WorldWideScience

Sample records for influences central carbon

  1. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    Science.gov (United States)

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  2. Factors influencing organic-horizon carbon pools in mixed-species stands of central Maine, USA

    Science.gov (United States)

    Joshua J. Puhlick; Shawn Fraver; Ivan J. Fernandez; Aaron R. Weiskittel; Laura S. Kenefic; Randy Kolka; Marie-Cecile Gruselle

    2016-01-01

    The overall goal of this study was to evaluate the correlation of multiple abiotic and biotic factors with organic-horizon (O-horizon) carbon (C) content on the Penobscot Experimental Forest in central Maine, USA. O-horizon samples were collected and their associated depths were recorded from stands managed with a range of silvicultural and harvesting treatments (i.e...

  3. Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas

    Science.gov (United States)

    Bergel, Shelly J.; Carlson, Peter E.; Larson, Toti E.; Wood, Chris T.; Johnson, Kathleen R.; Banner, Jay L.; Breecker, Daniel O.

    2017-11-01

    Canonical models for speleothem formation and the subsurface carbon cycle invoke soil respiration as the dominant carbon source. However, evidence from some karst regions suggests that belowground CO2 originates from a deeper, older source. We therefore investigated the carbon sources to central Texas caves. Drip-water chemistry of two caves in central Texas implies equilibration with calcite at CO2 concentrations (PCO2_sat) higher than the maximum CO2 concentrations observed in overlying soils. This observation suggests that CO2 is added to waters after they percolate through the soils, which requires a subsoil carbon source. We directly evaluate the carbon isotope composition of the subsoil carbon source using δ13C measurements on cave-air CO2, which we independently demonstrate has little to no contribution from host rock carbon. We do so using the oxidative ratio, OR, defined as the number of moles of O2 consumed per mole of CO2 produced during respiration. However, additional belowground processes that affect O2 and CO2 concentrations, such as gas-water exchange and/or diffusion, may also influence the measured oxidative ratio, yielding an apparent OR (ORapparent). Cave air in Natural Bridge South Cavern has ORapparent values (1.09 ± 0.06) indistinguishable from those expected for respiration alone (1.08 ± 0.06). Pore space gases from soils above the cave have lower values (ORapparent = 0.67 ± 0.05) consistent with respiration and gas transport by diffusion. The simplest explanation for these observations is that cave air in NB South is influenced by respiration in open-system bedrock fractures such that neither diffusion nor exchange with water influence the composition of the cave air. The radiocarbon activities of NB South cave-air CO2 suggest the subsoil carbon source is hundreds of years old. The calculated δ13C values of the subsoil carbon source are consistent with tree-sourced carbon (perhaps decomposing root matter), the δ13C values of which

  4. [Carbon footprint of buildings in the urban agglomeration of central Liaoning, China].

    Science.gov (United States)

    Shi, Yu; Yun, Ying Xia; Liu, Chong; Chu, Ya Qi

    2017-06-18

    With the development of urbanization in China, buildings consumed lots of material and energy. How to estimate carbon emission of buildings is an important scientific problem. Carbon footprint of the central Liaoning agglomeration was studied with carbon footprint approach, geographic information system (GIS) and high-resolution remote sensing (HRRS) technology. The results showed that the construction carbon footprint coefficient of central Liaoning urban agglomeration was 269.16 kg·m -2 . The approach of interpreting total building area and spatial distribution with HRRS was effective, and the accuracy was 89%. The extraction approach was critical for total carbon footprint and spatial distribution estimation. The building area and total carbon footprint of central Liaoning urban agglomeration in descending order was Shenyang, Anshan, Fushun, Liao-yang, Yingkou, Tieling and Benxi. The annual average increment of footprint from 2011 to 2013 in descending order was Shenyang, Benxi, Fushun, Anshan, Tieling, Yingkou and Liaoyang. The accurate estimation of construction carbon footprint spatial and its distribution was of significance for the planning and optimization of carbon emission reduction.

  5. Influence of wildfires on atmospheric composition and carbon uptake of forest ecosystems in Central Siberia: the establishing of a long-term post-fire monitoring system

    Science.gov (United States)

    Panov, Alexey; Chi, Xuguang; Winderlich, Jan; Prokushkin, Anatoly; Bryukhanov, Alexander; Korets, Mikhail; Ponomarev, Evgenii; Timokhina, Anastasya; Andreae, Meinrat O.; Heimann, Martin

    2014-05-01

    Calculations of direct emissions of greenhouse gases from boreal wildfires remain uncertain due to problems with emission factors, available carbon, and imprecise estimates of burned areas. Even more varied and sparse are accurate in situ calculations of temporal changes in boreal forest carbon dynamics following fire. Linking simultaneous instrumental atmospheric observations, GIS-based estimates of burned areas, and ecosystem carbon uptake calculations is vital to fill this knowledge gap. Since 2006 the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a research platform for large-scale climatic observations is operational in Central Siberia (60°48'N, 89°21'E). The data of ongoing greenhouse gases measurements at the tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over central Northern Eurasia. We present our contribution to reducing uncertainties in estimates of fire influence on atmospheric composition and post-fire ecosystem carbon uptake deduced from the large-scale fires that happened in 2012 in the tall tower footprint area. The burned areas were estimated from Landsat ETM 5,8 satellite images, while fires were detected from Terra/Aqua MODIS satellite data. The magnitude of ecological change caused by fires ("burn severity") was measured and mapped with a Normalized Burn Ratio (NBR) index and further calibrated by a complementary field based Composite Burn Index (CBI). Measures of fire radiative power (FRP) index provided information on fire heat release intensity and on the amount and completeness of biomass combustion. Based on the analyzed GIS data, the system of study plots was established in the 5 dominating ecosystem types for a long-term post-fire monitoring. On the plots the comprehensive estimation of ecosystem parameters and carbon pools and their mapping was organized with a laser-based field instrumentation system. The work was supported financially by ISTC Project # 2757p

  6. An Optimal Centralized Carbon Dioxide Repository for Florida, USA

    Directory of Open Access Journals (Sweden)

    Brandon Poiencot

    2011-03-01

    Full Text Available For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida’s electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels, from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s is also presented.

  7. Influence of arm movement on central tip location of peripherally inserted central catheters (PICCs)

    International Nuclear Information System (INIS)

    Connolly, Bairbre; Amaral, Joao; Walsh, Sharon; Temple, Michael; Chait, Peter; Stephens, Derek

    2006-01-01

    PICCs are increasingly employed in children. Some of their risks relate to the location of the central tip. Despite care when placing lines, they sometimes move. To evaluate the influence of arm movement on the central tip location of PICCs placed in children. The central tip location of PICCs was studied in 85 children, with the arm placed in six positions. The variables of side, vein, site and arm position were examined to measure the direction and range of tip movement. The side, site or vein used did not influence the range of movement of the central tip. Change in position of the arm had a significant influence on the central tip location, moving it an average of 2.2 rib spaces, a maximum of 3.5 ribs. Elbow bending and adduction of the arm caused the central tip to move deeper into the chest, compared to when the arm was straight and abducted 90 . Arm position is the significant variable influencing PICC movement. Side, site and vein do not influence the range of movement significantly. Most PICCs descend deeper into the chest with arm adduction and elbow bending. (orig.)

  8. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    Science.gov (United States)

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  9. Discontinuities Characteristics of the Upper Jurassic Arab-D Reservoir Equivalent Tight Carbonates Outcrops, Central Saudi Arabia

    Science.gov (United States)

    Abdlmutalib, Ammar; Abdullatif, Osman

    2017-04-01

    Jurassic carbonates represent an important part of the Mesozoic petroleum system in the Arabian Peninsula in terms of source rocks, reservoirs, and seals. Jurassic Outcrop equivalents are well exposed in central Saudi Arabia and which allow examining and measuring different scales of geological heterogeneities that are difficult to collect from the subsurface due to limitations of data and techniques. Identifying carbonates Discontinuities characteristics at outcrops might help to understand and predict their properties and behavior in the subsurface. The main objective of this study is to identify the lithofacies and the discontinuities properties of the upper Jurassic carbonates of the Arab D member and the Jubaila Formation (Arab-D reservoir) based on their outcrop equivalent strata in central Saudi Arabia. The sedimentologic analysis revealed several lithofacies types that vary in their thickness, abundances, cyclicity and vertical and lateral stacking patterns. The carbonates lithofacies included mudstone, wackestone, packstone, and grainstone. These lithofacies indicate deposition within tidal flat, skeletal banks and shallow to deep lagoonal paleoenvironmental settings. Field investigations of the outcrops revealed two types of discontinuities within Arab D Member and Upper Jubaila. These are depositional discontinuities and tectonic fractures and which all vary in their orientation, intensity, spacing, aperture and displacements. It seems that both regional and local controls have affected the fracture development within these carbonate rocks. On the regional scale, the fractures seem to be structurally controlled by the Central Arabian Graben System, which affected central Saudi Arabia. While, locally, at the outcrop scale, stratigraphic, depositional and diagenetic controls appear to have influenced the fracture development and intensity. The fracture sets and orientations identified on outcrops show similarity to those fracture sets revealed in the upper

  10. Age, extent and carbon storage of the central Congo Basin peatland complex.

    Science.gov (United States)

    Dargie, Greta C; Lewis, Simon L; Lawson, Ian T; Mitchard, Edward T A; Page, Susan E; Bocko, Yannick E; Ifo, Suspense A

    2017-02-02

    Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10 15  grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by

  11. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    Science.gov (United States)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  12. Land-Use Influences Carbon Fluxes in Northern Kazakhstan

    Science.gov (United States)

    An understanding of carbon cycling is important to maintain sustainable rangeland ecosystems. Rangelands in the western U.S. are similar to those in Central Asia. We used a combination of meteorological and computer modeling techniques to quantitatively assess carbon loss and gain for four major l...

  13. SNS Central Helium Liquefier spare Carbon Bed installation and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Degraff, Brian D. [ORNL; Howell, Matthew P. [ORNL; Kim, Sang-Ho [ORNL; Neustadt, Thomas S. [ORNL

    2017-07-01

    The Spallation Neutron Source (SNS) Central Helium Liquefier (CHL) at Oak Ridge National Laboratory (ORNL) has been without major operations downtime since operations were started back in 2006. This system utilizes a vessel filled with activated carbon as the final major component to remove oil vapor from the compressed helium circuit prior to insertion into the system's cryogenic cold box. The need for a spare carbon bed at SNS due to the variability of carbon media lifetime calculation to adsorption efficiency will be discussed. The fabrication, installation and commissioning of this spare carbon vessel will be presented. The novel plan for connecting the spare carbon vessel piping to the existing infrastructure will be presented.

  14. Reconstruction of the central carbon metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    David, Helga; Åkesson, Mats Fredrik; Nielsen, Jens

    2003-01-01

    The topology of central carbon metabolism of Aspergillus niger was identified and the metabolic network reconstructed, by integrating genomic, biochemical and physiological information available for this microorganism and other related fungi. The reconstructed network may serve as a valuable...... of metabolic fluxes using metabolite balancing. This framework was employed to perform an in silico characterisation of the phenotypic behaviour of A. niger grown on different carbon sources. The effects on growth of single reaction deletions were assessed and essential biochemical reactions were identified...... for different carbon sources. Furthermore, application of the stoichiometric model for assessing the metabolic capabilities of A. niger to produce metabolites was evaluated by using succinate production as a case study....

  15. Influence of Wind Pressure on the Carbonation of Concrete

    Directory of Open Access Journals (Sweden)

    Dujian Zou

    2015-07-01

    Full Text Available Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  16. Influence of Wind Pressure on the Carbonation of Concrete.

    Science.gov (United States)

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  17. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Evaluating Soil Carbon Sequestration in Central Iowa

    Science.gov (United States)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  19. Influencing the central heating technologies installed in homes: The role of social capital in supply chain networks

    International Nuclear Information System (INIS)

    Wade, Faye; Shipworth, Michelle; Hitchings, Russell

    2016-01-01

    The likely installation of, and potential energy savings from, low carbon technologies in domestic buildings is not only dependent on those who fit them, but also the broader supply chains of which they are part. Despite this, the role of supply chain actors has been largely overlooked in strategies seeking to encourage the installation of more sustainable domestic heating technologies. With reference to central heating, this paper responds through an ethnographic analysis of how plumbers' merchants and sales representatives can influence the work of heating installers in the United Kingdom. It applies two dimensions of the concept of ‘social capital’: relational and structural. Relational social capital focuses on the trust, loyalty and reciprocity at play in relations, whilst structural social capital considers how the strength of tie can influence those to whom people turn for advice and support. Together, these ideas demonstrate how relationships amongst these groups can serve to influence product choice and facilitate information exchange. The paper concludes by discussing how these supply chains might be engaged with as a means of encouraging the installation of low carbon domestic technologies. - Highlights: •Ethnography is used to investigate the relationships in heating supply chains. •Social capital is seen to be an important part of these relationships. •These relationships could help in the promotion of low carbon technologies.

  20. Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan.

    Science.gov (United States)

    Cheng, Chih-Hsin; Hung, Chih-Yu; Chen, Chiou-Peng; Pei, Chuang-Wun

    2013-12-01

    Japanese cedar (Chrytomeria japonica D. Don) is an important plantation species in Taiwan and represents 10% of total plantation area. It was first introduced in 1910 and widely planted in the northern and central mountainous areas of Taiwan. However, a change in forest management from exotic species to native species in 1980 had resulted in few new Japanese cedar plantations being established. Most Japanese cedar plantations are now between 30 and 50 years old and reaching their rotation period. It is of interest to know whether these plantations could be viable for future carbon sequestration through the accumulations of stand carbon stocks. Twelve even-aged Japanese cedar stands along a stand age gradient from 37 to 93 years were selected in Xitou of central Taiwan. The study aims were to investigate the basic stand characteristics and biomass carbon stock in current Japanese cedar stands, and determine the relationships among stand characteristics, tree biomass carbon, and stand age. Our results indicate that existing Japanese cedar plantations are still developing and their live tree biomass carbon continues to accumulate. At stands with a stand age of 90 years, tree density, canopy height, mean diameter at breast height, basal area, and live tree biomass carbon stocks reach to nearly 430 tree ha -1 , 27 m, 48 cm, 82 m 2 ha -1 and 300 Mg C ha -1 , respectively. Therefore, with no harvesting, current Japanese cedar plantations provide a carbon sink by storing carbon in tree biomass.

  1. Framing REDD+ in India: Carbonizing and centralizing Indian forest governance?

    International Nuclear Information System (INIS)

    Vijge, Marjanneke J.; Gupta, Aarti

    2014-01-01

    Highlights: • We analyze whether India's REDD+ strategy induces carbonization and centralization. • REDD+ in India is framed as an opportunity for synergistic, decentralized governance. • Yet national safeguards are not as strong as asserted. • Controversial issues have so far been side-lined in India's REDD+ strategy. • Without investments, synergistic and decentralized REDD+ governance remains unlikely. - Abstract: This article analyzes the interaction of newly articulated climate governance goals with long-standing forest policies and practices in India. We focus on India's REDD+ (reducing emissions from deforestation and forest degradation and related forest activities) strategy, with a particular focus on the Green India Mission (GIM). The GIM calls for a doubling of the area for afforestation and reforestation in India in the next decade as a dominant climate mitigation strategy. We analyze how the GIM policy document frames carbon versus non-carbon benefits to be derived from forest-related activities; and how the GIM envisages division of authority (between national, regional and local levels) in its implementation. We are interested in assessing (a) whether the GIM promotes a “carbonization” of Indian forest governance, i.e. an increased focus on forest carbon at the expense of other ecosystem services; and (b) whether it promotes an increased centralization of forest governance in India through retaining or transferring authority and control over forest resources to national and state-level authorities, at the expense of local communities. We argue that the GIM frames the climate-forest interaction as an opportunity to synergistically enhance both carbon and non-carbon benefits to be derived from forests; while simultaneously promoting further decentralization of Indian forest governance. However, based on past experiences and developments to date, we conclude that without significant investments in community-based carbon and biodiversity

  2. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    Science.gov (United States)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  3. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons.

    Directory of Open Access Journals (Sweden)

    J Boone Kauffman

    Full Text Available Globally, it is recognized that blue carbon ecosystems, especially mangroves, often sequester large quantities of carbon and are of interest for inclusion in climate change mitigation strategies. While 19% of the world's mangroves are in Africa, they are among the least investigated of all blue carbon ecosystems. We quantified total ecosystem carbon stocks in 33 different mangrove stands along the Atlantic coast of West-Central Africa from Senegal to Southern Gabon spanning large gradients of latitude, soil properties, porewater salinity, and precipitation. Mangrove structure ranged from low and dense stands that were 35,000 trees ha-1 to tall and open stands >40m in height and 1,000 Mg C ha-1. The lowest carbon stocks were found in the low mangroves of the semiarid region of Senegal (463 Mg C ha-1 and in mangroves on coarse-textured soils in Gabon South (541 Mg C ha-1. At the scale of the entirety of West-Central Africa, total ecosystem carbon stocks were poorly correlated to aboveground ecosystem carbon pools, precipitation, latitude and soil salinity (r2 = ≤0.07 for all parameters. Based upon a sample of 158 sites from Africa, Asia and Latin America that were sampled in a similar manner to this study, the global mean of carbon stocks for mangroves is 885 Mg C ha-1. The ecosystem carbon stocks of mangroves for West-Central Africa are slightly lower than those of Latin America (940 Mg C ha-1 and Asia (1049 Mg C ha-1 but substantially higher than the default Intergovernmental Panel on Climate Change (IPCC values for mangroves (511 Mg C ha-1. This study provides an improved estimation of default estimates (Tier 1 values of mangroves for Asia, Latin America, and West Central Africa.

  4. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

    Science.gov (United States)

    Wenchi Jin; Hong S. He; Frank R. Thompson; Wen J. Wang; Jacob S. Fraser; Stephen R. Shifley; Brice B. Hanberry; William D. Dijak

    2017-01-01

    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using...

  5. Carbon dioxide emissions embodied in international trade in Central Europe between 1995 and 2008

    Directory of Open Access Journals (Sweden)

    Vlčková Jana

    2015-12-01

    Full Text Available Climate change and environmental policies are widely discussed, but much less is known about emissions embodied in goods traded internationally, and the distinction between emission producers and consumers. The carbon dioxide emissions embodied in international trade in Central European countries are subject to examination in this paper. As a result of industrial restructuring and environmental legislation, air pollution has improved significantly in Central European countries since the 1989 transition. On the other hand, economic growth has been accompanied by a rise in consumerism. Despite the increasing role of exports, the Visegrad group countries have become net importers of carbon dioxide emissions between 1995 and 2008. This seems to be the ‘standard trajectory’ of a country’s transition toward a more developed and consumption-oriented economy. The global patterns of carbon dioxide emissions embodied in manufacturing exports are also mapped, using network analysis and constructing ‘product space’. The analysis confirms that industrial re-structuring played an important role in lowering the production of carbon dioxide emissions in the Visegrad countries.

  6. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; De

    -Sea Research II 48 (2001) 3353–3361 Dissolved organic carbon in the INDEX area of the Central Indian Basin Sugandha Sardessai*, S.N. de Sousa National Institute of Oceanography, Dona-Paula, Goa 403 004, India Abstract Dissolved organic carbon (DOC..., 1996). While there is substantial information available on the DOC content of sea water throughout the Atlantic, Pacific and southern oceans, there are limited reports on contents and distribution of this organic fraction in the Indian Ocean (Menzel...

  7. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  8. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    Science.gov (United States)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  9. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  10. Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-07-01

    Spatial and temporal variability of carbon species in rainwater (bulk deposition) was studied for the first time at two sites located in urban area of Poznań City and protected woodland area (Jeziory), in central Poland, between April and December 2013. The mean concentration of total carbon (TC) for the first site was 5.86 mg L(-1), whereas for the second, 5.21 mg L(-1). Dissolved organic carbon (DOC) concentration accounted for, on average, 87 and 91 % of total carbon in precipitation at urban and non-urban sites, respectively. Significant changes in TC concentrations in rainwater were observed at both sites, indicating that atmospheric transformation, transport, and removal mechanisms of carbonaceous particles were affected by seasonal fluctuations in biogenic/anthropogenic emission and meteorological conditions (i.e., precipitation height and type, atmospheric transport). During the warm season, the DOC concentration in rainwater was mostly influenced by mixed natural and anthropogenic sources. In contrast, during the cold season, the DOC concentration significantly increased mainly as a result of anthropogenic activities, i.e., intensive coal combustion, domestic wood burning, high-temperature processes, etc. In addition, during the winter measurements, significant differences in mean DOC concentration (Kruskal-Wallis test, p urban and non-urban sites. These data imply that carbonaceous compounds are of crucial importance in atmospheric chemistry and should be considered as an important parameter while considering wet deposition, reactions with different substances, especially over polluted environments.

  11. Influence of pre-tectonic carbonate facies architecture on deformation patterns of syntectonic turbidites, an example from the central Mexican fold-thrust belt

    Science.gov (United States)

    Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel

    2018-04-01

    The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.

  12. Hydrothermal carbonization - 1. Influence of lignin in lignocelluloses

    Energy Technology Data Exchange (ETDEWEB)

    Dinjus, E.; Kruse, A.; Troeger, N. [Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany)

    2011-12-15

    Hydrothermal carbonization is an attractive process for converting biomass with high water content into different products. The requirements on the products, which may be soil improvement or substitution of lignite or carbon black, are opposed to biomass as a feedstock that has a very complex and variable composition. The goal of this work was to study the influence of an ingredient, here lignin, on carbonization, with the focus being not only on the composition but also on the structure of the product formed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Long-range transported dissolved organic matter, ions and black carbon deposited on Central Asian snow covered glaciers

    Science.gov (United States)

    Schmale, Julia; Kang, Shichang; Peltier, Richard

    2014-05-01

    with visible mineral dust pollution, and concentrations of nitrate and ammonium were twice as high while sulfate was not enhanced. Further analysis of the organic carbon revealed average (±1σ) O:C and OM:OC ratios of 0.75 (± 0.22) and 2.13 (± 0.29) respectively for Abramov, 1.01 (± 0.24) and 2.46 (± 0.30) for Suek and 1.09 (± 0.34) and 2.56 (± 0.43) for Ak-Shiirak. These relatively high ratios are comparable with winter-time biomass burning influenced findings in the Central Himalayas. Here, also marker ions for biomass burning from levoglucosan were found as well as organic nitrogen. In addition, atmospheric measurements during August 2013 conditions were conducted to obtain information on background aerosol number concentrations, size distributions and chemical composition. The average black carbon concentration for the high altitude glaciers was 0.26 µg/m³ (± 0.24 µg/m³).

  14. Depositional facies mosaics and their time lines in Lower Ordovician carbonates of central Appalachians

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, C.T.; Goldhammer, R.K.; Hardie, L.A.

    1985-02-01

    A comparative sedimentology and facies stratigraphy study of the Lower Ordovician carbonate of the central Appalachians (Beekmantown Group and equivalents) has been carried out. Our approach used subfacies (rock record of subenvironments) as the basin units of section measurement. The authors differentiated related sets of subfacies into larger facies units (rock record of environments). Facies were then correlated from section to section using fossils and lithostratigraphy to make a 3-dimensional facies mosaic. Within this mosaic, time lines were constructed using onlap-offlap tongues and cyclic sequences. These time lines cut across facies boundaries. Using this approach, the authors have established that the lower 600 m of the Lower Ordovician carbonate sequence is made up of 4 main facies: (1) cyclic laminite facies composed of a package of shoaling-upward shelf lagoon-peritidal cycles, (2) thin-bedded grainstone facies deposited in a shelf lagoon, (3) Renalcis bioherm facies recording a shelf lagoon patch-reef environment, and (4) Epiphyton bioherm facies recording a shelf-edge reef system. The distribution of these facies along time lines across the strike of the central Appalachians is markedly zoned. Epiphyton bioherm facies dominate the eastern margin while cyclic laminite facies dominate the western margin, with thin-bedded grainstone and Renalcis bioherm facies making up the central belt. This zonation of facies is a typical shallow carbonate shelf system with fringing reefs along the eastern, seaward margin and tidal flats along the western, landward margin. Vertical distribution of these facies across strike records 3 major sea level changes during deposition of the lower 600 m of this extensive Lower Ordovician carbonate shelf.

  15. Carbon adaptation influence the antagonistic ability of ...

    African Journals Online (AJOL)

    Influences of carbon adaptation on antagonistic activities of three Pseudomonas aeruginosa strains V4, V7 and V10 against Fusarium oxysporum f. sp. melonis were determined in this study. Results from this study showed that the P. aeruginosa strains and their adapted strains significantly inhibited the growth of mycelium ...

  16. Central composite design approach towards optimization of flamboyant pods derived steam activated carbon for its use as heterogeneous catalyst in transesterification of Hevea brasiliensis oil

    International Nuclear Information System (INIS)

    Dhawane, Sumit H.; Kumar, Tarkeshwar; Halder, Gopinath

    2015-01-01

    Highlights: • Activated carbon was prepared from novel precursor flamboyant pods (Delonix regia). • Activation process was optimized using central composite design approach. • Prepared activated carbon at optimized condition was used as support for KOH. • Carbon based heterogeneous catalyst was used in transesterification of HBO. • Effect of catalyst loading and alcohol ratio on biodiesel yield was studied. - Abstract: The present investigation emphasises the preparation of carbon based KOH impregnated heterogeneous catalyst from flamboyant pods (Delonix regia) for the production of biodiesel from novel feedstock Hevea brasiliensis oil (HBO). Initially, carbonized char was physically activated by superheated steam and the process was optimized to study the effects of activation time and temperature by central composite design approach (CCD) using response surface methodology (RSM). Activated carbon was impregnated with KOH at four different ratios. Biodiesel production process was carried out at constant temperature 60 °C, reaction time 1 h, and 5 g of carbon based catalyst at varying quantities of catalyst loading (0.5, 2, 3.5, 5 wt%) and methanol to oil ratio (5:1–20:1). The influence of parameters on the biodiesel yield at varied condition was studied. Maximum yield of 89.3% was obtained at methanol to oil ratio 15:1 and catalyst loading 3.5 wt% and corresponding yield at same process parameters was observed to be 88.7% implying the significant activity of catalyst in reutilization. Produced biodiesel was characterized following ASTM standards. The experimental analysis confirmed that the carbonaceous catalyst developed from flamboyant pods under optimized condition is capable of transesterifying HBO into biodiesel

  17. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  18. Sustainable yield of the Colle Quartara carbonate aquifer in the Southern Lepini Mountains (Central Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Conte

    2016-10-01

    Full Text Available The present research is aimed to contribute to the groundwater resource sustainable management of a carbonate aquifer in a test area of the Lepini Mountains (Central Italy. This aquifer constitutes a major exploited groundwater body of central Apennines. At regional scale, the hydrogeological features of the Lepini hydrostructure are well known. The present study focuses on a portion of the Lepini Mountains where important tapping-works for drinking water supply are in activity (about 1.2 m3/s. New investigations were carried out including: meteo-climatic analysis, spring discharge and hydrometric time series processing, pumping test result interpretation. In addition, a detailed lithostratigraphical and structural survey of a portion of the Lepini hydrostructure at 1:10,000 scale was performed also examining the dense network of discontinuities affecting the carbonate aquifer. Extensional Plio-Pleistocene tectonic activity displaced the carbonate rock sequence under the Pontina Plain, where the carbonate aquifer is confined. The investigation results have allowed the reconstruction of the hydrogeological conceptual model of the studied portion of carbonate massif. Given the scale of the study and the results of the investigation, the carbonate aquifer can be treated as an equivalent porous medium, and the simplified numerical model of the aquifer was constructed with the code MODFLOW-2005. The numerical model, still now under continuous implementation, produced first results on the current withdrawal sustainability, allowing evaluation of possible alternative exploitation scenarios of the carbonate aquifer also considering the probably not significant flow exchanges with the Pontina Plain aquifer.

  19. Influence of temperature on products yield of Eucalyptus microcorys carbonization

    Directory of Open Access Journals (Sweden)

    Renato da Silva Vieira

    2013-03-01

    Full Text Available During charcoal production different products are formed. These products are influenced primarily by the temperature of carbonization. Given that charcoal is the main input in the production of pig iron in Brazil, this study evaluated the influence of final temperature of carbonization of the products generated and also the influence of the radial and longitudinal sampling on the yield of each product. Samples were taken from internal and external position along the radius and also from three different heights from four Eucalyptus microcorys trees. The samples were carbonized in an electric furnace with an experimental water-cooled condenser and a collecting bottle of condensable volatile materials. The final temperatures of carbonization were 500, 600, 700, 800 and 900°C. The gravimetric yield, tar and non-condensable gases were calculated. The results showed no difference in the gravimetric yield in the longitudinal and radial positions studied, while the tar yield and non-condensable gases showed temperature variations of 700°C and 800°C and the variation of the gravimetric yield temperatures between 500°C to 900°C was 15%, the change of yield of tar from the radial direction of sampling was on average 8%, the variation of the yield of non-condensable gases in a radial sampling was on average 16%.

  20. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia.

    Science.gov (United States)

    Batsaikhan, Bayartungalag; Kwon, Jang-Soon; Kim, Kyoung-Ho; Lee, Young-Joon; Lee, Jeong-Ho; Badarch, Mendbayar; Yun, Seong-Taek

    2017-01-01

    Although metallic mineral resources are most important in the economy of Mongolia, mining activities with improper management may result in the pollution of stream waters, posing a threat to aquatic ecosystems and humans. In this study, aiming to evaluate potential impacts of metallic mining activities on the quality of a transboundary river (Selenge) in central northern Mongolia, we performed hydrochemical investigations of rivers (Tuul, Khangal, Orkhon, Haraa, and Selenge). Hydrochemical analysis of river waters indicates that, while major dissolved ions originate from natural weathering (especially, dissolution of carbonate minerals) within watersheds, they are also influenced by mining activities. The water quality problem arising from very high turbidity is one of the major environmental concerns and is caused by suspended particles (mainly, sediment and soil particles) from diverse erosion processes, including erosion of river banks along the meandering river system, erosion of soils owing to overgrazing by livestock, and erosion by human activities, such as mining and agriculture. In particular, after passing through the Zaamar gold mining area, due to the disturbance of sediments and soils by placer gold mining, the Tuul River water becomes very turbid (up to 742 Nephelometric Turbidity Unit (NTU)). The Zaamar area is also the contamination source of the Tuul and Orkhon rivers by Al, Fe, and Mn, especially during the mining season. The hydrochemistry of the Khangal River is influenced by heavy metal (especially, Mn, Al, Cd, and As)-loaded mine drainage that originates from a huge tailing dam of the Erdenet porphyry Cu-Mo mine, as evidenced by δ 34 S values of dissolved sulfate (0.2 to 3.8 ‰). These two contaminated rivers (Tuul and Khangal) merge into the Orkhon River that flows to the Selenge River near the boundary between Mongolia and Russia and then eventually flows into Lake Baikal. Because water quality problems due to mining can be critical

  1. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Szalewska-Pałasz Agnieszka

    2011-03-01

    Full Text Available Abstract Background Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in Bacillus. subtilis. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Results We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of dnaA46(ts mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB(ts by dysfunction of pgi or pta, effects of dnaE486(ts by dysfunction of tktB, effects of dnaG(ts by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts by dysfunction of pta or ackA. The observed suppression effects were not caused by a decrease in bacterial growth rate. Conclusions The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, E. coli. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

  2. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-01-01

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  3. [Adsorbent effect of activated carbon on small molecular uremic toxin and its influence factors].

    Science.gov (United States)

    Yang, Bo; Jiang, Yun-sheng; Li, Jun

    2003-06-01

    To analyze the adsorbent effect of activated carbon on uremic toxin and its influence factors. Uremic toxins (urea, creatinine and uric acid) were dissolved in the distilled water to obtain uremic toxic solution. Activated carbon was added to the solution, and the concentrations of uremic toxins were measured at different time spots. To determine the influence factors, some possible related materials, such as bile, amino acid, Ringer's, solution of glucose, HCl or NaOH respectively were added simultaneously. The concentrations of toxins in uremic toxic solution decreased 5 min after adding the activated carbon. The concentration of urea was the lowest at 30 min, but it increased after 50 min; while the concentrations of creatinine and uric acid reached the lowest level from 10 to 30 min after adding the activated carbon, and maintained at the same level after that. The bile, amino acid, electrolyte, glucose and pH value did not influence the adsorption of uric acid significantly, but they influenced the adsorption of urea and creatinine. Bile and amino acid influenced the concentration of urea remarkably, following glucose, NaOH and HCl. The effect of pH 2.0 solution on the creatinine concentration was the most significant, following glucose. Activated carbon has adsorptive effect on uremic toxins, but its adsorptive effect decreases as time goes on. Bile, glucose, amino acid, NaOH and HCl can affect the adsorptive effect of activated carbon on uremic toxins to some extent.

  4. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    Science.gov (United States)

    Sun, Qiang

    2017-10-01

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  5. The influencing factors of China carbon price: a study based on carbon trading market in hubei province

    Science.gov (United States)

    Li, Hao; Lei, Ming

    2018-02-01

    For the carbon market, good trading mechanism is the basis for the healthy development of the carbon trading market. In order to explore the core problem of carbon price formation, our research explores the influencing factors of the price of carbon trading market. After the preliminary statistical analysis, our study found that Hubei Province is in the leading position among seven pilots in the carbon trading volume and the transaction, so our study of carbon price takes Hubei Province as sample of the empirical research. Multi-time series model and ARCH model analysis method are used in the research, we use the data of Hubei carbon trading pilot from June 2014 to December 2016 to carry out empirical research, the results found that industrial income, energy price, government intervention and the number of participating corporation have significant effect on the carbon price, which provides a meaningful reference for the other pilots in-depth study, as well as the construction of a national carbon trading market.

  6. Rates and fluxes of centennial-scale carbon storage in the fine-grained sediments from the central South Yellow Sea and Min-Zhe belt, East China Sea

    Science.gov (United States)

    Wang, Jianghai; Xiao, Xi; Zhou, Qianzhi; Xu, Xiaoming; Zhang, Chenxi; Liu, Jinzhong; Yuan, Dongliang

    2018-01-01

    The global carbon cycle has played a key role in mitigating global warming and climate change. Long-term natural and anthropogenic processes influence the composition, sources, burial rates, and fluxes of carbon in sediments on the continental shelf of China. In this study, the rates, fluxes, and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area (SYSA) and Min-Zhe belt (MZB), East China Sea. Based on the high-resolution temporal sequences of total carbon (TC) and total organic carbon (TOC) contents, we reconstructed the annual variations of historical marine carbon storage, and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale. The estimated TC storage over 100 years was 1.18×108 t in the SYSA and 1.45×109 t in the MZB. The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km2·a)in the SYSA and from 56 to 148 t/(km2·a) in the MZB. The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source. In the MZB, two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006, which were coeval with the water impoundment in the Gezhouba and Three Gorges dams, respectively. The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.

  7. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  8. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries

    International Nuclear Information System (INIS)

    Dominko, Robert; Gaberscek, Miran; Drofenik, Jernej; Bele, Marjan; Jamnik, Janez

    2003-01-01

    The influence of carbon black content and carbon black distribution on performance of oxide-based cathodes, such as LiCoO 2 and LiMn 2 O 4 , is investigated. The electronic conductivity of oxide material/carbon black composites is compared with electrochemical characteristics of the same composites. Uniformity of carbon black distribution in cathode composites is achieved using novel coating technology in cathode preparation. In this technology, the active particles are first pretreated in a gelatin solution. The adsorbed gelatin then controls the deposition of carbon black so that carbon black particles are uniformly distributed in the final composite. The influence of various parameters, such as pH of gelatin, amount of gelatin and concentration of carbon black on the uniformity of carbon black distribution is investigated. It is shown that the conventional technology of cathode preparation yields quite non-uniform distribution of carbon black in cathode material. At the end, we demonstrate that uniformity of carbon black distribution has a crucial impact on reversible capacity, especially at high current densities

  9. Imaging of karsts on buried carbonate platform in Central Luconia Province, Malaysia

    Science.gov (United States)

    Nur Fathiyah Jamaludin, Siti; Mubin, Mukhriz; Latiff, Abdul Halim Abdul

    2017-10-01

    Imaging of carbonate rocks in the subsurface through seismic method is always challenging due to its heterogeneity and fast velocity compared to the other rock types. Existence of karsts features on the carbonate rocks make it more complicated to interpret the reflectors. Utilization of modern interpretation software such as PETREL and GeoTeric® to image the karsts morphology make it possible to model the karst network within the buried carbonate platform used in this study. Using combination of different seismic attributes such as Variance, Conformance, Continuity, Amplitude, Frequency and Edge attributes, we are able to image the karsts features that are available in the proven gas-field in Central Luconia Province, Malaysia. The mentioned attributes are excellent in visualize and image the stratigraphic features based on the difference in their acoustic impedance as well as structural features, which include karst. 2D & 3D Karst Models were developed to give a better understanding on the characteristics of the identified karsts. From the models, it is found that the karsts are concentrated in the top part of the carbonate reservoir (epikarst) and the middle layer with some of them becomes extensive and create karst networks, either laterally or vertically. Most of the vertical network karst are related to the existence of faults that displaced all the horizons in the carbonate platform.

  10. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  11. Influence of the concentration of carbon nanotubes on electrical ...

    Indian Academy of Sciences (India)

    Influence of the concentration of carbon nanotubes on electrical conductivity of magnetically aligned MWCNT–polypyrrole composites. KAVEH KAZEMIKIA1,∗, FAHIMEH BONABI2, ALI ASADPOORCHALLO3 and. MAJID SHOKRZADEH4. 1Department of Electrical and Computer Engineering, Islamic Azad University, Bonab ...

  12. THE Eucalyptus sp. AGE PLANTATIONS INFLUENCING THE CARBON STOCKS

    Directory of Open Access Journals (Sweden)

    Charlote Wink

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989279The tree growth and biomass accumulation, as well as the maintenance of forest residue at the soil surface can act in the removal of carbon from the atmosphere through the cycling process of plant material. The objective was to study the influence of Eucalyptus sp. Plantations with 20, 44 and 240 months of age on the variation of carbon in soil and biomass. The carbon in the soil depth was determined by CHNS auto-analyzer and carbon in the vegetation was determined by the biomass in each forest, considering a factor of 0.45 of the dry mass. We determined the density and particle size distribution of soil. For the comparison between plantations, there was analysis of variance and comparison of means of carbon in vegetation and soil, considering the 5% level of probability. The carbon content and stock in the soil were low, indicating that a natural feature of the category of Paleuldt, or the growth of eucalyptus forests, replacing the field native vegetation did not aggregate a significant increase in the carbon. Although, there was a significant increase carbon in aboveground biomass. It includes forest biomass and litter. So, despite the values ​​of carbon stocks are low, it identified a greater average total in the soil compared to the stock aboveground. Furthermore, this increase aboveground (tree and litter compartments can be considered significant between the eucalyptus plantations of different ages.

  13. Magnesium sulphate’s influence on calcium carbonate minerals

    DEFF Research Database (Denmark)

    Nielsen, Mia Rohde

    The purpose of this PhD thesis was to explore the influence of magnesium sulphate (MgSO4 (aq)) on calcium carbonate (CaCO3) minerals and what role the MgSO40 ion pair had. CaCO3 minerals are abundant and widespread on Earth, particularly in marine environments, and have been so throughout Earth...

  14. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  15. Wear of carbon nanotubes grafted on carbon fibers and this influence on the properties of composites materials

    Science.gov (United States)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2017-10-01

    Carbon nanotubes (CNTs) grafted on carbon surfaces can be used to reinforce composite materials. During an industrial process of CNTs production and composite processing, friction stresses will be applied on CNTs. This study showed that CNTs formed a transfer film under friction stresses and that the wear of the CNTs has no influence on the wettability of the surface, so we can predict no decrease in the properties of composites.

  16. Effect of lithium carbonate on leukocyte number after influence of ionizing radiation. 2. Influence of lithium carbonate on peripheral leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rose, H.; Kehrberg, G.; Saul, G.; Pradel, I. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1985-01-01

    The increase of leukocyte number in peripheral blood, found after application of lithium carbonate, is attributed to a rise in granulocytes first of all. The reduced period of acute leukopenia after whole-body irradiation, caused by lithium, is the result of the stimulating the myeloid progenitor cells. Increased syntheses of colony stimulating factor or influencing factors on the microecology of bone marrow are discussed.

  17. Northern peatland carbon biogeochemistry. The influence of vascular plants and edaphic factors on carbon dioxide and methane exchange

    International Nuclear Information System (INIS)

    Oequist, M.

    2001-01-01

    The findings reported in this thesis and in the accompanying papers are based on both laboratory and field investigations of carbon transformation dynamics on the process scale and at the resolution of individual peatland plant communities. The data from one of the studies also is extrapolated in an attempt to identify environmental controls on regional scales in order to predict the response of northern peatlands to climate warming. The laboratory experiments focus on how climate variations, inducing fluctuations in groundwater level and also soil freeze-thaw cycles, influences organic matter mineralisation to carbon dioxide and methane. The field studies investigate year-to-year variations and interdecadal differences in carbon gas exchange at a subarctic peatland, and also how the physiological activities of vascular plants control methane emission rates. The main conclusions presented include: Soil freeze-thaw events may be very important for the annual carbon balance in northern peatlands, because they have the potential to increase mineralisation rates and alter biogeochemical degradation pathways. Vascular plants exert a strong influence on methane flux dynamics during the growing season, both by mediating methane transport and through substrate-based interactions with the soil microbial community. However, there are important species-related factors that govern the nature and extent of this influence. Caution has to be taken when extrapolating field data to estimate regional carbon exchange because the relevance of the specific environmental parameters that control this exchange varies depending on resolution. On broad spatial and temporal scales the best predictor of peatland methane emissions is mean soil temperature, but also microbial substrate availability (expressed as the organic acid concentration in peat water) is of importance. This temperature sensitivity represents a strong potential feedback mechanism on climate change

  18. Transient influence of end-tidal carbon dioxide tension on the postural restraint in cerebral perfusion

    DEFF Research Database (Denmark)

    Immink, R.V.; Truijen, J.; Secher, Niels H.

    2009-01-01

    In the upright position, cerebral blood flow is reduced, maybe because arterial carbon dioxide partial pressure (Pa(CO(2))) decreases. We evaluated the time-dependent influence of a reduction in Pa(CO(2)), as indicated by the end-tidal Pco(2) tension (Pet(CO(2))), on cerebral perfusion during head......-up tilt. Mean arterial pressure, cardiac output, middle cerebral artery mean flow velocity (MCA V(mean)), and dynamic cerebral autoregulation at supine rest and 70 degrees head-up tilt were determined during free breathing and with Pet(CO(2)) clamped to the supine level. The postural changes in central...... hemodynamic variables were equivalent, and the cerebrovascular autoregulatory capacity was not significantly affected by tilt or by clamping Pet(CO(2)). In the first minute of tilt, the decline in MCA V(mean) (10 +/- 4 vs. 3 +/- 4 cm/s; mean +/- SE; P

  19. Pricing, Carbon Emission Reduction, Low-Carbon Promotion and Returning Decision in a Closed-Loop Supply Chain under Vertical and Horizontal Cooperation.

    Science.gov (United States)

    Li, Hui; Wang, Chuanxu; Shang, Meng; Ou, Wei

    2017-11-01

    In this paper, we examine the influences of vertical and horizontal cooperation models on the optimal decisions and performance of a low-carbon closed-loop supply chain (CLSC) with a manufacturer and two retailers, and study optimal operation in the competitive pricing, competitive the low-carbon promotion, the carbon emission reduction, the used-products collection and the profits. We consider the completely decentralized model, M-R vertical cooperation model, R-R horizontal cooperation model, M-R-R vertical and horizontal cooperation model and completely centralized model, and also identify the optimal decision results and profits. It can be observed from a systematic comparison and numerical analysis that the completely centralized model is best in all optimal decision results among all models. In semi-cooperation, the M-R vertical cooperation model is positive, the R-R horizontal cooperation model is passive, and the positivity of the M-R-R vertical and horizontal cooperation model decreases with competitive intensity increasing in the used-products returning, carbon emissions reduction level, low-carbon promotion effort and the profits of the manufacturer and the entire supply chain.

  20. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  1. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    International Nuclear Information System (INIS)

    Cheng, Yuan; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC IMPROVE-A (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC NIOSH ratio and the EC IMPROVE-A to EC EUSAAR ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  2. ANALISIS TOTAL PRODUCTIVE MAINTENANCE PADA LINE 8/CARBONATED SOFT DRINK PT COCA-COLA BOTTLING INDONESIA CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Darminto Pujotomo

    2012-02-01

    Full Text Available PT. Coca-Cola Bottling Indonesia (CCBI Central Java merupakan salah satu perusahaan produsen minuman ringan yang terkemuka di Indonesia, dengan dua jenis kelompok produk yang dihasilkan yaitu minuman karbonasi/Carbonated Soft Drink (Coca-Cola, Sprite, dan Fanta dan non-karbonasi (Frestea dan Ades. Dalam usaha untuk mempertahankan mutu dan meningkatkan produktifitas, salah satu faktor yang harus diperhatikan adalah masalah perawatan fasilitas/mesin produksi.  Makalah ini membahas mengenai penyebab dan akibat yang ditimbulkan oleh breakdown mesin terjadi pada Line 8/Carbonated Soft Drink, khususnya pada conveyor, filler machine, dan bottle washer machine. Untuk mendapatkan mesin yang dapat terjaga keterandalannya dibutuhkan suatu konsep yang baik. Total Productive Maintenance (TPM merupakan sebuah konsep yang baik untuk merealisasikan hal tersebut. Konsep ini, selain melibatkan semua personil dalam perusahaan, juga bertujuan untuk merawat semua fasilitas produksi yang dimiliki perusahaan.Data yang digunakan merupakan data breakdown conveyor, filler machine, dan bottle washer machine dari ME Monthly Report PT.CCBI selama bulan Januari-Desember 2005 khususnya line 8. Selain itu makalah ini juga membahas performance maintenance PT. Coca-Cola Bottling Indonesia-Central Java, dengan memperhitungkan nilai Mean Time Beetwen Failure (MTBF, Mean Time To Repair (MTTR, serta Availability mesin, dengan menggunakan data record Line 8 selama bulan Mei 2006 sampai bulan Juli 2006. Sehingga nantinya akan diketahui informasi keadaan aktual dari perusahaan tentang sistem perawatannya, khususnya pada Line 8/Carbonated Soft Drink apakah baik atau buruk. Kata kunci : Total Production Maintenance, Conveyor, Filler Machine, Bottle Washer Machine, Performance Maintenance   PT. Coca-Cola Bottling Indonesia (CCBI-Central Java represent one of notable light beverage producer company in Indonesia, with two product group type yielded is carbonated beverage/Carbonated Soft

  3. Assessment of the influence of a carbon fiber tabletop on portal imaging

    International Nuclear Information System (INIS)

    Misiarz, Agnieszka; Krawczyk, Paweł; Swat, Kaja; Andrasiak, Michał

    2013-01-01

    The purpose of this paper was to investigate beam attenuation caused by a carbon-fiber tabletop and its influence on portal image quality. The dose was measured by a Farmer type jonization chamber. The measurements of the portal image quality were performed with an EPID QC phantom for 6 MV beam for a specified field size (covering all test elements of the phantom completely −26×26 cm 2 in the isocenter, SSD 96.2 cm) and various portal—isocenter distances. The beam attenuation factor was measured for Polkam 16 treatment table with a carbon fiber tabletop. Carbon fiber tabletop induces beam attenuation in vertical direction by a factor of 3.39%. The lowest maximum deviation to the regression line for linearity was measured for 40 cm portal—phantom distance. The lowest signal to noise ratio was observed for the portal—phantom distance of 30 cm. This factor dropped by 9% for images with a tabletop. The difference in high contrast: horizontal is 3.64; 0.32; 3.25 for 50 cm, 40 cm and 30 cm respectively and vertical—3.64%; 0.32%; 4.01% for 50 cm, 40 cm and 30 cm respectively. The visibility of the holes with the smallest diameters (1 mm) is the same for 50 and 40 cm while it is better for 30 cm, as can be expected due to the lower SNR. Carbon-fiber inserts, tabletops play a vital role in modern radiotherapy. One of the most important advantages of carbon-fiber tabletops is the lack of the gantry direction limitations. In this paper the attenuation of a carbon-fiber tabletop and its influence on a portal image quality were investigated. Dose attenuation effects, comparable to other measurements, were found. That effect influences dose distribution delivered to the target volume and can increase the time of irradiation needed to take a portal image. It has been found that the best conditions for taking portal image occur when the distance from the phantom (patient) to the portal is 40 cm and the portal is parallel to the tabletop. In such conditions one observes

  4. Assessment of the influence of a carbon fiber tabletop on portal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Misiarz, Agnieszka, E-mail: agnieszka.misiarz@ncbj.gov.pl [National Centre for Nuclear Research, 05-400 Swierk, Otwock (Poland); Krawczyk, Paweł; Swat, Kaja; Andrasiak, Michał [National Centre for Nuclear Research, 05-400 Swierk, Otwock (Poland)

    2013-06-21

    The purpose of this paper was to investigate beam attenuation caused by a carbon-fiber tabletop and its influence on portal image quality. The dose was measured by a Farmer type jonization chamber. The measurements of the portal image quality were performed with an EPID QC phantom for 6 MV beam for a specified field size (covering all test elements of the phantom completely −26×26 cm{sup 2} in the isocenter, SSD 96.2 cm) and various portal—isocenter distances. The beam attenuation factor was measured for Polkam 16 treatment table with a carbon fiber tabletop. Carbon fiber tabletop induces beam attenuation in vertical direction by a factor of 3.39%. The lowest maximum deviation to the regression line for linearity was measured for 40 cm portal—phantom distance. The lowest signal to noise ratio was observed for the portal—phantom distance of 30 cm. This factor dropped by 9% for images with a tabletop. The difference in high contrast: horizontal is 3.64; 0.32; 3.25 for 50 cm, 40 cm and 30 cm respectively and vertical—3.64%; 0.32%; 4.01% for 50 cm, 40 cm and 30 cm respectively. The visibility of the holes with the smallest diameters (1 mm) is the same for 50 and 40 cm while it is better for 30 cm, as can be expected due to the lower SNR. Carbon-fiber inserts, tabletops play a vital role in modern radiotherapy. One of the most important advantages of carbon-fiber tabletops is the lack of the gantry direction limitations. In this paper the attenuation of a carbon-fiber tabletop and its influence on a portal image quality were investigated. Dose attenuation effects, comparable to other measurements, were found. That effect influences dose distribution delivered to the target volume and can increase the time of irradiation needed to take a portal image. It has been found that the best conditions for taking portal image occur when the distance from the phantom (patient) to the portal is 40 cm and the portal is parallel to the tabletop. In such conditions one

  5. A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal

    International Nuclear Information System (INIS)

    Perrier, F.; Byrdina, S.; Richon, P.; Bollinger, L.; Bureau, S.; Richon, P.; France-Lanord, Ch.; Rajaure, S.; Koirala, Bharat Prasad; Shrestha, Prithvi Lal; Gautam, Umesh Prasad; Tiwari, Dilli Ram; Sapkota, Soma Nath; Revil, A.; Revil, A.; Contraires, S.

    2009-01-01

    Gas discharges have been identified at the Syabru-Bensi hot springs, located at the front of the High Himalaya in Central Nepal, in the Main Central Thrust zone. The hot spring waters are characterized by a temperature reaching 61 C, high salinity, high alkalinity and δ 13 C varying from +0. 7 parts per thousand to +4. 8 parts per thousand. The gas is mainly dry carbon dioxide, with a δ 13 C of -0. 8 parts per thousand. The diffuse carbon dioxide flux, mapped by the accumulation chamber method, reached a value of 19000 g m -2 day -1 , which is comparable with values measured on active volcanoes. Similar values have been observed over a two-year time interval and the integral around the main gas discharge amounts to 0. 25 ± 0. 07 mol s -1 , or 350 ± 100 ton a -1 . The mean radon-222 concentration in spring water did not exceed 2. 5 Bq L -1 , exponentially decreasing with water temperature. In contrast, in gas bubbles collected in the water or in the dry gas discharges, the radon concentration varied from 16 000 to 41000 Bq m -3 . In the soil, radon concentration varied from 25000 to more than 50000 Bq m -3 . Radon flux, measured at more than fifty points, reached extreme values, larger than 2 Bq m -2 s -1 , correlated to the larger values of the carbon dioxide flux. Our direct observation confirms previous studies which indicated large degassing in the Himalaya. The proposed understanding is that carbon dioxide is released at mid-crustal depth by metamorphic reactions within the Indian basement, transported along pre-existing faults by meteoric hot water circulation, and degassed before reaching surface. This work, first, confirms that further studies should be undertaken to better constrain the carbon budget of the Himalaya, and, more generally, the contribution of mountain building to the global carbon balance. Furthermore, the evidenced gas discharges provide a unique natural laboratory for methodological studies, and appear particularly important to study as

  6. Effect of Population Structure Change on Carbon Emission in China

    Directory of Open Access Journals (Sweden)

    Wen Guo

    2016-03-01

    Full Text Available This paper expanded the Logarithmic Mean Divisia Index (LMDI model through the introduction of urbanization, residents’ consumption, and other factors, and decomposed carbon emission changes in China into carbon emission factor effect, energy intensity effect, consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect, and then explored contribution rates and action mechanisms of the above six factors on change in carbon emissions in China. Then, the effect of population structure change on carbon emission was analyzed by taking 2003–2012 as a sample period, and combining this with the panel data of 30 provinces in China. Results showed that in 2003–2012, total carbon emission increased by 4.2117 billion tons in China. The consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect promoted the increase in carbon emissions, and their contribution ratios were 27.44%, 12.700%, 74.96%, and 5.90%, respectively. However, the influence of carbon emission factor effect (−2.54% and energy intensity effect (−18.46% on carbon emissions were negative. Population urbanization has become the main population factor which affects carbon emission in China. The “Eastern aggregation” phenomenon caused the population scale effect in the eastern area to be significantly higher than in the central and western regions, but the contribution rate of its energy intensity effect (−11.10 million tons was significantly smaller than in the central (−21.61 million tons and western regions (−13.29 million tons, and the carbon emission factor effect in the central area (−3.33 million tons was significantly higher than that in the eastern (−2.00 million tons and western regions (−1.08 million tons. During the sample period, the change in population age structure, population education structure, and population occupation structure

  7. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    Science.gov (United States)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  8. Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Rina Wu

    2016-02-01

    Full Text Available Studying the influencing factors of carbon dioxide emissions is not only practically but also theoretically crucial for establishing regional carbon-reduction policies, developing low-carbon economy and solving the climate problems. Therefore, we used a geographical detector model which is consists of four parts, i.e., risk detector, factor detector, ecological detector and interaction detector to analyze the effect of these social economic factors, i.e., GDP, industrial structure, urbanization rate, economic growth rate, population and road density on the increase of energy consumption carbon dioxide emissions in industrial sector in Inner Mongolia northeast of China. Thus, combining with the result of four detectors, we found that GDP and population more influence than economic growth rate, industrial structure, urbanization rate and road density. The interactive effect of any two influencing factors enhances the increase of the carbon dioxide emissions. The findings of this research have significant policy implications for regions like Inner Mongolia.

  9. Influence of chemical structure on carbon isotope composition of lignite

    Science.gov (United States)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  10. Influence of oxygen, nitrogen and carbon on the lattice parameter of uranium mono-carbide; Influence de l'oxygene, de l'azote et du carbone sur le parametre reticulaire du monocarbure d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-04-15

    The author studies the influence of oxygen and nitrogen contents on the lattice parameter of U(C,O,N) solid solutions around UC composition. The whole data conducts to a determination of the solubility of oxygen in UC: a U(C(1-x)O(x)) solid solution exist if x if smaller than 0.37. The author studies also the influence of carbon content on the lattice parameter of U-UC solid solutions around UC. This study conducts to the determination of the solubility of U in UC at the different temperatures. Consequences upon uranium-carbon diagram are envisaged. (author) [French] L'auteur etudie quantitativement l'influence de l'oxygene et de l'azote sur le parametre reticulaire des solutions solides U(C,O,N) proches de UC. Cette etude permet la determination de la solubilite de l'oxygene dans UC: on montre l'existence d'une solution solide U(C(1-x)O(x)) lorsque x est compris entre 0 et 0,37. Par ailleurs l'auteur etudie l'influence de la teneur en carbone sur le parametre des solutions solides U-UC proches de UC. Cette etude permet la determination de la solubilite de l'uranium dans UC aux differentes temperatures. On envisage enfin les modifications apportees par cette etude au diagramme uranium-carbone. (auteur)

  11. Temperature impact on cementitious materials carbonation - description of water transport influence

    International Nuclear Information System (INIS)

    Drouet, E.

    2010-11-01

    Carbonation is the major cause of degradation of reinforced concrete structures. It leads to rebar corrosion and cracking of the concrete cover. In the framework of radioactive waste management, cement-based materials used as building material for structures or containers would be simultaneously submitted to heating (due to the waste thermal output), subsequent drying and atmospheric carbon dioxide. Such environmental conditions are expected to modify the carbonation mechanisms (with respect to temperature). In order to describe their long-term evolution of material, a double approach was developed, combining the description of carbonation and drying for temperatures up to 80 C to complement available data at ambient temperature. The present work focuses on the durability study of four hardened cement pastes; two of them are derived from the reference formulations selected by Andra (CEM I and CEM V) and a low-pH mix. The first experimental campaign focuses on moisture transfer. The effect of temperature on drying is investigated through water vapour desorption experiments. The first desorption isotherms of four hardened cement pastes was characterized at 20, 50 and 80 C. The results show a significant influence of the temperature. For a given relative humidity (RH) the water content equilibrium is always reduced temperature is increased and the starting point of capillary condensation is shifted towards higher RHs. The experimental campaign is complemented through modelling activities. The impact of temperature on the first desorption isotherms is effectively described using the Clausius-Clapeyron equation (characterization of the isosteric heat of adsorption). The intrinsic permeability to water is evaluated through inverse analysis by reprocessing the experimental weight loss of initially saturated samples submitted to constant environmental conditions. The intrinsic permeability appears to increase with temperature in relation to the observed microstructure

  12. Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2010-02-01

    Full Text Available We examine the role of local environmental and spatial factors in explaining variation in the composition of cladoceran assemblages from surface sediments within a set of 50 lakes spanning a broad southwest to northeast transect across the central Canadian Arctic treeline region from Yellowknife (Northwest Territories to the northern boundary of the Thelon Game Sanctuary (Nunavut Territory. Within each lake, the cladoceran fauna was identified based on the subfossil exoskeletal remains preserved in recently deposited lake sediments. Physical and chemical limnological data were measured in August of 1996 and 1998. Spatial data were generated based on latitude and longitude using Principal Coordinates of Neighbors Matrices analysis (PCNM. The relationships between cladocerans and the measured environmental and spatial variables were examined using both unconstrained (Principal Components Analysis, PCA and constrained (Redundancy Analysis, RDA ordination techniques. Variance partitioning, based on partial RDAs, was used to identify the relative importance of significant environmental and spatial explanatory variables. Three environmental variables were identified as significantly influencing cladoceran community structure: surface water temperature, dissolved organic carbon (DOC, and total phosphorus (TP. Five PCNM-generated spatial variables were also significant in explaining cladoceran distributions. Variance partitioning attributed 14% of the variance in the distribution of Cladocera to spatial factors, an additional 10% to spatially-structured environmental variables, and 8% to environmental factors that were not spatially-structured. Within the central Canadian Arctic treeline region, spatial and other environmental processes had an important influence on the distribution of cladoceran communities. The strong influence of spatial factors was related to the large ecoclimatic gradient across treeline. The distribution patterns of cladocerans

  13. Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia.

    Science.gov (United States)

    Fuller, Douglas O; Hardiono, Martin; Meijaard, Erik

    2011-09-01

    We evaluated three spatially explicit land use and cover change (LUCC) models to project deforestation from 2005-2020 in the carbon-rich peat swamp forests (PSF) of Central Kalimantan, Indonesia. Such models are increasingly used to evaluate the impact of deforestation on carbon fluxes between the biosphere and the atmosphere. We considered both business-as-usual (BAU) and a forest protection scenario to evaluate each model's accuracy, sensitivity, and total projected deforestation and landscape-level fragmentation patterns. The three models, Dinamica EGO (DE), GEOMOD and the Land Change Modeler (LCM), projected similar total deforestation amounts by 2020 with a mean of 1.01 million ha (Mha) and standard deviation of 0.17 Mha. The inclusion of a 0.54 Mha strict protected area in the LCM simulations reduced projected loss to 0.77 Mha over 15 years. Calibrated parameterizations of the models using nearly identical input drivers produced very different landscape properties, as measured by the number of forest patches, mean patch area, contagion, and Euclidean nearest neighbor determined using Fragstats software. The average BAU outputs of the models suggests that Central Kalimantan may lose slightly less than half (45.1%) of its 2005 PSF by 2020 if measures are not taken to reduce deforestation there. The relatively small reduction of 0.24 Mha in deforestation found in the 0.54 Mha protection scenario suggests that these models can identify potential leakage effects in which deforestation is forced to occur elsewhere in response to a policy intervention.

  14. The Global Influence of Cloud Optical Thickness on Terrestrial Carbon Uptake

    Science.gov (United States)

    Zhu, P.; Cheng, S. J.; Keppel-Aleks, G.; Butterfield, Z.; Steiner, A. L.

    2016-12-01

    Clouds play a critical role in regulating Earth's climate. One important way is by changing the type and intensity of solar radiation reaching the Earth's surface, which impacts plant photosynthesis. Specifically, the presence of clouds modifies photosynthesis rates by influencing the amount of diffuse radiation as well as the spectral distribution of solar radiation. Satellite-derived cloud optical thickness (COT) may provide the observational constraint necessary to assess the role of clouds on ecosystems and terrestrial carbon uptake across the globe. Previous studies using ground-based observations at individual sites suggest that below a COT of 7, there is a greater increase in light use efficiency than at higher COT values, providing evidence for higher carbon uptake rates than expected given the reduction in radiation by clouds. However, the strength of the COT-terrestrial carbon uptake correlation across the globe remains unknown. In this study, we investigate the influence of COT on terrestrial carbon uptake on a global scale, which may provide insights into cloud conditions favorable for plant photosynthesis and improve our estimates of the land carbon sink. Global satellite-derived MODIS data show that tropical and subtropical regions tend to have COT values around or below the threshold during growing seasons. We find weak correlations between COT and GPP with Fluxnet MTE global GPP data, which may be due to the uncertainty of upscaling GPP from individual site measurements. Analysis with solar-induced fluorescence (SIF) as a proxy for GPP is also evaluated. Overall, this work constructs a global picture of the role of COT on terrestrial carbon uptake, including its temporal and spatial variations.

  15. The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917.

    Science.gov (United States)

    Revelles, Olga; Millard, Pierre; Nougayrède, Jean-Philippe; Dobrindt, Ulrich; Oswald, Eric; Létisse, Fabien; Portais, Jean-Charles

    2013-01-01

    The role of the post-transcriptional carbon storage regulator (Csr) system in nutrient utilization and in the control of the central metabolism in E. coli reference commensal strain Nissle 1917 was investigated. Analysis of the growth capabilities of mutants altered for various components of the Csr system (csrA51, csrB, csrC and csrD mutations) showed that only the protein CsrA - the key component of the system - exerts a marked role in carbon nutrition. Attenuation of CsrA activity in the csrA51 mutant affects the growth efficiency on a broad range of physiologically relevant carbon sources, including compounds utilized by the Entner-Doudoroff (ED) pathway. Detailed investigations of the metabolomes and fluxomes of mutants and wild-type cells grown on carbon sources representative of glycolysis and of the ED pathway (glucose and gluconate, respectively), revealed significant re-adjusting of central carbon metabolism for both compounds in the csrA51 mutant. However, the metabolic re-adjusting observed on gluconate was strikingly different from that observed on glucose, indicating a nutrient-specific control of metabolism by the Csr system.

  16. Paleoenvironmental Evolution of Continental Carbonates in West-Central Brazil

    Directory of Open Access Journals (Sweden)

    EMILIANO C. OLIVEIRA

    Full Text Available ABSTRACT This paper presents a sedimentological and stratigraphical study of Quaternary (Middle to Late Pleistocene/Holocene continental carbonates outcrops inside Pantanal Basin and its surroundings, especially in Serra da Bodoquena, Pantanal do Miranda and Corumbá/Ladário plateau, in the state of Mato Grosso do Sul, as well as in Serra das Araras, in the state of Mato Grosso. The aim is to understand the depositional paleoenvironments and analyse climate and tectonic influences in their genesis and evolution. The results show that the deposition of these continental carbonates started in the Middle to Late Pleistocene and have continued, with some interruptions, until the present days. Sedimentary successions were identified in the different areas, without complete correlation. Two sedimentary successions separated by an erosional surface were described in Serra da Bodoquena and Serra das Araras. In Corumbá and Pantanal do Miranda, only one succession was described. These successions were deposited in elongated lakes parallel to fault planes; small lakes, related plains and plateaus; springs related to cliffs produced by faulting; rivers conditioned by topographic variation. The climatic interpretation, without proper temporal resolution, obtained by the stable-isotope composition and stratigraphic interpretation, indicates alternation of dry and wet periods. The Neoproterozoic faults with their neotectonics and the subsidence of the Pantanal Basin, are the major control for carbonated water flow and development of depositional areas, gradually turning plateaus into slight tilted areas, allowing the evolution of depositional systems from lakes to rivers.

  17. Carbon isotope geothermometry of graphite-bearing marbles from Central Dronning Maud Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Muehle, K.

    1988-01-01

    In order to estimate the peak metamorphic temperatures in high-grade regional metamorphic marbles from central Dronning Maud Land (East Antarctica), 13 C/ 12 C isotope ratios have been measured for coexisting carbonate and graphite pairs. The δ 13 C values of carbonates (calcite ± dolomite) and graphite vary from -0.1 to +4.6 permill (PDB) and from -3.3 to +1.7 permill, respectively. The isotopic fractionation between carbonate and graphite ranges from 2.9 to 4.0 permill and is similar to the Δ 13 C (carb-gr) values observed in other East Antarctic and non-Antarctic granulite-facies marbles. The metamorphic temperatures calculated using the equation of VALLEY and O'NEIL (1981) for calcite-graphite pairs are predominantly in the range 700 0 - 800 0 C (x n=5 ± s = 730 0 ± 30 0 C) and agree well with metamorphic temperatures derived from mineral chemical studies in this East Antarctic region. (author)

  18. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    International Nuclear Information System (INIS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-01-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  19. The influence of non-CO2 forcings on cumulative carbon emissions budgets

    Science.gov (United States)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Arora, Vivek K.; Lee, Warren G.; Zickfeld, Kirsten

    2018-03-01

    Carbon budgets provide a useful tool for policymakers to help meet the global climate targets, as they specify total allowable carbon emissions consistent with limiting warming to a given temperature threshold. Non-CO2 forcings have a net warming effect in the Representative Concentration Pathways (RCP) scenarios, leading to reductions in remaining carbon budgets based on CO2 forcing alone. Carbon budgets consistent with limiting warming to below 2.0 °C, with and without accounting for the effects of non-CO2 forcings, were assessed in inconsistent ways by the Intergovernmental Panel on Climate Change (IPCC), making the effects of non-CO2 forcings hard to identify. Here we use a consistent approach to compare 1.5 °C and 2.0 °C carbon budgets with and without accounting for the effects of non-CO2 forcings, using CO2-only and RCP8.5 simulations. The median allowable carbon budgets for 1.5 °C and 2.0 °C warming are reduced by 257 PgC and 418 PgC, respectively, and the uncertainty ranges on the budgets are reduced by more than a factor of two when accounting for the net warming effects of non-CO2 forcings. While our overall results are consistent with IPCC, we use a more robust methodology, and explain the narrower uncertainty ranges of carbon budgets when non-CO2 forcings are included. We demonstrate that most of the reduction in carbon budgets is a result of the direct warming effect of the non-CO2 forcings, with a secondary contribution from the influence of the non-CO2 forcings on the carbon cycle. Such carbon budgets are expected to play an increasingly important role in climate change mitigation, thus understanding the influence of non-CO2 forcings on these budgets and their uncertainties is critical.

  20. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    Science.gov (United States)

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  2. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    Science.gov (United States)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  3. Influence of binder solvent on carbon-layer structure in electrical ...

    Indian Academy of Sciences (India)

    This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors.

  4. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha -amylase, whereas addition of small amounts of glucose resulted in alpha -amylase production. A possible induction by alpha -methyl-D-glucoside during growth on glucose was also investigated......, but this compound was not found to be a better inducer of alpha -amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.......The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol...

  5. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    Science.gov (United States)

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  6. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    Science.gov (United States)

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should

  7. Pricing, Carbon Emission Reduction, Low-Carbon Promotion and Returning Decision in a Closed-Loop Supply Chain under Vertical and Horizontal Cooperation

    Science.gov (United States)

    Li, Hui; Wang, Chuanxu; Shang, Meng; Ou, Wei

    2017-01-01

    In this paper, we examine the influences of vertical and horizontal cooperation models on the optimal decisions and performance of a low-carbon closed-loop supply chain (CLSC) with a manufacturer and two retailers, and study optimal operation in the competitive pricing, competitive the low-carbon promotion, the carbon emission reduction, the used-products collection and the profits. We consider the completely decentralized model, M-R vertical cooperation model, R-R horizontal cooperation model, M-R-R vertical and horizontal cooperation model and completely centralized model, and also identify the optimal decision results and profits. It can be observed from a systematic comparison and numerical analysis that the completely centralized model is best in all optimal decision results among all models. In semi-cooperation, the M-R vertical cooperation model is positive, the R-R horizontal cooperation model is passive, and the positivity of the M-R-R vertical and horizontal cooperation model decreases with competitive intensity increasing in the used-products returning, carbon emissions reduction level, low-carbon promotion effort and the profits of the manufacturer and the entire supply chain. PMID:29104268

  8. Pricing, Carbon Emission Reduction, Low-Carbon Promotion and Returning Decision in a Closed-Loop Supply Chain under Vertical and Horizontal Cooperation

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-11-01

    Full Text Available In this paper, we examine the influences of vertical and horizontal cooperation models on the optimal decisions and performance of a low-carbon closed-loop supply chain (CLSC with a manufacturer and two retailers, and study optimal operation in the competitive pricing, competitive the low-carbon promotion, the carbon emission reduction, the used-products collection and the profits. We consider the completely decentralized model, M-R vertical cooperation model, R-R horizontal cooperation model, M-R-R vertical and horizontal cooperation model and completely centralized model, and also identify the optimal decision results and profits. It can be observed from a systematic comparison and numerical analysis that the completely centralized model is best in all optimal decision results among all models. In semi-cooperation, the M-R vertical cooperation model is positive, the R-R horizontal cooperation model is passive, and the positivity of the M-R-R vertical and horizontal cooperation model decreases with competitive intensity increasing in the used-products returning, carbon emissions reduction level, low-carbon promotion effort and the profits of the manufacturer and the entire supply chain.

  9. Biological productivity, terrigenous influence and noncrustal elements supply to the Central Indian Ocean Basin: Paleoceanography during the past approx. 1 Ma

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Masuzawa, T.; Borole, D.V.; Parthiban, G.; Jauhari, P.; Yamamoto, M.

    A 2 m-long sediment core from the siliceous ooze domain in the Central Indian Ocean Basin (CIOB; 13 degrees 03'S: 74 degrees 44'E; water depth 5099 m) is studied for calcium carbonate, total organic carbon, total nitrogen, biogenic opal, major...

  10. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Xia, M.; Abrahamsen, A.B.; Bahl, C.R.H.; Veluri, B.; Søegaard, A.I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10 4 ppm and 4·10 4 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  11. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, M., E-mail: maxi@dtu.dk [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Abrahamsen, A.B. [Department of Wind Energy, DTU Risø campus, Technical University of Denmark, Roskilde (Denmark); Bahl, C.R.H. [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Veluri, B.; Søegaard, A.I. [Grundfos A/S, DK-8850 Bjerringbro (Denmark); Bøjsøe, P. [Holm Magnetics APS, 2800 Kongens Lyngby (Denmark); Millot, S. [FJ Industries A/S, 5863 Ferritslev (Denmark)

    2017-01-15

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10{sup 4} ppm and 4·10{sup 4} ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  12. Sr isotope stratigraphy of some Rupelian carbonated laminites from the Limagne Basin: influence of seawater in the rift of the French Massif central?

    International Nuclear Information System (INIS)

    Briot, D.; Poidevin, J.L.

    1998-01-01

    87 Sr/ 86 Sr ratios of biogenic and abiotic calcites Upper Rupelian sediments in the Limagne rift (French Massif Central) define a smooth and regular negative correlation with time interrupted by repetitive sharp peaks; the progressive drop in isotopic ratio can be explained by the geological evolution of the river basin through time. Negative peaks are explained by synsedimentary volcanism, repeated marine incursions, or leaching of ancient evaporites. Comparison with available paleontologic data does not favour the volcanic explanation, but rather the influence of Rupelian marine waters. (authors)

  13. The influence of carbon source and calcium on the production of ...

    African Journals Online (AJOL)

    use

    2011-12-10

    Dec 10, 2011 ... The influence of carbon source and calcium on the production of ... Furthermore, since the middle lamella contains high levels of calcium, it was thought that it may play an important ..... Processing of the pectate lyase PelI by ...

  14. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia

    Science.gov (United States)

    Hapsari, Kartika Anggi; Biagioni, Siria; Jennerjahn, Tim C.; Reimer, Peter Meyer; Saad, Asmadi; Achnopha, Yudhi; Sabiham, Supiandi; Behling, Hermann

    2017-08-01

    Tropical peatlands are important for the global carbon cycle as they store 18% of the total global peat carbon. As they are vulnerable to changes in temperature and precipitation, a rapidly changing environment endangers peatlands and their carbon storage potential. Understanding the mechanisms of peatland carbon accumulation from studying past developments may, therefore, help to assess the future role of tropical peatlands. Using a multi-proxy palaeoecological approach, a peat core taken from the Sungai Buluh peatland in Central Sumatra has been analyzed for its pollen and spore, macro charcoal and biogeochemical composition. The result suggests that peat and C accumulation rates were driven mainly by sea level change, river water level, climatic variability and anthropogenic activities. It is also suggested that peat C accumulation in Sungai Buluh is correlated to the abundance of Freycinetia, Myrtaceae, Calophyllum, Stemonuraceae, Ficus and Euphorbiaceae. Sungai Buluh has reasonable potential for being a future global tropical peat C sinks. However, considering the impact of rapid global climate change in addition to land-use change following rapid economic growth in Indonesia, such potential may be lost. Taking advantage of available palaeoecological records and advances made in Quaternary studies, some considerations for management practice such as identification of priority taxa and conservation sites are suggested.

  15. U-Th age evidence from carbonate veins for episodic crustal deformation of Central Anatolian Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Uysal, I. Tonguç; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin

    2017-12-01

    Central Anatolia represents one of the most outstanding examples of intraplate deformation related to both continental collision and back-arc extension generating non-uniformly distributed stress fields. In this study, we provide direct field evidence of various stress directions and investigate carbonate-filled fracture systems in the Central Anatolian Volcanic Province using U/Th geochronology and isotope geochemistry for evaluating the episodes of latest volcanic activity under regional stress. Field data reveal two independent fracture systems in the region. Successive fracture development has been controlled by two different volcanic eruption centers (Hasandağ Composite Volcano and Acıgöl Caldera). Trace element, and stable (C and O) and radiogenic (Sr) isotope compositions of carbonate veins indicate different fluid migration pathways for two different fracture systems. The U/Th age data for carbonate veins of two independent fracture systems indicate that the crustal deformation intensified during 7 episodic periods in the last 150 ka. The NNE-trending first fracture system was formed as a result of strain cycles in a period from 149 ± 2.5, through 91 ± 1.5 to 83 ± 2.5 ka BP. Subsequent deformation events represented by the ENE-trending second fracture zone have been triggered during the period of 53 ± 3.5, 44 ± 0.6 and 34 ± 1 ka BP before the first fracture zone resumed the activity at about 4.7 ± 0.15 ka BP. Although further studies are needed to evaluate statistical significance of age correlations, the periods of carbonate precipitation inferred from U-Th age distributions in this study are comparable with the previous dating results of surrounding volcanic eruption events.

  16. The influence of travel decisions on the carbon dioxide emissions of transport

    International Nuclear Information System (INIS)

    Norava, M.

    2001-01-01

    During the recent years the reduction of the energy consumption and carbon dioxide emissions of transport have been essential objectives in transport policy. At the moment, technical means to reduce carbon dioxide emissions have been emphasized and the research has focused on the technical innovations. However, there are also substantial possibilities to reduce energy consumption by influencing the individual travel decisions and behaviour. This study is focused on the individual travel behaviour and how it can be influenced. Travel behaviour is studied by dividing the individual travel decisions into separate categories and assessing the possibilities of influence within each category. The study concentrates on daily travel choices, because the daily mobility is the most important factor in the total emissions. The travel decisions have divided into trip production, destination choice, mode choice, choice of the starting point of the trip, route choice and the choice of the driving style and car use habits. The trip production and mode choice are the most significant decisions, when energy consumption and carbon dioxide emissions are concerned. For example, the amount of shopping trip and leisure trip mileage can be reduced by approximately 10 % by extending the trip chains. This reduction would decrease the carbon dioxide emissions of passenger car traffic by 6 %. Extending of the trip chains demands to some extent more detailed planning of the daily mobility, but does not limit the travel need. The attitudes towards mobility, car use habits and the travel behaviour were studied in an influence assessment study of 42 respondents from Helsinki Region and Tampere Region. The influence assessment study consisted of attitude survey and travel diary survey. After the first inquiries the respondents received information about motoring, car use habits, public transport, environment, walking and cycling. In addition, the respondents were offered a possibility to

  17. INFLUENCE RESEARCH OF COLD PLASTIC DEFORMATION ON DIFFUSION SATURATION PROCESS BY CARBON AND BORON OF THE LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    N. Yu. Filonenko

    2010-06-01

    Full Text Available This work is devoted to the study of influence of cold prestrain with degree of deformation within the range 0…40 % on diffusion saturation with boron and carbon for low-carbon and boron steels. It is determined that the plastic prestrain with degree of deformation 20 % at temperature 750 °С for the low-carbon steel promote increasing of boron-cementation layer thickness by 25 % and microhardness of perlite layer by 20 %.

  18. Influence of tungsten on the carbon nanotubes growth by CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Mariano [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina); LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina)], E-mail: mescobar@qi.fcen.uba.ar; Rubiolo, Gerardo H. [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Unidad de Actividad Materiales, CNEA, Av. Gral. Paz 1499, San Martin (1650), Bs As (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche, (8400) S.C. de Bariloche, Rio Negro (Argentina); Goyanes, Silvia [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Candal, Roberto [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina)

    2009-06-24

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO{sub 2} up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  19. Influence of tungsten on the carbon nanotubes growth by CVD process

    International Nuclear Information System (INIS)

    Escobar, Mariano; Rubiolo, Gerardo H.; Moreno, M. Sergio; Goyanes, Silvia; Candal, Roberto

    2009-01-01

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO 2 up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  20. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    Directory of Open Access Journals (Sweden)

    Yingying Wei

    2015-10-01

    Full Text Available The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond tool, CVD (chemical vapor deposition diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE signals.

  1. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets.

    Science.gov (United States)

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-10-02

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.

  2. Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia

    Science.gov (United States)

    Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.

    2016-12-01

    In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts

  3. Carbon Concentration and Carbon-to-Nitrogen Ratio Influence Submerged-Culture Conidiation by the Potential Bioherbicide Colletotrichum truncatum NRRL 13737

    Science.gov (United States)

    Jackson, Mark A.; Bothast, Rodney J.

    1990-01-01

    We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348

  4. Social and cultural influences on management for carbon sequestration on US family forestlands: a literature synthesis

    Science.gov (United States)

    A. Paige Fischer; Susan. Charnley

    2010-01-01

    Nonindustrial private—or "family"—forests hold great potential for sequestering carbon and have received much attention in discussions about forestry-based climate change mitigation. However, little is known about social and cultural influences on owners' willingness to manage for carbon and respond to policies designed to encourage carbon-oriented...

  5. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    Science.gov (United States)

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  6. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  7. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  8. Carbon Speciation and Anthropogenic Influences in Haitian Rivers and Inland Waters

    Science.gov (United States)

    Markowitz, M.; Paine, J.; McGillis, W. R.; Hsueh, D. Y.

    2014-12-01

    Climate, geography, and land use patterns all contribute to the social, economic, and environmental challenges in Haiti. Water quality remains a predominant issue, and the health of freshwater systems has been linked to the cycling and transformation of carbon. A speciation dominated by carbonates and bicarbonates is conducive to higher alkalinity waters, which is part of an environmental signature in which cholera and other bacteria thrive. Numerous human activities such as deforestation, biomass burning, and agricultural practices have radically changed the abundances of carbon on land and rivers in Haiti. In Haitian small mountainous rivers, carbon speciation is also influenced by the weathering of limestone and other carbonate rocks. Additionally, rain events and natural disturbances such as earthquakes have shown to drastically increase the amount of carbon in rivers and coastal waters. Since 2010, a network of both satellite and autonomous hydrometeorological stations has been deployed to monitor the climate in southwestern Haiti. Additionally, various hydrological parameters from river, reservoir, and coastal sites have been measured during field visits. Research will be continued into the wet season, providing temporal analysis needed for quantifying the abundances and transformations of carbon. Together, data from weather stations and field sites can be contextualized with local land use patterns and other human activities to offer unique insights on the carbon system. Findings may offer new perspectives on the relationships between hydrologic cycles, human health, and environmental sustainability in Haiti.

  9. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon.

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-12

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a -1 ) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  10. Identification of the driving factors' influences on regional energy-related carbon emissions in China based on geographical detector method.

    Science.gov (United States)

    Zhang, Xinlin; Zhao, Yuan

    2018-04-01

    To investigate the influences of different factors on spatial heterogeneity of regional carbon emissions, we firstly studied the spatial-temporal dynamics of regional energy-related carbon emissions using global Moran's I and Getis-Ord Gi and applied geographical detector model to explain the spatial heterogeneity of regional carbon emissions. Some conclusions were drawn. Regional carbon emissions showed significant global and local spatial autocorrelation. The carbon emissions were greater in eastern and northern regions than in western and southern regions. Fixed assets investment and economic output had been the main contributing factors over the study period, and economic output had been decreasing its influence. Industrial structure's influence showed a decrease trend and became smaller in 2015. The results of the interaction detections in 2015 can be divided into two types: enhance and nonlinear, and enhance and bivariate. The interactive influences between technological level and fixed assets investment, economic output and technological level, population size and technological level, and economic output and economic development were greater than others. Some policy recommendations were proposed.

  11. Influence of heat-treatment on lithium ion anode properties of mesoporous carbons with nanosheet-like walls

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong; Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-15

    Highlights: ► Mesoporous carbons possess unique nanosheet-like pore walls which can be changed by heat treatment. ► Lithium ion anode properties of mesoporous carbons could be influenced by the nanosheet-like walls. ► Mesoporous carbons with nanosheet-like walls exhibit enhanced electrochemical properties LIBs. -- Abstract: Mesoporous carbons (MCs) with nanosheet-like walls have been prepared as electrodes for lithium-ion batteries by a simple one-step infiltrating method under the action of capillary flow. The influence of heat treatment temperature on the surface topography, pore/phase structure and anode performances of as-prepared materials has been investigated. The results reveal that melted liquid-crystal polycyclic aromatic hydrocarbons could be anchored on liquid/silica interfaces by molecule engineering. After carbonization, the nanosheets are formed as the pore walls of MCs and are perpendicular to the long axis of pores. The anode properties demonstrate that C-1200 displays higher reversible capacitance than those treated in higher temperature. The rate performances of C-1200 and C-1800 are similar and more excellent than that of C-2400. These improved lithium ion anode properties could be attributed to the nanosheet-like walls of MCs which can be influenced by the heat treatment temperature.

  12. Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area

    Science.gov (United States)

    Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin

    2013-04-01

    Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C

  13. [Carbon density distribution characteristics and influencing factors in aerially seeded Pinus massoniana plantations].

    Science.gov (United States)

    Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang

    2017-12-01

    The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.

  14. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  16. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    OpenAIRE

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-01-01

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture to...

  17. The Partitioning of Carbon Biomass among the Pico- and Nano-plankton Community in the South Brazilian Bight during a Strong Summer Intrusion of South Atlantic Central Water

    Directory of Open Access Journals (Sweden)

    Natascha M. Bergo

    2017-07-01

    Full Text Available To investigate how pico- and nano-plankton respond to oceanographic conditions in the Southwestern Atlantic Ocean, we assessed the influence of a summer intrusion of the South Atlantic Central Water (SACW on the spatial and vertical dynamics of planktonic abundance and carbon biomass across environmental gradients. Seawater samples were collected from six depths within the euphotic zone at nine oceanographic stations in a transect on the Brazilian continental shelf in January 2013. The abundance of pico- and nano-plankton populations was determined by flow cytometry, and carbon biomass was calculated based on conversion factors from the literature. The autotrophic Synechococcus spp., picoeukaryotes, and nanoeukaryotes were more abundant in the surface layers of the innermost stations influenced by Coastal Water (maximum of 1.19 × 105, 1.5 × 104, and 8.61 × 103 cell·mL−1, respectively, whereas Prochlorococcus spp. dominated (max. of 6.57 × 104 cell·mL−1 at the outermost stations influenced by Tropical Water and in the uplifting layers of the SACW around a depth of 100 m. Numerically, heterotrophic bacterial populations were predominant, with maximum concentrations (2.11 × 106 cell·mL−1 recorded in the surface layers of the inner and mid shelves in Coastal Water and the upper limits of the SACW. Nutrient-rich (high silicate and phosphate and relatively less saline waters enhanced the picoeukaryotic biomass, while Synechococcus and heterotrophic bacteria were linked to higher temperatures, lower salinities, and higher inputs of ammonia and dissolved organic carbon. The relative importance of each group to carbon biomass partitioning under upwelling conditions is led by heterotrophic bacteria, followed by picoeukaryotes, Synechococcus and Prochlorococcus, and when the SACW is not as influential, the relative contribution of each phytoplanktonic group is more evenly distributed. In addition to habitat preferences, the physical structure

  18. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    Directory of Open Access Journals (Sweden)

    Grzegorz Raniszewski

    2017-02-01

    Full Text Available One of the most common methods of carbon nanotubes (CNTs synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs. It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  19. Operational factors influence on service life characteristics of structural carbon fiber-reinforced plastic

    OpenAIRE

    Борозенець, Григорій; Павлов, Віктор; Семак, Інна

    2013-01-01

    The nature of strength changing of aircraft structural carbon fiber-reinforced plastic under influence of water saturation after static preloading and mode changing of structural elements forming process pressure is considered.

  20. Climate Change in Central and West Asia. Routes to a More Secure, Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    ADB's Central and West Asian countries are Afghanistan, Armenia, Azerbaijan, Georgia, Kazakhstan, the Kyrgyz Republic, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan. Geoclimatic and environmental factors make this region highly vulnerable to the risks and hazards of climate change. For example, accelerated glacial melt has serious implications for agriculture, water supply, and energy generation - problems exacerbated by overexploitation of natural resources. Countries may find it difficult to shift to low-carbon growth, since many have abundant fossil fuel and tend to use energy inefficiently. ADB is responding to these climate hazards and low-carbon pathways with a comprehensive strategy that strengthens policies, governance, and capacity support; expands the use of clean and renewable energy; encourages sustainable transport and urban development; promotes development that will be more resilient to climate change, especially in water-dependent sectors; and manages land use and forests for carbon sequestration. ADB's support is helping its developing member countries face the challenges of climate change and, with partners, is providing innovative solutions, while continuing to work to reduce poverty.

  1. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  2. Carbon dioxide and methane emission dynamics in central London (UK)

    Science.gov (United States)

    Helfter, Carole; Nemitz, Eiko; Barlow, Janet F.; Wood, Curtis R.

    2013-04-01

    London, with a population of 8.2 million, is the largest city in Europe. It is heavily built-up (typically 8% vegetation cover within the central boroughs) and boasts some of the busiest arteries in Europe despite efforts to reduce traffic in the city centre with the introduction of a congestion charging scheme in 2007. We report on two substantial pollution monitoring efforts in the heart of London between October 2006 and present. Fluxes of carbon dioxide (CO2) and water (H2O) were measured continuously by eddy-covariance in central London from October 2006 until May 2008 from a 190 m telecommunication tower (BT tower; 51° 31' 17.4'' N 0° 8' 20.04'' W). The eddy-covariance system consisted of a Gill R3-50 ultrasonic anemometer operated at 20 Hz and a LI-COR 6262 infrared gas analyser. Air was sampled 0.3 m below the sensor head of the ultrasonic anemometer - which was itself mounted on a 3 m mast to the top of a 15 m lattice tower situated on the roof of the tower (instrument head at 190 m above street level) - and pulled down 45 m of 12.7 mm OD Teflon tubing. In addition, meteorological variables (temperature, relative humidity, pressure, precipitation, wind speed and direction) were also measured with a multi-sensor (Weather Transmitter WXT510, Vaisala). Eddy-covariance measurements at the BT tower location were reinstated in July 2011 and include methane (CH4), CO2 and H2O concentrations measured by a Picarro fast methane analyser (G2301-f). CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity in two large city centre green spaces (Hyde Park and Regent's Park) explained the seasonal variability. Annual estimates of net exchange of CO2 obtained by eddy-covariance agreed well with up-scaled data from the UK

  3. Influence of carbonate ions on the micellization behavior in triblock copolymer solution

    CERN Document Server

    Thiyagarajan, P

    2002-01-01

    SANS was used to investigate the micellization behavior of triblock copolymers (F68, F88 and F108) as functions of carbonate ion concentration and temperature. SANS data were fitted to determine the sizes of the core and corona, inter-micelle distance, association number and the volume fraction of the micelles. As the polymer molecular weight increases, the core radius and the radius of gyration (R sub g) of the corona and the inter-micelle distance increase. The carbonate ion concentration and polymer molecular weight have dramatic influence on the temperatures at which the micellization and spherical-to-cylindrical micelle transformation occur. The mechanism by which this phenomenon occurs in these solutions is through a gradual dehydration of polymers with increasing carbonate concentration and/or temperature. (orig.)

  4. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  5. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    International Nuclear Information System (INIS)

    Teng, Wai Keng; Ngoh, Gek Cheng; Yusoff, Rozita; Aroua, Mohamed Kheireddine

    2014-01-01

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  6. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    Science.gov (United States)

    Xia, M.; Abrahamsen, A. B.; Bahl, C. R. H.; Veluri, B.; Søegaard, A. I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 104 ppm and 4·104 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small.

  7. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  8. Study on the influence of carbon monoxide to the surface oxide layer of uranium metal

    International Nuclear Information System (INIS)

    Wang Xiaolin; Duan Rongliang; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1997-01-01

    The influence of carbon monoxide to the surface oxide layer of uranium metal has been studied by X-ray photoelectron spectroscopy (XPS) and gas chromatography (GC). Carbon monoxide adsorption on the oxide layer resulted in U4f peak shifting to the lower binding energy. The content of oxygen in the oxide is decreased and the atomic ratio (O/U) is decreased by 7.2%. The amount of carbon dioxide in the atmosphere after the surface reaction is increased by 11.0%. The investigation indicates that the surface layer can prevent the further oxidation uranium metal in the atmosphere of carbon monoxide

  9. Influence of carbonization conditions on the development of different types of optical anisotropy in cokes

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, J W; Reynolds, M J; Shaw, F H

    1975-01-01

    The vitrain components of a series of coal samples were carbonized at temperatures from 400 to 1000/sup 0/C at different rates of heating ranging from 0.5 to 10/sup 0/K/min and utilizing soaking times up to 24 hr. Polished specimens prepared from the carbonized products were examined microscopically under polarized light in order to determine the proportions of the various types of optical anisotropy present in them. The variations in heating rate and soaking time were found to exert little significant influence on the anisotropy developed in high-temperature cokes. But in semicokes produced at carbonization temperatures within the plastic range the influence of the carbonization conditions was much more pronounced with the effects being interrelated. Decreasing the heating rate or increasing the soaking time led to the optical anisotropy generally becoming detectable at lower carbonization temperatures. Fast heating rates caused an increase in the rate of transformation of the fine-grain mosaic anisotropy into coarser-grained types of anisotropy and increased soaking time led to enhanced anisotropic development in the semicokes produced at temperatures within the plastic range. The type of anisotropy developed in cokes is closely related to the release of volatile matter and the plasticity developed during carbonization and the conclusion is drawn that the balance between these factors controls the extent of the anisotropic development.

  10. The influence of conductive additives and inter-particle voids in carbon EDLC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfo, A.G.; Wilson, G.J.; Huynh, T.D.; Hollenkamp, A.F. [CSIRO - Energy Technology, Bayview Avenue, Clayton, Vic 3168 (Australia)

    2010-10-15

    Through the interpretation of porosity and intrusion data, and correlation to the electrochemical response, this study has confirmed that are not only carbon blacks (CBs) very effective in improving the electrical connectivity of a carbon electrode coating, but they also significantly modify the porosity of the electrode coating and thereby also influence ionic diffusion. CBs are more effective conductive fillers than graphites in EDLC electrodes. The highly branched structure of CBs allows multiple electrical contact points and results in a lower electrode electronic resistance. CBs can decrease inter-particle porosity (both volume and size) and introduce additional porosity that is characteristic of the type of carbon employed. It is observed that electrode coatings prepared from a carbon slurry have a highly macroporous structure and that electrolyte accessibility to individual activated carbon particles is unlikely to be the limiting factor to accessing capacitance. Electrochemical testing has confirmed the strong relationship between bulk electrode resistance and the accessibility of capacitance at different rates. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption

    International Nuclear Information System (INIS)

    Garcia M, A.

    2001-01-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  12. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.

  13. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  14. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus.

    Science.gov (United States)

    Cheng, Zhi-Xue; Yang, Man-Jun; Peng, Bo; Peng, Xuan-Xian; Lin, Xiang-Min; Li, Hui

    2018-06-15

    The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. It is especially required to understand for the mechanism of antibiotic resistance to control antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus with the most advanced iTRAQ quantitative proteomics technology. A total of 160 proteins of differential abundance were identified, where 70 were decreased and 90 were increased. Further analysis demonstrated that crucial metabolic pathways like TCA cycle were significantly down-regulated. qRT-PCR analysis demonstrated the decreased gene expression of glycolysis/gluconeogenesis, the TCA cycle, and fatty acid biosynthesis. Moreover, Na(+)-NQR complex gene expression, membrane potential and the adenylate energy charge ratio were decreased, indicating that the decreased central carbon metabolism is associated to the acquisition of levofloxacin resistance. Therefore, the reduced central carbon and energy metabolisms form a characteristic feature as fitness costs of V. alginolyticus in resistance to levofloxacin. The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. Understanding for the antibiotic resistance mechanisms is especially required to control these antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus using the most advanced iTRAQ quantitative proteomics technology. A total of 160 differential abundance of proteins were identified with 70 decreases and 90 increases by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the TCA cycle sharply fluctuated. This is the first report that the reduced central carbon and energy metabolisms form a characteristic feature

  15. Analysis of influence mechanism of energy-related carbon emissions in Guangdong: evidence from regional China based on the input-output and structural decomposition analysis.

    Science.gov (United States)

    Wang, Changjian; Wang, Fei; Zhang, Xinlin; Deng, Haijun

    2017-11-01

    It is important to analyze the influence mechanism of energy-related carbon emissions from a regional perspective to effectively achieve reductions in energy consumption and carbon emissions in China. Based on the "energy-economy-carbon emissions" hybrid input-output analysis framework, this study conducted structural decomposition analysis (SDA) on carbon emissions influencing factors in Guangdong Province. Systems-based examination of direct and indirect drivers for regional emission is presented. (1) Direct effects analysis of influencing factors indicated that the main driving factors of increasing carbon emissions were economic and population growth. Carbon emission intensity was the main contributing factor restraining carbon emissions growth. (2) Indirect effects analysis of influencing factors showed that international and interprovincial trades significantly affected the total carbon emissions. (3) Analysis of the effects of different final demands on the carbon emissions of industrial sector indicated that the increase in carbon emission arising from international and interprovincial trades is mainly concentrated in energy- and carbon-intensive industries. (4) Guangdong had to compromise a certain amount of carbon emissions during the development of its export-oriented economy because of industry transfer arising from the economic globalization, thereby pointing to the existence of the "carbon leakage" problem. At the same time, interprovincial export and import resulted in Guangdong transferring a part of its carbon emissions to other provinces, thereby leading to the occurrence of "carbon transfer."

  16. A Working Framework for Quantifying Carbon Sequestration in Disturbed Land Mosaics

    Science.gov (United States)

    Jiquan Chen; Kimberley Brosofske; Asko Noormets; Thomas R. Crow; Mary K. Bresee; James M. Le Moine; Eug& #233; nie Euskirchen; Steve V. Mather; Daolan Zheng; Daolan Zheng

    2003-01-01

    We propose a working framework for future studies of net carbon exchange (NCE) in disturbed landscapes at broad spatial scales based on the central idea that landscape-level NCE is determined by the land mosaic, including its age structure. Within this framework, we argue that the area-of-edge-influence (AEI), which is prevalent in many disturbed, fragmented landscapes...

  17. Topographic variability influences the carbon sequestration potential of arable soils

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Elsgaard, Lars; Thomsen, Ingrid Kaag

    2012-01-01

    There is presently limited knowledge on the influence of field spatial variability on the carbon (C) sink-source relationships in arable landscapes. This is accompanied by the fact that our understanding of soil profile C dynamics is also limited. This study aimed at investigating how spatial...... results indicated that variability across arable landscapes makes footslope soils both a larger sink of buried soil C and a bigger potential CO2 source than upslope soils....

  18. Influence of the matrix texture on the fracture behavior of 2D carbon/carbon composites

    International Nuclear Information System (INIS)

    Xu Guozhong; Li Hejun; Bai Ruicheng; Wei Jian; Zha, Yanqiang

    2008-01-01

    The influence of matrix texture on the fracture behavior of 2D carbon/carbon composites infiltrated by isobaric, isothermal CVI technique at ambient pressure was investigated. The flexural strength of the as-obtained samples has been studied using a three-point bending test. After flexural test, the texture of pyrocarbon on the fracture surface and the morphology of the fracture surface were observed by polarized light microscopy and scanning electron microscopy, respectively. The results show that the sample with pure medium-textured pyrocarbon exhibits typical brittle fracture behavior due to no sliding between sub-layers in the medium-textured pyrocarbon layer. However, both the sample with the three-layer structure of medium-textured pyrocarbon, high-textured pyrocarbon and low-textured pyrocarbon, and the sample with the double-layer structure of medium-textured pyrocarbon and high-textured pyrocarbon exhibit remarkable pseudo-plastic fracture behavior, which is caused by the sliding occurred between different textured pyrocarbon layers and between sub-layers in high-textured pyrocarbon layer

  19. Carbon Finance – A Platform for Development of Sustainable Business in Kuwait

    Directory of Open Access Journals (Sweden)

    Ahmed Nahar AL-HUSSAINI

    2016-09-01

    Full Text Available Since 1880, the temperature of global has increased by 0.85 degree Celsius. Due to the increase in temperature, the impact of climate change is constantly increasing, which is known as global warming. The increase in temperature is due to emission of greenhouse gases. Carbon dioxide is a major greenhouse gas, which is capable of causing serious hazardous influence to the environment. Carbon emission reduction and low-carbon economy development have become global targets and national policy in both developing and developed countries. Carbon finance is a tool for reducing greenhouse gas (GHG emissions using a process called capture and storage (CCS. Using this process, the carbon dioxide is captured and stored for further usage as a renewable resource. Carbon finance has a high impact on the growth of sustainable business development. This research analyzes the various possibilities of developing sustainable business through carbon trading in Kuwait and the strategic options offered by both government, as well as private sectors for carbon trading in Kuwait. The central focus of research is to discover the role of carbon finance in developing sustainable business and environmental quality. Since no previous research is conducted on the specific role of carbon finance in developing a sustainable business preferably in Kuwait, the influence of carbon financing in sustainable business development and environmental quality are analyzed in this research.

  20. Phylogeny, plant species, and plant diversity influence carbon use phenotypes among Fusarium populations in the rhizosphere microbiome

    Science.gov (United States)

    Carbon use by microorganisms in the rhizosphere microbiome has been linked to plant pathogen suppression and increased mineralization of soil nutrients for plant uptake, however factors that influence carbon use traits are poorly understood for most microbial groups. This work characterized the rela...

  1. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-09-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  2. Factors of influencing dissolved organic carbon stabilization in two cambic forest soils with contrasting soil-forming processes

    Science.gov (United States)

    Kawasaki, M.; Ohte, N.; Asano, Y.; Uchida, T.; Kabeya, N.; Kim, S.

    2004-05-01

    Stabilization of Dissolved Organic Carbon (DOC) in forest soil is a major process of soil organic carbon formation. However, the factors influencing DOC stabilization are poorly understood. To clarify the factors that affect the stabilization of DOC in forest soil mantle, we measured DOC concentrations and soil properties which were DOC adsorption efficiency at two adjacent cambic forest soils with contrasting forest management histories in Tanakami Mountains, central Japan. Matsuzawa was devastated about 1,200 years ago by excessive timber use and remained denuded for a long period. Hillside restoration and reforestation work have been carried out over the last 100 years and soil loss has been reduced. Fudoji is covered with undisturbed forest (mixed stands of cypress and oaks) with developed forest soils (more than 2,600 years old). There was no apparent seasonal variation in DOC concentration in the soil solution in either catchment. In addition, there were no significant relationships between the DOC concentration, soil temperature, and new water ratio. These results indicate that temporal variation in biological activity and rainfall-runoff process have little effect on temporal variation in DOC. The vertical variation in the DOC adsorption efficiency and DOC concentration differed between Matsuzawa and Fudoji, and the highest DOC removal rate occurred at the lowest DOC adsorption efficiency in the 0 to 10-cm soil layer at Fudoji. These results suggest that DOC removal rate is independent of DOC adsorption efficiency. Below 60 cm soil depth, DOC fluxes were constant and dissolved organic Al concentrations were little or zero in either catchment. These results suggest that abiotic precipitation of DOC is a major mechanism for stabilization of DOC. Therefore, DOC content which is able to form metal complexes may be the most important factor of influencing DOC stabilization in cambic forest soil.

  3. Soil carbon under perennial pastures; benchmarking the influence of pasture age and management

    Science.gov (United States)

    Orgill, Susan E.; Spoljaric, Nancy; Kelly, Georgina

    2015-07-01

    This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.

  4. INFLUENCE OF ELECTRIC SPARK ON HARDNESS OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-03-01

    Full Text Available Purpose. The purpose of work is an estimation of influence of an electric spark treatment on the state of mouldable superficial coverage of carbon steel. Methodology. The steel of fragment of railway wheel rim served as material for research with chemical composition 0.65% С, 0.67% Mn, 0.3% Si, 0.027% P, 0.028% S. Structural researches were conducted with the use of light microscopy and methods of quantitative metallography. The structural state of the probed steel corresponded to the state after hot plastic deformation. The analysis of hardness distribution in the micro volumes of cathode metal was carried out with the use of microhardness tester of type of PMT-3. An electric spark treatment of carbon steel surface was executed with the use of equipment type of EFI-25M. Findings. After electric spark treatment of specimen surface from carbon steel the forming of multi-layered coverage was observed. The analysis of microstructure found out the existence of high-quality distinctions in the internal structure of coverage metal, depending on the probed area. The results obtained in the process are confirmed by the well-known theses, that forming of superficial coverage according to technology of electric spark is determined by the terms of transfer and crystallization of metal. The gradient of structures on the coverage thickness largely depends on development of structural transformation processes similar to the thermal character influence. Originality. As a result of electric spark treatment on the condition of identical metal of anode and cathode, the first formed layer of coverage corresponds to the monophase state according to external signs. In the volume of coverage metal, the appearance of carbide phase particles is accompanied by the decrease of microhardness values. Practical value. Forming of multi-layered superficial coverage during electric spark treatment is accompanied by the origin of structure gradient on a thickness. The effect

  5. Influencing factors on δ(13C) of organic matter and carbonate in labke sediments on songnen plain

    International Nuclear Information System (INIS)

    Ou Wenjia; Zhang Chengjun

    2009-01-01

    Carbon isotopic compositions of organic matter and carbonate in surface sediments from lakes in Songnen Plain, northeast of China, were carried out.n-alkanes carbon distribution characteristics of the organic matter in lake sediments were also analyzed to identify the source of organic matter and sedimentary environment in these lakes. With the limnological characteristics of water and sediment, the influencing factors on isotopic composition in sedimentary organic matter and carbonate were discussed. The results showed that types of organic matter affected the carbon isotopic composition. 13 C of carbonate depleted by input of biologic organic matter and enriched by input of oil pollution. (authors)

  6. Influence of Beaver-Induced Complexity on Storage of Organic Carbon and Sediment in Colorado Mountain Streams

    Science.gov (United States)

    Laurel, D.; Wohl, E.

    2016-12-01

    Beaver meadows (complexes of multiple different aged beaver dams and ponds) influence the storage of water, sediment, and nutrients. Although beaver meadows compose only a small fraction of catchment area, they provide a potentially large role in retaining these fluxes in mountain watersheds. Multiple dams and ponds in beaver meadows increase overbank flows leading to an anastomosing stream channel planform, and deposition of fine sediment along with particulate organic carbon. An earlier study estimated a range of cumulative carbon stored in 27 beaver meadows east of the continental divide in Rocky Mountain National Park. Storage ranged from 735,800 to 2.8 x 106 Mg carbon, with the high value estimating storage if all the meadows had active beaver (historic conditions pre-European settlement) and the lower value estimating current conditions where many of the meadows are abandoned. We combined geomorphic surveys, soil depth probing by rebar, and soil cores analyzed for carbon content to investigate the influence of beaver activity, meadow size, and meadow placement within the drainage on catchment-scale fluxes of fine sediment and organic carbon. We found carbon storage in floodplain soils to be highly variable across both active and abandoned meadows; however, active beaver meadows store more carbon on average than abandoned meadows. In addition, active meadows with high levels of beaver activity (multiple colonies) stored greater volumes of fine sediment behind dams and in ponds. These results have implications for the restoration potential of abandoned beaver meadows in mountain environments to store greater volumes of sediment and more organic carbon if beaver are successfully reintroduced.

  7. Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

    Science.gov (United States)

    Torrado, David; Glaude, Pierre-Alexandre; Dufaud, Olivier

    2017-06-01

    Nanoparticles are widely used in industrial applications as additives to modify materials properties such as resistance, surface, rheology or UV-radiation. As a consequence, the quantification and characterization of nanoparticles have become almost compulsory, including the understanding of the risks associated to their use. Since a few years ago, several studies of dust explosion properties involving nano-sized powder have been published. During the production and industrial use of nanoparticles, simultaneous presence of gas / vapor / solvents and dispersed nanoparticles mixtures might be obtained, increasing the risk of a hybrid mixture explosion. The aim of this work is to study the severity of the explosion of carbon black nanoparticles/methane mixtures and understand the influence of adding nanopowders on the behavior of the gas explosions. These results are also useful to understand the influence of soot on the efficiency of the gas combustion. Two grades of carbon black nanoparticles (ranging from 20 to 300 nm average diameter) have been mixed with methane. Tests have been performed on these mixtures in a standard 20 L explosion sphere. Regarding the scale precision, the lowest concentration of carbon black nanoparticles was set at 0.5 g.m-3. Tests were also performed at 2.5 g.m-3, which is still far below 60 g.m-3, the minimum explosive concentration of such powders previously determined in our laboratory. The influence of carbon black particles on the severity of the explosions has been compared to that of pure gas. It appears that the use of carbon black nanoparticles increases the explosion overpressure for lean methane mixtures at low initial turbulences by c. 10%. Similar results were obtained for high initial turbulent systems. Therefore, it seems that carbon black nanoparticles have an impact on the severity of the explosion even for quiescent systems, as opposed to systems involving micro-sized powders that require dispersion at high turbulence

  8. Experimental study on influence of carbon dioxide on porous structure and mechanical properties of shale rock

    Directory of Open Access Journals (Sweden)

    Danuta Miedzińska

    2017-12-01

    Full Text Available Shale rocks are geological formations which can be unconventional gas reservoirs. During their interaction with carbon dioxide, which can be used as a fracturing fluid in shale gas recovery process, many phenomena take place that can influence rock structure and mechanical properties. The research on changes in rock structure under super critical carbon dioxide interaction and their influence of shale properties were presented in the paper. The structural tests were carried out with the use of microscopic techniques with different resolutions of visualization. The uniaxial compression test was applied as a mechanical properties’ assessment experiment. As a result of research, some dependence was observed. The bigger decrease was in porosity after infiltration in lower zooms, the bigger increase in porosity in high zooms and mechanical properties was noticed. Keywords: geomechanics, shale rock, carbon dioxide

  9. The influence of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putro, Triswantoro, E-mail: tris@physics.its.ac.id; Endarko, E-mail: endarko@physics.its.ac.id [Physics Department, Faculty of Mathematics and Natural Science Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia)

    2016-04-19

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  10. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    Science.gov (United States)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  11. The spatial and temporal shifts of biofuel production in the ecosystem-level carbon and water dynamics in the central plains of US

    Science.gov (United States)

    Lin, P.; Brunsell, N. A.

    2011-12-01

    The grasslands of the central plains US are the leading producer of wheat, sorghum and a significant amount of corn and soybean. By linking the food production and energy cycles, increasing demand for ethanol, biodiesel, and food, not only regional ecosystems are altered by the influences of Land-Use Land-Cover (LULC), but it is also a challenge for us to gain more knowledge about the carbon balance on fuel and food. In order to ascertain the impacts of changing LULC on carbon and water dynamics, more specifically, to examine the impacts of altering current land cover to increase biofuel production in this region, we used Normalized Difference Vegetation Index (NDVI) data and precipitation record for the period from 1982 to 2003 to show the temporal dynamics associated with different landcover types as a function of location along the mean precipitation gradient; and then employed Biome-BGC model to estimate key carbon fluxes and storage pools associated with each of the different landcover classes, as well as the fluxes resulting from landcover changes. Results show an increasing trend of NDVI is from the west to the east, which agreed with the spatial distribution of precipitation, however due to some of LULC types are grown by irrigation, precipitation is not the main effect for vegetation development in west portion. However, overall within the study area, indicated by the temporal distributed plots of wavelet analysis for NDVI and precipitation, vegetation dynamics is obviously affected by long-term regional climatic factors, i.e. precipitation, not by short-term or individual local factors instead. On the other hand, by inputting actual land cover and interpolated meteorological data, as well as important ecosystem variables that govern carbon dynamics, we can better define the impacts of biofuel productions; moreover, this ecosystem carbon cycling simulation by Bio-BGC model illustrates that the extent of those landcover responses depend not only on the rate

  12. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    K. G. Schulz

    2012-08-01

    Full Text Available The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2, bicarbonate (HCO3−, carbonate ion (CO32−, and protons (H+ on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 μm2. Changes in size seem to be mainly induced by varying [HCO3−] and [H+] although influence of [CO32−] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.

  13. 210Pb dating of sediments from the central and the northern Adriatic Sea: The deposition and preservation of sedimentary organic carbon

    International Nuclear Information System (INIS)

    Hamilton, T.; Fowler, S.; Miquel, J.C.; La Rosa, J.

    1996-04-01

    A central goal of the ELNA project is to assess the carbon assimilation capacity of the Northern Adriatic Sea. This requires fundamental quantitative information on budgets and sinks of organic carbon. Any change in carbon production in the water column should be reflected in the underlying sediments. Moreover, the fraction of particulate organic carbon reaching the sea floor which is subsequently preserved in the sediment will be strongly coupled to sediment accumulation and mixing. In this study a series of box cores were collected in order to characterize a hypothetical eutrophication gradient extending from the Po River outflow region in the north down to the shallow meso-Adriatic depression (Jabuka Pit). The main tasks assigned to IAEA-MEL were to provide 210 Pb derived sedimentation and dry-mass accumulation rates and to examine the possible correlations between sedimentary processes, the deposition and preservation of sedimentary organic carbon and pelagic primary productivity

  14. Influence of the Synthesis Method for Pt Catalysts Supported on Highly Mesoporous Carbon Xerogel and Vulcan Carbon Black on the Electro-Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2015-03-01

    Full Text Available Platinum catalysts supported on carbon xerogel and carbon black (Vulcan were synthesized with the aim of investigating the influence of the characteristics of the support on the electrochemical performance of the catalysts. Three synthesis methods were compared: an impregnation method with two different reducing agents, sodium borohydride and formic acid, and a microemulsion method, in order to study the effect of the synthesis method on the physico-chemical properties of the catalysts. X-ray diffraction and transmission electron microscopy were applied. Cyclic voltammetry and chronoamperometry were used for studying carbon monoxide and methanol oxidation. Catalysts supported on carbon xerogel presented higher catalytic activities towards CO and CH3OH oxidation than catalysts supported on Vulcan. The higher mesoporosity of carbon xerogel was responsible for the favored diffusion of reagents towards catalytic centers.

  15. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  16. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  17. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children.

    Science.gov (United States)

    Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-02-01

    To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  18. First inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal - case studies of Coloured Dissolved Organic Matter (cDOM) and turbidity regimes

    Science.gov (United States)

    Heim, Birgit; Bartsch, Annett; Dvornikov, Yuri; Leibman, Marina; Eulenburg, Antje; Morgenstern, Anne; Boike, Julia; Widhalm, Barbara; Fedorova, Irina; Chetverova, Antonina

    2015-04-01

    We provide a first satellite-based inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal using multi-sensor satellite data. Within our thematic network between our groups we seek to investigate how we may link: • multi-sensor remote sensing analysis (optical and radar) • tachymmetrical and satellite-based stereographical analysis • geochemical and hydrodynamical ground investigations in the thermokarst- and thermoerosional-influenced landscape types in the central Lena Delta and the Yamal region in Siberia. We are investigating the turbidity regimes of the lakes and the catchment characteristics (vegetation, geomorphology, topography) using satellite-derived information from optical and radar sensors. For some of the lakes in Yamal and the central Lena River Delta we were able to sample for Dissolved Organic Carbon, DOC, and coloured dissolved organic matter, cDOM (the absorbing fraction of the DOC pool). The sediment sources for turbidity spatial patterns are provided by the large subaquatic sedimentary banks and lake cliffs. The cDOM regimes influence the transparency of the different lake types. However, turbidity seems to play the dominant role in providing the water colour of thermokarst lake types.

  19. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  20. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  1. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  2. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    Science.gov (United States)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  3. Market influence on the low carbon energy refurbishment of existing multi-residential buildings

    International Nuclear Information System (INIS)

    Atkinson, Jonathan G.B.; Jackson, Tim; Mullings-Smith, Elizabeth

    2009-01-01

    This paper explores the relationship between the energy market; the political and regulatory context; and energy design decisions for existing multi-residential buildings, to determine what form the energy market landscape would take if tailored to encourage low carbon solutions. The links between market dynamics, Government strategies, and building designs are mapped to understand the steps that achieve carbon reduction from building operation. This is achieved using a model that takes financial and energy components with market and design variables to provide net present cost and annual carbon outputs. The financial component applies discounted cash flow analysis over the building lifespan, with discount rates reflecting contractual characteristics; the carbon component uses Standard Assessment Procedure (SAP) 2005. A scenario approach is adopted to test alternative strategies selected to encourage low carbon solutions in two residential and two office designs. The results show that the forward assumption of energy price escalation is the most influential factor on energy investment, together with the expected differentiation between the escalation of gas and electricity prices. Using this, and other influencing factors, the research reveals trends and strategies that will achieve mainstream application of energy efficiency and microgeneration technologies, and reduce carbon emissions in the existing multi-residential sector.

  4. Influence of carbon on the kinetics of He migration and clustering in α-Fe from first principles

    International Nuclear Information System (INIS)

    Ortiz, C. J.; Caturla, M. J.; Fu, C. C.; Willaime, F.

    2009-01-01

    Density functional theory (DFT) calculations have been performed to study the interaction of carbon with He-vacancy complexes in α-Fe. Using the DFT predictions, a rate theory model that accounts for the evolution of carbon, helium, and defects created during irradiation has been developed to explore the influence of carbon on the kinetics of He diffusion and clustering after implantation in α-Fe. This DFT-based rate theory model predicts that carbon not only influences vacancy (V) migration but also He desorption, enhancing He mobility in particular for low V/C ratios. The reason for this behavior is mainly the formation of VC and VC 2 complexes, which significantly reduces the mobility of vacancies with respect to pure Fe, inhibiting the formation of higher order clusters, i.e., He n V m , and increasing thus the number of He at substitutional positions at room temperature. Assuming reasonable values of carbon concentration, we successfully reproduce and interpret existing desorption experimental results, where all the energetic parameters for the relevant reactions were obtained from first-principles calculations. In addition, our study provides a detailed explanation of the various He migration mechanisms that prevail under the considered experimental conditions.

  5. Carbonate platform growth and demise offshore Central Vietnam

    DEFF Research Database (Denmark)

    Fyhn, Michael B.W.; Boldreel, Lars Ole; Nielsen, Lars H.

    2013-01-01

    Fault Zone, the Tuy Hoa Carbonate Platform fringes the continental margin between Da Nang and Nha Trang. Here, platform growth initiated during the Early Miocene and continued until Middle Miocene time when regional uplift led to subaerial exposure, termination of platform growth and karstification...... continues on isolated platforms hosting the Paracel Islands farther seawards. The onset of widespread carbonate deposition largely reflects the Early Miocene transgression of the area linked with early post-rift subsidence and the opening of the South China Sea. The mid-Neogene shift in carbonate deposition...

  6. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples.

    Science.gov (United States)

    Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife

    2016-01-01

    Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (10(5)/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (10(6)/ml) and SRB (10(8)/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows

  8. Influence of Temperature and Carbon Dioxide on Fermentation of Cabernet Sauvignon Must

    Directory of Open Access Journals (Sweden)

    Jan Mavri

    2003-01-01

    Full Text Available In the process of wine fermentation temperature and the amount of carbon dioxide present represent parameters that can be easily monitored and controlled. The influence of variation of the process temperature and the fluxes of additional inlet gaseous carbon dioxide in Saccharomyces bayanus fermentation of Cabernet Sauvignon grape must on the accumulation of biomass and production of metabolites was studied. All experiments with temperature and redox potential control on-line were performed in a 10-litre laboratory stirred tank reactor. Metabolites of Saccharomyces bayanus fermentation comprising higher alcohols (1-propanol, 2-butanol, isoamyl alcohol, as well as reducing sugars, were measured off-line by gas and high pressure liquid chromatography.

  9. Influence of the Mg-content on ESR-signals in synthetic calcium carbonate

    International Nuclear Information System (INIS)

    Barabas, M.; Bach, A.; Mudelsee, M.; Mangini, A.

    1989-01-01

    Carbonate crystals doped with various concentrations of Mg 2+ -ions have been grown by a gel-diffusion method. An increase of the Mg/Ca-ratio to more than about 1 caused a phase change in the crystal lattice from calcite to aragonite. The properties of the ESR-signals of the synthetic carbonates were studied and compared with natural marine carbonates. The following results were derived: (a) In the presence of Mg 2+ -ions the synthetic carbonates display the same ESR-signals as natural calcites of marine origin with similar properties (thermal stability, radiation sensitivity). (b) The saturation value of the signal at g=2.0006 in synthetic calcites was found to be strongly related with the Mg-content in the crystals. (c) The signal at g=2.0036 (axial symmetry) which is present in calcite was not influenced by the Mg-concentration. Its saturation value decreases when the crystal phase changed from calcite to aragonite and in complement the signal at g=2.0031 appeared. (d) The signals at g=2.0057 and g=2.0031 are most probably not of organic origin. (author)

  10. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon...

  11. Organic Matter Quality and its Influence on Carbon Turnover and Stabilization in Northern Peatlands

    Science.gov (United States)

    Turetsky, M. R.; Wieder, R. K.

    2002-12-01

    Peatlands cover 3-5 % of the world's ice-free land area, but store about 33 % of global terrestrial soil carbon. Peat accumulation in northern regions generally is controlled by slow decomposition, which may be limited by cold temperatures and water-logging. Poor organic matter quality also may limit decay, and microbial activity in peatlands likely is regulated by the availability of labile carbon and/or nutrients. Conversely, carbon in recalcitrant soil structures may be chemically protected from microbial decay, particularly in peatlands where carbon can be buried in anaerobic soils. Soil organic matter quality is controlled by plant litter chemical composition and the susceptibility of organic compounds to decomposition through time. There are a number of techniques available for characterizing organic quality, ranging from chemical proximate or elemental analysis to more qualitative methods such as nuclear magenetic resonance, pyrolysis/mass spectroscopy, and Fourier transform infrared spectroscopy. We generally have relied on proximate analysis for quantitative determination of several organic fractions (i.e., water-soluble carbohydrates, soluble nonpolars, water-soluble phenolics, holocellulose, and acid insoluble material). Our approaches to studying organic matter quality in relation to C turnover in peatlands include 1) 14C labelling of peatland vegetation along a latitudinal gradient in North America, allowing us to follow the fate of 14C tracer in belowground organic fractions under varying climates, 2) litter bag studies focusing on the role of individual moss species in litter quality and organic matter decomposition, and 3) laboratory incubations of peat to explore relationships between organic matter quality and decay. These studies suggest that proximate organic fractions vary in lability, but that turnover of organic matter is influenced both by plant species and climate. Across boreal peatlands, measures of soil recalcitrance such as acid

  12. Carbon steel protection in G.S. (Girlder sulfide) plants. CITROSOLV process influence. Pt. 6

    International Nuclear Information System (INIS)

    Lires, O.A.; Burkart, A.L.; Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfides, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa, for periods of 14 days). CITROSOLV Process (Pfizer) is used to descaling and passivating stainless steel plant's components. This process must be used in mixed (carbon steel - stainless steel) circuits and may cause the formation of magnetite scales over the carbon steel. The influence of magnetite in the pyrrotite-pyrite scales formation is studied in this work. (Author) [es

  13. Application of central composite design to optimize the amount of carbon source and prebiotics for Bifidobacterium bifidum BB01

    Directory of Open Access Journals (Sweden)

    Shu Guowei

    2016-06-01

    Full Text Available The objective of the present study was to obtain the optimum proportion of the carbon source and prebiotics for Bifidobacterium bifidum BB01 by the central composite design (CCD. The effect of carbon source (lactose and two prebiotics (inulin and fructooligosaccharides on the BB01 were observed by measuring the OD600 value, pH value and the viable counts at 18h. The final optimized concentrations of carbon source and prebiotics were: lactose 1.6%, inulin 0.26%, and fructooligosaccharides 0.22%. The result indicates that the growth of B. bifidum BB01 shows an significant increase in the optimized culture medium (p < 0.05, the OD600 value reached 1.434 at 18h, which increased 6.58% compared to the control. And the viable counts of B. bifidum BB01 increased 24.36% and reached (2.17±0.06 ×109cfu/mL. The results show that the optimization of the carbon source and prebiotics using CCD in this study is workable and necessary.

  14. Physical and chemical study of the influence of oxidation on the structure of carbon black; Etude physico-chimique de l'influence de l'oxydation sur la structure du noir de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Hueber, Francois

    1961-06-26

    This research thesis reports the study of the influence of an oxidising attack on carbon black particles by using chemical, physical and electrochemical methods to highlight the oxidation process. The carbon black particle is a spherical set essentially made of amorphous and crystalline carbon. It appears that the oxidising attack mainly occurs against the amorphous parts which surround the crystallites. If the attack is strong enough, crystallites are freed and the particle collapses. This process has been observed by using electronic microscopy, X rays, the BET nitrogen absorption method, and infra-reds. Chemical analysis revealed the presence of carboxyl, hydroxyl and quinone functional groups on the oxidised particle surface. These groups have been dosed by different methods (methylation, calcium acetate dosing, polarography and potassium borohydride reduction) [French] Dans la presente etude nous nous sommes occupes de l'influence de l'attaque oxydante sur les particules de noir de carbone. Pour ce faire, nous avons mis en oeuvre des methodes chimiques, physiques et electrochimiques et nous avons ainsi pu mettre en evidence le processus de l'attaque oxydante. La particule de noir de carbone est un ensemble spherique constitue essentiellement de carbone engage dans des domaines amorphes et dans des domaines cristallins. L'attaque oxydante se fait surtout aux depens des parties amorphes qui entourent les cristallites. Si l'attaque est suffisamment poussee, les cristallites sont liberes ce qui se traduit par l'effondrement de la particule. C'est la conjugaison de la microscopie electronique, des rayons X, de la methode d'absorption d'azote B.E.T. et des infra-rouge qui ont permis d'etablir ce schema de l'attaque oxydante. Sur le plan des analyses chimiques, nous avons confirme la presence de fonctions carboxyles, hydroxyles et quinones a la surface de la particule de noir de carbone oxyde et avons pu les doser. Une des methodes de dosage quantitative des

  15. Influences of sodium carbonate on physicochemical properties of lansoprazole in designed multiple coating pellets.

    Science.gov (United States)

    He, Wei; Yang, Min; Fan, Jun Hong; Feng, Cai Xia; Zhang, Su Juan; Wang, Jin Xu; Guan, Pei Pei; Wu, Wei

    2010-09-01

    Lansoprazole (LSP), a proton-pump inhibitor, belongs to class II drug. It is especially instable to heat, light, and acidic media, indicating that fabrication of a formulation stabilizing the drug is difficult. The addition of alkaline stabilizer is the most powerful method to protect the drug in solid formulations under detrimental environment. The purpose of the study was to characterize the designed multiple coating pellets of LSP containing an alkaline stabilizer (sodium carbonate) and assess the effect of the stabilizer on the physicochemical properties of the drug. The coated pellets were prepared by layer-layer film coating with a fluid-bed coater. In vitro release and acid-resistance studies were carried out in simulated gastric fluid and simulated intestinal fluid, respectively. Furthermore, the moisture-uptake test was performed to evaluate the influence of sodium carbonate on the drug stability. The results indicate that the drug exists in the amorphous state or small (nanometer size) particles without crystallization even after storage at 40°C/75% for 5 months. The addition of sodium carbonate to the pellet protects the drug from degradation in simulated gastric fluid in a dose-dependent manner. The moisture absorbed into the pellets has a detrimental effect on the drug stability. The extent of drug degradation is directly correlated with the content of moisture absorption. In conclusion, these results suggest that the presence of sodium carbonate influence the physicochemical properties of LSP, and the designed multiple coating pellets enhance the drug stability.

  16. Complex terrain influences ecosystem carbon responses to temperature and precipitation

    Science.gov (United States)

    Reyes, W. M.; Epstein, H. E.; Li, X.; McGlynn, B. L.; Riveros-Iregui, D. A.; Emanuel, R. E.

    2017-08-01

    Terrestrial ecosystem responses to temperature and precipitation have major implications for the global carbon cycle. Case studies demonstrate that complex terrain, which accounts for more than 50% of Earth's land surface, can affect ecological processes associated with land-atmosphere carbon fluxes. However, no studies have addressed the role of complex terrain in mediating ecophysiological responses of land-atmosphere carbon fluxes to climate variables. We synthesized data from AmeriFlux towers and found that for sites in complex terrain, responses of ecosystem CO2 fluxes to temperature and precipitation are organized according to terrain slope and drainage area, variables associated with water and energy availability. Specifically, we found that for tower sites in complex terrain, mean topographic slope and drainage area surrounding the tower explained between 51% and 78% of site-to-site variation in the response of CO2 fluxes to temperature and precipitation depending on the time scale. We found no such organization among sites in flat terrain, even though their flux responses exhibited similar ranges. These results challenge prevailing conceptual framework in terrestrial ecosystem modeling that assumes that CO2 fluxes derive from vertical soil-plant-climate interactions. We conclude that the terrain in which ecosystems are situated can also have important influences on CO2 responses to temperature and precipitation. This work has implications for about 14% of the total land area of the conterminous U.S. This area is considered topographically complex and contributes to approximately 15% of gross ecosystem carbon production in the conterminous U.S.

  17. Lithium carbonate tablets. Preparation techniques influence over active ingredient liberation

    International Nuclear Information System (INIS)

    Bueno, J.H.F.; Oliveira, A.G. de; Toledo Salgado, P.E. de

    1989-01-01

    Lithium carbonate tablets, prepared using wet and dry granulation, were assessed in vitro so as to determine the active ingredient dissolution. In this study, standardized formulations were used and developed with usual adjuvants (lactose - maize starch). Parallel to the dissolution testing. The influence of the preparation process over some physical characteristics (hardness, friability and disintegration) was also analysed. Although a better performance was observed of tables prepared using dry granulation, the authors concluded that the wet process is more suitable in preparing tables with the mentioned drug. (author)

  18. Carbonate Channel-Levee Systems Influenced by Mass-Transport Deposition, Browse Basin, Australia

    Science.gov (United States)

    Dunlap, D.; Janson, X.; Sanchez-Phelps, C.; Covault, J. A.

    2017-12-01

    Submarine channels are primary conduits for clastic sediment transport to deep-water basins, thereby controlling the location of marine depocenters and sediment bypass. The evolution and depositional character of submarine channels have broad implications to sediment dispersal, sediment quality, and hydrocarbon exploration potential. Siliciclastic channel systems have been extensively studied in modern environments, seismic and outcrop; however, carbonate channel-levee deposits have only recently been explored. Here we utilize newly released high-resolution (90 Hz) seismic-reflection data from the Australian Browse Basin to document the influence of mass-transport complex (MTC) deposition on the stratigraphic architecture of carbonate channel-levee systems. The 2014 vintage seismic survey is 2500 km2 and hosts numerous large Miocene-age carbonate channel-levee complexes basinward of the shelf edge. Regional horizons and individual channel forms were mapped. Channels range from 200-300 m wide and are bounded by high-relief levee-overbank wedges (>100 ms TWTT). These channels extend across the survey area >70 km. The leveed-channels were sourced from middle and late Miocene slope gullies linked to platform carbonates. Slope-attached and locally derived MTC's are evident throughout the Miocene section likely related to periods of basin inversion and shelf-edge gully incision. We interpret that regionally extensive (>1000 km2) slope-attached MTC's can shut down a channel-levee system and trigger the initiation of a new system, whereas more locally derived (wasting and turbidity currents, which informs depositional models of carbonate slope systems and calls for re-evaluation of the controls on stratigraphic patterns in mixed siliciclastic-carbonate deep-water basins.

  19. Applying life-cycle assessment to low carbon fuel standards-How allocation choices influence carbon intensity for renewable transportation fuels

    International Nuclear Information System (INIS)

    Kaufman, Andrew S.; Meier, Paul J.; Sinistore, Julie C.; Reinemann, Douglas J.

    2010-01-01

    The Energy Independence and Security Act (EISA) of 2007 requires life-cycle assessment (LCA) for quantifying greenhouse gas emissions (GHGs) from expanded U.S. biofuel production. To qualify under the Renewable Fuel Standard, cellulosic ethanol and new corn ethanol must demonstrate 60% and 20% lower emissions than petroleum fuels, respectively. A combined corn-grain and corn-stover ethanol system could potentially satisfy a major portion of renewable fuel production goals. This work examines multiple LCA allocation procedures for a hypothetical system producing ethanol from both corn grain and corn stover. Allocation choice is known to strongly influence GHG emission results for corn-ethanol. Stover-derived ethanol production further complicates allocation practices because additional products result from the same corn production system. This study measures the carbon intensity of ethanol fuels against EISA limits using multiple allocation approaches. Allocation decisions are shown to be paramount. Under varying approaches, carbon intensity for corn ethanol was 36-79% that of gasoline, while carbon intensity for stover-derived ethanol was -10% to 44% that of gasoline. Producing corn-stover ethanol dramatically reduced carbon intensity for corn-grain ethanol, because substantially more ethanol is produced with only minor increases in emissions. Regulatory considerations for applying LCA are discussed.

  20. Carbon and oxygen isotope compositions of the carbonate facies

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  1. High temperature SU-8 pyrolysis for fabrication of carbon electrodes

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2017-01-01

    In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central...... composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon: Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance...... spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon. The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis...

  2. Diagnosing the influence of model structure on the simulation of water, energy and carbon fluxes on bark beetle infested forests

    Science.gov (United States)

    Gochis, D. J.; Gutmann, E. D.; Brooks, P. D.; Reed, D. E.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Harpold, A. A.; Barnard, H. R.; Hu, J.

    2011-12-01

    Forest dynamics induced by insect infestation can have a significant, local impact on plant physiological regulation of water, energy and carbon fluxes. Rapid mortality succeeded by more gradually varying land cover changes are presently thought to initiate a cascade of changes to water, energy and carbon budgets at the forest stand scale. Initial model sensitivity results have suggested very strong changes in land-atmosphere exchanges of these variables. Specifically, model results from the Noah land surface model, a relatively simple model, have suggested that loss of transpiration function may result in a nearly 50% increase in seasonal soil moisture values and similar increases in runoff production for locations in the central Rocky Mountains. However, differing model structures, such as the representation of plant canopy architecture, snowpack dynamics, dynamic vegetation and hillslope hydrologic processes, may significantly confound the synthesis of results from different modeling systems. We assess the performance of new suite of model simulations from three different land surface models of differing model structures and complexity levels against a comprehensive set of field observations of land surface flux and state variables. The focus of the analysis is in diagnosing how model structure influences changes in energy, water and carbon budget partitioning prior to and following insect infestation. Specific emphasis in this presentation is placed on verifying variables that characterize top of canopy and within canopy energy and water fluxes. We conclude the presentation with a set of recommendations about the advantages and disadvantages of various model structures in their simulation of insect driven forest dynamics.

  3. Influence of chemisorption products of carbon dioxide and water vapour on radiolysis of tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, Arturs, E-mail: arturs.zarins@lu.lv [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Kizane, Gunta; Supe, Arnis [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Knitter, Regina; Kolb, Matthias H.H. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), 76021 Karlsruhe (Germany); Tiliks, Juris; Baumane, Larisa [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia)

    2014-10-15

    Highlights: • Chemisorption products affect formation proceses of radiation-induced defects. • Radiolysis of chemisorption products increase amount of radiation-induced defects. • Irradiation atmosphere influence radiolysis of lithium orthosilicate pebbles. - Abstract: Lithium orthosilicate pebbles with 2.5 wt% excess of silica are the reference tritium breeding material for the European solid breeder test blanket modules. On the surface of the pebbles chemisorption products of carbon dioxide and water vapour (lithium carbonate and hydroxide) may accumulate during the fabrication process. In this study the influence of the chemisorption products on radiolysis of the pebbles was investigated. Using nanosized lithium orthosilicate powders, factors, which can influence the formation and radiolysis of the chemisorption products, were determined and described as well. The formation of radiation-induced defects and radiolysis products was studied with electron spin resonance and the method of chemical scavengers. It was found that the radiolysis of the chemisorption products on the surface of the pebbles can increase the concentration of radiation-induced defects and so could affect the tritium diffusion, retention and the released species.

  4. Topographically Driven Lateral Water Fluxes and Their Influence on Carbon Assimilation of a Black Spruce Ecosystem.

    Science.gov (United States)

    Govind, A.; Chen, J. M.; Margolis, H.; Bernier, P. Y.

    2006-12-01

    Current estimates of ecophysiological indicators overlook the effects of topographically-driven lateral flow of soil water. We hypothesize that topographically driven lateral water flows over the landscape have significant influence on the terrestrial carbon cycle. To this end, we simulated the hydrological controls on carbon cycle processes in a black spruce forest in central Quebec, Canada, using the Boreal Ecosystem Productivity Simulator (BEPS) at a daily time step. We accounted for lateral surface and subsurface flows in BEPS by incorporating a distributed, process-oriented hydrological procedure. The results show that modeled dynamics of ecophysiological processes such as evapotranspiration (ET) and photosynthesis (GPP) are consistent with the spatial variation of land cover, topography, soil texture, and leaf area index. Simulated ET and GPP averaged within the footprint of an eddy covariance tower in the watershed agree well with flux measurements with R2=0.77 and 0.83 for ET and GPP, respectively. For ET simulation, much of the remaining discrepancies are found in the winter when the model underestimates snow sublimation. For GPP, there is an underestimation in the fall coinciding with a mid growing season drought, showing the high sensitivity of the model to the soil water status. The key processes controlling primary production were hydraulic limitations for water transfer from soil, roots, stems and leaves through stomatal conductance. Therefore, a further understanding of soil water dynamics is warranted. Comparison with the soil water content of the footprint- averaged unsaturated zone showed that the model captured the annual trend. We also simulated the variations in the water table as well as the mid growing season drought, with a reasonable accuracy(R2=0.68). The foot print average water budget reveals that the annual precipitation of 835mm is partitioned into 282mm of ET, 541 mm of subsurface runoff, and 6 mm of storage change. To test the

  5. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata.

    Science.gov (United States)

    Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke

    2011-05-27

    The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on

  6. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tom, M. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sweeney, C. [NOAA Earth Systems Research Lab., Boulder, CO (United States)

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  7. World-Economy Centrality and Carbon Dioxide Emissions: A New Look at the Position in the Capitalist World-System and Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Paul Prew

    2015-08-01

    Full Text Available With the ever-growing concern of climate change, much attention has been paid to the factors driving carbon dioxide emissions. Previous research in the World-Systems perspective has identified a relationship between carbon dioxide emissions and position in the world-economy. This study intends to build on the previous research by developing a new, more parsimonious indicator of World-System position based on Immanuel Wallerstein’s theoretical concepts of incorporation and core-periphery processes. The new World-System indicator is derived from the centrality measure in network analysis based on import data from the International Monetary Fund’s Direction of Trade Statistics. Based on the theoretical concepts of core-periphery processes, carbon dioxide emissions are predicted to rise based on the predominance of energy-intensive, high-technology, core processes within the nation. The results tend to demonstrate a strong relationship between carbon dioxide emissions and position in the world-economy, and the new World-System position indicator is more strongly related with carbon dioxide emissions than Gross Domestic Product per capita.

  8. Electron density as the main parameter influencing the formation of fullerenes in a carbon plasma

    International Nuclear Information System (INIS)

    Churilov, G.N.; Bulina, N.V.; Novikov, P.V.; Lopatin, V.A.; Vnukova, N.G.; Bachilo, S.M.; Tsyboulski, D.; Weisman, R.B.

    2002-01-01

    Thermodynamic estimates are presented for the formation of spheroidal and flat carbon clusters from reactant species of different charges. Charge is shown to strongly influence the geometry and stability of flat clusters. Changes in the charge of flat clusters can promote both their folding to spheroidal structures and their dissociation. It is concluded that the fluctuations of electron concentration in carbon plasma can result in the accumulation of fullerene clusters and the dissociation of flat clusters. Computer simulations of fullerene C 60 formation from carbon clusters having different charges are carried out using the program HyperChem 5 to calculate the optimal geometry of molecules and their molecular dynamics at different temperatures [ru

  9. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    Science.gov (United States)

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  10. Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties

    International Nuclear Information System (INIS)

    Valente Nabais, J.M.; Gomes, J.A.; Suhas; Carrott, P.J.M.; Laginhas, C.; Roman, S.

    2009-01-01

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m 2 g -1 and pore volume 0.5 cm 3 g -1 . The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 deg. C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g -1 for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the π-π dispersion interaction between the phenol aromatic ring and the delocalised π electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  11. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Science.gov (United States)

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Chlorinated paraffins wrapping of carbon nanotubes: A theoretical investigation

    Science.gov (United States)

    Ding, Qiuyue; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2018-04-01

    How nanomaterials interact with pollutants is the central for understanding their environmental behavior and practical application. In this work, molecular dynamics (MD) and density functional theoretical (DFT) methods were used to investigated the influence of carbon chain length, degree of chlorination, chain configuration, and chirality of chlorinated paraffin (CP) and diameter of single-walled carbon nanotubes (SWNTs) on the interaction between CPs and SWNTs. The simulation results demonstrated that CP chain length and chlorination degree played considerably important roles in determining interaction strength between SWNTs and CPs. The interaction energies increased with increasing chain length and chlorination degree. The chirality of SWNT exerted negligible influence on the interaction energy between SWNTs and CPs. On the contrary, interaction energy increased with increasing radius of SWNTs due to the surface curvatures. This result was rationalized by considering the decrease in SWNT curvature with increasing radius, which resulted in plane-like CNT wall. The negligible influence of CP chain configurations was attributed to relative flexibility of CP carbon chains, which can wrap on tubes through conformational changes with low-energy barriers. MD results indicated that CPs could adsorb on SWNT surface rapidly in aqueous environment. Charge transfer and electronic density results indicated that the interaction between CPs and SWNTs was physisorption in nature. This work provides fundamental information regarding SWNTs as sorbents for CPs extraction and adsorptive removal from environmental water system.

  13. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin

    Directory of Open Access Journals (Sweden)

    Heng Fu

    2017-07-01

    Full Text Available The Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin are important oil and gas exploration targets in the basin, but their dissolution mechanisms are in controversy. In this paper, based on the integrated study of sedimentation, sequence and reservoir, together with microscopic analysis and macroscopic seismic data analysis, the carbonate karst reservoirs in the study area were divided into three types: dissolved pore-cavity limestone reservoir, pore-cavity dolomite reservoir and fracture-cavity siliceous reservoir, and their forming mechanisms were discussed respectively. Some findings were obtained. First, dissolved pore-cavity limestone reservoirs are distributed in the upper Yingshan Fm and Yijianfang Fm of the Ordovician vertically, while pore-cavity dolomite reservoirs are mainly developed in the Penglai Fm and lower Yingshan Fm of the Ordovician with great thickness. Second, dissolved pore-cavity limestone reservoirs were formed by karstification on the third-order sequence boundary (lowstand tract, while pore-cavity dolomite reservoirs were formed by deep burial dolomitization controlled by karstification on the third-order sequence boundary, both of which are distributed in the highstand tract below the third-order sequence boundary. Third, siliceous reservoirs are developed under the control of faulting, as a result of reworking of deep hydrothermal fluids along faults to the limestone, and the siliceous reservoirs and their hydrothermal solution fracture-cavity systems are distributed near faults. It is further predicted that, in addition to the three types of reservoir above, platform-margin reef-flat reservoirs are developed in the Ordovician on the northern slope of central Tarim Basin.

  14. Short Term vs Long Term Environmental Reconstruction from Carbonated Deposits of the Limagne Area (Massif Central, France)

    Energy Technology Data Exchange (ETDEWEB)

    Barbecot, F.; Gibert, E.; Amokrane, Y.; Massault, M.; Noret, A. [Centre National de la Recherche Scientifique Interaction et Dynamique des Environnements de Surface, Universite Paris (France); Ghaleb, B. [Geotop, Universite du Quebec a Montreal, Montreal (Canada)

    2013-07-15

    A 80 cm sequence has been cored from carbonated travertine in the limagne area (French Massif Central, France) in order to document recent environmental fluctuations (0-100 a) of gaseous springs, in relation to the environmental and geochemical parameters that control the isotopic signatures of modern carbonate deposits. The chronology of these finely laminated deposits that are ideal for reconstructing hydrological conditions at very narrow time steps is determined through AMS-{sup 14}C and {sup 210}Pb/{sup 226}Ra radiometric methods. Preliminary results highlight a high enrichment in stable isotopes (eg up to +8 per mille vs VPDB for {delta}{sup 13}C), likely linked to both recharge temperature and degassing processes. Moreover, two general trends are superimposed: the first one, cyclic, may be correlated to the hydrologic annual/biannual budget while the second one, linear, implies a long term environmental trend. (author)

  15. Study on the influence of lipid peak to the results of MR spectroscopy in the central gland of prostate

    International Nuclear Information System (INIS)

    Dong Yanjun; Wang Xiaoying; Li Feiyu; Jiang Xuexiang

    2007-01-01

    Objective: To study the influence of lipid peak to MRS in central gland of prostate gland. Methods: Seventeen patients performed transurethral resection of prostate (TURP) for benign prostate hyperplasia (BPH) were enrolled in this study. Three groups were divided according to the pathological findings: glandular-BPH (GBPH) (7 cases), stromal-BPH (SBPH) (6 cases), and incidentally detected prostate carcinoma (IDPC) (4 cases). The voxel with lipid peak in the field of volume was counted. Compared with pathology, the following studies were performed: (1) The location of the voxels that more frequently presented lipid peak in the central gland. (2) Whether the appearance of the lipid peak would obscure the identification of the peaks of the endogenous metabolites. Results: The ratio of voxels with lipid peak in central gland was about 22.8% (834/3567). There were 1477 (397 voxels with lipid peak), 1434(396 voxels with lipid peak), and 656(41 voxels with lipid peak) voxels in CBPH, SBPH, and IDPC groups, respectively. The percentage in GBPH, SBPH, and IDPC groups was 23.6%, 27.2%, and 6.4%, respectively. The percentage of voxels with lipid peak at the edge of the central gland (79.6%, 68.6% and 72.4%, respectively) was higher than that in other regions. The lipid peak in most of the voxels didn't influence the identification of the citrate and choline peak (82.8%, 98.0%, and 96.4%, respectively). Conclusion: The lipid peak in the central gland may result from the lipid tissues near the gland, and most lipid peak had no influence on the identification of endogenous metabolites. (authors)

  16. Influence of hydrothermal carbonization and treatment by microwave on morphology of carbonaceous materials obtained from lignin

    International Nuclear Information System (INIS)

    Oliveira, I.B.; Barin, G.B.; Barreto, L.S.; Santos, M.C.G.

    2014-01-01

    The conversion of biomass into carbon materials with special morphologies via hydrothermal carbonization presents itself as a potential route for the use of renewable precursors in obtaining carbonaceous structures. In the present study the influence of the hydrothermal carbonization (250 ° C / 4 h) followed by microwave treatment (1-2-4 hours at 25 and 40 mL) in morphology and structure of lignin. The samples were analyzed by X-ray diffraction and scanning electron microscopy. The plaque morphology of lignin was preserved during the hydrothermal process. However, when treated by microwave can be observed partial dissolution of lignin leading to the formation of microspheres on the surface. XRD presence of an amorphous halo 2θ = 23 ° attributed to the (002) network of the amorphous carbon was observed. (author)

  17. Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade

    Directory of Open Access Journals (Sweden)

    Rabus Ralf

    2009-09-01

    Full Text Available Abstract Background In the present work the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis was studied at the level of metabolic fluxes. These two strains belong to the marine Roseobacter clade, a dominant bacterial group in various marine habitats, and represent surface-associated, biofilm-forming growth (P. gallaeciensis and symbiotic growth with eukaryotic algae (D. shibae. Based on information from recently sequenced genomes, a rich repertoire of pathways has been identified in the carbon core metabolism of these organisms, but little is known about the actual contribution of the various reactions in vivo. Results Using 13C labelling techniques in specifically designed experiments, it could be shown that glucose-grown cells of D. shibae catabolise the carbon source exclusively via the Entner-Doudoroff pathway, whereas alternative routes of glycolysis and the pentose phosphate pathway are obviously utilised for anabolic purposes only. Enzyme assays confirmed this flux pattern and link the lack of glycolytic flux to the absence of phosphofructokinase activity. The previously suggested formation of phosphoenolpyruvate from pyruvate during mixotrophic CO2 assimilation was found to be inactive under the conditions studied. Moreover, it could be shown that pyruvate carboxylase is involved in CO2 assimilation and that the cyclic respiratory mode of the TCA cycle is utilised. Interestingly, the use of intracellular pathways was highly similar for P. gallaeciensis. Conclusion The present study reveals the first insight into pathway utilisation within the Roseobacter group. Fluxes through major intracellular pathways of the central carbon metabolism, which are closely linked to the various important traits found for the Roseobacter clade, could be determined. The close similarity of fluxes between the two physiologically rather different species might provide the first indication of more general key properties among

  18. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    Science.gov (United States)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  19. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

    Science.gov (United States)

    Zhang, Yuwei; Guo, Zhansheng

    2018-03-01

    Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

  20. The influence of carbon exchange of a large lake on regional tracer-transport inversions: results from Lake Superior

    International Nuclear Information System (INIS)

    Vasys, Victoria N; Desai, Ankur R; McKinley, Galen A; Bennington, Val; Michalak, Anna M; Andrews, Arlyn E

    2011-01-01

    Large lakes may constitute a significant component of regional surface-atmosphere fluxes, but few efforts have been made to quantify these fluxes. Tracer-transport inverse models that infer the CO 2 flux from the atmospheric concentration typically assume that the influence from large lakes is negligible. CO 2 observations from a tall tower in Wisconsin segregated by wind direction suggested a CO 2 signature from Lake Superior. To further investigate this difference, source-receptor influence functions derived using a mesoscale transport model were applied and results revealed that air masses sampled by the tower have a transit time over the lake, primarily in winter when the total lake influence on the tower can exceed 20% of the total influence of the regional domain. When the influence functions were convolved with air-lake fluxes estimated from a physical-biogeochemical lake model, the overall total contribution of lake fluxes to the tall tower CO 2 were mostly negligible, but potentially detectable in certain periods of fall and winter when lake carbon exchange can be strong and land carbon efflux weak. These findings suggest that large oligotrophic lakes would not significantly influence inverse models that incorporate tall tower CO 2 .

  1. Islamic Influence on HIV Risk and Protection Among Central Asian Male Migrant Workers in Kazakhstan.

    Science.gov (United States)

    Shaw, Stacey A; McCrimmon, Tara; Mergenova, Gaukhar; Sultangaliyeva, Alma; El-Bassel, Nabila

    2017-08-01

    HIV incidence is increasing in Central Asia, where migrant workers experience risks for acquiring sexually transmitted HIV. As a social and structural factor that may influence perceptions and behavior, we examine how Islam shapes HIV risk and protection. Phenomenological qualitative interviews examine religion and contexts of HIV risk among 48 male Central Asian migrant workers residing in Almaty, Kazakhstan. Men described nonvaginal sex, alcohol use, premarital sex, and extramarital sex as forbidden or frowned upon. Religious networks were unlikely to discuss HIV risks, and some men viewed religious affiliation or practices as protective. Marital practices including neke (religious marriage), polygyny, and bride kidnapping may be linked to risk. Findings suggest adhering to Islamic ideals may be protective for some men, but for others, assumptions of protection may enhance risk. HIV prevention strategies among Central Asian migrants may be strengthened by attention to religious and cultural understandings of risk and protection.

  2. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Wenzhoefer, Frank; Middelboe, Mathias

    2013-01-01

    Microbes control the decomposition of organic matter in marine sediments. Decomposition, in turn, contributes to oceanic nutrient regeneration and influences the preservation of organic carbon(1). Generally, rates of benthic decomposition decline with increasing water depth, although given the vast...... extent of the abyss, deep-sea sediments are quantitatively important for the global carbon cycle(2,3). However, the deepest regions of the ocean have remained virtually unexplored(4). Here, we present observations of microbial activity in sediments at Challenger Deep in the Mariana Trench in the central...

  3. Influence of porous texture and surface chemistry on the CO₂ adsorption capacity of porous carbons: acidic and basic site interactions.

    Science.gov (United States)

    Sánchez-Sánchez, Angela; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M D

    2014-12-10

    Doped porous carbons exhibiting highly developed porosity and rich surface chemistry have been prepared and subsequently applied to clarify the influence of both factors on carbon dioxide capture. Nanocasting was selected as synthetic route, in which a polyaramide precursor (3-aminobenzoic acid) was thermally polymerized inside the porosity of an SBA-15 template in the presence of different H3PO4 concentrations. The surface chemistry and the porous texture of the carbons could be easily modulated by varying the H3PO4 concentration and carbonization temperature. Porous texture was found to be the determinant factor on carbon dioxide adsorption at 0 °C, while surface chemistry played an important role at higher adsorption temperatures. We proved that nitrogen functionalities acted as basic sites and oxygen and phosphorus groups as acidic ones toward adsorption of CO2 molecules. Among the nitrogen functional groups, pyrrolic groups exhibited the highest influence, while the positive effect of pyridinic and quaternary functionalities was smaller. Finally, some of these N-doped carbons exhibit CO2 heats of adsorption higher than 42 kJ/mol, which make them excellent candidates for CO2 capture.

  4. Carbon monoxide, smoking, and atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, P

    1973-10-01

    Studies on the effects of carbon monoxide and smoking on atherosclerosis are reviewed. Nonsmokers do not run the risk of getting significantly elevated carboxyhemoglobin levels from automobile exhaust in the streets, however, they do run the risk of getting elevated carboxyhemoglobin levels from exposure to CO in closed areas such as garages and tunnels. Carboxyhemoglobin levels up to 20 percent may also be found in smokers. The central nervous system seems to be influenced by carboxyhemoglobin concentrations up to 20 percent. The myocardium may also be affected. Experimental work with rabbits exposed to carbon monoxide and cholesterol is described which proved that CO has a damaging effect on arterial walls, leading to increased permeability for various plasma components, to the formation of subendothelial edema, and to increased atheromatosis. The results indicate that the much higher risk of smokers of developing arterial disease in comparison to nonsmokers is mainly due to the inhaled CO in the tobacco smoke and not to nicotine. (Air Pollut. Abstr.)

  5. Carbonate compensation depth: relation to carbonate solubility in ocean waters.

    Science.gov (United States)

    Ben-Yaakov, S; Ruth, E; Kaplan, I R

    1974-05-31

    In situ calcium carbonate saturometry measurements suggest that the intermediate water masses of the central Pacific Ocean are close to saturation with resppect to both calcite and local carbonate sediment. The carbonate compensation depth, located at about 3700 meters in this area, appears to represent a depth above which waters are essentially saturated with respect to calcite and below which waters deviate toward undersaturation with respect to calcite.

  6. The combined influence of the main European circulation patterns on carbon uptake by ecosystems

    Science.gov (United States)

    Bastos, Ana; Gouveia, Célia; Trigo, Ricardo

    2014-05-01

    Understanding how natural climate variability affects carbon uptake by land and ocean pools is particularly relevant to better characterize human impact on the carbon cycle. Recently, we have contributed to assess the major role played by the El-Niño/Southern Oscillation in driving inter-annual variability (IAV) of carbon uptake by land ecosystems and significantly influencing global CO2 air-borne fraction [1]. Despite the prominent role played by ENSO, other important teleconnections on the hemispheric scale have deserved less attention. On the European scale, the main mode of variability is the North-Atlantic Oscillation (NAO), which controls storm tracks position and drives changes in temperature and precipitation over the whole region, affecting vegetation dynamics [2]. Besides NAO, a few additional large scale circulation patterns the Scandinavian (SC) and East-Atlantic (EA) Patterns, are also known to influence significantly the European climate [3]. Different combinations of these teleconnection polarities have been recently shown to modulate the overall role of the NAO impact location and strength, thus affecting winter temperature and precipitation patterns over Europe [4]. This work aims to answer the following questions: (i) how do NAO, EA and SC affect vegetation carbon uptake IAV? (ii) do the interactions between these three modes have a significant impact on land CO2 IAV? (iii) what is the contribution of the different physical variables to ecosystems' response to these modes? (iv) how well do the state-of-the-art Earth System Models (ESMs) from CMIP5 represent these climate variability modes and the corresponding carbon fluxes? We first analyze observational data to assess the relationships between the different combinations of NAO, SC and EA polarities and IAV of gross and net primary production (GPP and NPP, respectively), as well as the most relevant driving factors of ecosystem's response to those variability patterns. Although the winter state

  7. Xenoliths in Eocene lavas from Central Tibet record carbonated metasomatism of the lithosphere

    Science.gov (United States)

    Goussin, Fanny; Cordier, Carole; Boulvais, Philippe; Guillot, Stéphane; Roperch, Pierrick; Replumaz, Anne

    2017-04-01

    Cenozoic post-collisional volcanism of the Tibetan Plateau, emplaced on an accreted continental margin under compression, could bring important information regarding the edification of the Plateau. In this study, we combined petrography, whole rock geochemistry, stable isotopes and in situ mineral analysis to decipher the genesis of Eocene-Oligocene magmatic rocks from the Nangqian basin (35-38 Ma, [Spurlin et al., 2005; Xu et al., 2016]), located at the hinge between Central Tibet and the Eastern Indo-Asia Collision Zone. Our dataset includes potassic trachyandesites; amphibole-bearing potassic trachytes; and rare ultrapotassic (K2O/Na2O ≥ 4) mafic syenites. All samples have high REE abundances (La = 100 - 500 x primitive mantle). Fractionation of heavy REE (Gd/YbN > 3) indicates melting in the garnet stability field, and relative depletion in high-field strength elements (Nb, Ta) indicates a selective enrichment of the source by metasomatic fluids. This metasomatism event is also evidenced by the occurrence of re-equilibrated mantle xenocrysts of phlogopite (Mg# = 88 - 90 and Cr2O3 content = 0.9 - 1.82 wt%) in mafic syenites. Potassic trachyandesites have specific composition, with negative Zr-Hf anomaly and low Hf/Sm (0.2 - 0.4). Indeed, they include xenocrystic aggregates, composed of magmatic clinopyroxene, apatite and subordinate biotite and feldspar, with interstitial calcite and dolomite. δ18OV -SMOW (9.2 - 11.0 ) and δ13CV -PDB (-6.1 - -4.0 ) of these rocks indicate the presence of primary, mantle-derived carbonates. In situ analysis of the major and trace element compositions of the carbonates, clinopyroxenes and apatites further suggest that these aggregates represent cumulates of a carbonate-bearing magma. These xenoliths thus show that the lithospheric mantle was also metasomatized by CO2-rich fluids. Cenozoic carbonatites in China have been identified in Maoniuping in Western Sichuan (31.7 Ma), Lixian in the Western Qinlin (22-23 Ma), and

  8. Modeling Social Influence via Combined Centralized and Distributed Planning Control

    Science.gov (United States)

    Vaccaro, James; Guest, Clark

    2010-01-01

    Real world events are driven by a mixture of both centralized and distributed control of individual agents based on their situational context and internal make up. For example, some people have partial allegiances to multiple, contradictory authorities, as well as to their own goals and principles. This can create a cognitive dissonance that can be exploited by an appropriately directed psychological influence operation (PSYOP). An Autonomous Dynamic Planning and Execution (ADP&E) approach is proposed for modeling both the unperturbed context as well as its reaction to various PSYOP interventions. As an illustrative example, the unrest surrounding the Iranian elections in the summer of 2009 is described in terms applicable to an ADP&E modeling approach. Aspects of the ADP&E modeling process are discussed to illustrate its application and advantages for this example.

  9. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.

    Science.gov (United States)

    Roach, Melissa; Arrivault, Stéphanie; Mahboubi, Amir; Krohn, Nicole; Sulpice, Ronan; Stitt, Mark; Niittylä, Totte

    2017-06-15

    The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. The Agua Salud Project, Central Panama

    Science.gov (United States)

    Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.

    2007-12-01

    The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.

  11. Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau

    Science.gov (United States)

    Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.

    2016-05-01

    We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.

  12. Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites

    International Nuclear Information System (INIS)

    Hsieh, C.-T.; Chen, W.-Y.; Cheng, Y.-S.

    2010-01-01

    Gaseous oxidation of carbon papers (CPs) decorated with carbon nanotubes (CNTs) with varying degrees of oxidation was conducted to investigate the influence of surface oxides on the performance of electrochemical capacitors fabricated with oxidized CNT/CP composites. The oxidation period was found to significantly enhance the O/C atomic ratio on the composites, and the increase in oxygen content upon oxidation is mainly contributed by the formation of C=O and C-O groups. The electrochemical behavior of the capacitors was tested in 1 M H 2 SO 4 within a potential of 0 and 1 V vs. Ag/AgCl. Both superhydrophilicity and specific capacitance of the oxidized CNT/CP composites were found to increase upon oxidation treatment. A linearity increase of capacitance with O/C ratio can be attributed to the increase of the population of surface oxides on CNTs, which imparts excess sites for redox reaction (pseudocapacitance) and for the formation of double-layer (double-layer capacitance). The technique of ac impedance combined with equivalent circuit clearly showed that oxidized CNT/CP capacitor imparts not only enhanced capacitance but also a low equivalent series resistance.

  13. Influence of coal preoxidation on the porosity of the activated carbons with steam activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuwen; Gao, Jihui; Sun, Fei; Li, Yang; Wu, Shaohua; Qin, Yukun [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    Activated carbons have been prepared from a low ash content anthracite preoxidized in air to different degrees. Steam has been used as activating agent to prepare different burn-off samples. The preoxidation effect on the physico-chemical characteristics of the resulting chars and activated carbons were comparatively studied. The surface area and porosity of sample was studied by N{sub 2} adsorption at 77 0A0;K. The results show that introduced oxygen in coal structure had a great influence on the carbonization and subsequent activation process. The carbonization of oxidized coal exhibited a broader volatile evolution with respect to temperature, and the resulting chars had a larger microporosity. The porosity of the char is a primary foundation to develop more microporosity upon activation. Activation of char from oxidized coal facilitated development of small scale micropore, however, the micropore widening was also observed at high burn-offs. Compared with development of supermicropore, the evolution of mesoporosity is hindered strongly by preoxidation treatment. The quantity of basic surface sites in activated carbons increased with an increase in oxidation degree, while the quantity of acidic sites appeared equivalent. It seemed that the amount of surface groups and the microporosity mainly developed in a parallel way.

  14. Influences of elevated carbon dioxide and ozone on soil respiration and carbon accumulation in a no-till soybean-wheat system after six years

    Science.gov (United States)

    Atmospheric carbon dioxide and ozone often have counteracting influences on many C3 crops depending on the concentration of the gases and sensitivity of the crop and variety, but effects of these gases on plant-soil processes are poorly understood. The objective of this six-year experiment was to d...

  15. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in Guangzhou as an example.

    Science.gov (United States)

    Xu, Qian; Dong, Yu-Xiang; Yang, Ren

    2018-04-13

    Land urbanization can affect carbon sequestration. In this study, the relationships between land urbanization and carbon sequestration of urban vegetation were studied for Guangzhou, China. The methodology was based on land use data from Thematic Mapper (TM) imagery, MODIS13Q1 data, and climate data, and the improved Carnegie-Ames-Stanford approach (CASA) model and linear system models were employed. Characteristics such as the amount of expansion, spatial agglomeration, spatial expansion intensity, and spatial growth of built-up land were analyzed, and the influence of land urbanization (built-up land expansion) on carbon sequestration of urban vegetation was elucidated by a temporal sequential cooperativity analysis. The main results were as follows. (1) Land urbanization had a clear influence on carbon sequestration of urban vegetation in Guangzhou, and the proportion and spatial agglomeration of built-up land showed significant negative correlations with this carbon sequestration; the correlation coefficients were -0.443 and -0.537, respectively, in 2014. (2) The spatial expansion intensity and spatial growth of built-up land showed small correlations with carbon sequestration, and the correlations from 2000 to 2005 were relatively larger than those at other times; this was because the built-up land expansion speed was the fastest during this period. (3) The temporal sequential cooperativity analysis revealed that carbon was lost as natural surfaces were transformed to artificial surfaces, and land urbanization effects on carbon sequestration showed no significant temporal lag. Carbon sequestration of urban vegetation in the city could be improved by adding urban green spaces; however, this would likely take some time as the system recovers. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-01-01

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO 3 @C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO 3 @C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g −1 after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO 3 (CoSnO 3 @C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO 3 @C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g −1 after 100 cycles

  17. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-11-01

    The influences of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in NaHCO{sub 3}/Na{sub 2}CO{sub 3} buffer solution are investigated by capacitance measurement and electrochemical impedance spectroscopy (EIS). The results show that the passive film appears n-type semiconductive character; with increasing the solution temperature, the addition of chromium into carbon steel and increasing the concentration of chloride ions, the slopes of Mott-Schottky plots decrease, which indicates the increment of the defect density in the passive film. EIS results show that the transfer impedance R{sub 1} and the diffusion impedance W decrease with increasing the solution temperature, with the addition of chromium into carbon steel and with increasing the chloride ions concentration. It can be concluded that the corrosion protection effect of passive film on the substrate decreases with increasing the solution temperature, adding chromium into carbon steel and increasing chloride ions concentration.

  18. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

    Science.gov (United States)

    Sourmail, T.; Garcia-Mateo, C.; Caballero, F. G.; Cazottes, S.; Epicier, T.; Danoix, F.; Milbourn, D.

    2017-09-01

    The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

  19. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Science.gov (United States)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  20. Activated carbon oxygen content influence on water and surfactant adsorption.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  1. Controls on reef development and the terrigenous-carbonate interface on a shallow shelf, Nicaragua (Central America)

    Science.gov (United States)

    Roberts, H. H.; Murray, S. P.

    1983-06-01

    Marine geology and physical oceanographic data collected during two field projects (˜4 months) on the Caribbean shelf of Nicaragua indicate a surprising dominance of carbonate deposition and reef growth on a shelf that is receiving an abnormally large volume of terrigenous sediments. High rainfall rates (˜400 500 cm/year), coupled with a warm tropical climate, encourage rapid denudation of the country's central volcanic highland and transport of large volumes of terrigenous sediment and fresh water to the coast. Estimates suggest that three times more fresh water and fifteen times more sediment are introduced per unit length of coastline than on the east coast of the United States. Distribution of the terrigenous facies, development of carbonate sediment suites, and the location and quality of viable reefs are strongly controlled by the dynamic interaction near the coasts of highly turbid fresh to brackish water effluents from thirteen rivers with clear marine waters of the shelf. Oceanic water from the central Caribbean drift current intersects the shelf and moves slowely in a dominant northwest direction toward the Yucatan Channel. A sluggish secondary gyre moves to the south toward Costa Rica. In contrast, the turbid coastal water is deflected to the south in response to density gradients, surface water slopes, and momentum supplied by the steady northeast trade winds. A distinct two-layered flow is commonly present in the sediment-rich coastal boundary zone, which is typically 10 20 km wide. The low-salinity upper layer is frictionally uncoupled from the ambient shelf water and therefore can expand out of the normally coherent coastal boundary zone during periods of abnormal flooding or times when instability is introduced into the northeast trades. Reef distribution, abruptness of the terrigenous-carbonate interface, and general shelf morphology reflect the long-term dynamic structure of the shelf waters. A smooth-bottomed ramp of siliciclastic sands to

  2. Predictive modelling of fault related fracturing in carbonate damage-zones: analytical and numerical models of field data (Central Apennines, Italy)

    Science.gov (United States)

    Mannino, Irene; Cianfarra, Paola; Salvini, Francesco

    2010-05-01

    Permeability in carbonates is strongly influenced by the presence of brittle deformation patterns, i.e pressure-solution surfaces, extensional fractures, and faults. Carbonate rocks achieve fracturing both during diagenesis and tectonic processes. Attitude, spatial distribution and connectivity of brittle deformation features rule the secondary permeability of carbonatic rocks and therefore the accumulation and the pathway of deep fluids (ground-water, hydrocarbon). This is particularly true in fault zones, where the damage zone and the fault core show different hydraulic properties from the pristine rock as well as between them. To improve the knowledge of fault architecture and faults hydraulic properties we study the brittle deformation patterns related to fault kinematics in carbonate successions. In particular we focussed on the damage-zone fracturing evolution. Fieldwork was performed in Meso-Cenozoic carbonate units of the Latium-Abruzzi Platform, Central Apennines, Italy. These units represent field analogues of rock reservoir in the Southern Apennines. We combine the study of rock physical characteristics of 22 faults and quantitative analyses of brittle deformation for the same faults, including bedding attitudes, fracturing type, attitudes, and spatial intensity distribution by using the dimension/spacing ratio, namely H/S ratio where H is the dimension of the fracture and S is the spacing between two analogous fractures of the same set. Statistical analyses of structural data (stereonets, contouring and H/S transect) were performed to infer a focussed, general algorithm that describes the expected intensity of fracturing process. The analytical model was fit to field measurements by a Montecarlo-convergent approach. This method proved a useful tool to quantify complex relations with a high number of variables. It creates a large sequence of possible solution parameters and results are compared with field data. For each item an error mean value is

  3. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  4. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    Energy Technology Data Exchange (ETDEWEB)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  5. A comparative economic assessment of hydrogen production from large central versus smaller distributed plant in a carbon constrained world

    International Nuclear Information System (INIS)

    Nguyen, Y.V.; Ngo, Y.A.; Tinkler, M.J.; Cowan, N.

    2003-01-01

    This paper compares the economics of producing hydrogen at large central plants versus smaller distributed plants at user sites. The economics of two types of central plant, each at 100 million standard cubic feet per day of hydrogen, based on electrolysis and natural gas steam reforming technologies, will be discussed. The additional cost of controlling CO 2 emissions from the natural gas steam reforming plant will be included in the analysis in order to satisfy the need to live in a future carbon constrained world. The cost of delivery of hydrogen from the large central plant to the user sites in a large metropolitan area will be highlighted, and the delivered cost will be compared to the cost from on-site distributed generation plants. Five types of distributed generation plants, based on proton exchange membrane, alkaline electrolysis and advanced steam reforming, will be analysed and discussed. Two criteria were used to rank various hydrogen production options, the cost of production and the price of hydrogen to achieve an acceptable return of investment. (author)

  6. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Science.gov (United States)

    S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer

    2016-01-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...

  7. Modelling the influence of carbon content on material behavior during forging

    Science.gov (United States)

    Korpała, G.; Ullmann, M.; Graf, M.; Wester, H.; Bouguecha, A.; Awiszus, B.; Behrens, B.-A.; Kawalla, R.

    2017-10-01

    Nowadays the design of single process steps and even of whole process chains is realized by the use of numerical simulation, in particular finite element (FE) based methods. A detailed numerical simulation of hot forging processes requires realistic models, which consider the relevant material-specific parameters to characterize the material behavior, the surface phenomena, the dies as well as models for the machine kinematic. This data exists partial for several materials, but general information on steel groups depending on alloying elements are not available. In order to generate the scientific input data regarding to material modelling, it is necessary to take into account the mathematical functions for deformation behavior as well as recrystallization kinetic, which depends alloying elements, initial microstructure and reheating mode. Besides the material flow characterization, a detailed description of surface changes caused by oxide scale is gaining in importance, as these phenomena affect the material flow and the component quality. Experiments to investigate the influence of only one chemical element on the oxide scale kinetic and the inner structure at high temperatures are still not available. Most data concerning these characteristics is provided for the steel grade C45, so this steel will be used as basis for the tests. In order to identify the effect of the carbon content on the material and oxidation behavior, the steel grades C15 and C60 will be investigated. This paper gives first approaches with regard to the influence of the carbon content on the oxide scale kinetic and the flow stresses combined with the initial microstructure.

  8. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.; Li, Yujiao; Boll, Torben; Borchers, Christine; Choi, Pyuckpa; Al-Kassab, Talaat; Raabe, Dierk; Kirchheim, Reiner

    2013-01-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. The effects of neutron irradiation on the structure of carbon-carbon composites

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Hollenberg, G. W.; Slagle, O.D.; Watson, R.D.

    1991-01-01

    In this paper irradiation behavior of carbon fibers and carbon-carbon composites are discussed in terms on simple microstructural models. Previous data are discussed in terms of these models. New data are presented for the irradiation-induced dimensional changes of selected carbon-carbon composites. The influence of fiber precursor on carbon- carbon irradiation performance is discussed

  11. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  12. Sedimentary Record of the Back-Arc Basins of South-Central Mexico: an Evolution from Extensional Basin to Carbonate Platform.

    Science.gov (United States)

    Sierra-Rojas, M. I.; Molina-Garza, R. S.; Lawton, T. F.

    2015-12-01

    The Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were controlled by tectonic processes related to the instauration of a continental arc and the accretion of the Guerrero arc to mainland Mexico. The Atzompa Formation refers to a succession of conglomerate, sandstone, siltstone, and limestone that crop out in southwestern Mexico with Early Cretaceous fauna and detrital zircon maximum depositional ages. The sedimentary record shows a transition from early fluvial/alluvial to shallow marine depositional environments. The first stage corresponds to juvenile fluvial/alluvial setting followed by a deep lacustrine depositional environment, suggesting the early stages of an extensional basin. The second stage is characterized by anabranched deposits of axial fluvial systems flowing to the NE-SE, showing deposition during a period of rapid subsidence. The third and final stage is made of tidal deposits followed, in turn, by abrupt marine flooding of the basin and development of a Barremian-Aptian carbonate ramp. We interpret the Tentzo basin as a response to crustal extension in a back-arc setting, with high rates of sedimentation in the early stages of the basin (3-4 mm/m.y), slower rates during the development of starved fluvial to tidal systems and carbonate ramps, and at the top of the Atzompa Formation an abrupt deepening of the basin due to flexural subsidence related to terrane docking and attendant thrusting to the west. These events were recorded in the back-arc region of a continental convergent margin (Zicapa arc) where syn-sedimentary magmatism is indicated by Early Cretaceous detrital and volcanic clasts from alluvial fan facies west of the basin. Finally, and as a response to the accretion of the Guerrero superterrane to Oaxaquia during the Aptian, a carbonate platform facing toward the Gulf of Mexico was established in central to eastern Oaxaquia.

  13. Correlation and regression analysis of tools influencing on targets of monetary policy of Central Bank of the Russian Federation

    Directory of Open Access Journals (Sweden)

    Gordyachkova O. V.

    2016-07-01

    Full Text Available the article presents the correlation and regression analysis of the influence of the Central Bank tools of Russian monetary policy on its aims. Such analysis is the basic method of estimating monetary policy efficiency by means of quantity-related parameters. The results outlined by the authors prove the lack of efficiency of influencing tools: inflation, money supply and the exchange rate.

  14. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO{sub 3}@C composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Fuqiang [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Xu, Yanhui; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2014-08-30

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO{sub 3}@C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO{sub 3}@C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO{sub 3} (CoSnO{sub 3}@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO{sub 3}@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles.

  15. The central noradrenergic system

    African Journals Online (AJOL)

    2006-07-27

    Jul 27, 2006 ... recognition of a direct influence of the central noradrenergic system on peripheral ... influences on cerebral function and behavior it is impossible to imagine ... stimuli and to speed-up information processing.4. The influence of ...

  16. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring.

    Science.gov (United States)

    Meyer-Jacob, Carsten; Tolu, Julie; Bigler, Christian; Yang, Handong; Bindler, Richard

    2015-05-26

    Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A.D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.

  17. Influence of artificial carbon nanotubes on expression of Rb gene and viability of lymphocytes

    International Nuclear Information System (INIS)

    Zhornik, E.V.

    2010-01-01

    Nanotechnologies that received the development last decades are the most perspective field of modern engineering and medicine. Alongside with the strong advantages nanoparticles can render negative influence on living cells and organisms. In connection with increasing use of nanotechnologies there is the necessity of studying the potential toxicity related to influence of nanoparticles. The changes in expression of Rb gene of human lymphocytes after short-term action of multiwalled carbon nanotubes at 100 mg/ml concentration was investigated to assess the potential risks of using the artificial nanotubes, and also the vitality of blood lymphocytes after their incubation with artificial nanotubes. The increase in the expression of Rb gene in time-dependent manner and the influence of nanoparticles on survival rate of lymphocytes in comparison with control samples were shown. (authors)

  18. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  19. Critical Internal Factors Influencing The Centralization Of Stock Procurement Processes In A South African Municipality

    OpenAIRE

    Zwelihle Wiseman Nzuza; Lawrence Mpele Lekhanya

    2014-01-01

    The purpose of this paper was threefold: 1) to examine the internal factors influencing centralization of stock procurement processes, 2) to assess the relationship between demographic factors and staff understanding of Information Communication Technology (ICT) with performance improvement, and 3) to examine the relationship between prevention of corruption with management commitment. A structured questionnaire was used to collect data from 82 members of staff from procurement division in a ...

  20. Contrasting pattern of hydrological changes during the past two millennia from central and northern India: Regional climate difference or anthropogenic impact?

    Science.gov (United States)

    Mishra, Praveen K.; Prasad, Sushma; Marwan, Norbert; Anoop, A.; Krishnan, R.; Gaye, Birgit; Basavaiah, N.; Stebich, Martina; Menzel, Philip; Riedel, Nils

    2018-02-01

    High resolution reconstructions of the India Summer Monsoon (ISM) are essential to identify regionally different patterns of climate change and refine predictive models. We find opposing trends of hydrological proxies between northern (Sahiya cave stalagmite) and central India (Lonar Lake) between 100 and 1300 CE with the strongest anti-correlation between 810 and 1300 CE. The apparently contradictory data raise the question if these are related to widely different regional precipitation patterns or reflect human influence in/around the Lonar Lake. By comparing multiproxy data with historical records, we demonstrate that only the organic proxies in the Lonar Lake show evidence of anthropogenic impact. However, evaporite data (mineralogy and δ18O) are indicative of precipitation/evaporation (P/E) into the Lonar Lake. Back-trajectories of air-mass circulation over northern and central India show that the relative contribution of the Bay of Bengal (BoB) branch of the ISM is crucial for determining the δ18O of carbonate proxies only in north India, whereas central India is affected significantly by the Arabian Sea (AS) branch of the ISM. We conclude that the δ18O of evaporative carbonates in the Lonar Lake reflects P/E and, in the interval under consideration, is not influenced by source water changes. The opposing trend between central and northern India can be explained by (i) persistent multidecadal droughts over central India between 810 and 1300 CE that provided an effective mechanism for strengthening sub-tropical westerly winds resulting in enhancement of wintertime (non-monsoonal) rainfall over northern parts of the Indian subcontinent, and/or (ii) increased moisture influx to northern India from the depleted BoB source waters.

  1. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.

    Science.gov (United States)

    Sainju, Upendra M; Singh, Bharat P; Whitehead, Wayne F; Wang, Shirley

    2006-01-01

    Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.

  2. Upstream-Downstream Joint Carbon Reduction Strategies Based on Low-Carbon Promotion

    Directory of Open Access Journals (Sweden)

    Xiqiang Xia

    2018-06-01

    Full Text Available A differential game model is established to analyze the impact of emissions reduction efforts and low-carbon product promotion on the reduction strategies of low-carbon product manufacturers (subsequently referred to as manufacturers and the retailers of such products in a dynamic environment. Based on this model, changes in emissions reduction efforts and promotional efforts are comparatively analyzed under three scenarios (retailers bearing the promotional cost, manufacturers bearing the promotional cost, and centralized decision-making. The results are as follows: (1 the trajectory of carbon emissions reduction per product unit is the highest when the supply chain is under centralized decision-making, followed by when manufacturers bear the promotional cost, and lastly when retailers bear the cost; (2 when manufacturers bear the promotional cost, the market demand, emissions reduction effort, and promotional effort are higher, although the unit retail price is higher than when retailers bear the promotional cost; and (3 under centralized decision-making, the unit retail price is the lowest; however, sales volume, the emissions reduction effort, and the promotional effort are all higher than those in the other scenarios.

  3. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.

    Science.gov (United States)

    Stegen, James C; Johnson, Tim; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Fansler, Sarah J; Graham, Emily B; Kennedy, David W; Resch, Charles T; Tfaily, Malak; Zachara, John

    2018-02-08

    The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.

  4. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  5. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise.

    Science.gov (United States)

    Broxterman, R M; Craig, J C; Smith, J R; Wilcox, S L; Jia, C; Warren, S; Barstow, T J

    2015-09-01

    Critical power represents an important threshold for neuromuscular fatigue development and may, therefore, dictate intensities for which exercise tolerance is determined by the magnitude of fatigue accrued. Peripheral fatigue appears to be constant across O2 delivery conditions for large muscle mass exercise, but this consistency is equivocal for smaller muscle mass exercise. We sought to determine the influence of blood flow occlusion during handgrip exercise on neuromuscular fatigue development and to examine the relationship between neuromuscular fatigue development and W '. Blood flow occlusion influenced the development of both peripheral and central fatigue, thus providing further evidence that the magnitude of peripheral fatigue is not constant across O2 delivery conditions for small muscle mass exercise. W ' appears to be related to the magnitude of fatigue accrued during exercise, which may explain the reported consistency of intramuscular metabolic perturbations and work performed for severe-intensity exercise. The influence of the muscle metabolic milieu on peripheral and central fatigue is currently unclear. Moreover, the relationships between peripheral and central fatigue and the curvature constant (W ') have not been investigated. Six men (age: 25 ± 4 years, body mass: 82 ± 10 kg, height: 179 ± 4 cm) completed four constant power handgrip tests to exhaustion under conditions of control exercise (Con), blood flow occlusion exercise (Occ), Con with 5 min post-exercise blood flow occlusion (Con + Occ), and Occ with 5 min post-exercise blood flow occlusion (Occ + Occ). Neuromuscular fatigue measurements and W ' were obtained for each subject. Each trial resulted in significant peripheral and central fatigue. Significantly greater peripheral (79.7 ± 5.1% vs. 22.7 ± 6.0%) and central (42.6 ± 3.9% vs. 4.9 ± 2.0%) fatigue occurred for Occ than for Con. In addition, significantly greater peripheral (83.0 ± 4.2% vs. 69.0 ± 6.2%) and central

  6. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  7. Assessing the combined influence of TOC and black carbon in soil–air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan

    International Nuclear Information System (INIS)

    Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C.; Malik, Riffat Naseem

    2015-01-01

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002–0.53 ng g −1 in the surface soils while 1.43–22.1 and 0.19–7.59 pg m −3 in the passive air samples, respectively. Black carbon (f BC ) and total organic carbon (f TOC ) fractions were also measured and ranged between 0.73 and 1.75 and 0.04–0.2%, respectively. The statistical analysis revealed strong influence of f BC than f TOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta–bromodiphenylether (DE-71) commercial formulation in the study area. Soil–air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (K OA ) and black carbon-air partition coefficients (K BC−A ). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. - Highlights: • Model based calculations of black carbon-air partition coefficients for PBDEs. • Soil and air levels of PBDEs and DPs reported first time for ecologically important sites of the Indus River Basin, Pakistan. • Both, f BC and f TOC showed combined influence on soil–air partitioning of PBDEs in the Indus River Basin, Pakistan. - BC and TOC showed combined influence on soil–air partitioning of POPs i-e., PBDEs in the Indus River Basin, Pakistan

  8. Breaking Carbon Lock-in

    DEFF Research Database (Denmark)

    Driscoll, Patrick Arthur

    2014-01-01

    This central focus of this paper is to highlight the ways in which path dependencies and increasing returns (network effects) serve to reinforce carbon lock-in in large-scale road transportation infrastructure projects. Breaking carbon lock-in requires drastic changes in the way we plan future...

  9. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption; Influencia del tamano de particula de carbon mineral activado sobre la adsorcion de fenol y clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, A

    2001-07-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  10. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition

    NARCIS (Netherlands)

    Jodin, Lucie; Dupuis, Anne-Claire; Rouvière, Emmanuelle; Reiss, Peter

    2006-01-01

    The preparation of the catalyst is one of the key parameters which governs the quality of carbon nanotubes (CNTs) grown by catalyzed chemical vapor deposition (CVD). We investigated the influence of three different procedures of catalyst preparation on the type and diameter of CNTs formed under

  11. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A

    International Nuclear Information System (INIS)

    Goulart, Lorena Athie; Cruz de Moraes, Fernando; Mascaro, Lucia Helena

    2016-01-01

    Different methods of functionalisation and the influence of the multi-walled carbon nanotube sizes were investigated on the bisphenol A electrochemical determination. Samples with diameters of 20 to 170 nm were functionalised in HNO_3 5.0 mol L"−"1 and a concentrated sulphonitric solution. The morphological characterisations before and after acid treatment were carried out by scanning electron microscopy and cyclic voltammetry. The size and acid treatment affected the oxidation of bisphenol A. The multi-walled carbon nanotubes with a 20–40 nm diameter improved the method sensitivity and achieved a detection limit for determination of bisphenol A at 84.0 nmol L"−"1. - Highlights: • The dimension and type of the acid treatment of CNTs directly were influenced at the determination of BPA. • The best results were obtained for the MWCNTs with a smaller diameter. • The functionalisation of MWCNTs with a sulphonitric solution was more efficient. • There is a need to clearly specify the characteristics of CNTs when using this material as a sensor.

  12. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Goulart, Lorena Athie, E-mail: lorenaathie@hotmail.com; Cruz de Moraes, Fernando, E-mail: fcmoraes@hotmail.com; Mascaro, Lucia Helena, E-mail: lmascaro@ufscar.br

    2016-01-01

    Different methods of functionalisation and the influence of the multi-walled carbon nanotube sizes were investigated on the bisphenol A electrochemical determination. Samples with diameters of 20 to 170 nm were functionalised in HNO{sub 3} 5.0 mol L{sup −1} and a concentrated sulphonitric solution. The morphological characterisations before and after acid treatment were carried out by scanning electron microscopy and cyclic voltammetry. The size and acid treatment affected the oxidation of bisphenol A. The multi-walled carbon nanotubes with a 20–40 nm diameter improved the method sensitivity and achieved a detection limit for determination of bisphenol A at 84.0 nmol L{sup −1}. - Highlights: • The dimension and type of the acid treatment of CNTs directly were influenced at the determination of BPA. • The best results were obtained for the MWCNTs with a smaller diameter. • The functionalisation of MWCNTs with a sulphonitric solution was more efficient. • There is a need to clearly specify the characteristics of CNTs when using this material as a sensor.

  13. How does soil erosion influence the terrestrial carbon cycle and the impacts of land use and land cover change?

    Science.gov (United States)

    Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.

    2017-12-01

    The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.

  14. The influence of diet on the δ 13C of shell carbon in the pulmonate snail Helix aspersa

    Science.gov (United States)

    Stott, Lowell D.

    2002-02-01

    The influence of diet and atmospheric CO 2 on the carbon isotope composition of shell aragonite and shell-bound organic carbon in the pulmonate snail Helix aspersa raised in the laboratory was investigated. Three separate groups of snails were raised on romaine lettuce (C3 plant, δ 13C=-25.8‰), corn (C4 plant, δ 13C=-10.5‰), and sour orange ( 12C-enriched C3 plant, δ 13C=-39.1‰). The isotopic composition of body tissues closely tracked the isotopic composition of the snail diet as demonstrated previously. However, the isotopic composition of the acid insoluble organic matrix extracted from the aragonite shells does not track diet in all groups. In snails that were fed corn the isotopic composition of the organic matrix was more negative than the body by as much as 5‰ whereas the matrix was approximately 1‰ heavier than the body tissues in snails fed a diet of C3 plant material. These results indicate that isotopic composition of the organic matrix carbon cannot be used as an isotopic substrate for paleodietary reconstructions without first determining the source of the carbon and any associated fractionations. The isotopic composition of the shell aragonite is offset from the body tissues by 12.3‰ in each of the culture groups. This offset was not influenced by the consumption of carbonate and is not attributable to the diffusion of atmospheric CO 2 into the hemolymph. The carbon isotopic composition of shell aragonite is best explained in terms of equilibrium fractionations associated with exchange between metabolic CO 2 and HCO 3 in the hemolymph and the fractionation associated with carbonate precipitation. These results differ from previous studies, based primarily on samples collected in the field, that have suggested atmospheric carbon dioxide contributes significantly to the shell δ 13C. The culture results indicate that the δ 13C of aragonite is a good recorder of the isotopic composition of the snail body tissue, and therefore a better

  15. The influence of carbonation process on concrete bridges and durability in Estonian practice

    Science.gov (United States)

    Liisma, E.; Sein, S.; Järvpõld, M.

    2017-10-01

    Concrete as one of the most widely used construction material in building industry, has considerable implementing in bridge engineering due to its extensive number of effective technical characteristics. However, according to exploitation environment, there are substantial factors such as aggressive liquids (e.g. deiced salts, sulfates, etc), rapid temperature alterations and the increasing rate of CO2 to take into account predicting actual retained service life of concrete structure and the need of repairmen to increase the lifespan of the bridge. According to several measuring, concentration of atmospheric CO2 is reported linearly increasing and is modeled to appear as exponential increase in the next decade. This environmental influence leads to accelerated carbonation process of concrete and brings up the importance of its potential untimely degradation mechanism. Hence, the main aim of this research is to give an analyzed overview of the carbonation depths of selection of 11 concrete bridges in Estonia built in the period of 1976-2007 and their relation with compressive strength of concrete. In addition to in situ tests, laboratory research was performed to understand natural carbonation rate and compressive strength relations of concrete.

  16. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    Science.gov (United States)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  17. Clumped Isotope Thermometry Reveals Variations in Soil Carbonate Seasonal Biases Over >4 km of Relief in the Semi-Arid Andes of Central Chile

    Science.gov (United States)

    Burgener, L. K.; Huntington, K. W.; Hoke, G. D.; Schauer, A. J.; Ringham, M. C.; Latorre Hidalgo, C.; Díaz, F.

    2015-12-01

    The application of carbonate clumped isotope thermometry to soil carbonates has the potential to shed new light on questions regarding terrestrial paleoclimate. In order to better utilize this paleoclimate tool, outstanding questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures (T(Δ47)) and surface temperatures must be resolved. We address these questions by comparing C, O, and clumped isotope data from Holocene/modern soil carbonates to modern meteorological data. The data were collected along a 170 km transect with >4 km of relief in central Chile (~30°S). Previous studies have suggested that soil carbonates should record a warm season bias and form in isotopic equilibrium with soil water and soil CO2. We identify two discrete climate zones separated by the local winter snow line (~3200 m). Below this boundary, precipitation falls as rain and soil carbonate T(Δ47) values at depths >40 cm resemble summer soil temperatures; at higher elevations, precipitation falls as snow and T(Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest sample site (4700 m), which is devoid of vegetation and located near perennial snow fields, yield anomalous δ18O, δ13C, and T(Δ47) values, indicative of kinetic isotope effects that we attribute to cryogenic carbonate formation. Our results suggest that soil carbonates from depths temperature and precipitation, and should not be used as paleotemperature proxies. These findings (1) highlight the role of soil moisture in modulating soil carbonate formation and the resulting T(Δ47) values, (2) underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry, and (3) suggest that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions.

  18. Carbonate microfacies of the San Juan Formation (Ordovician: Oepikodus evae and Oepikodus intermedius conodont zones), Niquivil, Central Precordillera, Province of San Juan (Argentina); Microfacies carbonáticas de la Formación San Juan (Ordovícico: zonas de conodontos Oepikodus evae y Oepikodus intermedius), Niquivil, Precordillera Central, Provincia de San Juan (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Soria, T.; Beresi, M.; Mestre, A.; Heredia, S.; Rodríguez, M.C.

    2017-09-01

    This contribution presents the description and interpretation of carbonate microfacies of the San Juan Formation (Ordovician) at the Niquivil section, considering the stratigraphical interval between the Oepikodus evae and Oepikodus intermedius conodont zones. The distribution of the microfacies and the conodonts assemblages allow us to identify different sub-environments within the late Floian carbonate ramp of the Central Precordillera. Five microfacies were recognized from the base to the top: M1 Bioclastic mudstone-wackestone; M2 Bioclastic-peloidal wackestone; M3 Intra-bioclastic wackestone; M4 Intra-bioclastic packstone; M5 Peloidal grainstone. The vertical distribution of these microfacies indicates a shallowing trend of the carbonate ramp in the Niquivil section for this temporal interval, which suggests a middle ramp environment with low energy, without wave action, and that evolved towards the middle-inner ramp environment with more energy by wave action and development of tempestites. [Spanish] En la presente contribución se realiza la descripción e interpretación de las microfacies carbonáticas de la Formación San Juan (Ordovícico) en la sección de Niquivil, considerando el intervalo estratigráfico comprendido entre las zonas de conodontos Oepikodus evae y Oepikodus intermedius. El análisis de las microfacies y los conodontos asociados permiten el reconocimiento de diferentes subambientes carbonáticos dentro de la rampa carbonática desarrollada durante el Floiense tardío de la Precordillera Central. Se reconocieron cinco microfacies que, de base a techo, son: M1 Mudstone-Wackestone bioclástico; M2 Wackestone bioclástico-peloidal; M3 Wackestone intra-bioclástico; M4 Packstone intra-bioclástico; M5 Grainstone peloidal. La interpretación vertical de estas microfacies indica una tendencia hacia la somerización de la rampa carbonática en la sección de Niquivil para el lapso temporal estudiado. El que se correspondería con un ambiente de

  19. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock.

    Science.gov (United States)

    Du, Wei; Liu, Da-Wei; Wang, Xiao-Ting; Long, Yun; Chai, Wen-Zhao; Zhou, Xiang; Rui, Xi

    2013-12-01

    Central venous oxygen saturation (Scvo2) is a useful therapeutic target when treating septic shock. We hypothesized that combining Scvo2 and central venous-to-arterial partial pressure of carbon dioxide difference (△Pco2) may provide additional information about survival. We performed a retrospective analysis of 172 patients treated for septic shock. All patients were treated using goal-directed therapy to achieve Scvo2 ≥ 70%. After 6 hours of treatment, we divided patients into 4 groups based on Scvo2 (<70% or ≥ 70%) and △Pco2 (<6 mm Hg or ≥ 6 mm Hg). Overall, 28-day mortality was 35.5%. For patients in whom the Scvo2 target was not achieved at 6 hours, mortality was 50.0%, compared with 29.5% in those in whom Scvo2 exceeded 70% (P = .009). In patients with Scvo2 ≥ 70%, mortality was lower if △Pco2 was <6 mm Hg than if △Pco2 was ≥ 6 mm Hg (56.1% vs 16.1%, respectively; P < .001) and 6-hour lactate clearance was superior (0.01 ± 0.61 vs 0.21 ± 0.31, respectively; P = .016). The combination of Scvo2 and △Pco2 appears to predict outcome in critically ill patients resuscitated from septic shock better than Scvo2 alone. Patients who meet both targets appear to clear lactate more efficiently. © 2013.

  20. Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US

    Science.gov (United States)

    Interannual variability in baseline carbon monoxide (CO) and ozone (O3), defined as mixing ratios under minimal influence of recent and local emissions, was studied for seven rural sites in the Northeast US over 2001–2010. Annual baseline CO exhibited statistically signific...

  1. Estimating Carbon Stocks and Atmospheric Exchange of Depressional Marshes on the Central Florida Landscape

    Science.gov (United States)

    Benscoter, B.; McClellan, M. D.; Benavides, V.; Harshbarger, D.; Comas, X.

    2014-12-01

    Depressional marshes are ubiquitous throughout central and south Florida. Often distributed within a matrix of sandy pine flatwoods and hammocks, these wetlands have a seasonally variable water table, alternating between inundation and complete drydown. Though these landforms are typically small individually, they comprise a substantial component of the landscape and provide vital habitat for an array of flora and fauna. Given their fluctuating hydrology, conditions for soil and plant carbon (C) exchange mechanisms can vary greatly both spatially and temporally. In this study, we are developing a C budget for depressional marsh landforms by assessing ecosystem carbon exchange along an ecotone gradient and quantifying belowground C stocks using non-invasive geophysical methods (ground penetrating radar, GPR) at the Disney Wilderness Preserve (DWP) in Kissimmee, FL, USA. Using a series of closed chambers transecting the marsh from the center outward into the surrounding flatwoods, we are quantifying the effects of seasonal water table change on the magnitude of C exchange. Three dimensional GPR surveys were used to quantify peat layer thickness, and were constrained with direct core sampling to verify subsurface lithology and to assess peat C content. Using the relationship between landform surface area and belowground C volume, we assessed the cumulative C storage in depressional marshes across the DWP landscape. In conjunction with a nearby eddy covariance tower and seasonal hydrologic data, these response functions will help to evaluate the contribution of these small but widespread landscape features on regional C cycling.

  2. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

    Science.gov (United States)

    Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O' Keefe

    2009-01-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux...

  3. The influence of carbon non-stoichiometry on the electronic properties of thorium monocarbide ThC

    Energy Technology Data Exchange (ETDEWEB)

    Shein, I.R.; Ivanovskii, A.L. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2010-09-15

    The first-principle band structure calculations are employed to examine the influence of carbon non-stoichiometry on the structural and electronic properties of the cubic thorium monocarbide ThC. As a result, the equilibrium geometries, electronic bands, densities of states (DOS), Sommerfeld constants and Pauli paramagnetic susceptibility for ThC{sub 1-x} (where x = 0, 0.25 and 0.50) are obtained and analyzed in comparison with available experimental data. Additionally, the formation energies of carbon vacancies are theoretically estimated for ThC{sub 1-x}. The results obtained indicate that the introduction of carbon vacancies in ThC is accompanied by pronounced DOS changes due to the appearance of novel 'vacancy states' in the near-Fermi region formed by comparable contributions of Th 6d and 5f states. The carbon deficiency strongly affects the structure and stability of thorium carbide. For example, for the hypothetical 'over-deficient' composition ThC{sub 0.50} the initial cubic structure undergoes significant tetragonal distortions. On the contrary, for ThC{sub 0.75} the value of Evf is positive and the cubic structure of this phase is preserved. (authors)

  4. The influence of carbon non-stoichiometry on the electronic properties of thorium monocarbide ThC

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2010-01-01

    The first-principle band structure calculations are employed to examine the influence of carbon non-stoichiometry on the structural and electronic properties of the cubic thorium monocarbide ThC. As a result, the equilibrium geometries, electronic bands, densities of states (DOS), Sommerfeld constants and Pauli paramagnetic susceptibility for ThC 1-x (where x = 0, 0.25 and 0.50) are obtained and analyzed in comparison with available experimental data. Additionally, the formation energies of carbon vacancies are theoretically estimated for ThC 1-x . The results obtained indicate that the introduction of carbon vacancies in ThC is accompanied by pronounced DOS changes due to the appearance of novel 'vacancy states' in the near-Fermi region formed by comparable contributions of Th 6d and 5f states. The carbon deficiency strongly affects the structure and stability of thorium carbide. For example, for the hypothetical 'over-deficient' composition ThC 0.50 the initial cubic structure undergoes significant tetragonal distortions. On the contrary, for ThC 0.75 the value of Evf is positive and the cubic structure of this phase is preserved. (authors)

  5. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician carbonate succession of the Siljan district, central Sweden

    Directory of Open Access Journals (Sweden)

    Oliver Lehnert

    2014-12-01

    Full Text Available Based on δ13C data from two drillcores recovered from the Siljan district, we present a first continuous carbon isotope record of the upper Tremadocian–lower Katian limestone succession of central Sweden. New names for some isotopic carbon excursions from the Cambrian–Ordovician boundary through the basal Darriwilian are introduced. The Mora 001 core from the western part of the Siljan impact structure ranges through the Lower–Middle Ordovician, whereas the Solberga 1 core from its eastern part ranges through the Middle–lower Upper Ordovician. Upper Tremadocian and Floian units are extremely condensed and include extensive stratigraphic gaps. Multiple hardgrounds, sometimes with minor karstic overprint, imply recurrent periods of erosion and/or non-deposition. Like in other parts of Sweden, the Dapingian and Darriwilian succession is characterized by a relatively complete sedimentary record and low sedimentation rates.

  6. Carbon and oxygen stable isotope and trace element studies in speleothems and across the J-K boundary, Central Italy

    International Nuclear Information System (INIS)

    Kudielka, G.

    2001-07-01

    Carbon and Oxygen stable isotope ratios of carbonates decisively depend on fractionation during physicochemical processes. Therefore, they represent a powerful tool to derive information on past conditions under which the carbonates formed. Isotope ratio mass spectrometry (IRMS) offers a large range of applications. This thesis presents two projects based upon investigation of carbon and oxygen stable isotope ratios combined with trace element abundances (determined by instrumental neutron activation analysis, INAA) in carbonates. (1) Palaeoclimatic investigation on speleothems from central Italy. Four speleothems from Grotta Grande del Vento, central Italy, were analyzed for stable isotope ratios and trace element abundances, and age dated to obtain a chronologically reliable stable isotope profile. The speleothems were sampled by means of a dental drill to gain a stable isotope profile with a 0.5 mm resolution, trace element abundances have been performed by INAA every 0.5 cm, and the samples for age dating were picked according to remarkable features in the stable isotope trends and analyzed by TIMS. The record covers the period from 93 ka until the early holocene with a hiatus lasting from 75 ka until 65.0 ka. Speleothem growth during the last glacial indicates moderate conditions in the Frasassi region back then. Comparison with speleothems from Ireland, France and northern Italy reveal a north-south slope in d18O, indicating, that the rain over central Italy mainly originates from the North Atlantic. Depletion of moisture in d18O during its continental trajectory is due to rainout, which primarily extracts the heavy isotopes. The stable isotope record is in good agreement with the high-resolution speleothem record from Soreq Cave, Israel. Distinct isotopic events coincide between 85 ka and 80 ka, between ∼ 60 ka and 50 ka and from the last glacial to the early holocene. An offset has been existing between the two records at any time. The speleothems of

  7. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  8. Influence of substitutional atoms on the solubility limit of carbon in bcc iron

    International Nuclear Information System (INIS)

    Saitoh, Hajime; Ushioda, Kohsaku; Yoshinaga, Naoki; Yamada, Wataru

    2011-01-01

    The influence of substitutional atoms (Mn, Cr, Si, P, and Al) on the solubility limit of C in body-centered cubic iron in equilibrium with cementite was investigated in low-carbon steels at a temperature of 700 o C. The C solubility limit was determined from internal friction measurements combined with infrared analysis of C using a high-frequency combustion technique. Experiments clarified that Mn, Cr and Al hardly change the C solubility limit, whereas P and Si increase it.

  9. Neutron scattering investigation of carbon/carbon composites

    International Nuclear Information System (INIS)

    Prem, M.; Krexner, G.; Peterlik, H.

    2005-01-01

    Full text: Carbon/Carbon (C/C) composites, built up from bi-directionally woven fabrics from PAN based carbon fibers, pre-impregnated with phenolic resin followed by pressure curing and carbonization at 1000 o C and a final heat treatment at either 1800 o C or 2400 o C, were investigated by means of small-angle as well as wideangle elastic neutron scattering. Sample orientations arranging the carbon fibers parallel and perpendicular to the incoming beam were examined. Structural features of the composites, i.e. of the fibers as well as the inherently existing pores, are presented and the influence of the heat treatment on the structural properties is discussed. (author)

  10. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan.

    Science.gov (United States)

    Ikemori, Fumikazu; Honjyo, Koji; Yamagami, Makiko; Nakamura, Toshio

    2015-10-15

    In May 2003, high concentrations of organic carbon (OC) in PM2.5 were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM2.5 in Japan via long-range aerosol transport, the radiocarbon ((14)C) concentrations of PM2.5 samples from April 2003 to March 2004 were measured. (14)C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the (14)C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and (14)C. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. LCE: leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical

  12. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    International Nuclear Information System (INIS)

    Rojas, R.; Barriga, C.; De Pauli, C.P.; Avena, M.J.

    2010-01-01

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl - /CO 3 2- ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH - uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  13. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, R., E-mail: rrojas@mail.fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Barriga, C. [Departamento de Quimica Inorganica e Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); De Pauli, C.P. [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Avena, M.J. [Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-01-15

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl{sup -}/CO{sub 3}{sup 2-} ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH{sup -} uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  14. Influence of carbon source and inoculum type on anaerobic biomass adhesion on polyurethane foam in reactors fed with acid mine drainage.

    Science.gov (United States)

    Rodriguez, Renata P; Zaiat, Marcelo

    2011-04-01

    This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  16. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    Science.gov (United States)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  17. Influence of carbon on structure stability, mechanical and tribological properties of β-Si3(Cx,N1‑x)4 silicon carbonitride

    Science.gov (United States)

    Zhong, Jing; Hua, Guomin; Chen, Linbo; Li, Changsheng; Yang, Jianhong; Cheng, Xiaonong

    2018-05-01

    In this study, β-Si3(Cx,N1‑x)4 Silicon Carbonitride was prepared by Self-Propagation High-Temperature Synthesis (SHS). And the influence of carbon on structure stability, mechanical and tribological properties of β-Si3(Cx,N1‑x)4 were investigated. The results showed that the solubility of carbon in β-Si3(Cx,N1‑x)4 was about 10 wt%, beyond which cubic-SiC segregated out of β-Si3(Cx,N1‑x)4 to form β-Si3N4/cubic-SiC composite. Regarding influences of carbon concentration on mechanical properties, the hardness of β-Si3(Cx,N1‑x)4 decreased from 1400 Hv to 1200 Hv with the increase of carbon concentration. Whereas, the fracture toughness of β-Si3(Cx,N1‑x)4 increased from 6.5 MPa · m0.5 to 7.6 MPa · m0.5 with the increase of carbon concentration. The tribological property studies revealed the anti-wear performance of β-Si3(Cx,N1‑x)4 was enhanced by the increase of carbon concentration. The dominated wear mechanism could be attributed to the abrasive wear by fracture.

  18. The influence of bubbles on the perception carbonation bite.

    Directory of Open Access Journals (Sweden)

    Paul M Wise

    Full Text Available Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form and at 2.0 atmospheres pressure (at which bubbles did not form. Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  19. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant

    International Nuclear Information System (INIS)

    Reyes-Belmonte, M.A.; Sebastián, A.; Romero, M.; González-Aguilar, J.

    2016-01-01

    Peculiar thermodynamic properties of carbon dioxide (CO 2 ) when it is held at or above its critical condition (stated as supercritical CO 2 or sCO 2 ) have attracted the attention of many researchers. Its excellent thermophysical properties at medium-to-moderate temperature range have made it to be considered as the alternative working fluid for next power plant generation. Among those applications, future nuclear reactors, solar concentrated thermal energy or waste energy recovery have been shown as the most promising ones. In this paper, a recompression sCO 2 cycle for a solar central particles receiver application has been optimized, observing net cycle efficiency close to 50%. However, small changes on cycle parameters such as working temperatures, recuperators efficiencies or mass flow distribution between low and high temperature recuperators were found to drastically modify system overall efficiency. In order to mitigate these uncertainties, an optimization analysis based on recuperators effectiveness definition was performed observing that cycle efficiency could lie among 40%–50% for medium-to-moderate temperature range of the studied application (630 °C–680 °C). Due to the lack of maturity of current sCO 2 technologies and no power production scale demonstrators, cycle boundary conditions based on the solar application and a detailed literature review were chosen. - Highlights: • Mathematical modelling description for recompression sCO 2 cycle. • Split fraction and recuperators effectiveness effect into sCO 2 cycle performance. • Optimization methodology of sCO 2 cycle for an innovative solar central receiver. • Power generation using particles central receiver.

  20. Carbonate microfacies of the San Juan Formation (Ordovician: Oepikodus evae and Oepikodus intermedius conodont zones), Niquivil, Central Precordillera, Province of San Juan (Argentina)

    International Nuclear Information System (INIS)

    Soria, T.; Beresi, M.; Mestre, A.; Heredia, S.; Rodríguez, M.C.

    2017-01-01

    This contribution presents the description and interpretation of carbonate microfacies of the San Juan Formation (Ordovician) at the Niquivil section, considering the stratigraphical interval between the Oepikodus evae and Oepikodus intermedius conodont zones. The distribution of the microfacies and the conodonts assemblages allow us to identify different sub-environments within the late Floian carbonate ramp of the Central Precordillera. Five microfacies were recognized from the base to the top: M1 Bioclastic mudstone-wackestone; M2 Bioclastic-peloidal wackestone; M3 Intra-bioclastic wackestone; M4 Intra-bioclastic packstone; M5 Peloidal grainstone. The vertical distribution of these microfacies indicates a shallowing trend of the carbonate ramp in the Niquivil section for this temporal interval, which suggests a middle ramp environment with low energy, without wave action, and that evolved towards the middle-inner ramp environment with more energy by wave action and development of tempestites. [es

  1. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    Science.gov (United States)

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2017-06-01

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m -2 , respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10 -6  mW m -2 , respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L -1  d -1 ), whereas by using carbon paper the rate decreased to 270 mg COD L -1  d -1 . Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  2. Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of Virginia

    OpenAIRE

    Selig, Marcus Franklin

    2003-01-01

    The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three repli...

  3. Detecting the anthropogenic influences on recent changes in ocean carbon uptake

    International Nuclear Information System (INIS)

    Seferian, Roland; Ribes, Aurelien; Bopp, Laurent

    2014-01-01

    Anthropogenic greenhouse gas emissions have modified the rate at which oceans have absorbed atmospheric CO 2 over the last centuries through rising atmospheric CO 2 and modifications in climate. However, there are still missing pieces in our understanding of the recent evolution of air-sea CO 2 exchanges related to the magnitude of their response to anthropogenic forcing versus that controlled by the internal variability. Here, to detect and attribute anthropogenic influences on oceanic CO 2 uptake between 1960 and 2005, we compare an ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model simulations forced by individual drivers to ocean-only model reconstructions. We demonstrate that the evolution of the global oceanic carbon sink over the last decades can be understood without invoking climate change, attributing rising atmospheric CO 2 as prominent driver of the oceanic sink. Nonetheless, at regional scale, the influence of climate change on air-sea CO 2 exchanges seems to emerge from the internal variability within the low-latitude oceans. (authors)

  4. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the

  5. Convective Influence and Transport Pathways Controlling the Tropical Distribution of Carbon Monoxide at 100 Hpa

    Science.gov (United States)

    Jensen, Eric; Bergman, John; Pfister, Leonard; Ueyama, Rei; Kinnison, Doug

    2014-01-01

    Trajectory calculations with convective influence diagnosed from geostationary-satellite cloud measurements are used to evaluate the relative importance of different Tropical Tropopause Layer (TTL) transport pathways for establishing the distribution of carbon monoxide (CO) at 100 hPa as observed by the Microwave Limb Sounder (MLS) on board the Aura satellite. Carbon monoxide is a useful tracer for investigating TTL transport and convective influence because the CO lifetime is comparable to the time require for slow ascent through the TTL (a couple of months). Offline calculations of TTL radiative heating are used to determine the vertical motion field. The simple trajectory model does a reasonable job of reproducing the MLS CO distributions during Boreal wintertime and summertime. The broad maximum in CO concentration over the Pacific is primarily a result of the strong radiative heating (indicating upward vertical motion) associated with the abundant TTL cirrus in this region. Sensitivity tests indicate that the distinct CO maximum in the Asian monsoon anticyclone is strongly impacted by extreme convective systems with detrainment of polluted air above 360 K potential temperature. The relative importance of different CO source regions will also be discussed.

  6. Influence of the impurities on the depth of penetration with carbon steel weldings

    Directory of Open Access Journals (Sweden)

    O. Savytsky

    2014-04-01

    Full Text Available In this paper the results of the research about the influence of the impurities on the depth of penetration with carbon steels weldings of different chemical composition are presented. These data suggest that presence of those impurities, such as sulphure and oxygen, in the steel, increases the depth of penetration to 1,3 - 1,5 times compared to welding refined steels. Applying activating fluxes for welding high tensile steels, provides an increase in the depth of penetration of 2 - 3 times.

  7. The influence of fractionation on cell survival and premature differentiation after carbon ion irradiation

    International Nuclear Information System (INIS)

    Wang Jufang; Li Renming; Guo Chuanling; Fournier, C.; K-Weyrather, W.

    2008-01-01

    To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated with 250 kV X-rays, or 266 MeV/u, 195 MeV/u and 11 MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The relative biological effective (RBE) 10 values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is 1 for both single and two fractionated irradiation of NHDF cells. Using 11 MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE 10 for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region, RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions. (author)

  8. The Scale, Structure and Influencing Factors of Total Carbon Emissions from Households in 30 Provinces of China—Based on the Extended STIRPAT Model

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2018-05-01

    Full Text Available Household carbon emissions are important components of total carbon emissions. The consumer side of energy-saving emissions reduction is an essential factor in reducing carbon emissions. In this paper, the carbon emissions coefficient method and Consumer Lifestyle Approach (CLA were used to calculate the total carbon emissions of households in 30 provinces of China from 2006 to 2015, and based on the extended Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT model, the factors influencing the total carbon emissions of households were analyzed. The results indicated that, first, over the past ten years, the energy and products carbon emissions from China’s households have demonstrated a rapid growth trend and that regional distributions present obvious differences. Second, China’s energy carbon emissions due to household consumption primarily derived from the residents’ consumption of electricity and coal; China’s products household carbon emissions primarily derived from residents’ consumption of the high carbon emission categories: residences, food, transportation and communications. Third, in terms of influencing factors, the number of households in China plays a significant role in the total carbon emissions of China’s households. The ratio of children 0–14 years old and gender ratio (female = 100 are two factors that reflect the demographic structure, have significant effects on the total carbon emissions of China’s households, and are all positive. Gross Domestic Product (GDP per capita plays a role in boosting the total carbon emissions of China’s households. The effect of the carbon emission intensity on total household carbon emissions is positive. The industrial structure (the proportion of secondary industries’ added value to the regional GDP has curbed the growth of total carbon emissions from China’s household consumption. The results of this study provide data to support the

  9. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan

    International Nuclear Information System (INIS)

    Ikemori, Fumikazu; Honjyo, Koji; Yamagami, Makiko; Nakamura, Toshio

    2015-01-01

    In May 2003, high concentrations of organic carbon (OC) in PM 2.5 were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM 2.5 in Japan via long-range aerosol transport, the radiocarbon ( 14 C) concentrations of PM 2.5 samples from April 2003 to March 2004 were measured. 14 C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the 14 C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and 14 C. - Highlights: • We analyzed the radiocarbon ( 14 C) concentration of TC in PM 2.5 from Nagoya, Japan. • 14 C concentrations from May to early June in 2003 were elevated. • The air mass at this time in Nagoya likely first passed through East Siberia. • Fire location data from MODIS indicate that fire events were prevalent in East Siberia. • Contemporary carbon emitted from the Siberian

  10. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2017-08-01

    Full Text Available Isotopes of dissolved inorganic carbon (DIC are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE, a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less, DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL. Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells. Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings

  11. A global central banker competency model

    Directory of Open Access Journals (Sweden)

    David W. Brits

    2014-07-01

    Full Text Available Orientation: No comprehensive, integrated competency model exists for central bankers. Due to the importance of central banks in the context of the ongoing global financial crisis, it was deemed necessary to design and validate such a model. Research purpose: To craft and validate a comprehensive, integrated global central banker competency model (GCBCM and to assess whether central banks using the GCBCM for training have a higher global influence. Motivation for the study: Limited consensus exists globally about what constitutes a ‘competent’ central banker. A quantitatively validated GCBCM would make a significant contribution to enhancing central banker effectiveness, and also provide a solid foundation for effective people management. Research approach, design and method: A blended quantitative and qualitative research approach was taken. Two sets of hypotheses were tested regarding the relationships between the GCBCM and the training offered, using the model on the one hand, and a central bank’s global influence on the other. Main findings: The GCBCM was generally accepted across all participating central banks globally, although some differences were found between central banks with higher and lower global influence. The actual training offered by central banks in terms of the model, however, is generally limited to technical-functional skills. The GCBCM is therefore at present predominantly aspirational. Significant differences were found regarding the training offered. Practical/managerial implications: By adopting the GCBCM, central banks would be able to develop organisation-specific competency models in order to enhance their organisational capabilities and play their increasingly important global role more effectively. Contribution: A generic conceptual framework for the crafting of a competency model with evaluation criteria was developed. A GCBCM was quantitatively validated.

  12. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons.

    Science.gov (United States)

    Yan, Rong; Chin, Terence; Ng, Yuen Ling; Duan, Huiqi; Liang, David Tee; Tay, Joo Hwa

    2004-01-01

    sulfuric acid as the predominant products. Although both carbons are coal-based and of KOH impregnated type, performances of different carbons differ significantly. A correlation is well established to link the reaction extent with various surface properties. In summary, not only the homogeneous alkali impregnation and physical porosity but also the carbon surface chemistry are significant factors influencing the performances of alkaline activated carbons as H2S adsorbents.

  13. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    Science.gov (United States)

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-08

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study

    International Nuclear Information System (INIS)

    McBeath, Anna V.; Smernik, Ronald J.; Krull, Evelyn S.; Lehmann, Johannes

    2014-01-01

    Solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the carbon chemistry of twenty-six biochars produced from eleven different feedstocks at production temperatures ranging from 350 °C to 600 °C. Carbon-13 NMR spectra were acquired using both cross-polarisation (CP) and direct polarisation (DP) techniques. Overall, the corresponding CP and DP spectra were similar, although aromaticity was slightly higher and observability much higher when DP was used. The relative size and purity of the aromatic ring structures (i.e. aromatic condensation) were also gauged using the ring current technique. Both aromaticity and aromatic condensation increased with increasing production temperature, regardless of the feedstock source. However, there were clear differences in these two measures for biochars produced at the same temperature but from different feedstocks. Based on a relationship previously established in a long-term incubation study between aromatic condensation and the mean residence time (MRT) of biochar, the MRT of the biochars was estimated to range from 1400 years. This study demonstrates how the combination of feedstock composition and production temperature influences the composition of aromatic domains in biochars, which in turn is likely to be related to their recalcitrance and ultimately their carbon sequestration value. -- Highlights: • Sensitive NMR techniques were used to gauge differences in biochar carbon chemistry. • Varying pyrolysis conditions influences biochars recalcitrant properties. • The MRT of contrasting biochars varies considerably from 1400 years

  15. Using Silviculture to Influence Carbon Sequestration in Southern Appalachian Spruce-Fir Forests

    Directory of Open Access Journals (Sweden)

    Patrick T. Moore

    2012-06-01

    Full Text Available Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled. We explicitly considered C stored in standing forest stocks and the fate of forest products derived from harvesting. Over a 100-year simulation period the even-aged scenario (250 Mg C ha1 outperformed the no-action scenario (241 Mg C ha1 in total carbon (TC sequestered. The uneven-aged scenario approached 220 Mg C ha1, but did not outperform the no-action scenario within the simulation period. While the average annual change in C (AAC of the no-action scenario approached zero, or carbon neutral, during the simulation, both the even-aged and uneven-aged scenarios surpassed the no-action by year 30 and maintained positive AAC throughout the 100-year simulation. This study demonstrates that silvicultural treatment of forest stands can increase potential C storage, but that careful consideration of: (1 accounting method (i.e., TC versus AAC; (2 fate of harvested products and; (3 length of the planning horizon (e.g., 100 years will strongly influence the evaluation of C sequestration.

  16. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    International Nuclear Information System (INIS)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R.; Restrepo-Parra, E.; Arango, P.J.

    2010-01-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T room ), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I D /I G or sp 3 /sp 2 ratio and not by the absolute sp 3 or sp 2 concentration.

  17. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang eTang

    2011-08-01

    Full Text Available Photosynthesis is the biological process that converts solar energy to biomass, bio-products and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the TCA cycle and some key and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

  18. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Blanchart, E.; Bernoux, M.; Sarda, X.; Feller, C. [Institut de Recherche pour le Developpement, Montpellier (France); Siqueira Neto, M.; Cerri, C.C.; Piccolo, M. [CENA-USP, Piracicaba (Brazil). Lab. Biogeoquimica Ambiental; Douzet, J.M. [CIRAD, Antsirabe (Madagascar); Scopel, E. [CIRAD-CA, Planaltina (Brazil)

    2007-07-01

    Soils represent a large carbon pool, approximately 1500 Gt, equivalent to almost three times the quantity stored in terrestrial biomass and twice the amount stored in the atmosphere. The management and maintenance of soil carbon is therefore an integral part of the global carbon cycle. Land use change, inappropriate agricultural practices and climate change can all lead to a net release of C from soils to the atmosphere, exacerbating the problems of greenhouse gas release. Any modification of land-use or land management can induce variations in soil carbon stocks, even in agricultural systems that are perceived to be in a steady state. These modifications also alter soil macrofauna that is known to affect soil carbon dynamics. Direct seeding Mulch-based Cropping (DMC) systems with two crops per year without soil tillage have widely been adopted over the last 10 to 15 years in the Cerrado (central region) of Brazil. They are replacing the traditional soybean monocropping with fallow under conventional tillage (CT). Th e objective of this study was to examine how DMC practices affect soil organic carbon (SOC) dynamics and macrofauna (Rio Verde, Goias State). The approach was to determine soil C stocks and macrofauna in five fi elds under DMC aged 1, 5, 7, 11 and 13 years. In order to compare DMC systems with the native system of the region and previous land-use, a situation under native Cerrado (tree-savanna like vegetation) and a field conducted traditionally (CT) were also studied. Soil C stocks were calculated for the 0-10 and 0-40 cm soil depth and also for the fi rst 400 kg m{sup -2} of soil to compare the same amount of soil and to suppress the potential artefact of soil compaction when sample is based on fix layer depth. Soil macrofauna was hand-sorted from soil monoliths (30 cm depth, TSBF method). In our study, the annual rate of carbon storage was equal to ca. 1.6 MgC ha{sup -1}, which is in the range of values measured for DMC in different areas of Brazil

  19. Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region.

    Science.gov (United States)

    Bottalico, Francesca; Pesola, Lucia; Vizzarri, Matteo; Antonello, Leonardo; Barbati, Anna; Chirici, Gherardo; Corona, Piermaria; Cullotta, Sebastiano; Garfì, Vittorio; Giannico, Vincenzo; Lafortezza, Raffaele; Lombardi, Fabio; Marchetti, Marco; Nocentini, Susanna; Riccioli, Francesco; Travaglini, Davide; Sallustio, Lorenzo

    2016-01-01

    Forest ecosystems are fundamental for the terrestrial biosphere as they deliver multiple essential ecosystem services (ES). In environmental management, understanding ES distribution and interactions and assessing the economic value of forest ES represent future challenges. In this study, we developed a spatially explicit method based on a multi-scale approach (MiMoSe-Multiscale Mapping of ecoSystem services) to assess the current and future potential of a given forest area to provide ES. To do this we modified and improved the InVEST model in order to adapt input data and simulations to the context of Mediterranean forest ecosystems. Specifically, we integrated a GIS-based model, scenario model, and economic valuation to investigate two ES (wood production and carbon sequestration) and their trade-offs in a test area located in Molise region (Central Italy). Spatial information and trade-off analyses were used to assess the influence of alternative forest management scenarios on investigated services. Scenario A was designed to describe the current Business as Usual approach. Two alternative scenarios were designed to describe management approaches oriented towards nature protection (scenario B) or wood production (scenario C) and compared to scenario A. Management scenarios were simulated at the scale of forest management units over a 20-year time period. Our results show that forest management influenced ES provision and associated benefits at the regional scale. In the test area, the Total Ecosystem Services Value of the investigated ES increases 85% in scenario B and decreases 82% in scenario C, when compared to scenario A. Our study contributes to the ongoing debate about trade-offs and synergies between carbon sequestration and wood production benefits associated with socio-ecological systems. The MiMoSe approach can be replicated in other contexts with similar characteristics, thus providing a useful basis for the projection of benefits from forest

  20. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  1. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  2. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2011-12-01

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca 2+ associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved

  3. [The influence of joining central venous catheter and pressure transducer with T-junctions on central venous pressure].

    Science.gov (United States)

    Cheng, Xiuling; Yang, Wanjie; An, Youzhong; Teng, Hongyun; Zhang, Rumei; Wang, Yumei; Gao, Hailing; Hua, Ning; Song, Yan

    2015-08-01

    To investigate the influence of the number of T-junctions between central venous catheter and pressure transducer on measurement of central venous pressure ( CVP ) in patients. A prospective controlled study was conducted. The patients with CVP monitoring in Department of Critical Care Medicine of the Fifth Center Hospital in Tianjin from February to October in 2014 were enrolled. The patients were divided into three groups according to the number of T-junction between central venous catheter and pressure transducer: without T-junction control group and 1, 2, 3 T-junctions groups. In each patient, corresponding CVP values with different number of T-junctions placed between the central venous catheter and pressure sensors were determined within a certain period, and a square-wave graphic was obtained and preserved on the monitor. The own frequency ( fn ) and the attenuation coefficient ( D ) of the system of pressure measurement were calculated after measurement of the shock wave following a square-wave to obtain the distance between two vibrations and the amplitude of the shock wave. The difference in CVP, fn and D were compared among the groups. A total of 20 cases were enrolled, and 150 groups of data were collected. (1) With the increase in the number of T-junction, CVP showed a tendency of gradual reduction. The CVP of the groups of control and 1, 2, 3 T-junctions was ( 7.00±1.60 ), ( 7.00±3.00 ), ( 5.00±2.00 ), and ( 4.00±1.00 ) mmHg ( 1 mmHg = 0.133 kPa ), respectively. The CVP of 3 T-junctions group was significantly lower than that of the control group ( F = 9.333, P = 0.015 ). (2) With an increase in the number of T-junction, fn showed a tendency of gradual increase. The fn of groups control and 1, 2, 3 T-junctions was ( 12.30±0.79 ), ( 16.00±0.91 ), ( 18.10±1.75 ), ( 20.90±2.69 ) Hz, respectively. The fn of 1, 2, 3 T-junctions group was significantly higher than that of the control group ( F1 = 45.962, F2 = 45.414, F3 = 46.830, all P = 0

  4. The influence of saltmarsh restoration on sediment dynamics and the potential impact on carbon sequestration

    Science.gov (United States)

    Taylor, Benjamin; Paterson, David

    2017-04-01

    Coastal wetland ecosystems can act as large-capacity carbon sinks, providing a valuable climate change mitigation function. Globally, saltmarshes are estimated to accumulate an average of 244.7g C m-2 yr-1 (Ouyang & Lee 2014). Saltmarsh areas have experienced rapid loss in the recent past of approximately 1-2% per year (Duarte et al. 2008). Efforts to restore these areas could result in additional carbon storage due to extended vegetation cover and altered burial due to changing sediment dynamics. The influence of restoration through transplantation on sediment dynamics within a small estuary on the east coast of Scotland was assessed. Restoration efforts have been implemented since the early 2000s providing examples of old established sites ("old", >10years), young recently planted sites ("young", percentage organic matter content of deposited material is significantly lower in mudflat and young areas (3.78 ± 0.59% and 3.66 ± 0.79% respectively) versus those of natural and old areas (12.08 ± 2.27% and 6.70 ± 1.30% respectively). This relationship suggests that older restored areas are potentially offering the most potential benefit in terms of carbon sequestration, due to higher rates of deposition from the potential load and higher percentage organic content of those deposits. Furthermore, measurements of sediment accretion rates over the same period show natural and old areas to be the most effective at retaining sediment, with average elevation changes of 6.99 ± 1.64mm and 6.56 ± 0.94mm respectively, in comparison to young areas, 4.44 ± 1.58mm, and mudflats, 1.51 ± 1.23mm. Factors influencing these differences could be attributed to type and density of vegetation present and elevation of each area (or immersion period). However, the data suggests restoration could play an important role, which once established, appears to facilitate efficient sediment deposition from potential sediment load and crucially the effective accumulation of organic rich

  5. Carbon concentrations and carbon pool distributions in dry, moist, and cold mid-aged forests of the Rocky Mountains

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; David Adams

    2010-01-01

    Although "carbon” management may not be a primary objective in forest management, influencing the distribution, composition, growth, and development of biomass to fulfill multiple objectives is; therefore, given a changing climate, managing carbon could influence future management decisions. Also, typically, the conversion from total biomass to total carbon is 50...

  6. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  7. Influence of Cutting Temperature on the Tensile Strength of a Carbon Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Jérémy Delahaigue

    2017-12-01

    Full Text Available Carbon fiber-reinforced plastics (CFRP have seen a significant increase in use over the years thanks to their specific properties. Despite continuous improvements in the production methods of laminated parts, a trimming operation is still necessary to achieve the functional dimensions required by engineering specifications. Laminates made of carbon fibers are very abrasive and cause rapid tool wear, and require high cutting temperatures. This creates damage to the epoxy matrix, whose glass-transition temperature is often recognized to be about 180 °C. This study aims to highlight the influence of the cutting temperature generated by tool wear on the surface finish and mechanical properties obtained from tensile tests. Trimming operations were performed on a quasi-isotropic 24-ply carbon/epoxy laminate, of 3.6 mm thickness, with a 6 flutes diamond-coated (CVD cutter. The test specimens of 6 mm and 12 mm wide were obtained by trimming. The reduced width of the coupons allowed amplification of the effect of defects on the measured properties by increasing the proportion of coupon cross-section occupied by the defects. A new tool and a tool in an advanced state of wear were used to generate different cutting temperatures. Results showed a cutting temperature of 300 °C for the new tool and 475 °C for the worn tool. The analysis revealed that the specimens machined with the new tool have no thermal damage and the cut is clean. The plies oriented at −45° presented the worst surface finish according to the failure mode of the fiber. For the worn tool, the surface was degraded and the matrix was carbonized. After cutting, observations showed a degraded resin spread on the machined surface, which reduced the surface roughness and hid the cutting defects. In support of these observations, the tensile tests showed no variation of the mechanical properties for the 12 mm-wide specimens, but did show a 10% loss in mechanical properties for the 6 mm

  8. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    Science.gov (United States)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  9. Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Wang, Ao-Dong; Da, Ya-Bin

    2014-01-01

    It is an important task for China to allocate carbon emission quotas among regions so as to realize its carbon reduction targets and establish the national cap-and-trade carbon market. Meanwhile, it is supposed to be cost-effective to jointly reduce China's carbon emissions through some collaborative activities among regions. Then a natural question is how to allocate the quotas among regions in light of the collaboration. For this purpose, the Shapley value method is adopted and the results show that, first, the regions with higher GDP, higher carbon outflow and higher carbon reduction connection should be allocated more carbon quotas. Moreover, when the collaboration is considered, the optimal allocation of carbon quotas among regions will change significantly compared to the basic quotas by the entropy method; and the Central region is allocated the largest proportion of carbon quota among regions, which indicates its largest radiation effect. Besides, the collaboration between the Central region and Northern coast region, and that between the Central region and the Eastern region should be paid close attention. These results may provide insightful support for decision makers to promote collaborative carbon reduction and allocate carbon quotas in China. - Highlights: • The paper allocates carbon quotas given the collaboration among regions in China. • The Shapley value method coupled with the entropy and gravity models is adopted. • The regions with higher GDP, carbon outflow and reduction connection allocate more. • The Central region has the largest radiation effect on others among all regions. • The collaboration of the Central and Northern coast regions should have priority

  10. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu

    2018-02-01

    Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.

  11. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    Science.gov (United States)

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  12. Microbial contributions to climate change through carbon cycle feedbacks.

    Science.gov (United States)

    Bardgett, Richard D; Freeman, Chris; Ostle, Nicholas J

    2008-08-01

    There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land-atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land-atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

  13. Sequential development of platform to off-platform facies of the great American carbonate bank in the central Appalachians: chapter 15

    Science.gov (United States)

    Brezinski, David K.; Taylor, John F.; Repetski, John E.

    2012-01-01

    In the central Appalachians, carbonate deposition of the great American carbonate bank began during the Early Cambrian with the creation of initial ramp facies of the Vintage Formation and lower members of the Tomstown Formation. Vertical stacking of bioturbated subtidal ramp deposits (Bolivar Heights Member) and dolomitized microbial boundtsone (Fort Duncan Member) preceded the initiation of platform sedimentation and creation of sand shoal facies (Benevola Member) that was followed by the development of peritidal cyclicity (Daragan Member). Initiation of peritidal deposition coincided with the development of a rimmed platform that would persist throughout much of the Cambrian and Early Odrovician. At the end of deposition of the Waynesboro Formation, the platform became subaerially exposed because of the Hawke Bay regression, bringing the Sauk I supersequence to and end. In the Conestoga Valley of eastern Pennsylvania, Early Cambrian ramp deposition was succeeded by deposition of platform-margin and periplatfrom facies of the Kinzers Formation.

  14. Influence of multi-walled carbon nanotubes on the cognitive abilities of Wistar rats

    Science.gov (United States)

    Sayapina, Nina V.; Sergievich, Alexander A.; Kuznetsov, Vladimir L.; Chaika, Vladimir V.; Lisitskaya, Irina G.; Khoroshikh, Pavel P.; Batalova, Tatyana A.; Tsarouhas, Kostas; Spandidos, Demetrios; Tsatsakis, Aristidis M.; Fenga, Concettina; Golokhvast, Kirill S.

    2016-01-01

    Studies of the neurobehavioral effects of carbon nanomaterials, particularly those of multi-walled carbon nanotubes (MWCNTs), have concentrated on cognitive effects, but data are scarce. The aim of this study was to assess the influence of MWCNTs on a number of higher nervous system functions of Wistar rats. For a period of 10 days, two experimental groups were fed with MWCNTs of different diameters (MWCNT-1 group, 8–10 nm; MWCNT-2 group, 18–20 nm) once a day at a dosage of 500 mg/kg. In the open-field test, reductions of integral indications of researching activity were observed for the two MWCNT-treated groups, with a parallel significant (Ptest, integral indices of researching activity in the MWCNT-1 and MWCNT-2 groups reduced by day 10 by 51 and 62%, respectively, while rat stress levels remained relatively unchanged. In the universal problem solving box test, reductions in motivation and energy indices of researching activity were observed in the two experimental groups. Searching activity in the MWCNT-1 group by day 3 was reduced by 50% (Ptests demonstrated that MWCNT-treated rats experienced a significant reduction of some of their cognitive abilities, a disturbing and worrying finding, taking into consideration the continuing and accelerating use of carbon nanotubes in medicine and science. PMID:27588053

  15. Central nervous system affecting drugs and road traffic accidents ...

    African Journals Online (AJOL)

    Central nervous system affecting drugs and road traffic accidents among commercial motorcyclists. ... including driving under the influence of drugs that affect the central nervous system (CNS). ... Keywords: Brain, influence, riders, substances ...

  16. Neutron diffraction for studying the influence of the relative humidity on the carbonation process of cement pastes

    International Nuclear Information System (INIS)

    Galan, I; Andrade, C; Castellote, M; Rebolledo, N; Sanchez, J; Toro, L; Puente, I; Campo, J; Fabelo, O

    2011-01-01

    The effect of humidity on hydrated cement carbonation has been studied by means of in-situ neutron diffraction measurements. The evolution of the main crystalline phases in the bulk of the sample, portlandite and calcite, has been monitored during the process. Data obtained from neutron diffraction allow the quantification of the phases involved. The results highlight the great influence of humidity on carbonation. At very low humidity there are almost no changes. Between 53 and 75% relative humidity, portlandite decrease and calcite increase data can be fitted to exponential decay functions. At very high humidity portlandite remains nearly constant while calcite increases slightly with time, almost linearly.

  17. Tetrapropylammonium ion influence on the synthesis of Pt Ru/carbon hybrids by hydrothermal carbonization

    International Nuclear Information System (INIS)

    Tusi, M.M.; Polanco, N.S.O.; Brandalise, M.; Correa, O.V.; Silva, A.C.; Oliveira Neto, A.; Linardi, M.; Spinace, E.V.

    2010-01-01

    PtRu/Carbon hybrid materials were prepared by hydrothermal carbonization using starch as carbon source and reducing agent and H 2 PtCl 6 .6H 2 O e RuCl 3 .xH 2 O as metals source and catalyst of the carbonization process. The materials were prepared in the following conditions: without pH adjustment, in the absence and in the presence of tetrapropylammonium chloride (TPACl), and adjusting the pH using potassium hydroxide (KOH) or tetrapropylammonium hydroxide (TPAOH). The obtained materials were treated under argon atmosphere at 900 deg C and characterized by SEM/EDX, BET isotherm, XRD and TEM. The electro-oxidation of methanol was studied by chronoamperometry. The material prepared using TPAOH showed the best performance for methanol electro-oxidation. (author)

  18. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  19. Influence of Plio-Pleistocene basin hydrology on the Turkana hominin enamel carbonate δ(18)O values.

    Science.gov (United States)

    Quinn, Rhonda L

    2015-09-01

    Stable oxygen isotopes of hominin enamel carbonate (δ(18)OEC) provide a window into aspects of past drinking behavior and diet, body size, breastfeeding and weaning, mobility, and paleoclimate. It is tempting to compare all hominins across time and space in order to gauge species-level adaptations to changing environments and niche separation between those living sympatrically. Basinal, sub-basinal, and micro-environmental differences, however, may exert an influence on variation in enamel carbonate isotopic values that must be reconciled before hominin species across Africa can be meaningfully compared. Plio-Pleistocene Turkana hominin δ(18)OEC values show a considerable spread, potentially revealing many intrinsic and extrinsic contributing factors operating on different scales. In this study, I examine Turkana hominin δ(18)OEC values relative to identity (taxon, tooth type and number, body size of taxon), dietary (δ(13)C value, Turkana coeval and modern mammalian δ(18)OEC values), and contextual (time, depositional environment) information of each specimen and collection locality and discuss various potential influences. Turkana hominin δ(18)OEC values may primarily reflect differences in imbibed water sources (lake vs. river) as a function of evolving basin hydrology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia)

    2010-10-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T{sub room}), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 {+-} 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I{sub D}/I{sub G} or sp{sup 3}/sp{sup 2} ratio and not by the absolute sp{sup 3} or sp{sup 2} concentration.

  1. Social network analysis using k-Path centrality method

    Science.gov (United States)

    Taniarza, Natya; Adiwijaya; Maharani, Warih

    2018-03-01

    k-Path centrality is deemed as one of the effective methods to be applied in centrality measurement in which the influential node is estimated as the node that is being passed by information path frequently. Regarding this, k-Path centrality has been employed in the analysis of this paper specifically by adapting random-algorithm approach in order to: (1) determine the influential user’s ranking in a social media Twitter; and (2) ascertain the influence of parameter α in the numeration of k-Path centrality. According to the analysis, the findings showed that the method of k-Path centrality with random-algorithm approach can be used to determine user’s ranking which influences in the dissemination of information in Twitter. Furthermore, the findings also showed that parameter α influenced the duration and the ranking results: the less the α value, the longer the duration, yet the ranking results were more stable.

  2. Influence of diet on the distribution of carbon isotopes in animals

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1978-01-01

    The influence of diet on the distribution of carbon isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant carbon isotopic composition. The isotopic composition of the whole body of an animal reflects the isotopic composition of its diet, but the animal is on average enriched in delta 13 C by about 1 part per thousand relative to the diet. In three of the four cases examined the 13 C enrichment of the whole body relative to the diet is balanced by a 13 C depletion of the respired CO 2 . The isotopic relationships between the whole bodies of animals and their diets are similar for different species raised on the same diet and for the same species raised on different diets. However, the delta 13 C values of whole bodies of individuals of a species raised on the same diet may differ by up to 2 parts per thousand. The relationship between the 13 C/ 12 C ratio of a tissue and the 13 C/ 12 C ratio of the diet depends both on the type of tissue and on the nature of the diet. Many of the isotopic relationships among the major biochemical fractions, namely the lipid, carbohydrate and protein fractions, are qualitatively preserved as diet carbon is incorporated into the animal. However, the difference between the delta 13 C values of a biochemical fraction in an animal and in its diet may be as large as 3 parts per thousand. The delta 13 C values of the biochemical components collagen chitin and the insoluble organic fraction of shells, all of which are often preserved in fossil material, are related to the isotopic composition of the diet. (author)

  3. Anti-N-methyl-d-aspartate receptor encephalitis in children of Central South China: Clinical features, treatment, influencing factors, and outcomes.

    Science.gov (United States)

    Wang, Ying; Zhang, Weixi; Yin, Jinghua; Lu, Qianjin; Yin, Fei; He, Fang; Peng, Jing

    2017-11-15

    We analyzed the clinical manifestations of children with anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis in Central South China and the factors influencing the effectiveness of treatment. A retrospective study of children (0-14years old) with anti-NMDAR encephalitis in Central South China was carried out from March 2014 to November 2016. Demographics, clinical features, treatment, outcome, and the factors influencing the effectiveness of treatment were reviewed. Fifty-one patients with anti-NMDAR encephalitis were enrolled (age from 4months to 14years old; median age, 8years; 30 females). Forty-five patients (88%) presented with psychiatric symptoms, 40 (78%) with dyskinesia and movement disorders, 39 (77%) with sleep disturbances, 34 (67%) with seizures, 30 (59%) with a decreased level of consciousness (Glasgow scoreanti-NMDAR encephalitis in Central South China. Patients with decreased consciousness, PICU stay and autonomic instability were more likely to have no or limited response to first-line immunotherapy and to require second-line or even more aggressive immunotherapy. Children with anti-NMDAR encephalitis in China have a much lower incidence of tumors, lower mortality rates, and a lower proportion of lethal autonomic instability than adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A Review of Economic Factors Influencing Voluntary Carbon Disclosure in the Property Sector of Developing Economies

    Science.gov (United States)

    Kalu, J. U.; Aliagha, G. U.; Buang, A.

    2016-02-01

    Global warming has consequences on the environment and economy; this led to the establishment of United Nation Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. These two agreements were to reduce greenhouse gases (GHG) emissions which are responsible for climate change and global warming. Developing countries under the protocol are not obligated to reduce or disclosure GHG emission, so their participation in the protocol is on voluntary mitigation bases. This study intends to examine economic factors that influence voluntary carbon disclosure in the property sub-sector of developing countries based on annual report of listed property companies in Malaysia. Signaling theory addresses the problem of information asymmetry in the society. Disclosure is an effective tool to overcome information imbalance among different market participants. The study hypothesizes that the economic factors that influence voluntary carbon information disclosure in developing countries are: [1] the company's size; this is because a large-sized company have more resources to cover the cost of reducing pollution. [2] The company's gearing status; where there is no sufficient information disclosure in a highly geared company will result to an increased agency cost. [3] Profitability; profits grants companies a pool of resources for mitigation activities and environmental reporting. Also, carbon disclosure acts as a means for achieving public confidence and legitimacy. [4] Liquidity: Companies that are highly liquid will disclosure more information to distinguish themselves from other companies that are less liquidity. This is correlated to environmental disclosure. [5] Financial slack affects companies’ ability to participate in green technology projects that enable a reduction in emission.

  5. The influence of climate changes on carbon cycle in the russian forests. Data inventory and long-scale model prognoses

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, A.O.; Nazarov, I.M.; Lelakin, A.L. [Inst. Global Climate and Ecology, Moscow (Russian Federation)

    1995-12-31

    The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation

  6. The influence of climate changes on carbon cycle in the russian forests. Data inventory and long-scale model prognoses

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, A O; Nazarov, I M; Lelakin, A L [Inst. Global Climate and Ecology, Moscow (Russian Federation)

    1996-12-31

    The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation

  7. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  8. Influence of carbon-bearing raw material on microfungus Blakeslea Trispora biomass producing

    Directory of Open Access Journals (Sweden)

    L. Myronenko

    2015-05-01

    Full Text Available Introduction. This paper investigates influence of hydrated fullerenes on degree of accumulation bioactive substances of microfungus Blakeslea trispora. Materials and methods. In this research effort detection of fatty-acid composition in amino acids, carotenoids and sterols biomass by means of using methods of high-performance liquid chromatography, adsorption and disjunctive chromatography in thin-layer sorbent and spectrophotometric; gravimetric method; method of direct spectrophotometration in benzene took place. Results and discussion. It has been induced that application of hydrated fullerenes in microfungus Blakeslea trispora nutrient medium promotes increasing accumulation in biomass quantity of carotene on 32,3 %; asparaginic, glutamic acids and leucine. Reproportion carbon to nitrogen by means of adding to microfungus Blakeslea trispora nutrient culture medium hydrated fullerenes did not influence on the biomass amino acid structure any. Obtained data of fatty-acid composition in microfungus Blakeslea trispora lipoid fraction indicate about significant predominance unsaturated fatty acids and, as a result of this, we have advance of use microfungus Blakeslea trispora biomass as a source of biologically active substances for establishing a new kind of prophylactic action goods.

  9. Influence of carbon dioxide on the fluid properties and calculation of initial oil in place of the Sandrovac field

    Energy Technology Data Exchange (ETDEWEB)

    Krizmanic, K; Peric, M

    1973-01-01

    The aim of this study is to acquaint the reader with the essential physical and production properties of the Sandrovac oil field. Extreme containment of carbon dioxide in fluids was encountered. Ranging in some places to 80%, this greatly influences physical properties of saturating fluids, and requires the study of the closest association of the content of carbon dioxide and physical parameters of fluids. At the same time, it enables the application of a qualitatively new and very efficient method of increasing the fluid recovery method of oil displacement by carbon dioxide. Principles and methods of calculating and processing the PVT data, capillary pressure, fluid saturations, relative permeabilities, and material balance calculations for tectonic blocks and hydrodynamic units, are given. (11 refs.)

  10. Indirect involvement of armorphous carbon layer on convective heat transfer enhancement using carbon nanofibers

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2015-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nanostructures was achieved using catalytic

  11. Influence of atmospheric 14CO2 on determination of the ratio of biogenic carbon to fossil one in exhaust gases using accelerator mass spectrometry. Experimental evaluation for industrial flue gases

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Saito, Masaaki; Nagakawa, Yoshiyasu

    2012-01-01

    The influence of atmospheric 14 CO 2 was evaluated on the determination of biogenic carbon ratios in industrial flue gases using accelerated mass spectrometry(AMS). Bioethanol, n-hexane, and their mixtures were combusted with a four-stroke engine, and 14 CO 2 in exhaust gases was analyzed by AMS. The experimental biogenic carbon ratio determined by ASTM D6866 method was 1.2 times higher than the theoretical value of mixed fuel containing 3.18% biogenic carbons. In general, the influence of atmospheric 14 CO 2 taken in combustion gases is neglected. It seems that the error cannot be neglected under international trading of emission allowances, where a large amount of carbons in the fuel were evaluated. The experimental value became to be the theoretical value by subtracting the amount of atmospheric 14 C from that of the samples. As the contents of biofuel increased, the experimental biogenic carbon ratios reached the theoretical values and the influence of atmospheric 14 CO 2 decreased. We recommend that the influence of atmospheric 14 CO 2 should be corrected when fuel samples contain low amounts of 14 C. (author)

  12. Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain.

    Science.gov (United States)

    Howlett, David Scott; Moreno, Gerardo; Mosquera Losada, Maria Rosa; Nair, P K Ramachandran; Nair, Vimala D

    2011-07-01

    The extent of carbon (C) stored in soils depends on a number of factors including soil characteristics, climatic and other environmental conditions, and management practices. Such information, however, is lacking for silvopastoral systems in Spain. This study quantified the amounts of soil C stored at various depths (0-25, 25-50, 50-75, and 75-100 cm) under a Dehesa cork oak (Quercus suber L.) silvopasture at varying distances (2, 5, and 15 m) to trees. Soil C in the whole soil and three soil fractions (silvopastoral systems. The results also demonstrate the use of soil aggregate characteristics as better indicators of soil C sequestration potential and thus a tool for environmental monitoring.

  13. Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement

    Science.gov (United States)

    Yager, Joyce A.; West, A. Joshua; Corsetti, Frank A.; Berelson, William M.; Rollins, Nick E.; Rosas, Silvia; Bottjer, David J.

    2017-09-01

    Changes in δ13Ccarb and δ13Corg from marine strata occur globally in association with the end-Triassic mass extinction and the emplacement of the Central Atlantic Magmatic Province (CAMP) during the break up of Pangea. As is typical in deep time, the timing and duration of these isotopic excursions has remained elusive, hampering attempts to link carbon cycle perturbations to specific processes. Here, we report δ13Ccarb and δ13Corg from Late Triassic and Early Jurassic strata near Levanto, Peru, where intercalated dated ash beds permit temporal calibration of the carbon isotope record. Both δ13Ccarb and δ13Corg exhibit a broad positive excursion through the latest Triassic into the earliest Jurassic. The first order positive excursion in δ13Corg is interrupted by a negative shift noted in many sections around the world coincident with the extinction horizon. Our data indicate that the negative excursion lasts 85 ± 25 kyrs, longer than inferred by previous studies based on cyclostratigraphy. A 260 ± 80 kyr positive δ13Corg shift follows, during which the first Jurassic ammonites appear. The overall excursion culminates in a return to pre-perturbation carbon isotopic values over the next 1090 ± 70 kyrs. Via chronologic, isotopic, and biostratigraphic correlation to other successions, we find that δ13Ccarb and δ13Corg return to pre-perturbation values as CAMP volcanism ceases and in association with the recovery of pelagic and benthic biota. However, the initiation of the carbon isotope excursion at Levanto predates the well-dated CAMP sills from North America, indicating that CAMP may have started earlier than thought based on these exposures, or that the onset of carbon cycle perturbations was not related to CAMP.

  14. Influencing attitudes toward carbon capture and sequestration: a social marketing approach.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Dowlatabadi, Hadi; McDaniels, Tim; Ray, Isha

    2011-08-15

    Carbon capture and sequestration (CCS), while controversial, is seen as promising because it will allow the United States to continue using its vast fossil fuel resources in a carbon-constrained world. The public is an important stakeholder in the national debate about whether or not the U.S. should include CCS as a significant part of its climate change strategy. Understanding how to effectively engage with the public about CCS has become important in recent years, as interest in the technology has intensified. We argue that engagement efforts should be focused on places where CCS will first be deployed, i.e., places with many "energy veteran" (EV) citizens. We also argue that, in addition to information on CCS, messages with emotional appeal may be necessary in order to engage the public. In this paper we take a citizen-guided social marketing approach toward understanding how to (positively or negatively) influence EV citizens' attitudes toward CCS. We develop open-ended interview protocols, and a "CCS campaign activity", for Wyoming residents from Gillette and Rock Springs. We conclude that our participants believed expert-informed CCS messages, embedded within an emotionally self-referent (ESR) framework that was relevant to Wyoming, to be more persuasive than the expert messages alone. The appeal to core values of Wyomingites played a significant role in the citizen-guided CCS messages.

  15. The impact of financial development on carbon emissions: An empirical analysis in China

    International Nuclear Information System (INIS)

    Zhang Yuejun

    2011-01-01

    Given the complexity between China's financial development and carbon emissions, this paper uses some econometric techniques, including cointegration theory, Granger causality test, variance decomposition, etc., to explore the influence of financial development on carbon emissions. Results indicate that, first, China's financial development acts as an important driver for carbon emissions increase, which should be taken into account when carbon emissions demand is projected. Second, the influence of financial intermediation scale on carbon emissions outweighs that of other financial development indicators but its efficiency's influence appears by far weaker although it may cause the change of carbon emissions statistically. Third, China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. This to some extent reflects the relatively lower liquidity in China's stock markets. Finally, among financial development indicators, China's FDI exerts the least influence on the change of carbon emissions, due to its relatively smaller volume compared with GDP; but it is mainly utilized in carbon intensive sectors now, therefore, with the increase of China's FDI in the future, many efforts should be made to adapt its utilizing directions and play its positive role in promoting low-carbon development. - Research Highlights: → This paper explores the influence of financial development on carbon emissions. → China's financial development appears to be an important driver for carbon emissions increase. → The influence of financial intermediation scale on carbon emissions outweighs that of other indicators. → China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. → China's FDI exerts the least influence on carbon emissions change, due to its relatively smaller volume compared with China's GDP.

  16. The impact of financial development on carbon emissions: An empirical analysis in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuejun, E-mail: zyjmis@126.co [School of Management and Economics, Beijing Institute of Technology, Beijing 100081 (China) and Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081 (China)

    2011-04-15

    Given the complexity between China's financial development and carbon emissions, this paper uses some econometric techniques, including cointegration theory, Granger causality test, variance decomposition, etc., to explore the influence of financial development on carbon emissions. Results indicate that, first, China's financial development acts as an important driver for carbon emissions increase, which should be taken into account when carbon emissions demand is projected. Second, the influence of financial intermediation scale on carbon emissions outweighs that of other financial development indicators but its efficiency's influence appears by far weaker although it may cause the change of carbon emissions statistically. Third, China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. This to some extent reflects the relatively lower liquidity in China's stock markets. Finally, among financial development indicators, China's FDI exerts the least influence on the change of carbon emissions, due to its relatively smaller volume compared with GDP; but it is mainly utilized in carbon intensive sectors now, therefore, with the increase of China's FDI in the future, many efforts should be made to adapt its utilizing directions and play its positive role in promoting low-carbon development. - Research Highlights: {yields} This paper explores the influence of financial development on carbon emissions. {yields} China's financial development appears to be an important driver for carbon emissions increase. {yields} The influence of financial intermediation scale on carbon emissions outweighs that of other indicators. {yields} China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. {yields} China's FDI exerts the least influence on carbon emissions change, due to its relatively

  17. Studies on carbon dioxide system in central Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Singbal, S.Y.S.

    significantly with depth Bicarbonate ion is quantitatively the major component of the carbon dioxide system The observed vertical distributions are discussed in terms of biological and geochemical processes in the sea...

  18. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  19. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NARCIS (Netherlands)

    Martinez, D. Martinez; Nohava, Jiri; De Hosson, J. Th. M.

    2015-01-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond- like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the

  20. Sensitivity Analysis of Oxide Scale Influence on General Carbon Steels during Hot Forging

    Directory of Open Access Journals (Sweden)

    Bernd-Arno Behrens

    2018-02-01

    Full Text Available Increasing product requirements have made numerical simulation into a vital tool for the time- and cost-efficient process design. In order to accurately model hot forging processes with finite, element-based numerical methods, reliable models are required, which take the material behaviour, surface phenomena of die and workpiece, and machine kinematics into account. In hot forging processes, the surface properties are strongly affected by the growth of oxide scale, which influences the material flow, friction, and product quality of the finished component. The influence of different carbon contents on material behaviour is investigated by considering three different steel grades (C15, C45, and C60. For a general description of the material behaviour, an empirical approach is used to implement mathematical functions for expressing the relationship between flow stress and dominant influence variables like alloying elements, initial microstructure, and reheating mode. The deformation behaviour of oxide scale is separately modelled for each component with parameterized flow curves. The main focus of this work lies in the consideration of different materials as well as the calculation and assignment of their material properties in dependence on current process parameters by application of subroutines. The validated model is used to carry out the influence of various oxide scale parameters, like the scale thickness and the composition, on the hot forging process. Therefore, selected parameters have been varied within a numerical sensitivity analysis. The results show a strong influence of oxide scale on the friction behaviour as well as on the material flow during hot forging.

  1. Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua

    Science.gov (United States)

    Barido, Diego Ponce de Leon; Johnston, Josiah; Moncada, Maria V.; Callaway, Duncan; Kammen, Daniel M.

    2015-10-01

    The global carbon emissions budget over the next decades depends critically on the choices made by fast-growing emerging economies. Few studies exist, however, that develop country-specific energy system integration insights that can inform emerging economies in this decision-making process. High spatial- and temporal-resolution power system planning is central to evaluating decarbonization scenarios, but obtaining the required data and models can be cost prohibitive, especially for researchers in low, lower-middle income economies. Here, we use Nicaragua as a case study to highlight the importance of high-resolution open access data and modeling platforms to evaluate fuel-switching strategies and their resulting cost of power under realistic technology, policy, and cost scenarios (2014-2030). Our results suggest that Nicaragua could cost-effectively achieve a low-carbon grid (≥80%, based on non-large hydro renewable energy generation) by 2030 while also pursuing multiple development objectives. Regional cooperation (balancing) enables the highest wind and solar generation (18% and 3% by 2030, respectively), at the least cost (US127 MWh-1). Potentially risky resources (geothermal and hydropower) raise system costs but do not significantly hinder decarbonization. Oil price sensitivity scenarios suggest renewable energy to be a more cost-effective long-term investment than fuel oil, even under the assumption of prevailing cheap oil prices. Nicaragua’s options illustrate the opportunities and challenges of power system decarbonization for emerging economies, and the key role that open access data and modeling platforms can play in helping develop low-carbon transition pathways.

  2. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption.

    Science.gov (United States)

    Wibowo, N; Setyadhi, L; Wibowo, D; Setiawan, J; Ismadji, S

    2007-07-19

    The influence of surface chemistry and solution pH on the adsorption of benzene and toluene on activated carbon and its acid and heat treated forms were studied. A commercial coal-based activated carbon F-400 was chosen as carbon parent. The carbon samples were obtained by modification of F-400 by means of chemical treatment with HNO3 and thermal treatment under nitrogen flow. The treatment with nitric acid caused the introduction of a significant number of oxygenated acidic surface groups onto the carbon surface, while the heat treatment increases the basicity of carbon. The pore characteristics were not significantly changed after these modifications. The dispersive interactions are the most important factor in this adsorption process. Activated carbon with low oxygenated acidic surface groups (F-400Tox) has the best adsorption capacity.

  3. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    Science.gov (United States)

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Carbon materials for H{sub 2} storage

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2009-05-15

    In this work a series of carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The materials used were different types of commercial carbons: carbon fibers, carbon cloths, nanotubes, superactivated carbons, and synthetic carbons (carbon nanospheres and carbon xerogels). Their textural properties (i.e., surface area, pore size distribution, etc.) were related to their hydrogen adsorption capacities. These H{sub 2} storage capacities were evaluated by various methods (i.e., volumetric and gravimetric) at different temperatures and pressures. The differences between both methods at various operating conditions were evaluated and related to the textural properties of the carbon-based adsorbents. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. Furthermore, hydrogen storage capacity seems to be proportional to surface area, especially at 77 K. The micropore size distribution and the presence of narrow micropores also notably influence the H{sub 2} storage capacity of carbons. In contrast, morphological or structural characteristics have no influence on gravimetric storage capacity. If synthetic materials are used, the textural properties of carbon materials can be tailored for hydrogen storage. However, a larger pore volume would be needed in order to increase storage capacity. It seems very difficult approach to attain the DOE and EU targets only by physical adsorption on carbon materials. Chemical modification of carbons would seem to be a promising alternative approach in order to increase the capacities. (author)

  5. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China

    Directory of Open Access Journals (Sweden)

    W. W. Hu

    2013-10-01

    Full Text Available In order to understand the aging and processing of organic aerosols (OA, an intensive field campaign (Campaign of Air Pollution at Typical Coastal Areas IN Eastern China, CAPTAIN was conducted March–April at a receptor site (a Changdao island in central eastern China. Multiple fast aerosol and gas measurement instruments were used during the campaign, including a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS that was applied to measure mass concentrations and non-refractory chemical components of submicron particles (PM1nr. The average mass concentration of PM1(PM1nr+black carbon was 47 ± 36 μg m−3 during the campaign and showed distinct variation, depending on back trajectories and their overlap with source regions. Organic aerosol (OA is the largest component of PM1 (30%, followed by nitrate (28%, sulfate (19%, ammonium (15%, black carbon (6%, and chloride (3%. Four OA components were resolved by positive matrix factorization (PMF of the high-resolution spectra, including low-volatility oxygenated organic aerosol (LV-OOA, semi-volatile oxygenated OA (SV-OOA, hydrocarbon-like OA (HOA and a coal combustion OA (CCOA. The mass spectrum of CCOA had high abundance of fragments from polycyclic aromatic hydrocarbons (PAHs (m/z 128, 152, 178, etc.. The average atomic ratio of oxygen to carbon in OA (O / C at Changdao was 0.59, which is comparable to other field studies reported at locations downwind of large pollution sources, indicating the oxidized nature of most OA during the campaign. The evolution of OA elemental composition in the van Krevelen diagram (H / C vs. O / C showed a slope of −0.63; however, the OA influenced by coal combustion exhibits a completely different evolution that appears dominated by physical mixing. The aging of organic aerosols vs. photochemical age was investigated. It was shown that OA / ΔCO, as well as LV-OOA / ΔCO and SV-OOA / ΔCO, positively correlated with photochemical age. LV

  6. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Robbins, J.M.; Strizak, J.P.

    1991-01-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  7. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  8. Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries

    International Nuclear Information System (INIS)

    Chang, Zhen-zhen; Yu, Bao-jun; Wang, Cheng-yang

    2015-01-01

    ABSTRACT: Lignin as a by-product of fuel alcohol industry is used to prepare hard carbon materials by acetone extraction, stabilization in N 2 at 300 °C, carbonization in N 2 and subsequent H 2 reduction at 800 °C. The effect of H 2 reduction after carbonization process on the performances of the prepared samples is systematically studied and a simple mechanism is proposed. Excitingly, it is demonstrated that the process of H 2 reduction has a favorable influence on both structures and electrochemical performances of pyrolysis sample and an obvious improvement of capacity performance is obtained with reduction treatment. A first discharge/ charge capacity of 882.2/550.5 mA h g −1 (coulombic efficiency (CE) of 62.4%) is achieved at 0.1 C (1C = 372 mA g −1 ), and even after 200 cycles at 2 C a charge capacity of 228.8 mA h g −1 (about 92.8% retention ratio) remains and CE is above 99% during cycles for H 2 reduced sample. The fabulous electrochemical performance could be attributed to high purity of acetone-extracted lignin, low surface oxygen-containing functional groups and relatively high graphitization degree of reduction sample. In a word, both the simple pyrolysis process and excellent electrochemical performance make lignin-based hard carbon a promising anode material for high-capacity and high-stability lithium ion batteries (LIBs)

  9. Influence of the polymeric coating thickness on the electrochemical performance of Carbon Fiber/PAni composites

    Directory of Open Access Journals (Sweden)

    Carla Polo Fonseca

    2015-10-01

    Full Text Available Abstract Carbon fiber/polyaniline composites (CF/PAni were synthesized at three different deposition time of 30, 60 and 90 min by oxidative polymerization. The composite materials were morphologically and physically characterized by scanning electron microscopy and by Raman spectroscopy, respectively. Their electrochemical responses were analyzed by cyclic voltammetry, by galvanostatic test, and by electrochemical impedance spectroscopy. The influence of the PAni layer thickness deposited on carbon fibers for the composite formation as well as for their electrochemical properties was discussed. The CF/PAni-30 showed a nanometric thickness with more homogeneous morphology compared to those formed in deposition times of 60 and 90 min. It also showed, from the electrochemical impedance spectroscopy measurements, the lowest charge transfer resistance value associated to the its highest value for the double-layer capacitance of 180 Fg-1 making it a very strong candidate as a supercapacitor electrode.

  10. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  11. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    International Nuclear Information System (INIS)

    Devulder, Wouter; De Schutter, Bob; Detavernier, Christophe; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Muller, Robert; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Belmonte, Attilio

    2014-01-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu 0.6 Te 0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu 0.6 Te 0.4 -C/Al 2 O 3 /Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al 2 O 3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al 2 O 3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents

  12. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    Science.gov (United States)

    Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2014-02-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  13. ARM Airborne Carbon Measurements VI (ARM-ACME VI) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-01

    From October 1, 2015 through September 30, 2016, AAF deployed a Cessna 206 aircraft over the Southern Great Plains, collecting observations of trace gas mixing ratios over the ARM/SGP Central Facility. The aircraft payload included two Atmospheric Observing Systems (AOS Inc.) analyzers for continuous measurements of CO2, and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2). The aircraft payload also includes solar/infrared radiation measurements. This research (supported by DOE ARM and TES programs) builds upon previous ARM-ACME missions. The goal of these measurements is to improve understanding of: (a) the carbon exchange of the ARM region; (b) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes, and CO2 concentrations over the ARM region, and (c) how greenhouse gases are transported on continental scales.

  14. Influence of Carbon Sources and Electron Shuttles on Ferric Iron Reduction by Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Erin K. Field; Robin Gerlach; Sridhar Viamajala; Laura K. Jennings; Alfred B. Cunningham; Brent M. Peyton; William A. Apel

    2011-09-01

    The reduction of hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III), can be an important aspect of remediation processes at Department of Energy (DOE) and other contaminated sites. Cellulomonas species are found at several Cr(VI) contaminated and uncontaminated locations at the DOE site in Hanford, Washington. Members of this genus have demonstrated the ability to effectively reduce Cr(VI) to Cr(III) fermentatively and therefore play a potential role in hexavalent chromium remediation at this site. Batch studies were conducted with Cellulomonas sp. strain ES6 to assess the influence of various carbon sources, iron minerals, and electron shuttling compounds on Cr(VI) reduction. These chemical species are likely to be present in these terrestrial environments during in situ bioremediation. Results indicated that there were a number of interactions between these compounds that influenced Cr(VI) reduction rates. The type of carbon source as well as the type of electron shuttle present influenced Cr(VI) reduction rates. When an electron shuttle, such as anthraquinone-2,6-disulfonate (AQDS), was present in the system, reduction rates increased significantly. Biologically reduced AQDS (AHDS) reduced Cr(VI) almost instantaneously. The presence of iron minerals and their concentrations did not significantly influence Cr(VI) reduction rates. However, strain ES6 or AQDS could directly reduce surface-associated Fe(III) to Fe(II) which was capable of reducing Cr(VI) at a near instantaneous rate. These results suggest the rate limiting step in these systems is the transfer of electrons from strain ES6 to the intermediate or terminal electron acceptor whether that is Cr(VI), Fe(III), or AQDS.

  15. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command.

    Science.gov (United States)

    Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana

    2016-11-01

    When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.

  16. The influence of the carbon surface chemical composition on Dubinin-Astakhov equation parameters calculated from SF{sub 6} adsorption data-grand canonical Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A [Department of Chemistry, Physicochemistry of Carbon Materials Research Group, N Copernicus University, Gagarin Street 7, 87-100 Torun (Poland); Kowalczyk, Piotr [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth, WA 6845 (Australia); Harris, Peter J F, E-mail: aterzyk@chem.uni.torun.pl [Centre for Advanced Microscopy, University of Reading, Whiteknights, Reading RG6 6AF (United Kingdom)

    2011-10-05

    Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF{sub 6} adsorption isotherm data cannot be used for characterization of the porosity. (paper)

  17. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  18. Mineralogy, geochemistry and microfacies of late Quaternary periplatform sediments: Carbonate export cycles and secondary processes - Sanganeb Atoll and Abington Reef, Sudan, Central Red Sea

    OpenAIRE

    Emmermann, Peter

    2000-01-01

    A set of sediment cores was obtained in the periplatform realm close to Sanganeb Atoll and Abington Reef, about 20 miles offshore the Sudanese coast in the central Red Sea. Microfacies, mineralogy and geochemistry of periplatform sediments were analysed to quantify glacial-interglacial variations in carbonate production and sediment export of the reefs in response to late Quaternary sealevel fluctuations. The present study showed that the periplatform sediments from the Sudanese shelf to grea...

  19. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM{sub 2.5} in Nagoya, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ikemori, Fumikazu, E-mail: ikemori@nagoyakankaken.net [Nagoya City Institute for Environmental Sciences, 5-16-8, Toyoda, Minami-ku, Nagoya 457-0841 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601 (Japan); Honjyo, Koji [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601 (Japan); Yamagami, Makiko [Nagoya City Institute for Environmental Sciences, 5-16-8, Toyoda, Minami-ku, Nagoya 457-0841 (Japan); Nakamura, Toshio [Centre for Chronological Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2015-10-15

    In May 2003, high concentrations of organic carbon (OC) in PM{sub 2.5} were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM{sub 2.5} in Japan via long-range aerosol transport, the radiocarbon ({sup 14}C) concentrations of PM{sub 2.5} samples from April 2003 to March 2004 were measured. {sup 14}C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the {sup 14}C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and {sup 14}C. - Highlights: • We analyzed the radiocarbon ({sup 14}C) concentration of TC in PM{sub 2.5} from Nagoya, Japan. • {sup 14}C concentrations from May to early June in 2003 were elevated. • The air mass at this time in Nagoya likely first passed through East Siberia. • Fire location data from MODIS indicate that fire events were prevalent in East Siberia.

  20. The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions

    Science.gov (United States)

    Arneli; Safitri, Z. F.; Pangestika, A. W.; Fauziah, F.; Wahyuningrum, V. N.; Astuti, Y.

    2017-02-01

    This research aims to study the influence of activating agents to produce rice husk based-carbon with high adsorption capacity and efficiency for either hazardous organic molecules or heavy metals which are unfriendly for the environment. Firstly, rice husk was burned by pyrolysis at different temperatures to produce rice husk-based carbon. To improve its ability as an adsorbent, carbon was treated with activating agents, namely, H3PO4 and KOH at room and high temperature (420 °C). The performance of carbon was then tested by contacting it with surfactant (SLS). Finally, the surfactant-modified active carbon was applied for chrome metal removal. The result shows that activation of carbon using phosphate acid (H3PO4) was more effective than potassium hydroxide (KOH) conducted at high temperature to adsorb sodium lauryl sulfate (SLS) and chrome metal with the adsorption capacity 1.50 mgg-1 and 0.375 mgg-1, respectively.

  1. Influence of Synthesis pH on Textural Properties of Carbon Xerogels as Supports for Pt/CXs Catalysts for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    C. Alegre

    2012-01-01

    Full Text Available Carbon xerogels (CXs have been prepared by polycondensation of resorcinol and formaldehyde. Two synthesis pHs were studied in order to evaluate its influence on the electrochemical behaviour of Pt catalysts supported on previous carbon xerogels, synthesized by conventional impregnation method. Catalysts were also synthesized over a commercial carbon black (Vulcan-XC-72R for comparison purposes. Characterization techniques included nitrogen physisorption, scanning electron microscopy, and X-ray diffraction. Catalysts electrochemical activity towards the oxidation of carbon monoxide and methanol was studied by cyclic voltammetry and chronoamperometry to establish the effect of the carbon support on the catalysts performance. Commercial Pt/C catalyst (E-TEK was analyzed for comparison purposes. It was observed that the more developed and mesopore-enriched porous structure of the carbon xerogel synthesized at a higher initial pH resulted in an optimal utilization of the active phase and in an enhanced and promising catalytic activity in the electrooxidation of methanol, in comparison with commercial catalysts.

  2. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    Science.gov (United States)

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  3. Design of Carbon Composite Driveshaft for Ultralight Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    R. Poul

    2006-01-01

    Full Text Available This paper deals with the design of the carbon fibre composite driveshaft. This driveshaft will be used for connection between piston engine and propulsor of the type of axial-flow fan. Three different versions of driveshaft were designed and produced. Version 1 if completely made of Al alloy. Version 2 is of hybrid design where the central part is made of high strength carbon composite and flanges are made of Al alloy. Adhesive bond is used for connection between flanges and the central CFRP tube. Version 3 differs from the version 2 by aplication of ultrahigh-strength carbon fibre on the central part. Dimensions and design conditions are equal for all three versions to obtain simply comparable results. Calculations of driveshafts are described in the paper. 

  4. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2015-02-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  5. Influence of composite processing on the properties of CNT grown on carbon surfaces

    Science.gov (United States)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2018-01-01

    Carbon nanotubes (CNT) grafted on carbon fibres (CF) are the subject of more and more studies on the reinforcement of composite materials thanks to the CNT' mechanical properties. This study concerns the growth of CNT directly on CF by the flame method, which is an assembly-line process. However the industrial-scale use of this method and of the composite processing leads to stresses on the CNT-grafted fabrics, such as friction and pulling-out. The aim of this study is to determine the behaviour of the CNT under these kinds of stresses and to study theirs consequences in composite processing. For this purpose, adhesion tests and friction tests were performed as well as analysis of the surface by Scanning Electron Microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). In friction tests, CNT formed a transfer film, and its effect on the wettability of the fabric with epoxy resin is determined. Finally, the wear of the CNT does not influence the wettability of the fabric. Furthermore, it is proven that the nature of the catalyst needed to grow the CNT modifies the behaviour of the surface.

  6. Investigation of bioresistant dry building mixes modified by carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2015-04-01

    Full Text Available Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials comparing to traditional cement-sandy solutions of centralized preparation. The authors present the results of the investigations on obtaining biocidal cement-sand compositions. It was established, that introduction of sodium sulfate into the composition provides obtaining the materials with funginert and fungicide properties. The strength properties of the mixes modified by carbon nanotubes and biocide additive were investigated by mathematical planning methods. The results of the investigations showed that the modification of cement stone structure by carbon nanotubes positively influences their strength and technological properties. Nanomodifying of construction composites by introducing carbon nanotubes may be effectively used at different stages of structure formation of a construction material.

  7. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2012-01-01

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  8. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash.

    Science.gov (United States)

    Lin, Wenlin Yvonne; Heng, Kim Soon; Sun, Xiaolong; Wang, Jing-Yuan

    2015-09-01

    This study investigated the influence of moisture content and temperature on the degree of carbonation of municipal solid waste (MSW) incineration bottom ash (IBA) from two different incineration plants in Singapore. The initial rate of carbonation was affected by the nominal moisture content used. Carbonation temperature seemed to play a part in changing the actual moisture content of IBA during carbonation, which in turn affected the degree of carbonation. Results showed that 2h of carbonation was sufficient for the samples to reach a relatively high degree of carbonation that was close to the degree of carbonation observed after 1week of carbonation. Both Cu and Cr leaching also showed significant reduction after only 2h of carbonation. Therefore, the optimum moisture content and temperature were selected based on 2h of carbonation. The optimum moisture content was 15% for both incineration plants while the optimum temperature was different for the two incineration plants, at 35°C and 50°C. The effect on Cu and Cr leaching from IBA after accelerated carbonation was evaluated as a function of carbonation time. Correlation coefficient, Pearson's R, was used to determine the dominant leaching mechanism. The reduction in Cu leaching was found to be contributed by both formation of carbonate mineral and reduction of DOC leaching. On the other hand, Cr leaching seemed to be dominantly controlled by pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Influence of contact height on the performance of vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Cheng, Yingchun; Guo, Zaibing; Wang, Zhihong; Zhu, Zhiyong; Zhang, Qing; Chan-Park, Chanpark; Schwingenschlö gl, Udo; Zhang, Xixiang

    2013-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been experimentally demonstrated (J. Li et al., Carbon, 2012, 50, 4628-4632). The source and drain contact heights in vertical CNTFETs could be much higher than in flat CNTFETs if the fabrication process is not optimized. To understand the impact of contact height on transistor performance, we use a semi-classical method to calculate the characteristics of CNTFETs with different contact heights. The results show that the drain current decreases with increasing contact height and saturates at a value governed by the thickness of the oxide. The current reduction caused by the increased contact height becomes more significant when the gate oxide is thicker. The higher the drain voltage, the larger the current reduction. It becomes even worse when the band gap of the carbon nanotube is larger. The current can differ by a factor of more than five between the CNTEFTs with low and high contact heights when the oxide thickness is 50 nm. In addition, the influence of the contact height is limited by the channel length. The contact height plays a minor role when the channel length is less than 100 nm. © 2013 The Royal Society of Chemistry.

  10. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    Science.gov (United States)

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.

  11. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  12. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    Science.gov (United States)

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  13. The influence of iron oxide nanoparticles upon the adsorption of organic matter on magnetic powdered activated carbon.

    Science.gov (United States)

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2017-10-15

    Combining powdered activated carbon (PAC) with magnetic iron oxides has been proposed in the past to produce adsorbents for natural organic matter (NOM) removal that can be easily separated using a magnetic field. However, the trade-off between the iron oxides' benefits and the reduced carbon content, porosity, and surface area has not yet been investigated systematically. We produced 3 magnetic powdered activated carbons (MPAC) with mass fractions of 10%, 38% and 54% maghemite nanoparticles and compared them to bare PAC and pure nanoparticles with respect to NOM adsorption kinetics and isotherms. While adsorption kinetics were not influenced by the presence of the iron oxide nanoparticles (IONP), as shown by calculated diffusion coefficients from the homogeneous surface diffusion model, nanoparticles reduced the adsorption capacity of NOM due to their lower adsorption capacity. Although the nanoparticles added mesoporosity to the composite materials they blocked intrinsic PAC mesopores at mass fractions >38% as measured by N 2 -adsorption isotherms. Below this mass fraction, the adsorption capacity was mainly dependent on the carbon content in MPAC and mesopore blocking was negligible. If NOM adsorption with MPAC is desired, a highly mesoporous PAC and a low IONP mass fraction should be chosen during MPAC synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of Surface Roughness and Agitation on the Morphology of Magnetite Films Electrodeposited on Carbon Steel Substrates

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2016-11-01

    Full Text Available In this work, we investigated the effects of surface roughness and agitation on the morphology of magnetite films electrodeposited from alkaline Fe(III-triethanolamine (TEA solutions on carbon steel substrates. The surface roughness of the carbon steel substrates was maintained in the range of 1.64–0.06 μm by using mechanical grinding and polishing methods. The agitation speed was set at 0 and 900 rpm during the electrodeposition process. The particle size and surface roughness value of the magnetite films gradually decreased with decreasing substrate roughness. However, the influence of the substrate roughness on the thickness of the magnetite film was negligible. The morphology of the magnetite film fabricated at 900 rpm appeared to be highly faceted compared to that of the magnetite film produced at 0 rpm. The thickness and surface roughness of the magnetite film significantly increased with the agitation speed, which also significantly affected the electrodeposition efficiency. The effects of substrate surface roughness and agitation on the morphology of magnetite films electrodeposited on carbon steel substrates were also discussed. The obtained results provide critical information for the simulation of magnetite deposits on carbon steel pipes in the secondary systems of nuclear power plants.

  15. Factors influencing non-adherence to tuberculosis treatment in Jepara, central Java, Indonesia.

    Science.gov (United States)

    Rondags, Angelique; Himawan, Ari Budi; Metsemakers, Job Fm; Kristina, Tri Nur

    2014-07-01

    One of the most serious problems for tuberculosis (TB) control is non-adherence to TB treatment. We studied the factors influencing non-adherence to TB treatment in Indonesia to inform TB treatment adherence strategies. We con- ducted semi-structured interviews with non-adherent patients and key informants in Jepara, Central Java, Indonesia. Three major themes were found in reasons for non-adherence to TB treatment: 1) knowledge about TB, 2) knowledge about TB treatment and 3) choosing and changing a health care treatment facility. Respondents had an inadequate knowledge about TB and its treatment. Feeling healthy and having financial problems were the most common reasons for TB treatment non-adherence. Respondents sought treatment from many different health care providers, and often changed the treatment facility location. TB treatment adherence might improve by providing better education about the disease and its treatment to those undergoing treatment. Providing information about where to receive treatment and that treatment is free could also improve compliance.

  16. Carbon Flux of Down Woody Materials in Forests of the North Central United States

    International Nuclear Information System (INIS)

    Woodall, C.W.

    2010-01-01

    Across large scales, the carbon (C) flux of down woody material (DWM) detrital pools has largely been simulated based on forest stand attributes (e.g., stand age and forest type). The annual change in forest DWM C stocks and other attributes (e.g., size and decay class changes) was assessed using a forest inventory in the north central United States to provide an empirical assessment of strategic-scale DWM C flux. Using DWM inventory data from the USDA Forest Service's Forest Inventory and Analysis program, DWM C stocks were found to be relatively static across the study region with an annual flux rate not statistically different from zero. Mean C flux rates across the study area were -0.25, -0.12, -0.01, and -0.04 (Mg/ha/yr) for standing live trees, standing dead trees, coarse woody debris, and fine woody debris, respectively. Flux rates varied in their both magnitude and status (emission/sequestration) by forest types, latitude, and DWM component size. Given the complex dynamics of DWM C flux, early implementation of inventory re measurement, and relatively low sample size, numerous future research directions are suggested.

  17. Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.; Rodkey, K.S. [Purdue Univ., West Lafayette, IN (United States)

    1993-12-31

    Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasing site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.

  18. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts.

    Science.gov (United States)

    Wieczorek, Aneta; Fornalewicz, Karolina; Mocarski, Łukasz; Łyżeń, Robert; Węgrzyn, Grzegorz

    2018-04-15

    Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  20. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  1. alpha-MSH in systemic inflammation. Central and peripheral actions.

    Science.gov (United States)

    Catania, A; Delgado, R; Airaghi, L; Cutuli, M; Garofalo, L; Carlin, A; Demitri, M T; Lipton, J M

    1999-10-20

    Until recently, inflammation was believed to arise from events taking place exclusively in the periphery. However, it is now clear that central neurogenic influences can either enhance or modulate peripheral inflammation. Therefore, it should be possible to improve treatment of inflammation by use of antiinflammatory agents that reduce peripheral host responses and inhibit proinflammatory signals in the central nervous system (CNS). One such strategy could be based on alpha-melanocyte stimulating hormone (alpha-MSH). Increases in circulating TNF-alpha and nitric oxide (NO), induced by intraperitoneal administration of endotoxin in mice, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Increase in lung myeloperoxidase (MPO) activity was significantly less in lungs of mice treated with central alpha-MSH. Proinflammatory agents induced by endotoxin were significantly greater after blockade of central alpha-MSH. The results suggest that antiinflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation. In addition to its central influences, alpha-MSH has inhibitory effects on peripheral host cells, in which it reduces release of proinflammatory mediators. alpha-MSH reduces chemotaxis of human neutrophils and production of TNF-alpha, neopterin, and NO by monocytes. In research on septic patients, alpha-MSH inhibited release of TNF-alpha, interleukin-1 beta (IL-1 beta), and interleukin-8 (IL-8) in whole blood samples in vitro. Combined central and peripheral influences can be beneficial in treatment of sepsis.

  2. The invasive ctenophore Mnemiopsis leidyi in the central Baltic Sea: seasonal phenology and hydrographic influence on spatio-temporal distribution patterns

    DEFF Research Database (Denmark)

    Schaber, M.; Haslob, H.; Huwer, Bastian

    2011-01-01

    In the Western Baltic, the invasive ctenophore Mnemiopsis leidyi was recorded for the first time in autumn 2006. An eastward propagation of the ctenophore into the central Baltic, and thus into important spawning grounds of major Baltic fish stocks, was observed in 2007. The focus of the present...... distribution was mostly confined to water layers below the permanent halocline and significantly influenced by ambient temperature. Our results indicate that there is no self-sustaining population of M. leidyi in the central Baltic Sea. Instead, the species is most likely re-introduced into the Bornholm Basin...... every year via lateral advection from source populations in the Western Baltic. These findings are important not only to further assess the potential impact of M. leidyi on the pelagic ecosystem of the central Baltic Sea, but also for a better understanding of the mechanisms of its invasion into other...

  3. The use of carbon isotopes in the study of groundwater of the Bambui calcareous-central region of Bahia (Brazil)

    International Nuclear Information System (INIS)

    Cabral, F.C.F.

    1978-06-01

    Groundwater of 34 wells and of a spring of the Bambui limestone aquifer, in central Bahia, Brazil, were analized for the 14 C and 13 C content. One sample of soil CO 2 and four of soil organic matter were analized for 13 C. From these data were calculated the 14 C ages of these waters. A major difficulty in the use of radiocarbon in groundwater hydrology is the estimation of the initial 14 C concentration. In many cases, this can be simply determined by the fraction of carbon derived from soil gas, relative to the total carbon dissolved, by the use of Δ 13 C of the soil organic matter, limestone and dissolved carbon in water. This approach does not seem to be completely valid in arid ou semi-arid regions, specially where the pH of the soil is relatively high. In this case, the isotopic composition of the soil water can be determined if the pCO 2 and pH of the soil can be estimated and if the isotopic composition of the soil CO 2 can be known. The final isotopic composition of the groundwater is a combination of the isotopic composition of the soil water and any limestone thereafter dissolved. The 14 C ages of the water samples analized ranged from modern to about 13000 years. The recharge areas of the aquifer are clearly indicated, as the probable underground flow directions. The interpretation of the radiocarbon data is in accord with the hydrologic data. (Author) [pt

  4. Collapse of accreting carbon-oxygen white dwarfs induced by carbon deflagration at high density

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    A critical condition is obtained for which carbon deflagration induces collapse of an accreting C + O white dwarf, not explosion. If the carbon deflagration is initiated at central density as high as 10 10 g cm -3 and if the propagation of the deflagration wave is slower than ∼ 0.15 υ/sub s/ (υ/sub s/ is the sound speed), electron capture behind the burning front induces collapse to form a neutron star. This is the case for both conductive and convective deflagrations. Such a high central density can be reached if the white dwarf is sufficiently massive and cold at the onset of accretion and if the accretion rate is in the appropriate range. Models for Type Ia and Ib supernovae are also discussed. 66 refs., 8 figs

  5. VASOMOTOR ENDOTHELIAL FUNCTION AND MICROCIRCULATION IN ELDERLY PATIENTS WITH ISOLATED SYSTOLIC ARTERIAL HYPERTENSION: INFLUENCE OF "DRY" CARBONIC BATHS AND GENERAL LOW-FREQUENCY MAGNETOTHERAPY

    OpenAIRE

    Alypova, Elena

    2013-01-01

    Abstract. The comparative estimation of influence of the general low-frequency magnetotherapy (GLMT) and "dry" carbonic baths (DCB) on indicators of vasomotor endothelial function and microcirculation in elderly patients with isolated systolic (ISAH) arterial hypertension has been studied. The efficiency of application the combined use of the GLMT and "dry" carbonic baths DCB for correction of revealed disorders in comparing to the monovariant use of thees medical physical factors is establis...

  6. Carbon budget of Nyungwe Tropical Montane Rain Forest in Central Africa

    Science.gov (United States)

    Nyirambangutse, B.; Zibera, E.; Uwizeye, F. K.; Hansson, L.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2015-12-01

    African tropical rainforests host rich biodiversity and play many roles at different scales such as local, regional and global, in the functioning of the earth system. Despite that the African tropical forests are the world's second largest, it has been neglected in terms of understanding the storage and fluxes of carbon and other nutrients. The question of whether this biome is a net sink or source of atmospheric CO2 is still not answered, and little is known concerning the climate change response. Tropical montane forests are even more poorly sampled compared with their importance. Deeper understanding of these ecosystems is required to provide insights on how they might react under global change. To answer questions related to these issues for African tropical montane forests, 15 permanent 0.5 ha plots were established in 2011 in Nyungwe tropical montane rainforest gazetted as a National Park to protect its extensive floral and faunal diversity. The plots are arranged along an east-westerly transect and includes both primary and secondary forest communities. The study is connected to the global ecosystem monitoring network (GEM, http://gem.tropicalforests.ox.ac.uk/). The aim is to characterize spatial and temporal heterogeneity of carbon and nutrient dynamics processes. The role of microclimate, topography, human disturbances, and plant species to the variability of these pools and processes will be explored. We compare stocks and fluxes of carbon and nutrients of the secondary and primary forest communities. The carbon stock are determined by an inventory of height and diameter at breast height (dbh) of all trees with a dbh above 5 cm, wood density, biomass of understory vegetation, leaf area index, standing and fallen dead wood, fine root biomass and organic content of various soil layers (litter, organic and mineral soil down to 45 cm depth). The carbon fluxes are determined by measurements of photosynthesis and respiration of leaves, above and below ground

  7. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    Science.gov (United States)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  8. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.

    Science.gov (United States)

    Neelgund, Gururaj M; Oki, Aderemi R

    2016-12-15

    Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Crystal structure of a diaryl carbonate: 1,3-phenylene bis(phenyl carbonate

    Directory of Open Access Journals (Sweden)

    Marina A. Solomos

    2017-12-01

    Full Text Available The whole molecule of the title compound, C20H14O6, is generated by mirror symmetry, the mirror bisecting the central benzene ring. The carbonate groups adopt an s-cis-s-cis conformation, with torsion angles of 58.7 (2 and 116.32 (15°. The crystal structure of 1,3-phenylene bis(phenyl carbonate contains no strong hydrogen bonds, though weak C—H...O and offset π–π interactions are observed, forming layers parallel to the ac plane.

  10. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    Science.gov (United States)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular

  11. Temperature and ionic strength influences on actinide(VI)/(V) redox potentials for carbonate limiting complexes

    International Nuclear Information System (INIS)

    Capdevila, H.; Vitorge, P.

    1998-01-01

    Actinide behaviour was studied in two limiting aqueous solutions: acidic and carbonate. Cyclic voltametry was validated with well-known U redox system. SIT was used to account for I influence. Taylor's series expansions to the second order were used to account for T influence. Redox potentials of actinide couples had previously been measured in non complexing media. The above data treatments give standard values for redox potential E 0 , for the corresponding entropy ΔS 0 , enthalpy ΔH 0 and heat capacity ΔC p 0 changes, and also for the corresponding excess values (i.e. the variation of these thermodynamic constants with ionic strength). This methodology was here used in carbonate media to measure the potential of the redox couple PuO 2 (CO 3 ) 3 4- /PuO 2 (CO 3 ) 3 5- from 5 to 70 degC and from I = 0.5 to 4.5 M in Na 2 CO 3 , NaClO 4 media. Experimental details and full results are given for Pu. Only final results are given for Np. Previous and/or published data for U and Am are discussed. E and ΔS variations with T or I were enough to be measured. The values obtained for the fitted SIT coefficients Δε, and for ΔS and ΔCp are similar for U, Np and Pu redox reactions. Using this analogy for Am missing data is discussed. β 3 V /β 3 VI formation constant ratio of the carbonate limiting complexes were deduced from the potential shift from complexing to non complexing media for the Actinide(VI)/Actinide(V) redox couples. β 3 V (U and Pu) and β 3 VI (Np) were finally proposed using published β3 VI (U and Pu) and β 3 V (Np). For Am, this data treatment was used to discuss the AmO 2 2+ / AmO 2 + redox potential

  12. Historical Influences and a Modern Alternative for Leadership Models in Central Asia = Orta Asya'da Liderlik Modellerinde Tarihsel Etkiler ve Modern Alternatifler

    Directory of Open Access Journals (Sweden)

    Sean Michael COX

    2002-06-01

    Full Text Available The 1991 demise of the Soviet Union that led to the emancipation of many Central Asian states, also led to a grab for power by a variety of leadership types. Although the characteristics of leadership types in the 1990s were diverse, few followed the pattern of Samuel Huntington's Third Wave of authoritarian transition, whereby authoritarian regimes were abandoned in favor of democratically elected and democratically oriented governments. Historically, Eurasia has had little experience with popular government. This is reflected in the general characteristics of leadership types in the post-Soviet era, which closely follow three regional historical influences - the early Islamic Emperors, the Mongolian Khans and the Russian Tsars (and later Soviet leaders. This article examines the historic influences on Eurasian leadership types and the impact of these types on the politics, societies and economies of these same states. It will be argued that at the current stage of political development, it would ultimately benefit the states of Central Asia to follow, at this time, the most successful Eurasian model to date, that of Kemal Atatürk and Turkey, rather than to push for a fully participatory democracy or sustain the post-Soviet personal dictatorships that have prospered throughout Central Asia.

  13. Modeling the effects of anadromous fish nitrogen on the carbon balance of riparian forests in central Idaho

    Science.gov (United States)

    Noble Stuen, A. J.; Kavanagh, K.; Wheeler, T.

    2010-12-01

    Wild anadromous fish such as Pacific Chinook salmon (Oncorynchus tshawytscha) and steelhead (Oncorhyncus mykiss) were once abundant in Idaho, where they deposited their carcasses, rich in marine-derived nutrients (MDN), in the tributaries of the Columbia River. Anadromous fish are believed to have been a historically important nutrient source to the relatively nutrient-poor inland ecosystems of central Idaho, but no longer reach many inland watersheds due to presence of dams. This study investigates the multi-decadal cumulative effect of presence versus absence of anadromous fish nitrogen on net ecosystem exchange (NEE), or net carbon uptake, of riparian forests along historically salmon-bearing streams in the North Fork Boise River watershed, Idaho, in the context of a changing climate. The ecosystem process model BIOME-BGC is used to develop a representative forest ecosystem and predict the impact of decades of addition and continuing absence of MDN on NEE and net primary production (NPP). The study has 2 objectives: 1) to determine whether BIOME-BGC can reasonably simulate the riparian forests of central Idaho. A potentially confounding factor is the complex terrain of the region, particularly regarding soil water: water accumulation in valley bottoms and their riparian zones may lead to discrepancies in soil moisture and productivity of the riparian forest and of the simulations. The model is parameterized using local ecophysiology and site data and validated using field measurements of leaf area and soil moisture. Objective 2): to determine the effects on forest carbon balance and productivity of the presence or ongoing absence of anadromous-fish derived nitrogen. The forest simulation developed in objective 1 is run under two scenarios into the mid-20th century; one continuing without any supplemental nitrogen and one with nitrogen added in levels consistent with estimates of historical deposition by anadromous fish. Both scenarios incorporate warming due to

  14. Do different vertical positions of maxillary central incisors influence smile esthetics perception?

    Science.gov (United States)

    Menezes, Erica Bretas Cabral; Bittencourt, Marcos Alan Vieira; Machado, Andre Wilson

    2017-01-01

    The purpose of this study was to determine the perception of smile esthetics among orthodontists and layperson, with respect to different maxillary central incisors vertical positions in full-face and close-up smile analyses. Frontal photographs of the smiles of two adult women were used. Images were altered to create a symmetrical image with the gingival margin levels of the maxillary canines matching the central incisors and a 1.0-mm central-to-lateral incisal step. Later, the images were altered in order to create six different central incisor vertical positions in 0.5-mm increments. The images were randomly assembled in an album, which was given to 114 judges, 57 orthodontists and 57 laypersons, who were asked to evaluate the attractiveness of the images using the visual analog scale. The data collected were statistically analyzed by means of 1-way analysis of variance with the Tukey post-hoc test and the Student t test. The highest rated smiles showed two notable characteristics: a) the central incisor gingival margins matched or were 0.5 mm below the line of the canine gingival margins and; b) the central-to-lateral incisal step was 1.0 to 1.5 mm. The worst smiles showed two notable characteristics: a) the central incisor gingival margins were 1.0 mm above or 1.5 mm below the canine gingival margins and; b) no step between the centrals and laterals or a 2.5-mm step. The vertical position of the maxillary central incisors significantly affected the perception of the smile esthetics, whereas slightly extruded central incisors were more esthetically preferred than intruded.

  15. Do different vertical positions of maxillary central incisors influence smile esthetics perception?

    Directory of Open Access Journals (Sweden)

    Erica Bretas Cabral Menezes

    Full Text Available ABSTRACT INTRODUCTION: The purpose of this study was to determine the perception of smile esthetics among orthodontists and layperson, with respect to different maxillary central incisors vertical positions in full-face and close-up smile analyses. METHODS: Frontal photographs of the smiles of two adult women were used. Images were altered to create a symmetrical image with the gingival margin levels of the maxillary canines matching the central incisors and a 1.0-mm central-to-lateral incisal step. Later, the images were altered in order to create six different central incisor vertical positions in 0.5-mm increments. The images were randomly assembled in an album, which was given to 114 judges, 57 orthodontists and 57 laypersons, who were asked to evaluate the attractiveness of the images using the visual analog scale. The data collected were statistically analyzed by means of 1-way analysis of variance with the Tukey post-hoc test and the Student t test. RESULTS: The highest rated smiles showed two notable characteristics: a the central incisor gingival margins matched or were 0.5 mm below the line of the canine gingival margins and; b the central-to-lateral incisal step was 1.0 to 1.5 mm. The worst smiles showed two notable characteristics: a the central incisor gingival margins were 1.0 mm above or 1.5 mm below the canine gingival margins and; b no step between the centrals and laterals or a 2.5-mm step. CONCLUSION: The vertical position of the maxillary central incisors significantly affected the perception of the smile esthetics, whereas slightly extruded central incisors were more esthetically preferred than intruded.

  16. Influence of national centralization of oesophagogastric cancer on management and clinical outcome from emergency upper gastrointestinal conditions.

    Science.gov (United States)

    Markar, S R; Mackenzie, H; Wiggins, T; Askari, A; Karthikesalingam, A; Faiz, O; Griffin, S M; Birkmeyer, J D; Hanna, G B

    2018-01-01

    In England in 2001 oesophagogastric cancer surgery was centralized. The aim of this study was to evaluate whether centralization of oesophagogastric cancer to high-volume centres has had an effect on mortality from different emergency upper gastrointestinal conditions. The Hospital Episode Statistics database was used to identify patients admitted to hospitals in England (1997-2012). The influence of oesophagogastric high-volume cancer centre status (20 or more resections per year) on 30- and 90-day mortality from oesophageal perforation, paraoesophageal hernia and perforated peptic ulcer was analysed. Over the study interval, 3707, 12 441 and 56 822 patients with oesophageal perforation, paraoesophageal hernia and perforated peptic ulcer respectively were included. There was a passive centralization to high-volume cancer centres for oesophageal perforation (26·9 per cent increase), paraoesophageal hernia (19·5 per cent increase) and perforated peptic ulcer (23·0 per cent increase). Management of oesophageal perforation in high-volume centres was associated with a reduction in 30-day (HR 0·58, 95 per cent c.i. 0·45 to 0·74) and 90-day (HR 0·62, 0·49 to 0·77) mortality. High-volume cancer centre status did not affect mortality from paraoesophageal hernia or perforated peptic ulcer. Annual emergency admission volume thresholds at which mortality improved were observed for oesophageal perforation (5 patients) and paraoesophageal hernia (11). Following centralization, the proportion of patients managed in high-volume cancer centres that reached this volume threshold was 88·0 per cent for oesophageal perforation, but only 30·3 per cent for paraoesophageal hernia. Centralization of low incidence conditions such as oesophageal perforation to high-volume cancer centres provides a greater level of expertise and ultimately reduces mortality. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  17. Influence des ions étrangers et de la matière organique sur la cristallisation des carbonates de calcium Influence of Foreign Ions and of Organic Matter on the Crystallization of Calcium Carbonates

    Directory of Open Access Journals (Sweden)

    Cailleau P.

    2006-11-01

    Full Text Available On présente les résultats d'un travail de recherche entrepris pour des aspects de la diagenèse des roches carbonatées : la cimentation cal le rôle est capital pour la conservation ou le colmatage de la porosit de ce type de sédiments. Après une synthèse bibliographique des connaissances actuelles sur et la cimentation du CaC03 en milieu naturel et en laboratoire, on a mentalement l'influence des ions étrangers et de la matière organique sur germination et la croissance des carbonates de calcium. Les principaux résultats obtenus peuvent se résumer comme suit a En ce qui concerne les ions étrangers. Leur action se traduit en général par une augmentation du temps de germination et une réduction de la vitesse de croissance des cristaux de CaCO3; l'apparition de faciès particuliers pour certains des minéraux formés ; l'inhibition des transformations d'une variété en une autre. On obtient un classement par ordre d'efficacité croissante action à peu près nulle: K+, CI-; action modérée : Bat+, Na+, AI3+, Cul+, Sr2+, SO2 , P0;-; action dominante de Mg'+. b Pour les matières organiques. Seules l'acide citrique et, dans une moindre mesure, l'acide tartrique, ont une influence notable, d'ailleurs analogue à celle des ions étrangers en ce qui concerne les cinétiques de germination et de croissance du CaCO. L'adsorption de certains de ces produits se traduit en outre par des faciès particuliers des minéraux formés et éventuellement par l'inhibition des transformations d'une variété en une autre. This article gives the results of a research project undertaken to study one of the aspects of the diagénesis of carbonate rocks, 1. e. calcite cementing, which plays a capital role in preserving or plugging up the original porosity of such sediments.After making a bibliographic synthesis of what is now known about the origin and cementation of CaC03 in a natural environment and in the laboratory, the article experimentally

  18. Maritime climate influence on chaparral composition and diversity in the coast range of central California.

    Science.gov (United States)

    Vasey, Michael C; Parker, V Thomas; Holl, Karen D; Loik, Michael E; Hiatt, Seth

    2014-09-01

    We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1-hectare plots along a coast-to-interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis to objectively categorize plots into climate zone groups. Climate variables, vegetation composition and various diversity measures were compared across climate zone groups using ANOVA and nonmetric multidimensional scaling. Differences in climatic variables that relate to summer moisture availability and winter freeze events explained the majority of variance in measured conditions and coincided with three chaparral assemblages: maritime (lowland coast where the summer marine layer was strongest), transition (upland coast with mild summer marine layer influence and greater winter precipitation), and interior sites that generally lacked late summer water availability from either source. Species turnover (β-diversity) was higher among maritime and transition sites than interior sites. Coastal chaparral differs from interior chaparral in having a higher obligate seeder to facultative seeder (resprouter) ratio and by being dominated by various Arctostaphylos species as opposed to the interior dominant, Adenostoma fasciculatum. The maritime climate influence along the California central coast is associated with patterns of woody plant composition and β-diversity among sites. Summer fog in coastal lowlands and higher winter precipitation in coastal uplands combine to lower late dry season water deficit in coastal chaparral and contribute to longer fire return intervals that are associated with obligate seeders and more local endemism. Soil nutrients are comparatively less important in explaining plant

  19. Influence of surface chemistry on inkjet printed carbon nanotube films

    International Nuclear Information System (INIS)

    Hopkins, Alan R.; Straw, David C.; Spurrell, Kathryn C.

    2011-01-01

    Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.

  20. Central Bank independence

    Directory of Open Access Journals (Sweden)

    Vasile DEDU

    2012-08-01

    Full Text Available In this paper we present the key aspects regarding central bank’s independence. Most economists consider that the factor which positively influences the efficiency of monetary policy measures is the high independence of the central bank. We determined that the National Bank of Romania (NBR has a high degree of independence. NBR has both goal and instrument independence. We also consider that the hike of NBR’s independence played an important role in the significant disinflation process, as headline inflation dropped inside the targeted band of 3% ± 1 percentage point recently.

  1. Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit

    Directory of Open Access Journals (Sweden)

    Wasiye F. Beshir

    2017-10-01

    Full Text Available In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development.

  2. Sources of greenhouse gases and carbon monoxide in central London (UK)

    Science.gov (United States)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent

  3. Pathways of carbon oxidation in continental margin sediments off central Chile

    DEFF Research Database (Denmark)

    Thamdrup, B; Canfield, Donald Eugene

    1996-01-01

    Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations...... the shelf was rich in NO3- and depleted of O2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (>3 micromol cm-3 d-1) and decreased exponentially...... C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO4(2-) reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides...

  4. Increasing carbon storage in intact African tropical forests

    NARCIS (Netherlands)

    Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Ewango, C.E.N.

    2009-01-01

    The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide1, 2. The role of tropical forests is critical because they are carbon-dense and highly productive3, 4. Inventory plots across Amazonia show that

  5. Inventory Centralization Decision Framework for Spare Parts

    DEFF Research Database (Denmark)

    Gregersen, Nicklas; Herbert-Hansen, Zaza Nadja Lee

    2018-01-01

    Within the current literature, there is a lack of a holistic and multidisciplinary approach to managing spare parts and their inventory configuration. This paper addresses this research gap by examining the key contextual factors which influence the degree of inventory centralization and proposes...... a novel holistic theoretical framework, the Inventory Centralization Decision Framework (ICDF), useful for practitioners. Through an extensive review of inventory management literature, six contextual factors influencing the degree of inventory centralization have been identified. Using the ICDF...... practitioners can assess the most advantageous inventory configuration of spare parts. The framework is tested on a large global company which, as a result, today actively uses the ICDF; thus showing its practical applicability....

  6. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    Science.gov (United States)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  7. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Environment and Energy, KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-06-19

    Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites were prepared by in situ potentiostatic deposition of PANI onto SWCNTs at the potential of 0.75V versus SCE, with the aim to investigate the influence of microstructure on the specific capacitance of PANI/SWCNT composites. It was found that the specific capacitance of the PANI/SWCNT composites is strongly influenced by their microstructure, which is correlated to the wt.% of the PANI deposited onto the SWCNTs. The optimum condition, corresponding to the highest specific capacitance, 463Fg{sup -1} (at 10mAcm{sup -2}), was obtained for 73wt.% PANI deposited onto SWCNTs. The specific capacitance of the PANI/SWCNT composite electrode was highly stable, with a capacitive decrease of 5% during the first 500 cycles and just 1% during the next 1000 cycles, indicative of the excellent cyclic stability of the composite for supercapacitor applications. (author)

  8. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    Energy Technology Data Exchange (ETDEWEB)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-07-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m{sup -}2 yr{sup -}1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59{+-}0.43 g kg{sup -}1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha{sup -}1 yr{sup -}1. (Author) 20 refs.

  9. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  10. The role of central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment.

    Science.gov (United States)

    Wittayachamnankul, Borwon; Chentanakij, Boriboon; Sruamsiri, Kamphee; Chattipakorn, Nipon

    2016-12-01

    The current practice in treatment of severe sepsis and septic shock is to ensure adequate oxygenation and perfusion in patients, along with prompt administration of antibiotics, within 6 hours from diagnosis, which is considered the "golden hour" for the patients. One of the goals of treatment is to restore normal tissue perfusion. With this goal in mind, some parameters have been used to determine the success of treatment and mortality rate; however, none has been proven to be the best predictor of mortality rate in sepsis patients. Despite growing evidence regarding the prognostic indicators for mortality in sepsis patients, inconsistent reports exist. This review comprehensively summarizes the reports regarding the frequently used parameters in sepsis including central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference, as prognostic indicators for clinical outcomes in sepsis patients. Moreover, consistent findings and inconsistent reports for their pathophysiology and the potential mechanisms for their use as well as their limitations in sepsis patients are presented and discussed. Finally, a schematic strategy for potential management and benefits in sepsis patients is proposed based upon these current available data. There is currently no ideal biomarker that can indicate prognosis, predict progression of the disease, and guide treatment in sepsis. Further studies are needed to be carried out to identify the ideal biomarker that has all the desired properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China

    Science.gov (United States)

    Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin

    2018-05-01

    Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.

  12. The Impact of Transport Mode and Carbon Policy on Low-Carbon Retailer

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Low-carbon retail has become a strategic target for many developed and developing economies. This study discusses the impact of transport mode and carbon policy on achieving this objective. We investigated the retailer transportation mode, pricing, and ordering strategy, which all consider carbon-sensitive demand under the carbon cap-and-trade policy. We analyzed the optimal decision of retailer and their maximum profit affected by transport mode and cap-and-trade policy parameters. Results show that the two elements (cap-and-trade policy and consumer low-carbon awareness could encourage the retailer to choose low-carbon transportation. The two elements also influence the profit and optimal decision of retailer. Finally, a numerical example is presented to illustrate the applicability of the model.

  13. Central banks: Paradise lost

    OpenAIRE

    Issing, Otmar

    2012-01-01

    The focus of the paper is to analyze how the concept behind central bank policy developed over time and how the recent financial crisis and its consequences will have an influence. While the principles of the institutional arrangement for central banks (independence, clear mandate, prohibition of monetary financing) are relevant as ever, pre- crisis consensus strategies of monetary policy have been revealed as flawed. The close monitoring of money and credit developments, a key lesson to be d...

  14. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    Science.gov (United States)

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    2012-12-01

    In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.

  15. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    Science.gov (United States)

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  16. Base Carbone. Documentation about the emission factors of the Base CarboneR database

    International Nuclear Information System (INIS)

    2014-01-01

    The Base Carbone R is a public database of emission factors as required for carrying out carbon accounting exercises. It is administered by ADEME, but its governance involves many stakeholders and it can be added to freely. The articulation and convergence of environmental regulations requires data homogenization. The Base Carbone R proposes to be this centralized data source. Today, it is the reference database for article 75 of the Grenelle II Act. It is also entirely consistent with article L1341-3 of the French Transport Code and the default values of the European emission quotas exchange system. The data of the Base Carbone R can be freely consulted by all. Furthermore, the originality of this tool is that it enables third parties to propose their own data (feature scheduled for February 2015). These data are then assessed for their quality and transparency, then validated or refused for incorporation in the Base Carbone R . Lastly, a forum (planned for February 2015) will enable users to ask questions about the data, or to contest the data. The administration of the Base Carbone R is handled by ADEME. However, its orientation and the data that it contains are validated by a governance committee incorporating various public and private stakeholders. Lastly, transparency is one of the keystones of the Base Carbone R . Documentation details the hypotheses underlying the construction of all the data in the base, and refers to the studies that have enabled their construction. This document brings together the different versions of the Base Carbone R documentation: the most recent version (v11.5) and the previous versions (v11.0) which is shared in 2 parts dealing with the general case and with the specific case of overseas territories

  17. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    Science.gov (United States)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  18. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    Science.gov (United States)

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  19. The influence of drawing speed on surface topography of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2017-01-01

    Full Text Available In this work the influence of the drawing speed on surface topography of high carbon steel wires has been assessed. The drawing process of f 5,5 mm wire rod to the final wire of f 1,7 mm was conducted in 12 passes by means of a modern Koch multi-die drawing machine. The drawing speeds in the last passes were: 5, 10, 15, 20 and 25 m/s. For final wires f 1,7 mm the three-dimensional analysis of the wire surface topography investigation was determined. It has been proved that the wire topography in the drawing process is characterized by a random anisotropy and the amount of directing the geometrical structure of the surface depends on the drawing speed.

  20. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis.

    Science.gov (United States)

    Li, Siqi; Zheng, Xunhua; Liu, Chunyan; Yao, Zhisheng; Zhang, Wei; Han, Shenghui

    2018-08-01

    Quantifications of soil dissolvable organic carbon concentrations, together with other relevant variables, are needed to understand the carbon biogeochemistry of terrestrial ecosystems. Soil dissolvable organic carbon can generally be grouped into two incomparable categories. One is soil extractable organic carbon (EOC), which is measured by extracting with an aqueous extractant (distilled water or a salt solution). The other is soil dissolved organic carbon (DOC), which is measured by sampling soil water using tension-free lysimeters or tension samplers. The influences of observation methods, natural factors and management practices on the measured concentrations, which ranged from 2.5-3970 (mean: 69) mg kg -1 of EOC and 0.4-200 (mean: 12) mg L -1 of DOC, were investigated through a meta-analysis. The observation methods (e.g., extractant, extractant-to-soil ratio and pre-treatment) had significant effects on EOC concentrations. The most significant divergence (approximately 109%) occurred especially at the extractant of potassium sulfate (K 2 SO 4 ) solutions compared to distilled water. As EOC concentrations were significantly different (approximately 47%) between non-cultivated and cultivated soils, they were more suitable than DOC concentrations for assessing the influence of land use on soil dissolvable organic carbon levels. While season did not significantly affect EOC concentrations, DOC concentrations showed significant differences (approximately 50%) in summer and autumn compared to spring. For management practices, applications of crop residues and nitrogen fertilizers showed positive effects (approximately 23% to 91%) on soil EOC concentrations, while tillage displayed negative effects (approximately -17%), compared to no straw, no nitrogen fertilizer and no tillage. Compared to no nitrogen, applications of synthetic nitrogen also appeared to significantly enhance DOC concentrations (approximately 32%). However, further studies are needed in the future

  1. Stratigraphic framework of sediment-starved sand ridges on a mixed siliciclastic/carbonate inner shelf; west-central Florida

    Science.gov (United States)

    Edwards, J.H.; Harrison, S.E.; Locker, S.D.; Hine, A.C.; Twichell, D.C.

    2003-01-01

    Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (???1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may

  2. Update of the water chemistry effect on the flow-accelerated corrosion rate of carbon steel: influence of hydrazine, boric acid, ammonia, morpholine and ethanolamine

    International Nuclear Information System (INIS)

    Pavageau, E.-M.; De Bouvier, O.; Trevin, S.; Bretelle, J.-L.; Dejoux, L.

    2007-01-01

    The influence of the water chemistry on Flow-Accelerated Corrosion (FAC) affecting carbon steel components has been studied for many years and is relatively well known and taken into account by the models. Nonetheless, experimental studies were conducted in the last few years at EDF on the CIROCO loop in order to check the influence of the water chemistry parameters (hydrazine, boric acid, ammonia, morpholine and ethanolamine) on the FAC rate of carbon steel in one phase flow conditions. The hydrazine impact on the FAC rate was shown to be minor in EDF's chemistry recommendation range, compared to other parameters' effects such as the pH effect. The presence of boric acid in the nominal secondary circuit conditions was negligible. Finally, as expected, the nature of the chemical conditioning (ammonia, morpholine or ethanolamine) did not modify the FAC rate, the influencing chemical variable being the at-temperature pH in one-phase flow conditions. (author)

  3. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  4. Evaluation of the Microbiologically Influenced Corrosion in a carbon steel making use of electrochemical techniques

    International Nuclear Information System (INIS)

    Diaz S, A.C.; Arganis, C.; Ayala, V.; Gachuz, M.; Merino, J.; Suarez, S.; Brena, M.; Luna, P.

    2001-01-01

    The Microbiologically Influenced Corrosion (MIC) has been identified as a problem of the nuclear plants systems in the last years. The electrochemical behavior of metal coupons of carbon steel submitted to the action of sulfate reducing bacteria (SRB) was evaluated, making use of the electrochemical techniques of direct current as well as electrochemical noise. The generated results show a little variation in the corrosion velocities which obtained by Tafel extrapolation and resistance to the linear polarization, whereas the electrochemical noise technique presented important differences as regards the registered behavior in environment with and without microorganisms. (Author)

  5. Cartographic modeling of heterogeneous landscape for footprint analysis of Eddy Covariance Measurements (Central Forest and Central Chernozem reserves, Russia)

    Science.gov (United States)

    Kozlov, Daniil

    2014-05-01

    The topographical, soil and vegetation maps of FLUXNET study areas are widely used for interpretation of eddy covariance measurements, for calibration of biogeochemical models and for making regional assessments of carbon balance. The poster presents methodological problems and results of ecosystem mapping using GIS, remote sensing, statistical and field methods on the example of two RusFluxNet sites in the Central Forest (33° E, 56°30'N) and Central Chernozem (36°10' E, 51°36'N) reserves. In the Central Forest reserve tacheometric measurements were used for topographical and peat surveys of bogged sphagnum spruce forest of 20-hectare area. Its common borders and its areas affected by windfall were determined. The supplies and spatial distribution of organic matter were obtained. The datasets of groundwater monitoring measurements on ten wells were compared with each other and the analysis of spatial and temporal groundwater variability was performed. The map of typical ecosystems of the reserve and its surroundings was created on the basis of analysis of multi-temporal Landsat images. In the Central Chernozem reserve the GNSS topographical survey was used for flux tower footprint mapping (22 ha). The features of microrelief predetermine development of different soils within the footprint. Close relationship between soil (73 drilling site) and terrain attributes (DEM with 2.5 m) allowed to build maps of soils and soil properties: carbon content, bulk density, upper boundary of secondary carbonates. Position for chamber-based soil respiration measurements was defined on the basis of these maps. The detailed geodetic and soil surveys of virgin lands and plowland were performed in order to estimate the effect of agrogenic processes such as dehumification, compaction and erosion on soils during the whole period of agricultural use of Central Chernozem reserve area and around. The choice of analogous soils was based on the similarity of their position within the

  6. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  7. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  8. Communication for Influence : Building ICTD Networks in Central ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project seeks to help achieve universal affordable access to broadband information and communication technology (ICT) infrastructure in a number of countries on the East and West coasts of Africa. It will do so by building regional ICT for development (ICTD) research and advocacy networks in Central, East and West ...

  9. A study on mineralization U,REE and related processes in anomaly No.6 Khoshomy area central Iran

    International Nuclear Information System (INIS)

    Heidaryan, F.

    2005-01-01

    Uranium mineralization in Khoshomy prospect, located in central. part of Iran, with 303-15000 (cps) and 14 to 4000 (ppm) released, The main rock types include: gneiss, granite, pegmatite and migmatite, that influenced by pegmatite-albitic vines (quartz-heldespatic). Acidic and basic dykes, granodioritic, units and dolomite and marble have been seen. The alteration associated with the mineralization is potassic, argillic, propylitic, carbonization, silisificaition and hematitizaition. Uranium mineralization occurred in a hydrothermal phase with Cu, Mo, Ni and Au elements. Uranium primary minerals include pitchblende, coffinite, uraninite; and uranium secondary minerals include uranophane and . boltwoodite. REE mineralization occurred by the potassic phase in peginatitization process

  10. Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c

    International Nuclear Information System (INIS)

    Rybicki, A.

    2006-08-01

    A study of centrality in p + C, π + C, p + Pb, π + Pb, and Pb + Pb reactions is made. The analysis is performed by means of a simple geometrical model. The mean number of elementary collisions, , is estimated in minimum bias p + C reactions. For the specific case of the carbon nucleus, estimates on appear to depend strongly on assumed nuclear densities. Most realistic of the presented assumptions result in a value of 1.71 ± 0.05. Additional quantities, like predictions for the total inelastic cross-section in p + C reactions, or the number of participants in minimum bias C + C collisions, are given. The analysis is subsequently extended to minimum bias π + C, π + Pb, and p + Pb reactions. Estimates are given for the mean number of elementary collisions as well as for the contribution of single collisions P(1). A comparison with experimental data is made. Finally, the impact parameter dependence of p + Pb and Pb + Pb collisions is discussed. In view of future studies, various aspects of the analysis are discussed in detail; a bibliography of used references is included. (author)

  11. Seasonal variations in inorganic carbon components in the central and eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S; DileepKumar, M.; George, M.D.; Rajendran, A

    Extensive observations have been made on the carbon dioxide system in the Arabian Sea during three different seasons as part of the Indian Joint Global Ocean Flux Study (JGOFS) Programme. Concentrations of total carbon dioxide and partial pressure...

  12. The influence of (central) auditory processing disorder in speech sound disorders.

    Science.gov (United States)

    Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein

    2016-01-01

    Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China.

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-10

    Xinjiang's agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991-2014. The agriculture belonged to the "low emissions and high efficiency" agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  14. Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2)emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma USA

    Science.gov (United States)

    Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2) emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma, USA J.P.S. Neel USDA ARS, El Reno, OK A reduction in enteric CH4 production in ruminants is associated with improved production effic...

  15. Mixed-layer carbon cycling at the Kuroshio Extension Observatory

    Science.gov (United States)

    Fassbender, Andrea J.; Sabine, Christopher L.; Cronin, Meghan F.; Sutton, Adrienne J.

    2017-02-01

    Seven years of data from the NOAA Kuroshio Extension Observatory (KEO) surface mooring, located in the North Pacific Ocean carbon sink region, were used to evaluate drivers of mixed-layer carbon cycling. A time-dependent mass balance approach relying on two carbon tracers was used to diagnostically evaluate how surface ocean processes influence mixed-layer carbon concentrations over the annual cycle. Results indicate that the annual physical carbon input is predominantly balanced by biological carbon uptake during the intense spring bloom. Net annual gas exchange that adds carbon to the mixed layer and the opposing influence of net precipitation that dilutes carbon concentrations make up smaller contributions to the annual mixed-layer carbon budget. Decomposing the biological term into annual net community production (aNCP) and calcium carbonate production (aCaCO3) yields 7 ± 3 mol C m-2 yr-1 aNCP and 0.5 ± 0.3 mol C m-2 yr-1 aCaCO3, giving an annually integrated particulate inorganic carbon to particulate organic carbon production ratio of 0.07 ± 0.05, as a lower limit. Although we find that vertical physical processes dominate carbon input to the mixed layer at KEO, it remains unclear how horizontal features, such as eddies, influence carbon production and export by altering nutrient supply as well as the depth of winter ventilation. Further research evaluating linkages between Kuroshio Extension jet instabilities, eddy activity, and nutrient supply mechanisms is needed to adequately characterize the drivers and sensitivities of carbon cycling near KEO.

  16. Evaluation of the size segregation of elemental carbon (EC) emission in Europe: Influence on the simulation of EC long-range transportation

    NARCIS (Netherlands)

    Chen, Y.; Cheng, Y.F.; Nordmann, S.; Birmili, W.; Denier Van Der Gon, H.A.C.; Ma, N.; Wolke, R.; Wehner, B.; Sun, J.; Spindler, G.; Mu, Q.; Pöschl, U.; Su, H.; Wiedensohler, A.

    2016-01-01

    Elemental Carbon (EC) has a significant impact on human health and climate change. In order to evaluate the size segregation of EC emission in the EUCAARI inventory and investigate its influence on the simulation of EC long-range transportation in Europe, we used the fully coupled online Weather

  17. The Influence of Low-carbon Economy on Global Trade Pattern

    Science.gov (United States)

    Xiao-jing, Guo

    Since global warming has seriously endangered the living environment of human being and their health and safety, the development of low-carbon economy has become an irreversible global trend. Under the background of economic globalization, low-carbon economy will surely exert a significant impact on global trade pattern. Countries are paying more and more attention to the green trade. The emission permits trade of carbon between the developed countries and the developing countries has become more mature than ever. The carbon tariff caused by the distribution of the "big cake" will make the low-cost advantage in developing countries cease to exist, which will, in turn, affect the foreign trade, economic development, employment and people's living in developing countries. Therefore, under the background of this trend, we should perfect the relevant laws and regulations on trade and environment as soon as possible, optimize trade structure, promote greatly the development of service trade, transform thoroughly the mode of development in foreign trade, take advantage of the international carbon trading market by increasing the added value of export products resulted from technological innovation to achieve mutual benefit and win-win results and promote common development.

  18. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode

    Directory of Open Access Journals (Sweden)

    Hossein Ali Rangkooy

    2017-01-01

    Full Text Available The present study examined the gas-phase photocatalytic degradation of toluene using ZnO-SnO2 nanocomposite supported on activated carbon in a photocatalytic reactor. Toluene was selected as a model pollutant from volatile organic compounds to determine the pathway of photocatalytic degradation and the factors influencing this degradation. The ZnO-SnO2 nanocomposite was synthesized through co-precipitation method in a ratio of 2:1 and then supported on activated carbon. The immobilization of ZnO-SnO2 nanocomposite on activated carbon was determined by the surface area and scanning electron micrograph technique proposed by Brunauer, Emmett, and Teller. The laboratory findings showed that the highest efficiency was 40% for photocatalytic degradation of toluene. The results also indicated that ZnO-SnO2 nano-oxides immobilization on activated carbon had a synergic effect on photocatalytic degradation of toluene. Use of a hybrid photocatalytic system (ZnO/SnO2 nano coupled oxide and application of absorbent (activated carbon may be efficient and effective technique for refinement of toluene from air flow.

  19. Evaluating land cover influences on model uncertainties—A case study of cropland carbon dynamics in the Mid-Continent Intensive Campaign region

    Science.gov (United States)

    Li, Zhengpeng; Liu, Shuguang; Zhang, Xuesong; West, Tristram O.; Ogle, Stephen M.; Zhou, Naijun

    2016-01-01

    Quantifying spatial and temporal patterns of carbon sources and sinks and their uncertainties across agriculture-dominated areas remains challenging for understanding regional carbon cycles. Characteristics of local land cover inputs could impact the regional carbon estimates but the effect has not been fully evaluated in the past. Within the North American Carbon Program Mid-Continent Intensive (MCI) Campaign, three models were developed to estimate carbon fluxes on croplands: an inventory-based model, the Environmental Policy Integrated Climate (EPIC) model, and the General Ensemble biogeochemical Modeling System (GEMS) model. They all provided estimates of three major carbon fluxes on cropland: net primary production (NPP), net ecosystem production (NEP), and soil organic carbon (SOC) change. Using data mining and spatial statistics, we studied the spatial distribution of the carbon fluxes uncertainties and the relationships between the uncertainties and the land cover characteristics. Results indicated that uncertainties for all three carbon fluxes were not randomly distributed, but instead formed multiple clusters within the MCI region. We investigated the impacts of three land cover characteristics on the fluxes uncertainties: cropland percentage, cropland richness and cropland diversity. The results indicated that cropland percentage significantly influenced the uncertainties of NPP and NEP, but not on the uncertainties of SOC change. Greater uncertainties of NPP and NEP were found in counties with small cropland percentage than the counties with large cropland percentage. Cropland species richness and diversity also showed negative correlations with the model uncertainties. Our study demonstrated that the land cover characteristics contributed to the uncertainties of regional carbon fluxes estimates. The approaches we used in this study can be applied to other ecosystem models to identify the areas with high uncertainties and where models can be improved to

  20. Carbonate-silicate ratio for soil correction and influence on nutrition, biomass production and quality of palisade grass

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2011-10-01

    Full Text Available Silicates can be used as soil correctives, with the advantage of being a source of silicon, a beneficial element to the grasses. However, high concentrations of silicon in the plant would affect the digestibility of the forage. To evaluate the influence of the substitution of the calcium carbonate by calcium silicate on the nutrition, biomass production and the feed quality of the palisade grass [Urochloa brizantha (C. Hochstetter ex A. Rich. R. Webster], three greenhouse experiments were conducted in completely randomized designs with four replications. Experimental units (pots contained a clayey dystrophic Rhodic Haplustox, a sandy clay loam dystrophic Typic Haplustox and a sandy loam dystrophic Typic Haplustox. Each soil received substitution proportions (0, 25, 50, 75 and 100 % of the carbonate by calcium silicate. The increase in the proportion of calcium silicate elevated the concentrations and accumulations of Si, Ca, Mg, and B, reduced Zn and did not alter P in the shoot of plants. The effects of the treatments on the other nutrients were influenced by the soil type. Inclusion of calcium silicate also increased the relative nutritional value and the digestibility and ingestion of the forage, while the concentration and accumulation of crude protein and the neutral detergent and acid detergent fibers decreased. Biomass production and feed quality of the palisade grass were generally higher with the 50 % calcium silicate treatment.

  1. Relationship between central sleep apnea and Cheyne-Stokes Respiration.

    Science.gov (United States)

    Flinta, Irena; Ponikowski, Piotr

    2016-03-01

    Central sleep apnea (CSA) in patients with heart failure (HF) occurs frequently and shows a serious influence on prognosis in this population. The key elements in the pathophysiology of CSA are respiratory instability with chronic hyperventilation, changes of arterial carbon dioxide pressure (pCO2) and elongated circulation time. The main manifestation of CSA in patients with HF is Cheyne-Stokes Respiration (CSR). The initial treatment is the optimization of HF therapy. However, many other options of the therapeutic management have been studied, particularly those based on positive airway pressure methods. In patients with heart failure we often can observe the overlap of CSA and CSR; we will discuss the differences between these forms of breathing disorders during sleep. We will also discuss when CSA and CSR occur independently of each other and the importance of CSR occurring during the daytime in context of CSA during the nighttime. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Influence of central panoramic curve deviation of the mandibular image reconstruction in the implant CT

    International Nuclear Information System (INIS)

    Park, Rae Jeong; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1998-01-01

    The purpose of this study was to investigate an influence of the change of central panoramic curves on the image reconstruction in the dental implant CT. The author designed three experimental groups according to the location of central panoramic curve. In group A, central panoramic curve was determined as the curve connecting the center of roots from the first premolar to the first molar. In group B, central panoramic curve was determined as the line connecting the lingual cortical plate at the level of the mesial aspect of the first premolar with the buccal cortical plate at the level of the mesial aspect of the first molar. In group C, central panoramic curve was determined as the line connecting the buccal cortical plate at the level of the mesial aspect of the first molar. Twenty four reformatted CT images was acquired from four mandibles embedded in the resin block and twenty four contact radiographs of dog specimens were acquired. Each image was processed under Adobe Photoshop program analysed by MSPA (mandible/maxilla shape pattern analysis) variables such as MXVD, MXHD, UHD, MHD, and LHD. The obtained results were as follows ; 1. The mean of MXVD variable was 19.9, 20.2, and 20.0 in group A, B, and C, respectively, which were smaller than actual value 20.5. But, there was no significant difference among 3 groups (p>0.05). 2. The mean of MXHD, UHD, MHD, and LHD variables in group A, B, and C was 11.9, 12.2, and 12.3; 9.3, 9.5, and 9.6; 10.0, 10.3,and 10.3; 9.2, 9.3, and 9.4 respectively which were equal to or greater than the actual value 11.8, 9.3, 10.0. But, there was no significant difference among 3 groups (p>0.05). 3. The number of noneffective observations with difference over or under 1 mm with comparison to the actual value was 24 (20%), 58 (48.3%), and 52 (43.3%), respectively, in group A, B, and C. 4. In group A, the number of observations over 1mm and under 1 mm was 9 and 15, respectively, but in group B and C, the number of observations over 1

  3. Contested Communication; A Critical Analysis of Central Bank Speech

    NARCIS (Netherlands)

    L.H.J. Noordegraaf-Eelens (Liesbeth)

    2010-01-01

    textabstractThe more important words become, the more difficult it is to say things. This is the central message of this study on the communication by central bank presidents. Since the end of the twentieth century, central bank presidents see communication as an important means to influence

  4. Cold-seep-driven carbonate deposits at the Central American forearc: contrasting evolution and timing in escarpment and mound settings

    Science.gov (United States)

    Liebetrau, V.; Augustin, N.; Kutterolf, S.; Schmidt, M.; Eisenhauer, A.; Garbe-Schönberg, D.; Weinrebe, W.

    2014-10-01

    Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (-43 to -56 ‰ PDB) than for mound samples (-22 to -36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2-5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.

  5. Influence of Carbon Nano Tubes on the Thermo-Mechanical Properties of Unsaturated Polyester Nanocomposite

    International Nuclear Information System (INIS)

    Alam, A K M Moshiul; Beg, M D H; Yunus, Rosli Mohd

    2015-01-01

    To date nano fillers are renowned reinforcing agent for polymer materials. In this work, unsaturated polyester (UPR) nanocomposites were fabricated by 0.1, 0.3 and 0.5 wt% multi walled carbon nanotubes (MWCNTs) through solution dispersion and casting method. The influence of MWCNT content was investigated by thermo-mechanical properties. Dispersion of nanotubes was observed by fracture morphology. The strength of nanocomposites rose with raising the CNT content. Moreover, DSC thermograms of nanocomposites represent noticeable improvement of glass transition temperature (T g ), melting temperature (T m ) and enthalpy (ΔH m ). Micro-crystallinity of nanocomposites increased with increasing the CNT content. Moreover, the stiffness increased with increasing the CNT content. (paper)

  6. Radiation damage in carbon-carbon composites: Structure and property effects

    International Nuclear Information System (INIS)

    Burchell, T.D.

    1995-01-01

    Carbon-carbon composites are an attractive choice for fusion reactor plasma facing components because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation tokamak reactors such as the International Thermonuclear Experimental Reactor (ITER), will require high thermal conductivity carbon-carbon composites and other materials, such as beryllium, to protect their plasma facing components from the anticipated high heat fluxes. Moreover, ignition machines such as ITER will produce a large neutron flux. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from two irradiation experiments are reported and discussed here. Carbon-carbon composite materials were irradiated in target capsules in the High Flux Isotope Reactor (HAIR) at Oak Ridge National Laboratory (ORAL). A peak damage dose of 4.7 displacements per atom (da) at an irradiation temperature of ∼600 degrees C was attained. The carbon materials irradiated here included unidirectional, two- directional, and three-directional carbon-carbon composites. Irradiation induced dimensional changes are reported for the materials and related to single crystal dimensional changes through fiber and composite structural models. Moreover, carbon-carbon composite material dimensional changes are discussed in terms of their architecture, fiber type, and graphitization temperature. Neutron irradiation induced reductions in the thermal conductivity of two, three-directional carbon-carbon composites are reported, and the recovery of thermal conductivity due to thermal annealing is demonstrated. Irradiation induced strength changes are reported for several carbon-carbon composite materials and are explained in terms of in-crystal and composite structural effects

  7. Alfalfa nutritive quality for ruminant livestock as influenced by ambient air quality in west-central Alberta

    International Nuclear Information System (INIS)

    Lin, J.C.; Nosal, M.; Muntifering, R.B.; Krupa, S.V.

    2007-01-01

    Alfalfa (Medicago sativa) nutritive quality response to ambient ozone (O 3 ), sulfur dioxide (SO 2 ) and oxides of nitrogen (NO x ) were assessed at three locations in west-central Alberta, Canada (1998-2002). Yield data were segregated into high and low relative to overall median yield. Ozone concentrations (hourly median and 95th-percentile) and precipitation (P) contributed 69 and 29%, respectively, to the variability in crude protein (CP) concentration in low-yielding alfalfa, whereas mean temperature (T) and relative humidity (RH) collectively influenced 98% of the variation in CP in high-yielding alfalfa. Three-fourths of the accounted variation in relative feed value (RFV) of low-yielding alfalfa was attributable to P, T and RH, whereas median and 95th-percentile hourly O 3 concentrations and SO 2 and NO x exposure integrals contributed 25%. In contrast, air quality, (mainly O 3 ) influenced 86% of the accounted variation in RFV of high-yielding alfalfa, and T and P collectively contributed 14%. - Exposure to ambient concentrations of phytotoxic air pollutants affected nutritive quality of alfalfa for ruminant livestock in a yield-dependent manner

  8. Trace gas composition in the free and upper troposphere over Asia: Examining the influence of long-range transport and convection of local pollution

    Science.gov (United States)

    Baker, A. K.; Traud, S.; Brenninkmeijer, C. A.; Hoor, P. M.; Neumaier, M.; Oram, D.; Rauthe-Schöch, A.; Schloegl, S.; Sprung, D.; Slemr, F.; van Velthoven, P.; Wernli, H.; Zahn, A.; Ziereis, H.

    2013-12-01

    Between May 2005 and March 2008 the CARIBIC observatory (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) was deployed to make atmospheric observations during 21 round-trip flights between Frankfurt, Germany and Manila, the Philippines with a stopover in Guangzhou, China. This nearly 3 year flight series provides us with information about atmospheric composition in the free and upper troposphere over Asia during all seasons and was used to investigate seasonal and regional differences in trace gas distributions and the relative influences of long range transport and convected local air masses on composition. The flight route was separated into three different regions having unique characteristics in transport and composition; these were Western Asia (5°E to 70°E), Central Asia (70°E to 100°E) and East Asia (100°E to 125°E). The region over Western Asia was heavily influenced by long range transport of air masses from North America and had elevated levels of NOy and acetone, while the region over East Asia was mostly influenced by convected local (South East Asian) pollution, particularly from biomass/biofuel burning as indicated by high levels of acetonitrile and carbon monoxide. Air masses over Central Asia were found to be influenced by both recently convected air masses from the Indian subcontinent and mid-range transport from Eastern Europe and the Middle East. Elevated levels of propane and other non-methane hydrocarbons, both with and without concommitant elevations in other trace gases (i.e. carbon monoxide, acetonitrile) were a persisent feature of this region in all seasons except summer, and were particularly prominent in fall. Influences on composition over Central Asia were investigated more thoroughly in a case study from a series of flights in October 2006, and elevated levels of pollutants were found to be the result of convective transport of both biomass/biofuel burning and urban emissions from

  9. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-01-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas. PMID:27830739

  10. Influence of fire frequency on carbon consumption in Alaskan blackspruce forests

    Science.gov (United States)