙ and at a constant number density of n > 10-4 Mpc-3, and find rates a factor of 2-3 smaller than previous works, although this depends strongly on the assumed merger time-scale and likelihood of a close-pair merging. Galaxies undergo approximately 0.5 major mergers at z 1011 M⊙) galaxies have experienced a steady supply of stellar mass via major mergers throughout their evolution. While pair fractions are found to agree with those predicted by the Henriques et al. semi-analytic model, the Illustris hydrodynamical simulation fails to quantitatively reproduce derived merger rates. Furthermore, we find that major mergers become a comparable source of stellar mass growth compared to star formation at z < 1, but is 10-100 times smaller than the star formation rate density at higher redshifts.

  8. Swift coalescence of supermassive black holes in cosmological mergers of massive galaxies

    CERN Document Server

    Khan, Fazeel M; Mayer, Lucio; Berczik, Peter; Just, Andreas

    2016-01-01

    Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far theoretical models and simulations have been unable to predict directly the SMBH merger timescale from ab-initio galaxy formation theory, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave searches. Here we present the first multi-scale $\\Lambda$CDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at $z\\sim3$, all the way to the final coalescence driven by gravitational wave emission. The two SMBHs, with masses $\\sim10^{8}$ M$_{\\odot}$, settle quickly in the nucleus of the merger remnant. The remnant is triaxial and ex...

  9. The merger rate of galaxies in the Illustris Simulation: a comparison with observations and semi-empirical models

    CERN Document Server

    Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Sijacki, Debora; Pillepich, Annalisa; Sales, Laura V; Torrey, Paul; Snyder, Greg; Nelson, Dylan; Springel, Volker; Ma, Chung-Pei; Hernquist, Lars

    2015-01-01

    We have constructed merger trees for galaxies in the Illustris Simulation by directly tracking the baryonic content of subhalos. These merger trees are used to calculate the galaxy-galaxy merger rate as a function of descendant stellar mass, progenitor stellar mass ratio, and redshift. We demonstrate that the most appropriate definition for the mass ratio of a galaxy-galaxy merger consists in taking both progenitor masses at the time when the secondary progenitor reaches its maximum stellar mass. Additionally, we avoid effects from `orphaned' galaxies by allowing some objects to `skip' a snapshot when finding a descendant, and by only considering mergers which show a well-defined `infall' moment. Adopting these definitions, we obtain well-converged predictions for the galaxy-galaxy merger rate with the following main features, which are qualitatively similar to the halo-halo merger rate except for the last one: a strong correlation with redshift that evolves as $\\sim (1+z)^{2.4-2.8}$, a power law with respect...

  10. Starbursts and black hole masses in X-shaped radio galaxies: Signatures of a merger event?

    CERN Document Server

    Mezcua, M; Lobanov, A P; León-Tavares, J

    2012-01-01

    We present new spectroscopic identifications of 12 X-shaped radio galaxies and use the spectral data to derive starburst histories and masses of the nuclear supermassive black holes in these galaxies. The observations were done with the 2.1-m telescope of the Observatorio Astron\\'omico Nacional at San Pedro M\\'artir, M\\'exico. The new spectroscopic results extend the sample of X-shaped radio galaxies studied with optical spectroscopy. We show that the combined sample of the X-shaped radio galaxies has statistically higher black holes masses and older episodes of star formation than a control sample of canonical double-lobed radio sources with similar redshifts and luminosities. The data reveal enhanced star formation activity in the X-shaped sample at timescales expected in galactic mergers. We discuss the results obtained in the framework of the merger scenario.

  11. Quantifying Substructure Measures In X-ray Images of Galaxy Cluster Mergers With SLAM

    Science.gov (United States)

    Chatzikos, Marios; Sarazin, C. L.; O'Shea, B. W.

    2014-01-01

    I use the Simulation Library of Astrophysical galaxy cluster Mergers (SLAM) database to quantify the effects of mergers on X-ray observables. SLAM consists of a set of 156 adiabatic simulations of binary galaxy cluster mergers, that covers 2 orders of magnitude in the mass of the primary cluster, four values for the mass contrast, and four values for the angular momentum of the collision. In this talk I describe results on substructure measures obtained for various viewing angles. I have quantified the substructure in X-ray images using both center shifts and power ratios. Mergers of intermediate mass contrasts produce substructure signals that can persist in X-ray images for at least 1-2 sound crossing times. The amplitude of both measures depends strongly on the initial mass contrast. The measures for major mergers (mass contrast less than 3) appear to depend on the system mass, while for minor mergers (mass contrast between 3 and 10) they are generally independent of the system mass. Neither measure reflects the true dynamical state of the system closely, although the center shifts appear to be a better proxy. Comparisons with the virial and hydrostatic disequilibrium parameters reveal that there is no value of either substructure measure that unambiguously distinguishes merging from relaxing systems. Implications for SZE observations will also be discussed.

  12. Toward the Distribution of Orbital Parameters of Nearby Major Galaxy Mergers

    Science.gov (United States)

    Mortazavi Karvani, Seyed Alireza

    2016-01-01

    In this thesis project our goal is to measure the initial conditions of a sample of ~20 local disk-disk major galaxy mergers. Measuring the orbital parameters is possible by findingthe most similar galaxy merger simulation to the morphology and kinematics of the data.We have developed an automated modeling method based on the Identikit software package,which also estimates the uncertainty of the measured initial conditions. We tested our modeling method using an independent set of GADGET simulations, and we acquired reliable results onprograde merger systems. We observed the Hα kinematics of our sample using SparsePak IFU on the WIYN telescope at KPNO, and DIS on the 3.5m telescope at APO. For the few merger systems in our sample with archival HI data available, we compare the use of HI vs Hα as the kinematic tracer. This work lays the ground-work for the analysis of larger statistical samples of mergers from on-going IFU galaxy survey such as MaNGA.

  13. Infrared spectroscopy of star formation in galaxies

    Science.gov (United States)

    Beck, Sara C.; Ho, Paul T. P.; Turner, Jean L.

    1987-01-01

    The Brackett alpha and beta lines with 7.2 seconds angular and 350 km/s velocity resolution were observed in 11 infrared-bright galaxies. From these measurements extinctions, Lyman continuum fluxes, and luminosities due to OB stars were derived. The galaxies observed to date are NGC3690, M38, NGC 5195, Arp 220, NGC 520, NGC660, NGC1614, NGC 3079, NGC 6946, NGC 7714, and Maffei 2, all of which were suggested at some time to be starburst ogjects. The contributions of OB stars to the luminosities of these galaxies can be quantified from the measurements and range from insignificant to sufficient to account for the total energy output. The OB stellar luminosities observed are as high as 10 to the 12th solar luminosities in the galaxy NGC 1614. It is noteworthy that star formation can play very different roles in the infrared energy output of galaxies of similar luminosity, as for example Arp 220 and NGC 1614. In addition to probing the star formation process in these galaxies, the Brackett line measurements, when compared to radio and infrared continuum results, have revealed some unexpected and at present imperfectly understood phenomena: in some very luminous sources the radio continuum appears to be suppressed relative to the infrared recombination lines; in many galaxies there is a substantial excess of 10 micron flux over that predicted from simple models of Lyman alpha heating of dust if young stars are the only significant energy source.

  14. Gravitational-Wave Background from Binary Mergers and Metallicity Evolution of Galaxies

    CERN Document Server

    Nakazato, Ken'ichiro; Sago, Norichika

    2016-01-01

    The cosmological evolution of the binary black hole (BH) merger rate and the energy density of the gravitational-wave (GW) background are investigated. To evaluate the redshift dependence of the BH formation rate, BHs are assumed to originate from low-metallicity stars, and the relations between the star formation rate, metallicity and stellar mass of galaxies are combined with the stellar mass function at each redshift. As a result, it is found that when the energy density of the GW background is scaled with the merger rate at the local Universe, the scaling factor does not depend on the critical metallicity for the formation of BHs. Also taking into account the merger of binary neutron stars, a simple formula to express the energy spectrum of the GW background is constructed for the inspiral phase. The relation between the local merger rate and the energy density of the GW background will be examined by future GW observations.

  15. Galaxy mergers on a moving mesh: a comparison with smoothed-particle hydrodynamics

    CERN Document Server

    Hayward, Christopher C; Springel, Volker; Hernquist, Lars; Vogelsberger, Mark

    2013-01-01

    Galaxy mergers have been investigated for decades using smoothed particle hydrodynamics (SPH), but recent work highlighting inaccuracies inherent in the traditional SPH technique calls into question the reliability of previous studies. We explore this issue by comparing a suite of Gadget-3 SPH simulations of idealised (i.e., non-cosmological) isolated discs and galaxy mergers with otherwise identical calculations performed using the moving-mesh code Arepo. When black hole (BH) accretion and active galactic nucleus (AGN) feedback are not included, the star formation histories (SFHs) obtained from the two codes agree well. When BHs are included, the code- and resolution-dependent variations in the SFHs are more significant, but the agreement is still good, and the stellar mass formed over the course of a simulation is robust to variations in the numerical method. During a merger, the gas morphology and phase structure are initially similar prior to the starburst phase. However, once a hot gaseous halo has forme...

  16. DISCOVERY OF A DISSOCIATIVE GALAXY CLUSTER MERGER WITH LARGE PHYSICAL SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, William A.; Wittman, David; Jee, M. James; Gee, Perry; Tyson, J. Anthony; Schmidt, Samuel; Thorman, Paul; Bradac, Marusa; Lemaux, Brian [Department of Physics, University of California, Davis, One Shields Av., Davis, CA 95616 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Miyazaki, Satoshi; Utsumi, Yousuke [Department of Astronomical Science, The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Margoniner, Vera E., E-mail: wadawson@ucdavis.edu [Department of Physics and Astronomy, California State University, Sacramento, 6000 J Street Sacramento, CA 95819 (United States)

    2012-03-10

    We present DLSCL J0916.2+2951 (z = 0.53), a newly discovered major cluster merger in which the collisional cluster gas has become dissociated from the collisionless galaxies and dark matter (DM). We identified the cluster using optical and weak-lensing observations as part of the Deep Lens Survey. Our follow-up observations with Keck, Subaru, Hubble Space Telescope, and Chandra show that the cluster is a dissociative merger and constrain the DM self-interaction cross-section {sigma}{sub DM} m{sup -1}{sub DM} {approx}< 7 cm{sup 2} g{sup -1}. The system is observed at least 0.7 {+-} 0.2 Gyr since first pass-through, thus providing a picture of cluster mergers 2-5 times further progressed than similar systems observed to date. This improved temporal leverage has implications for our understanding of merging clusters and their impact on galaxy evolution.

  17. A parsec-resolution simulation of the Antennae galaxies: Formation of star clusters during the merger

    CERN Document Server

    Renaud, Florent; Duc, Pierre-Alain

    2014-01-01

    We present a hydrodynamical simulation of an Antennae-like galaxy merger at parsec resolution, including a multi-component model for stellar feedback and reaching numerical convergence in the global star formation rate for the first time. We analyse the properties of the dense stellar objects formed during the different stages of the interaction. Each galactic encounter triggers a starburst activity, but the varying physical conditions change the triggering mechanism of each starburst. During the first two pericenter passages, the starburst is spatially extended and forms many star clusters. However, the starburst associated to the third, final passage is more centrally concentrated: stars form almost exclusively in the galactic nucleus and no new star cluster is formed. The maximum mass of stars clusters in this merger is more than 30 times higher than those in a simulation of an isolated Milky Way-like galaxy. Antennae-like mergers are therefore a formation channel of young massive clusters possibly leading...

  18. From major merger to radio galaxy: low surface-brightness stellar counterpart to the giant HI ring around B2 0648+27

    CERN Document Server

    Emonts, B H C; Van Gorkom, J H; Oosterloo, T A; Brogt, E; Tadhunter, C N

    2008-01-01

    We present the detection of a low surface-brightness stellar counterpart to an enormous (190 kpc) ring of neutral hydrogen (HI) gas that surrounds the nearby radio galaxy B2 0648+27. This system is currently in an evolutionary stage between major merger and (radio-loud) early-type galaxy. In a previous paper we investigated in detail the timescales between merger, starburst and AGN activity in B2 0648+27, based on its unusual multi-wavelength properties (large-scale HI ring, dominating post-starburst stellar population and infra-red luminosity). In this Research Note we present deep optical B- and V-band imaging that provides further evidence for the merger origin of B2 0648+27. The host galaxy shows a distorted optical morphology and a broad tidal arm is clearly present. A low surface-brightness stellar tail or partial ring curls around more than half the host galaxy at a distance of up to 55 kpc from the centre of the galaxy, following the large-scale, ring-like HI structure that we detected previously arou...

  19. The Nobeyama 45 m 12CO(J=1-0) Survey of local Luminous Infrared Galaxies

    Science.gov (United States)

    Yamashita, Takuji; Komugi, Shinya; Matsuhara, Hideo; Armus, Lee; Inami, Hanae; Ueda, Junko; Iono, Daisuke; Kohno, Kotaro; Stierwalt, Sabrina; Arimatsu, Ko; Evans, Aaron

    2015-08-01

    Cold molecular gas and star formation in local Luminous Infrared Galaxies (LIRGs) are studied along the stage of the galaxy merger sequence. Most local LIRGs are starbursting and are involved with galaxy-galaxy interactions or mergers. The evolution and the direct trigger of the merger-driven starbursts are not clear observationally, although there are several theoretical explanations. In order to address these issues, information of the molecular gas, which is traced by a 12CO(J=1-0) emission line, of an unbiased LIRG sample is required. To this end, a CO survey of 79 galaxies in 62 LIRG systems were conducted with the Nobeyama 45 m telescope. A method is developed to estimate the extent of CO gas in galaxies using combinations of two single-aperture telescopes with different beam sizes. The majority of the sources have the CO radius of less than ~ 4 kpc. The CO extent is found to possibly decrease from the early stage to the late stage of the merger. The molecular gas mass in the central several kilo-parsecs is constant throughout the merger sequence. These results statistically support a theoretically predicted scenario where the global gas inflow towards the galaxy center is common in merging LIRGs. The star formation efficiencies (SFE) in the central regions are derived and are high compared to disk star-forming galaxies as is well known. The SFE are found to be fairly independent of the merger stage. The star formation of merging LIRGs may be controlled by a common relation from gas to stars regardless of the merger stage, where SFR and resultant IR luminosity are determined by the amount of the molecular gas supplied by global inflow.

  20. PKS0347+05: a radio-loud/radio-quiet double AGN system triggered in a major galaxy merger

    CERN Document Server

    Tadhunter, C; Morganti, R; Holt, J; Rose, M; Dicken, D; Inskip, K

    2012-01-01

    We present optical, infrared and radio observations of the powerful FRII radio source PKS0347+05 (z=0.3390), and demonstrate that it is a rare example of a radio-loud/radio-quiet double AGN system, comprising a weak line radio galaxy (WLRG) separated by 25 kpc (in projection) from a Seyfert 1 nucleus at the same redshift. Our deep Gemini optical images show a highly disturbed morphology, with a warped dust lane crossing through the halo and nuclear regions of the radio galaxy host, tidal tails, and a bridge connecting the radio galaxy to the Seyfert 1 nucleus. Spectral synthesis modelling of our Gemini optical spectrum of the radio galaxy shows evidence for a reddened young stellar population of age <100 Myr. Further evidence for recent star formation activity in this source is provided by the detection of strong PAH features in mid-IR Spitzer/IRS spectra. Together, these observations support a model in which both AGN have been triggered simultaneously in a major galaxy merger. However, despite the presenc...

  1. Evidence for Quasar Activity Triggered by Galaxy Mergers in HST Observations of Dust-reddened Quasars

    Science.gov (United States)

    Urrutia, Tanya; Lacy, Mark; Becker, Robert H.

    2008-02-01

    We present Hubble Space Telescope ACS images of 13 dust-reddened type 1 quasars selected from the FIRST/2MASS Red Quasar Survey. These quasars have high intrinsic luminosities after correction for dust obscuration (-23.5 >= MB >= - 26.2 from K-magnitude). The images show strong evidence of recent or ongoing interaction in 11 of the 13 cases, even before the quasar nucleus is subtracted. None of the host galaxies are well fit by a simple elliptical profile. The fraction of quasars showing interaction is significantly higher than the 30% seen in samples of host galaxies of normal, unobscured quasars. There is a weak correlation between the amount of dust reddening and the magnitude of interaction in the host galaxy, measured using the Gini coefficient and the concentration index. Although few host galaxy studies of normal quasars are matched to ours in intrinsic quasar luminosity, no evidence has been found for a strong dependence of merger activity on host luminosity in samples of the host galaxies of normal quasars. We thus believe that the high merger fraction in our sample is related to their obscured nature, with a significant amount of reddening occurring in the host galaxy. The red quasar phenomenon seems to have an evolutionary explanation, with the young quasar spending the early part of its lifetime enshrouded in an interacting galaxy. This might be further indication of a link between AGNs and starburst galaxies.

  2. Galaxy Formation as a Cosmological Tool. I: The Galaxy Merger History as a Measure of Cosmological Parameters

    CERN Document Server

    Conselice, Christopher J; Mortlock, Alice; Palamara, David; Benson, Andrew J

    2014-01-01

    As galaxy formation and evolution over long cosmic time-scales depends to a large degree on the structure of the universe, the assembly history of galaxies is potentially a powerful approach for learning about the universe itself. In this paper we examine the merger history of dark matter halos based on the Extended Press-Schechter formalism as a function of cosmological parameters, redshift and halo mass. We calculate how major halo mergers are influenced by changes in the cosmological values of $\\Omega_{\\rm m}$, $\\Omega_{\\Lambda}$, $\\sigma_{8}$, the dark matter particle temperature (warm vs. cold dark matter), and the value of a constant and evolving equation of state parameter $w(z)$. We find that the merger fraction at a given halo mass varies by up to a factor of three for halos forming under the assumption of Cold Dark Matter, within different underling cosmological parameters. We find that the current measurements of the merger history, as measured through observed galaxy pairs as well as through struc...

  3. Infrared Galaxies in the Nearby Universe

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We used the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) to study the morphological properties of 1137 nearby infrared (IR) galaxies, most of which are brighter than 15.9 mag in r-band. This sample was drawn from a cross-correlation of the Infra-Red Astronomical Satellite (IRAS) point source catalog redshift survey with DR5 at z(≤)0.08. Based on this IR galaxy sample, we constructed five volume-limited sub-samples with IR luminosity ranging from 109.5L⊙ to 1012L⊙. By deriving the IR luminosity functions (LF) for different morphological types, we found that normal spiral galaxies are the dominant population below LIR~ 8 × 1010 L⊙; while the fraction of barred spiral galaxies increases with increasing IR luminosity and becomes dominant in spiral galaxies beyond LIR(≈) 5×1010L⊙. As the IR luminosity decreases, the IR galaxies become more compact and have lower stellar masses. The analysis also shows that normal spiral galaxies give the dominant contribution to the total comoving IR energy density in the nearby universe, while, in contrast, the contribution from peculiar galaxies is only 39%.

  4. Dynamical masses and non-homology of massive elliptical galaxies grown by dry mergers

    Science.gov (United States)

    Frigo, M.; Balcells, M.

    2017-08-01

    We study whether dry merger-driven size growth of massive elliptical galaxies depends on their initial structural concentration, and analyse the validity of the homology hypothesis for virial mass determination in massive ellipticals grown by dry mergers. High-resolution simulations of a few realistic merger trees, starting with compact progenitors of different structural concentrations (Sérsic indices n), show that galaxy growth has little dependence on the initial Sérsic index (larger n leads to slightly larger size growth), and depends more on other particulars of the merger history. We show that the deposition of accreted matter in the outer parts leads to a systematic and predictable breaking of the homology between remnants and progenitors, which we characterize through the evolution, during the course of the merger history, of virial coefficients K≡ G M / R_e σ _e^2 associated with the most commonly used dynamical and stellar mass parameters. The virial coefficient for the luminous mass, K⋆, is ∼50 per cent larger at the start of the merger evolution at z ≈ 2 than in z = 0 remnants. Ignoring virial evolution leads to biased virial mass estimates. We provide K corresponding to a variety of dynamical and stellar mass parameters, and provide recipes for the dynamical determination of galaxy masses. For massive, non-compact ellipticals, the popular expression M = 5 R_e σ _e^2 / G underestimates the dynamical mass within the luminous body by factors of up to 4; it instead provides an approximation to the total stellar mass with smaller uncertainty than current stellar-population models.

  5. Faint Infrared-Excess Field Galaxies FROGs

    CERN Document Server

    Moustakas, L A; Zepf, S E; Bunker, A J

    1997-01-01

    Deep near-infrared and optical imaging surveys in the field reveal a curious population of galaxies that are infrared-bright (I-K>4), yet with relatively blue optical colors (V-I20, is high enough that if placed at z>1 as our models suggest, their space densities are about one-tenth of phi-*. The colors of these ``faint red outlier galaxies'' (fROGs) may derive from exceedingly old underlying stellar populations, a dust-embedded starburst or AGN, or a combination thereof. Determining the nature of these fROGs, and their relation with the I-K>6 ``extremely red objects,'' has implications for our understanding of the processes that give rise to infrared-excess galaxies in general. We report on an ongoing study of several targets with HST & Keck imaging and Keck/LRIS multislit spectroscopy.

  6. FAST MOLECULAR OUTFLOWS IN LUMINOUS GALAXY MERGERS: EVIDENCE FOR QUASAR FEEDBACK FROM HERSCHEL

    Energy Technology Data Exchange (ETDEWEB)

    Veilleux, S.; Meléndez, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Sturm, E.; Gracia-Carpio, J.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; De Jong, J. A. [Max-Planck-Institute for Extraterrestrial Physics (MPE), Giessenbachstrasse 1, D-85748 Garching (Germany); Fischer, J. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); González-Alfonso, E. [Departamento de Física y Matemáticas, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Sternberg, A.; Netzer, H. [Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978 (Israel); Hailey-Dunsheath, S. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Verma, A. [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Rupke, D. S. N. [Department of Physics, Rhodes College, Memphis, TN 38112 (United States); Maiolino, R. [Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Teng, S. H., E-mail: veilleux@astro.umd.edu, E-mail: marcio@astro.umd.edu [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2013-10-10

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than –50 km s{sup –1}, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (∼145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s{sup –1}, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ∼–1000 km s{sup –1} are measured in several objects, but median outflow velocities are typically ∼–200 km s{sup –1}. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L{sub AGN}/L{sub ☉}) ≥ 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  7. On the Detectability of Gamma Rays from Clusters of Galaxies: Mergers versus Secondary Infall

    CERN Document Server

    Gabici, S; Blasi, Pasquale; Gabici, Stefano

    2004-01-01

    Particle acceleration in clusters of galaxies is expected to take place at both merger and accretion shocks. The electron component may be energized to energies of several TeV, and upscatter a small fraction of the photons in the cosmic microwave background up to gamma ray energies. We address here the issue of the detectability of the gamma radiation generated either in merger events or during the accretion of matter onto cluster potential wells. The predictions are specialized to the cases of GLAST and AGILE, for which a few tens of clusters are expected to be detected, and to Cherenkov telescopes, for which however the perspectives do not appear to be optimistic.

  8. MAJOR MERGERS WITH SMALL GALAXIES: THE DISCOVERY OF A MAGELLANIC-TYPE GALAXY AT z = 0.12

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Andreas; Frank, Matthias J. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Pasquali, Anna [Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstrasse 12, D-69117 Heidelberg (Germany); Rich, R. Michael [University of California Los Angeles, Department of Physics and Astronomy, Los Angeles, CA (United States); Rabitz, Andreas, E-mail: akoch@lsw.uni-heidelberg.de [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-12-20

    We report on the serendipitous discovery of a star-forming galaxy at redshift z = 0.116 with morphological features that indicate an ongoing merger. This object exhibits two clearly separated components with significantly different colors, plus a possible tidal stream. Follow-up spectroscopy of the bluer component revealed a low star-forming activity of 0.09 M{sub ⊙} yr{sup −1} and a high metallicity of 12 + log(O/H) = 8.6. Based on comparison with mass–star formation-rate and mass–metallicity relations, and on fitting of spectral energy distributions, we obtain a stellar mass of 3 × 10{sup 9} M{sub ⊙}, which renders this object comparable to the Large Magellanic Cloud. Thus our finding provides a further piece of evidence of a major merger already acting on small, dwarf-galaxy-like scales.

  9. Major mergers with small galaxies - the discovery of a Magellanic-type galaxy at z=0.12

    CERN Document Server

    Koch, Andreas; Pasquali, Anna; Rich, R Michael; Rabitz, Andreas

    2015-01-01

    We report on the serendipitous discovery of a star-forming galaxy at redshift z=0.116 with morphological features that indicate an ongoing merger. This object exhibits two clearly separated components with significantly different colors, plus a possible tidal stream. Follow-up spectroscopy of the bluer component revealed a low star-forming activity of 0.09 M$_{\\odot}$/year and a high metallicity of 12+log(O/H)=8.6. Based on comparison with mass-star-formation-rate and mass-metallicity relations, and on fitting of spectral energy distributions, we obtain a stellar mass of 3x10$^9$ M$_{\\odot}$, which renders this object comparable to the Large Magellanic Cloud (LMC). Thus our finding provides a further piece of evidence of a major merger already acting on small, dwarf galaxy-like scales.

  10. Simulating the toothbrush: evidence for a triple merger of galaxy clusters

    Science.gov (United States)

    Brüggen, M.; van Weeren, R. J.; Röttgering, H. J. A.

    2012-09-01

    The newly discovered galaxy cluster 1RXS J0603.3+4214 hosts a 1.9 Mpc long, bright radio relic with a peculiar linear morphology. Using hydrodynamical N-body adaptive mesh refinement simulations of the merger between three initially hydrostatic clusters in an idealized set-up, we are able to reconstruct the morphology of the radio relic. Based on our simulation, we can constrain the merger geometry, predict lensing mass measurements and X-ray observations. Comparing such models to X-ray, redshift and lensing data will validate the geometry of this complex merger which helps in constraining the parameters for shock acceleration of electrons that produces the radio relic.

  11. The Dynamics and Cold Gas Content of Luminous Infrared Galaxies in the Local Universe

    Science.gov (United States)

    Privon, George C.

    2014-01-01

    Many of the most luminous galaxies in the local universe are understood to be the product of mergers and interactions between disk galaxies. These encounters trigger enhanced star formation and accretion onto supermassive black holes; the bulk of which is hidden behind significant extinction from dust. Dynamical simulations matched to individual systems can provide great insight into the merger-driven activity by placing objects on a dynamically-determined merger timeline and by enabling follow-up hydrodynamic simulations which can be used to compare simulations directly with observations. New dynamical models will be presented for luminous infrared galaxies drawn from the Great Observatories All-sky LIRG survey, along with a dynamically-motivated merger stage classification system; these are facilitating a detailed comparison of simulated and observed properties of star formation. New observations of the cold ISM in these systems will also be shown,investigating the influence of AGN activity on tracers of high density (> 10^5 cm^-3) molecular gas.

  12. The Carnegie-Irvine Galaxy Survey. IV. A Method to Determine the Average Mass Ratio of Mergers That Built Massive Elliptical Galaxies

    CERN Document Server

    Huang, Song; Peng, Chien Y; Li, Zhao-Yu; Barth, Aaron J

    2016-01-01

    Many recent observations and numerical simulations suggest that nearby massive, early-type galaxies were formed through a "two-phase" process. In the proposed second phase, the extended stellar envelope was accumulated through many dry mergers. However, details of the past merger history of present-day ellipticals, such as the typical merger mass ratio, are difficult to constrain observationally. Within the context and assumptions of the two-phase formation scenario, we propose a straightforward method, using photometric data alone, to estimate the average mass ratio of mergers that contributed to the build-up of massive elliptical galaxies. We study a sample of nearby massive elliptical galaxies selected from the Carnegie-Irvine Galaxy Survey, using two-dimensional analysis to decompose their light distribution into an inner, denser component plus an extended, outer envelope, each having a different optical color. The combination of these two substructures accurately recovers the negative color gradient exhi...

  13. Mergers of elliptical galaxies and the fundamental plane

    NARCIS (Netherlands)

    Gonzalez-Garcia, AC; van Albada, TS; AvilaReese,; Firmani, C; Frenk, CS; Allen, YC

    2003-01-01

    N-body simulations have been carried out in order to explore the final state of elliptical galaxies after encounters and more expecifically whether the Fundamental Plane (FP hereafter) relation is affected by merging.

  14. Massive Close Pairs Measure Rapid Galaxy Assembly in Mergers at High Redshift

    CERN Document Server

    Snyder, Gregory F; Rodriguez-Gomez, Vicente; Guimaraes, Renato da Silva; Torrey, Paul; Hernquist, Lars

    2016-01-01

    We compare mass-selected close pairs at z > 1 with the intrinsic galaxy merger rate in the Illustris Simulations. To do so, we construct three 140 arcmin^2 lightcone catalogs and measure pair fractions, finding that they change little or decrease with increasing redshift at z > 1. Consistent with current surveys, this trend requires a decrease in the merger-pair observability time, roughly as (1 + z)^-2, in order to measure the merger rates of the same galaxies. This implies that major mergers are more common at high redshift than implied by the simplest arguments assuming a constant observability time. Several effects contribute to this trend: (1) The fraction of massive, major (4:1) pairs which merge by today increases weakly from ~0.5 at z=1 to ~0.8 at z=3. (2) The median time elapsed between an observed pair and final remnant decreases by a factor of two from z~1 to z~3. (3) An increasing specific star formation rate (sSFR) decreases the time during which common stellar-mass based pair selection criteria ...

  15. Very Small Scale Clustering and Merger Rate of Luminous Red Galaxies

    Science.gov (United States)

    Masjedi, Morad; Hogg, David W.; Cool, Richard J.; Eisenstein, Daniel J.; Blanton, Michael R.; Zehavi, Idit; Berlind, Andreas A.; Bell, Eric F.; Schneider, Donald P.; Warren, Michael S.; Brinkmann, Jon

    2006-06-01

    We present the small-scale (0.01 Mpcaccount for the collisions, extensively tested against mock catalogs. We correct for photometric biases in the SDSS imaging of close galaxy pairs. We find that the correlation function ξ(r) is surprisingly close to a r-2 power law over more than 4 orders of magnitude in separation r. This result is too steep at small scales to be explained in current versions of the halo model for galaxy clustering. We infer an LRG-LRG merger rate of <~0.6×104 Gyr-1 Gpc-3 for this sample. This result suggests that the LRG-LRG mergers are not the main mode of mass growth for LRGs at z<0.36.

  16. Can a Satellite Galaxy Merger Explain the Active Past of the Galactic Center?

    CERN Document Server

    Lang, Meagan; Bogdanovic, Tamara; Amaro-Seoane, Pau; Sesana, Alberto

    2011-01-01

    Observations of the Galactic Center (GC) have accumulated a multitude of "forensic" evidence indicating that several million years ago the center of the Milky Way galaxy was teaming with starforming and accretion-powered activity -- this paints a rather different picture from the GC as we understand it today. We examine a possibility that this epoch of activity could have been triggered by the infall of a satellite galaxy into the Milky Way which began at the redshift of 10 and ended few million years ago with a merger of the Galactic supermassive black hole with an intermediate mass black hole brought in by the inspiralling satellite.

  17. The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers

    CERN Document Server

    Narayanan, Desika; Kelly, Brandon; Dave, Romeel; Hernquist, Lars; Di Matteo, Tiziana; Hopkins, Philip; Kulesa, Craig; Robertson, Brant; Walker, Christopher K

    2007-01-01

    We assess the impact of starburst and AGN feedback-driven winds on the CO emission from galaxy mergers, and, in particular, search for signatures of these winds in the simulated CO morphologies and emission line profiles. We do so by combining a 3D non-LTE molecular line radiative transfer code with smoothed particle hydrodynamics (SPH) simulations of galaxy mergers that include prescriptions for star formation, black hole growth, a multiphase interstellar medium (ISM), and the winds associated with star formation and black hole growth. Our main results are: (1) Galactic winds can drive outflows of masses ~10^8-10^9 Msun which may be imaged via CO emission line mapping. (2) AGN feedback-driven winds are able to drive imageable CO outflows for longer periods of time than starburst-driven winds owing to the greater amount of energy imparted to the ISM by AGN feedback compared to star formation. (3) Galactic winds can control the spatial extent of the CO emission in post-merger galaxies, and may serve as a physi...

  18. Evidence for tidal interaction and merger as the origin of galaxy morphology evolution in compact groups

    CERN Document Server

    Coziol, R

    2007-01-01

    We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity, in 8 Compact Groups of Galaxies (CGs). We perform independently two different analysis: a isophotal study and a study of morphological asymmetries. The results yielded by the two analysis are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs, and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass, inactive, and have an early-type morphology. In 20% of the galaxies we find evidence for cannibalism. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52%...

  19. Star formation in galaxy mergers: ISM turbulence, dense gas excess, and scaling relations for disks and starbusts

    CERN Document Server

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain

    2010-01-01

    Galaxy interactions and mergers play a significant, but still debated and poorly understood role in the star formation history of galaxies. Numerical and theoretical models cannot yet explain the main properties of merger-induced starbursts, including their intensity and their spatial extent. Usually, the mechanism invoked in merger-induced starbursts is a global inflow of gas towards the central kpc, resulting in a nuclear starburst. We show here, using high-resolution AMR simulations and comparing to observations of the gas component in mergers, that the triggering of starbursts also results from increased ISM turbulence and velocity dispersions in interacting systems. This forms cold gas that are denser and more massive than in quiescent disk galaxies. The fraction of dense cold gas largely increases, modifying the global density distribution of these systems, and efficient star formation results. Because the starbursting activity is not just from a global compacting of the gas to higher average surface de...

  20. Structural and morphological properties of ultraluminous infrared galaxies at $1

    CERN Document Server

    Fang, Guanwen; Chen, Yang; Kong, Xu

    2015-01-01

    Using the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) near-infrared high-resolution imaging from the 3D-HST survey, we analyze the morphology and structure of 502 ultraluminous infrared galaxies (ULIRGs; $L_{\\rm IR}>10^{12}L_{\\odot}$) at $1-1.7$) and small S\\'{e}rsic index ($n2.5$). The morphological diversities of ULIRGs suggest that there are different formation processes for these galaxies. Merger processes between galaxies and disk instabilities play an important role in the formation and evolution of ULIRGs at high redshift. In the meantime, we also find that the evolution of the size ($r_{\\rm e}$) with redshift of ULIRGs at redshift $z\\sim1-3$ follows $r_{\\rm e}\\propto(1+z)^{-(0.96\\pm0.23)}$.

  1. From galaxy-scale fueling to nuclear-scale feedback: the merger-state of radio galaxies 3C293, 3C305 & 4C12.50

    CERN Document Server

    Emonts, Bjorn; Villar-Martin, Montserrat; Hodgson, Jeff; Brogt, Erik; Tadhunter, Clive; Mahony, Elizabeth; Oosterloo, Tom

    2016-01-01

    Powerful radio galaxies are often associated with gas-rich galaxy mergers. These mergers may provide the fuel to trigger starburst and active galactic nuclear (AGN) activity. In this Research Note, we study the host galaxies of three seemingly young or re-started radio sources that drive fast outflows of cool neutral hydrogen (HI) gas, namely 3C 293, 3C 305 and 4C 12.50 (PKS 1345+12). Our aim is to link the feedback processes in the central kpc-scale region with new information on the distribution of stars and gas at scales of the galaxy. For this, we use deep optical V-band imaging of the host galaxies, complemented with HI emission-line observations to study their gaseous environments. We find prominent optical tidal features in all three radio galaxies, which confirm previous claims that 3C 293, 3C 305 and 4C 12.50 have been involved in a recent galaxy merger or interaction. Our data show the complex morphology of the host galaxies, and identify the companion galaxies that are likely involved in the merger...

  2. A Merger Origin for Short Gamma-Ray Bursts Inferred from the Afterglow and Host Galaxy of GRB 050724

    CERN Document Server

    Berger, E; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L

    2005-01-01

    Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness -- the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10^51 erg. While theoretical arguments suggest that short GRBs are produced in the merger of compact object binaries (neutron stars or black holes), the progenitors, energetics, and environments of these events remain elusive despite recent localizations. Here we report the discovery of radio, optical, and infrared afterglow emission from the short-hard GRB 050724, which unambiguously associate it with an elliptical galaxy at a redshift, z=0.257. We show that the energy release is 1-3 orders of magnitude smaller than that of long GRBs, and that the burst ejecta may be collimated in jets. More importantly, the nature of the host galaxy for...

  3. Circumnuclear Star Clusters in the Galaxy Merger NGC 6240, Observed with Keck Adaptive Optics and HST

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, L K; Max, C E; Schneider, G

    2007-02-12

    We discuss images of the central {approx} 10 kpc (in projection) of the galaxy merger NGC 6240 at H and K{prime} bands, taken with the NIRC2 narrow camera on Keck II using natural guide star adaptive optics. We detect 28 star clusters in the NIRC2 images, of which only 7 can be seen in the similar-spatial-resolution, archival WFPC2 Planetary Camera data at either B or I bands. Combining the NIRC2 narrow camera pointings with wider NICMOS NIC2 images taken with the F110W, F160W, and F222M filters, we identify a total of 32 clusters that are detected in at least one of these 5 infrared ({lambda}{sub c} > 1 {micro}m) bandpasses. By comparing to instantaneous burst, stellar population synthesis models (Bruzual & Charlot 2003), we estimate that most of the clusters are consistent with being {approx} 15 Myr old and have photometric masses ranging from 7 x 10{sup 5} M{sub {circle_dot}} to 4 x 10{sup 7}M{sub {circle_dot}}. The total contribution to the star formation rate (SFR) from these clusters is approximately 10M{sub {circle_dot}} yr{sup -1}, or {approx} 10% of the total SFR in the nuclear region. We use these newly discovered clusters to estimate the extinction toward NGC 6240's double nuclei, and find values of A{sub v} as high as 14 magnitudes along some sightlines, with an average extinction of A{sub v} {approx} 7 mag toward sightlines within {approx} 3-inches of the double nuclei.

  4. Infrared Observations of Active Galaxies

    Directory of Open Access Journals (Sweden)

    J. Guichard

    2001-01-01

    Full Text Available We report medium resolution, spectroscopic observations of a selected sample of AGNs and Starburst galaxies, at wavelengths ranging from 1.1 to 2.4 microns . Strong HI, HeI, H2 and [FeII] emission lines have been detected, as well as stellar features, such as the CO bandheads in both H- and K-band, and SiI, NaI, and CaI lines. The excitation mechanisms for the H2 emission are discussed.

  5. The nuclear ring in the unbarred galaxy NGC 278 : result of a minor merger?

    NARCIS (Netherlands)

    Knapen, J. H.; Whyte, L. F.; Blok, W. J. G. de; Van der Hulst, J. M.

    2004-01-01

    Abstract: We present fully sampled high angular resolution two-dimensional kinematics in the H alpha spectral line, optical and near-infrared imaging, as well as 21 cm atomic hydrogen data of the spiral galaxy NGC 278. This is a small non-barred galaxy, which has a bright star forming inner region o

  6. The VIMOS VLT Deep Survey :Evolution of the major merger rate since z~1 from spectroscopicaly confirmed galaxy pairs

    CERN Document Server

    de Ravel, L; Tresse, L; Bottini, D; Garilli, B; Le Brun, V; MacCagni, D; Scaramella, R; Scodeggio, M; Vettolani, G; Zanichelli, A; Adami, C; Arnouts, S; Bardelli, S; Bolzonella, M; Cappi, A; Charlot, S; Ciliegi, P; Contini, T; Foucaud, S; Franzetti, P; Gavignaud, I; Guzzo, L; Ilbert, O; Iovino, A; Lamareille, F; McCracken, H J; Marano, B; Marinoni, C; Mazure, A; Meneux, B; Merighi, R; Paltani, S; Pellò, R; Pollo, A; Pozzetti, L; Radovich, M; Vergani, D; Zamorani, G; Zucca, E; Bondi, M; Bongiorno, A; Brinchmann, J; Cucciati, O; De la Torre, S; Gregorini, L; Memeo, P; Pérez-Montero, E; Mellier, Y; Merluzzi, P; Temporin, S

    2008-01-01

    From the VIMOS VLT Deep Survey we use a sample of 6447 galaxies with I_{AB} 9.5 has been accreted through major merging events since z ~ 1, indicating that major mergers have contributed significantly to the growth in stellar mass density of bright galaxies over the last half of the life of the Universe.

  7. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    Science.gov (United States)

    Privon, G. C.; Stierwalt, S.; Patton, D. R.; Besla, G.; Pearson, S.; Putman, M.; Johnson, K. E.; Kallivayalil, N.; Liss, S.; Titans, TiNy

    2017-09-01

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The Hα emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M ⊙ yr‑1, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.

  8. 3D spectroscopy with VLT/GIRAFFE. II. Are luminous compact galaxies merger remnants?

    Science.gov (United States)

    Puech, M.; Hammer, F.; Flores, H.; Östlin, G.; Marquart, T.

    2006-08-01

    Luminous Compact Galaxies (LCGs) are enigmatic sources in many aspects. They can reach the luminosity of the Milky Way within a radius of only a few kpc. They also represent one of the most rapidly evolving populations of galaxies since they represent up to 1/5 of the luminous galaxies at redshift z= 0.7, while being almost absent in the local Universe. The measurement of their dynamics is crucial to our understanding of LCGs since this has the potential of telling us which physical process(es) drive(s) them and ultimately link them to the existing present-day galaxies. Here, we derive the 3-dimensional velocity fields and velocity dispersion (σ) maps of 17 LCGs selected from the Canada France Redshift Survey and the Hubble Deep Field South with redshifts ranging from z=0.4 to z=0.75. We find that only 18% of them show rotational velocity fields typical of rotating disks while the others show more complex kinematics. Assuming that LCGs are not too far from equilibrium, about half of LCGs then appear to be either non-relaxed objects, or objects that are not supported by velocity dispersion alone. This supports the view that an important fraction of LCGs are probably mergers. It brings additional support to the "spiral rebuilding scenario" in which LCGs correspond to a previous or post-merger phase before the disk re-building.

  9. Consequences of Radiative and Mechanical Feedback from Black Holes in Galaxy Mergers

    CERN Document Server

    Choi, Ena; Ostriker, Jeremiah P; Johansson, Peter H; Moster, Benjamin P

    2013-01-01

    We employ hydrodynamical simulations to study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disk galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account for the global impact of AGN feedback. We compare three models: (1) no black hole and no AGN feedback; (2) thermal AGN feedback; and (3) mechanical and radiative AGN feedback. The last model is motivated by observations of broad absorption line quasars which show winds with initial velocities of v_w ~ 10,000 km/s and also heating associated with the central AGN X-ray radiation. The primary changes in gas properties due to mechanical AGN feedback are lower thermal X-ray luminosity from the final galaxy - in better agreement with observations - and galactic outflows with higher velocity ~ 1000 km/s similar to recent direct observations of nearby merger remnants. The kinetic energy of the outflowing gas is a factor of ~ 20 higher...

  10. Dark influences II: gas and star formation in minor mergers of dwarf galaxies with dark satellites

    CERN Document Server

    Starkenburg, Tjitske K; Sales, Laura V

    2015-01-01

    Mergers have been proposed to induce starbursts and to lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model. Notably, because of their low mass, most of their interactions will be with dark satellites. In this paper we follow the evolution of gas-rich disky dwarf galaxies as they experience a minor merger with a dark satellite. We aim to characterize the effects of such an interaction on the dwarf's star formation, morphology and kinematical properties. We perform a suite of carefully set-up hydrodynamical simulations of dwarf galaxies that include dark matter, gas, and stars, merging with a satellite consisting solely of dark matter. For the host system we vary the gas fraction, disk size and thickness, halo mass and concentration, while for the satellite we explore different masses, concentrations and orbits. We find that the inter...

  11. Investigating the merger origin of Early-Type Galaxies using ultra-deep optical images

    CERN Document Server

    Duc, P -A; Alatalo, K; Blitz, L; Bois, M; Bournaud, F; Bureau, M; Cappellari, M; Cote, P; Davies, R L; Davis, T A; de Zeeuw, P T; Emsellem, E; Ferrarese, L; Ferriere, E; Gwyn, S; Khochfar, S; Krajnovic, D; Kuntschner, H; Lablanche, P -Y; MacArthur, L; McDermid, R M; Michel-Dansac, L; Morganti, R; Naab, T; Oosterloo, T; Sarzi, M; Scott, N; Serra, P; Weijmans, A; Young, L M

    2011-01-01

    The mass assembly of galaxies leaves various imprints on their surroundings, such as shells, streams and tidal tails. The frequency and properties of these fine structures depend on the mechanism driving the mass assembly: e.g. a monolithic collapse, rapid cold-gas accretion followed by violent disk instabilities, minor mergers or major dry / wet mergers. Therefore, by studying the outskirts of galaxies, one can learn about their main formation mechanism. I present here our on-going work to characterize the outskirts of Early-Type Galaxies (ETGs), which are powerful probes at low redshift of the hierarchical mass assembly of galaxies. This work relies on ultra-deep optical images obtained at CFHT with the wide-field of view MegaCam camera of field and cluster ETGs obtained as part of the Atlas-3D and NGVS projects. State of the art numerical simulations are used to interpret the data. The images reveal a wealth of unknown faint structures at levels as faint as 29 mag arcsec-2 in the g-band. Initial results fo...

  12. The Dragonfly Galaxy. II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2

    NARCIS (Netherlands)

    Emonts, B. H. C.; De Breuck, C.; Lehnert, M. D.; Vernet, J.; Gullberg, B.; Villar-Martín, M.; Nesvadba, N.; Drouart, G.; Ivison, R.; Seymour, N.; Wylezalek, D.; Barthel, P.

    2015-01-01

    The Dragonfly Galaxy (MRC 0152-209), at redshift z ~ 2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6-5) gas and dust, which reveal that this is likely a gas-rich triple merger. It c

  13. WINGS: WFIRST Infrared Nearby Galaxy Survey

    Science.gov (United States)

    Williams, Benjamin

    WFIRST's combination of wide field and high resolution will revolutionize the study of nearby galaxies. We propose to produce and analyze simulated WFIRST data of nearby galaxies and their halos to maximize the scientific yield in the limited observing time available, ensuring the legacy value of WFIRST's eventual archive. We will model both halo structure and resolved stellar populations to optimize WFIRST's constraints on both dark matter and galaxy formation models in the local universe. WFIRST can map galaxy structure down to ~35 mag/square arcsecond using individual stars. The resulting maps of stellar halos and accreting dwarf companions will provide stringent tests of galaxy formation and dark matter models on galactic (and even sub-galactic) scales, which is where the most theoretical tension exists with the Lambda-CDM model. With a careful, coordinated plan, WFIRST can be expected to improve current sample sizes by 2 orders of magnitude, down to surface brightness limits comparable to those currently reached only in the Local Group, and that are >4 magnitudes fainter than achievable from the ground due to limitations in star-galaxy separation. WFIRST's maps of galaxy halos will simultaneously produce photometry for billions of stars in the main bodies of galaxies within 10 Mpc. These data will transform studies of star formation histories that track stellar mass growth as a function of time and position within a galaxy. They also will constrain critical stellar evolution models of the near-infrared bright, rapidly evolving stars that can contribute significantly to the integrated light of galaxies in the near-infrared. Thus, with WFIRST we can derive the detailed evolution of individual galaxies, reconstruct the complete history of star formation in the nearby universe, and put crucial constraints on the theoretical models used to interpret near-infrared extragalactic observations. We propose a three-component work plan that will ensure these gains by

  14. The origin of prolate rotation in dwarf spheroidal galaxies formed by mergers of disky dwarfs

    CERN Document Server

    Ebrova, Ivana

    2015-01-01

    Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study the origin of this type of streaming motion via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. We also detect significant figure rotation resulting from the tidal distortion of the dis...

  15. Host galaxies of double-peaked [OIII] emitting AGN: binary AGN or mergers?

    CERN Document Server

    Villforth, Carolin

    2013-01-01

    Mergers are suspected to be reliable triggers of both starformation and AGN activity. However, the exact timing of this process remains poorly understood. Here, we present deep imaging and long slit spectroscopy data of a sample of four double-peaked [OIII] emitting AGN. These sources are often believed to host binary AGN, or at least be currently undergoing major mergers. The sample presented here either have previous IFU and high resolution imaging data that show double-nuclei in the IR as well as kinematicly and spatially distinct line emitting regions. Two sources have detections of double point sources in either the X-ray or radio. The sources studied are therefore likely binary AGN. The AGN in this sample are luminous, radio-quiet and at low redshift. The $u/r/z$ imaging data show host galaxies in a wide range of merger stages, with the majority (3/4) showing tidal tails or complex kinematics and morphologies clearly indicating a recent merger. One source however -hosting a double X-ray source- shows qu...

  16. Modelling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies

    CERN Document Server

    Bournaud, F; Weiss, A; Renaud, F; Mastropietro, C; Teyssier, R

    2014-01-01

    We model the intensity of emission lines from the CO molecule, based on hydrodynamic simulations of spirals, mergers, and high-redshift galaxies with very high resolutions (3pc and 10^3 Msun) and detailed models for the phase-space structure of the interstellar gas including shock heating, stellar feedback processes and galactic winds. The simulations are analyzed with a Large Velocity Gradient (LVG) model to compute the local emission in various molecular lines in each resolution element, radiation transfer and opacity effects, and the intensity emerging from galaxies, to generate synthetic spectra for various transitions of the CO molecule. This model reproduces the known properties of CO spectra and CO-to-H2 conversion factors in nearby spirals and starbursting major mergers. The high excitation of CO lines in mergers is dominated by an excess of high-density gas, and the high turbulent velocities and compression that create this dense gas excess result in broad linewidths and low CO intensity-to-H2 mass r...

  17. Comparison of black hole growth in galaxy mergers with GASOLINE and RAMSES

    Science.gov (United States)

    Gabor, Jared M.; Capelo, Pedro R.; Volonteri, Marta; Bournaud, Frédéric; Bellovary, Jillian; Governato, Fabio; Quinn, Thomas

    2016-07-01

    Supermassive black hole dynamics during galaxy mergers is crucial in determining the rate of black hole mergers and cosmic black hole growth. As simulations achieve higher resolution, it becomes important to assess whether the black hole dynamics is influenced by the treatment of the interstellar medium in different simulation codes. We compare simulations of black hole growth in galaxy mergers with two codes: the smoothed particle hydrodynamics code GASOLINE, and the adaptive mesh refinement code RAMSES. We seek to identify predictions of these models that are robust despite differences in hydrodynamic methods and implementations of subgrid physics. We find that the general behavior is consistent between codes. Black hole accretion is minimal while the galaxies are well-separated (and even as they fly by within 10 kpc at the first pericenter). At late stages, when the galaxies pass within a few kpc, tidal torques drive nuclear gas inflow that triggers bursts of black hole accretion accompanied by star formation. We also note quantitative discrepancies that are model dependent: our RAMSES simulations show less star formation and black hole growth, and a smoother gas distribution with larger clumps and filaments than our GASOLINE simulations. We attribute these differences primarily to the subgrid models for black hole fueling, feedback, and gas thermodynamics. The main conclusion is that differences exist quantitatively between codes, and this should be kept in mind when making comparisons with observations. However, both codes capture the same dynamical behaviors in terms of triggering black hole accretion, star formation, and black hole dynamics, which is reassuring.

  18. Minor Mergers or Progenitor Bias? The Stellar Ages of Small and Large Quenched Galaxies

    Science.gov (United States)

    Fagioli, Martina; Carollo, C. Marcella; Renzini, Alvio; Lilly, Simon J.; Onodera, Masato; Tacchella, Sandro

    2016-11-01

    We investigate the origin of the evolution of the population-averaged size of quenched galaxies (QGs) through a spectroscopic analysis of their stellar ages. This evolution has been claimed to arise from either the size growth of individual galaxies through a sequence of dry minor mergers, or the addition of larger, newly quenched galaxies to the pre-existing population (i.e., a progenitor bias effect). We use the 20k zCOSMOS-bright spectroscopic survey to select bona fide QGs at 0.2 < z < 0.8. We stack their spectra in bins of redshift, stellar mass, and size to compute stellar population parameters through fits to the rest-frame optical spectra and Lick indices. The size-age relation differs below and above ˜1011 M ⊙: at 10.5\\lt {log} {M}* /{M}⊙ \\lt 11, at all redshifts the stellar populations of the largest galaxies are younger than those of the smaller counterparts, indicating progenitor bias as the main driver of the average size evolution. In contrast, at higher masses, there is no clear size-age trend, supporting a substantial role of dry mergers in increasing with cosmic time the sizes of these most massive QGs. The [α/Fe] abundance ratios of QGs are (i) above-solar over the entire redshift range of our analysis, hinting at universally short timescales for the buildup of the stellar populations of QGs, and (ii) similar at all masses and sizes, suggesting similar (short) timescales for the whole QG population—and strengthening the role of mergers in the buildup of the most massive QGs in the universe.

  19. An enhanced merger fraction within the galaxy population of the SSA22 protocluster at z ~ 3.1

    CERN Document Server

    Hine, N K; Alexander, D M; Lehmer, B D; Chapman, S C; Matsuda, Y

    2015-01-01

    The over-dense environments of protoclusters of galaxies in the early Universe z>2 are expected to accelerate the evolution of galaxies, with an increased rate of stellar mass assembly and black hole accretion compared to co-eval galaxies in the average density `field'. These galaxies are destined to form the passive population of massive systems that dominate the cores of rich clusters today. While signatures of accelerated growth of galaxies in the SSA22 protocluster z=3.1 have been observed, the mechanism driving this remain unclear. In this work we show an enhanced rate of galaxy-galaxy mergers could be responsible. We morphologically classify Lyman-break Galaxies (LBGs) in the SSA22 protocluster and compare these to those of galaxies in a typical density field at z=3.1 as either active mergers or non-merging using Hubble Space Telescope F814W imaging, probing the rest frame ultraviolet stellar emission. We measure a merger fraction of 48+/-10% for LBGs in the protocluster compared to 30+/-6% for the fiel...

  20. The total infrared luminosity may significantly overestimate the star formation rate of recently quenched galaxies

    CERN Document Server

    Hayward, Christopher C; Ashby, Matthew L N; Fazio, Giovanni; Hernquist, Lars; Martínez-Galarza, Juan Rafael; Noeske, Kai; Smith, Howard A; Wuyts, Stijn; Zezas, Andreas

    2014-01-01

    The total infrared (IR) luminosity is very useful for estimating the star formation rate (SFR) of galaxies, but converting the IR luminosity into an SFR relies on assumptions that do not hold for all galaxies. We test the effectiveness of the IR luminosity as an SFR indicator by applying it to synthetic spectral energy distributions generated from three-dimensional hydrodynamical simulations of isolated disc galaxies and galaxy mergers. In general, the SFR inferred from the IR luminosity agrees well with the true instantaneous SFR of the simulated galaxies. However, for the major mergers in which a strong starburst is induced, the SFR inferred from the IR luminosity can overestimate the instantaneous SFR during the post-starburst phase by greater than two orders of magnitude. Even though the instantaneous SFR decreases rapidly after the starburst, the stars that were formed in the starburst remain dust-obscured and thus produce significant IR luminosity. Consequently, use of the IR luminosity as an SFR indica...

  1. The Nuclear Structure in Nearby Luminous Infrared Galaxies: HST NICMOS Imaging of the GOALS Sample

    CERN Document Server

    Haan, S; Armus, L; Evans, A S; Howell, J H; Mazzarella, J M; Kim, D C; Vavilkin, T; Inami, H; Sanders, D B; Petric, A; Bridge, C R; Melbourne, J L; Charmandaris, V; Diaz-Santos, T; Murphy, E J; U, V; Stierwalt, S; Marshall, J A

    2010-01-01

    We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence ...

  2. Spitzer Merger History and Shape of the Galactic Halo: The Distance to the Core of the Sagittarius Dwarf Galaxy from the Mid-Infrared Period-Luminosity Relation for RR Lyrae Variable Stars

    Science.gov (United States)

    Gupta, Arvind; Beaton, Rachael; Scowcroft, Victoria; Majewski, Steven R.; SMHASH Team

    2017-01-01

    The Sagittarius dwarf galaxy (Sgr) is among the most massive satellites of the Milky Way and is unique due to its extensive tails of tidally stripped stars. These tails provide strong constraints on the orbital history of Sgr, which in turn lend insight into the structure of the Milky Way's dark matter halo. Utilizing the dynamics of Sgr for these studies, however, relies on a precise distance measurement to the core. Yet past measurements yield a wide range of values (22.0 - 28.4 kpc) with a variation of >25%. Through photometry of 3.6μm Spitzer data and GLOESS light curve fitting, we have measured the mean magnitudes of 45 RR Lyrae variables in the Sgr Core. Fitting the magnitudes to a Period-Luminosity relation with a slope of -2.332, we find the distance modulus to be 17.19 ± 0.02 (ran) ± 0.08 (sys) based on zero points derived from HST parallax measurements of five Galactic RR Lyrae. This yields a mean distance of 27.40 ± 0.21 (ran) ± 1.01 (sys) kpc to the core of Sgr.

  3. The Distribution of Dark and Luminous Matter in the Unique Galaxy Cluster Merger Abell 2146

    CERN Document Server

    King, Lindsay J; Coleman, Joseph E; Russell, Helen R; Santana, Rebecca; White, Jacob A; Canning, Rebecca E A; Deering, Nicole J; Fabian, Andrew C; Lee, Brandyn E; Li, Baojiu; McNamara, Brian R

    2016-01-01

    Abell 2146 ($z$ = 0.232) consists of two galaxy clusters undergoing a major merger. The system was discovered in previous work, where two large shock fronts were detected using the $\\textit{Chandra X-ray Observatory}$, consistent with a merger close to the plane of the sky, caught soon after first core passage. A weak gravitational lensing analysis of the total gravitating mass in the system, using the distorted shapes of distant galaxies seen with ACS-WFC on $\\textit{Hubble Space Telescope}$, is presented. The highest peak in the reconstruction of the projected mass is centred on the Brightest Cluster Galaxy (BCG) in Abell 2146-A. The mass associated with Abell 2146-B is more extended. Bootstrapped noise mass reconstructions show the mass peak in Abell 2146-A to be consistently centred on the BCG. Previous work showed that BCG-A appears to lag behind an X-ray cool core; although the peak of the mass reconstruction is centred on the BCG, it is also consistent with the X-ray peak given the resolution of the we...

  4. Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers

    CERN Document Server

    Ceverino, Daniel; Tweed, Dylan; Primack, Joel

    2014-01-01

    We address the formation of massive stellar spheroids between redshifts $z=4$ and 1 using a suite of AMR hydro-cosmological simulations. The spheroids form as bulges, and the spheroid mass growth is partly driven by violent disc instability (VDI) and partly by mergers. A kinematic decomposition to disc and spheroid yields that the mass fraction in the spheroid is between 50% and 90% and is roughly constant in time, consistent with a cosmological steady state of VDI discs that are continuously fed from the cosmic web. The density profile of the spheroid is typically classical, with a Sersic index $n = 4.5\\pm 1$, independent of whether it grew by mergers or VDI. The disc is characterized by $n=1.5\\pm 0.5$, and the whole galaxy by $n=3\\pm 1$. The high-redshift spheroids are compact due to the dissipative inflow of gas and the high universal density. The stellar surface density within the effective radius of each galaxy as it evolves remains roughly constant in time after its first growth. For galaxies of a fixed...

  5. Measurement of non-axisymmetry in centres of advanced mergers of galaxies

    CERN Document Server

    Jog, C J; Jog, Chanda J.; Maybhate, Aparna

    2006-01-01

    We measure the non-axisymmetry in the luminosity distribution in the inner few kpc of the remnants of advanced mergers of galaxies with a view to understand the relaxation in the central regions. For this, we analyze the images from the 2MASS archival data for a selected sample of 12 merging galaxies, which show signs of interaction but have a single nucleus. The central regions are fitted by elliptical isophotes whose centres are allowed to vary to get the best fit. The centres of isophotes show a striking sloshing pattern with a spatial variation of up to 20-30 % within the central 1 kpc. This indicates mass asymmetry and a dynamically unrelaxed behaviour. Next, we Fourier-analyze the galaxy images while keeping the centre constant and measure the deviation from axisymmetry in terms of the fractional Fourier amplitudes (A_1, A_2 etc) as a function of radius. All mergers show a high value of lopsidedness (upto A_1 ~ 0.2) in the central 5 kpc. The m=2 asymmetry is even stronger, with values of A_2 upto ~ 0.3,...

  6. A survey of dual active galactic nuclei in simulations of galaxy mergers: frequency and properties

    Science.gov (United States)

    Capelo, Pedro R.; Dotti, Massimo; Volonteri, Marta; Mayer, Lucio; Bellovary, Jillian M.; Shen, Sijing

    2017-08-01

    We investigate the simultaneous triggering of active galactic nuclei (AGN) in merging galaxies, using a large suite of high-resolution hydrodynamical simulations. We compute dual-AGN observability time-scales using bolometric, X-ray and Eddington-ratio thresholds, confirming that dual activity from supermassive black holes (BHs) is generally higher at late pericentric passages, before a merger remnant has formed, especially at high luminosities. For typical minor and major mergers, dual activity lasts ˜20-70 and ˜100-160 Myr, respectively. We also explore the effects of X-ray obscuration from gas, finding that the dual-AGN time decreases at most by a factor of ˜2, and of contamination from star formation. Using projected separations and velocity differences rather than three-dimensional quantities can decrease the dual-AGN time-scales by up to ˜4, and we apply filters that mimic current observational-resolution limitations. In agreement with observations, we find that for a sample of major and minor mergers hosting at least one AGN, the fraction harbouring dual AGN is ˜20-30 and ˜1-10 per cent, respectively. We quantify the effects of merger mass ratio (0.1 to 1), geometry (coplanar, prograde and retrograde, and inclined), disc gas fraction and BH properties, finding that the mass ratio is the most important factor, with the difference between minor and major mergers varying between factors of a few to orders of magnitude, depending on the luminosity and filter used. We also find that a shallow imaging survey will require very high angular resolution whereas a deep imaging survey will be less resolution-dependent.

  7. Formation of S0 galaxies through mergers: Explaining angular momentum and concentration change from spirals to S0s

    CERN Document Server

    Querejeta, Miguel; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo

    2015-01-01

    The CALIFA team has recently found that the stellar angular momentum and concentration of late-type spiral galaxies are incompatible with those of lenticular galaxies (S0s), concluding that fading alone cannot satisfactorily explain the evolution from spirals into S0s. Here we explore whether major mergers can provide an alternative way to transform spirals into S0s by analysing the spiral-spiral major mergers from the GalMer database that lead to realistic, relaxed S0-like galaxies. We find that the change in stellar angular momentum and concentration can explain the differences in the $\\lambda_\\mathrm{Re}$--$R_{90}/R_{50}$ plane found by the CALIFA team. Major mergers thus offer a feasible explanation for the transformation of spirals into S0s.

  8. Kinematic classifications of local interacting galaxies: implications for the merger/disk classifications at high-z

    CERN Document Server

    Hung, Chao-Ling; Yuan, Tiantian; Larson, Kirsten L; Casey, Caitlin M; Smith, Howard A; Sanders, D B; Kewley, Lisa J; Hayward, Christopher C

    2015-01-01

    The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. The kinematic properties of galaxies as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of galaxy morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the WiFeS observations of these local (U)LIRGs to z=1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ~900 pc. Using both kineme...

  9. Shape asymmetry: a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages

    CERN Document Server

    Pawlik, M M; Walcher, C J; Johansson, P H; Villforth, C; Rowlands, K; Mendez-Abreu, J; Hewlett, T

    2015-01-01

    We present a new morphological indicator designed for automated recognition of galaxies with faint asymmetric tidal features suggestive of an ongoing or past merger. We use this new indicator, together with preexisting diagnostics of galaxy structure to study the role of galaxy mergers in inducing (post-)starburst spectral signatures in local galaxies, and investigate whether (post-)starburst galaxies play a role in the build up of the `red sequence'. Our morphological and structural analysis of an evolutionary sample of 335 (post-)starburst galaxies in the SDSS DR7 with starburst ages 0galaxies with young starbursts (tSB<0.1 Gyr) show signatures of an ongoing or past merger. This fraction declines with starburst age, and we find a good agreement between automated and visual classifications. The majority of the oldest (post-)starburst galaxies in our sample (tSB~0.6Gyr) have structural properties characteristic of early-type disks and are not as highly concentrated as ...

  10. Simulations of binary galaxy mergers and the link with Fast Rotators, Slow Rotators, and Kinematically Distinct Cores

    CERN Document Server

    Bois, Maxime; Bournaud, Frédéric; Alatalo, Katherine; Blitz, Leo; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-01-01

    We study the formation of early-type galaxies (ETGs) through mergers with a sample of 70 high-resolution numerical simulations of binary mergers of disc galaxies. These simulations encompass various mass ratios, initial conditions and orbital parameters. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the Atlas3D criterion: they preserve the structure of the input fast rotating spiral progenitors. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Slow Rotators hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in binary mergers, but it also requires a retrograde spin for the progenitor galaxies with respect to the orbital angular momentum. The importance of the initial spin of the pr...

  11. Double-double radio galaxies: remnants of merger of supermassive binary black holes

    CERN Document Server

    Liu, F K; Cao, S L; Wu, Xue-Bing

    2003-01-01

    The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applie...

  12. Generation of rotationally dominated galaxies by mergers of pressure-supported progenitors

    CERN Document Server

    Di Matteo, P; Lehnert, M D; Combes, F; Semelin, B

    2009-01-01

    Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with v/sigma > 1 outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depend on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on a orbit with high angular momentum. Systems with these hybrid properties have been recently observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitat...

  13. The influence of the merger history of dwarf galaxies in a reionized universe

    Science.gov (United States)

    Verbeke, Robbert; Vandenbroucke, Bert; De Rijcke, Sven; Koleva, Mina

    2015-08-01

    In the ΛCDM model, cosmic structure forms in a hierarchical fashion. According to this paradigm, even low-mass dwarf galaxies grow via smooth accretion and mergers. Given the low masses of dwarf galaxies and their even smaller progenitors, the UV background is expected to have a significant influence on their gas content and, consequently, their star formation histories. Generally, cosmological simulations predict that most dwarf systems with circular velocities below ~30 km/s should not be able to form significant amounts of stars or contain gas and be, in effect, "dark" galaxies (Sawala et al. 2013, 2014; Hopkins et al. 2014; Shen et al. 2014). This is in contradiction with the recent discovery of low-mass yet gas-rich dwarf galaxies, such as Leo P (Skillman et al. 2013), Pisces A (Tollerud et al. 2014), and SECCO 1 (Bellazzini et al. 2015). Moreover, Tollerud et al. (2014) point out that most isolated dark-matter halos down to circular velocities of ~15 km/s contain neutral gas, in contradiction with the predictions of current simulations.Based on a suite of simulations of the formation and evolution of dwarf galaxies we show that, by reducing the first peak of star formation by including Pop-III stars in the simulations, the resulting dwarf galaxies have severely suppressed SFRs and can hold on to their gas reservoirs. Moreover, we show that the majority of the zero-metallicity stars are ejected during mergers, resulting in an extended, low-metallicity stellar halo. This results in a marked difference between a galaxy's "total" star-formation history and the one read from the stars in the center of the galaxy at z=0. This mechanism leads to the formation of realistic low-mass, gas-rich dwarfs with a broad range of SFHs and which adhere to the observed scaling relations, such as the baryonic Tully-Fisher relation.In short, the simulations presented here are for the first time able to reproduce the observed properties of low-mass, gas-rich dwarfs such as DDO 210

  14. Contribution of starburst mergers at z~1 to the strong evolution of infrared and submillimeter deep surveys

    CERN Document Server

    Wang, Y P

    2002-01-01

    Recent FIR/submm deep surveys revealed huge amount of ULIGs, which are proposed to lie at z>1, and normally interacting systems with very dusty environments. We discussed in a previous paper that a population of fast evolving infrared burst phase triggered by gas rich mergers at z~1 interpreted successfully the steep slope of IRAS 60um counts, leaving still a reasonable CIRB level at this wavelength. To extend the model to mid- and far-IR, we adopt a template SED as typical for nearby IR bright galaxies, such as Arp220. We construct the SED for the starburst mergers at z~1 by a simple dust extinction law and a thermal continuum assumption for the FIR emission. Since the radiation process at MIR for the merging systems is still uncertain, we assume it is similar to that of Arp220, but modify it by the observed flux correlation of ULIGs from IRAS, ISOCAM deep surveys. We show in this paper that the strong evolution of the ELAIS 90um, ISO 170um and the SCUBA 850um could be sufficiently accounted for by such an e...

  15. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    Science.gov (United States)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  16. A survey of dual active galactic nuclei in simulations of galaxy mergers: frequency and properties

    CERN Document Server

    Capelo, Pedro R; Volonteri, Marta; Mayer, Lucio; Bellovary, Jillian M; Shen, Sijing

    2016-01-01

    We investigate the simultaneous triggering of active galactic nuclei (AGN) in merging galaxies, using a large suite of high-resolution hydrodynamical simulations. We compute dual-AGN observability time-scales using bolometric, X-ray, and Eddington-ratio thresholds, confirming that dual activity from supermassive black holes (BHs) is generally higher at late pericentric passages, before a merger remnant has formed, especially at high luminosities. For typical minor and major mergers, dual activity lasts ~20-70 and ~100-160 Myr, respectively. We also explore the effects of X-ray obscuration from gas, finding that the dual-AGN time decreases at most by a factor of ~2, and of contamination from star formation. Using projected separations and velocity differences rather than three-dimensional quantities can decrease the dual-AGN time-scales by up to ~4, and we apply filters which mimic current observational-resolution limitations. In agreement with observations, we find that, for a sample of major mergers hosting ...

  17. Evolution induced by dry minor mergers on to Fast Rotator S0 galaxies

    CERN Document Server

    Tapia, Trinidad; Querejeta, Miguel; Balcells, Marc; González-Garc'\\ia, A César; Prieto, Mercedes; Aguerri, J Alfonso L; Gallego, Jesús; Zamorano, Jaime; Rodríguez-Pérez, Cristina; Borlaff, Alejandro; .,

    2014-01-01

    We have analysed collisionless N-body simulations of intermediate and minor dry mergers on to S0s to test whether these mergers can generate S0 galaxies with intermediate kinematics between Fast and Slow Rotators. We find that minor mergers induce a lower decrease of the global rotational support than encounters of lower mass ratios, giving rise to S0s with intermediate properties between Fast and Slow Rotators. The resulting remnants are intrinsically more triaxial, less flattened, and span the whole range of apparent ellipticities up to $\\epsilon_\\mathrm{e} \\sim 0.8$. They do not show lower apparent ellipticities in random projections than initially; on the contrary, the formation of oval distortions and the disc thickening raise the percentage of projections at $0.4 0.9$), but exhibit a wide range of triaxialities ($0.20 < T < 1.00$). In the plane of global anisotropy of velocities ($\\delta$) vs. intrinsic ellipticity ($\\epsilon_\\mathrm{e,intr}$), some of our models extend the linear trend found in ...

  18. Cooking a `Sausage': the impact of merger shocks in cluster gas and galaxy evolution

    Science.gov (United States)

    Stroe, Andra; Sobral, David; Harwood, Jeremy; Van Weeren, Reinout J.; Rumsey, Clare; Intema, Huib; Röttgering, Huub; Brüggen, Marcus; Saunders, Richard; Hardcastle, Martin; Hoeft, Matthias

    2015-01-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to important astrophysical phenomena such as the segregation of dark and luminous matter and the formation of cluster-wide traveling shocks and also drive galaxy evolution. The observable effects of shock waves can be seen at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. Despite the great interest in relics, candidates with simple geometry, undisturbed morphology and high surface brightness are scarce. The `Sausage' cluster hosts an extraordinary Mpc-wide relic, which enables us to study to study particle acceleration and the effects of shocks on cluster galaxies. We use a unique combination of facilities (INT, WHT, Keck, Subaru, CFHT, GMRT, WSRT, AMI) to obtain the first cluster-wide, multi-wavelength, multi-method analysis aimed at giving a complete picture of a merging cluster with relics. Using the radio data, we derive shock properties and the magnetic field structure for the relic. Using spectral modeling, we test acceleration and electron energy-loss mechanisms and resolve the discrepancy between the Mach number calculated from the radio and X-rays. Our results indicate that particles are shock-accelerated, but turbulent re-acceleration or unusually efficient transport of particles in the downstream area and line-of-sight mixing are important effects. We demonstrate the feasibility of high-frequency observations of radio relics, by presenting a 16 GHz detection of the `Sausage' relic. The radio analysis is complemented by Hα mapping of the cluster volume, aimed at providing the first direct test as to whether the shock drives or prohibits star formation. We find numerous Hα emitting galaxies in close proximity to the radio relic which are extremely massive, metal-rich, mostly star-forming with evidence for gas mass loss though outflows. We speculate that the complex interaction

  19. On the fragility of nuclear stellar discs against galaxy mergers: surviving photometric and kinematic signatures of nuclear discs

    CERN Document Server

    Sarzi, M; Dotti, M

    2015-01-01

    Nuclear stellar discs (NSDs) can help to constrain the assembly history of their host galaxies, as long as we can assume them to be fragile structures that are disrupted during merger events. In this work we investigate the fragility of NSDs by means of N-body simulations reproducing the last phases of a galaxy encounter, when the nuclear regions of the two galaxies merge. For this, we exposed a NSD set in the gravitational potential of the bulge and supermassive black hole of a primary galaxy to the impact of the supermassive black hole from a secondary galaxy. We explored merger events of different mass ratios, from major mergers with a 1:1 mass ratio to intermediate and minor interactions with 1:5 and 1:10 ratios, while considering various impact geometries. We analyse the end results of such mergers from different viewing angles and looked for possible photometric and kinematic signatures of the presence of a disc in the remnant surface density and velocity maps, while adopting detection limits from real ...

  20. THE MYSTERY OF THE σ-BUMP—A NEW SIGNATURE FOR MAJOR MERGERS IN EARLY-TYPE GALAXIES?

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, Anna Therese Phoebe; Remus, Rhea-Silvia; Burkert, Andreas [Universitäts-Sternwarte München, Scheinerstrasse 1, D-81679 München (Germany); Johansson, Peter H., E-mail: aschauer@usm.uni-muenchen.de [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland)

    2014-03-10

    The stellar velocity dispersion as a function of the galactocentric radius of an early-type galaxy can generally be well approximated by a power law σ∝r {sup β}. However, some observed dispersion profiles show a deviation from this fit at intermediate radii, usually between one and three R {sub eff}, where the velocity dispersion remains constant with radius, showing a bump-like behavior, which we term the {sup σ-}bump. To understand the origin of this σ-bump, we study a set of simulated early-type galaxies formed in major mergers. We find the σ-bump in all of our simulated early-type galaxies, with the size and position of the bump slightly varying from galaxy to galaxy, suggesting that the bump is a characteristic of the major merger formation scenario. The feature can be seen both in the intrinsic and projected stellar velocity dispersions. In contrast to shells that form during the merger event but evolve with time and finally disappear, the σ-bump stays nearly constant with radius and is a permanent feature that is preserved until the end of the simulation. The σ-bump is not seen in the dark matter and gas components and we therefore conclude that it is a purely stellar feature of merger remnants.

  1. A UV study of nearby luminous infrared galaxies: star formation histories and the role of AGN

    CERN Document Server

    Kaviraj, S

    2008-01-01

    We employ UV and optical photometry, from the GALEX and SDSS surveys respectively, to study the star formation histories of 561 luminous infrared galaxies (LIRGs) in the nearby Universe. A small fraction (~4%) of these galaxies have spheroidal or near-spheroidal morphologies and could be progenitors of elliptical galaxies. The remaining galaxies are morphologically late-type or ongoing mergers. 61% of the LIRGs do not show signs of interactions, while the remaining objects are either interacting (~18%) or show post-merger morphologies (~19%). The (SSP-weighted) average age of the underlying stellar populations in these objects is typically 5-9 Gyrs, with a mean value of ~6.8 Gyrs. ~60% of the LIRG population began their recent star formation (RSF) episode within the last Gyr, while the remaining objects began their RSF episodes 1 to 3 Gyrs in the past. Up to 35% of the stellar mass in the remnant forms in these episodes - the mean value is ~15%. The (decay) timescales of the star formation are typically a few...

  2. Multi-wavelength GOALS Observations of Star Formation and Active Galactic Nucleus Activity in the Luminous Infrared Galaxy IC 883

    CERN Document Server

    Modica, F; Evans, A S; Kim, D C; Mazzarella, J M; Iwasawa, K; Petric, A; Howell, J H; Surace, J A; Armus, L; Spoon, H W W; Sanders, D B; Barnes, J E

    2011-01-01

    New optical HST, Spitzer, GALEX, and Chandra observations of the single-nucleus, luminous infrared galaxy (LIRG) merger IC 883 are presented. The galaxy is a member of the Great Observatories All-sky LIRG Survey (GOALS), and is of particular interest for a detailed examination of a luminous late-stage merger due to the richness of the optically-visible star clusters and the extended nature of the nuclear X-ray, mid-IR, CO and radio emission. In the HST ACS images, the galaxy is shown to contain 156 optically visible star clusters distributed throughout the nuclear regions and tidal tails of the merger, with a majority of visible clusters residing in an arc ~ 3-7 kpc from the position of the mid-infrared core of the galaxy. The luminosity functions of the clusters have an alpha_F435W ~ -2.17+/-0.22 and alpha_F814W ~ -2.01+/-0.21. Further, the colors and absolute magnitudes of the majority of the clusters are consistent with instantaneous burst population synthesis model ages in the range of a few x10^7 - 10^8 ...

  3. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    Science.gov (United States)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  4. Near-infrared atlas of S0-Sa galaxies (NIRS0S)

    Science.gov (United States)

    Laurikainen, E.; Salo, H.; Buta, R.; Knapen, J. H.

    2011-12-01

    We present an atlas of Ks-band images of 206 early-type galaxies, including 160 S0-S0/a galaxies, 12 ellipticals and 33 Sa galaxies (+ one later type). The majority of the atlas galaxies belong to a magnitude-limited (mB ≤ 12.5 mag) sample of 185 Near-InfraRed S0 Survey galaxies. To ensure that misclassified S0s are not omitted, 25 ellipticals from the Third Reference Catalogue of Bright Galaxies classified as S0s in the Carnegie Atlas were included in the sample. The observations were carried out using 3-4 m class telescopes with subarcsecond pixel resolution (˜0.25 arcsec), and were obtained in good seeing conditions (full width at half-maximum ˜1 arcsec). The images are 2-3 mag deeper than Two-Micron All-Sky Survey images, allowing the detection of faint outer discs in S0s. Both visual and photometric classifications are made, largely following the classification criteria of de Vaucouleurs. Special attention is paid to the classification of lenses, which are coded in a more systematic manner than in any of the previous studies. A new lens type, called a 'barlens', is introduced, possibly forming part of the bar itself. Also, boxy/peanut/x-shaped structures are identified in many barred galaxies, even though the galaxies are not seen edge-on, indicating that vertical thickening is not enough to explain these structures. Photometric classification includes detection of exponential outer discs or other structures not directly visible in the images, but becoming clear in unsharp masking or residual images in decompositions. In our photometric classification, nuclear bars are assigned for 15 galaxies, which are overshadowed by bulges in visual classification. The mean Hubble stage in the near-infrared is found to be similar to that in the optical. We give dimensions of structure components, and radial profiles of the position angles and ellipticities, and show deviations from perfect elliptical isophotes. Shells and ripples, generally assumed to be manifestations

  5. Tracing kinematic (mis)alignments in CALIFA merging galaxies: Stellar and ionized gas kinematic orientations at every merger stage

    CERN Document Server

    Barrera-Ballesteros, J K; Falcón-Barroso, J; van de Ven, G; Lyubenova, M; Wild, V; Méndez-Abreu, J; Sánchez, S F; Marquez, I; Masegosa, J; Monreal-Ibero, A; Ziegler, B; del Olmo, A; Verdes-Montenegro, L; García-Benito, R; Husemann, B; Mast, D; Kehrig, C; Iglesias-Paramo, J; Marino, R A; Aguerri, J A L; Walcher, C J; Vílchez, J M; Bomans, D J; Cortijo-Ferrero, C; Delgado, R M González; Bland-Hawthorn, J; McIntosh, D H; Bekeraite, Simona

    2015-01-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. We compare our sample with 80 non-interacting galaxies. We measure for the stellar and the ionized gas components the major (projected) kinematic position angles (PA$_{\\mathrm{kin}}$, approaching and receding) directly from the velocity fields with no assumptions on the internal motions. This method allow us to derive the deviations of the kinematic PAs from a straight line ($\\delta$PA$_{\\mathrm{kin}}$). Around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. Those misalignments are present mostly in galaxies with morphological signatures of interaction. Alignment between the kinematic sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the...

  6. Very Small-Scale Clustering and Merger Rate of Luminous Red Galaxies

    CERN Document Server

    Masjedi, M; Berlind, A A; Blanton, M R; Brinkmann, J; Cool, R J; Eisenstein, D J; Hogg, D W; Schneider, D P; Warren, M S; Zehavi, I; Bell, Eric F.; Berlind, Andreas A.; Blanton, Michael R.; Brinkmann, Jon; Cool, Richard J.; Eisenstein, Daniel J.; Hogg, David W.; Masjedi, Morad; Schneider, Donald P.; Warren, Michael S.; Zehavi, Idit

    2005-01-01

    We present the small-scale (0.01galaxies from the Sloan Digital Sky Survey Luminous Red Galaxy (LRG) sample (0.16galaxy pairs. We find that the correlation function xi(r) is surprisingly close to a r^{-2} power law over more than 4 orders of magnitude in separation r. This result is too steep at small scales to be explained in current versions of the halo model for galaxy clustering. We infer an LRG-LRG merger...

  7. The hard X–ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    DEFF Research Database (Denmark)

    Puccetti, S.; Comastri, A.; Bauer, F. E.;

    2016-01-01

    We present a broad–band (∼0.3–70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC6240, combined with archival Chandra, XMM–Newton and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger statewith two distinct nuclei separated by ∼1′.′5. P...

  8. Effects of Mergers and Dynamical State on Galaxy Clusters in Cosmological Simulations

    Science.gov (United States)

    Nelson, Katherine L.; Nagai, Daisuke

    2015-01-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties, which result in large bias and scatter in the hydrostatic mass estimate. In this work, we analyze a sample of massive galaxy clusters from the Omega500 high-resolution hydrodynamic cosmological simulation to examine the effects of dynamical state on non-thermal pressure. We use the Adaptive Refinement Tree (ART) code, an Eulerian grid-based adaptive refinement mesh code, which is well suited for modeling shock heating of gas and generation of bulk and turbulent motions from cosmic accretion. We examine the effects of cluster mergers on the hydrostatic mass bias and the evolution of non-thermal pressure. We find that during a major merger about a third of the total pressure support in the system is in non-thermal pressure from random gas motions, which leads to a ~30% bias in the hydrostatic mass estimate. Even after the clusters relax, we find a residual 10% bias due to the residual non-thermal pressure sustained by continuous gas accretion and minor mergers in cluster outskirts. However, when the non-thermal pressure support is accounted for in the mass estimates of relaxed clusters, we are able to recover the true mass to within a few percent. Moreover, by accounting for the additional pressure contribution from gas accelerations, we find that the bias in the HSE can be reduced by about half for our whole cluster sample. We also characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find a universal, redshift-independent fitting formula for describing the fractional pressure support due to bulk motions. Within the relation, we find that the mass accretion rate has a systematic effect on the amount of non-thermal pressure in clusters

  9. Anisotropies of the infrared background and primordial galaxies

    Science.gov (United States)

    Cooray, Asantha R.

    2007-08-01

    We discuss anisotropies in the near-IR background between 1 to a few microns. This background is expected to contain a signature of primordial galaxies. We have measured fluctuations of resolved galaxies with Spitzer imaging data and we are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background.

  10. Herschel-ATLAS: far-infrared properties of radio-selected galaxies

    CERN Document Server

    Hardcastle, M J; Jarvis, M J; Bonfield, D G; Dunne, L; Rawlings, S; Stevens, J A; Christopher, N M; Heywood, I; Mauch, T; Rigopoulou, D; Verma, A; Baldry, I K; Bamford, S P; Buttiglione, S; Cava, A; Clements, D L; Cooray, A; Croom, S M; Dariush, A; De Zotti, G; Eales, S; Fritz, J; Hill, D T; Hughes, D; Hopwood, R; Ibar, E; Ivison, R J; Jones, D H; Loveday, J; Maddox, S J; Michalowski, M J; Negrello, M; Norberg, P; Pohlen, M; Prescott, M; Rigby, E E; Robotham, A S G; Rodighiero, G; Scott, D; Sharp, R; Smith, D J B; Temi, P; van Kampen, E

    2010-01-01

    We use the Herschel-ATLAS science demonstration data to investigate the star-formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by AGN, we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star-formation histories. Models in which the AGN activity in higher-luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-d...

  11. AMI SZ observation of galaxy-cluster merger CIZA J2242+5301: perpendicular flows of gas and dark matter

    Science.gov (United States)

    Rumsey, Clare; Perrott, Yvette C.; Olamaie, Malak; Saunders, Richard D. E.; Hobson, Michael P.; Stroe, Andra; Schammel, Michel P.; Grainge, Keith J. B.

    2017-10-01

    Arcminute Microkelvin Imager observations towards CIZA J2242+5301, in comparison with observations of weak gravitational lensing and X-ray emission from the literature, are used to investigate the behaviour of non-baryonic dark matter (NBDM) and gas during the merger. Analysis of the Sunyaev-Zel'dovich (SZ) signal indicates the presence of high pressure gas elongated perpendicularly to the X-ray and weak-lensing morphologies, which, given the merger-axis constraints in the literature, implies that high pressure gas is pushed out into a linear structure during core passing. Simulations in the literature closely matching the inferred merger scenario show the formation of gas density and temperature structures perpendicular to the merger axis. These SZ observations are challenging for modified gravity theories in which NBDM is not the dominant contributor to galaxy-cluster gravity.

  12. AMMONIA AS A TEMPERATURE TRACER IN THE ULTRALUMINOUS GALAXY MERGER Arp 220

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Henkel, Christian; Weiss, Axel [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Braatz, James A., E-mail: jott@nrao.edu, E-mail: chenkel@mpifr-bonn.mpg.de, E-mail: aweiss@mpifr-bonn.mpg.de, E-mail: jbraatz@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2011-12-01

    We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH{sub 3}) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH{sub 3}(1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 {+-} 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from {approx}0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH{sub 3}(1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold ({approx}< 20 K) gas layer with an estimated column density of {approx}< 2 Multiplication-Sign 10{sup 14} cm{sup -2}. This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are {approx}120-430 km s{sup -1}, in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to {approx}1800 km s{sup -1} previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 {+-} 19) K, corresponding to a kinetic temperature of T{sub kin} = (186 {+-} 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH{sub 3}) = (1.7 {+-} 0.1) Multiplication-Sign 10{sup 16} cm{sup -2} and (8.4 {+-} 0.5) Multiplication-Sign 10{sup 16} cm{sup -2}, respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are

  13. THE ROLE OF NUCLEAR STAR CLUSTERS IN ENHANCING SUPERMASSIVE BLACK HOLE FEEDING RATES DURING GALAXY MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Naiman, J. P. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ramirez-Ruiz, E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Debuhr, J. [Center for Research in Extreme Scale Technologies, Indiana University, Bloomington IN 47404 (United States); Ma, C.-P. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2015-04-20

    During galaxy mergers the gas falls to the center, triggers star formation, and feeds the rapid growth of supermassive black holes (SMBHs). SMBHs respond to this fueling by supplying energy back to the ambient gas. Numerical studies suggest that this feedback is necessary to explain why the properties of SMBHs and the formation of bulges are closely related. This intimate link between the SMBH’s mass and the large scale dynamics and luminosity of the host has proven to be a difficult issue to tackle with simulations due to the inability to resolve all the relevant length scales simultaneously. In this paper we simulate SMBH growth at high-resolution with FLASH, accounting for the gravitational focusing effects of nuclear star clusters (NSCs), which appear to be ubiquitous in galactic nuclei. In the simulations, the NSC core is resolved by a minimum cell size of about 0.001 pc or approximately 10{sup −3} of the cluster’s radius. We discuss the conditions required for effective gas funneling to occur, which are mainly dominated by a relationship between NSC velocity dispersion and the local sound speed, and provide a sub-grid prescription for the augmentation of central SMBH accretion rates in the presence of NSCs. For the conditions expected to persist in the centers of merging galaxies, the resultant large central gas densities in NSCs should produce drastically enhanced embedded SMBH accretion rates—up to an order of magnitude increase can be achieved for gas properties resembling those in large-scale galaxy merger simulations. This will naturally result in faster black hole growth rates and higher luminosities than predicted by the commonly used Bondi–Hoyle–Lyttleton accretion formalism.

  14. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    Science.gov (United States)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  15. Luminosity profiles of advanced mergers of galaxies using 2MASS data

    CERN Document Server

    Chitre, A; Chitre, Aparna; Jog, Chanda J.

    2002-01-01

    A sample of 27 disturbed galaxies that show signs of interaction but have a single nucleus were selected from the Arp and the Arp-Madore catalogues. For these, the K_s band images from the Two Micron All Sky Survey (2MASS) are analysed to obtain their radial luminosity profiles and other structural parameters. We find that in spite of their similar optical appearance, the sample galaxies vary in their dynamical properties, and fall into two distinct classes. The first class consists of galaxies which can be described by a single r^{1/4} law and the second class consists of galaxies that show an outer exponential disk. A few galaxies that have disturbed profiles cannot be fit into either of the above classes. However, all the galaxies are similar in all other parameters such as the far-infrared colours, the molecular hydrogen content and the central velocity dispersion. Thus, the dynamical parameters of these sets seem to be determined by the ratio of the initial masses of the colliding galaxies. We propose th...

  16. Morphologies of z~0.7 AGN Host Galaxies in CANDELS: No trend of merger incidence with AGN luminosity

    CERN Document Server

    Villforth, C; Rosario, D J; Santini, P; McGrath, E J; van der Wel, A; Chang, Y -Y; Guo, Yicheng; Dahlen, T; Bell, E F; Conselice, C J; Croton, D; Dekel, A; Faber, S M; Grogin, N; Hamilton, T; Hopkins, P F; Juneau, S; Kartaltepe, J; Kocevski, D; Koekemoer, A; Koo, D C; Lotz, J; McIntosh, D; Mozena, M; Somerville, R; Wild, V

    2014-01-01

    The processes that trigger Active Galactic Nuclei (AGN) remain poorly understood. While lower luminosity AGN may be triggered by minor disturbances to the host galaxy, stronger disturbances are likely required to trigger luminous AGN. Major wet mergers of galaxies are ideal environments for AGN triggering since they provide large gas supplies and galaxy scale torques. There is however little observational evidence for a strong connection between AGN and major mergers. We analyse the morphological properties of AGN host galaxies as a function of AGN and host galaxy luminosity and compare them to a carefully matched sample of control galaxies. AGN are X-ray selected in the redshift range 0.5 < z < 0.8 and have luminosities 41 < log(L_X [erg/s]) < 44.5. 'Fake AGN' are simulated in the control galaxies by adding point sources with the magnitude of the matched AGN. We find that AGN host and control galaxies have comparable assymetries, Sersic indices and ellipticities at restframe ~950nm. AGN host gala...

  17. Mid-Infrared Spectral Diagnostics of Luminous Infrared Galaxies

    CERN Document Server

    Petric, A O; Howell, J; Chan, B; Mazzarella, J M; Evans, A S; Surace, J A; Sanders, D; Appleton, P; Charmandaris, V; Santos, T Diaz; Frayer, D; Lord, S; Haan, S; Inami, H; Iwasawa, K; Kim, D; Madore, B; Marshall, J; Spoon, H; Stierwalt, S; Sturm, E; U, V; Vavilkin, T; Veilleux, S

    2010-01-01

    We present a statistical analysis of the mid-infrared (MIR) spectra of 248 luminous infrared (IR) galaxies (LIRGs) which comprise the Great Observatories All-sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on-board the Spitzer Space Telescope. The GOALS sample enables a direct measurement of the relative contributions of star-formation and active galactic nuclei (AGN) to the total IR emission from a large sample of local LIRGs. The AGN contribution to the MIR emission (f-AGN) is estimated by employing several diagnostics based on the properties of the [NeV], [OIV] and [NeII] fine structure gas emission lines, the 6.2 microns PAH and the shape of the MIR continuum. We find that 18% of all LIRGs contain an AGN and that in 10% of all sources the AGN contributes more than 50% of the total IR luminosity. Summing up the total IR luminosity contributed by AGN in all our sources suggests that AGN supply ~12% of the total energy emitted by LIRGs. The average spectrum of sources with an AGN looks ...

  18. Major Merger Galaxy Pairs at z=0: Dust Properties and Companion Morphology

    CERN Document Server

    Domingue, Donovan L; Xu, C Kevin; Jarrett, Thomas H; Ronca, Joseph; Hill, Emily; Jacques, Allison

    2016-01-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K_s magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The CIGALE (Code Investigating GALaxy Emission) is used to fit dust models to the 2MASS, WISE and Herschel flux density measurements and derive the parameters describing the PAH contribution, interstellar radiation field (ISRF) and photo-dissociation regions (PDRs). Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/mo...

  19. Formation and Hardening of Supermassive Black Hole Binaries in Minor Mergers of Disk Galaxies

    CERN Document Server

    Khan, Fazeel Mahmood; Berczik, Peter; Just, Andreas; Mayer, Lucio; Nitadori, Keigo; Callegari, Simone

    2012-01-01

    We model for the first time the complete orbital evolution of a pair of Supermassive Black Holes (SMBHs) in a 1:10 galaxy merger of two disk dominated gas-rich galaxies, from the stage prior to the formation of the binary up to the onset of gravitational wave emission when the binary separation has shrunk to 1 milli parsec. The high-resolution smoothed particle hydrodynamics (SPH) simulations used for the first phase of the evolution include star formation, accretion onto the SMBHs as well as feedback from supernovae explosions and radiative heating from the SMBHs themselves. Using the direct N-body code \\phi-GPU we evolve the system further without including the effect of gas, which has been mostly consumed by star formation in the meantime. We start at the time when the separation between two SMBHs is ~ 700 pc and the two black holes are still embedded in their galaxy cusps. We use 3 million particles to study the formation and evolution of the SMBH binary till it becomes hard. After a hard binary is formed...

  20. Stellar populations of ultraluminous infrared galaxies

    CERN Document Server

    Hou, L G; Kong, M Z; Xue-Bing, Wu

    2011-01-01

    Ultraluminous infrared galaxies (ULIRGs) have several types according to dominance of starburst or AGN component. We made stellar population analysis for a sample of 160 ULIRGs to study the evolution of ULIRGs. We found that the dominance of intermediate-age and old stellar populations increases along the sequence of HII-like ULIRGs, Seyfert-HII composite ULIRGs, and Seyfert 2 ULIRGs. Consequently the typical mean stellar age and the stellar mass increase along the sequence. Comparing the gas mass estimated from the CO measurements with the stellar mass estimated from the optical spectra, we found that gas fraction is anti-correlated with the stellar mass. HII-like ULIRGs with small stellar masses do not possess enough gas and the total mass, and therefore have no evolution connections with massive Seyfert 2 ULIRGs. Only massive ULIRGs may follow the evolution sequence toward AGNs, and massive HII-like ULIRGs are probably in an earlier stage of the sequence.

  1. POST-STARBURST TIDAL TAILS IN THE ARCHETYPICAL ULTRA LUMINOUS INFRARED GALAXY Arp 220

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Matsubayashi, K.; Kajisawa, M.; Shioya, Y.; Ideue, Y. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Ohyama, Y. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan, R.O.C (China); Nagao, T. [Department of Astronomy, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Murayama, T. [Astronomical Institute, Tohoku University, Aramaki, Aoba, Sendai 980-8578 (Japan); Koda, J. [Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794-3800 (United States)

    2012-07-01

    We present our new deep optical imaging and long-slit spectroscopy for Arp 220, the archetypical ultra luminous infrared galaxy in the local universe. Our sensitive H{alpha} imaging has newly revealed large-scale H{alpha} absorption, i.e., post-starburst regions in this merger. One is found in the eastern superbubble and the other is in the two tidal tails that are clearly revealed in our deep optical imaging. The size of the H{alpha} absorption region in the eastern bubble is 5 kpc Multiplication-Sign 7.5 kpc, and the observed H{alpha} equivalent widths are {approx}2 Angstrom-Sign {+-} 0.2 Angstrom-Sign . The sizes of the northern and southern H{alpha}-absorption tidal tails are {approx}5 kpc Multiplication-Sign 10 kpc and {approx}6 kpc Multiplication-Sign 20 kpc, respectively. The observed H{alpha} equivalent widths range from 4 Angstrom-Sign to 7 Angstrom-Sign . In order to explain the presence of the two post-starburst tails, we suggest a possible multiple-merger scenario for Arp 220 in which two post-starburst disk-like structures merged into one, causing the two tails. This favors Arp 220 as a multiple merging system composed of four or more galaxies arising from a compact group of galaxies. Taking our new results into account, we discuss a star formation history in the last 1 Gyr in Arp 220.

  2. Investigating the relation between CO (3-2) and far-infrared luminosities for nearby merging galaxies using ASTE

    Science.gov (United States)

    Michiyama, Tomonari; Iono, Daisuke; Nakanishi, Kouichiro; Ueda, Junko; Saito, Toshiki; Ando, Misaki; Kaneko, Hiroyuki; Yamashita, Takuji; Matsuda, Yuichi; Hatsukade, Bunyo; Kikuchi, Kenichi; Komugi, Shinya; Muto, Takayuki

    2016-09-01

    We present the new single-dish CO (3-2) emission data obtained toward 19 early-stage and 7 late-stage nearby merging galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). Combining with the single-dish and interferometric data of galaxies observed in previous studies, we investigate the relation between the CO (3-2) luminosity (L^' }_CO(3-2)) and the far-infrared luminosity (LFIR) in a sample of 29 early-stage and 31 late-stage merging galaxies, and 28 nearby isolated spiral galaxies. We find that normal isolated spiral galaxies and merging galaxies have different slopes (α) in the log L^' }_CO(3-2)-log LFIR plane (α ˜ 0.79 for spirals and ˜1.12 for mergers). The large slope (α > 1) for merging galaxies can be interpreted as evidence for increasing star formation efficiency (SFE = L_FIR/L^' }_CO(3-2)) as a function of LFIR. Comparing our results with sub-kpc-scale local star formation and global starburst activity in the high-z universe, we find deviations from the linear relationship in the log L^' }_CO(3-2)-log LFIR plane for the late-stage mergers and high-z star-forming galaxies. Finally, we find that the average SFE gradually increases from isolated galaxies to merging galaxies and to high-z submillimeter galaxies/quasi-stellar objects. By comparing our findings with results from numerical simulations, we suggest that: (1) inefficient starbursts triggered by disk-wide dense clumps occur in the early stage of interaction, and (2) efficient starbursts triggered by central concentration of gas occur in the final stage. A systematic high spatial resolution survey of diffuse- and dense-gas tracers is the key to confirming this scenario.

  3. The importance of major mergers in the build up of stellar mass in brightest cluster galaxies at z=1

    CERN Document Server

    Lidman, C; Bauer, A E; Barrientos, L F; Cerulo, P; Couch, W J; Delaye, L; Demarco, R; Ellingson, E; Faloon, A J; Gilbank, D; Huertas-Company, M; Mei, S; Meyers, J; Muzzin, A; Noble, A; Nantais, J; Rettura, A; Rosati, P; Sanchez-Janssen, R; Strazzullo, V; Webb, T M A; Wilson, G; Yan, R; Yee, H K C

    2013-01-01

    Recent independent results from numerical simulations and observations have shown that brightest cluster galaxies (BCGs) have increased their stellar mass by a factor of almost two between z~0.9 and z~0.2. The numerical simulations further suggest that more than half this mass is accreted through major mergers. Using a sample of 18 distant galaxy clusters with over 600 spectroscopically confirmed cluster members between them, we search for observational evidence that major mergers do play a significant role. We find a major merger rate of 0.38 +/- 0.14 mergers per Gyr at z~1. While the uncertainties, which stem from the small size of our sample, are relatively large, our rate is consistent with the results that are derived from numerical simulations. If we assume that this rate continues to the present day and that half of the mass of the companion is accreted onto the BCG during these mergers, then we find that this rate can explain the growth in the stellar mass of the BCGs that is observed and predicted by...

  4. Driving the Growth of the Earliest Supermassive Black Holes with Major Mergers of Host Galaxies

    CERN Document Server

    Tanaka, Takamitsu L

    2014-01-01

    The formation mechanism of supermassive black holes (SMBHs) in general, and of $\\sim 10^9\\,{\\rm M}_{\\odot}$ SMBHs observed as luminous quasars at redshifts $z> 6$ in particular, remains an open fundamental question. The presence of such massive BHs at such early times, when the Universe was less than a billion years old, implies that they grew via either super-Eddington accretion, or nearly uninterrupted gas accretion near the Eddington limit; the latter, at first glance, is at odds with empirical trends at lower redshifts, where quasar episodes associated with rapid BH growth are rare and brief. In this work, I examine whether and to what extent the growth of the $z> 6$ quasar SMBHs can be explained within the standard quasar paradigm, in which major mergers of host galaxies trigger episodes of rapid gas accretion below or near the Eddington limit. Using a suite of Monte Carlo merger tree simulations of the assembly histories of the likely hosts of the $z> 6$ quasars, I investigate (i) their growth and major...

  5. Do Cluster Cooling Flows Survive Head-on Galaxy Cluster Mergers?

    CERN Document Server

    Gómez, P L; Roettiger, K; Burns, J O

    2000-01-01

    We report the results of recent numerical simulations of the head-on merger of a cooling flow cluster with an infalling subcluster of galaxies. These simulations examined the effects of different types of cluster mergers (with 16:1 and 4:1 mass ratios) on the evolution of cluster cooling flows (mass accretion rates of 100 and 400 M/year. The 2-dimensional simulations were performed with a Hydro/N-body code on a uniform grid with a resolution of 20 kpc. We find that the ram-pressure of the infalling gas is crucial in determining the fate of the cooling flow as disruption occurs when a substantial amount of subcluster gas reaches the primary's core. In such cases, the subcluster gas can increase the central cooling time by displacing the high-density cooling gas and by heating it via shocks and turbulent gas motions. Moreover, the fate of a merging cooling flow is also dependent on its initial cooling time. In cases where the initial cooling time is very small then, even if the flow is disrupted, the central co...

  6. Massive black hole and gas dynamics in galaxy nuclei mergers. I. Numerical implementation

    CERN Document Server

    Lupi, Alessandro; Dotti, Massimo

    2014-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, ...

  7. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    CERN Document Server

    Randall, S W; van Weeren, R J; Intema, H T; Dawson, W A; Mroczkowski, T; Blanton, E L; Bulbul, E; Giacintucci, S

    2016-01-01

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post core passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces while the effectively collisionless galaxies (and presumably their associated dark matter halos) do not. This system contains double peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of dark matter. Low frequency r...

  8. The impact of a major cluster merger on galaxy evolution in MACS\\,J0025.4-1225

    CERN Document Server

    Ma, C -J; Marshall, P; Schrabback, T

    2010-01-01

    We present results of an extensive morphological, spectroscopic, and photometric study of the galaxy population of MACS J0025.4$-$1225 (z=0.586), a major cluster merger with clear segregation of dark and luminous matter, to examine the impact of mergers on galaxy evolution. Based on 436 galaxy spectra obtained with Keck DEIMOS, we identified 212 cluster members within 4 Mpc of the cluster centre, and classified them using three spectroscopic types; we find 111 absorption-line, 90 emission-line (including 23 e(a) and 11 e(b)), and 6 E+A galaxies. The fraction of absorption(emission)-line galaxies is a monotonically increasing(decreasing) function of both projected galaxy density and radial distance to the cluster center. More importantly, the 6 observed E+A cluster members are all located between the dark-matter peaks of the cluster and within ~0.3Mpc radius of the X-ray flux peak, unlike the E+A galaxies in other intermediate-redshift clusters which are usually found to avoid the core region. In addition, we ...

  9. Warm Molecular Gas in Luminous Infrared Galaxies

    CERN Document Server

    Lu, N; Xu, C K; Gao, Y; Armus, L; Mazzarella, J M; Isaak, K G; Petric, A O; Charmandaris, V; Diaz-Santos, T; Evans, A S; Howell, J; Appleton, P; Inami, H; Iwasawa, K; Leech, J; Lord, S; Sanders, D B; Schulz, B; Surace, J; van der Werf, P P

    2014-01-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the $J$ to $J$$-$1 transitions from $J=4$ up to $13$ from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). The observed SLEDs change on average from one peaking at $J \\le 4$ to a broad distribution peaking around $J \\sim\\,$6$-$7 as the IRAS 60-to-100 um color, $C(60/100)$, increases. However, the ratios of a CO line luminosity to the total infrared luminosity, $L_{\\rm IR}$, show the smallest variation for $J$ around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-$J$ regime ($5 \\lesssim J \\lesssim 10$). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5$-$4), (6$-$5), (7$-$6), (8$-$7) and (10$-$9) transitions to $L_{\\rm IR}$, $\\log R_{\\rm midCO}$, remain largely independent of $C(60/100)$, ...

  10. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    Science.gov (United States)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; Johnson, K. E.; Brandt, W. N.; Walker, L. M.; Eracleous, M.; Maybhate, A.; Gronwall, C.; English, J.; Hornschemeier, A. E.; Mulchaey, J. S.

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  11. THE MERGER HISTORY, ACTIVE GALACTIC NUCLEUS, AND DWARF GALAXIES OF HICKSON COMPACT GROUP 59

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, I. S.; Charlton, J. C.; Brandt, W. N.; Eracleous, M.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Gallagher, S. C.; Fedotov, K.; Hill, A. R. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zabludoff, A. I. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Maier, M. L. [Gemini Observatory, Casilla 603, Colina el Pino S/N, La Serena (Chile); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Johnson, K. E.; Walker, L. M. [Department of Astronomy, University of Virginia, P. O. Box 400325, Charlottesville, VA 22904 (United States); Maybhate, A. [Space Telescope Science Institute, Baltimore, MD (United States); English, J. [University of Manitoba, Winnipeg, MN (Canada); Mulchaey, J. S., E-mail: iraklis@astro.psu.edu [Carnegie Observatories, Pasadena, CA 91101 (United States)

    2012-01-20

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (Hubble Space Telescope), infrared (Spitzer), and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 Multiplication-Sign 10{sup 13} M{sub Sun }), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other are two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic H II regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at {approx}1 Gyr to examine recent interactions. We detect a likely low-luminosity active galactic nucleus in HCG 59A by its {approx}10{sup 40} erg s{sup -1} X-ray emission; the active nucleus rather than star formation can account for the UV+IR spectral energy distribution. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  12. Pairing and sinking of binary SMBHs in sub-pc resolution simulations of galaxy mergers

    CERN Document Server

    Chapon, Damien; Teyssier, Romain

    2011-01-01

    We study the formation of a supermassive black hole (SMBH) binary and the shrinking of the separation of the two holes to sub-pc scales starting from a realistic major merger between two gas-rich spiral galaxies with mass comparable to our Milky Way. The simulations are the first of this kind carried out with an Adaptive Mesh refinement (AMR) code (here RAMSES), and the first capable to resolve separations as small as 0.1 pc. The collision of the two galaxies produces a gravo-turbulent rotating nuclear disk with mass (\\sim 10^9 Msun) and size (\\sim 60 pc) in excellent agreement with previous SPH simulations with particle splitting that used a similar setup (Mayer et al. 2007) but were limited to separations of a few parsecs. The AMR results confirm that the two black holes sink rapidly as a result of dynamical friction onto the gaseous background, reaching a separation of 1 pc in less than 10^7 yr. We show that the dynamical friction wake is well resolved by our model and we find good agreement with analytica...

  13. The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping

    CERN Document Server

    Ichinohe, Y; Simionescu, A; Allen, S W; Canning, R E A; Ehlert, S; Mernier, F; Takahashi, T

    2014-01-01

    We present the results of deep Chandra, XMM-Newton and Suzaku observations of the nearby galaxy cluster Abell 85, which is currently undergoing at least two mergers, and in addition shows evidence for gas sloshing which extends out to r~600 kpc. One of the two infalling subclusters, to the south of the main cluster center, has a dense, X-ray bright cool core and a tail extending to the southeast. The northern edge of this tail is strikingly smooth and sharp (narrower than the Coulomb mean free path of the ambient gas) over a length of 200 kpc, while toward the southwest the boundary of the tail is blurred and bent, indicating a difference in the plasma transport properties between these two edges. The thermodynamic structure of the tail strongly supports an overall northwestward motion, with a sloshing-induced tangential ambient gas bulk flow bending the tail eastward. The brightest galaxy of this subcluster is at the leading edge of the dense core, and is trailed by the tail of stripped gas, suggesting that ...

  14. Star Formation in Galaxy Mergers with Realistic Models of Stellar Feedback & the Interstellar Medium

    CERN Document Server

    Hopkins, Philip F; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C; Murray, Norman

    2012-01-01

    We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star formation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation micro...

  15. First measurement of HI 21cm emission from a GRB host galaxy indicates a post-merger system

    CERN Document Server

    Arabsalmani, Maryam; Zwaan, Martin; Kanekar, Nissim; Michałowski, Michał J

    2015-01-01

    We report the detection and mapping of atomic hydrogen in HI 21cm emission from ESO 184-G82, the host galaxy of the gamma ray burst 980425. This is the first instance where HI in emission has been detected from a galaxy hosting a gamma ray burst. ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the gamma ray burst and the associated supernova, SN 1998bw. This is one of the most luminous HII regions identified in the local Universe, with a very high inferred density of star formation. The HI 21cm observations reveal a high HI mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the HI 21cm emission reveals a disturbed rotating gas disk, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the gamma ray burst are both located in the highest HI column density region of the galaxy. We speculate that the merger event has resulted in shock compress...

  16. The merger history, AGN and dwarf galaxies of Hickson Compact Group 59

    CERN Document Server

    Konstantopoulos, I S; Fedotov, K; Durrell, P R; Tzanavaris, P; Hill, A R; Zabludoff, A I; Maier, M L; Elmegreen, D M; Charlton, J C; Johnson, K E; Brandt, W N; Walker, L M; Eracleous, M; Maybhate, A; Gronwall, C; English, J; Hornschemeier, A E; Mulchaey, J S

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8e13 Msun), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical o...

  17. The VIMOS VLT Deep Survey: the contribution of minor mergers to the growth of L_B >= L*_B galaxies since z ~ 1 from spectroscopically identified pairs

    CERN Document Server

    López-Sanjuan, C; de Ravel, L; Cucciati, O; Ilbert, O; Tresse, L; Bardelli, S; Bolzonella, M; Contini, T; Garilli, B; Guzzo, L; Maccagni, D; McCraken, H J; Mellier, Y; Pollo, A; Vergani, D; Zucca, E

    2010-01-01

    In this work we measure the merger fraction, f_m, of L_B >= L*_B galaxies in the VVDS-Deep spectroscopic Survey. We define kinematical close pairs as those galaxies with a separation in the sky plane 5h^-1 kpc = 1/4 and 1/10 = mu) proportional to mu^s. The value of s evolves from s = -0.64 +- 0.13 at z = 0.8 to s = -1.11 +- 0.19 at z = 0.5. The fraction of minor mergers for bright galaxies decreases with redshift as a power-law (1+z)^m with index m = -0.4 +- 0.6 for the merger fraction and m = -0.8 +- 0.9 for the merger rate. We split our principal galaxies in red and blue by their rest-frame NUV-r colour, finding that i) f_m is higher for red galaxies, ii) f_m^red does not evolve with z, and iii) f_m^blue evolves dramatically. Our results show that the mass of normal L_B >= L*_B galaxies has grown ~25% since z ~ 1 because of minor and major mergers. The relative contribution of the mass growth by merging is ~25% due to minor mergers and ~75% due to major ones. The relative effect of merging is more important...

  18. The Far-Infrared Properties of the Most Isolated Galaxies

    Science.gov (United States)

    Lisenfeld, U.; Verdes-Montenegro, L.; Sulentic, J.; Leon, S.; Espada, D.; Bergond, G.; García, E.; Sabater, J.; Santander-Vela, J. D.; Verley, S.

    2007-05-01

    A long-standing question in galaxy evolution involves the role of nature (self-regulation) vs. nurture (environment) on the observed properties (and evolution) of galaxies. A collaboration centreed at the Instituto de Astrofisica de Andalucia (Granada, Spain) is trying to address this question by producing a observational database for a sample of 1050 isolated galaxies from the catalogue of Karachentseva (1973) with the overarching goal being the generation of a "zero-point" sample against which effects of environment on galaxies can be assessed. The AMIGA (Analysis of the Interstellar Medium of Isolated Galaxies) database (see www.iaa.es/AMIGA.html) will include optical, IR and radio line and continuum measures. The galaxies in the sample represent the most isolated galaxies in the local universe. In the present contribution, we will present the project, as well as the results of an analysis of the far-infrared (FIR) and molecular gas properties of this sample.

  19. Optical and infrared spectrophotometry of 18 Markarian galaxies

    Science.gov (United States)

    Neugebauer, G.; Becklin, E. E.; Oke, J. B.; Searle, L.

    1976-01-01

    Slit spectra, spectrophotometric scans, and infrared broad-band observations are presented for 18 Markarian galaxies with emission lines. Eight of the program galaxies can be classified as Seyfert galaxies. Arguments are given that thermal, nonthermal, and stellar radiation components are present. Broadly speaking, one group of Seyfert galaxies is characterized both by the presence of a high-density region of gas and by a continuum dominated by nonthermal radiation. The continua of the remaining program Seyferts, which do not have a high-density region of gas, are dominated by thermal radiation from dust and a stellar continuum. The 10 galaxies which are not Seyfert galaxies are shown to be examples of extragalactic H II regions; there is evidence for thermal emission from dust being present at 10 microns in four of these galaxies.

  20. Influence of baryonic physics on the merger time-scale of galaxies in N-body/hydrodynamical simulations

    CERN Document Server

    Jiang, C Y; Lin, W P

    2009-01-01

    Following our previous work(Jiang et al.(2008)), in which we studied the merger time-scale of galaxies in a high-resolution cosmological hydro/N-body simulation, we investigate the potential influence of uncertainties in the numerical implementation of baryonic physics on the merger time-scale. The simulation used in the previous work suffers from the overcooling problem which causes the central galaxies of large halos too massive. This may result in a shortened merger time-scale compared to that in the real universe. We run a similar simulation, but the stellar mass is significantly reduced to model another extreme case of low stellar mass. Our result shows that the merger time-scale is little affected by the star formation recipes, except for the satellites in nearly radial orbits which show a 22 percent higher time-scale in the lower stellar mass case. Since the radial orbits only account for a small part of the satellites' orbits, the fitting formula in Jiang et al.(2008) is still applicable to a reasonab...

  1. A Parameter Space Exploration of Galaxy Cluster Mergers I: Gas Mixing and the Generation of Cluster Entropy

    CERN Document Server

    ZuHone, John

    2010-01-01

    We present a high-resolution set of adiabatic binary galaxy cluster merger simulations using FLASH. These are the highest-resolution simulations to date of such mergers using an AMR grid-based code with Eulerian hydrodynamics. In this first paper in a series we investigate the effects of merging on the entropy of the hot intracluster gas, specifically with regard to the ability of merging to heat and disrupt cluster "cool-cores." We find, in line with recent works, that the effect of fluid instabilities that are well-resolved in grid-based codes is to significantly mix the gases of the two clusters and to significantly increase the entropy of the gas of the final merger remnant. This result is characteristic of mergers over a range of initial mass ratio and impact parameter. In line with this, we find that the kinetic energy associated with random motions is higher in our merger remnants which have high entropy floors, indicating the motions have efficiently mixed the gas and heated the cluster core with gas ...

  2. From galaxy-scale fueling to nuclear-scale feedback. The merger-state of radio galaxies 3C 293, 3C 305, and 4C 12.50

    Science.gov (United States)

    Emonts, B. H. C.; Morganti, R.; Villar-Martín, M.; Hodgson, J.; Brogt, E.; Tadhunter, C. N.; Mahony, E.; Oosterloo, T. A.

    2016-11-01

    Powerful radio galaxies are often associated with gas-rich galaxy mergers. These mergers may provide the fuel to trigger starburst and active galactic nuclear (AGN) activity. In this Research Note, we study the host galaxies of three seemingly young or re-started radio sources that drive fast outflows of cool neutral hydrogen (H i) gas, namely 3C 293, 3C 305 and 4C 12.50 (PKS 1345+12). Our aim is to link the feedback processes in the central kpc-scale region with new information on the distribution of stars and gas at scales of the galaxy. For this, we use deep optical V-band imaging of the host galaxies, complemented with H i emission-line observations to study their gaseous environments. We find prominent optical tidal features in all three radio galaxies, which confirm previous claims that 3C 293, 3C 305, and 4C 12.50 have been involved in a recent galaxy merger or interaction. Our data show the complex morphology of the host galaxies and identify the companion galaxies that are likely involved in the merger or interaction. The radio sources appear to be (re-)triggered at a different stage of the merger; 4C 12.50 is a pre-coalescent and possibly multiple merger, 3C 293 is a post-coalescent merger that is undergoing a minor interaction with a close satellite galaxy, while 3C 305 appears to be shaped by an interaction with a gas-rich companion. For 3C 293 and 3C 305, we do not detect H i beyond the inner 30-45 kpc region, which shows that the bulk of the cold gas is concentrated within the host galaxy, rather than along the widespread tidal features.

  3. Ionizing stellar population in the disk of NGC 3310. I. The impact of a minor merger on galaxy evolution

    CERN Document Server

    Miralles-Caballero, D; Rosales-Ortega, F F; Pérez-Montero, E; Sánchez, S F

    2014-01-01

    Numerical simulations of minor mergers predict little enhancement in the global star formation activity. However, it is still unclear the impact they have on the chemical state of the whole galaxy and on the mass build-up in the galaxy bulge and disc. We present a 2-dimensional analysis of NCG 3310, currently undergoing an intense starburst likely caused by a recent minor interaction, using data from the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey (PINGS). With data from a large sample of about a hundred HII regions identified throughout the disc and spiral arms we derive, using strong-line metallicity indicators and direct derivations, a rather flat gaseous abundance gradient. Thus, metal mixing processes occurred, as in observed galaxy interactions. Spectra from PINGS data and additionalmulti-wavelength imaging were used to perform a Spectral Energy Distribution (SED) fitting to the stellar emission and a photoionization modelling of the nebulae. The ionizing stellar population is characte...

  4. New Techniques for Relating Dynamically Close Galaxy Pairs to Merger and Accretion Rates Application to the SSRS2 Redshift Survey

    CERN Document Server

    Patton, D R; Marzke, R O; Pritchet, C J; Da Costa, L N; Pellegrini, P S

    2000-01-01

    We introduce two new pair statistics, which relate close galaxy pairs to the merger and accretion rates. We demonstrate the importance of correcting these (and other) pair statistics for selection effects related to sample depth and completeness. In particular, we highlight the severe bias that can result from the use of a flux-limited survey. The first statistic, denoted N_c, gives the number of companions per galaxy, within a specified range in absolute magnitude. N_c is directly related to the galaxy merger rate. The second statistic, called L_c, gives the total luminosity in companions, per galaxy. This quantity can be used to investigate the mass accretion rate. Both N_c and L_c are related to the galaxy correlation function and luminosity function in a straightforward manner. We outline techniques which account for various selection effects, and demonstrate the success of this approach using Monte Carlo simulations. If one assumes that clustering is independent of luminosity (which is appropriate for re...

  5. On the Influence of Minor Mergers on the Radial Abundance Gradient in Disks of Milky Way-like Galaxies

    CERN Document Server

    Zinchenko, Igor A; Grebel, Eva K; Pilyugin, Leonid S; Just, Andreas

    2015-01-01

    We investigate the influence of stellar migration caused by minor mergers (mass ratio from 1:70 to 1:8) on the radial distribution of chemical abundances in the disks of Milky Way-like galaxies during the last four Gyr. A GPU-based pure N-body tree-code model without hydrodynamics and star formation was used. We computed a large set of mergers with different initial satellite masses, positions, and orbital velocities. We find that there is no significant metallicity change at any radius of the primary galaxy in the case of accretion of a low-mass satellite of 10$^9$ M$_{\\odot}$ (mass ratio 1:70) except for the special case of prograde satellite motion in the disk plane of the host galaxy. The accretion of a satellite of a mass $\\gtrsim3\\times10^9$ M$_{\\odot}$ (mass ratio 1:23) results in an appreciable increase of the chemical abundances at galactocentric distances larger than $\\sim10$ kpc. The radial abundance gradient flattens in the range of galactocentric distances from 5 to 15 kpc in the case of a merger...

  6. In the Wake of Dark Giants: New Signatures of Dark Matter Self Interactions in Equal Mass Mergers of Galaxy Clusters

    CERN Document Server

    Kim, Stacy Y; Wittman, David

    2016-01-01

    Merging galaxy clusters have been touted as one of the best probes for constraining self-interacting dark matter, but few simulations exist to back up this claim. We simulate equal mass mergers of 10$^{15}$ M$_\\odot$ halos, like the El Gordo and Sausage clusters, with cosmologically-motivated halo and merger parameters, and with velocity-independent dark-matter self-interactions. Although the standard lore for merging clusters is that self-interactions lead to large separations between the galaxy and dark-matter distributions, we find that maximal galaxy-dark matter offsets of $\\lesssim~20$~kpc form for a self-interaction cross section of $\\sigma_\\text{SI}/m_\\chi$ = 1 cm$^2$/g. This is an order of magnitude smaller than those measured in observed equal mass and near equal mass mergers, and is likely to be even smaller for lower-mass systems. While competitive cross-section constraints are thus unlikely to emerge from offsets, we find other signatures of self-interactions which are more promising. Intriguingly...

  7. Constraints on the Evolution of the Galaxy Stellar Mass Function I: Role of Star Formation, Mergers, and Stellar Stripping

    Science.gov (United States)

    Contini, E.; Kang, Xi; Romeo, A. D.; Xia, Q.

    2017-03-01

    We study the connection between the observed star formation rate–stellar mass (SFR–M *) relation and the evolution of the stellar mass function (SMF) by means of a subhalo abundance matching technique coupled to merger trees extracted from an N-body simulation. Our approach, which considers both galaxy mergers and stellar stripping, is to force the model to match the observed SMF at redshift z> 2, and let it evolve down to the present time according to the observed SFR–M * relation. In this study, we use two different sets of SMFs and two SFR–M * relations: a simple power law and a relation with a mass-dependent slope. Our analysis shows that the evolution of the SMF is more consistent with an SFR–M * relation with a mass-dependent slope, in agreement with predictions from other models of galaxy evolution and recent observations. In order to fully and realistically describe the evolution of the SMF, both mergers and stellar stripping must be considered, and we find that both have almost equal effects on the evolution of SMF at the massive end. Taking into account the systematic uncertainties in the observed data, the high-mass end of the SMF obtained by considering stellar stripping results in good agreement with recent observational data from the Sloan Digital Sky Survey. At {log} {M}* 11.2) is in better agreement with D’Souza et al. data which account for more massive galaxies.

  8. Modeling the evolution of infrared galaxies : clustering of galaxies in the Cosmic Infrared Background

    CERN Document Server

    Pénin, Aurélie; Lagache, Guilaine; Béthermin, Matthieu

    2011-01-01

    Star-forming galaxies are a highly biased tracer of the underlying dark matter density field. Their clustering can be studied through the cosmic infrared background anisotropies. These anisotropies have been measured from 100 \\mum to 2 mm in the last few years. In this paper, we present a fully parametric model allowing a joint analysis of these recent observations. In order to develop a coherent model at various wavelengths, we rely on two building blocks. The first one is a parametric model that describes the redshift evolution of the luminosity function of star-forming galaxies. It compares favorably to measured differential number counts and luminosity functions. The second one is a halo model based description of the clustering of galaxies. Starting from a fiducial model, we investigate parameter degeneracies using a Fisher analysis. We then discuss how halo of different mass and redshift, how LIRGs and ULIRGs, contribute to the CIB angular power spectra. From the Fisher analysis, we conclude that we can...

  9. Probing the Circumnuclear Stellar Populations of Starburst Galaxies in the Near-infrared

    CERN Document Server

    Dametto, N Z; Pastoriza, M G; Rodríguez-Ardila, A; Hernandez-Jimenez, J A; Carvalho, E A

    2014-01-01

    We employ the NASA Infrared Telescope Facility's near-infrared spectrograph SpeX at 0.8-2.4$\\mu$m to investigate the spatial distribution of the stellar populations (SPs) in four well known Starburst galaxies: NGC34, NGC1614, NGC3310 and NGC7714. We use the STARLIGHT code updated with the synthetic simple stellar populations models computed by Maraston (2005, M05). Our main results are that the NIR light in the nuclear surroundings of the galaxies is dominated by young/intermediate age SPs ($t \\leq 2\\times10^9$yr), summing from $\\sim$40\\% up to 100\\% of the light contribution. In the nuclear aperture of two sources (NGC1614 and NGC3310) we detected a predominant old SP component ($t > 2\\times10^9$yr), while for NGC34 and NGC7714 the younger component prevails. Furthermore, we found evidence of a circumnuclear star formation ring-like structure and a secondary nucleus in NGC1614, in agreement with previous studies. We also suggest that the merger/interaction experienced by three of the galaxies studied, NGC161...

  10. A Multiwavelength Study of a Sample of 70 micron Selected Galaxies in the COSMOS Field II: The Role of Mergers in Galaxy Evolution

    CERN Document Server

    Kartaltepe, Jeyhan S; Le Floc'h, E; Frayer, D T; Aussel, H; Arnouts, S; Ilbert, O; Salvato, M; Scoville, N Z; Surace, J; Yan, L; Capak, P; Caputi, K; Carollo, C M; Cassata, P; Civano, F; Hasinger, G; Koekemoer, A M; Le Fèvre, O; Lilly, S; Liu, C T; McCracken, H J; Schinnerer, E; Smolcic, V; Taniguchi, Y; Thompson, D J; Trump, J; Baldassare, V F; Fiorenza, S L

    2010-01-01

    We analyze the morphological properties of a large sample of 1503 70 micron selected galaxies in the COSMOS field spanning the redshift range 0.011 being difficult to classify and subject to the effects of band pass shifting, therefore, these numbers can only be considered lower limits. At z1 the fraction of major mergers is at least 30-40% for ULIRGs. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. W e argue that given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase that it is plausible for the observed red sequence of massive ellipticals (<10^12 M_sun) to have been formed entirely by gas-rich major mergers.

  11. Infrared polarimetry and the magnetic field in external galaxies

    Science.gov (United States)

    Jones, Terry Jay

    1990-01-01

    Here researchers report for the first time infrared polarimetry of the normal edge on spiral NGC 4565 and the interacting pair NGC 3690/IC 694 (Arp 299). These observations, as well as previous observations, were made with the Minnesota Infrared Polarimeter on the Space Infrared Telescope Facility during the past year. The goal is to explore the magnetic field geometry in these galaxies and to determine the extent to which the field is ordered and uniform.

  12. Constraining the galaxy-halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties

    Science.gov (United States)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Avila-Reese, Vladimir; Faber, S. M.

    2017-09-01

    We present new determinations of the stellar-to-halo mass relation (SHMR) at z = 0-10 that match the evolution of the galaxy stellar mass function, the star formation rate (SFR)-M* relation and the cosmic SFR. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings are as follows: (1) The halo mass M50 above which 50 per cent of galaxies are quenched coincides with sSFR/sMAR ∼ 1, where sSFR is the specific SFR and sMAR is the specific halo mass accretion rate. (2) M50 increases with redshift, presumably due to cold streams being more efficient at high redshifts, while virial shocks and active galactic nucleus feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around {M_vir}˜ 2× 10^{11} M_{⊙}. (4) The stellar mass density within 1 kpc, Σ1, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in Σ1, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower mass galaxies. (7) Galaxies grow inside-out. The marked change in the slope of the size-mass relation when galaxies became quenched, from d log {R_eff}/d log {M_*}˜ 0.35 to ∼2.5, could be the result of dry minor mergers.

  13. A NOVEL APPROACH TO CONSTRAIN THE MASS RATIO OF MINOR MERGERS IN ELLIPTICAL GALAXIES: APPLICATION TO NGC 4889, THE BRIGHTEST CLUSTER GALAXY IN COMA

    Energy Technology Data Exchange (ETDEWEB)

    Gu Meng; Huang Song [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ho, Luis C. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Peng, Chien Y. [Giant Magellan Telescope Organization, 251 South Lake Avenue, Suite 300, Pasadena, CA 91101 (United States)

    2013-08-10

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (M{sub I} Almost-Equal-To -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of {approx}90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies.

  14. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, D.; Petty, S. M.; Harris, K. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Lebouteiller, V.; Spoon, H. W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Bernard-Salas, J.; Pearson, C. [Department of Physics and Astronomy, The Open University, Milton Keynes MK7 6AA (United Kingdom); Rigopoulou, D. [RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); González-Alfonso, E. [Universidad de Alcalá, Departamento de Física y Matemáticas, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Clements, D. L. [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Afonso, J. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Hurley, P. [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Borys, C. [Infrared Processing and Analysis Center, MS220-6, California Institute of Technology, Pasadena, CA 91125 (United States); Verma, A. [Oxford Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Rd, Oxford OX1 3RH (United Kingdom); Cooray, A.; Salvatelli, V. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s{sup –1} and luminosities of 10{sup 7}-10{sup 9} L{sub ☉}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  15. From major merger to radio galaxy : low surface-brightness stellar counterpart to the giant HI ring around B2 0648+27

    NARCIS (Netherlands)

    Emonts, B. H. C.; Morganti, R.; van Gorkom, J. H.; Oosterloo, T. A.; Brogt, E.; Tadhunter, C. N.

    2008-01-01

    We present the detection of a low surface-brightness stellar counterpart to an enormous (190 kpc) ring of neutral hydrogen (HI) gas that surrounds the nearby radio galaxy B2 0648+27. This system is currently in an evolutionary stage between major merger and (radio-loud) early-type galaxy. In a previ

  16. Tidal Disruption Rates in Non-spherical Galactic Nuclei Formed by Galaxy Mergers

    Science.gov (United States)

    Lezhnin, Kirill; Vasiliev, Eugene

    2016-11-01

    We explore the rates of tidal disruption events (TDEs) of stars by supermassive black holes (SBHs) in galactic nuclei formed in mergers followed by a formation and coalescence of a binary SBH. Such systems initially have a deficit of stars on low-angular-momentum orbits caused by the slingshot process during the binary SBH stage, which tends to reduce the flux of stars into the SBH compared to the steady-state value. On the other hand, a newly formed galactic nucleus has a non-spherical shape, which enhances the mixing of stars in angular momentum and, thus, the TDE rate. In galaxies with relatively low SBH masses (≲ {10}7 {M}⊙ ), relaxation times are short enough to wash out the anisotropy in initial conditions, and for more massive SBHs the enhancement of flux due to non-sphericity turns out to be more important than its suppression due to initial anisotropy. Therefore, the present-day TDE rates generally exceed conventional steady-state estimates based on a spherical isotropic approximation. We thus conjecture that the lower observationally inferred TDE rates compared to theoretical predictions cannot be attributed to the depletion of low-angular-momentum stars by SBH binaries.

  17. The Role of Nuclear Star Clusters in Enhancing Supermassive Black Hole Feeding Rates During Galaxy Mergers

    CERN Document Server

    Naiman, J P; Debuhr, J; Ma, C -P

    2014-01-01

    During galaxy mergers the gas falls to the center, triggers star formation, and feeds the rapid growth of supermassive black holes (SMBHs). SMBHs respond to this fueling by supplying energy back to the ambient gas. Numerical studies suggest that this feedback is necessary to explain why the properties of SMBHs and the formation of bulges are closely related. This intimate link between the SMBH's mass and the large scale dynamics and luminosity of the host has proven to be a difficult issue to tackle with simulations due to the inability to resolve all the relevant length scales simultaneously. In this paper we simulate SMBH growth at high-resolution with {\\it FLASH}, accounting for the gravitational focusing effects of nuclear star clusters (NSCs), which appear to be ubiquitous in galactic nuclei. In the simulations, the NSC core is resolved by a minimum cell size of about 0.001 pc or approximately $10^{-3}$ of the cluster's radius. We discuss the conditions required for effective gas funneling to occur, whic...

  18. Tidal disruption rates in non-spherical galactic nuclei formed by galaxy mergers

    CERN Document Server

    Lezhnin, Kirill

    2016-01-01

    We explore the rates of tidal disruption events (TDEs) of stars by supermassive black holes (SBHs) in galactic nuclei formed in mergers followed by a formation and coalescence of a binary SBH. Such systems initially have a deficit of stars on low-angular-momentum orbits caused by the slingshot process during the binary SBH stage, which tends to reduce the flux of stars into the SBH compared to the steady-state value. On the other hand, a newly formed galactic nucleus has a non-spherical shape which enhances the mixing of stars in angular momentum and thus the TDE rate. In galaxies with relatively low SBH masses (<10^7 Msun), relaxation times are short enough to wash out the anisotropy in initial conditions, and for more massive SBH the enhancement of flux due to non-sphericity turns out to be more important than its suppression due to initial anisotropy. Therefore, the present-day TDE rates generally exceed conventional steady-state estimates based on a spherical isotropic approximation. We thus conjecture...

  19. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    CERN Document Server

    Sonnenfeld, Alessandro; Treu, Tommaso

    2016-01-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in-situ and that of accreted stellar populations. Using as an observable the effective IMF $\\alpha_{IMF}$, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry merger evolution model, based on cosmological $N$-body simulations, together with empirically motivated prescriptions for the IMF to make predictions for how the effective IMF of massive early-type galaxies changes from $z=2$ to $z=0$. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, $\\alpha_{IMF}$ is predicted to be constant with redshift. Current constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties prevent a conclusive statement. The co...

  20. Ram-Pressure Stripping of Gas from Companions and Accretion onto a Spiral Galaxy A Gaseous Merger

    CERN Document Server

    Sofue, Y

    1993-01-01

    We simulated the behavior of interstellar gas clouds in a companion galaxy during a gas-dynamical interaction with the halo and disk of a spiral galaxy. By ram pressure, the gas clouds are stripped from the companion, and accreted to ward the disk of the spiral galaxy. If the companion's orbit is retrograde with respect to the rotation of the spiral galaxy, infalling clouds hit the nuclear region. Angular momentum transfer causes disruption of the inner gaseous disk, and makes a void of interstellar gas in the bulge. If the companion's orbit is either prograde or polar, infalling clouds are accreted by the outer disk, and form a rotating gas ring. We show that the ram-pressure stripping-and-accretion is one way from the companion to a gas-rich larger galaxy, which causes disposal of interstellar gas from the companion and effectively changes its galaxy type into earlier (redder). The ram-pressure process is significant durig merger of galaxies, in which interstellar gas is stripped and accreted prior to the s...

  1. Investigating the Relation between CO (3-2) and Far Infrared Luminosities for Nearby Merging Galaxies Using ASTE

    CERN Document Server

    Michiyama, Tomonari; Nakanishi, Kouichiro; Ueda, Junko; Saito, Toshiki; Ando, Misaki; Kaneko, Hiroyuki; Yamashita, Takuji; Matsuda, Yuichi; Hatsukade, Bunyo; Kikuchi, Kenichi; Komugi, Shinya; Muto, Takayuki

    2016-01-01

    We present the new single dish CO (3-2) emission data obtained toward 19 early stage and 7 late stage nearby merging galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). Combining with the single dish and interferometric data of galaxies observed in previous studies, we investigate the relation between the CO (3-2) luminosity (L'CO(3-2)) and the far Infrared luminosity (LFIR) in a sample of 29 early stage and 31 late stage merging galaxies, and 28 nearby isolated spiral galaxies. We find that normal isolated spiral galaxies and merging galaxies have different slopes (alpha) in the log L'CO(3-2) - log LFIR plane (alpha ~ 0.79 for spirals and ~ 1.12 for mergers). The large slope (alpha > 1) for merging galaxies can be interpreted as an evidence for increasing Star Formation Efficiency (SFE=LFIR/L'CO(3-2)) as a function of LFIR. Comparing our results with sub-kpc scale local star formation and global star-burst activity in the high-z Universe, we find deviations from the linear relationship in t...

  2. Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy

    CERN Document Server

    van de Voort, Freeke; Hopkins, Philip F; Keres, Dusan; Faucher-Giguere, Claude-Andre

    2014-01-01

    We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H]<-2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or sta...

  3. Clustering of very luminous infrared galaxies and their environment

    Science.gov (United States)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  4. Near-Infrared Bulge-Disk Correlations of Lenticular Galaxies

    CERN Document Server

    Barway, Sudhanshu; Kembhavi, Ajit K; Mayya, Y D

    2008-01-01

    We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a two-dimensional galaxy image decomposition technique, we extract bulge and disk structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterise the bulge and the disk as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disk parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars (M_T > -24.5) formed via secular formation processes that likely formed the pseudobulges of late-type disk galaxies, while brighter lenticulars (M_T < -24.5) formed through a different formation mechanism most likely involving maj...

  5. Spitzer/IRS Mapping of Local Luminous Infrared Galaxies

    CERN Document Server

    Pereira-Santaella, Miguel; Rieke, George H; Colina, Luis

    2008-01-01

    We present results of our program Spitzer/IRS Mapping of local Luminous Infrared Galaxies (LIRGs). The maps cover the central 20"x20" or 30"x 30" regions of the galaxies, and use all four IRS modules to cover the full 5-38 microns spectral range. We have built spectral maps of the main mid-IR emission lines, continuum and PAH features, and extracted 1D spectra for regions of interest in each galaxy. The final goal is to fully characterize the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts.

  6. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z=2: the Dragonfly Galaxy (II)

    CERN Document Server

    Emonts, B H C; Lehnert, M D; Vernet, J; Gullberg, B; Villar-Martín, M; Nesvadba, N; Drouart, G; Ivison, R; Seymour, N; Wylezalek, D; Barthel, P

    2015-01-01

    The Dragonfly Galaxy (MRC0152-209), at redshift z~2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6-5) gas and dust, which reveal that this is likely a gas-rich triple merger. It consists of a close double nucleus (separation ~4 kpc) and a weak CO-emitter at ~10 kpc distance, all of which have counterparts in HST/NICMOS imagery. The hyper-luminous starburst and powerful radio-AGN were triggered at this precoalescent stage of the merger. The CO(6-5) traces dense molecular gas in the central region, and complements existing CO(1-0) data, which revealed more widespread tidal debris of cold gas. We also find ~10$^{10}$ M(sun) of molecular gas with enhanced excitation at the highest velocities. At least 20-50% of this high-excitation, high-velocity gas shows kinematics that suggests it is being displaced and redistributed within the merger, although with line-of-sight velocities of |v| < 500 km/s...

  7. Chemical Enrichment and the Origin of the Colour-Magnitude Relation of Elliptical Galaxies in a Hierarchical Merger Model

    CERN Document Server

    Kauffmann, G; Kauffmann, Guinevere; Charlot, Stephane

    1997-01-01

    In this paper, we present a model of the formation and chemical enrichment of elliptical galaxies that differs from the conventional picture in two ways: 1)Ellipticals do not form in a single monolithic collapse and burst of star formation at high redshift. Instead, most of their stars form at modest rates in disk galaxies, which then merge to form the ellipticals. 2)Galaxies do not undergo closed-box chemical evolution. Instead, metals can be transferred between the stars, cold gas and the hot gas halos of the galaxies. It is assumed that metals are ejected out of disk galaxies during supernova explosions and these metals enter the hot gas component. The fact that metals are more easily ejected from small galaxies leads to the establishment of a mass-metallicity relation for the disk systems. Big ellipticals are more metal rich because they are formed from the mergers of bigger disks. We use semi-analytic techniques to follow the formation, evolution, and chemical enrichment of cluster ellipticals in a mergi...

  8. Boosted Tidal Disruption by Massive Black Hole Binaries During Galaxy Mergers from the View of N-Body Simulation

    Science.gov (United States)

    Li, Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer

    2017-01-01

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N-body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N-body simulation results to reality, and the implications of our results to observations.

  9. Star-galaxy separation strategies for WISE-2MASS all-sky infrared galaxy catalogues

    Science.gov (United States)

    Kovács, András; Szapudi, István

    2015-04-01

    We combine photometric information of the Wide-Field Infrared Survey Explorer (WISE) and Two Micron All Sky Survey (2MASS) all-sky infrared data bases, and demonstrate how to produce clean and complete galaxy catalogues for future analyses. Adding 2MASS colours to WISE photometry improves star-galaxy separation efficiency substantially at the expense of losing a small fraction of the galaxies. We find that 93 per cent of the WISE objects within W1 training set from the Sloan Digital Sky Survey PhotoObj table with known star-galaxy separation, and determined redshift distribution of our sample from the Galaxy and Mass Assembly spectroscopic survey. Varying the combination of photometric parameters input into our algorithm we show that W1WISE - J2MASS is a simple and effective star-galaxy separator, capable of producing results comparable to the multidimensional SVM classification. We present a detailed description of our star-galaxy separation methods, and characterize the robustness of our tools in terms of contamination, completeness, and accuracy. We explore systematics of the full sky WISE-2MASS galaxy map, such as contamination from moon glow. We show that the homogeneity of the full sky galaxy map is improved by an additional J2MASS galaxy catalogue we present in this paper covers 21 200 deg2 with dusty regions masked out, and has an estimated stellar contamination of 1.2 per cent and completeness of 70.1 per cent among 2.4 million galaxies with zmed ≈ 0.14. WISE-2MASS galaxy maps with well controlled stellar contamination will be useful for spatial statistical analyses, including cross-correlations with other cosmological random fields, such as the cosmic microwave background. The same techniques also yield a statistically controlled sample of stars as well.

  10. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties

    CERN Document Server

    Bellocchi, Enrica; Colina, Luis; Miralles-Caballero, Daniel

    2013-01-01

    We present and discuss the 2D kinematic properties of the ionized gas (Halpha) in a sample of 38 local (ultra) luminous infrared galaxies [(U)LIRGs] (31 LIRGs and 7 ULIRGs) observed with VIMOS at the VLT using integral field spectroscopy. This sample covers well the less studied LIRG luminosity range and includes isolated disks, interacting systems, and mergers. The majority of the galaxies have two main kinematically distinct components. One component (i.e., narrow or systemic) extends over the whole line-emitting region and is characterized by small to intermediate velocity dispersions (i.e., sigma from 30 to 160 km s^-1). It traces the overall velocity field. The second component (broad) has in general a larger velocity dispersion (up to 320 km s^-1), mainly found in the inner regions and generally blueshifted with respect to the systemic component. Most of the objects (76%) are dominated by rotation, more relevant in LIRGs than in ULIRGs. Isolated disks, interacting galaxies, and merging systems define a ...

  11. The merger fraction of active and inactive galaxies in the local Universe through an improved non-parametric classification

    CERN Document Server

    Cotini, Stefano; Caccianiga, Alessandro; Colpi, Monica; Della Ceca, Roberto; Mapelli, Michela; Severgnini, Paola; Segreto, Alberto; 10.1093/mnras/stt358

    2013-01-01

    We investigate the possible link between mergers and the enhanced activity of supermassive black holes (SMBHs) at the centre of galaxies, by comparing the merger fraction of a local sample (0.003 =< z < 0.03) of active galaxies - 59 active galactic nuclei (AGN) host galaxies selected from the all-sky Swift BAT (Burst Alert Telescope) survey - with an appropriate control sample (247 sources extracted from the Hyperleda catalogue) that has the same redshift distribution as the BAT sample. We detect the interacting systems in the two samples on the basis of non-parametric structural indexes of concentration (C), asymmetry (A), clumpiness (S), Gini coefficient (G) and second order momentum of light (M20). In particular, we propose a new morphological criterion, based on a combination of all these indexes, that improves the identification of interacting systems. We also present a new software - PyCASSo (Python CAS Software) - for the automatic computation of the structural indexes. After correcting for the c...

  12. Evolutionary paths along the BPT diagram for luminous and ultraluminous infrared galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fiorenza, Stephanie L. [Physics Department, CUNY Graduate Center, New York, NY 10016 (United States); Takeuchi, Tsutomu T.; Małek, Katarzyna E. [Division of Particle and Astrophysical Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Liu, Charles T., E-mail: sfiorenza@gc.cuny.edu [Astrophysical Observatory, Department of Engineering Science and Physics, College of Staten Island, City University of New York, Staten Island, NY 10314 (United States)

    2014-04-01

    The evolutionary connection between nuclear starbursts and active galactic nuclei (AGNs) in luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs), which result from galaxy interactions and mergers and produce the bulk of their radiation as infrared (IR) emission, is not well understood. To this effort, we present and examine new spectrophotometric data for five U/LIRGs (10{sup 11} < L {sub IR} < 10{sup 13} L {sub ☉}) within the IRAS 2 Jy Redshift Survey with 0.05 ≲ z ≲ 0.07. We show that our sample consists almost entirely of composite objects—thus hosting both a nuclear starburst and an AGN—using the BPT diagrams. We then show that for our sample of U/LIRGs the properties that describe their nuclear starbursts and AGNs (e.g., star formation rate, L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these parameters and the object locations on the BPT diagrams. Finally, we derive evolutionary paths on the BPT diagram involving [N II]/Hα that are based on how these parameters vary between two U/LIRGs positioned at the end-points of these paths. The U/LIRGs at the end-points of a given path represent the beginning and end states of a U/LIRG evolving along that path. These paths may be able to specifically explain how all local U/LIRGs evolve along the BPT diagram, and serve as a starting point for future quantitative analysis on the evolution of U/LIRGs.

  13. VARIATIONS OF MID- AND FAR-INFRARED LUMINOSITIES AMONG EARLY-TYPE GALAXIES: RELATION TO STELLAR METALLICITY AND COLD DUST

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, William G.; Brighenti, Fabrizio [University of California Observatories/Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Temi, Pasquale; Amblard, Alexandre, E-mail: mathews@ucolick.org, E-mail: fabrizio.brighenti@unibo.it, E-mail: pasquale.temi@nasa.gov [Astrophysics Branch, NASA/Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States)

    2013-05-01

    The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 {mu}m luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central active galactic nucleus (AGN) emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 {mu}m luminosities remains significant along the correlation. We find that the 24 {mu}m variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branch stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies, cold interstellar dust emitting at 70 and 160 {mu}m may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 {mu}m luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) AGNs. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 {mu}m emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myr. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.

  14. The molecular gas in Luminous Infrared Galaxies: a new emergent picture

    CERN Document Server

    Papadopoulos, Padelis P; Weiss, Axel; van der Werf, Paul; Isaak, Kate; Gao, Yu; Xilouris, Manolis; Greve, Thomas R

    2012-01-01

    Results from a large, multi-J CO, {13}CO, and HCN line survey of Luminous Infrared Galaxies (L_{IR}>=10^{10} L_{\\odot}) in the local Universe (z10^{12} L_{\\odot}) the Photon Dominated Regions (PDRs) can encompass at most \\sim few% of their molecular gas mass while the large U_{CR} and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to T_{kin}\\sim(100-200)K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities than in isolated spirals. This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. A comparative study of multi-J HCN lines and CO SLEDs from J=1--0 up to J=13--12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and L_{IR}/L_{CO,1-0}, L_...

  15. Spiral galaxy distance indicators based on near-infrared photometry

    NARCIS (Netherlands)

    Grijs, R. de; Peletier, R. F.

    1999-01-01

    We compare two methods of distance determination to spiral galaxies using optical/near-infrared (NIR) observations, the (I-K) versus M-K colour-absolute magnitude (CM) relation and the I- and K-band Tully-Fisher relation (TFR). Dust-free colours and NIR absolute magnitudes greatly enhance the

  16. A NuSTAR survey of nearby ultraluminous infrared galaxies

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Rigby, Jane R.; Stern, Daniel;

    2015-01-01

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously...

  17. Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    CERN Document Server

    Calderón, D; Veilleux, S; Graciá-Carpio, J; Sturm, E; Lira, P; Schulze, S; Kim, S

    2016-01-01

    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that this system is in general agreement with previous results on Ultra-luminous Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead the galaxy outflow likely arises from an embedded AGN.

  18. Contribution of Neutron Star Mergers to the r-Process Chemical Evolution in the Hierarchical Galaxy Formation

    Science.gov (United States)

    Komiya, Yutaka; Shigeyama, Toshikazu

    2016-10-01

    The main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs), but from the perspective of the Galactic chemical evolution, it has been pointed out that NSMs cannot reproduce the observed r-process abundance distribution of metal-poor stars at [{Fe}/{{H}}]\\lt -3. Recently, Tsujimoto & Shigeyama pointed out that NSM ejecta can spread into a much larger volume than ejecta from a supernova. We re-examine the enrichment of r-process elements by NSMs considering this difference in propagation using the chemical evolution model under the hierarchical galaxy formation. The observed r-process enhanced stars around [{Fe}/{{H}}]∼ -3 are reproduced if the star formation efficiency is lower for low-mass galaxies under a realistic delay-time distribution for NSMs. We show that a significant fraction of NSM ejecta escape from its host proto-galaxy to pollute intergalactic matter and other proto-galaxies. The propagation of r-process elements over proto-galaxies changes the abundance distribution at [{Fe}/{{H}}]\\lt -3 and obtains distribution compatible with observations of the Milky Way halo stars. In particular, the pre-enrichment of intergalactic medium explains the observed scarcity of extremely metal-poor stars without Ba and abundance distribution of r-process elements at [{Fe}/{{H}}]≲ -3.5.

  19. Minor Mergers or Progenitor Bias? The Stellar Ages of Small and Large Quenched Early-Type Galaxies

    CERN Document Server

    Fagioli, Martina; Renzini, Alvio; Lilly, Simon J; Onodera, Masato; Tacchella, Sandro

    2016-01-01

    We investigate the origin of the evolution of the population-averaged size of quenched galaxies (QGs) through a spectroscopic analysis of their stellar ages. The two most favoured scenarios for this evolution are either the size growth of individual galaxies through a sequence of dry minor merger events, or the addition of larger, newly quenched galaxies to the pre-existing population (i.e., a progenitor bias effect). We use the 20k zCOSMOS-bright spectroscopic survey to select bona fide quiescent galaxies at 0.2galaxies are systematically younger than those of the smalle...

  20. Infrared Observations of Star-Forming Dwarf Galaxies with Spitzer

    Science.gov (United States)

    Rosenberg, J. L.; Ashby, M. L. N.; Salzer, J. J.

    2004-12-01

    We present a study of the infrared properties of a sample of actively star-forming dwarf galaxies (MB >-18) drawn from the KPNO International Spectroscopic Survey. Nearby actively star-forming dwarf galaxies are possible analogs to the high redshift star-forming systems that serve as galactic building blocks in hierarchical galaxy formation scenarios. These galaxies are gas-rich, metal-poor systems undergoing bursts of star formation in the local universe. A subset of such objects from the line-flux limited objective-prism survey of Salzer et al. (2001) lie in the NOAO Bootes field, and have therefore been observed by Spitzer as part of the IRAC Shallow Survey. We use the IRAC data to measure the stellar mass in these galaxies. In addition, we examine whether these metal-poor dwarf galaxies show warm dust emission, and examine whether it traces the star formation as it does in normal disk galaxies. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support of this work. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA.

  1. The cosmic infrared background resolved by Spitzer - Contributions of mid-infrared galaxies to the far-infrared background

    NARCIS (Netherlands)

    Dole, H; Lagache, G; Puget, JL; Caputi, KI; Fernandez-Conde, N; Le Floc'h, E; Papovich, C; Perez-Gonzalez, PG; Rieke, GH; Blaylock, M

    Aims. We quantify the contributions of 24 mu m galaxies to the Far-Infrared ( FIR) Background at 70 and 160 mu m. We provide new estimates of the Cosmic Infrared Background ( CIB), and compare it with the Cosmic Optical Background ( COB). Methods. Using Spitzer data at 24, 70 and 160 mu m in three

  2. HST NICMOS imaging of z~2, 24 micron selected Ultraluminous Infrared Galaxies

    CERN Document Server

    Dasyra, Kalliopi M; Helou, George; Surace, Jason; Sajina, Anna; Colbert, James

    2008-01-01

    We present Hubble Space Telescope NICMOS H-band imaging of 33 Ultraluminous Infrared Galaxies (ULIRGs) at z~2 that were selected from the 24 micron catalog of the Spitzer Extragalactic First Look Survey. The images reveal that at least 17 of the 33 objects are associated with interactions. Up to one fifth of the sources in our sample could be minor mergers whereas only 2 systems are merging binaries with luminosity ratio <=3:1, which is characteristic of local ULIRGs. The rest-frame optical luminosities of the sources are of the order 10^10-10^11 L_sun and their effective radii range from 1.4 to 4.9 kpc. The most compact sources are either those with a strong active nucleus or those with a heavy obscuration in the mid-infrared regime, as determined from Spitzer Infra-Red Spectrograph data. The luminosity of the 7.7 micron feature produced by Polycyclic Aromatic Hydrocarbon molecules varies significantly amongst compact systems whereas it is typically large for extended systems. A bulge-to-disk decompositio...

  3. On the buildup of massive early-type galaxies at z<~1. I- Reconciling a significant, recent assembly through major mergers with mass-downsizing

    CERN Document Server

    Eliche-Moral, M C; Gallego, J; Barro, G; Zamorano, J; Lopez-Sanjuan, C; Balcells, M; Guzman, R; Munoz-Mateos, J C

    2010-01-01

    Several studies have tried to ascertain whether or not the increase in abundance of the early-type galaxies (E-S0a's) with time is mainly due to major mergers, reaching opposite conclusions. We have tested it directly through semi-analytical modelling, by studying how the massive early-type galaxies with log(M_*/Msun)>11 at z~0 (mETGs) would have evolved backwards-in-time, under the hypothesis that each major merger gives place to an early-type galaxy. The study was carried out just considering the major mergers strictly reported by observations at each redshift, and assuming that gas-rich major mergers experience transitory phases of dust-reddened, star-forming galaxies (DSFs). The model is able to reproduce the observed evolution of the galaxy LFs at z<~1, simultaneously for different rest-frame bands (B, I, and K) and for different selection criteria on color and morphology. It also provides a framework in which apparently-contradictory results on the recent evolution of the luminosity function (LF) of ...

  4. PAH Emission from Ultraluminous Infrared Galaxies

    CERN Document Server

    Desai, V; Spoon, H W W; Charmandaris, V; Bernard-Salas, J; Brandl, B R; Farrah, D; Soifer, B T; Teplitz, H I; Ogle, P M; Devost, D; Higdon, S J U; Marshall, J A; Houck, J R

    2007-01-01

    We explore the relationships between the Polycyclic Aromatic Hydrocarbon (PAH) feature strengths, mid-infrared continuum luminosities, far-infrared spectral slopes, optical spectroscopic classifications, and silicate optical depths within a sample of 107 ULIRGs observed with the Infrared Spectrograph on the Spitzer Space Telescope. The detected 6.2 micron PAH equivalent widths (EQWs) in the sample span more than two orders of magnitude (0.006-0.8 micron), and ULIRGs with HII-like optical spectra or steep far-infrared spectral slopes (S_{25} / S_{60} 2.3) silicate optical depths. The far-infrared spectral slope is strongly correlated with PAH EQW, but not with silicate optical depth. In addition, the PAH EQW decreases with increasing rest-frame 24 micron luminosity. We argue that this trend results primarily from dilution of the PAH EQW by continuum emission from dust heated by a compact central source, probably an AGN. High luminosity, high-redshift sources studied with Spitzer appear to have a much larger r...

  5. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    CERN Document Server

    Hanna, Chad; Vousden, Will

    2013-01-01

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ~10--100 square degrees; this presents a challenge for following up GW signals from compact binary mergers. Prioritizing wide-field follow-ups based on the probability of successful imaging is important when it is impossible to tile the entire gravitational-wave localization region. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The next generation of GW detectors will have a ten-fold increase in range thereby increasing the expected number of galaxies per unit solid angle a thousand-fold. As an addition...

  6. ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe

    Science.gov (United States)

    Basu, K.; Sommer, M.; Erler, J.; Eckert, D.; Vazza, F.; Magnelli, B.; Bertoldi, F.; Tozzi, P.

    2016-10-01

    We present ALMA measurements of a merger shock using the thermal Sunyaev-Zel’dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at z≈ 0.9. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number { M }={2.4}-0.6+1.3, which in turn suggests a high value of the magnetic field (of the order of 4-10 μ {{G}}) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.

  7. HIGH-RESOLUTION NEAR-INFRARED IMAGING OF SUBMILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Paula [Departamento de Astronomia, Pontificia Universidad Catolica de Chile, Santiago (Chile); Baker, Andrew J.; Menanteau, Felipe [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Lutz, Dieter; Tacconi, Linda J., E-mail: paguirre@astro.puc.cl, E-mail: ajbaker@physics.rutgers.edu, E-mail: felipe@physics.rutgers.edu, E-mail: lutz@mpe.mpg.de, E-mail: linda@mpe.mpg.de [Max-Planck-Institut fuer Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany)

    2013-05-10

    We present F110W ({approx}J) and F160W ({approx}H) observations of 10 submillimeter galaxies (SMGs) obtained with the Hubble Space Telescope's (HST's) NICMOS camera. Our targets have optical redshifts in the range 2.20 {<=} z {<=} 2.81 confirmed by millimeter CO or mid-IR spectroscopy, guaranteeing that the two bands sample the rest-frame optical with the Balmer break falling between them. Eight of ten are detected in both bands, while two are detected in F160W only. We study their F160W morphologies, applying a maximum-deblending detection algorithm to distinguish multiple- from single-component configurations, leading to reassessments for several objects. Based on our NICMOS imaging and/or previous dynamical evidence we identify five SMGs as multiple sources, which we interpret as merging systems. Additionally, we calculate morphological parameter asymmetry (A) and the Gini coefficient (G); thanks to our sample's limited redshift range we recover the trend that multiple-component, merger-like morphologies are reflected in higher asymmetries. We analyze the stellar populations of nine objects with F110W/F160W photometry, using archival HST optical data when available. For multiple systems, we are able to model the individual components that build up an SMG. With the available data we cannot discriminate among star formation histories, but we constrain stellar masses and mass ratios for merger-like SMG systems, obtaining a mean log (M{sub *}/M{sub Sun }) = 10.9 {+-} 0.2 for our full sample, with individual values log (M{sub *}/M{sub Sun }) {approx} 9.6-11.8. The morphologies and mass ratios of the least and most massive systems match the predictions of the major-merger and cold accretion SMG formation scenarios, respectively, suggesting that both channels may have a role in the population's origin.

  8. In the wake of dark giants: new signatures of dark matter self-interactions in equal-mass mergers of galaxy clusters

    Science.gov (United States)

    Kim, Stacy Y.; Peter, Annika H. G.; Wittman, David

    2017-08-01

    Merging galaxy clusters have been touted as one of the best probes for constraining self-interacting dark matter, but few simulations exist to back up this claim. We simulate equal-mass mergers of 1015 M⊙ haloes, like the El Gordo and Sausage clusters, with cosmologically motivated halo and merger parameters, and with velocity-independent dark-matter self-interactions. Although the standard lore for merging clusters is that self-interactions lead to large separations between the galaxy and dark-matter distributions, we find that maximal galaxy-dark matter offsets of ≲20 kpc form for a self-interaction cross-section of σSI/mχ = 1 cm2 g-1. This is an order of magnitude smaller than those measured in observed equal-mass and near-equal-mass mergers, and is likely to be even smaller for lower mass systems. While competitive cross-section constraints are thus unlikely to emerge from offsets, we find other signatures of self-interactions that are more promising. Intriguingly, we find that after dark-matter haloes coalesce, the collisionless galaxies [and especially the brightest cluster galaxy (BCG)] oscillate around the centre of the merger remnant on stable orbits of 100 kpc for σSI/mχ = 1 cm2 g-1 for at least several Gyr, well after the clusters have relaxed. If BCG miscentring in relaxed clusters remains a robust prediction of self-interacting dark matter under the addition of gas physics, substructure, merger mass ratios (e.g. 10:1 like the Bullet Cluster) and complex cosmological merger histories, the observed BCG offsets may constrain σSI/mχ to ≲0.1 cm2 g-1 - the tightest constraint yet.

  9. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    Science.gov (United States)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  10. Contribution of Neutron Star Mergers to the R-process Chemical Evolution in the Hierarchical Galaxy Formation

    CERN Document Server

    Komiya, Yutaka

    2016-01-01

    The main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs), but from perspective of the Galactic chemical evolution, it has been pointed out that NSMs cannot reproduce the observed r-process abundance distribution of metal-poor stars at [Fe/H] $< -3$. Recently, Tsujimoto & Shigeyama (2014) pointed out that NSM ejecta can spread into much larger volume than ejecta from a supernova. We re-examine the enrichment of r-process elements by NSMs considering this difference in propagation using the chemical evolution model under the hierarchical galaxy formation. The observed r-process enhanced stars around [Fe/H] $\\sim -3$ are reproduced if the star formation efficiency is lower for low-mass galaxies under a realistic delay time distribution for NSMs. We show that a significant fraction of NSM ejecta escape from its host proto-galaxy to pollute intergalactic matter and other proto-galaxies. The propagation of r-process elements over proto-...

  11. DETECTION OF A METHANOL MEGAMASER IN A MAJOR-MERGER GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Baan, Willem A.; Qiao, Hai-Hua; Li, Juan; An, Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania (Australia); Breen, Shari L., E-mail: chenxi@shao.ac.cn [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia)

    2015-02-10

    We have detected emission from both the 4{sub −1}→3{sub 0} E (36.2 GHz) class I and 7{sub −2}→8{sub −1} E (37.7 GHz) class II methanol transitions toward the center of the closest ultra-luminous infrared galaxy Arp 220. The emission in both methanol transitions shows narrow spectral features and has luminosities approximately 8 orders of magnitude stronger than those observed from typical class I methanol masers observed in Galactic star formation regions. The emission is also orders of magnitude stronger than the expected intensity of thermal emission from these transitions and based on these findings we suggest that the emission from the two transitions are masers. These observations provide the first detection of a methanol megamaser in the 36.2 and 37.7 GHz transitions and represent only the second detection of a methanol megamaser, following the recent report of an 84 GHz methanol megamaser in NGC 1068. We find that the methanol megamasers are significantly offset from the nuclear region and arise toward regions where there is Hα emission, suggesting that they are associated with starburst activity. The high degree of correlation between the spatial distribution of the 36.2 GHz methanol and X-ray plume emission suggests that the production of strong extragalactic class I methanol masers is related to galactic-outflow-driven shocks and perhaps cosmic rays. In contrast to OH and H{sub 2}O megamasers which originate close to the nucleus, methanol megamasers provide a new probe of feedback (e.g., outflows) processes on larger scales and of star formation beyond the circumnuclear starburst regions of active galaxies.

  12. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    CERN Document Server

    Alonso-Herrero, Almudena; Rieke, George H; Diamond-Stanic, Aleksandar M; Wang, Yiping; Hernan-Caballero, Antonio; Rigopoulou, Dimitra

    2013-01-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78Mpc). We estimate typical BH masses of 3x10^7 M_sun using [NeIII]15.56micron and optical [OIII]5007A gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs the current SFR is taking place not only in the inner nuclear ~1.5kpc region, as estimated from the nuclear 11.3micron PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios highe...

  13. Revealing an Energetic Galaxy-Wide Outflow in a z~2 Ultraluminous Infrared Galaxy

    CERN Document Server

    Alexander, D M; Smail, I; McDermid, R; Nesvadba, N P H

    2009-01-01

    Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z>2 radio galaxies. Here we present Gemini-North NIFS Intregral Field Unit (IFU) observations of the [O III]5007 emission from a z~2 ultraluminous infrared galaxy (ULIRG; L_IR>10^12 L_sol) with an optically identified Active Galactic Nucleus (AGN). The spatial extent (~4-8 kpc) of the high velocity and broad [O III] emission are consistent with that found in z>2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio-bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of order ~10^59 e...

  14. ISO Images of Starbursts and Active Galaxies

    CERN Document Server

    Mirabel, I F

    1999-01-01

    We present some highlights from the mid-infrared (5-16 micron) images of mergers of massive galaxies obtained with the Infrared Space Observatory (ISO). We have observed: 1) ultraluminous infrared nuclei, 2) luminous dust-enshrouded extranuclear starbursts, and 3) active galaxy nuclei (AGNs). In this contribution we discuss the observations of Arp 299, a prototype for very luminous infrared galaxies, the Antennae which is a prototype of mergers, and Centaurus A which is the closest AGN to Earth. From these observations we conclude the following: 1) the most intense starbursts in colliding systems of galaxies and the most massive stars are dust-enshrouded in regions that appear inconspicuous at optical wavelengths, 2) the most intense nuclear infrared sources are a combination of AGN and starburst activity, 3) the hosts of radio loud AGNs that trigger giant double-lobe structures may be symbiotic galaxies composed of barred spirals inside ellipticals.

  15. Infrared Characters of Host Galaxies with H2O Megamaser

    Institute of Scientific and Technical Information of China (English)

    俞志尧

    2001-01-01

    Infrared characters of all the host galaxies with the H2O megamaser have been studied. The most striking featureis the anticorrelation of S(60)/S(100) versus S(12)/S(25), and S(25)/S(60) versus S(12)/S(25). The anticorrelationin the tlux density ratio can been explained by coexistence of large and very small dust particles. The latter, whichare heated by absorption of single photon, are believed to be responsible for the bulk of 12μm radiation. If thephoton energy of the host galaxy is small, this implies large S(12)/S(25) and small S(60)/S(100). However, whenphoton energy density becomes larger, the infrared spectrum will peak at wavelengths ≤ 100 μm and enhanceemission at 25 μm. As a consequence small S(12)/S(25) and large S(60)/S(100) are observed.

  16. The Mid-Infrared Properties of Blue Compact Dwarf Galaxies

    CERN Document Server

    Yanling Wu; Houck, J R; Bernasrd-Salas, J; Lebouteiller, V

    2008-01-01

    The unprecedented sensitivity of the Spitzer Space Telescope has enabled us for the first time to detect a large sample of Blue Compact Dwarf galaxies (BCDs), which are intrinsically faint in the infrared. In the present paper we present a summary of our findings which providing essential information on the presence/absence of the Polycyclic Aromatic Hydrocarbon features in metal-poor environments. In addition, using Spitzer/IRS high-resolution spectroscopy, we study the elemental abundances of neon and sulfur in BCDs and compare with the results from optical studies. Finally, we present an analysis of the mid- and far-infrared to radio correlation in low luminosity low metallicity galaxies.

  17. Automatic Spectral Classification of Galaxies in the Infrared

    Science.gov (United States)

    Navarro, S. G.; Guzmán, V.; Dafonte, C.; Kemp, S. N.; Corral, L. J.

    2016-10-01

    Multi-object spectroscopy (MOS) provides us with numerous spectral data, and the projected new facilities and survey missions will increment the available spectra from stars and galaxies. In order to better understand this huge amount of data we need to develop new techniques of analysis and classification. Over the past decades it has been demonstrated that artificial neural networks are excellent tools for automatic spectral classification and identification, being robust tools and highly resistant to the presence of noise. We present here the result of the application of unsupervised neural networks: competitive neural networks (CNN) and self organized maps (SOM), to a sample of 747 galaxy spectra from the Infrared Spectrograph (IRS) of Spitzer. We obtained an automatic classification on 17 groups with the CNN, and we compare the results with those obtained with SOMs.The final goal of the project is to develop an automatic spectral classification tool for galaxies in the infrared, making use of artificial neural networks with unsupervised training and analyze the spectral characteristics of the galaxies that can give us clues to the physical processes taking place inside them.

  18. Searching for Evidence of Energetic Feedback in Distant Galaxies: A Galaxy Wide Outflow in a z~2 Ultraluminous Infrared Galaxy

    CERN Document Server

    Alexander, D M; Smail, I; McDermid, R; Nesvadba, N

    2009-01-01

    Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z>2 radio galaxies. Here we present Gemini-North NIFS Intregral Field Unit (IFU) observations of the [OIII] emission from a z~2 ultraluminous infrared galaxy (L_IR>10^12 solar luminosities) with an optically identified Active Galactic Nucleus (AGN). The spatial extent (~4-8 kpc) of the high velocity and broad [OIII] emission are consistent with that found in z>2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio-bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of order ~10^59 e...

  19. Probing the Interstellar Medium of z~1 Ultra-luminous Infrared Galaxies through Interferometric Observations of CO and Spitzer Mid-infrared Spectroscopy

    CERN Document Server

    Pope, Alexandra; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Daddi, Emanuele; Desai, Vandana; Dickinson, Mark E; Elbaz, David; Gabor, Jared; Kirkpatrick, Allison

    2013-01-01

    We explore the relationship between gas, dust and star formation in a sample of 12 ultra-luminous infrared galaxies (ULIRGs) at high redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for 6 70 micron selected galaxies at z~1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nuclei (AGN) to the mid-IR luminosity and the star formation efficiency (SFE=LIR/L'CO). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 micron selected ULIRGs which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high redshift ULIRGs, we further compare t...

  20. Enhanced Dense Gas Fraction in Ultra-Luminous Infrared Galaxies

    CERN Document Server

    Juneau, S; Moustakas, J; Shirley, Y L; Bussmann, R S; Kennicutt, R C; Bout, P A Vanden

    2009-01-01

    We present a detailed analysis of the relation between infrared luminosity and molecular line luminosity, for a variety of molecular transitions, using a sample of 34 nearby galaxies spanning a broad range of infrared luminosities (10^{10} < L_{IR} < 10^{12.5} L_sun). We show that the power-law index of the relation is sensitive to the critical density of the molecular gas tracer used, and that the dominant driver in observed molecular line ratios in galaxies is the gas density. As most nearby ultraluminous infrared galaxies (ULIRGs) exhibit strong signatures of active galactic nuclei (AGN) in their center, we revisit previous claims questioning the reliability of HCN as a probe of the dense gas responsible for star formation in the presence of AGN. We find that the enhanced HCN(1-0)/CO(1-0) luminosity ratio observed in ULIRGs can be successfully reproduced using numerical models with fixed chemical abundances and without AGN-induced chemistry effects. We extend this analysis to a total of ten molecular...

  1. Internal Extinction in Spiral Galaxies in the Near Infrared

    CERN Document Server

    Masters, K L; Haynes, M P; Masters, Karen L.; Giovanelli, Riccardo; Haynes, Martha P.

    2003-01-01

    In order to study the effects of internal extinction in spiral galaxies we search for correlations of near infrared (NIR) photometric parameters with inclination. We use data from the 2 Micron All-Sky Survey (2MASS) Extended Source Catalog (XSC) on 15,224 spiral galaxies for which we also have redshifts. For 3035 of the galaxies, I-band photometry is available which is included in the analysis. From the simple dependence of reddening on inclination we derive a lower limit to the difference in magnitude between the face-on and edge-on aspect of 0.9, 0.3 and 0.1 magnitudes in I (0.81 um), J (1.25 um) and H (1.65 um) bands. We find that the faintest isophotal radius reported in the XSC (at the 21st mag/arc sq level) is closer to the centers of the galaxies than other common isophotal measures (e.g. the 23.5 mag/arc sq radius in I-band), and argue that it should not be assumed to represent an outer isophote at which galaxies are transparent at all viewing angles. A simple linear extinction law (i.e. Delta M = gam...

  2. Contribution of Lensed SCUBA Galaxies to the Cosmic Infrared Background

    Science.gov (United States)

    Zemcov, Michael; Blain, Andrew; Halpern, Mark; Levenson, Louis

    2010-09-01

    The surface density of submillimeter (sub-mm) galaxies as a function of flux, usually termed the source number counts, constrains models of the evolution of the density and luminosity of starburst galaxies. At the faint end of the distribution, direct detection and counting of galaxies are not possible. However, gravitational lensing by clusters of galaxies allows detection of sources which would otherwise be too dim to study. We have used the largest catalog of sub-mm-selected sources along the line of sight to galaxy clusters to estimate the faint end of the 850 μm number counts; integrating to S = 0.10 mJy, the equivalent flux density at 850 μm is νI ν = 0.24 ± 0.03 nW m-2 sr-1. This provides a lower limit to the extragalactic far-infrared background and is consistent with direct estimates of the full intensity from the FIRAS. The results presented here can help to guide strategies for upcoming surveys carried out with single-dish sub-mm instruments.

  3. Contribution of Lensed SCUBA Galaxies to the Cosmic Infrared Background

    CERN Document Server

    Zemcov, M; Halpern, M; Levenson, L

    2010-01-01

    The surface density of sub-millimeter galaxies as a function of flux, usually termed the source number counts, constrains models of the evolution of the density and luminosty of starburst galaxies. At the faint end of the distribution, direct detection and counting of galaxies is not possible. However, gravitational lensing by clusters of galaxies allows detection of sources which would otherwise be too dim to study. We have used the largest catalog of sub-mm-selected sources along the line of sight to galaxy clusters to estimate the faint end of the 850 micron number counts; the equivalent flux density at 850 microns is v I_v = 3.9 +/- 0.7 x 10^-10 W/m^2/sr. This provides a lower limit to the extragalactic far infrared background and is consistent with direct estimates of the full intensity from the FIRAS. The results presented here can help to guide strategies for upcoming surveys carried out with single dish sub-mm instruments.

  4. Direct formation of supermassive black holes in metal-enriched gas at the heart of high-redshift galaxy mergers

    CERN Document Server

    Mayer, Lucio; Bonoli, Silvia; Quinn, Thomas; Roskar, Rok; Shen, Sijing; Wadsley, James

    2014-01-01

    We present novel 3D multi-scale SPH simulations of gas-rich galaxy mergers between the most massive galaxies at $z \\sim 8 - 10$, designed to scrutinize the direct collapse formation scenario for massive black hole seeds proposed in \\citet{mayer+10}. The simulations achieve a resolution of 0.1 pc, and include both metallicity-dependent optically-thin cooling and a model for thermal balance at high optical depth. We consider different formulations of the SPH hydrodynamical equations, including thermal and metal diffusion. When the two merging galaxy cores collide, gas infall produces a compact, optically thick nuclear disk with densities exceeding $10^{-10}$ g cm$^3$. The disk rapidly accretes higher angular momentum gas from its surroundings reaching $\\sim 5$ pc and a mass of $\\gtrsim 10^9$ $M_{\\odot}$ in only a few $10^4$ yr. Outside $\\gtrsim 2$ pc it fragments into massive clumps. Instead, supersonic turbulence prevents fragmentation in the inner parsec region, which remains warm ($\\sim 3000-6000$ K) and dev...

  5. The effect of a Chandra-measured merger-related gas component on the lobes of a dead radio galaxy

    CERN Document Server

    Worrall, D M; Kraft, R P; Hardcastle, M J

    2007-01-01

    We use Chandra data to infer that an X-ray bright component of gas is in the process of separating the radio lobes of 3C 442A. This is the first radio galaxy with convincing evidence that central gas, overpressured with respect to the lobe plasma and not simply a static atmosphere, is having a major dynamical effect on the radio structure. We speculate that the expansion of the gas also re-excites electrons in the lobes of 3C 442A through compression and adiabatic heating. Two features of 3C 442A contribute to its dynamical state. Firstly, the radio source is no longer being powered by a detected active jet, so that the dynamical state of the radio plasma is at the mercy of the ambient medium. Secondly the two early-type galaxies, NGC 7236 and NGC 7237, one of which was the original host of 3C 442A, are undergoing a merger and have already experienced a close encounter, suggesting that the X-ray bright gas is mostly the heated combined galaxy atmospheres. The lobes have been swept apart for about 10^8 yrs by ...

  6. NGC 404, A Rejuvenated Lenticular Galaxy on a Merger-Induced, Blueward Excursion into the Green Valley

    CERN Document Server

    Thilker, David A; Schiminovich, David; de Paz, Armando Gil; Seibert, Mark; Madore, Barry F; Wyder, Ted; Rich, R Michael; Yi, Sukyoung; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter; Martin, Christopher D; Morrissey, Patrick; Neff, Susan; Small, Todd

    2010-01-01

    We have discovered recent star formation in the outermost portion (1-4x R_25) of the nearby lenticular (S0) galaxy NGC 404 using GALEX UV imaging. FUV-bright sources are strongly concentrated within the galaxy's HI ring (formed by a merger event according to del Rio et al.), even though the average gas density is dynamically subcritical. Archival HST imaging reveals resolved upper main sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles and integrated magnitudes for NGC 404. Within the ring, the average star formation rate surface density (Sigma_{SFR}) is 2.2x10^-5 Msun/yr/kpc^2. Of the total FUV flux, 70% comes from the HI ring which is forming stars at a rate of 2.5x10^-3 Msun/yr. The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the Universe. In the context of the UV-optical galaxy CMD, the presence of the SF HI ring places NGC 404 in the g...

  7. CGCG292-057: A Near-Distance Merger Galaxy with Double;Double Radio Lobes and X-shape Structure

    Indian Academy of Sciences (India)

    M. Jamrozy; D. Kozieł-Wierzbowska; S. Zoła; A. Kuźmicz; J. Machalski

    2011-12-01

    J1159+5820 is an extended radio galaxy with a quite unusual morphology, featuring two pairs of radio lobes. Such sources, called double–double radio galaxies, constitute a very rare class of extragalactic radio sources. Furthermore, the extended radio structure of this source shows an X-shape form. According to a much likely scenario, such a morphology is due to interrupting nuclear activity in its central active galactic nucleus. Interestingly, the host of this source is a near-distance bright galaxy named CGCG292-057, which is clearly disturbed, with tidal features and shells as plausible signs of a recent merger.

  8. The coordinated key role of wet, mixed, and dry major mergers in the buildup of massive early-type galaxies at z<~1

    CERN Document Server

    Eliche-Moral, M Carmen; Gallego, Jesus; Zamorano, Jaime

    2010-01-01

    Hierarchical models predict that massive early-type galaxies (mETGs) derive from the most massive and violent merging sequences occurred in the Universe. However, the role of wet, mixed, and dry major mergers in the assembly of mETGs is questioned by some recent observations. We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The model proves that it is feasible to reproduce the observed number density evolution of mETGs since z~1, just accounting for the coordinated effects of wet/mixed/dry major mergers. It can also reconcile the different assembly redshifts derived by hierarchical models and by mass downsizing data for mETGs, just considering that a mETG observed at a certain redshift is not necessarily in place since then. The model predicts that wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed merge...

  9. THE Lyα LINE PROFILES OF ULTRALUMINOUS INFRARED GALAXIES: FAST WINDS AND LYMAN CONTINUUM LEAKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Crystal L.; Wong, Joseph [Department of Physics, University of California, Santa Barbara, CA, 93106 (United States); Dijkstra, Mark [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029, 0858 Oslo (Norway); Henry, Alaina [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Soto, Kurt T. [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Danforth, Charles W., E-mail: cmartin@physics.ucsb.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO, 80309 (United States)

    2015-04-10

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Lyα emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Lyα profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding −1000 km s{sup −1} in three H ii-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Lyα line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Lyα attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Lyα photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Lyα and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Lyα emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1–1% of the radiative cooling from the hot winds in the H ii-dominated ULIRGs.

  10. The Lyα Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    Science.gov (United States)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-04-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Lyα emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Lyα profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km s-1 in three H ii-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Lyα line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Lyα attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Lyα photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Lyα and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Lyα emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H ii-dominated ULIRGs.

  11. Minor mergers and their impact on the kinematics of old and young stellar populations in disk galaxies

    CERN Document Server

    Qu, Y; Lehnert, M D; van Driel, W; Jog, C J

    2011-01-01

    By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce t...

  12. Halo Wide Binaries and Moving Clusters as probes of the Dynamical and Merger History of our Galaxy

    CERN Document Server

    Allen, C; Hernandez-Alcantara, A; Allen, Christine; Poveda, Arcadio

    2006-01-01

    Wide or fragile pairs are sensitive probes of the galactic potential, and they have been used to provide information about the galactic tidal field, the density of GMC and the masses of dark matter perturbers present in both the disk and the halo. Halo wide binaries and moving clusters, since they are likely to be the remains of past mergers or of dissolved clusters, can provide information on the dynamical and merger history of our Galaxy. Such remnants should continue to show similar motions over times of the order of their ages. We have looked for phase space groupings among the low-metallicity stars of Schuster et al. (2006) and have identified a number of candidate moving clusters. In several of the moving clusters we found a wide CPM binary already identified in our catalogue of wide binaries among high-velocity and metal-poor stars (Allen et al 2000a). Spectroscopic follow-up studies of these stars would confirm the physical reality of the groups, as well as allow us to distinguish whether their progen...

  13. GOODS-Herschel: The far-infrared view of star formation in AGN host galaxies since z~3

    CERN Document Server

    Mullaney, J R; Daddi, E; Alexander, D M; Elbaz, D; Hickox, R C; Bournaud, F; Altieri, B; Aussel, H; Coia, D; Dannerbauer, H; Dasyra, K; Dickinson, M; Hwang, H S; Kartaltepe, J; Leiton, R; Magdis, G; Magnelli, B; Popesso, P; Valtchanov, I; Del Moro, A; Hanish, D J; Ivison, R J; Juneau, S; Lutz, D; Sargent, M T

    2011-01-01

    Using 100um and 160um fluxes from GOODS-Herschel - the deepest survey undertaken by the Herschel telescope - we explore the infrared properties of X-ray AGNs up to z~3. The observed 100um and 160um fluxes are dominated by the host galaxy in the vast majority of cases (>94 per cent), meaning that these far-infrared fluxes provide an uncontaminated view of the star formation in the host galaxies. There is no evidence of any correlation between the levels of AGN and global star formation activity at all surveyed redshifts. We confirm that the star formation rates of AGN hosts increase strongly with redshift; by a factor of 43^{+27}_{-18} from z50 per cent at Mstars>10^{11}Msun. We argue that our findings imply that the majority of moderate nuclear activity is fuelled by internal mechanisms rather than violent mergers, which suggests that high redshift disk instabilities could be an important AGN feeding mechanism. Our results also show it is stellar mass that is most important in dictating whether a galaxy hosts...

  14. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    Science.gov (United States)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  15. The Mid-Infrared Spectra of Normal Galaxies

    CERN Document Server

    Helou, G; Werner, M W; Malhotra, S; Silbermann, N A

    2000-01-01

    The mid-infrared spectra (2.5 to 5 and 5.7 to 11.6 mu) obtained by ISO-PHOT reveal the interstellar medium emission from galaxies powered by star formation to be strongly dominated by the aromatic features at 6.2, 7.7, 8.6 and 11.3 mu. Additional emission appears in-between the features, and an underlying continuum is clearly evident at 3-5 mu. This continuum would contribute about a third of the luminosity in the 3 to 13 mu range. The features together carry 5 to 30% of the 40-to-120 mu `FIR' luminosity. The relative fluxes in individual features depend very weakly on galaxy parameters such as the far-infrared colors, direct evidence that the emitting particles are not in thermal equilibrium. The dip at 10 mu is unlikely to result from silicate absorption, since its shape is invariant among galaxies. The continuum component has a f_nu its extrapolation to longer wavelengths falls well below the spectrum in the 6 to 12 mu range. This continuum component is almost certainly of non-stellar origin, and is probab...

  16. Infrared colour properties of nearby radio-luminous galaxies

    CERN Document Server

    Yang, Xiao-hong; Huang, Yan

    2015-01-01

    By combining the data of the Two Micron All Sky Survey (2MASS), the Wide Field Infrared Survey Explorer (WISE) and the Akari satellite, we study the infrared colour properties of a sample of 2712 nearby radio-luminous galaxies (RLGs). These RLGs are divided into radio-loud (RL) active galactic nuclei (AGNs), mainly occurring at redshifts of $0.05$ 3.0. We also analyse the MIR colours of RL AGNs divided into low- and high-excitation radio galaxies (LERGs and HERGs, respectively). The ([3.4]-[4.6])$-$([4.6]-[12]) diagram clearly shows separate distributions of LERGs and HERGs and a region of overlap, which suggests that LERGs and HERGs have different MIR properties. LERGs are responsible for the double-core distribution of RL AGNs on the ([3.4]-[4.6])$-$([4.6]-[12]) diagram. In addition, we also suggest 90$-$140$\\mu$m band spectral index $\\alpha(90,140)<-1.4$ as a criterion of selecting nearby active galaxies with non-thermal emissions at FIR wavelengths.

  17. MERGERS AND STAR FORMATION: THE ENVIRONMENT AND STELLAR MASS GROWTH OF THE PROGENITORS OF ULTRA-MASSIVE GALAXIES SINCE Z = 2

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), the University of Tokyo, Kashiwa, 277-8582 (Japan); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); De Lucia, Gabriella [INAF-Astronomical Observatory of Trieste, I-34143 Trieste (Italy); Muzzin, Adam [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Stefanon, Mauro; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Le Fèvre, Olivier [Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, F-13388, Marseille (France); Milvang-Jensen, Bo, E-mail: benedetta.vulcani@ipmu.jp [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2016-01-10

    The growth of galaxies is a key problem in understanding the structure and evolution of the universe. Galaxies grow their stellar mass by a combination of star formation and mergers, with a relative importance that is redshift dependent. Theoretical models predict quantitatively different contributions from the two channels; measuring these from the data is a crucial constraint. Exploiting the UltraVISTA catalog and a unique sample of progenitors of local ultra-massive galaxies selected with an abundance matching approach, we quantify the role of the two mechanisms from z = 2 to 0. We also compare our results to two independent incarnations of semi-analytic models. At all redshifts, progenitors are found in a variety of environments, ranging from being isolated to having 5–10 companions with mass ratio at least 1:10 within a projected radius of 500 kpc. In models, progenitors have a systematically larger number of companions, entailing a larger mass growth for mergers than in observations, at all redshifts. Generally, in both observations and models, the inferred and the expected mass growth roughly agree, within the uncertainties. Overall, our analysis confirms the model predictions, showing how the growth history of massive galaxies is dominated by in situ star formation at z ∼ 2, both star formation and mergers at 1 < z < 2, and by mergers alone at z < 1. Nonetheless, detailed comparisons still point out tensions between the expected mass growth and our results, which might be due to either an incorrect progenitors-descendants selection, uncertainties on star-formation rate and mass estimates, or the adopted assumptions on merger rates.

  18. The distribution of Infrared point sources in nearby elliptical galaxies

    Science.gov (United States)

    Gogoi, Rupjyoti; Misra, Ranjeev; Puthiyaveettil, Shalima

    Infra-red point sources in nearby early-type galaxies are often counterparts of sources in other wavebands such as optical and X-rays. In particular, the IR counterpart of X-ray sources may be due to a globular cluster hosting the X-ray source or could be associated directly with the binary, providing crucial information regarding their environment. In general, the IR sources would be from globular clusters and their IR colors would provide insight into their stellar composition. However, many of the IR sources maybe background objects and it is important to identify them or at least quantify the level of background contamination. Archival Spitzer IRAC images provide a unique opportunity to study these sources in nearby Ellipticals and in particular to estimate the distributions of their IR luminosity, color and distance from the center. We will present the results of such an analysis for three nearby galaxies. We have also estimated the background contamination using several blank fields. Our preliminary results suggest that IR colors can be effectively used to differentiate between the background and sources in the galaxy, and that the distribution of sources are markedly different for different Elliptical galaxies.

  19. Mid-infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    Science.gov (United States)

    Hainline, Kevin N.; Reines, Amy E.; Greene, Jenny E.; Stern, Daniel

    2016-12-01

    Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ˜18,000 nearby dwarf galaxies (M * great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1-W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations.

  20. Mid-infrared spectroscopy of the Andromeda galaxy

    CERN Document Server

    Hemachandra, D; Peeters, E; Willner, S P; Ashby, M L N; Smith, H A; Gordon, K D; Smith, D A; Fazio, G G

    2015-01-01

    We present Spitzer/Infrared Spectrograph (IRS) 5-21 micron spectroscopic maps towards 12 regions in the Andromeda galaxy (M31). These regions include the nucleus, bulge, an active region in the star-forming ring, and 9 other regions chosen to cover a range of mid-to-far-infrared colours. In line with previous results, PAH feature ratios (6.2 micron and 7.7 micron features compared to the 11.2 micron feature) measured from our extracted M31 spectra, except the nucleus, strongly correlate. The equivalent widths of the main PAH features, as a function of metallicity and radiation hardness, are consistent with those observed for other nearby spiral and starburst galaxies. Reprocessed data from the ISOCAM instrument on the Infrared Space Observatory agree with the IRS data; early reports of suppressed 6-8 micron features and enhanced 11.3 micron feature intensity and FWHM apparently resulted from background-subtraction problems. The nucleus does not show any PAH emission but does show strong silicate emission at 9...

  1. Host galaxies of luminous z$\\sim$0.6 quasars: Major mergers are not prevalent at the highest AGN luminosities

    CERN Document Server

    Villforth, C; Pawlik, M M; Hewlett, T; Rowlands, K; Herbst, H; Shankar, F; Fontana, A; Hamann, F; Koekemoer, A; Pforr, J; Trump, J; Wuyts, S

    2016-01-01

    Galaxy interactions are thought to be one of the main triggers of Active Galactic Nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log($L_{bol}$ [erg/s]) $>$ 45) at z $\\sim$ 0.6 using HST WFC3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25% of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when co...

  2. High resolution near-infrared imaging of submillimeter galaxies

    CERN Document Server

    Aguirre, Paula; Menanteau, Felipe; Lutz, Dieter; Tacconi, Linda J

    2013-01-01

    We present F110W (~J) and F160W (~H) observations of ten submillimeter galaxies (SMGs) obtained with the Hubble Space Telescope's (HST's) NICMOS camera. Our targets have optical redshifts in the range 2.20merger-like morphologies are reflected in high...

  3. Dynamics of the Tidal Fields and Formation of Star Clusters in Galaxy Mergers

    CERN Document Server

    Renaud, Florent

    2010-01-01

    In interacting galaxies, strong tidal forces disturb the global morphology of the progenitors and give birth to the long stellar, gaseous and dusty tails often observed. In addition to this destructive effect, tidal forces can morph into a transient, protective setting called compressive mode. Such modes then shelter the matter in their midst by increasing its gravitational binding energy. This thesis focuses on the study of this poorly known regime by quantifying its properties thanks to numerical and analytical tools applied to a spectacular merging system of two galaxies, commonly known as the Antennae galaxies. N-body simulations of this pair yield compressive modes in the regions where observations reveal a burst of star formation. Furthermore, characteristic time- and energy scales of these modes match well those of self-gravitating substructures such as star clusters and tidal dwarf galaxies. These results suggest that the compressive modes of tidal fields plays an important role in the formation and e...

  4. A Multiwavelength Study of a Sample of 70 μm Selected Galaxies in the COSMOS Field : II. The Role of Mergers in Galaxy Evolution

    NARCIS (Netherlands)

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Salvato, M.; Scoville, N. Z.; Surace, J.; Yan, L.; Capak, P.; Caputi, K.; Carollo, C. M.; Cassata, P.; Civano, F.; Hasinger, G.; Koekemoer, A. M.; Le Fèvre, O.; Lilly, S.; Liu, C. T.; McCracken, H. J.; Schinnerer, E.; Smolčić, V.; Taniguchi, Y.; Thompson, D. J.; Trump, J.; Baldassare, V. F.; Fiorenza, S. L.

    2010-01-01

    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 infrared luminosity range of 108

  5. Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope II: The IRAS Bright Galaxy Sample

    CERN Document Server

    Armus, L; Bernard-Salas, J; Spoon, H W W; Marshall, J A; Higdon, S J U; Desai, V; Teplitz, H I; Hao, L; Devost, D; Brandl, B R; Wu, Y; Sloan, G C; Soifer, B T; Houck, J R; Herter, T L

    2006-01-01

    We present spectra taken with the Infrared Spectrograph on Spitzer covering the 5-38 micron region of the ten Ultraluminous Infrared Galaxies (ULIRGs) found in the IRAS Bright Galaxy Sample. Among the BGS ULIRGs, we find a factor of 50 spread in the rest-frame mid to far-infrared spectral slope. The 9.7 micron silicate optical depths range from less than 0.4 more than 4.2, implying line of sight extinctions of A(V) ~ 8 - 78 mag. There is evidence for water ice and hydrocarbon absorption and C2H2 and HCN absorption features in four and possibly six of the 10 BGS ULIRGs, indicating shielded molecular clouds and a warm, dense ISM. We have detected [NeV] emission in three of the ten BGS ULIRGs, at flux levels of 5-18E-14 erg/cm^2/sec and [NeV] 14.3/[NeII] 12.8 line flux ratios of 0.12-0.85. The remaining BGS ULIRGs have limits on their [NeV]/[NeII] line flux ratios which range from less than 0.15 to less than 0.01. Among the BGS ULIRGs, the AGN fractions implied by either the [NeV]/[NeII] or [OIV]/[NeII] line flu...

  6. Infrared emission from dust in the Seyfert galaxy NGC 4151

    Science.gov (United States)

    Mayes, A. J.; Evans, A.; Pearce, G.

    1985-02-01

    The nonvariable infrared radiation from the nucleus of NGC 4151 is discussed in terms of radiation from circumnuclear dust heated by nuclear radiation. The dust is modeled by a spherical shell and by a torus, both consisting of silicate and graphite dust grains similar to those found in the Galaxy. The model predictions are compared with the observations in an attempt to determine some parameters of the circumnuclear dust. The comparison indicates a spherical shell rather than a torus with a silicate-to-graphite dust-mass ratio of 90:10, an inner radius of about 4 pc, and an outer radius of 20 pc or more. It is proposed that the outer radius could be determined observationally, and that the silicate-to-graphite mass ratio of dust in the spiral arms of NGC 4151 could be determined from far-infrared observations.

  7. HI Absorption in Merger Remnants

    Science.gov (United States)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  8. PRESENT-DAY DESCENDANTS OF z = 3 Ly{alpha}-EMITTING GALAXIES IN THE MILLENNIUM-II HALO MERGER TREES

    Energy Technology Data Exchange (ETDEWEB)

    Walker-Soler, Jean P.; Gawiser, Eric [Physics and Astronomy Department, Rutgers University, Piscataway, NJ 08854 (United States); Bond, Nicholas A. [Goddard Space Flight Center, Astrophysics Science Division, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States); Padilla, Nelson; Francke, Harold, E-mail: jpwalker@physics.rutgers.edu [Pontificia Universidad Catolica de Chile, Facultad de Fisica, Santiago (Chile)

    2012-06-20

    Using the Millennium-II Simulation dark matter sub-halo merger histories, we created mock catalogs of Ly{alpha}-emitting (LAE) galaxies at z = 3.1 to study the properties of their descendants. Several models were created by selecting the sub-halos to match the number density and typical dark matter mass determined from observations of these galaxies. We used mass-based and age-based selection criteria to study their effects on descendant populations at z {approx_equal} 2, 1, and 0. For the models that best represent LAEs at z = 3.1, the z = 0 descendants have a median dark matter halo mass of 10{sup 12.7} M{sub Sun }, with a wide scatter in masses (50% between 10{sup 11.8} and 10{sup 13.7} M{sub Sun }). Our study differentiated between central and satellite sub-halos and found that {approx}55% of z = 0 descendants are central sub-halos with M{sub Median} {approx} 10{sup 12}. This confirms that central z = 0 descendants of z = 3.1 LAEs have halo masses typical of L*-type galaxies. The satellite sub-halos reside in group/cluster environments with dark matter masses around 10{sup 14} M{sub Sun }. The median descendant mass is robust to various methods of age determination, but it could vary by a factor of five due to current observational uncertainties in the clustering of LAEs used to determine their typical z = 3.1 dark matter mass.

  9. VLA H53alpha radio recombination line observations of the ultraluminous infrared galaxy Arp~220

    CERN Document Server

    Rodriguez-Rico, C A; Viallefond, F; Zhao, J H; Gómez, Y; Anantharamaiah, K R

    2005-01-01

    We present high angular resolution (0.7'') observations made with the Very Large Array (VLA) of the radio recombination line (RRL) H53alpha and radio continuum emission at 43 GHz from the ultraluminous infrared galaxy (ULIRG) Arp 220. The 43 GHz continuum emission shows a compact structure (~2'') with two peaks separated by ~1'', the East (E) and West (W) components, that correspond to each galactic nucleus of the merger. The spectral indices for both the E and W components, using radio continuum images at 8.3 and 43 GHz are typical of synchrotron emission (alpha ~ -1.0). Our 43 GHz continuum and H53alpha line observations confirm the flux densities predicted by the models proposed by Anantharamaiah et al. This agreement with the models implies the presence of high-density (~ 100,000 cm^-3) compact HII regions (~ 0.1 pc) in Arp~220. The integrated H53alpha line emission is stronger toward the non-thermal radio continuum peaks, which are also coincident with the peaks of molecular emission of the H2CO. The coi...

  10. Spitzer's mid-infrared view on an outer Galaxy Infrared Dark Cloud candidate toward NGC 7538

    CERN Document Server

    Frieswijk, W F; Shipman, R F; Teyssier, D; Carey, S J; Tielens, A G G M

    2008-01-01

    Infrared Dark Clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the inner Galaxy where background infrared emission levels are high. We present Spitzer observations with the Infrared Camera Array toward object G111.80+0.58 (G111) in the outer Galactic Plane, located at a distance of ~3 kpc from us and ~10 kpc from the Galactic center. Earlier results show that G111 is a massive, cold molecular clump very similar to IRDCs. The mid-IR Spitzer observations unambiguously detect object G111 in absorption. We have identified for the first time an IRDC in the outer Galaxy, which confirms the suggestion that cluster-forming clumps are present throughout the Galactic Plane. However, against a low mid-IR back ground such as the outer Galaxy it takes some effort to find them.

  11. Water vapor in nearby infrared galaxies as probed by Herschel

    CERN Document Server

    Yang, Chentao; Omont, A; Liu, Daizhong; Isaak, K G; Downes, D; van der Werf, P P; Lu, Nanyao

    2013-01-01

    We report the first systematic study of the submillimeter water vapor rotational emission lines in infrared (IR) galaxies based on the Fourier Transform Spectrometer (FTS) data of {\\it Herschel} SPIRE. Among the 176 galaxies with publicly available FTS data, 45 have at least one H$_2$O emission line detected. The H$_2$O line luminosities range from $\\sim 1 \\times 10^5$ L$_{\\odot}$ to $\\sim 5 \\times 10^7$ L$_{\\odot}$ while the total IR luminosities (L$_\\mathrm{IR}$) have a similar spread ($\\sim$1-300 $\\times 10^{10}$ L$_{\\odot}$). In addition, emission lines of H$_2$O$^+$ and H$_2^{18}$O are also detected. H$_2$O is found, for most galaxies, to be the strongest molecular emitter after CO in FTS spectra. The luminosity of the five most important H$_2$O lines is near-linearly correlated with L$_\\mathrm{IR}$ no matter strong AGN signature is present or not. However, the luminosity of H$_2$O(2$_{11}-2_{02}$) and H$_2$O(2$_{20}-2_{11}$) appears to increase slightly faster than linear with L$_\\mathrm{IR}$. Although ...

  12. Infrared line ratios revealing starburst conditions in galaxies

    CERN Document Server

    Viegas, S M M; Contini, T; Viegas, Sueli M.; Contini, Marcella; Contini, Thierry

    1999-01-01

    The physical conditions in typical starburst galaxies are investigated through critical infrared (IR) line ratios, as previously suggested by Lutz et al. (1998, A&A, 333, L75). The calculations by a composite model which consistently accounts for the coupled effect of shock and photoionization by hot stars definitely fit the observed line ratios of single objects and explain the observed relation between [OIV]/([NeII]+0.44[NeIII]) and [NeIII]/[NeII]. The shock velocity and the gas density are the critical parameters. Most of the shocks are produced in low density-velocity (n_0 = 100 cm-3 and V_s = 50 - 100 km/s) clouds which represent the bulk of the ionized gas in starburst galaxies. However, though they are by many orders less numerous, high-velocity (= 400 - 600 km/s) shocks in dense (= 500 - 800 cm-3) clouds are necessary to reproduce the critical IR line ratios observed in the low-excitation Starburst Nucleus Galaxies (SBNGs: M82, M83, NGC 253, NGC 3256, NGC 3690, and NGC 4945). These model predictio...

  13. The far-infrared - radio correlation in dwarf galaxies

    CERN Document Server

    Schleicher, Dominik R G

    2016-01-01

    The far-infrared - radio correlation connects star formation and magnetic fields in galaxies, and has been confirmed over a large range of far-infrared luminosities. Recent investigations indicate that it may even hold in the regime of local dwarf galaxies, and we explore here the expected behavior in the regime of star formation surface densities below 0.1 M_sun kpc^{-2} yr^{-1}. We derive two conditions that can be particularly relevant for inducing a change in the expected correlation: a critical star formation surface density to maintain the correlation between star formation rate and the magnetic field, and a critical star formation surface density below which cosmic ray diffusion losses dominate over their injection via supernova explosions. For rotation periods shorter than 1.5x10^7 (H/kpc)^2 yrs, with H the scale height of the disk, the first correlation will break down before diffusion losses are relevant, as higher star formation rates are required to maintain the correlation between star formation ...

  14. HAWK-I infrared supernova search in starburst galaxies

    CERN Document Server

    Miluzio, M; Botticella, M T; Cresci, G; Greggio, L; Mannucci, F; Benetti, S; Bufano, F; Elias-Rosa, N; Pastorello, A; Turatto, M; Zampieri, L

    2013-01-01

    The use of SN rates to probe explosion scenarios and to trace the cosmic star formation history received a boost from a number of synoptic surveys. There has been a recent claim of a mismatch by a factor of two between star formation and core collapse SN rates, and different explanations have been proposed for this discrepancy.} We attempted an independent test of the relation between star formation and supernova rates in the extreme environment of starburst galaxies, where both star formation and extinction are extremely high. To this aim we conducted an infrared supernova search in a sample of local starburts galaxies. The rational to search in the infrared is to reduce the bias due to extinction, which is one of the putative reasons for the observed discrepancy between star formation and supernova rates. To evaluate the outcome of the search we developed a MonteCarlo simulation tool that is used to predict the number and properties of the expected supernovae based on the search characteristics and the curr...

  15. Star-formation histories of local luminous infrared galaxies

    CERN Document Server

    Pereira-Santaella, Miguel; Colina, Luis; Miralles-Caballero, Daniel; Pérez-González, Pablo G; Arribas, Santiago; Bellocchi, Enrica; Cazzoli, Sara; Díaz-Santos, Tanio; López, Javier Piqueras

    2015-01-01

    We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$\\alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$\\alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$\\alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enha...

  16. A Bridge from Optical to Infrared Galaxies Explaining Local Properties, Predicting Galaxy Counts and the Cosmic Background Radiation

    CERN Document Server

    Totani, T; Totani, Tomonori; Takeuchi, Tsutomu T.

    2002-01-01

    We give an explanation for the origin of various properties observed in local infrared galaxies, and make predictions for galaxy counts and cosmic background radiation (CBR), by a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies, and that (2) the big grain dust temperature T_dust is calculated based on a physical consideration for energy balance, rather than using the empirical relation between T_dust and total infrared luminosity L_IR found in local galaxies, which has been employed in most of previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, L_IR-T_dust correlation, and infrared luminosity function are outputs predicted by the model. Our model indeed reproduces these local properties reasonably well. We then found considerably different results for MIR-submm co...

  17. THE Arp 220 MERGER ON kpc SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, S. [Dark Cosmology Centre, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Garcia-Marin, M.; Eckart, A. [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Strasse 77, D-50937 Koeln (Germany); Downes, D. [Institut de Radioastronomie Millimetrique, Domaine Universitaire, F-38406 St. Martin d' Heres (France); Scharwaechter, J., E-mail: skoenig@dark-cosmology.dk [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2012-07-20

    For the first time, we study the eastern nucleus in greater detail and search for the more extended emission in the molecular gas in different CO line transitions of the famous ultraluminous infrared galaxy (ULIRG) Arp 220. Furthermore, we present a model of the merger in Arp 220 on large scales with the help of the CO data and an optical and near-infrared composite Hubble Space Telescope image of the prototypical ULIRG. Using the Plateau de Bure interferometer (PdBI), we obtained CO (2-1) and (1-0) data at wavelengths of 1 and 3 mm in 1994, 1996, 1997, and 2006 at different beam sizes and spatial resolutions. The simulations of the merger in Arp 220 were performed with the Identikit modeling tool. The model parameters that describe the galaxy merger best give a mass ratio of 1:2 and result in a merger of {approx}6 Multiplication-Sign 10{sup 8} yr. The low-resolution CO (1-0) PdBI observations suggest that there are indications for emission {approx}10'' toward the south, as well as to the north and to the west of the two nuclei.

  18. The impact of environment and mergers on the HI content of galaxies in hydrodynamic simulations

    CERN Document Server

    Rafieferantsoa, Mika; Anglés-Alcazar, Daniel; Katz, Neal; Kollmeier, Juna A; Oppenheimer, Benjamin D

    2014-01-01

    We quantitatively examine the effects of accretion and environment on the HI content of galaxies within a cosmological hydrodynamic simulation that reproduces basic observed trends of HI in galaxies. We show that our model broadly reproduces the observed scatter in HI at a given stellar mass as quantified by the HI mass function in bins of stellar mass, as well as the HI richness versus local galaxy density. This shows that the predicted HI fluctuations and environmental effects are roughly consistent with data with few minor discrepancies. For satellite galaxies in >= 10^12M_* halos, the HI richness distribution is bimodal and drops towards the largest halo masses. The depletion rate of HI once a galaxy enters a more massive halo is more rapid at higher halo mass, in contrast to the specific star formation rate which shows much less variation in the attenuation rate versus halo mass. This suggests that, up to halo mass scales probed here (<= 10^14M_*), star formation is mainly attenuated by starvation, bu...

  19. 3D spectroscopy with VLT/GIRAFFE - II: Are Luminous Compact Galaxies merger remnants ?

    CERN Document Server

    Puech, M; Flores, H; Ostlin, G; Marquart, T

    2006-01-01

    Luminous Compact Galaxies are enigmatic sources by many aspects. They can reach the luminosity of the Milky Way within a radius of only a few kpc. They also represent one of the most rapidly evolving populations of galaxies since they represent up to 1/5 of the luminous galaxies at redshift z= 0.7 while being almost absent in the local Universe. The measurement of their dynamics is crucial to our understanding of LCGs since this has the potential of telling us which physical process(es) that drives them, and ultimately to link them to the existing present-day galaxies. Here we derive the 3 dimensional velocity fields and velocity dispersion (sigma) maps of 17 Luminous Compact Galaxies selected from the Canada France Redshift Survey and the Hubble Deep Field South with redshifts ranging from z=0.4 to z=0.75. We find that only 18% of them show rotational velocity fields typical of rotating disks, the others showing more complex kinematics. Assuming that LCGs are not too far from equilibrium, about half of LCGs ...

  20. Is a minor-merger driving the nuclear activity in the Seyfert 2 galaxy NGC 2110?

    CERN Document Server

    González-Delgado, R M; Heckman, E P T; Delgado, Rosa M. Gonzalez; Arribas, Santiago; Heckman, Enrique Perez & Timothy

    2002-01-01

    We report on a detailed morphological and kinematic study of the isolated non-barred nearby Seyfert 2 galaxy NGC 2110. We combine Integral Field optical spectroscopy, with long-slit and WFPC2 imaging available in the HST archive to investigate the fueling mechanism in this galaxy. Previous work (Wilson & Baldwin 1985) concluded that the kinematic center of the galaxy is displaced \\~220 pc from the apparent mass center of the galaxy, and the ionized gas follows a remarkably normal rotation curve. Our analysis based on the stellar kinematics, 2D ionized gas velocity field and dispersion velocity, and high spatial resolution morphology at V, I and Halpha reveals that: 1) The kinematic center of NGC 2110 is at the nucleus of the galaxy. 2) The ionized gas is not in pure rotational motion. 3) The morphology of the 2D distribution of the emission line widths suggests the presence of a minor axis galactic outflow. 4) The nucleus is blue-shifted with respect to the stellar systemic velocity, suggesting the NLR ga...

  1. Integral field spectroscopy of the two complexes of HII regions in the main galaxy of the minor merger AM2306-721

    Science.gov (United States)

    Hernandez-Jimenez, J. A.; Pastoriza, G.; Sanmartim, D.; Winge, C.; Bonatto, C.; Krabbe, A. C.; Rodrigues, I.

    2017-07-01

    We present a study of two complexes of HII regions in the main galaxy of minor merger AM 2306-721. The observations were obtained with the GMOS-IFU on the Gemini South telescope. By using different discrimination criteria, we determined that shock-ionized gas fraction ranges between 0% and 35%, which are in good agreement with numerical models. Thus, we conclude that almost all the mechanical energy from stellar winds and supernovae is being irradiated.

  2. IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies

    CERN Document Server

    Laine, Seppo; Munoz-Mateos, Juan-Carlos; Kim, Taehyun; Comeron, Sebastien; Martig, Marie; Holwerda, Benne W; Athanassoula, E; Bosma, Albert; Johansson, Peter H; Erroz-Ferrer, Santiago; Gadotti, Dimitri A; de Paz, Armando Gil; Hinz, Joannah; Laine, Jarkko; Laurikainen, Eija; Menendez-Delmestre, Karin; Mizusawa, Trisha; Regan, Michael W; Salo, Heikki; Sheth, Kartik; Seibert, Mark; Buta, Ronald J; Cisternas, Mauricio; Elmegreen, Bruce G; Elmegreen, Debra M; Ho, Luis C; Madore, Barry F; Zaritsky, Dennis

    2014-01-01

    We present a catalogue and images of visually detected features, such as asymmetries, extensions, warps, shells, tidal tails, polar rings, and obvious signs of mergers or interactions, in the faint outer regions (at and outside of R_25) of nearby galaxies. This catalogue can be used in future quantitative studies that examine galaxy evolution due to internal and external factors. We are able to reliably detect outer region features down to a brightness level of 0.03 MJy/sr per pixel at 3.6 microns in the Spitzer Survey of Stellar Structure in Galaxies (S4G). We also tabulate companion galaxies. We find asymmetries in the outer isophotes in 22+/-1 per cent of the sample. The asymmetry fraction does not correlate with galaxy classification as an interacting galaxy or merger remnant, or with the presence of companions. We also compare the detected features to similar features in galaxies taken from cosmological zoom re-simulations. The simulated images have a higher fraction (33 per cent) of outer disc asymmetri...

  3. $\\gamma$-Ray Bursts from Neutron Star Mergers and Evolution of Galaxies

    CERN Document Server

    Totani, T

    1998-01-01

    Most of proposed models of cosmological gamma-ray bursts (GRBs) are associated to gravitational collapses of massive stars, and hence evolution of the GRB rate, which is crucially important in GRB intensity distribution analysis, is determined by the cosmic star formation history. Here we present complementary results of GRB logN-logP analysis, which were omitted in the previous paper (Totani 1997, ApJ, 486, L71). A unique feature of the binary neutron-star merger scenario, in contrast to other scenarios associated to single stellar collapses, is that a time delay during binary spiral-in phase emitting gravitational waves is not negligible and makes the rate evolution flatter than that of star formation rate. We show that binary merger scenario is more favored than single stellar collapses. The estimated peak luminosity and total emitted energy in rest-frame 50-300 keV range is 1--3 $\\times 10^{51} respectively, where $Ømega$ is opening angle of gamma-ray emission. Absolute rate comparison between GRBs and n...

  4. Direct Formation of Supermassive Black Holes via Multi-Scale Gas Inflows in Galaxy Mergers

    CERN Document Server

    Mayer, Lucio; Escala, Andres; Callegari, Simone

    2009-01-01

    Observations of distant bright quasars suggest that billion solar mass supermassive black holes (SMBHs) were already in place less than a billion years after the Big Bang. Models in which light black hole seeds form by the collapse of primordial metal-free stars cannot explain their rapid appearance due to inefficient gas accretion. Alternatively, these black holes may form by direct collapse of gas at the center of protogalaxies. However, this requires metal-free gas that does not cool efficiently and thus is not turned into stars, in contrast with the rapid metal enrichment of protogalaxies. Here we use a numerical simulation to show that mergers between massive protogalaxies naturally produce the required central gas accumulation with no need to suppress star formation. Merger-driven gas inflows produce an unstable, massive nuclear gas disk. Within the disk a second gas inflow accumulates more than 100 million solar masses of gas in a sub-parsec scale cloud in one hundred thousand years. The cloud undergoe...

  5. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.

    Science.gov (United States)

    Mayer, L; Kazantzidis, S; Escala, A; Callegari, S

    2010-08-26

    Observations of distant quasars indicate that supermassive black holes of billions of solar masses already existed less than a billion years after the Big Bang. Models in which the 'seeds' of such black holes form by the collapse of primordial metal-free stars cannot explain the rapid appearance of these supermassive black holes because gas accretion is not sufficiently efficient. Alternatively, these black holes may form by direct collapse of gas within isolated protogalaxies, but current models require idealized conditions, such as metal-free gas, to prevent cooling and star formation from consuming the gas reservoir. Here we report simulations showing that mergers between massive protogalaxies naturally produce the conditions for direct collapse into a supermassive black hole with no need to suppress cooling and star formation. Merger-driven gas inflows give rise to an unstable, massive nuclear gas disk of a few billion solar masses, which funnels more than 10(8) solar masses of gas to a sub-parsec-scale gas cloud in only 100,000 years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can subsequently grow to a billion solar masses on timescales of about 10(8) years by accreting gas from the surrounding disk.

  6. Mid-infrared dust in two nearby radio galaxies, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36)

    CERN Document Server

    Asabere, B Duah; Jarrett, T; Winkler, H

    2016-01-01

    Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 micron and Spitzer mid-infrared spectra. By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.6" to 5.5". Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 micron images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 micron images to estimate the stellar...

  7. The redshift evolution of early-type galaxies in COSMOS: Do massive early-type galaxies form by dry mergers?

    CERN Document Server

    Scarlata, C; Lilly, S J; Feldmann, R; Kampczyk, P; Renzini, A; Cimatti, A; Halliday, C; Daddi, E; Sargent, M T; Koekemoer, A; Scoville, N; Kneib, J P; Leauthaud, A; Massey, R; Rhodes, J; Tasca, L; McCracken, H J; Mobasher, B; Taniguchi, Y; Thompson, D; Ajiki, M; Aussel, H; Murayama, T; Sanders, D B; Sasaki, S; Shioya, Y; Takahashi, M

    2007-01-01

    ABRIDGED: We study the evolution since z~1 of the rest-frame B luminosity function of the early-type galaxies (ETGs) in ~0.7 deg^2 in the COSMOS field. In order to identify ALL progenitors of local ETGs we construct the sample of high-z galaxies using two complementary criteria: (i) A morphological selection based on the Zurich Estimator of Structural Types, and (ii) A photometric selection based on the galaxy properties in the (U-V)-M_V color-magnitude diagram. We furthermore constrain both samples so as to ensure that the selected progenitors of ETGs are compatible with evolving into systems which obey the mu_B-r_{hl} Kormendy relation. Assuming the luminosity evolution derived from studies of the fundamental plane for high-z ETGs, our analysis shows no evidence for a decrease in the number density of the most massive ETGs out to z~ 0.7: Both the morphologically- and the photometrically-selected sub-samples show no evolution in the number density of bright (~L>2.5L*) ETGs. Allowing for different star format...

  8. Massive black hole binaries in gas-rich galaxy mergers; multiple regimes of orbital decay and interplay with gas inflows

    Science.gov (United States)

    Mayer, Lucio

    2013-12-01

    We revisit the phases of the pairing and sinking of black holes (BHs) in galaxy mergers and circumnuclear discs in light of the results of recent simulations with massive BHs embedded in predominantly gaseous backgrounds. After a general overview we highlight for the first time the existence of a clear transition, for unequal mass BHs, between the regime in which the orbital decay is dominated by the conventional dynamical friction wake and one in which global disc torques associated with density waves launched by the secondary BH as well as co-orbital torques arising from gas gravitationally captured by the BH dominate and lead to faster decay. The new regime intervenes at BH binary separations of a few tens of parsecs and below, following a phase of orbital circularization driven dynamical friction. It bears some resemblance with planet migration in protoplanetary discs. While the orbital timescale is reasonably matched by the migration rate for the Type-I regime, the dominant negative torque arises near the co-rotation resonance, which is qualitatively similar to what is found in the so-called Type-III migration, the fastest migration regime identified so far for planets. This fast decay rate brings the BHs to separations of order 10-1 pc, the resolution limit of our simulations, in less than ˜107 yr in a smooth disc, while the decay timescale can increase to >108 yr in clumpy discs due to gravitational scattering with molecular clouds. Eventual gap opening at sub-pc scale separations will slow down the orbital decay subsequently. How fast the binary BH can reach the separation at which gravitational waves take over will be determined by the nature of the interaction with the circumbinary disc and the complex torques exerted the gas flowing through the edge of such disc, the subject of many recent studies. We also present a new intriguing connection between the conditions required for rapid orbital decay of massive BH binaries and those required for prominent

  9. An Empirically Based Model for Predicting Infrared Luminosity Functions, Deep Infrared Galaxy Counts and the Diffuse Infrared Background

    CERN Document Server

    Malkan, M A

    2001-01-01

    We predict luminosity functions and number counts for extragalactic infrared sources at various wavelengths using our empirically based model. This is the same model which we used successfully to predict the spectral energy distribution of the diffuse infrared background. Comparisons of galaxy count results with existing data indicate that either galaxy luminosity evolution is not stronger that Q=3.1 (where L is proportional to (1+z)^{Q}) or that this evolution does not continue beyond a redshift of 2. However, measurements of the far infrared background from COBE-DIRBE seem to suggest a stronger evolution for far infrared emission with Q > 4 in the redshift range beteen 0 and 1. We discuss several interpretations of these results and also discuss how future observations can reconcile this apparent conflict. We also make predictions of the redshift distributions of extragalactic infrared sources at selected flux levels which can be tested by planned detectors. Finally, we predict the fluxes at which various f...

  10. Merger traces in the spatial distribution of stellar populations in the Fornax dSph galaxy

    CERN Document Server

    del Pino, Andrés; Hidalgo, Sebastial L

    2015-01-01

    We present a comprehensive and detailed study of the stellar populations of the Fornax dwarf spheroidal galaxy. We analyse their spatial distributions along the main body of the galaxy, obtaining their surface density maps, together with their radial density profiles. Results are based on the largest and most complete catalogue of stars in Fornax, with more than $3.5\\times10^{5}$ stars covering the main body of the galaxy up to $\\rm V \\sim 24$. We find a differentiated structure in Fornax depending on the stellar ages. Old stars ($\\gtrsim 10$ Gyr) follow an elliptical distribution well fitted by King profiles with relatively large core radius ($r_c = 760\\pm60$ pc). On another hand, young populations ($\\lesssim 3$ Gyr) concentrate in the central region of the galaxy ($r_c = 210\\pm10$ pc), and are better fitted by Sersic profiles with $0.8 < n < 1.2$, indicating some disky shape. These stars show strong asymmetries and substructures not aligned with the main optical axes of Fornax. This together with the ...

  11. The Merger Rate to Redshift One from Kinematic Pairs Caltech Faint Galaxy Redshift Survey XI

    CERN Document Server

    Carlberg, R G; Patton, D R; Blandford, R D; Hogg, D W; Yee, H K C; Morris, S L; Lin, H; Cowie, L L; Hu, E; Songaila, A; Cohen, Judith G.; Blandford, Roger; Hogg, David W.; Cowie, Lennox L.; Hu, Esther; Songaila, Antoinette

    2000-01-01

    The rate of mass accumulation due to galaxy merging depends on the mass, density, and velocity distribution of galaxies in the near neighborhood of a host galaxy. The fractional luminosity in kinematic pairs combines all of these effects in a single estimator which is relatively insensitive to population evolution. Here we use a k-corrected and evolution compensated volume-limited sample drawing about 300 redshifts from CFGRS and 3000 from CNOC2 to measure the rate and redshift evolution of merging. We identify kinematic pairs with projected separations less than either 50 or 100 \\hkpc and rest-frame velocity differences of less than 1000\\kms. The fractional luminosity in pairs is modeled as f_L(Delta v,r_p,M_r^{ke})(1+z)^{m_L} where [f_L,m_L] are [0.14+/-0.07,0+/-1.4] and [0.37+/-0.7,0.1+/-0.5] for r_p= 0.2 M*) is 0.02+/-0.01(1+z)^{0.1+/-0.5} M*~Gyr^{-1}. Present day high-luminosity galaxies therefore have accreted approximately 0.15M* of their mass over the approximately 7 Gyr to redshift one. (abridged)

  12. Mid-Infrared Observations of Normal Star-Forming Galaxies The Infrared Space Observatory Key Project Sample

    CERN Document Server

    Dale, D A; Helou, G; Dale, Daniel A.; Silbermann, Nancy A.; Helou, George

    2000-01-01

    We present mid-infrared maps and preliminary analysis for 61 galaxies observed with the ISOCAM instrument aboard the Infrared Space Observatory. Many of the general features of galaxies observed at optical wavelengths---spiral arms, disks, rings, and bright knots of emission---are also seen in the mid-infrared, except the prominent optical bulges are absent at 6.75 and 15 microns. In addition, the maps are quite similar at 6.75 and 15 microns, except for a few cases where a central starburst leads to lower 6.75/15 ratios in the inner region. We also present infrared flux densities and mid-infrared sizes for these galaxies. The mid-infrared color 6.75/15 shows a distinct trend with the far-infrared color 60/100. The quiescent galaxies in our sample (60/100 < 0.6) show 6.75/15 near unity, whereas this ratio drops significantly for galaxies with higher global heating intensity levels. Azimuthally-averaged surface brightness profiles indicate the extent to which the mid-infrared flux is centrally concentrated,...

  13. The Origin of Infrared Emission from the Infrared Luminous Galaxy NGC 4418

    Institute of Scientific and Technical Information of China (English)

    Lei Shi; Qiu-Sheng Gu

    2005-01-01

    We present a study of the origin of infrared (IR) emission in the optically normal, infrared luminous galaxy NGC 4418. By decomposing the stellar absorption features and continua in the range of 3600-8000A from the Sloan Digital Sky Survey into a set of simple stellar populations, we derive the stellar properties for the nuclear region of NGC 4418. We compare the observed infrared luminosity with the one derived from the starburst model, and find that star-forming activity contributes only 7% to the total IR emission, that as the IR emission region is spatially very compact, the most possible source for the greater part of the IR emission is a deeply embedded AGN, though an AGN component is found to be unnecessary for fitting the optical spectrum.

  14. A Catalog of Luminous Infrared Galaxies in the IRAS Survey and Second Data Release of SDSS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We selected a sample of luminous infrared galaxies by cross-identification of the Faint Source Catalogue (FSC) and Point Source Catalogue (PSC) of the IRAS Survey with the Second Data Release of the SDSS. The size of our sample is 1267 for FSC and 427 for PSC by using the 2σ significance level cross-section. The "likelihood ratio" method is used to estimate the individual's reliability and for defining two more reliable subsamples (908 for FSC and 356 for PSC). A catalog of infrared,optical and radio data is compiled and will be used in further work. Some statistical results show that luminous infrared galaxies are quite different from ultra-luminous infrared galaxies. The AGN fractions of galaxies at different infrared luminosities and the radio-infrared correlations are consistent with the previous studies.

  15. ALMA Observations Show Major Mergers Among the Host Galaxies of Fast-growing, High-redshift​ Supermassive​ Black Holes

    Science.gov (United States)

    Trakhtenbrot, Benny; Lira, Paulina; Netzer, Hagai; Cicone, Claudia; Maiolino, Roberto; Shemmer, Ohad

    2017-02-01

    We present new ALMA band-7 data for a sample of six luminous quasars at z≃ 4.8, powered by fast-growing supermassive black holes (SMBHs) with rather uniform properties: the typical accretion rates and black hole masses are L/{L}{Edd}≃ 0.7 and {M}{BH}≃ {10}9 {M}ȯ . Our sample consists of three “FIR-bright” sources, which were individually detected in previous Herschel/SPIRE observations, with star formation rates of {SFR}> 1000 {M}ȯ {{yr}}-1, and three “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR of ∼400 {M}ȯ {{yr}}-1. The dusty interstellar medium in the hosts of all six quasars is clearly detected in the ALMA data and resolved on scales of ∼2 kpc, in both continuum ({λ }{rest}∼ 150 μ {{m}}) and [{{C}} {{II}}] λ 157.74 μ {{m}} line emission. The continuum emission is in good agreement with the expectations from the Herschel data, confirming the intense SF activity in the quasar hosts. Importantly, we detect companion sub-millimeter galaxies (SMGs) for three sources—one FIR-bright and two FIR-faint, separated by ∼ 14{--}45 {kpc} and ALMA data therefore clearly support the idea that major mergers are important drivers for rapid early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs and the gas kinematics as observed by ALMA suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

  16. An Atlas of Galaxy Spectral Energy Distributions from the Ultraviolet to the Mid-Infrared

    CERN Document Server

    Brown, Michael J I; Smith, J -D T; da Cunha, Elisabete; Jarrett, T H; Imanishi, Masatoshi; Armus, Lee; Brandl, Bernhard R; Peek, J E G

    2013-01-01

    We present an atlas of 129 spectral energy distributions for nearby galaxies, with wavelength coverage spanning from the UV to the mid-infrared. Our atlas spans a broad range of galaxy types, including ellipticals, spirals, merging galaxies, blue compact dwarfs and luminous infrared galaxies. We have combined ground-based optical drift-scan spectrophotometry with infrared spectroscopy from Spitzer and Akari, with gaps in spectral coverage being filled using MAGPHYS spectral energy distribution models. The spectroscopy and models were normalized, constrained and verified with matched-aperture photometry measured from Swift, GALEX, SDSS, 2MASS, Spitzer and WISE images. The availability of 26 photometric bands allowed us to identify and mitigate systematic errors present in the data. Comparison of our spectral energy distributions with other template libraries and the observed colors of galaxies indicates that we have smaller systematic errors than existing atlases, while spanning a broader range of galaxy types...

  17. Local Luminous Infrared Galaxies: Spatially resolved mid-infrared observations with Spitzer/IRS

    CERN Document Server

    Alonso-Herrero, Almudena; Rieke, George H; Colina, Luis; Engelbracht, Charles W; Perez-Gonzalez, Pablo; Diaz-Santos, Tanio; Smith, J D T

    2009-01-01

    Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The I...

  18. Massive Black Hole binaries in gas-rich galaxy mergers; multiple regimes of orbital decay and interplay with gas inflows

    CERN Document Server

    Mayer, Lucio

    2013-01-01

    We revisit the phases of the pairing and sinking of BHs in galaxy mergers and circunmunclear disks in light of the results of recent simulations with massive BHs embedded in predominantly gaseous backgrounds. After a general overview we discuss the importance of a fast orbital decay regime dominated by global disk torques rather than by the local dynamical friction wake. This regime can dominate at BH binary separations of a few tens of parsecs and below, following a phase of orbital circularization dominated by local dynamical friction. It is similar to Type-I migration in planetary evolution. It can bring the black holes to separations small enough for gravitational waves to take over on a timescale ranging from less than $\\sim 10^7$ yr to up to $10^8$ yr, depending on whether the interstellar medium is smooth or clumpy. Eventual gap opening at sub-pc scale separations slows down but does not interrupt the orbital decay.Subsequently, we discuss a new intriguing connection between the conditions required for...

  19. ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe

    CERN Document Server

    Basu, Kaustuv; Erler, Jens; Eckert, Dominique; Vazza, Franco; Magnelli, Benjamin; Bertoldi, Frank; Tozzi, Paolo

    2016-01-01

    We present ALMA measurement of a merger shock using the thermal Sunyaev-Zel'dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at $z \\approx 0.9$. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front, and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number ${\\cal M} = 2.4^{+1.3}_{-0.6}$, which in turn suggests a high value of the magnetic field (of the order $4-10 ~\\mu$G) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest redshift direct detection of a cluster shock to-date, and one of the first instances of ALMA S...

  20. The three-dimensional geometry and merger history of the massive galaxy cluster MACS J0358.8-2955

    CERN Document Server

    Hsu, Li-Yen; Richard, Johan

    2012-01-01

    We present results of a combined X-ray/optical analysis of the dynamics of the massive cluster MACS J0358.8-2955 (z=0.428) based on observations with the Chandra X-ray Observatory, the Hubble Space Telescope, and the Keck-I telescope on Mauna Kea. MACS J0358.8-2955 is found to be one of the most X-ray luminous clusters known at z>0.3, featuring L_X(merger of at least three sub-clusters. One collision proceeds close to head-on, while the second features a significant impact parameter. The temperature variations in the intra-cluster gas, two tentative cold fronts, the radial velocities measured for cluster galaxies, and the small offsets betwe...

  1. Resolved Near-Infrared Stellar Populations in Nearby Galaxies

    CERN Document Server

    Dalcanton, Julianne J; Melbourne, Jason L; Girardi, Léo; Dolphin, Andy; Rosenfield, Philip A; Boyer, Martha L; de Jong, Roelof S; Gilbert, Karoline; Marigo, Paola; Olsen, Knut; Seth, Anil C; Skillman, Evan

    2011-01-01

    We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies (<4 Mpc), based on F110W and F160W images from Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs sample both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in optical CMDs, and identify the red core Helium burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myrs old, suggesting that star formation can drive surprisingly rapid variations in the NIR mass-to-light ratio. The NIR luminosity of star forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual bright RHeB stars may be misidentified as old stellar clusters in low resolution imaging. We also discuss the CMD location of asymptotic giant branch (AGB) stars, and the separation of AGB sub-populations using a combination of optic...

  2. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  3. The FUR to near-IR morphologies of luminous infrared galaxies in the goals sample

    Energy Technology Data Exchange (ETDEWEB)

    Petty, S. M. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Armus, L.; Díaz-Santos, T.; Howell, J. H.; Surace, J. A. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Charmandaris, V.; Psychogyios, A. [Department of Physics, University of Crete, GR-71003, Heraklion (Greece); Evans, A. S.; Stierwalt, S. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Floc’h, E. Le [CEA-Saclay, Orme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette (France); Bridge, C. [Div. of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Inami, H. [National Optical Astronomy Observatory, Tucson, AZ, 85719 (United States)

    2014-12-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M{sub 20} parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ∼80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M{sub 20} (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M{sub 20} parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z∼0.5–3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M{sub 20} at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z⩾2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M{sub 20} for the GOALS sources do not appear to change more than about 10% from the values at z∼0. The change in G-M{sub 20} is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z∼0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  4. Massive black hole and gas dynamics in mergers of galaxy nuclei - II. Black hole sinking in star-forming nuclear discs

    Science.gov (United States)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo; Colpi, Monica

    2015-11-01

    Mergers of gas-rich galaxies are key events in the hierarchical built-up of cosmic structures, and can lead to the formation of massive black hole binaries. By means of high-resolution hydrodynamical simulations we consider the late stages of a gas-rich major merger, detailing the dynamics of two circumnuclear discs, and of the hosted massive black holes during their pairing phase. During the merger gas clumps with masses of a fraction of the black hole mass form because of fragmentation. Such high-density gas is very effective in forming stars, and the most massive clumps can substantially perturb the black hole orbits. After ˜10 Myr from the start of the merger a gravitationally bound black hole binary forms at a separation of a few parsecs, and soon after, the separation falls below our resolution limit of 0.39 pc. At the time of binary formation the original discs are almost completely disrupted because of SNa feedback, while on pc scales the residual gas settles in a circumbinary disc with mass ˜ 105 M⊙. We also test that binary dynamics is robust against the details of the SNa feedback employed in the simulations, while gas dynamics is not. We finally highlight the importance of the SNa time-scale on our results.

  5. Massive black hole and gas dynamics in mergers of galaxy nuclei - II. Black hole sinking in star-forming nuclear discs

    CERN Document Server

    Lupi, Alessandro; Dotti, Massimo; Colpi, Monica

    2015-01-01

    Mergers of gas-rich galaxies are key events in the hierarchical built-up of cosmic structures, and can lead to the formation of massive black hole binaries. By means of high-resolution hydrodynamical simulations we consider the late stages of a gas-rich major merger, detailing the dynamics of two circumnuclear discs, and of the hosted massive black holes during their pairing phase. During the merger gas clumps with masses of a fraction of the black hole mass form because of fragmentation. Such high-density gas is very effective in forming stars, and the most massive clumps can substantially perturb the black hole orbits. After $\\sim 10$ Myr from the start of the merger a gravitationally bound black hole binary forms at a separation of a few parsecs, and soon after, the separation falls below our resolution limit of $0.39$ pc. At the time of binary formation the original discs are almost completely disrupted because of SNa feedback, while on pc scales the residual gas settles in a circumbinary disc with mass $...

  6. The most-luminous heavily-obscured quasars have a high merger fraction: morphological study of WISE-selected hot dust-obscured galaxies

    CERN Document Server

    Fan, Lulu; Fang, Guanwen; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao

    2016-01-01

    Previous studies have shown that WISE-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick AGNs. High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at $z\\sim3$ using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction ($62\\pm 14 \\%$). By fitting the surface brightness profiles, we find that the distribution of S\\'ersic indices in our Hot DOG sample peaks around 2, which suggests that most of Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity ($\\sim10^{14}L_\\odot$) of our Hot DOG sample by using IR SEDs decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction (Hickox et al. 2014). Both the high merger fraction in IR-luminous AGN sample and relatively low merger fraction in UV/optical-se...

  7. Galaxy disks do not need to survive in the L-CDM paradigm: the galaxy merger rate out to z\\sim1.5 from morpho-kinematic data

    CERN Document Server

    Puech, M; Hopkins, P F; Athanassoula, E; Flores, H; Rodrigues, M; Wang, J L; Yang, Y B

    2012-01-01

    About two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the L-CDM paradigm. Here we show that the observed high occurrence of mergers amongst their progenitors is only apparent and is resolved when using morpho-kinematic observations which are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predi...

  8. Collisions and Mergers of Disk Galaxies Hydrodynamics of Star Forming Gas

    CERN Document Server

    Lamb, S A; Hearn, Nathan C.

    2003-01-01

    We summarize the results of numerical simulations of colliding gas-rich disk galaxies in which the impact velocity is set parallel to the spin axes of the two galaxies. The effects of varying the impact speed are studied with particular attention to the resulting gaseous structures and shockwave patterns, and the time needed to produce these structures. The simulations employ an N-body treatment of the stars and dark matter, together with an SPH treatment of the gas, in which all components of the models are gravitationally active. The results indicate that for such impact geometries, collisions can lead to the very rapid formation of a central, rapidly rotating, dense gas disk, and that in all cases extensive star formation is predicted by the very high gas densities and prevalence of shocks, both in the nucleus and out in the galactic disks. As the dense nucleus is forming, gas and stars are dispersed over very large volumes, and only fall back towards the nucleus over long times. In the case of low impact ...

  9. Mid-Infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    CERN Document Server

    Walker, Lisa May; Gallagher, Sarah C; Hibbard, John E; Hornschemeier, Ann E; Charlton, Jane C; Jarrett, Thomas H

    2009-01-01

    We find evidence for accelerated evolution in compact group galaxies from the distribution in mid-infrared colorspace of 42 galaxies from 12 Hickson Compact Groups (HCGs) compared to the the distributions of several other samples including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are not uniformly distributed in colorspace, as well as quantitative evidence for a gap. Galaxies in the infall region of the Coma cluster also exhibit a non-uniform distribution and a less well defined gap, which may reflect a similarity with the compact group environment. Neither the Coma Center or interacting samples show evidence of a gap, leading us to speculate that the gap is unique to the environment of high galaxy density where gas has not been fully processed or stripped.

  10. A tale of two galaxies--galaxy mergers and galaxy pairs%双城记--星系并合和星系对

    Institute of Scientific and Technical Information of China (English)

    沈世银; 袁方婷; 侯金良

    2015-01-01

    在重子世界中,星系是宇宙构成的砖块,但是星系在宇宙中的分布却不是随机的。在大尺度上,星系的分布是网状的;在小尺度上,星系往往也会成对存在,比如本地星系群中的银河系和仙女座大星云。星系对最终会发生并合,而这个并合过程是星系增长的主要途径之一。对星系对进行的观测研究能够帮助人们理解星系的相互作用和增长过程。文章重点介绍了现代星系巡天中对星系对进行的观测,特别是中国的重大科学工程郭守敬望远镜在其中所发挥的作用。%Galaxies are building blocks of the Universe. However, their distribution is not random. On a large scale, they have a net-like distribution, but on a small scale they form pairs, like our Milky Way and the Andromeda galaxy. Galaxy pairs finally merge into one system. Merg-ing is one of the most important approaches for galaxies to assemble mass, and research on galaxy pairs can help us understand galaxy interaction and mass assembly. This paper focuses on the ob-servation of galaxy pairs in modern astronomical surveys and the important role played by the data collected by the Guo Shou-Jing telescope (LAMOST) in the study of galaxy pairs.

  11. Mid-Infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    CERN Document Server

    Hainline, Kevin N; Greene, Jenny E; Stern, Daniel

    2016-01-01

    Searching for active galactic nuclei (AGN) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early Universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ~18,000 nearby dwarf galaxies (M*< 3 x 10^9 Msun, $z<0.055$) in the Sloan Digital Sky Survey with significant detections in the first three bands of the AllWISE data release from the Wide-field Infrared Survey Explorer (WISE). First, we demonstrate that the majority of optically-selected AGNs in dwarf galaxies are not selected as AGNs using WISE infrared color diagnostics and that the infrared emission is dominated by the host galaxies. We then investigate the infrared properties of optically-selected star-forming dwarf galaxies, finding that the galaxies with the reddest infrared colors are the most compact, with blue optical colors, young stellar ages and large specific star formation rates. These results indicate that great care must be tak...

  12. Tidal Tales of Minor Mergers: Star Formation in the Tidal Debris of Minor Mergers

    CERN Document Server

    Knierman, Karen A

    2009-01-01

    How does the tidal debris of minor galaxy mergers contribute to structures in spiral galaxies or in the intergalactic medium? While major mergers are known to create structures such as tidal dwarf galaxies and star clusters within their tidal debris, less is known about minor mergers (mass ratios between a dwarf galaxy and disk galaxy of less than one-third) and their tidal debris. This work surveys 6 nearby minor mergers using optical broad-band and H-alpha narrow-band imaging to characterize star formation in their tidal debris. Young star clusters with ages less than the dynamical age of the tidal tails are found in all 6 mergers, indicating that the star clusters formed in situ. Even if minor mergers contribute less tidal debris per interaction than major mergers, they are more common and possibly contribute structure to all types of galaxies and to the intergalactic medium throughout the history of the universe.

  13. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Magdis, Georgios E.; Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Hopwood, R.; Clements, D. [Physics Department, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Huang, J.-S. [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Pearson, C. [RAL Space, Science, and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Alonso-Herrero, Almudena [Instituto de Fisica de Cantabria, CSIC-UC, E-39006 Santander (Spain); Bock, J. J. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Cooray, A. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Griffin, M. J. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Oliver, S. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Perez Fournon, I. [Instituto de Astrofsica de Canarias (IAC), 38200, La Laguna, Tenerife (Spain); Riechers, D. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Swinyard, B. M.; Thatte, N. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Athens (Greece); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T1Z1 (Canada); Valtchanov, I. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Vaccari, M., E-mail: ipf@iac.es [Astrophysics Group, Physics Department, University of the Western Cape, Private Bag X17, 7535 Bellville, Cape Town (South Africa)

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  14. The hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    CERN Document Server

    Puccetti, S; Bauer, F E; Brandt, W N; Fiore, F; Harrison, F A; Luo, B; Stern, D; Urry, C M; Alexander, D M; Annuar, A; Arévalo, P; Baloković, M; Boggs, S E; Brightman, M; Christensen, F E; Craig, W W; Gandhi, P; Hailey, C J; Koss, M J; La Massa, S; Marinucci, A; Ricci, C; Walton, D J; Zappacosta, L; Zhang, W

    2016-01-01

    We present a broad-band (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240, combined with archival Chandra, XMM-Newton and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1."5. Previous Chandra observations have resolved the two nuclei, showing that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, thanks to the unprecedented quality of the NuSTAR data at energies >10 keV, we clearly detect, for the first time, both the primary and the reflection continuum components. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau ~ 1.2, N_H ~ 1.5 x 10^(24) cm^-2). We detect moderate hard X-ray (> 10 keV) flux variability up to 20% on short (15-20 ksec) timescales. The amplitude of the variability is maximum at ~30 keV and is like...

  15. DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883

    Energy Technology Data Exchange (ETDEWEB)

    Kankare, E.; Mattila, S.; Takalo, A. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Ryder, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Vaeisaenen, P. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Alberdi, A.; Perez-Torres, M.-A.; Romero-Canizales, C. [Instituto de Astrofsica de Andalucia, IAA-CSIC, Apartado 3004, 18080 Granada (Spain); Alonso-Herrero, A.; Colina, L. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, km 4, 28850, Torrejon de Ardoz, Madrid (Spain); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Melinder, J., E-mail: erkki.kankare@utu.fi [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm (Sweden)

    2012-01-10

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0.''37 (180 pc) and 0.''79 (380 pc) projected distance, respectively, from the center of the K-band nucleus of the luminous infrared galaxy (LIRG) IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to an LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colors of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  16. Discovery of Two Supernovae in the Nuclear Regions of the Luminous Infrared Galaxy IC 883

    CERN Document Server

    Kankare, E; Ryder, S; Vaisanen, P; Alberdi, A; Alonso-Herrero, A; Colina, L; Efstathiou, A; Kotilainen, J; Melinder, J; Perez-Torres, M -A; Romero-Canizales, C; Takalo, A

    2011-01-01

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0.37" (180 pc) and 0.79" (380 pc) projected distance respectively from the centre of the K-band nucleus of the luminous infrared galaxy IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to a LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colours of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  17. An Infrared Photometric Study of Galaxies with Extragalactic H2O Maser Sources

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    All galaxies with extragalactic H2O maser sources observed so far are collected. With the 2MASS and the IRAS photometric data an infrared study is performed on those galaxies. By a comparison between the H2O maser detected sources and non-detected sources in the infrared it is indicated that infrared properties in the IRAS 12-25/μm and 60-100/μm are important for producing H2O masers in galaxies. It is also found that the H2O maser galaxies with different nuclear activity types have rather different infrared properties mainly in the IRAS 12-60/μm region.

  18. The Infrared Spectral Energy Distribution of Normal Star-Forming Galaxies

    CERN Document Server

    Dale, D A; Contursi, A; Silbermann, N A; Kolhatkar, S; Dale, Daniel A.; Helou, George; Contursi, Alessandra; Silbermann, Nancy A.; Kolhatkar, Sonali

    2001-01-01

    We present a new phenomenological model for the spectral energy distribution of normal star-forming galaxies between 3 and 1100 microns. A sequence of realistic galaxy spectra are constructed from a family of dust emission curves assuming a power law distribution of dust mass over a wide range of interstellar radiation fields. For each interstellar radiation field heating intensity we combine emission curves for large and very small grains and aromatic feature carriers. The model is constrained by IRAS and ISOCAM broadband photometric and ISOPHOT spectrophotometric observations for our sample of 69 normal galaxies; the model reproduces well the empirical spectra and infrared color trends. These model spectra allow us to determine the infrared energy budget for normal galaxies, and in particular to translate far-infrared fluxes into total (bolometric) infrared fluxes. The 20 to 42 micron range appears to show the most significant growth in relative terms as the activity level increases, suggesting that the 20-...

  19. Near-infrared integral field spectroscopy of star-forming galaxies

    Science.gov (United States)

    Dale, D. A.; Roussel, H.; Contursi, A.; Helou, G.; Dinerstein, H. L.; Hunter, D. A.; Hollenbach, D. J.; Egami, E.; Matthews, K.; Murphy, T. W. Jr; Lafon, C. E.; Rubin, R. H.

    2004-01-01

    The Palomar Integral Field Spectrograph was used to probe a variety of environments in nine nearby galaxies that span a range of morphological types, luminosities, metallicities, and infrared-to-blue ratios.

  20. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham, DH1 3LE (United Kingdom); Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Boggs, Stephen E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. Niel; Luo, Bin [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Christensen, Finn E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, Andrea [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Gandhi, Poshak [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Koss, Michael [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2015-11-20

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.

  1. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS

    Science.gov (United States)

    Weston, Madalyn E.; McIntosh, Daniel H.; Brodwin, Mark; Mann, Justin; Cooper, Andrew; McConnell, Adam; Nielsen, Jennifer L.

    2017-02-01

    We use the Wide-field Infrared Survey Explorer (WISE) and the Sloan Digital Sky Survey (SDSS) to confirm a connection between dust-obscured active galactic nuclei (AGNs) and galaxy merging. Using a new, volume-limited (z ≤ 0.08) catalogue of visually selected major mergers and galaxy-galaxy interactions from the SDSS, with stellar masses above 2 × 1010 M⊙, we find that major mergers (interactions) are 5-17 (3-5) times more likely to have red [3.4] - [4.6] colours associated with dust-obscured or `dusty' AGNs, compared to non-merging galaxies with similar masses. Using published fibre spectral diagnostics, we map the [3.4] - [4.6] versus [4.6] - [12] colours of different emission-line galaxies and find that one-quarter of Seyferts have colours indicative of a dusty AGN. We find that AGNs are five times more likely to be obscured when hosted by a merging galaxy, half of AGNs hosted by a merger are dusty, and we find no enhanced frequency of optical AGNs in merging over non-merging galaxies. We conclude that undetected AGNs missed at shorter wavelengths are at the heart of the ongoing AGN-merger connection debate. The vast majority of mergers hosting dusty AGNs are star forming and located at the centres of Mhalo < 1013 M⊙ groups. Assuming plausibly short-duration dusty-AGN phases, we speculate that a large fraction of gas-rich mergers experience a brief obscured AGN phase, in agreement with the strong connection between central star formation and black hole growth seen in merger simulations.

  2. On the Formation of Cool, Non-Flowing Cores in Galaxy Clusters via Hierarchical Mergers

    CERN Document Server

    Burns, J O; Norman, M L; Bryan, G L

    2003-01-01

    We present a new model for the creation of cool cores in rich galaxy clusters within a LambdaCDM cosmological framework using the results from high spatial dynamic range, adaptive mesh hydro/N-body simulations. It is proposed that cores of cool gas first form in subclusters and these subclusters merge to create rich clusters with cool, central X-Ray excesses. The rich cool clusters do not possess ``cooling flows'' due to the presence of bulk velocities in the intracluster medium in excess of 1000 km/sec produced by on-going accretion of gas from supercluster filaments. This new model has several attractive features including the presence of substantial core substructure within the cool cores, and it predicts the appearance of cool bullets, cool fronts, and cool filaments all of which have been recently observed with X-Ray satellites. This hierarchical formation model is also consistent with the observation that cool cores in Abell clusters occur preferentially in dense supercluster environments. On the other ...

  3. Evolutionary paths among different red galaxy types at 0.3 < z < 1.5 and the late buildup of massive E-S0's through major mergers

    CERN Document Server

    Prieto, Mercedes; Balcells, Marc; Cristobal-Hornillos, David; Erwin, Peter; Abreu, David; Dominguez-Palmero, Lilian; Hempel, Angela; Lopez-Sanjuan, Carlos; Guzman, Rafael; Perez-Gonzalez, Pablo G; Barro, Guillermo; Gallego, Jesus; Zamorano, Jaime

    2012-01-01

    Some recent observations seem to disagree with hierarchical theories of galaxy formation about the role played by major mergers in the late buildup of massive E-S0's. We re-address this question by analysing the morphology, structural distortion level, and star formation enhancement of a sample of massive galaxies (M_* > 5 * 10^10 Msun) lying on the Red Sequence and its surroundings at 0.3 10^11 Msun at z=0 through gas-rich major mergers has frozen since z~0.6. All these facts support that major mergers have played the dominant role in the definitive buildup of present-day E-S0's with M_*> 10^11 Msun at 0.6galaxy formation.

  4. A Deep Chandra Observation of the X-shaped Radio Galaxy 4C +00.58: A Candidate for Merger-induced Reorientation?

    Science.gov (United States)

    2010-05-28

    Radio Galaxy 4C +00.58: A Candidate for Merger-induced Reorientation? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S... cosmology (H0 = 71 km s −1 Mpc−1, ΩΛ = 0.73, and Ωm = 0.27; Spergel et al. 2007). At a redshift of z = 0.059, 1 ′′ = 1.13 kpc. 2. Observations We...GHz map resolves the jet into a string of knots (§3.3). We detect no counterjet. The X-ray emission (Fig. 1) is made up of two components: bright

  5. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    Science.gov (United States)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; Evans, Neal J., III; Gelino, Chris; Griffith, Roger L.; Grillmair, Carl J.; Jarrett, Tom; Lonsdale, Carol J.; Masci, Frank J.; Mason, Brian S.; Petty, Sara; Sayers, Jack; Stanford, S. Adam; Stern, Daniel; Wright, Edward L.; Yan, Lin

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  6. Serendipity observations of far infrared cirrus emission in the Spitzer Infrared Nearby Galaxies Survey: Analysis of far-infrared correlations

    CERN Document Server

    Bot, Caroline; Boulanger, Francois; Lagache, Guilaine; Miville-Deschenes, Marc-Antoine; Draine, Bruce; Martin, Peter

    2009-01-01

    We present an analysis of far-infrared dust emission from diffuse cirrus clouds. This study is based on serendipitous observations at 160 microns at high galactic latitude with the Multiband Imaging Photometer (MIPS) onboard the Spitzer Space Telescope by the Spitzer Infrared Nearby Galaxies Survey (SINGS). These observations are complemented with IRIS data at 100 and 60 microns and constitute one of the most sensitive and unbiased samples of far infrared observations at small scale of diffuse interstellar clouds. Outside regions dominated by the cosmic infrared background fluctuations, we observe a substantial scatter in the 160/100 colors from cirrus emission. We compared the 160/100 color variations to 60/100 colors in the same fields and find a trend of decreasing 60/100 with increasing 160/100. This trend can not be accounted for by current dust models by changing solely the interstellar radiation field. It requires a significant change of dust properties such as grain size distribution or emissivity or ...

  7. The far-infrared properties of the most isolated galaxies

    OpenAIRE

    Lisenfeld, Ute; Verdes-Montenegro, L.; Leon, S.; Sulentic, J.

    2007-01-01

    Although it is widely accepted that galaxy interactions stimulate secular evolutionary effects (e.g. enhanced star formation) the amplitude of this effect and the processes for accomplishing them, are not well quantified. The goal of the project AMIGA (Analysis of the Interstellar Medium of Isolated Galaxies) is to provide a sizable reference sample (n=1050) of the most isolated galaxies as a basis for the study of the influence of the environment on galaxy properties. Here, we present the fa...

  8. A NuSTAR Survey of Nearby Ultraluminous Infrared Galaxies

    CERN Document Server

    Teng, Stacy H; Stern, Daniel; Ptak, Andrew; Alexander, D M; Bauer, Franz E; Boggs, Stephen E; Brandt, W Niel; Christensen, Finn E; Comastri, Andrea; Craig, William W; Farrah, Duncan; Gandhi, Poshak; Hailey, Charles J; Harrison, Fiona A; Hickox, Ryan C; Koss, Michael; Luo, Bin; Treister, Ezequiel; Zhang, William W

    2015-01-01

    We present a NuSTAR, Chandra, and XMM--Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120--5453) has a spectrum consistent with a Compton--thick AGN, but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189--2524 and Mrk 273, altering the classification of these border-line sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high energy (>10 keV) X-rays, especially compared to their bolometric lumino...

  9. Far-infrared colours of nearby late-type galaxies in the Herschel Reference Survey

    OpenAIRE

    Boselli, A.; Ciesla, L.; Cortese, L.; Buat, V.; Boquien, M.; Bendo, GJ; Boissier, S.; Eales, S; Gavazzi, G.; Hughes, TM; Pohlen, M.; Smith, MWL; Baes, Maarten; S. Bianchi; Clements, DL

    2012-01-01

    We study the far infrared (60-500 mu m) colours of late-type galaxies in the Herschel Reference Survey, a K-band selected, volume limited sample of nearby galaxies. The far infrared colours are correlated with each other, with tighter correlations for the indices that are closer in wavelength. We also compare the different colour indices to various tracers of the physical properties of the target galaxies, such as the surface brightness of the ionising and non-ionising stellar radiation, the ...

  10. Photometric Properties of Six Local Volume Dwarf Galaxies from Deep Near-Infrared Observations

    CERN Document Server

    de Swardt, B; Jerjen, H

    2010-01-01

    We have obtained deep near-infrared $J$- (1.25 $\\mu$m), $H$- (1.65$ \\mu$m) and $K_s$-band (2.15 $\\mu$m) imaging for a sample of six dwarf galaxies ($M_B\\ga-17$ mag) in the Local Volume (LV, $D\\la10$ Mpc). The sample consists mainly of early-type dwarf galaxies found in various environments in the LV. Two galaxies (LEDA 166099 and UGCA 200) in the sample are detected in the near-infrared for the first time. The deep near-infrared images allow for a detailed study of the photometric and structural properties of each galaxy. The surface brightness profiles of the galaxies are detected down to the ~$24 mag arcsec^{-2}$ isophote in the $J$- and $H$-bands, and $23 mag arcsec^{-2}$ in the $K_s$-band. The total magnitudes of the galaxies are derived in the three wavelength bands. For the brightest galaxies ($M_B\\la-15.5$ mag) in the sample, we find that the Two Micron All Sky Survey (2MASS) underestimates the total magnitudes of these systems by up to $\\la0.5$ mag. The radial surface brightness profiles of the galaxi...

  11. Far-infrared metallicity diagnostics: application to local ultraluminous infrared galaxies

    Science.gov (United States)

    Pereira-Santaella, M.; Rigopoulou, D.; Farrah, D.; Lebouteiller, V.; Li, J.

    2017-09-01

    The abundance of metals in galaxies is a key parameter that permits to distinguish between different galaxy formation and evolution models. Most of the metallicity determinations are based on optical line ratios. However, the optical spectral range is subject to dust extinction and, for high-z objects (z > 3), some of the lines used in optical metallicity diagnostics are shifted to wavelengths not accessible to ground-based observatories. For this reason, we explore metallicity diagnostics using far-infrared (far-IR) line ratios which can provide a suitable alternative in such situations. To investigate these far-IR line ratios, we modelled the emission of a starburst with the photoionization code cloudy. The most sensitive far-IR ratios to measure metallicities are the [O iii]52 μm and 88 μm to [N iii]57 μm ratios. We show that this ratio produces robust metallicities in the presence of an active galactic nucleus and is insensitive to changes in the age of the ionizing stellar. Another metallicity-sensitive ratio is the [O iii]88 μm/[N ii]122 μm ratio, although it depends on the ionization parameter. We propose various mid- and far-IR line ratios to break this dependence. Finally, we apply these far-IR diagnostics to a sample of 19 local ultraluminous IR galaxies (ULIRGs) observed with Herschel and Spitzer. We find that the gas-phase metallicity in these local ULIRGs is in the range 0.7

  12. ISO far-infrared observations of rich galaxy clusters I. Abell 2670

    DEFF Research Database (Denmark)

    Hansen, Lene; Jorgensen, H.E.; Nørgaard-Nielsen, Hans Ulrik

    1999-01-01

    As part of an investigation of far-infrared emission from rich galaxy clusters the central part of Abell 2670 has been mapped with ISO at 60 mu m, 100 mu m, 135 mu m, and 200 mu m using the PHT-C camera. Point sources detected in the field have infrared fluxes comparable to normal spirals...

  13. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    G.E. de Messières; R.W. O'Connell; B.R. McNamara; M. Donahue; P.E.J. Nulsen; G.M. Voit; M.W. Wise; B. Smith; J. Higdon; S. Higdon; N. Bastian

    2009-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  14. ISO far-infrared observations of rich galaxy clusters I. Abell 2670

    DEFF Research Database (Denmark)

    Hansen, Lene; Jorgensen, H.E.; Nørgaard-Nielsen, Hans Ulrik

    1999-01-01

    As part of an investigation of far-infrared emission from rich galaxy clusters the central part of Abell 2670 has been mapped with ISO at 60 mu m, 100 mu m, 135 mu m, and 200 mu m using the PHT-C camera. Point sources detected in the field have infrared fluxes comparable to normal spirals...

  15. An ISO far-infrared survey of line and continuum emission for 227 galaxies

    Science.gov (United States)

    Brauher, J. R.

    2002-01-01

    Far-infrared line and continuum fluxes are presented for a sample of 227 galaxies observed with the Long Wavelength Spectrometer on the Infrared Space Observatory, selected from the ISO Data Archive and having an IRAS 60/100 mu m color ration of 0.2-1.4 and IRAS 60 mu m flux density between 0.1 Jy and 1300 Jy.

  16. Triggered or Self-Regulated Star Formation within Intermediate Redshift Luminous Infrared Galaxies (I). Morphologies and Spatially Resolved Spectral Energy Distributions

    CERN Document Server

    Melbourne, J; Wright, S A; Metevier, A; Steinbring, E; Max, C; Koo, D C; Larkin, J E; Barczys, M

    2008-01-01

    We imaged a set of 15 intermediate redshift (z~0.8) luminous infrared galaxies (LIRGs) with the Keck Laser Guide Star (LGS) AO facility. These galaxies were selected from the GOODS-S field, allowing us to combine the high spatial resolution HST optical (B, V, i, and z-bands) images with our near-infrared (K'-band) images to study the LIRG morphologies and spatially resolved spectral energy distributions (SEDs). Two thirds of the LIRGs are disk galaxies, with only one third showing some evidence for interactions, minor, or major mergers. In contrast with local LIRG disks (which are primarily barred systems), only 10% of the LIRG disks in our sample contain a prominent bar. While the optical bands tend to show significant point-like substructure, indicating distributed star formation, the AO K-band images tend to be smooth. The SEDs of the LIRGs are consistent with distributed dusty star formation, as exhibited by optical to IR colors redder than allowed by old stellar populations alone. This effect is most pro...

  17. Herschel Observations of Far-Infrared Cooling Lines in intermediate Redshift (Ultra)-luminous Infrared Galaxies

    CERN Document Server

    Rigopoulou, D; Magdis, G E; Thatte, N; Swinyard, B M; Farrah, D; Huang, J-S; Alonso-Herrero, A; Bock, J J; Clements, D; Cooray, A; Griffin, M J; Oliver, S; Pearson, C; Riechers, D; Scott, D; Smith, A; Vaccari, M; Valtchanov, I; Wang, L

    2014-01-01

    We report the first results from a spectroscopic survey of the [CII] 158um line from a sample of intermediate redshift (0.210^11.5 Lsun), using the SPIRE-Fourier Transform Spectrometer (FTS) on board the Herschel Space Observatory. This is the first survey of [CII] emission, an important tracer of star-formation, at a redshift range where the star-formation rate density of the Universe increases rapidly. We detect strong [CII] 158um line emission from over 80% of the sample. We find that the [CII] line is luminous, in the range (0.8-4)x10^(-3) of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L[CII]/LIR ratio in our intermediate redshift (U)LIRGs is on average ~10 times larger than that of local ULIRGs. Furthermore, we find that the L[CII]/LIR and L[CII]/LCO(1-0) ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z~0.5 show many similarities to the prop...

  18. Radio Continuum and Far-infrared Emission from the Galaxies in the Eridanus Group

    Indian Academy of Sciences (India)

    A. Omar; K. S. Dwarakanath

    2005-03-01

    The Eridanus galaxies follow the well-known radio–FIR correlation. The majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies that have a significant excess of radio emission are identified as low luminosity AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (20cm > 1023W Hz-1) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (20cm ∼ 1022W Hz-1) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.

  19. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    CERN Document Server

    Graham, M L; Sullivan, M; Howell, D A; Gwyn, S D J; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Guy, J; Hardin, D; Hook, I M; Pain, R; Perrett, K; Regnault, N; Rich, J; Balam, D; Fabbro, S; Hsiao, E Y; Mourao, A; Palanque-Delabrouille, N; Perlmutter, S; Ruhlman-Kleider, V; Suzuki, N; Fakhouri, H K; Walker, E S

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always <~ 2 sigma. Rates in these subsets are consistent with predictions of the two component "A+B" SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust obscured star formation, we incorporate infrared star formation rates into the "A+B" model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions for SNe Ia, although other delay time distributions cannot be ruled out based on our data.

  20. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    Science.gov (United States)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  1. Far-infrared-radio relation in cluster galaxies at intermediate redshift

    CERN Document Server

    Randriamampandry, Solohery M

    2016-01-01

    The radio luminosities at 1.4 GHz is tightly correlated with the far-infrared luminosities for various galaxy types (e.g. [16, 6, 2]) over a wide range of redshift (see e.g. [5, 1, 15, 8, 7]). The relationship is widely believed to be driven by the internal star formation activity. Radio emission from these galaxies are predominantly produced from the synchrotron emission of cosmic-ray electrons accelerated in supernova shocks. The infrared emission is due to ultraviolet light from young massive stars that is absorbed and re-radiated by dust [3]. A correlation is found also in local clusters but cluster galaxies appears to have excess radio emission relative to the amount of far-infrared emission [9, 13, 11]. In this work, we measure the far-infrared-radio relationship in a massive cluster to test how this relationship changes at intermediate z between the field and a high-density cluster environment.

  2. Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph

    Science.gov (United States)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Díaz-Santos, Tanio; Smith, J.-D. T.; Pérez-González, Pablo G.; Engelbracht, Charles W.

    2010-06-01

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  3. Mid-to-Far Infrared Spectral Energy Distribution of Galaxies in the Spitzer First Look Survey Field

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qing Wen; Hong Wu; Chen Cao; Xiao-Yang Xia

    2007-01-01

    We made model fitting to the mid-to-far infrared spectral energy distributions (SEDs) for different categories of galaxies in the main extragalactic field of the Spitzer First Look Survey with the aid of spectroscopic information from the Sloan Digital Sky Survey.We find that the mid-to-far infrared SEDs of HII galaxies, mixture type galaxies and LINERs can be well fitted by the one-parameter (α) dust model of Dale et al. plus the 13 Gyr dust-free elliptical galaxy model. The statistics of α values indicates that all these galaxies tend to be quiescent, although the HII galaxies are relatively more active than the LINERs. The midinfrared SEDs of absorption galaxies are well fitted simply by the 13 Gyr dust-free elliptical galaxy template, and the near-to-mid infrared SEDs of QSOs can be represented by AGN NGC 5506.

  4. The Optical and Near-Infrared Morphologies of Isolated Early Type Galaxies

    CERN Document Server

    Colbert, J W; Zabludoff, A I; Colbert, James W.; Mulchaey, John S.; Zabludoff, Ann I.

    2001-01-01

    In order to study early type galaxies in their simplest environments, we have constructed a well-defined sample of 30 isolated galaxies. The sample contains all RC3 early-type galaxies with no other cataloged galaxy with known redshift lying within a projected radius of 1 (h_100)^{-1} Mpc and =/- 1000 km/s (where we use the recessional velocities in the RC3). We have obtained optical and near-infrared images of 23 of the galaxies and of a comparison sample of 13 early-type galaxies in X-ray detected poor groups of galaxies. We have applied the techniques of unsharp masking, galaxy model division, and color maps to search for morphological features that might provide clues to the evolution of these galaxies. Evidence for dust features is found in approximately 75% of both the isolated and group galaxies (17 of 22 and 9 of 12, respectively). However, shells or tidal features are much more prevalent in our isolated sample than in our group sample (9 of 22 or 41% versus 1 of 12 or 8%, respectively). The isolation...

  5. Radio Identifications of Markarian Galaxies and the Correlation between Radio and Far-Infrared Properties

    Institute of Scientific and Technical Information of China (English)

    Shao-Guang Luo; Xue-Bing Wu

    2005-01-01

    By checking DSS optical images and NVSS radio images, 782 Markarian galaxies were identified to be NVSS radio sources. A comparison of the radio luminosity at 1.4 GHz and the far-infrared (FIR) luminosity for 468 "normal"galaxies shows a tight correlation. Most of the Seyfert galaxies and quasars follow the radio-FIR relation deduced from the "normal" galaxy sample, but with a somewhat larger scatter. A total 167 Markarian galaxies, comprising 100 "normal"galaxies, 66 Seyfert galaxies and one quasar, have either excess radio emission or much lower FIR spectral index α(25μm, 60μm). These galaxies may be classified as "AGN-powered". For "normal" galaxies, the average q value (defined as the log ratio between FIR and radio luminosities) is 2.3. There seems a trend for q to slightly decrease with increasing radio luminosity. This may imply that the ongoing active star formation in galaxies with higher radio luminosities is more efficient in heating the cosmic-ray electrons.

  6. The Hubble Space Telescope Survey of BL Lacertae Objects. IV. Infrared Imaging of Host Galaxies

    Science.gov (United States)

    Scarpa, Riccardo; Urry, C. Megan; Padovani, Paolo; Calzetti, Daniela; O'Dowd, Matthew

    2000-11-01

    The Hubble Space Telescope NICMOS Camera 2 was used for H-band imaging of 12 BL Lacertae objects taken from the larger sample observed with the WFPC2 in the R band by Urry and coworkers and Scarpa and coworkers. Ten of the 12 BL Lacs are clearly resolved, and the detected host galaxies are large, bright ellipticals with average absolute magnitude =-26.2+/-0.45 mag and effective radius =10+/-5 kpc. The rest-frame integrated color of the host galaxies is on average =2.3+/-0.3, consistent with the value for both radio galaxies and normal, nonactive elliptical galaxies and indicating that the dominant stellar population is old. The host galaxies tend to be bluer in their outer regions than in their cores, with average color gradient Δ(R-H)/Δlogr=-0.2 mag, again consistent with results for normal nonactive elliptical galaxies. The infrared Kormendy relation, derived for the first time for BL Lac host galaxies, is μe=3.8logre+14.8, fully in agreement with the relation for normal ellipticals. The close similarity between BL Lac host galaxies and normal ellipticals suggests that the active nucleus has surprisingly little effect on the host galaxy. This supports a picture in which all elliptical galaxies harbor black holes that can be actively accreting for some fraction of their lifetime.

  7. Statistical Correlations Between Near-Infrared Luminosities and Ring Sizes in Field Ringed Galaxies

    Science.gov (United States)

    Wu, Wentao

    2008-01-01

    Statistically complete samples of inner-pseudo-, inner-, and outer-ringed galaxies can be extracted from the Catalog of Southern Ringed Galaxies. Redshifts and near-infrared (NIR) photometric data are available for the samples, allowing the derivation of the statistical correlations between the total NIR luminosities (L NIR) and the projected ring major axes in the physical scale (D) for these galaxies. For any of the three types of rings, the correlations are approximately L NIR vprop D 1.2 among the early-type ringed galaxies (the most commonly observed ringed galaxies). The correlations among late-type ringed galaxies appear significantly different. The results contradict the previous suggestion by Kormendy (1979, ApJ, 227, 714), who gave LB vprop D 2 (LB : B-band galaxy luminosity). The relations can be used in future to test theoretical simulations of dynamical structures of ringed galaxies as well as those of ring formation under the framework of cosmological models. Currently the results indicate at most small differences in the relative contributions of disk components to total galaxy masses and in the initial disk velocity dispersions between commonly observed ringed galaxies of similar type. The correlations also suggest a new approach to effectively use ring sizes as tertiary cosmological distance indicators, to help enhance the reliability of the measurement of the Hubble Constant.

  8. The Environments of Local Luminous Infrared Galaxies: Star Formation Rates increase with Density

    CERN Document Server

    Tekola, Abiy G; Berlind, Andreas

    2011-01-01

    This work studies the environments and star formation relationships of local luminous infrared galaxies (LIRG) in comparison to other types of local and distant z~1 galaxies. The infrared (IR) galaxies are drawn from the IRAS sample. The density of the environment is quantified using 6dF and Point Source Catalogue redshift survey (PSCz) galaxies in a cylinder of 2 Mpc radius and 10 Mpc length. Our most important result shows the existence of a dramatic density difference between local LIRGs and local non-LIRG IR galaxies. LIRGs live in denser environments than non-LIRG IR galaxies implying that L_IR = 10^11 L_sun marks an important transition point among IR-selected local galaxies. We also find that there is a strong correlation between the densities around LIRGs and their L_IR luminosity. On the other hand, the IR-activity of non-LIRG IR galaxies does not show any dependence on environment. Moreover, it is noted that the star formation rate and density around LIRGs are correlated. This trend in local LIRGs i...

  9. A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

    Science.gov (United States)

    Tadhunter, C.; Spence, R.; Rose, M.; Mullaney, J.; Crowther, P.

    2017-03-01

    Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies 1 , are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many thousands of galaxies, and a relatively low rate of one event every 104-105 years per galaxy has been deduced 2-4 . However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. This particular combination of variabi­lity and post-flare emission line spectrum is unlike any known supernova or active galactic nucleus. The most plausible explanation is a TDE — the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests a much higher rate of TDEs in starburst galaxies than in the general galaxy population.

  10. UV, optical and infrared properties of star forming galaxies

    Science.gov (United States)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  11. PKS 0347+05: a radio-loud/radio-quiet double active galactic nucleus system triggered in a major galaxy merger

    NARCIS (Netherlands)

    Tadhunter, C. N.; Ramos Almeida, C.; Morganti, R.; Holt, J.; Rose, M.; Dicken, D.; Inskip, K.

    2012-01-01

    We present optical, infrared (IR) and radio observations of the powerful Fanaroff-Riley type II (FR II) radio source PKS 0347+05 (z = 0.3390), and demonstrate that it is a rare example of a radio-loud/radio-quiet double active galactic nucleus (AGN) system, comprising a weak-line radio galaxy (WLRG)

  12. PKS 0347+05: a radio-loud/radio-quiet double active galactic nucleus system triggered in a major galaxy merger

    NARCIS (Netherlands)

    Tadhunter, C. N.; Ramos Almeida, C.; Morganti, R.; Holt, J.; Rose, M.; Dicken, D.; Inskip, K.

    2012-01-01

    We present optical, infrared (IR) and radio observations of the powerful Fanaroff-Riley type II (FR II) radio source PKS 0347+05 (z = 0.3390), and demonstrate that it is a rare example of a radio-loud/radio-quiet double active galactic nucleus (AGN) system, comprising a weak-line radio galaxy (WLRG)

  13. Major mergers are not significant drivers of star formation or morphological transformation around the epoch of peak cosmic star formation

    Science.gov (United States)

    Lofthouse, E. K.; Kaviraj, S.; Conselice, C. J.; Mortlock, A.; Hartley, W.

    2017-03-01

    We investigate the contribution of major mergers (mass ratios >1: 5) to stellar mass growth and morphological transformations around the epoch of peak cosmic star formation (z ∼ 2). We visually classify a complete sample of massive (M > 1010M⊙) galaxies at this epoch, drawn from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, into late-type galaxies, major mergers, spheroids and disturbed spheroids which show morphological disturbances. Given recent simulation work, which indicates that recent (clear tidal features in such images, we use the fraction of disturbed spheroids to probe the role of major mergers in driving morphological transformations. The percentage of blue spheroids (i.e. with ongoing star formation) that show morphological disturbances is only 21 ± 4 per cent, indicating that major mergers are not the dominant mechanism for spheroid creation at z ∼ 2 - other processes, such as minor mergers or cold accretion are likely to be the main drivers of this process. We also use the rest-frame U-band luminosity as a proxy for star formation to show that only a small fraction of the star formation budget (∼3 per cent) is triggered by major mergers. Taken together, our results show that major mergers are not significant drivers of galaxy evolution at z ∼ 2.

  14. The Arp 220 merger on kpc scales

    CERN Document Server

    König, S; Eckart, A; Downes, D; Scharwächter, J

    2012-01-01

    For the first time we study the Eastern nucleus in greater detail and search for the more extended emission in the molecular gas in different CO line transitions of the famous ULIRG Arp 220. Furthermore we present a model of the merger in Arp 220 on large scales with the help of the CO data and an optical and near-infrared composite HST image of the prototypical ULIRG. Using the Plateau de Bure Interferometer (PdBI) we obtained CO(2-1) and (1-0) data at wavelengths of 1 and 3 mm in 1994, 1996, 1997 and 2006 at different beam sizes and spatial resolutions. The simulations of the merger in Arp 220 were performed with the Identikit modeling tool. The model parameters that describe the galaxy merger best give a mass ratio of 1:2 and result in a merger of ~6x10^8 yrs. The low resolution CO(1-0) PdBI observations suggest that there are indications for emission ~10" towards the south, as well as to the north and to the west of the two nuclei.

  15. The energy source and dynamics of infrared luminous galaxy ESO 148-IG002

    CERN Document Server

    Leslie, Sarah; Kewley, Lisa; Dopita, Michael

    2014-01-01

    ESO 148-IG002 represents a transformative stage of galaxy evolution, containing two galaxies at close separation which are currently coalescing into a single galaxy. We present integral field data of this galaxy from the ANU Wide Field Spectrograph (WiFeS). We analyse our integral field data using optical line ratio maps and velocity maps. We apply active galactic nucleus (AGN), star-burst and shock models to investigate the relative contribution from star-formation, shock excitation and AGN activity to the optical emission in this key merger stage. We find that ESO 148-IG002 has a flat metallicity gradient, consistent with a recent gas inflow. We separate the line emission maps into a star forming region with low velocity dispersion that spatially covers the whole system as well as a southern high velocity dispersion region with a coherent velocity pattern which could either be rotation or an AGN-driven outflow, showing little evidence for pure star formation. We show that the two overlapping galaxies can be...

  16. Characterizing Ultraviolet and Infrared Observational Properties for Galaxies. II. Features of Attenuation Law

    CERN Document Server

    Mao, Ye-Wei; Lin, Lin

    2014-01-01

    Variations in attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-beta relation), offered a widely used recipe for correcting dust attenuation in galaxies, but the usability appears in doubt now due to considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in attenuation law. From the both theoretical and observational viewpoints, two components in attenuation curve, the linear background and the 2175 Angstrom bump, are suggested to be the parameters in addition to stellar population age (addr...

  17. Infrared color selection of massive galaxies at z > 3

    CERN Document Server

    Wang, T; Schreiber, C; Pannella, M; Shu, X; Willner, S P; Ashby, M L N; Huang, J -S; Fontana, A; Dekel, A; Daddi, E; Ferguson, H C; Dunlop, J; Ciesla, L; Koekemoer, A M; Giavalisco, M; Boutsia, K; Finkelstein, S; Juneau, S; Barro, G; Koo, D C; Michałowski, M J; Orellana, G; Lu, Y; Castellano, M; Bourne, N; Buitrago, F; Santini, P; Faber, S M; Hathi, N; Lucas, R A; Pérez-González, P G

    2016-01-01

    We introduce a new color-selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H_{160} and IRAC 4.5um bands, specifically H - [4.5] > 2.25 mag. These galaxies, dubbed "HIEROs", include two major populations that can be separated with an additional J - H color. The populations are massive and dusty star-forming galaxies at z > 3 (JH-blue) and extremely dusty galaxies at z 3) HIEROs, which have a median photometric redshift z ~4.4 and stellar massM_{*}~10^{10.6} Msun, and are much fainter in the rest-frame UV than similarly massive Lyman-break galaxies (LBGs). Their star formation rates (SFRs) reaches ~240 Msun yr^{-1} leading to a specific SFR, sSFR ~4.2 Gyr^{-1}, suggesting that the sSFRs for massive galaxies continue to grow at z > 2 but at a lower growth rate than from z=0 to z=2. With a median half-light radius of 2 kpc, including ~20% as compact as quiescent galaxies at similar redshifts, JH-blue HIEROs r...

  18. The Mid-Infrared Emission of Seyfert Galaxies: A New Analysis of ISOCAM Data

    Science.gov (United States)

    Ramos Almeida, C.; Pérez García, A. M.; Acosta-Pulido, J. A.; Rodríguez Espinosa, J. M.

    2007-11-01

    We present mid-infrared data of a sample of 57 AGNs obtained with the instrument ISOCAM on board the Infrared Space Observatory (ISO) satellite. The images were obtained through the LW2 (6.75 μm) and LW7 (9.62 μm) filters. This is a new analysis of the Clavel et al. galaxy sample, which is divided into 26 type 1 (1.5) Seyfert galaxies, plus three QSOs. The spatial resolution of the images allows us to separate the nuclear and the extended contributions to the total emission after decomposing the brightness profiles into different morphological components. The most common components are a central point source (identified as the active nucleus) and an exponential disk. In some cases a bulge, a bar, or a ring are needed. The relative contribution of the nucleus to the total emission appears larger in Seyfert 1 than in Seyfert 2 types. This result confirms that both types of Seyfert galaxies are different in the mid-infrared wavelength range and supports the existence of a structure which produces anisotropic emission in this wavelength range. We have also explored correlations between the mid-infrared and the radio and X-ray wavelength ranges. The well-established radio/infrared correlation is maintained in our sample for the global emission of the galaxies. If only the nuclear infrared emission is considered, then a nonlinear correlation is apparent in the luminosity-luminosity scatter diagram. The ratio between the intrinsic hard X-ray and the nuclear mid-infrared emission presents large scatter and slightly larger values for type 2 Seyfert galaxies. These results seem to be consistent with the presence of a clumpy dusty torus surrounding the active nucleus. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by the ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  19. Mergers in Lambda-CDM: Uncertainties in Theoretical Predictions and Interpretations of the Merger Rate

    CERN Document Server

    Hopkins, Philip F; Bundy, Kevin; Khochfar, Sadegh; Bosch, Frank van den; Somerville, Rachel S; Wetzel, Andrew; Keres, Dusan; Hernquist, Lars; Stewart, Kyle; Younger, Joshua D; Genel, Shy; Ma, Chung-Pei

    2010-01-01

    Different methodologies lead to order-of-magnitude variations in predicted galaxy merger rates. We examine and quantify the dominant uncertainties. Different halo merger rates and subhalo 'destruction' rates agree to within a factor ~2 given proper care in definitions. If however (sub)halo masses are not appropriately defined or are under-resolved, the major merger rate can be dramatically suppressed. The dominant differences in galaxy merger rates owe to baryonic physics. Hydrodynamic simulations without feedback and older models that do not agree with the observed galaxy mass function propagate factor ~5 bias in the resulting merger rates. However, if the model matches the galaxy mass function, properties of central galaxies are sufficiently converged to give small differences in merger rates. But variations in baryonic physics of satellites have the most dramatic effect. The known problem of satellite 'over-quenching' in most semi-analytic models (SAMs), whereby SAM satellites are too efficiently stripped ...

  20. AKARI near-infrared background fluctuations arise from normal galaxy populations

    CERN Document Server

    Helgason, Kári

    2016-01-01

    We show that measurements of the fluctuations in the near-infrared background (NIRB) from the AKARI satellite can be explained by faint galaxy populations at low redshifts. We demonstrate this using reconstructed images from deep galaxy catalogs (HUGS/S-CANDELS) and two independent galaxy population models. In all cases, we find that the NIRB fluctuations measured by AKARI are consistent with faint galaxies and there is no need for a contribution from unknown populations. We find no evidence for a steep Rayleigh-Jeans spectrum for the underlying sources as previously reported. The apparent Rayleigh-Jeans spectrum at large angular scales is likely a consequence of galaxies being removed systematically to deeper levels in the longer wavelength channels.

  1. Mid- to far infrared properties of star-forming galaxies and active galactic nuclei

    CERN Document Server

    Magdis, G E; Helou, G; Farrah, D; Hurley, P; Alonso-Herrero, A; Bock, J; Burgarella, D; Chapman, S; Charmandaris, V; Cooray, A; Dai, Y S; Dale, D; Elbaz, D; Feltre, A; Hatziminaoglou, E; Huang, J-S; Morrison, G; Oliver, S; Page, M; Scott, D; Shi, Y

    2013-01-01

    We study the mid- to far-IR properties of a 24um-selected flux-limited sample (S24 > 5mJy) of 154 intermediate redshift (~0.15), infrared luminous galaxies, drawn from the 5MUSES survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the HerMES program, we derived robust total infrared luminosity (LIR) and dust mass (Md) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total infrared emission of galaxies with weak 6.2um PAH emission (EW0.2um more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500um Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8um luminosity ratio, IR8 = LIR\\L8, and the strength of PAH features. ...

  2. HERSCHEL FAR-INFRARED AND SUBMILLIMETER PHOTOMETRY FOR THE KINGFISH SAMPLE OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Aniano, G.; Draine, B. T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Engelbracht, C. W.; Hinz, J. L.; Montiel, E. J. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Krause, O.; Groves, B. A. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Roussel, H. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre and Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France); Appleton, P. N. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Armus, L.; Beirao, P. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Calzetti, D.; Crocker, A. F. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Croxall, K. V. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gordon, K. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hao, C.-N., E-mail: ddale@uwyo.edu [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); and others

    2012-01-20

    New far-infrared and submillimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500 {mu}m emission shows evidence for a submillimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photodissociation regions is found to be (21 {+-} 4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine and Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.

  3. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    Science.gov (United States)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  4. A Catalog of Luminous Infrared Galaxies in the IRAS Survey and the Second Data Release of the SDSS

    CERN Document Server

    Cao, C; Wang, J L; Hao, C N; Deng, Z G; Xia, X Y; Zou, Z L; Cao, Chen; Wu, Hong; Wang, Jian-Ling; Hao, Cai-Na; Deng, Zu-Gan; Xia, Xiao-Yang; Zou, Zhen-Long

    2006-01-01

    We select the Luminous Infrared Galaxies by cross-correlating the Faint Source Catalogue (FSC) and Point Source Catalogue (PSC) of the IRAS Survey with the Second Data Release of the SDSS for studying their infrared and optical properties. The total number of our sample is 1267 for FSC and 427 for PSC by using 2$\\sigma$ significance level cross-section. The "likelihood ratio" method is used to estimate the sample's reliability and for a more reliable subsample (908 for FSC and 356 for PSC) selection. Then a Catalog with both the infrared, optical and radio informations is presented and will be used in further works. Some statistical results show that the Luminous Infrared Galaxies are quite different from the Ultra-Luminous Infrared Galaxies. The AGN fractions of galaxies with different infrared luminosities and the radio to infrared correlations are consist with previous studies.

  5. The star cluster system of the 3 Gyr old merger remnant NGC 1316 Clues from optical and near-infrared photometry

    CERN Document Server

    Goudfrooij, P; Maraston, C; Minniti, D; Goudfrooij, Paul; Maraston, Claudia; Minniti, Dante

    2001-01-01

    The giant merger remnant galaxy NGC 1316 (Fornax A) is an ideal probe for studying the long-term effects of a past major merger on star cluster systems, given its spectroscopically derived merger age of ~3 Gyr which we reported in a recent paper. Here we present new ground-based, large-area optical and near-IR imaging of star clusters in NGC 1316, complemented with deep HST/WFPC2 imaging. We find that the optical-near-IR colours and luminosities of the brightest ~10 clusters in NGC 1316 are consistent with those of intermediate-age (2-3 Gyr) populations. Unlike `normal' giant ellipticals, the B-I colour distribution of clusters in NGC 1316 is not clearly bimodal. However, the luminosity functions (LFs) of the blue and red parts of the cluster colour distribution are different: The red cluster LF is well represented by a power law with index -1.2 +/- 0.3, extending to about 1.5 mag brighter (in B) than those of typical giant ellipticals. In contrast, the shape of the blue cluster LF is consistent with that of ...

  6. Near-Infrared Imaging of Barred Halo Dominated Low Surface Brightness Galaxies

    CERN Document Server

    Honey, M; Ninan, J P; Purvankara, M

    2016-01-01

    We present a near-infrared (NIR) imaging study of barred low surface brightness (LSB) galaxies using the TIFR near-infrared Spectrometer and Imager (TIRSPEC). LSB galaxies are dark matter dominated, late type spirals that have low luminosity stellar disks but large neutral hydrogen (HI) gas disks. Using SDSS images of a very large sample of LSB galaxies derived from the literature, we found that the barred fraction is only 8.3%. We imaged twenty five barred LSB galaxies in the J, H, K$_S$ wavebands and twenty nine in the K$_S$ band. Most of the bars are much brighter than their stellar disks, which appear to be very diffuse. Our image analysis gives deprojected mean bar sizes of $R_{b}/R_{25}$ = 0.40 and ellipticities $e$ $\\approx$ 0.45, which are similar to bars in high surface brightness galaxies. Thus, although bars are rare in LSB galaxies, they appear to be just as strong as bars found in normal galaxies. There is no correlation of $R_{b}/R_{25}$ or $e$ with the relative HI or stellar masses of the galax...

  7. BLAST: the far-infrared/radio correlation in distant galaxies

    CERN Document Server

    Ivison, R J; Biggs, Andy D; Brandt, W N; Chapin, Edward L; Coppin, Kristen E K; Devlin, Mark J; Dickinson, Mark; Dunlop, James; Dye, Simon; Eales, Stephen A; Frayer, David T; Halpern, Mark; Hughes, David H; Ibar, Edo; Kovács, A; Marsden, Gaelen; Moncelsi, L; Netterfield, Calvin B; Pascale, Enzo; Patanchon, Guillaume; Rafferty, D A; Rex, Marie; Schinnerer, Eva; Scott, Douglas; Semisch, C; Smail, Ian; Swinbank, A M; Truch, Matthew D P; Tucker, Gregory S; Viero, Marco P; Walter, Fabian; Weiss, Axel; Wiebe, Donald V; Xue, Y Q

    2009-01-01

    We investigate the correlation between FIR and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from BLAST, Spitzer, LABOCA, the VLA and the GMRT in the ECDFS. For a catalogue of BLAST 250um-selected galaxies, we re-measure the 70-870um flux densities at the positions of their most likely 24um counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q_250 (= log_10 [S_250um/S_1,400MHz]), and the bolometric equivalent, q_IR. At z~0.6, where our 250um filter probes rest-frame 160um emission, we find no evolution relative to q_160 for local galaxies. We also stack the FIR and submm images at the positions of 24um- and radio-selected galaxies. The difference between q_IR seen for 250um- and radio-selected galaxies suggests star formation provides most of the IR luminosity in <~100uJy radio galaxies, but rather less for those in the mJy regime. For the 24um sample, the radio spectral index i...

  8. Spitzer Mid-Infrared Spectra of Cool-Core Galaxy Clusters

    CERN Document Server

    de Messières, G E; McNamara, B R; Donahue, M; Nulsen, P E J; Voit, G M; Wise, M W

    2009-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation in the brightest cluster galaxy. Our goal is to use the advantages of the mid-infrared band to improve estimates of star formation. Our spectra are characterized by diverse morphologies ranging from classic starbursts to flat spectra with surprisingly weak dust features. Although most of our sample are known from optical/UV data to be active star-formers, they lack the expected strong mid-infrared continuum. Star formation may be proceeding in unusually dust-deficient circumgalactic environments such as the interface between the cooling flow and the relativistic jets from the active galactic nucleus.

  9. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D., E-mail: clemens@bu.edu, E-mail: pavelmi@utexas.edu, E-mail: lcashman@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2013-03-15

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 {mu}m) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined ({approx}75 Degree-Sign ) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A{sub V} of 2.00 {+-} 0.10 mag and reddening E(H - K) of 0.125 {+-} 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  10. Detecting high-$z$ galaxies in the Near Infrared Background

    CERN Document Server

    Yue, Bin; Helgason, Kári

    2015-01-01

    Emission from high-$z$ galaxies must unquestionably contribute to the Near-InfraRed Background (NIRB). However, this contribution has so far proven difficult to isolate even after subtracting resolved galaxies to deep levels. Remaining NIRB fluctuations are dominated by unresolved low-redshift galaxies on small angular scales, and by an unidentified component of unclear origin on large scales ($\\approx 1000"$). In this paper, by analyzing mock maps generated from semi-numerical simulations and empirically determined $L_{\\rm UV} - M_{\\rm h}$ relations, we find that fluctuations associated with galaxies at $5 < z < 10$ amount to several percent of the unresolved NIRB flux. We investigate the properties of this component for different survey areas and limiting magnitudes. In all cases, we show that this signal can be efficiently, and most easily at small angular scales, isolated by cross-correlating the source-subtracted NIRB with Lyman Break Galaxies (LBGs) detected in the same field by {\\tt HST} surveys....

  11. Near-infrared imaging of barred halo-dominated low surface brightness galaxies

    Science.gov (United States)

    Honey, M.; Das, M.; Ninan, J. P.; Manoj, P.

    2016-10-01

    We present a near-infrared (NIR) imaging study of barred low surface brightness (LSB) galaxies using the TIFR1 NIR Spectrometer and Imager. LSB galaxies are dark matter dominated, late-type spirals that have low-luminosity stellar discs but large neutral hydrogen (H I) gas discs. Using Sloan Digital Sky Survey images of a very large sample of LSB galaxies derived from the literature, we found that the barred fraction is only 8.3 per cent. We imaged 25 barred LSB galaxies in the J, H, KS wavebands and 29 in the KS band. Most of the bars are much brighter than their stellar discs, which appear to be very diffuse. Our image analysis gives deprojected mean bar sizes of Rb/R25 = 0.40 and ellipticities e ≈ 0.45, which are similar to bars in high surface brightness galaxies. Thus, although bars are rare in LSB galaxies, they appear to be just as strong as bars found in normal galaxies. There is no correlation of Rb/R25 or e with the relative H I or stellar masses of the galaxies. In the (J - KS) colour images most of the bars have no significant colour gradient which indicates that their stellar population is uniformly distributed and confirms that they have low dust content.

  12. Incidence of WISE-Selected Obscured AGNs in Major Mergers and Interactions from the SDSS

    CERN Document Server

    Weston, Madalyn E; Brodwin, Mark; Mann, Justin; Cooper, Andrew; McConnell, Adam; Nielsen, Jennifer L

    2016-01-01

    We use the Wide-field Infrared Survey Explorer (WISE) and the Sloan Digital Sky Survey (SDSS) to confirm a connection between dust-obscured active galactic nuclei (AGNs) and galaxy merging. Using a new, volume-limited (z <= 0.08) catalog of visually-selected major mergers and galaxy-galaxy interactions from the SDSS, with stellar masses above 2x10^10 Msun, we find that major mergers (interactions) are 5-17 (3-5) times more likely to have red [3.4]-[4.6] colors associated with dust-obscured or `dusty' AGNs, compared to non-merging galaxies with similar masses. Using published fiber spectral diagnostics, we map the [3.4]-[4.6] versus [4.6]-[12] colors of different emission-line galaxies and find one-quarter of Seyferts have colors indicative of a dusty AGN. We find that AGNs are five times more likely to be obscured when hosted by a merging galaxy, half of AGNs hosted by a merger are dusty, and we find no enhanced frequency of optical AGNs in merging over non-merging galaxies. We conclude that undetected AGN...

  13. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    Science.gov (United States)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  14. Z > 6 Galaxy Signatures in the Infrared Background and the 21-cm background

    Science.gov (United States)

    Cooray, A.

    2006-08-01

    We will discuss the signatures of the high-redshift galaxy formation in the near-infrared background. Ionizing sources at high redshift generically imprint a distinctive Lyman-cutoff feature and a unique spatial anisotropy signature to the IRB, both of which may be detectable in a short rocket flight. We will discuss the Cosmic Infrared Background ExpeRiment (CIBER), a rocket-borne instrument to probe the absolute spectrum and spatial anisotropy of the extragalactic InfraRed Background (IRB) optimized for detection of the integrated spatial anisotropies in the IR background from high-redshift galaxies. We will also discuss the signatures of first galaxies in the low radio frequency 21-cm background from the neutral Hydrogen distribution at z > 6; When combined with arcminute-scale temperature anisotropy and the polarization of the cosmic microwave background, the 21-cm background will allow a determination of inhomogeneous distribution of Lyman-alpha photons from first galaxies. We will discuss these and other possibilities to understand the first galaxy population with IR, 21-cm, and CMB backgrounds.

  15. The far-infrared emitting region in local galaxies and QSOs: Size and scaling relations

    CERN Document Server

    Lutz, D; Contursi, A; Schreiber, N M Förster; Genzel, R; Graciá-Carpio, J; Herrera-Camus, R; Netzer, H; Sturm, E; Tacconi, L J; Tadaki, K; Veilleux, S

    2015-01-01

    We use Herschel 70 to 160um images to study the size of the far-infrared emitting region in 400 local galaxies and QSO hosts. The sample includes normal `main sequence' star forming galaxies, as well as infrared luminous galaxies and Palomar-Green QSOs, with different level and structure of star formation. Assuming gaussian spatial distribution of the far-infrared emission, the excellent stability of the Herschel point spread function allows us to measure sizes well below the PSF width, by subtracting widths in quadrature. We derive scalings of FIR size and surface brightness of local galaxies with FIR luminosity, with distance from the star forming `main sequence', and with FIR color. Luminosities LFIR~10^11Lsun can be reached with a variety of structures spanning 2 dex in size. Ultraluminous LFIR>~10^12Lsun galaxies far above the main sequence inevitably have small Re,70~0.5kpc FIR emitting regions with large surface brightness, and can be close to optically thick in the FIR on average over these regions. C...

  16. H-ATLAS: The Far-Infrared properties of galaxies in and around the Coma Cluster

    CERN Document Server

    Fuller, C; Smith, M W L; Valiante, E; Eales, S; Bourne, N; Dunne, L; Dye, S; Furlanetto, C; Ibar, E; Ivison, R; Maddox, S; Sansom, A; Michalowski, M J; Davis, T

    2016-01-01

    We describe a far infrared survey of the Coma cluster and the galaxy filament it resides within. Our survey covers an area of $\\sim$150 deg$^2$ observed by $Herschel$ H-ATLAS in five bands at 100, 160, 250, 350 and 500$\\mu$m. The SDSS spectroscopic survey ($m_{r} \\le 17.8)$ is used to define an area (within the Virial radius) and redshift selected ($4268 < v < 9700$ km s$^{-1}$) sample of 744 Coma cluster galaxies - the Coma Cluster Catalogue (CCC). For comparison we also define a sample of 951 galaxies in the connecting filament - the Coma Filament Catalogue (CFC). The optical positions and parameters are used to define appropriate apertures to measure each galaxy's far infrared emission. We have detected 99 of 744 (13\\%) and 422 of 951 (44\\%) of the cluster and filament galaxies in the SPIRE 250$\\mu$m band. We consider the relative detection rates of galaxies of different morphological types finding that it is only the S0/Sa population that shows clear differences between the cluster and filament. We ...

  17. Catching Quenching Galaxies: The Nature of the WISE Infrared Transition Zone

    CERN Document Server

    Alatalo, Katherine; Appleton, Philip N; Kewley, Lisa J; Lacy, Mark; Lisenfeld, Ute; Nyland, Kristina; Rich, Jeffrey A

    2014-01-01

    We present the discovery of a prominent bifurcation between early-type galaxies and late-type galaxies, in [4.6]-[12] micron colors from the Wide Field Infrared Survey Explorer (WISE). We then use an emission-line diagnostic comparison sample to explore the nature of objects found both within, and near the edges of, this WISE infrared transition zone (IRTZ). We hypothesize that this birfurcation might be due to the presence of hot dust and PAH emission features in late-type galaxies. Using a sample of galaxies selected through the Shocked Poststarburst Galaxy Survey (SPOGS), we are able to identify galaxies with strong Balmer absorption (EW(Hdelta)>5 Angstroms) as well as emission lines inconsistent with star formation (deemed SPOG candidates, or SPOGs*) that lie within the optical green valley. Seyferts and low ionization nuclear emission line regions, whose u-r colors tend to be red, are strongly represented within the IRTZ, whereas SPOGs* tend to sit near the star-forming edge. Although AGN are well-repres...

  18. Formation of S0 galaxies through mergers. Explaining angular momentum and concentration change from spirals to S0s

    NARCIS (Netherlands)

    Querejeta, M.; Eliche-Moral, M. C.; Tapia, T.; Borlaff, A.; van de Ven, G.; Lyubenova, M.; Martig, M.; Falcón-Barroso, J.; Méndez-Abreu, J.

    2015-01-01

    The CALIFA team has recently found that the stellar angular momentum and concentration of late-type spiral galaxies are incompatible with those of lenticular galaxies (S0s), concluding that fading alone cannot satisfactorily explain the evolution from spirals into S0s. Here we explore whether major

  19. Global properties of multiple merger remnants

    CERN Document Server

    Weil, M L; Weil, Melinda L; Hernquist, Lars

    1995-01-01

    Merger remnants of small groups of galaxies are contrasted with relics of mergers of pairs of galaxies to determine which process produces objects that best compare to real ellipticals. In both cases, the progenitors consist of self-gravitating disks, halos, and, sometimes, bulges. Pairs of galaxies merge from orbits that initially have zero--energy. The systems that produce multiple merger remnants are dense, six--member groups in virial equilibrium with low velocity dispersions. Multiple and pair mergers produce remnants which differ in both their spatial and kinematic properties. Multiple merger remnants have small triaxialities and are most likely to appear nearly round from most viewing angles. They possess cores, with sizes of a few tenths of an effective radius, that are more extended than pair remnant cores, even when bulges are included in the progenitors. In multiple mergers, the spin of all components -- halo, disk, and bulge -- increases and, while velocity dispersion dominates in the central regi...

  20. ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    DEFF Research Database (Denmark)

    Hansen, Lene; Jørgensen, H.E.; Nørgaard-Nielsen, Hans Ulrik

    2000-01-01

    In a series of papers we investigate far-infrared emission from rich galaxy clusters. Maps have been obtained by ISO at 60 mu m, 100 mu m, 135 mu m, and 200 mu m using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow...

  1. Near-Infrared Surface Photometry of Bulges and Disks of Spiral Galaxies : The Data

    NARCIS (Netherlands)

    Peletier, R. F.; Balcells, M.

    1997-01-01

    Abstract: We present optical and near-infrared (NIR) surface brightness and colour profiles,in bands ranging from U to K, for the disk and bulge components of a complete sample of 30 nearby S0 to Sbc galaxies with inclinations larger than 50 degrees. We describe in detail the observations and the de

  2. ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    DEFF Research Database (Denmark)

    Hansen, Lene; Jørgensen, H.E.; Nørgaard-Nielsen, Hans Ulrik

    2000-01-01

    In a series of papers we investigate far-infrared emission from rich galaxy clusters. Maps have been obtained by ISO at 60 mu m, 100 mu m, 135 mu m, and 200 mu m using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow...

  3. Active galactic nuclei and their role in galaxy evolution: The infrared perspective

    NARCIS (Netherlands)

    Caputi, K. I.

    2014-01-01

    The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for the study of active galactic nuclei (AGN), for which

  4. Mid-infrared Spectral Indicators of Star Formation and Active Galactic Nucleus Activity in Normal Galaxies

    NARCIS (Netherlands)

    Treyer, Marie; Schiminovich, David; Johnson, Benjamin D.; O'Dowd, Matt; Martin, Christopher D.; Wyder, Ted; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; van der Hulst, J. M.

    2010-01-01

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 "normal" and local (z similar to 0.1) emission-line galaxies. The MIR spectra wer

  5. Active galactic nuclei and their role in galaxy evolution : The infrared perspective

    NARCIS (Netherlands)

    Caputi, K. I.

    2014-01-01

    The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for the study of active galactic nuclei (AGN), for which

  6. The Nuclear Near-Infrared Spectral Properties of Nearby Galaxies

    CERN Document Server

    Mason, R E; Martins, L; Riffel, R; Martin, O Gonzalez; Almeida, C Ramos; Dutra, D Ruschel; Ho, L C; Thanjavur, K; Flohic, H; Alonso-Herrero, A; Lira, P; McDermid, R; Riffel, R A; Schiavon, R P; Winge, C; Hoenig, M D; Perlman, E

    2015-01-01

    We present spectra of the nuclear regions of 50 nearby (D = 1 - 92 Mpc, median = 20 Mpc) galaxies of morphological types E to Sm. The spectra, obtained with the Gemini Near-IR Spectrograph on the Gemini North telescope, cover a wavelength range of approximately 0.85-2.5 microns at R~1300--1800. There is evidence that most of the galaxies host an active galactic nucleus (AGN), but the range of AGN luminosities (log (L2-10 keV [erg/s]) = 37.0-43.2) in the sample means that the spectra display a wide variety of features. Some nuclei, especially the Seyferts, exhibit a rich emission-line spectrum. Other objects, in particular the type 2 Low Ionisation Nuclear Emission Region galaxies, show just a few, weak emission lines, allowing a detailed view of the underlying stellar population. These spectra display numerous absorption features sensitive to the stellar initial mass function, as well as molecular bands arising in cool stars, and many other atomic absorption lines. We compare the spectra of subsets of galaxie...

  7. The 6dF Galaxy Survey: The Near-Infrared Fundamental Plane of Early-Type Galaxies

    CERN Document Server

    Magoulas, Christina; Colless, Matthew; Jones, D Heath; Campbell, Lachlan A; Lucey, John R; Mould, Jeremy; Jarrett, Tom; Merson, Alex; Brough, Sarah

    2012-01-01

    We determine the near-infrared Fundamental Plane (FP) for $\\sim10^4$ early-type galaxies in the 6dF Galaxy Survey (6dFGS). We fit the distribution of central velocity dispersion, near-infrared surface brightness and half-light radius with a three-dimensional Gaussian model using a maximum likelihood method. For the 6dFGS $J$ band sample we find a FP with $R_{e}$\\,$\\propto$\\,$\\sigma_0^{1.52\\pm0.03}I_{e}^{-0.89\\pm0.01}$, similar to previous near-IR determinations and consistent with the $H$ and $K$ band Fundamental Planes once allowance is made for differences in mean colour. The overall scatter in $R_e$ about the FP is $\\sigma_r$,=,29%, and is the quadrature sum of an 18% scatter due to observational errors and a 23% intrinsic scatter. Because of the distribution of galaxies in FP space, $\\sigma_r$ is not the distance error, which we find to be $\\sigma_d$,=,23%. Using group richness and local density as measures of environment, and morphologies based on visual classifications, we find that the FP slopes do not...

  8. THE SPITZER INTERACTING GALAXIES SURVEY: A MID-INFRARED ATLAS OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Brassington, N. J. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard A.; Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Klein, C., E-mail: n.brassington@herts.ac.uk [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2015-05-15

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength”; the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  9. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    CERN Document Server

    Camps, Peter; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-01-01

    The EAGLE cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A di...

  10. The HST Survey of BL~Lacertae Objects. IV. Infrared Imaging of Host Galaxies

    CERN Document Server

    Scarpa, R; Padovani, P; O'Dowd, M; Scarpa, Riccardo; Padovani, Paolo; O'Dowd, Matthew; Calzetti, Daniela

    2000-01-01

    The HST NICMOS Camera 2 was used for H-band imaging of 12 BL Lacertae objects taken from the larger sample observed with the WFPC2 in the R band (Urry et al. 2000; Scarpa et al. 2000). Ten of the 12 BL Lacs are clearly resolved, and the detected host galaxies are large, bright ellipticals with average H-band absolute magnitude M=-26.2+-0.45 mag and effective radius 10+-5 kpc. The rest-frame integrated color of the host galaxies is on average R-H=2.3+-0.3, consistent with the value for both radio galaxies and normal, non-active elliptical galaxies, and indicating the dominant stellar population is old. The host galaxies tend to be bluer in their outer regions than in their cores, with average color gradient Delta(R-H)/Delta(log r)=-0.2 mag, again consistent with results for normal non-active elliptical galaxies. The infrared Kormendy relation, derived for the first time for BL Lac host galaxies, is m(e) = 3.8*log(R)+14.8 (where m(e) is the surface brightness at the effective radius R), fully in agreement with ...

  11. A hybrid model for the evolution of galaxies and Active Galactic Nuclei in the infrared

    CERN Document Server

    Cai, Zhen-Yi; Xia, Jun-Qing; De Zotti, Gianfranco; Negrello, Mattia; Gruppioni, Carlotta; Rigby, Emma; Castex, Guillaume; Delabrouille, Jacques; Danese, Luigi

    2013-01-01

    [Abridged] We present a comprehensive investigation of the cosmological evolution of the luminosity function (LF) of galaxies and active galactic nuclei (AGN) in the infrared (IR). Based on the observed dichotomy in the ages of stellar populations of early-type galaxies on one side and late-type galaxies on the other, the model interprets the epoch-dependent LFs at z \\geq 1.5 using a physical model for the evolution of proto-spheroidal galaxies and of the associated AGNs, while IR galaxies at z<1.5 are interpreted as being mostly late-type 'cold' (normal) and 'warm' (starburst) galaxies. As for proto-spheroids, in addition to the epoch-dependent LFs of stellar and AGN components separately, we have worked out the evolving LFs of these objects as a whole (stellar plus AGN component). The model provides a physical explanation for the observed positive evolution of both galaxies and AGNs up to z \\simeq 2.5 and for the negative evolution at higher redshifts, for the sharp transition from Euclidean to extremely...

  12. Dynamical Evolution of Globular Cluster Systems formed in Galaxy Mergers: Deep HST/ACS Imaging of Old and Intermediate-Age Globular Clusters in NGC 3610

    CERN Document Server

    Goudfrooij, P; Gilmore, D; Whitmore, B C; Goudfrooij, Paul; Schweizer, Francois; Gilmore, Diane; Whitmore, Bradley C.

    2007-01-01

    (ABRIDGED) The ACS camera on board the Hubble Space Telescope has been used to obtain deep images of the giant elliptical galaxy NGC 3610, a well-established dissipative galaxy merger remnant. These observations supersede previous WFPC2 images which revealed the presence of a population of metal-rich globular clusters (GCs) of intermediate age (~1.5-4 Gyr). We detect a total of 580 GC candidates, 46% more than from the previous WFPC2 images. The new photometry strengthens the significance of the previously found bimodality of the color distribution of GCs. Peak colors in V-I are 0.93 +/-0.01 and 1.09 +/- 0.01 for the blue and red subpopulations, respectively. The luminosity function (LF) of the inner 50% of the metal-rich (`red') population of GCs differs markedly from that of the outer 50%. In particular, the LF of the inner 50% of the red GCs shows a flattening consistent with a turnover that is about 1.0 mag fainter than the turnover of the blue GC LF. This is consistent with predictions of recent models o...

  13. Fast and Furious: Shock Heated Gas as the Origin of Spatially Resolved Hard X-ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    CERN Document Server

    Wang, Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Pellegrini, Silvia; Max, Claire; Risaliti, Guido; U, Vivian; Zezas, Andreas

    2013-01-01

    We have obtained a deep, sub-arcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT~6 keV (~70 million K) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with velocity of ~2200 km/s. For the first time we obtain the spatial distribution of this highly ionized gas emitting FeXXV, which shows a remarkable correspondence to the large scale morphology of H_2(1-0) S(1) line emission and H\\alpha filaments. Propagation of fast shocks originated in the starburst driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L(0.5-8 keV)=5.3E+41 erg/s, the diffuse hard X-ray emission is 100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its ...

  14. The Atlas-3D project - IX. The merger origin of a fast and a slow rotating Early-Type Galaxy revealed with deep optical imaging: first results

    CERN Document Server

    Duc, Pierre-Alain; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M

    2011-01-01

    The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby Early-Type Galaxies (ETGs) selected from the Atlas-3D sample, NGC 680 and NGC 5557. Our ultra deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag/arcsec^2 in the g-band. They reveal very low-surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long tail East of NGC 5557 hosts gas-rich star-forming objects. NGC 680 exhibits two major diffuse plumes apparently connected to extended HI tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galax...

  15. Near-infrared spectrophotometry of four Seyfert 1 galaxies and NGC 1275

    Science.gov (United States)

    Rudy, R. J.; Jones, B.; Levan, P. D.; Puetter, R. C.; Smith, H. E.; Willner, S. P.; Tokunaga, A. T.

    1982-01-01

    Low-resolution spectrophotometry from 2 to 4 microns is reported for the four Seyfert 1 galaxies Mrk 335, 3C 120, Mrk 509, NGC 7469, and the peculiar emission-line galaxy NGC 1275. The spectrum of NGC 7469 exhibits a strong 3.3-micron dust feature, indicating a thermal origin for the bulk of its considerable nonstellar infrared emission. NGC 1275 has a large stellar contribution to its infrared flux at wavelengths shortward of 3 microns. The spectrum from 3 to 4 microns fits a power law which fits the 10-micron and 20-micron broad bands, as well. A thermal model which can explain the spectrum of NGC 1275 is discussed. Mrk 335 displays a complex spectrum suggestive of thermal dust emission. 3C 120 and Mrk 509 have nonstellar infrared emission shortward of 2 microns, but the data are ambiguous as to whether this emission is thermal or nonthermal in origin.

  16. Super Star Clusters in Luminous Infrared Galaxies: the SUNBIRD Survey

    CERN Document Server

    Vaisanen, P; Escala, A; Kankare, E; Kniazev, A; Kotilainen, J K; Mattila, S; Ramphul, R; Ryder, S; Tekola, A

    2014-01-01

    We present recent results from an adaptive optics imaging survey of 40 Luminous IR Galaxies (LIRGs) searching for obscured core collapse supernovae and studying the galaxies themselves. Here, in particular, we discuss the Super Star Clusters (SSC) populations in the LIRGs. We have constructed the first statistically significant samples of Luminosity Functions (LF) of SSCs in the near-IR, and find evidence that the LF slopes in LIRGs are shallower than in more quiescent spiral galaxies. Distance and blending effects were investigated in detail paving the way for SSC studies further out than done previously. We have also correlated the luminosities of the brightest clusters with the star formation rates (SFR) of the hosts. The relation is similar, though somewhat steeper than that found in the optical and at lower SFR levels, suggesting systematic extinction and/or age effects. We find that the characteristics of the relation suggest an underlying physical driver rather than solely a size-of-sample effect. In p...

  17. Radio Loud AGNs are Mergers

    CERN Document Server

    Chiaberge, Marco; Lotz, Jennifer; Norman, Colin

    2015-01-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei at z>1 using new samples. The objects have HST images taken with WFC3 in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z>1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%) radio-loud galaxies at z>1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38% are merging systems. The merger fraction for the sample of non-active galaxies at z>1 is indistinguishable from radio-quiet objects. This...

  18. Far Infrared Luminosity Function of Local Star-forming Galaxies in the AKARI Deep Field South

    CERN Document Server

    Sedgwick, Chris; Pearson, Chris; Matsuura, Shuji; Shirahata, Mai; Oyabu, Shinki; Goto, Tomotsugu; Matsuhara, Hideo; Clements, D L; Negrello, Mattia; White, Glenn J

    2011-01-01

    We present a far-infrared galaxy luminosity function for the local universe. We have obtained 389 spectroscopic redshifts for galaxies observed at 90 microns in the AKARI Deep Field South, using the AAOmega fibre spectrograph via optical identifications in the digitized sky survey and 4m-class optical imaging. For the luminosity function presented in this paper, we have used those galaxies which have redshifts 0galaxies (giving a total of 130 sources). Infrared and optical completeness functions were estimated using earlier Spitzer data and APM B-band optical data respectively, and the luminosity function has been prepared using the 1/Vmax method. We also separate the luminosity function between galaxies which show evidence of predominantly star-forming activity and predominantly active galactic nucleus (AGN) activity in their optical spectra. Our luminosity function is in good agreement with the previous 90 micron lumino...

  19. Infrared Signature of Active Massive Black Holes in Nearby Dwarf Galaxies

    CERN Document Server

    Marleau, Francine R; Bianconi, Matteo; Habas, Rebecca

    2014-01-01

    We have identified 314 nearby galaxies that display the infrared signature of black hole activity. Of these, twelve lie within a distance of 11 Mpc, the nearest being EW Eri located only 50 kpc away. Using the Wide-field Infrared Survey Explorer (WISE) All-Sky Release Source Catalog, we examine the IR colors of a sample of known nearby dwarf galaxies in order to identify both unobscured (type 1) and obscured (type 2) active galactic nuclei in these low-mass systems. We estimate the stellar and black hole masses for our nearby dwarf galaxy sample and find that activity is detected in galaxies with stellar masses from 10^5 to 10^9 M_sun and that this activity is due to black holes with masses in the range 10^2-10^6 M_sun. The black hole masses probed here are several orders of magnitude smaller than previously reported for centrally located massive black holes. We examine the stellar mass versus black hole mass relationship in this low galaxy mass regime, and find that the existing relation extends to these low...

  20. A resolved map of the infrared excess in a Lyman Break Galaxy at z=3

    CERN Document Server

    Koprowski, M P; Geach, J E; Hine, N K; Bremer, M; Chapman, S C; Davies, L J M; Hayashino, T; Knudsen, K K; Kubo, M; Lehmer, B D; Matsuda, Y; Smith, D J B; van der Werf, P P; Violino, G; Yamada, T

    2016-01-01

    We have observed the dust continuum of ten z=3.1 Lyman Break Galaxies with the Atacama Large Millimeter/Submillimeter Array at ~450 mas resolution in Band 7. We detect and resolve the 870um emission in one of the targets with an integrated flux density of S(870)=(192+/-57) uJy, and measure a stacked 3-sigma signal of S(870)=(67+/-23) uJy for the remaining nine. The total infrared luminosities estimated from full spectral energy distribution fits are L(8-1000um)=(8.4+/-2.3)x10^10 Lsun for the detection and L(8-1000um)=(2.9+/-0.9)x10^10 Lsun for the stack. With HST ACS I-band imaging we map the rest-frame UV emission on the same scale as the dust, effectively resolving the 'infrared excess' (IRX=L_FIR/L_UV) in a normal galaxy at z=3. Integrated over the galaxy we measure IRX=0.56+/-0.15, and the galaxy-averaged UV slope is beta=-1.25+/-0.03. This puts the galaxy a factor of ~10 below the IRX-beta relation for local starburst nuclei of Meurer et al. (1999). However, IRX varies by more than a factor of 3 across t...

  1. Far Infrared Spectroscopy of the Nearby Analogues of High-Redshift Galaxies

    Science.gov (United States)

    Hayes, Matthew

    2014-10-01

    We propose far infrared emission line spectroscopy of a sample of 23 local star-forming galaxies, drawn from the Lyman alpha Reference Sample (LARS), for which we have unrivalled high-resolution imaging and spectroscopy from HST, and 21cm HI observations from VLA+GMRT. Moreover the galaxies are selected as the close analogues of the high-redshift Lyman-break galaxies and Spitzer+Herschel selected galaxies found in extragalactic deep fields. The science goal of LARS is to determine what governs the escape of Lyman alpha (Lya) photons from galaxies, and thereby aid interpretation of high-z observations where Lya is the most used spectral probe. However given its clean selection and multiwavelength nature, LARS can equally well improve our understanding of FIR line observations of high-z galaxies. The target emission lines in this proposal are [CII], [OI], and [OIII] at 158, 63, and 88 micron, respectively. The motivations are that these lines: 1. are of increasing interest at high-z as new sensitive submm/radio interferometers come online 2. are proposed quantitative tracers of star formation rates, but their utility must be proven in appropriately analogous well-studied galaxies 3. when combined with models of photodissociation regions, enable estimates of the density and mass of PDR gas and provide vital constraints on our Lya radiative transfer models of galaxies. 4. provide uniquely robust estimates of nebular extinction and metallicity when combined with our optical IFU data. Astrophysical applications are many, especially when combined with the array of existing data. Specifically they will provide vital constraints on ISM structure, that are required for understanding the emission of the cosmologically vital Lya emission line. Moreover, SFR calibrations will be tested in star forming environments that resemble those of early galaxies and the legacy value of the sample is hard to overstate.

  2. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    Science.gov (United States)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  3. Spectropolarimetry of a Complete Infrared Selected Sample of Seyfert 2 Galaxies

    CERN Document Server

    Lumsden, S L; Bailey, J A; Hough, J H; Young, S

    2004-01-01

    We report the results of a spectropolarimetric survey of a complete far infrared selected sample of Seyfert 2 galaxies. We have found polarized broad Halpha emission in one new source, NGC5995. In the sample as a whole, there is a clear tendency for galaxies in which we have detected broad Halpha in polarized light to have warm mid--far infrared colours (F(60um)/F(25um)<4), in agreement with our previous results. However, a comparison of the optical, radio and hard x-ray properties of these systems leads us to conclude that this is a secondary consequence of the true mechanism governing our ability to see scattered light from the broad line region. We find a strong trend for galaxies showing such emission to lie above a critical value of the relative luminosity of the active core to the host galaxy (as measured from the [OIII] 5007A equivalent width) which varies as a function of the obscuring column density as measured from hard x-ray observations. The warmth of the infrared colours is then largely due to...

  4. Towards an Understanding of the Mid-Infrared Surface Brightness of Normal Galaxies

    CERN Document Server

    Dale, D A; Silbermann, N A; Contursi, A; Malhotra, S; Rubin, R H; Dale, Daniel A.; Helou, George; Silbermann, Nancy A.; Contursi, Alessandra; Malhotra, Sangeeta; Rubin, Robert H.

    1999-01-01

    We report a mid-infrared color and surface brightness analysis of IC 10, NGC 1313, and NGC 6946, three of the nearby galaxies studied under the Infrared Space Observatory Key Project on Normal Galaxies. Images with < 9 arcsecond (170 pc) resolution of these nearly face-on, late-type galaxies were obtained using the LW2 (6.75 mu) and LW3 (15 mu) ISOCAM filters. Though their global I_nu(6.75 mu)/I_nu(15 mu) flux ratios are similar and typical of normal galaxies, they show distinct trends of this color ratio with mid-infrared surface brightness. We find that I_nu(6.75 mu)/I_nu(15 mu) ~< 1 only occurs for regions of intense heating activity where the continuum rises at 15 micron and where PAH destruction can play an important role. The shape of the color-surface brightness trend also appears to depend, to the second-order, on the hardness of the ionizing radiation. We discuss these findings in the context of a two-component model for the phases of the interstellar medium and suggest that star formation inte...

  5. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Dominik A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Daddi, Emanuele; Elbaz, David [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Armus, Lee; Chary, Ranga-Ram [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Carilli, Christopher L. [National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801 (United States); Walter, Fabian; Hodge, Jacqueline [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Morrison, Glenn E. [Canada-France-Hawaii Telescope, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743-8432 (United States); Dickinson, Mark [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Dannerbauer, Helmut, E-mail: dr@astro.cornell.edu [Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, A-1180 Wien (Austria)

    2014-05-01

    We report the detection of 6.2 μm polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7 μm continuum emission in the z = 4.055 submillimeter galaxy GN20, using the Infrared Spectrograph on board the Spitzer Space Telescope. This represents the first detection of PAH emission at z > 4. The strength of the PAH emission feature is consistent with a very high star formation rate of ∼1600 M {sub ☉} yr{sup –1}. We find that this intense starburst powers at least ∼1/3 of the faint underlying 6 μm continuum emission, with an additional, significant (and perhaps dominant) contribution due to a power-law-like hot dust source, which we interpret to likely be a faint, dust-obscured active galactic nucleus (AGN). The inferred 6 μm AGN continuum luminosity is consistent with a sensitive upper limit on the hard X-ray emission as measured by the Chandra X-Ray Observatory if the previously undetected AGN is Compton-thick. This is in agreement with the finding at optical/infrared wavelengths that the galaxy and its nucleus are heavily dust-obscured. Despite the strong power-law component enhancing the mid-infrared continuum emission, the intense starburst associated with the photon-dominated regions that give rise to the PAH emission appears to dominate the total energy output in the infrared. GN20 is one of the most luminous starburst galaxies known at any redshift, embedded in a rich protocluster of star-forming galaxies. This investigation provides an improved understanding of the energy sources that power such exceptional systems, which represent the extreme end of massive galaxy formation at early cosmic times.

  6. Post-starburst Tidal Tails in the Archetypical Ultra Luminous Infrared Galaxy Arp 220

    CERN Document Server

    Taniguchi, Y; Kajisawa, M; Shioya, Y; Ohyama, Y; Nagao, T; Ideue, Y; Murayama, T; Koda, J

    2012-01-01

    We present our new deep optical imaging and long-slit spectroscopy for Arp 220 that is the archetypical ULIRG in the local universe. Our sensitive Ha imaging has newly revealed large-scale, Ha absorption, i.e., post-starburst regions in this merger; one is found in the eastern superbubble and the other is in the two tidal tails that are clearly reveled in our deep optical imaging. The size of Ha absorption region in the eastern bubble is 5 kpc x 7.5 kpc and the observed Ha equivalent widths are ~2 A +- 0.2 A. The sizes of the northern and southern Ha-absorption tidal tails are ~5 kpc x 10 kpc and ~6 kpc x 20 kpc, respectively. The observed Ha equivalent widths range from 4 A to 7 A. In order to explain the presence of the two post-starburst tails, we suggest a possible multiple-merger scenario for Arp 220 in which two post-starburst disk-like structures merged into one, and then caused the two tails. This favors that Arp 220 is a multiple merging system composed of four or more galaxies, arising from a compac...

  7. A near infrared test for two recent luminosity functions for galaxies

    CERN Document Server

    Zaninetti, L

    2014-01-01

    Two recent luminosity function (LF) for galaxies are reviewed and the parameters which characterize the near infrared are fixed. A first LF is a modified Schechter LF with four parameters. The second LF is derived from the generalized gamma and has four parameters. The formulas which give the number of galaxies as function of the redshift are reviewed and a special attention is given to the position of the photometric maximum which is expressed as function of a critical parameter or the flux of radiation or the apparent magnitude. A simulation of the 2MASS Redshift Survey is given in the framework of the non Poissonian Voronoi Tessellation.

  8. Discovery of a very highly extinguished supernova in a luminous infrared galaxy

    CERN Document Server

    Kankare, E; Ryder, S; Perez-Torres, M -A; Alberdi, A; Romero-Canizales, C; Diaz-Santos, T; Väisänen, P; Efstathiou, A; Alonso-Herrero, A; Colina, L; Kotilainen, J

    2008-01-01

    We report the discovery of a confirmed supernova (SN) and a supernova-candidate in near-infrared images from the ALTAIR/NIRI adaptive optics system on the Gemini-North Telescope and NICMOS on the Hubble Space Telescope. The Gemini images were obtained as part of a near-infrared K-band search for highly-obscured SNe in the nuclear regions of luminous infrared galaxies. SN 2008cs apparent in the Gemini images is the first SN discovered using laser guide star adaptive optics. It is located at 1500 pc projected distance from the nucleus of the luminous infrared galaxy IRAS 17138-1017. The SN luminosity, JHK colors and light curve are consistent with a core-collapse event suffering from a very high host galaxy extinction of 15.7 +- 0.8 magnitudes in V-band which is to our knowledge the highest one measured for a SN. The core-collapse nature of SN 2008cs is confirmed by its radio detection at 22.4 GHz using our Very Large Array observations 28 days after the SN discovery, indicating a prominent interaction of the S...

  9. The nuclear and extended mid-infrared emission of Seyfert galaxies

    CERN Document Server

    García-Bernete, I; Acosta-Pulido, J A; Alonso-Herrero, A; González-Martín, O; Hernán-Caballero, A; Pereira-Santaella, M; Levenson, N A; Packham, C; Perlman, E S; Ichikawa, K; Esquej, P; Díaz-Santos, T

    2016-01-01

    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (D$_L<$40 Mpc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of $\\sim$400 pc, we find that the majority of the galaxies (75-83%) are extended or possibly extended and 17-25% are point-like. This extended emission is compact and it has low surface brightness compared with the nuclear emission, and it represents, on average, $\\sim$30% of the total MIR emission of the galaxies in the sample. We find that the galaxies whose circumnuclear MIR emission is dominated by star formation show more extended emission (650$\\pm$700 pc) than AGN-dominated systems (300$\\pm$100 pc). In general, the galaxies with point-like MIR morphologies are face-on or moderately inclined (b/a$\\sim$0.4-1.0), and we ...

  10. Kinematics of the ionized and molecular gas in nearby luminous infrared interacting galaxies

    CERN Document Server

    Zaragoza-Cardiel, Javier; Font, Joan; Rosado, Margarita; Camps-Fariña, Artemi; Borlaff, Alejandro

    2016-01-01

    We have observed three luminous infrared galaxy systems (LIRGS) which are pairs of interacting galaxies, with the Galaxy H$\\alpha$ Fabry-Perot system (GH$\\alpha$FaS) mounted on the 4.2m William Herschel Telescope at the Roque de los Muchachos Observatory, and combined the observations with the Atacama Large Millimeter Array (ALMA) observations of these systems in CO emission to compare the physical properties of the star formation regions and the molecular gas clouds, and specifically the internal kinematics of the star forming regions. We identified 88 star forming regions in the H$\\alpha$ emission data-cubes, and 27 molecular cloud complexes in the CO emission data-cubes. The surface densities of the star formation rate and the molecular gas are significantly higher in these systems than in non-interacting galaxies and the Galaxy, and are closer to the surface densities of the star formation rate and the molecular gas of extreme star forming galaxies at higher redshifts. The large values of the velocity dis...

  11. WISE-2MASS all-sky infrared galaxy catalog for large scale structure

    CERN Document Server

    Kovács, András

    2014-01-01

    We combine photometric information of the WISE and 2MASS infrared all-sky surveys to produce a clean galaxy sample for large-scale structure research. Adding 2MASS colors improves star-galaxy separation substantially at the expense of loosing a small fraction of the galaxies: 93% of the WISE objects within the W1<15.2 mag limit have 2MASS observation as well. We use a class of supervised machine learning algorithms, Support Vector Machines (SVM), to classify objects in our large data set. We used SDSS PhotoObj table with known star-galaxy separation for a training set on classification, and the GAMA spectroscopic survey for determining the redshift distribution of our sample. Varying the combination of photometric parameters input into our algorithm revealed that W1-J is a simple and effective star-galaxy separator, capable of producing results comparable to the multi-dimensional SVM classification. The final catalog has an estimated ~2% stellar contamination among 5 million galaxies with median redshift o...

  12. Optical-Near Infrared Color Gradients of Elliptical Galaxies and Their Environmental Dependence

    CERN Document Server

    Ko, J; Ko, Jongwan; Im, Myungshin

    2005-01-01

    We have studied the environmental effect on optical-NIR color gradients of 273 nearby elliptical galaxies. Color gradient is a good tool to study the evolutionary history of elliptical galaxies, since the steepness of the color gradient reflects merging history of early types. When an elliptical galaxy goes through many merging events, the color gradient can be get less steep or reversed due to mixing of stars. One simple way to measure color gradient is to compare half-light radii in different bands. We have compared the optical and near infrared half-light radii of 273 early-type galaxies from Pahre(1999). Not surprisingly, we find that r$_{e}$(V)s (half-light radii measured in V-band) are in general larger than r$_{e}$(K)s (half-light radii measured in K-band). However, when divided into different environments, we find that elliptical galaxies in the denser environment have gentler color gradients than those in the less dense environment. Our finding suggests that elliptical galaxies in the dense environme...

  13. The Effect of Dust Extinction on the Observed Properties of Galaxies in the Near-Infrared

    CERN Document Server

    Riad, Ihab F; Woudt, Patrick A

    2009-01-01

    Galaxies behind the Milky Way suffer size reduction and dimming due to their obscuration by dust in the disk of our Galaxy. The degree of obscuration is wavelength dependent. It decreases towards longer wavelengths. Compared to the optical, the Near InfraRed (NIR) $K_s$ band extinction is only $\\approx10%$ that of the $B$ band. This makes NIR surveys well suited for galaxy surveys close to the Galactic Plane where extinction is severe. While Galactic obscuration is less prominent in the NIR it is not negligible. In this paper we derive empirical relations to correct isophotal radii and magnitudes of galaxies observed in the NIR for foreground absorption. We simulate extinction in the $J$, $H$ and $K_s$ bands on 64 (unobscured) galaxies from the 2MASS Large Galaxy Atlas \\citep{jarrett}. We propose two methods for the extinction correction, the first is optimized to provide the most accurate correction and the second provides a convenient statistical correction that works adequately in lower extinction regions....

  14. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4

    Science.gov (United States)

    Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J.

    2016-09-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1 relative contribution of the AGN and star formation by combining the galaxy evolution code PÉGASE.3 with an AGN torus model. We find that three components are necessary to reproduce the observed SEDs: an evolved and massive stellar component, a submm bright young starburst, and an AGN torus. We find that powerful radio galaxies form at very high-redshift, but experience episodic and important growth at 1 mass of the associated starburst varies from 5 to 50% of the total mass of the system. The properties of star formation differ from source to source, indicating no general trend of the star formation properties in the most infrared luminous high-redshift radio galaxies and no correlation with the AGN bolometric luminosity. Moreover, we find that AGN scattered light have a very limited impact on broad-band SED fitting on our sample. Finally, our analysis also suggests a wide range in origins for the observed star formation,which we partially constrain for some sources.

  15. Kinematics of the ionized and molecular gas in nearby luminous infrared interacting galaxies

    Science.gov (United States)

    Zaragoza-Cardiel, Javier; Beckman, John; Font, Joan; Rosado, Margarita; Camps-Fariña, Artemi; Borlaff, Alejandro

    2017-03-01

    We have observed three luminous infrared galaxy systems which are pairs of interacting galaxies, with the Galaxy Hα Fabry-Perot system mounted on the 4.2 m William Herschel Telescope at the Roque de los Muchachos Observatory, and combined the observations with the Atacama Large Millimeter Array observations of these systems in CO emission to compare the physical properties of the star formation regions and the molecular gas clouds, and specifically the internal kinematics of the star-forming regions. We identified 88 star-forming regions in the Hα emission data cubes, and 27 molecular cloud complexes in the CO emission data cubes. The surface densities of the star formation rate and the molecular gas are significantly higher in these systems than in non-interacting galaxies and the Galaxy, and are closer to the surface densities of the star formation rate and the molecular gas of extreme star-forming galaxies at higher redshifts. The large values of the velocity dispersion also show the enhanced gas surface density. The H II regions are situated on the SFR - σv envelope, and so are also in virial equilibrium. Since the virial parameter decreases with the surface densities of both the star formation rate and the molecular gas, we claim that the clouds presented here are gravitationally dominated rather than being in equilibrium with the external pressure.

  16. Infrared spectrophotometry of three Seyfert galaxies and 3C 273

    Science.gov (United States)

    Cutri, R. M.; Puetter, R. C.; Rudy, R. J.; Willner, S. P.; Aitken, D. K.; Jones, B.; Merrill, K. M.; Roche, P. F.; Russell, R. W.; Soifer, B. T.

    1981-01-01

    Spectrophotometry in the range 2.1-4.0 microns is presented for the Seyfert galaxies NGC 1068, NGC 4151 and Mrk 231 and the quasar 3C 273, together with broadband and narrowband observations of the Seyfert galaxies in the range 8-13 microns. The spectra of NGC 1068 and NGC 4151 are found to contain a significant component due to starlight, especially at shorter wavelengths. The nonstellar component in NGC 1068 is observed to fall off rapidly at wavelengths shorter than 4 microns, consistent with the interpretation of the excess beyond 5 microns as thermal reradiation by dust. Observations confirm the variability of NGC 4151, and indicate the presence of two components of the flux other than starlight: a nonthermal variable component predominant at shorter wavelengths and a constant, probably thermal component at wavelengths greater than 3 microns. Mrk 231 and 3C 273 exhibit no discernable stellar component and were not observed to vary by more than 10%. Evidence is obtained for a broad minimum in the 8 to 13 micron spectrum of Mrk 231, as well as possible structure between rest wavelengths of 2.8 and 2.9 microns, and the spectrum is not a power law. The spectrum of 3C 273 is consistent with a power law from 1.2 to 10 microns, with small but significant deviations.

  17. Diagnostics of active galaxies - I. Modeling the infrared properties of dusty cores starburst galaxies

    NARCIS (Netherlands)

    Loenen, A. F.; Baan, W. A.; Spaans, M.

    2006-01-01

    Aims. Despite extensive observations over the last decades, the central questions regarding the power source of the large IR luminosity of Ultra Luminous Infra Red Galaxies (ULIRGs), and their evolution, are still not fully answered. In this paper we will focus on massive star formation as a central

  18. The distribution of dust in Sb's and Sc's : K-band infrared imaging of a diameter limited sample of 37 galaxies

    NARCIS (Netherlands)

    Peletier, R. F.; Valentijn, E. A.; Moorwood, A. F. M.; Freudling, W.

    1994-01-01

    We present deep infrared K-band surface photometry for a diameter-limited sample of normal Sb and Sc galaxies. In addition, surface brightness, optical and optical-infrared colors and isophote-shapes have been obtained from the ESO-LV B and R photographic images of these galaxies. For each galaxy we

  19. Near-Infrared Surface Photometry of a Sample of Barred Galaxies

    CERN Document Server

    Gadotti, Dimitri; Carrasco, Luis; Bosma, Albert; de Souza, Ronaldo; Recillas, Elsa

    2007-01-01

    We have obtained deep J and Ks images of a sample of nine barred galaxies in order to collect a reliable and homogeneous set of images to which N-body simulations of barred galaxies will be compared. The observations were performed using the new near-infrared camera available at the 2.1-m telescope of the Observatorio Astrofisico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. We present the results of surface photometry techniques applied to the observed images, as well as to the deprojected images. These results include radial profiles of surface brightness (elliptically averaged), colour, position angle, ellipticity and the b4 Fourier component. In addition, we present isophotal maps, colour maps, surface brightness profiles along the bar major and minor axes, characteristic radial scale-lengths and bar length estimates. We discuss how projection effects can influence these measurements and the uncertainties introduced by deprojecting galaxy images. We show that analytical expressions can be used to obta...

  20. Galaxy Rotation Curves from General Relativity with Infrared Renormalization Group Effects

    CERN Document Server

    Rodrigues, Davi C; Shapiro, Ilya L

    2011-01-01

    We review our contribution to infrared Renormalization Group (RG) effects to General Relativity in the context of galaxies. Considering the effective action approach to Quantum Field Theory in curved background, we argued that the proper RG energy scale, in the weak field limit, should be related to the Newtonian potential. In the galaxy context, even without dark matter, this led to a remarkably small gravitational coupling G variation (about or less than 10^{-12} of its value per light-year), while also capable of generating galaxy rotation curves about as good as the best phenomenological dark matter profiles (considering both the rotation curve shape and the expected mass-to-light ratios). Here we also comment on related developments, open issues and perspectives.

  1. Molecular Gas in the Powerful Radio Galaxies 3C~31 and 3C~264 Major or Minor Mergers?

    CERN Document Server

    Lim, J; Combes, F

    2000-01-01

    We report the detection of $^{12}$CO~($1 \\to 0$) and $^{12}$CO~($2 \\to 1$) emission from the central regions ($\\lesssim 5$--$10 {\\rm kpc}$) of the two powerful radio galaxies 3C~31 and 3C~264. Their individual CO emission exhibits a double-horned line profile that is characteristic of an inclined rotating disk with a central depression at the rising part of its rotation curve. The inferred disk or ring distributions of the molecular gas is consistent with the observed presence of dust disks or rings detected optically in the cores of both galaxies. For a CO to H$_2$ conversion factor similar to that of our Galaxy, the corresponding total mass in molecular hydrogen gas is $(1.3 \\pm 0.2) \\times 10^9 {\\rm M_{\\odot}}$ in 3C~31 and $(0.31 \\pm 0.06) \\times 10^9 {\\rm M_{\\odot}}$ in 3C~264. Despite their relatively large molecular-gas masses and other peculiarities, both 3C~31 and 3C~264, as well as many other powerful radio galaxies in the (revised) 3C catalog, are known to lie within the fundamental plane of normal...

  2. A Complete Library of Infrared Spectral Energy Distributions for z=0 Galaxies

    Science.gov (United States)

    Sandstrom, Karin

    CONTEXT: Half of the light emitted by galaxies is starlight absorbed and reprocessed into the infrared by dust. The spectral energy distribution (SED) of this IR emission encodes information on the mass and properties of the dust, the radiation field heating it, and the bolometric luminosity of the region. This makes IR emission a main tool to estimate star formation rates (SFRs) and to trace the distribution of the interstellar medium (ISM) in galaxies. The dust itself also plays key roles in the physics of star formation, and thereby galaxy evolution. This critical information on dust and its dependence on environment can only be reliably measured when we have observations with full wavelength coverage of the IR SED that resolve galaxies. With no new IR imaging missions on the horizon, the remarkably thorough census conducted by Herschel, Spitzer, and WISE of the nearby (D formation rate? (2) How are dust and gas related across the galaxy population and how can dust emission best be used to trace gas? and (3) How does the dust grain population vary in response to local environment across galaxies? METHODS: We will use established techniques to uniformly process the archival data, fit models to the spectral energy distributions, match the data in resolution. These have been successfully deployed on similar data by individual teams (including us), but we will apply them to an order of magnitude larger sample. PERCEIVED SIGNIFICANCE: Dust is a main mediator of cloud and star formation, and thus galaxy evolution. Therefore, the properties and evolution of dust in galaxies is directly relevant to key NASA science goals to "Discover how the universe works, explore how it began and evolved, and search for life on planets around other stars." These are also essential tools to understand "How did we get here?" In practical terms, the database that we propose to create would be a major resource for many scientists: a tool to understand the physics of dust and the ISM for

  3. The nuclear and integrated far-infrared emission of nearby Seyfert galaxies

    CERN Document Server

    García-González, J; Hernán-Caballero, A; Pereira-Santaella, M; Ramos-Almeida, C; Pulido, J A Acosta; Díaz-Santos, T; Esquej, P; González-Martín, O; Ichikawa, K; López-Rodríguez, E; Povic, M; Roche, P F; Sánchez-Portal, M

    2016-01-01

    We present far-infrared (FIR) $70-500\\,\\mu$m imaging observations obtained with Herschel/PACS and SPIRE of 33 nearby (median distance of 30 Mpc) Seyfert galaxies from the Revised Shapley-Ames (RSA) catalogue. We obtain the FIR nuclear ($r=1\\,$kpc and $r=2\\,$kpc) and integrated spectral energy distributions (SEDs). We estimate the unresolved nuclear emission at 70 $\\mu$m and we fit the nuclear and integrated FIR SEDs with a grey body model. We find that the integrated FIR emission of the RSA Seyferts in our sample is dominated by emission from the host galaxy, with dust properties similar to those of normal galaxies (non AGN). We use four criteria to select galaxies whose nuclear $70\\,\\mu$m emission has a significant AGN contribution: (1) elevated 70/160 $\\mu$m flux ratios, (2)spatially resolved, high dust temperature gradient, (3) $70\\,\\mu$m excess emission with respect to the fit of the FIR SEDs with a grey body, and (4) excess of nuclear SFR obtained from $70\\,\\mu$m over SFR from mid-infrared indicators. 16...

  4. Launching Outflows from Nuclei and Starbursts in Ultra-luminous Infrared Galaxies

    Science.gov (United States)

    Rudy, Alexander R.; Medling, Anne Marie; U, Vivian; Srinath, Srikar; Max, Claire E.

    2015-08-01

    Multiple lines of evidence suggest that galaxies in the early universe expel much of the interstellar medium via massive outflows. Theory says that these outflows are needed to quench star formation, limit black hole accretion, and give rise to observed relationships between the central black hole's mass and properties of the galaxy's bulge. We present integral field spectroscopy of the central kiloparsec of 9 *nearby* ultra-luminous infrared-galaxies which are known to have high velocity (v>500 km/s) molecular outflows. These observations were performed with the OH-Suppressing Infra-red Imaging Spectrograph (OSIRIS) assisted by the Keck I and II Adaptive Optics systems, which enables spatial resolutions of a few 10s of parsecs. We present the preliminary results of a survey designed to explore the relationship between AGN luminosity fraction ($\\alpha_{AGN}$) and outflow properties among lower-redshift (z data allow us to examine the opening angle and launching point of the outflow, excitation and temperature of outflowing components (through $H_2$ lines and high-excitation lines such as [SiIV] and [AlIX]), and molecular outflow mass in these systems. This work provides a nearby, spatially resolved analogue to higher-redshift outflows, allowing us to study the physical processes which launch outflows on their smallest scales, with the goal of relating this to the outflows which must govern the evolution of the most massive galaxies.

  5. Reexamination of the Infrared Excess-Ultraviolet Slope Relation of Local Galaxies

    CERN Document Server

    Takeuchi, Tsutomu T; Ikeyama, Akira; Murata, Katsuhiro L; Inoue, Akio K

    2012-01-01

    The relation between the ratio of infrared (IR) and ultraviolet (UV) flux densities (the infrared excess: IRX) and the slope of the UV spectrum (\\beta) of galaxies plays a fundamental role in the evaluation of the dust attenuation of star forming galaxies especially at high redshifts. Many authors, however, pointed out that there is a significant dispersion and/or deviation from the originally proposed IRX-\\beta relation depending on sample selection. We reexamined the IRX-\\beta relation by measuring the far- and near-UV flux densities of the original sample galaxies with GALEX and AKARI imaging data, and constructed a revised formula. We found that the newly obtained IRX values were lower than the original relation because of the significant underestimation of the UV flux densities of the galaxies, caused by the small aperture of IUE, Further, since the original relation was based on IRAS data which covered a wavelength range of \\lambda = 42--122\\mum, using the data from AKARI which has wider wavelength cove...

  6. The host galaxies of BL Lac objects in the near-infrared

    CERN Document Server

    Kotilainen, J K; Scarpa, R

    1998-01-01

    We present the results of near-infrared H band (1.65 microns) imaging of 11 BL Lac objects with redshifts ranging from z = 0.05 to 0.9. We are able to clearly detect the host galaxy in seven low redshift (z<=0.24) BL Lacs, while the four unresolved BL Lacs have either high or unknown redshift. The galaxies hosting the low redshift BL Lacs are large (average bulge scale length R(e) = 8.8+-9.9 kpc) and luminous (average M(H) = -25.8+-0.5), i.e. slightly brighter than the typical galaxy luminosity L* (M*(H) = -25.0+-0.2), and of similar luminosity to or slightly fainter than brightest cluster galaxies (M(H) = -26.3+-0.3). The average optical/near-infrared colour and colour gradient of the BL Lac hosts (R-H = 2.2+-0.5; d(R-H)/d(log r) = -0.09$+-0.04) are consistent with the hosts being normal ellipticals, indicating that the nuclear activity has only a marginal effect on the star formation history and other properties of the hosts. The BL Lac hosts appear slightly less luminous than those of higher redshift fl...

  7. The infrared compactness-temperature relation for quiescent and starburst galaxies

    CERN Document Server

    Chanial, P; Guiderdoni, B; Elbaz, D; Hammer, F; Vigroux, L; Chanial, Pierre; Flores, Hector; Guiderdoni, Bruno; Elbaz, David; Hammer, Francois; Vigroux, Laurent

    2006-01-01

    IRAS observations show the existence of a correlation between the infrared luminosity Lir and dust temperature Td in star-forming galaxies, in which larger Lir leads to higher dust temperature. The Lir-Td relation is commonly seen as reflecting the increase in dust temperature in galaxies with higher star formation rate. Even though the correlation shows a significant amount of dispersion, a unique relation has been commonly used to construct spectral energy distributions of galaxies in distant universe studies, such as source number counting or photometric redshift determination. In this work, we introduce a new parameter, namely the size of the star-forming region Rir and lay out the empirical and modelled relation between the global parameters Lir, Td and Rir of IR-bright non-AGN galaxies. IRAS 60-to-100um color is used as a proxy for the dust temperature and the 1.4GHz radio contiuum emission for the infrared spatial distribution. The analysis has been carried out on two samples. The first one is made of ...

  8. Welcome to the Twilight Zone: The Mid-Infrared Properties of Poststarburst Galaxies

    CERN Document Server

    Alatalo, K; Bitsakis, T; Brown, M J I; Ciesla, L; Appleton, P N; Beaton, R L; Cales, S L; Crossett, J; Falcon-Barroso, J; French, K D; Kewley, L J; Kelson, D D; Kriek, M; Lanz, L; Medling, A M; Mulchaey, J S; Nyland, K; Rich, J A; Urry, C M

    2016-01-01

    We investigate the optical and Wide-field Survey Explorer (WISE) colors of "E+A" identified poststarburst galaxies, including a deep analysis on 190 poststarbursts detected in the 2MASS Extended Source Catalog. The poststarburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone (IRTZ). Furthermore, we find that poststarbursts occupy a distinct region [3.4]-[4.6] vs. [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broad band photometric criteria alone. We have investigated possible causes for the WISE colors of poststarbursts by constructing a composite spectral energy distribution (SED), finding that mid-infrared (4--12\\micron) properties of poststarbursts are consistent with either 11.3um polycyclic aromatic hydrocarbon emission, or Thermally Pulsating Asymptotic Giant Branch (TP-AGB) and post-AGB stars. The composite SED of extended poststarburst galaxies with 22um emission detected with signal to noise >3 re...

  9. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    Science.gov (United States)

    2005-04-10

    THE FAR-INFRARED EMISSION LINE AND CONTINUUM SPECTRUM OF THE SEYFERT GALAXY NGC 10681 Luigi Spinoglio Istituto di Fisica dello Spazio Interplanetario...circumnuclear ring of 1500–1600 in radius within the last 4–40 Myr. CO interferometer observa- tions revealed molecular gas very close to the nucleus...from 43 to 197 m showing both atomic and molecular emission lines (x 2). We model the composite UV to far-IR atomic emission-line and continuum

  10. A Near-Infrared Imaging Study of Seyfert Galaxies with Extended Emission line Regions

    Science.gov (United States)

    Alonso-Herrero, Almudena; Simpson, Chris; Ward, Martin J.; Wilson, Andrew S.

    1997-01-01

    We present a near-infrared J,H,K and L' band (1.25 - 3.80 mue) imaging study of a sample of Seyfert galaxies, including some of the best studied examples of these with extended emission line regions (EELR). The observed near-IR nuclear colors are consistent with mixture of emmisions from an old stellar population and unredening hot dust.

  11. A HYBRID MODEL FOR THE EVOLUTION OF GALAXIES AND ACTIVE GALACTIC NUCLEI IN THE INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Cai Zhenyi; Lapi, Andrea; Xia Junqing; De Zotti, Gianfranco; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Negrello, Mattia [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Gruppioni, Carlotta [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Rigby, Emma [Leiden Observatory, P.O. Box 9513, 2300-RA Leiden (Netherlands); Castex, Guillaume; Delabrouille, Jacques, E-mail: zcai@sissa.it [APC, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France)

    2013-05-01

    We present a comprehensive investigation of the cosmological evolution of the luminosity function of galaxies and active galactic nuclei (AGNs) in the infrared (IR). Based on the observed dichotomy in the ages of stellar populations of early-type galaxies on one side and late-type galaxies on the other, the model interprets the epoch-dependent luminosity functions at z {>=} 1.5 using a physical approach for the evolution of proto-spheroidal galaxies and of the associated AGNs, while IR galaxies at z < 1.5 are interpreted as being mostly late-type ''cold'' (normal) and ''warm'' (starburst) galaxies. As for proto-spheroids, in addition to the epoch-dependent luminosity functions of stellar and AGN components separately, we have worked out, for the first time, the evolving luminosity functions of these objects as a whole (stellar plus AGN component), taking into account in a self-consistent way the variation with galactic age of the global spectral energy distribution. The model provides a physical explanation for the observed positive evolution of both galaxies and AGNs up to z {approx_equal} 2.5 and for the negative evolution at higher redshifts, for the sharp transition from Euclidean to extremely steep counts at (sub-)millimeter wavelengths, as well as the (sub-)millimeter counts of strongly lensed galaxies that are hard to account for by alternative, physical or phenomenological, approaches. The evolution of late-type galaxies and z < 1.5 AGNs is described using a parametric phenomenological approach. The modeled AGN contributions to the counts and to the cosmic infrared background (CIB) are always sub-dominant. They are maximal at mid-IR wavelengths: the contribution to the 15 and 24 {mu}m counts reaches 20% above 10 and 2 mJy, respectively, while the contributions to the CIB are of 8.6% and of 8.1% at 15 {mu}m and 24 {mu}m, respectively. The model provides a good fit to the multi-wavelength (from the mid-IR to millimeter

  12. A Hybrid Model for the Evolution of Galaxies and Active Galactic Nuclei in the Infrared

    Science.gov (United States)

    Cai, Zhen-Yi; Lapi, Andrea; Xia, Jun-Qing; De Zotti, Gianfranco; Negrello, Mattia; Gruppioni, Carlotta; Rigby, Emma; Castex, Guillaume; Delabrouille, Jacques; Danese, Luigi

    2013-05-01

    We present a comprehensive investigation of the cosmological evolution of the luminosity function of galaxies and active galactic nuclei (AGNs) in the infrared (IR). Based on the observed dichotomy in the ages of stellar populations of early-type galaxies on one side and late-type galaxies on the other, the model interprets the epoch-dependent luminosity functions at z >= 1.5 using a physical approach for the evolution of proto-spheroidal galaxies and of the associated AGNs, while IR galaxies at z < 1.5 are interpreted as being mostly late-type "cold" (normal) and "warm" (starburst) galaxies. As for proto-spheroids, in addition to the epoch-dependent luminosity functions of stellar and AGN components separately, we have worked out, for the first time, the evolving luminosity functions of these objects as a whole (stellar plus AGN component), taking into account in a self-consistent way the variation with galactic age of the global spectral energy distribution. The model provides a physical explanation for the observed positive evolution of both galaxies and AGNs up to z ~= 2.5 and for the negative evolution at higher redshifts, for the sharp transition from Euclidean to extremely steep counts at (sub-)millimeter wavelengths, as well as the (sub-)millimeter counts of strongly lensed galaxies that are hard to account for by alternative, physical or phenomenological, approaches. The evolution of late-type galaxies and z < 1.5 AGNs is described using a parametric phenomenological approach. The modeled AGN contributions to the counts and to the cosmic infrared background (CIB) are always sub-dominant. They are maximal at mid-IR wavelengths: the contribution to the 15 and 24 μm counts reaches 20% above 10 and 2 mJy, respectively, while the contributions to the CIB are of 8.6% and of 8.1% at 15 μm and 24 μm, respectively. The model provides a good fit to the multi-wavelength (from the mid-IR to millimeter waves) data on luminosity functions at different redshifts and

  13. Herschel Far-Infrared and Sub-millimeter Photometry for the KINGFISH Sample of Nearby Galaxies

    CERN Document Server

    Dale, D A; Engelbracht, C W; Hinz, J L; Krause, O; Montiel, E J; Roussel, H; Appleton, P N; Armus, L; Beirao, P; Bolatto, A D; Brandl, B R; Calzetti, D; Crocker, A F; Croxall, K V; Draine, B T; Galametz, M; Gordon, K D; Groves, B A; Hao, C -N; Helou, G; Hunt, L K; Johnson, B D; Kennicutt, R C; Koda, J; Leroy, A K; Li, Y; Meidt, S E; Miller, A E; Murphy, E J; Rahman, N; Rix, H -W; Sandstrom, K M; Sauvage, M; Schinnerer, E; Skibba, R A; Smith, J -D T; Tabatabaei, F S; Walter, F; Wilson, C D; Wolfire, M G; Zibetti, S

    2011-01-01

    New far-infrared and sub-millimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially-integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500um emission shows evidence for a sub-millimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photo-dissociation regions is found to be (21+/-4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust tempera...

  14. Unveiling the Sigma-Discrepancy in IR-Luminous Mergers I: Dust & Dynamics

    CERN Document Server

    Rothberg, Barry

    2010-01-01

    Mergers in the local universe present a unique opportunity for studying the transformations of galaxies in detail. Presented here are recent results, based on multi-wavelength, high-resolution imaging and medium resolution spectroscopy, which demonstrate how star-formation and the presence of Red Supergiants and/or Asymptotic Giant Branch stars has lead to a serious underestimation of the dynamical masses of infrared-bright galaxies. The dominance of a nuclear disk of young stars in the near-infrared bands, where dust obscuration does not block their signatures, can severely bias the global properties measured in a galaxy, including mass. This explains why past studies of gas-rich Luminous & Ultraluminous Infrared Galaxies, which have measured dynamical masses using the 1.62 or 2.29 micron CO band-heads, have found that these galaxies are forming m m* ellipticals. Moreover, merger remnants, including LIRGs, are placed on the I-band Fundamental Plane for the first time and appear to be virtually indisting...

  15. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, Silvia [Dipartimento di Astronomia, Universitá di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Max, Claire [Center for Adaptive Optics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); U, Vivian, E-mail: jfwang@northwestern.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-01-20

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s{sup –1}. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H{sub 2}(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L {sub 0.5-8} {sub keV} = 5.3 × 10{sup 41} erg s{sup –1}, the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M {sub hot} = 1.8 × 10{sup 8} M {sub ☉}) and thermal energy (E {sub th} = 6.5 × 10{sup 57} erg). The total iron mass in the highly ionized plasma is M {sub Fe} = 4.6 × 10{sup 5} M {sub ☉}. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  16. The Extraordinary Mid-infrared Spectrum of the Blue Compact Dwarf Galaxy SBS0335-052

    CERN Document Server

    Houck, J R; Brandl, B R; Weedman, D; Herter, T; Uchida, K I; Armus, L; Soifer, B T; Bernard-Salas, J; Spoon, H W W; Devost, D

    2004-01-01

    SBS0335-052 is a blue compact dwarf galaxy (BCD) with one of the lowest known metallicities, Z$\\sim$Z$_{\\sun}$/41, making it a local example of how primordial starburst galaxies and their precursors might appear. A spectrum obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope clearly shows silicate absorption features, emission lines of [SIV] and [NeIII], and puts strong upper limits on the PAH emission features. The observed low resolution spectrum (R~90) extends from 5.3 to 35microns and peaks at ~28microns. The spectrum is compared to IRS observations of the prototypical starburst nucleus NGC7714. SBS0335-052 is quite unlike normal starburst galaxies, which show strong PAH bands, low ionization emission lines, and a continuum peak near 80microns. The continuum difference for $\\lambda >30 \\mu$m implies a substantial reduction in the mass of cold dust. If the spectrum of this very low metallicity galaxy is representative of star forming galaxies at higher redshifts, it may be difficul...

  17. The nuclear and extended mir-infrared emission of Seyfert galaxies

    Science.gov (United States)

    Garcia-Bernete, I.; Ramos Almeida, C.; Acosta-Pulido, J. A.; et al.

    2016-08-01

    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DLMIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ~200 pc, we found that the majority of the galaxies (75-79%) are extended or possibly extended and 21-25 % are point-like. In general, we find that galaxies with larger inclinations show more extended morphologies than face-on galaxies, and we do not find significant differences between the morphologies of Sy1 and Sy2. This extended emission is weak and compact and it represents ~30% of the total MIR emission of the galaxies in the sample. We obtain nuclear and circumnuclear MIR fluxes to investigate their correlation with different AGN and star formation indicators. We find that the nuclear MIR emission (inner ~70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [O IV]λ25.89 micron emission line. We find the same results, although with more scatter, for the circumnuclear MIR emission. This indicates that AGN photoionization is the dominant source of excitation of the nuclear and circumnuclear MIR emission.

  18. Infrared dark clouds on the far side of the Galaxy

    CERN Document Server

    Giannetti, A; Leurini, S; Urquhart, J; Csengeri, T; Menten, K M; Bronfman, L; van der Tak, F F S

    2015-01-01

    Context: Infrared dark clouds are the coldest and densest portions of giant molecular clouds. The most massive ones represent some of the most likely birthplaces for the next generation of massive stars in the Milky Way. Because a strong mid-IR background is needed to make them appear in absorption, they are usually assumed to be nearby. Aims: We use THz absorption spectroscopy to solve the distance ambiguity associated with kinematic distances for the IR-dark clouds in the TOP100 ATLASGAL sample, a flux-limited selection of massive clumps in different evolutionary phases of star formation. Methods: The para-H2O ground state transition at 1113.343 GHz, observed with Herschel/HIFI, was used to investigate the occurrence of foreground absorption along the line of sight directly towards infrared-dark clouds. Additional consistency checks were performed using MALT90 and HiGAL archival data and targeted Mopra and APEX spectroscopic observations. Results: We report the first discovery of five IRDCs in the TOP100 ly...

  19. Sdssj103913.70+533029.7: a super star cluster in the outskirts of a galaxy merger

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Gillian R.; Tremonti, Christy A.; Rockosi, Constance M.; Schlegel, David J.; Yanny, Brian; Beers, Timothy C.; Allende Prieto, Carlos; Wilhelm, Ron; Lupton, Robert; Gunn, James E.; Niederste-Ostholt, Martin; Schneider, Donald P.; Covey, Kevin; Seth, Anil; Ivezic, Zeljko; Eisenstein, Daniel J.; Helmboldt, Joe; Finkbeiner, Douglas P.; Padmanabhan, Nikhil; Kleinman, Scot J.; Long, Dan; /Princeton U. /Arizona U., Astron. Dept. - Steward Observ. /Lick Observ. /LBL, Berkeley /Fermilab /Michigan State U. /Texas U.,

    2005-11-01

    We describe the serendipitous discovery in the spectroscopic data of the Sloan Digital Sky Survey of a star-like object, SDSSJ103913.70+533029.7, at a heliocentric radial velocity of +1012 km s{sup -1}. Its proximity in position and velocity to the spiral galaxy NGC 3310 suggests an association with the galaxy. At this distance, SDSSJ103913.70+533029.7 has the luminosity of a super star cluster and a projected distance of 17 kpc from NGC 3310. Its spectroscopic and photometric properties imply a mass of > 10{sup 6} M{sub {circle_dot}} and an age close to that of the tidal shells seen around NGC 3310, suggesting that it formed in the event which formed the shells.

  20. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    Energy Technology Data Exchange (ETDEWEB)

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Charmandaris, V. [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Iwasawa, K. [INAF-Observatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Kim, D. C. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rich, J. A. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Spoon, H. W. W. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); U, V., E-mail: sabrinas@virginia.edu [Department of Physics and Astronomy, University of California, Riverside, CA 92507 (United States)

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L