Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D
2016-01-22
We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.
Davoudiasl, Hooman; McDermott, Samuel D
2016-01-01
We describe a general scenario, dubbed "Inflatable Dark Matter", in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the...
Triple Unification of Inflation, Dark matter and Dark energy in Chaotic Braneworld Inflation
Lin, Chia-Min(Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 Japan)
2009-01-01
In this paper, we show that in the framework of chaotic braneworld inflation, after preheating, the remaining oscillating inflaton field can play the role of dark matter with the observed level. Augmented by a non-zero effective cosmological constant $\\Lambda_4$ on the brane, triple unification of inflation, dark matter and dark energy by a single field is realized. Our model perhaps is the simplest one in the market of theories to achieve triple unification.
Viable Mimetic Completion of Unified Inflation-Dark Energy Evolution in Modified Gravity
Nojiri, S; Oikonomou, V K
2016-01-01
In this paper, we demonstrate that a unified description of early and late-time acceleration is possible in the context of mimetic $F(R)$ gravity. We study the inflationary era in detail and demonstrate that it can be realized even in mimetic $F(R)$ gravity where traditional $F(R)$ gravity fails to describe the inflation. By using standard methods we calculated the spectral index of primordial curvature perturbations and the scalar-to-tensor ratio. We use two $F(R)$ gravity models and as it turns out, for both the models under study the observational indices are compatible with both the latest Planck and the BICEP2/Keck array data. Finally, the graceful exit from inflation is guaranteed by the existence of growing curvature perturbations when the slow-roll era ends.
Unified Dark Matter Scalar Field Models
Directory of Open Access Journals (Sweden)
Daniele Bertacca
2010-01-01
of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.
Spherical collapse for unified dark matter models
Caramês, Thiago R P; Velten, Hermano E S
2014-01-01
We study the non-linear spherical "top hat" collapse for Chaplygin and viscous unified cosmologies. The term unified refers to models where dark energy and dark matter are replaced by one single component. For the generalized Chaplygin gas (GCG) we extend previous results of [R. A. A. Fernandes {\\it et al}. Physical Review D 85, 083501 (2012)]. We discuss the differences at non-linear level between the GCG with $\\alpha=0$ and the $\\Lambda$CDM model. We show that both are indeed different. The bulk viscous model which differs from the GCG due to the existence of non-adiabatic perturbations is also studied. In this case, the clustering process is in general suppressed and the viable parameter space of the viscous model that accelerates the background expansion does not lead to collapsed structures. This result challenges the viability of unified viscous models.
Grand unified hidden-sector dark matter
Lonsdale, Stephen J.; Volkas, Raymond R.
2014-10-01
We explore G×G unified theories with the visible and the hidden or dark sectors paired under a Z2 symmetry. Developing a system of "asymmetric symmetry breaking" we motivate such models on the basis of their ability to generate dark baryons that are confined with a mass scale just above that of the proton, as motivated by asymmetric dark matter. This difference is achieved from the distinct but related confinement scales that develop in unified theories that have the two factors of G spontaneously breaking in an asymmetric manner. We show how Higgs potentials that admit different gauge group breaking chains in each sector can be constructed, and demonstrate the capacity for generating different fermion mass scales. Lastly we discuss supersymmetric extensions of such schemes.
Constraints on dissipative unified dark matter
Velten, Hermano
2011-01-01
Modern cosmology suggests that the Universe contains two dark components -- dark matter and dark energy -- both unkown in laboratory physics and both lacking direct evidence. Alternatively, a unified dark sector, described by a single fluid, has been proposed. Dissipation is a common phenomenon in nature and it thus seems natural to consider models dominated by a viscous dark fluid. We focus on the study of bulk viscosity, as isotropy and homogeneity at large scales implies the suppression of shear viscosity, heat flow and diffusion. The generic ansatz $\\xi \\propto \\rho^{\
Interactive Unified Dark Energy and Dark Matter from Scalar Fields
Benisty, David; Guendelman, E. I.
2017-01-01
Here we generalize ideas of unified Dark Matter Dark Energy in the context of Two Measure Theories and of Dynamical space time Theories. In Two Measure Theories one uses metric independent volume elements and this allows to construct unified Dark Matter Dark Energy, where the cosmological constant appears as an integration constant associated to the eq. of motion of the measure fields. The Dynamical space time Theories generalize the Two Measure Theories by introducing a vector field whose eq...
Unified description of dense matter in neutron stars and magnetars
Chamel, N; Mihailov, L M; Velchev, Ch J; Stoyanov, Zh K; Mutafchieva, Y D; Ivanovich, M D; Fantina, A F; Pearson, J M; Goriely, S
2013-01-01
We have recently developed a set of equations of state based on the nuclear energy density functional theory providing a unified description of the different regions constituting the interior of neutron stars and magnetars. The nuclear functionals, which were constructed from generalized Skyrme effective nucleon-nucleon interactions, yield not only an excellent fit to essentially all experimental atomic mass data but were also constrained to reproduce the neutron-matter equation of state as obtained from realistic many-body calculations.
Unified description of dark energy and dark matter in mimetic matter model
Matsumoto, Jiro
2016-01-01
The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar sy...
Unified description of dark energy and dark matter in mimetic matter model
Matsumoto, Jiro
2016-01-01
The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar system is proposed in mimetic matter model.
Synopsis of a Unified Theory for All Forces and Matter
Chen, Zeng-Bing
2016-01-01
Assuming the (9+1)-dimensional Kaluza-Klein gravity interacting with elementary matter fermions, we propose an informationally-complete unified theory for all forces. Due to entanglement-driven symmetry breaking, the SO(9,1) symmetry of the (9+1)-dimensional spacetime is reduced to SO(3,1)*SO(6), where SO(3,1) [SO(6)] is associated with (3+1)-dimensional gravity (gauge fields of matter fermions). The informational completeness demands that matter fermions must appear in three families, each having 15 independent matter fermions. After quantum compactification of six extra dimensions, a trinity---the quantized (3+1)-dimensional gravity, the three-family fermions of total number 45, and their SO(6) gauge fields---naturally arises in an effective theory for the (3+1)-dimensional spacetime. Both the fermion family state space and the compactified space are a simple three-state system equipped with an ungauging, e.g., SO(3) structure. Possible routes of our theory to the Standard Model are briefly discussed.
Unified Description of Dark Energy and Dark Matter
Petry, Walter
2008-01-01
Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...
Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?
Arbey, A.
2008-01-01
The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...
How the Scalar Field of Unified Dark Matter Models Can Cluster
Bertacca, Daniele; Diaferio, Antonaldo; Matarrese, Sabino
2008-01-01
We use scalar-field Lagrangians with non-canonical kinetic term to obtain unified dark matter models where both the dark matter and the dark energy, the latter mimicking a cosmological constant, are described by the scalar field itself. In this framework, we propose a technique to reconstruct models where the effective speed of sound is small enough that the scalar field can cluster. These models avoid the strong time evolution of the gravitational potential and the large Integrated Sachs-Wolfe effect which have been a serious drawback of previously considered models. Moreover, these unified dark matter scalar field models can be easily generalized to behave as dark matter plus a dark energy component behaving like any type of quintessence fluid.
Unified dark energy-dark matter model with inverse quintessence
Energy Technology Data Exchange (ETDEWEB)
Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)
2013-05-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.
Interacting diffusive unified dark energy and dark matter from scalar fields
Benisty, David; Guendelman, E. I.
2017-06-01
Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the Λ CDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories.
Unifying dark energy and dark matter with a scalar field
Arbey, A.
2005-01-01
The standard model of cosmology considers the existence of two components of unknown nature, ``dark matter'' and ``dark energy'', which determine the cosmological evolution. Their nature remains unknown, and other models can also be considered. In particular, it may be possible to reinterpret the recent cosmological observations so that the Universe does not contain two fluids of unknown natures, but only one fluid with particular properties. After a brief review of constraints on this unifyi...
A consistent scalar-tensor cosmology for inflation, dark energy and the Hubble parameter
Energy Technology Data Exchange (ETDEWEB)
Wang, C.H.-T., E-mail: c.wang@abdn.ac.uk [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom); Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Reid, J.A. [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom); Murphy, A.St.J. [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Rodrigues, D.; Al Alawi, M. [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom); Bingham, R. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mendonça, J.T. [IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Davies, T.B. [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom)
2016-11-25
A Friedman cosmology is investigated based on scalar-tensor gravitation with general metric coupling and scalar potential functions. We show that for a broad class of such functions, the scalar field can be dynamically trapped using a recently suggested mechanism. The trapped scalar can drive inflation and accelerated cosmic expansion, compatible with standard requirements. The inflationary phase admits a natural exit with a value of the Hubble parameter dictated by the duration of inflation in a parameter independent manner. For inflationary duration consistent with the GUT description, the resulting Hubble parameter is found to be consistent with its observed value. - Highlights: • First model for inflation and dark energy in cosmology and core-collapse supernovae in astronomy to be unified under the same theory. • Achieved with a natural simple extension of Einstein's General Relativity using a new scalar field. • Potentially far-researching consequences in cosmology for dark matter, dark energy and inflation, testable through core-collapse supernovae.
Interacting diffusive unified dark energy and dark matter from scalar fields
Energy Technology Data Exchange (ETDEWEB)
Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)
2017-06-15
Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)
Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence
Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana
2016-02-01
We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a "dust" fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R - α R^2 generalized gravity. Upon deriving the corresponding "Einstein-frame" effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic "k-essence" gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic "k-essence" gravity-matter model is also briefly discussed.
Quintessential Inflation, Unified Dark Energy and Dark Matter, and Higgs Mechanism
Guendelman, Eduardo; Pacheva, Svetlana
2016-01-01
We describe a new type of gravity-matter models where gravity couples in a non-conventional way to two distinct scalar fields providing a unified Lagrangian action principle description of: (a) the evolution of both "early" and "late" Universe - by the "inflaton" scalar field; (b) dark energy and dark matter as a unified manifestation of a single material entity - the "darkon" scalar field. The essential non-standard feature of our models is employing the formalism of non-Riemannian space-time volume forms - alternative generally covariant integration measure densities (volume elements) defined in terms of auxiliary antisymmetric tensor gauge fields. Although being (almost) pure-gauge degrees of freedom, the non-Riemannian space-time volume forms trigger a series of important features unavailable in ordinary gravity-matter models. When including in addition interactions with the electro-weak model bosonic sector we obtain a gravity-assisted generation of electro-weak spontaneous gauge symmetry breaking in the...
Unified theory to describe and engineer conservation laws in light-matter interactions
Fernandez-Corbaton, Ivan; Rockstuhl, Carsten
2017-05-01
The effects of the electromagnetic field on material systems are governed by joint light-matter conservation laws. An increasing number of these balance equations are currently being considered both theoretically and with an eye to their practical applicability. We present a unified theory to treat conservation laws in light-matter interactions. It can be used to describe and engineer the transfer of any measurable property from the electromagnetic field to any object. The theory allows one to explicitly characterize and separately compute the transfer due to asymmetry of the object and the transfer due to field absorption by the object. It also allows one to compute the upper bound of the transfer rate of any given property to any given object, together with the corresponding most efficient illumination which achieves the bound. Due to its algebraic nature, the approach is inherently suited for computer implementation.
A unified theory to describe and engineer conservation laws in light-matter interactions
Fernandez-Corbaton, Ivan
2016-01-01
The effects of the electromagnetic field on material systems are governed by joint light-matter conservation laws. An increasing number of these balance equations are currently being considered both theoretically and with an eye to their practical applicability. We present a unified theory to treat conservation laws in light-matter interactions. It can be used to describe and engineer the transfer of any measurable property from the electromagnetic field to any object. The theory allows to explicitly characterize and separately compute the transfer due to asymmetry of the object and the transfer due to field absorption by the object. It also allows to compute the upper bound of the transfer rate of any given property to any given object, together with the corresponding most efficient illumination which achieves the bound. Due to its algebraic nature, the approach is inherently suited for computer implementation.
Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence
Energy Technology Data Exchange (ETDEWEB)
Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)
2016-02-15
We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a ''dust'' fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R -αR{sup 2} generalized gravity. Upon deriving the corresponding ''Einstein-frame'' effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic ''k-essence'' gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic ''k-essence'' gravity-matter model is also briefly discussed. (orig.)
Inclusive Constraints on Unified Dark Matter Models from Future Large-Scale Surveys
Camera, Stefano; Moscardini, Lauro
2012-01-01
In the very last years, cosmological models where the properties of the dark components of the Universe - dark matter and dark energy - are accounted for by a single "dark fluid" have drawn increasing attention and interest. Amongst many proposals, Unified Dark Matter (UDM) cosmologies are promising candidates as effective theories. In these models, a scalar field with a non-canonical kinetic term in its Lagrangian mimics both the accelerated expansion of the Universe at late times and the clustering properties of the large-scale structure of the cosmos. However, UDM models also present peculiar behaviours, the most interesting one being the fact that the perturbations in the dark-matter component of the scalar field do have a non-negligible speed of sound. This gives rise to an effective Jeans scale for the Newtonian potential, below which the dark fluid does not cluster any more. This implies a growth of structures fairly different from that of the concordance LCDM model. In this paper, we demonstrate that ...
CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies
Energy Technology Data Exchange (ETDEWEB)
Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino [Dipartimento di Fisica Galileo Galilei Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Raccanelli, Alvise [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Piattella, Oliver F. [Departamento de Física, Universidade Federal do Espírito Santo, avenida Ferrari 514, 29075-910 Vitória, ES (Brazil); Pietrobon, Davide [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena CA U.S.A. (United States); Giannantonio, Tommaso, E-mail: daniele.bertacca@pd.infn.it, E-mail: alvise.raccanelli@port.ac.uk, E-mail: oliver.piattella@gmail.com, E-mail: davide.pietrobon@jpl.nasa.gov, E-mail: nicola.bartolo@pd.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: tommaso.giannantonio@Universe-cluster.de [Excellence Cluster Universe, Technical University Munich, Boltzmannstraße 2, D-85748 Garching bei München (Germany)
2011-03-01
We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for a range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.
Cosmological aspects of a unified dark energy and dust dark matter mode
Staicova, Denitsa
2016-01-01
Recently, a model of modified gravity plus single scalar field model was proposed, in which the scalar couples both to the standard Riemannian volume form given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume form given in terms of an auxiliary maximal rank antisymmetric tensor gauge field. This model provides an exact unified description of both dark energy (via dynamically generated cosmological constant) and dark matter (as a "dust" fluid due to a hidden nonlinear Noether symmetry). In this paper we test the model against Supernovae type Ia experimental data and investigate the future Universe evolution which follows from it. Our results show that this model has very interesting features allowing various scenarios of Universe evolution and in the same time perfectly fits contemporary observational data. It can describe exponentially expanding or finite expanding Universe and moreover, a Universe with phase transition of first kind. The phase trans...
Hidden Gauged U(1) Model: Unifying Scotogenic Neutrino and Flavor Dark Matter
Yu, Jiang-Hao
2016-01-01
In both scotogenic neutrino and flavor dark matter models, the dark sector communicates with the standard model fermions via Yukawa portal couplings. We propose an economic scenario that scotogenic neutrino and flavored mediator share the same inert Higgs doublet and all are charged under a hidden gauged $U(1)$ symmetry. The dark Z2 symmetry in dark sector is regarded as the remnant of this hidden $U(1)$ symmetry breaking. In particular, we investigate a dark $U(1)_D$ (and also a $U(1)_{B-L}$) model which unifies scotogenic neutrino and top-flavored mediator. In this model dark tops and dark neutrinos are the standard model fermion partners, and the dark matter could be inert Higgs or the lightest dark neutrino. This model has rich collider signatures on dark tops, inert Higgs and Z' gauge boson, etc. Moreover, the scalar associated to the $U(1)_D$ (and also $U(1)_{B-L}$) symmetry breaking could explain the 750 GeV diphoton excess reported by ATLAS and CMS recently.
A Unified picture of Dark Matter and Dark Energy from Invisible QCD
Addazi, Andrea; Alexander, Stephon
2016-01-01
It has been shown in a companion paper that the late time acceleration of the universe can be accounted for by an extension of the QCD color to a $SU(3)$ invisible sector (IQCD). In this work we discuss a unified framework such the scale of dark chiral-breaking dictates both the accelerated expansion of the universe, and the origin of dark matter. We find that the strong and gravitational dynamics of dark quarks and gluons evolve to eventually form exotic dark stars. We discuss the dynamical complexity of these dark compact objects in light of dark big bang nucleosynthesis. We argue how IQCD favors a halo composed of very compact dark neutron stars, strange/quark stars and black holes, with masses $M_{MACHO}< 10^{-7}M_{\\odot}$. This avoids limit from MACHO and EROS collaborations as well as limit from clusters. We also discuss possible phenomenological implications in dark matter searches. We argue that dark supernovae and dark binaries can emit very peculiar gravitational waves signal testable by the LIGO...
Odintsov, S D
2016-01-01
We present some cosmological models which unify the late and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of $F(R)$ gravity. Particularly, the first model unifies the late and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the $R^2$ inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination er...
Cosmological aspects of a unified dark energy and dust dark matter model
Staicova, Denitsa; Stoilov, Michail
2017-01-01
Recently, a model of modified gravity plus single scalar field was proposed, in which the scalar couples both to the standard Riemannian volume form given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume form given in terms of an auxiliary maximal rank antisymmetric tensor gauge field. This model provides an exact unified description of both dark energy (via dynamically generated cosmological constant) and dark matter (as a “dust” fluid due to a hidden nonlinear Noether symmetry). In this paper, we test the model against Supernovae type Ia experimental data and investigate the future Universe evolution which follows from it. Our results show that this model has very interesting features allowing various scenarios of Universe evolution and in the same time perfectly fits contemporary observational data. It can describe exponentially expanding or finite expanding Universe and moreover, a Universe with phase transition of first kind. The phase transition occurs to a new, emerging at some time ground state with lower energy density, which affects significantly the Universe evolution.
Unified Dark Energy and Dust Dark Matter Dual to Quadratic Purely Kinetic K-Essence
Guendelman, Eduardo; Pacheva, Svetlana
2015-01-01
We consider a modified gravity plus single-scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square-root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a "dust" fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R - \\alpha R^2 generalized gravity. Upon deriving the corresponding "Einstein-frame" effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the...
The origin of dark matter, matter-anti-matter asymmetry, and inflation
Mazumdar, Anupam
2011-01-01
A rapid phase of accelerated expansion in the early universe, known as inflation, dilutes all matter except the vacuum induced quantum fluctuations. These are responsible for seeding the initial perturbations in the baryonic matter, the non-baryonic dark matter and the observed temperature anisotropy in the cosmic microwave background (CMB) radiation. To explain the universe observed today, the end of inflation must also excite a thermal bath filled with baryons, an amount of baryon asymmetry, and dark matter. We review the current understanding of inflation, dark matter, mechanisms for generating matter-anti-matter asymmetry, and the prospects for testing them at ground and space based experiments.
Dai, Jiayu; Hou, Yong; Yuan, Jianmin
2010-06-18
Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.
Knot Physics -- an Ultimate Unified Theory of Matter and its Motion
Kou, Su-Peng
2016-01-01
A Theory of Everything (TOE) is physics theory that unifies all the fundamental interactions of nature: gravitation, strong interaction, weak interaction, and electromagnetism.\\ Now, TOE becomes the Holy Grail of modern physics. In this paper, knot physics becomes a new candidate of TOE that not only unified all the fundamental interactions but also explores the underline physics of quantum mechanics. In knot physics, our universe is a standard knot-crystal, a particular periodic entanglement-pattern between two 3-branes (three dimensional branes/manifolds), of which the low energy effective theory not only reproduces the Standard model -- an SU(3)*SU(2)*U(1) gauge theory but also leads to the physics of general relativity. The collective motions of the standard knot-crystal are described by fermionic elementary particles and gauge fields. Fermionic elementary particles are topological excitations that correspond to different types of knots.
Füzfa, A.; Alimi, J.-M.
2007-06-01
The abnormally weighting energy hypothesis consists of assuming that the dark sector of cosmology violates the weak equivalence principle (WEP) on cosmological scales, which implies a violation of the strong equivalence principle for ordinary matter. In this paper, dark energy is shown to result from the violation of WEP by pressureless (dark) matter. This allows us to build a new cosmological framework in which general relativity is satisfied at low scales, as WEP violation depends on the ratio of the ordinary matter over dark matter densities, but at large scales, we obtain a general relativity-like theory with a different value of the gravitational coupling. This explanation is formulated in terms of a tensor-scalar theory of gravitation without WEP for which there exists a revisited convergence mechanism toward general relativity. The consequent dark energy mechanism build upon the anomalous gravity of dark matter (i) does not require any violation of the strong energy condition pfairly for supernovae data from various simple couplings and with density parameters very close to the ones of the concordance model ΛCDM, and therefore suggests an explanation to its remarkable adequacy. Finally, (iv) this mechanism ends up in the future with an Einstein de Sitter expansion regime once the attractor is reached.
Unified dark matter and dark energy description in a chiral cosmological model
Abbyazov, Renat R
2014-01-01
We show the way of dark matter and dark energy presentation via ansatzs on the kinetic energies of the fields in the two-component chiral cosmological model. To connect a kinetic interaction of dark matter and dark energy with observational data the reconstruction procedure for the chiral metric component $h_{22}$ and the potential of (self)interaction $V$ has been developed. The reconstruction of $h_{22}$ and $V$ for the early and later inflation have been performed. The proposed model is confronted to $\\Lambda CDM$ model as well.
Energy Technology Data Exchange (ETDEWEB)
Chala, Mikael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Nardini, Germano [Bern Univ. (Switzerland). Inst. for Theoretical Physics; Sobolev, Ivan [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Moscow State Univ. (Russian Federation). Dept. of Particle Physics and Cosmology
2016-05-15
A minimal extension of the Standard Model that provides both a dark matter candidate and a strong first-order electroweak phase transition (EWPT) consists of two additional Lorentz and gauge singlets. In this paper we work out a composite Higgs version of this scenario, based on the coset SO(7)/SO(6). We show that by embedding the elementary fermions in appropriate representations of SO(7), all dominant interactions are described by only three free effective parameters. Within the model dependencies of the embedding, the theory predicts one of the singlets to be stable and responsible for the observed dark matter abundance. At the same time, the second singlet introduces new CP-violation phases and triggers a strong first-order EWPT, making electroweak baryogenesis feasible. It turns out that this scenario does not conflict with current observations and it is promising for solving the dark matter and baryon asymmetry puzzles. The tight predictions of the model will be accessible at the forthcoming dark matter direct detection and gravitational wave experiments.
Chala, Mikael; Nardini, Germano; Sobolev, Ivan
2016-09-01
A minimal extension of the Standard Model that provides both a dark matter candidate and a strong first-order electroweak phase transition (EWPT) consists of two additional Lorentz and gauge singlets. In this paper we work out a composite Higgs version of this scenario, based on the coset S O (7 )/S O (6 ). We show that by embedding the elementary fermions in appropriate representations of S O (7 ), all dominant interactions are described by only three free effective parameters. Within the model dependencies of the embedding, the theory predicts one of the singlets to be stable and responsible for the observed dark matter abundance. At the same time, the second singlet introduces new C P -violation phases and triggers a strong first-order EWPT, making electroweak baryogenesis feasible. It turns out that this scenario does not conflict with current observations and it is promising for solving the dark matter and baryon asymmetry puzzles. The tight predictions of the model will be accessible at the forthcoming dark matter direct detection and gravitational wave experiments.
Di Bari, Pasquale; Ludl, Patrick Otto; Palomares-Ruiz, Sergio
2016-11-01
We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, NDM with mass MDM, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, NS with mass MS, induced by Higgs portal interactions. The same interactions are also responsible for NDM decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for MDM gg MS, there is an allowed window on MDM values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV lesssim MS source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.
Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism
Energy Technology Data Exchange (ETDEWEB)
Ballesterose, Guillermo [Paris Univ. (France). Inst. de Physique Theorique; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tamarit, Carlos [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology
2016-08-15
A minimal extension of the Standard Model (SM) providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vector-like color triplet fermion and a complex SM singlet scalar σ whose vacuum expectation value at ∝10{sup 11} GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflaton is produced by a combination of σ and the SM Higgs. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.
Clustering GCG: a viable option for unified dark matter-dark energy?
Energy Technology Data Exchange (ETDEWEB)
Kumar, Sumit; Sen, Anjan A, E-mail: sumit@ctp-jamia.res.in, E-mail: aasen@jmi.ac.in [Centre For Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)
2014-10-01
We study the clustering Generalized Chaplygin Gas (GCG) as a possible candidate for dark matter-dark energy unification. The vanishing speed of sound 0c{sub s}{sup 2} = ) for the GCG fluid can be obtained by incorporating higher derivative operator in the original K-essence Lagrangian. The evolution of the density fluctuations in the GCG+Baryon fluid is studied in the linear regime. The observational constraints on the model are obtained using latest data from SNIa, H(z), BAO and also for the fσ{sub 8} measurements. The matter power spectra for the allowed parameter values are well behaved without any unphysical features.
Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism
Ballesteros, Guillermo; Ringwald, Andreas; Tamarit, Carlos
2016-01-01
A minimal extension of the Standard Model (SM) providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vector-like color triplet fermion and a complex SM singlet scalar $\\sigma$ whose vacuum expectation value at $\\sim 10^{11}$ GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflaton is produced by a combination of $\\sigma$ and the SM Higgs. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.
A unified composite model of inflation and dark matter in the Nambu-Jona-Lasinio theory
Channuie, Phongpichit
2016-01-01
In this work, we propose a cosmological scenario inherently based on the effective Nambu-Jona-Lasinio (NJL) model that comic inflation and dark matter can be successfully described by a single framework. On the one hand, the scalar channel of the NJL model plays a role of the composite inflaton (CI) and we show that it is viable to achieve successful inflation via a non-minimal coupling to gravity. For model of inflation, we compute the inflationary parameters and confront them with recent Planck 2015 data. We discover that the predictions of the model are in excellent agreement with the Planck analysis. We also present in our model a simple connection of physics from the high scales to low scales via renormalization group equations of the physical parameters. On the other hand, the pseudoscalar channel can be assigned as a candidate for composite dark matter (CD). For model of dark matter, we couple the pseudoscalar to the Higgs sector of the standard model with the coupling strength $\\kappa$ and estimate it...
Chala, Mikael; Sobolev, Ivan
2016-01-01
A minimal extension of the Standard Model that provides both a dark matter candidate and a strong first-order electroweak phase transition (EWPT) consists of two additional Lorentz and gauge singlets. In this paper we work out a composite Higgs version of this scenario, based on the coset $SO(7)/SO(6)$. We show that by embedding the elementary fermions in appropriate representations of $SO(7)$, all dominant interactions are described by only three free effective parameters. Within the model dependencies of the embedding, the theory predicts one of the singlets to be stable and responsible for the observed dark matter abundance. At the same time, the second singlet introduces new $CP$-violation phases and triggers a strong first-order EWPT, making electroweak baryogenesis feasible. It turns out that this scenario does not conflict with current observations and it is promising for solving the dark matter and baryon asymmetry puzzles. The tight predictions of the model will be accessible at the forthcoming dark ...
Unified composite scenario for inflation and dark matter in the Nambu-Jona-Lasinio model
Channuie, Phongpichit; Xiong, Chi
2017-02-01
In this work, we propose a cosmological scenario inherently based on the effective Nambu-Jona-Lasinio (NJL) model that cosmic inflation and dark matter can be successfully described by a single framework. On the one hand, the scalar channel of the NJL model plays a role of the composite inflaton (CI) and we show that it is viable to achieve successful inflation via a nonminimal coupling to gravity. For model of inflation, we compute the inflationary parameters and confront them with recent Planck 2015 data. We discover that the predictions of the model are in excellent agreement with the Planck analysis. We also present in our model a simple connection of physics from the high scales to low scales via renormalization group equations (RGEs) of the physical parameters and use them to estimate the range of relevant parameters. On the other hand, the pseudoscalar channel can be assigned as a candidate for composite dark matter (CD). For a model of dark matter, we couple the pseudoscalar to the Higgs sector of the standard model with the coupling strength κ and estimate its thermally averaged relic abundance. We discover that the CD mass is strongly sensitive to the coupling κ . We find in case of light CD, Msvalue of its mass Ms˜61 GeV for κ =0.1 . However, in this case the CD mass can be lighter when the coupling is getting larger. Moreover, in case of heavy CD, Ms>MW ,Z (or >Mh), the required relic abundance can be satisfied for value of the CD mass Ms˜410 GeV for κ =0.5 . In contradiction to the light mass case, however, the CD mass in this case can even be heavier when the coupling is getting larger.
Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism.
Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas; Tamarit, Carlos
2017-02-17
A minimal extension of the standard model (SM) with a single new mass scale and providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vectorlike color triplet fermion, and a complex SM-singlet scalar σ that stabilizes the Higgs potential and whose vacuum expectation value at ∼10^{11} GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflation is produced by a combination of σ (nonminimally coupled to the scalar curvature) and the SM Higgs boson. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model predicts a minimum value of the tensor-to-scalar ratio r≃0.004, running of the scalar spectral index α≃-7×10^{-4}, the axion mass m_{A}∼100 μeV, and cosmic axion background radiation corresponding to an increase of the effective number of relativistic neutrinos of ∼0.03. It can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.
Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism
Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas; Tamarit, Carlos
2017-02-01
A minimal extension of the standard model (SM) with a single new mass scale and providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vectorlike color triplet fermion, and a complex SM-singlet scalar σ that stabilizes the Higgs potential and whose vacuum expectation value at ˜1 011 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflation is produced by a combination of σ (nonminimally coupled to the scalar curvature) and the SM Higgs boson. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong C P problem and accounts for the dark matter in the Universe. The model predicts a minimum value of the tensor-to-scalar ratio r ≃0.004 , running of the scalar spectral index α ≃-7 × 10-4, the axion mass mA˜100 μ eV , and cosmic axion background radiation corresponding to an increase of the effective number of relativistic neutrinos of ˜0.03 . It can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.
Energy Technology Data Exchange (ETDEWEB)
Bari, Pasquale Di; Ludl, Patrick Otto [Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)
2016-11-21
We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N{sub DM} with mass M{sub DM}, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, N{sub S} with mass M{sub S}, induced by Higgs portal interactions. The same interactions are also responsible for N{sub DM} decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M{sub DM}≫M{sub S}, there is an allowed window on M{sub DM} values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV ≲M{sub S}
Energy Technology Data Exchange (ETDEWEB)
Montiel, Ariadna, E-mail: amontiel@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México DF (Mexico); Salzano, Vincenzo, E-mail: vincenzo.salzano@ehu.es [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco (UPV/EHU), Apdo. 644, E-48080 Bilbao (Spain); Lazkoz, Ruth, E-mail: ruth.lazkoz@ehu.es [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco (UPV/EHU), Apdo. 644, E-48080 Bilbao (Spain)
2014-06-02
In this work we investigate if a small fraction of quarks and gluons, which escaped hadronization and survived as a uniformly spread perfect fluid, can play the role of both dark matter and dark energy. This fluid, as developed in [1], is characterized by two main parameters: β, related to the amount of quarks and gluons which act as dark matter; and γ, acting as the cosmological constant. We explore the feasibility of this model at cosmological scales using data from type Ia Supernovae (SNeIa), Long Gamma-Ray Bursts (LGRB) and direct observational Hubble data. We find that: (i) in general, β cannot be constrained by SNeIa data nor by LGRB or H(z) data; (ii) γ can be constrained quite well by all three data sets, contributing with ≈78% to the energy–matter content; (iii) when a strong prior on (only) baryonic matter is assumed, the two parameters of the model are constrained successfully.
Montiel, Ariadna; Lazkoz, Ruth
2014-01-01
In this work we investigate if a small fraction of quarks and gluons, which escaped hadronization and survived as a uniformly spread perfect fluid, can play the role of both dark matter and dark energy. This fluid, as developed in \\citep{Brilenkov}, is characterized by two main parameters: $\\beta$, related to the amount of quarks and gluons which act as dark matter; and $\\gamma$, acting as the cosmological constant. We explore the feasibility of this model at cosmological scales using data from type Ia Supernovae (SNeIa), Long Gamma-Ray Bursts (LGRB) and direct observational Hubble data. We find that: (i) in general, $\\beta$ cannot be constrained by SNeIa data nor by LGRB or H(z) data; (ii) $\\gamma$ can be constrained quite well by all three data sets, contributing with $\\approx78\\%$ to the energy-matter content; (iii) when a strong prior on (only) baryonic matter is assumed, the two parameters of the model are constrained successfully.
Borstnik, N S Mankoc
2010-01-01
The Approach unifying spin and charges, assuming that all the internal degrees of freedom---the spin, all the charges and the families---originate in $d > (1+3)$ in only two kinds of spins (the Dirac one and the only one existing beside the Dirac one and anticommuting with the Dirac one), is offering a new way in understanding the appearance of the families and the charges (in the case of charges the similarity with the Kaluza-Klein-like theories must be emphasized). A simple starting action in $d >(1+3)$ for gauge fields (the vielbeins and the two kinds of the spin connections) and a spinor (which carries only two kinds of spins and interacts with the corresponding gauge fields) manifests after particular breaks of the starting symmetry the massless four (rather than three) families with the properties as assumed by the Standard model for the three known families, and the additional four massive families. The lowest of these additional four families is stable. A part of the starting action contributes, toget...
Tong, Xiuli; He, Xinjie; Deacon, S Hélène
2017-02-01
Languages differ considerably in how they use prosodic features, or variations in pitch, duration, and intensity, to distinguish one word from another. Prosodic features include lexical tone in Chinese and lexical stress in English. Recent cross-sectional studies show a surprising result that Mandarin Chinese tone sensitivity is related to Mandarin-English bilingual children's English word reading. This study explores the mechanism underlying this relation by testing two explanations of these effects: the prosodic hypothesis and segmental phonological awareness transfer. We administered multiple measures of Cantonese tone sensitivity, English stress sensitivity, segmental phonological awareness in Cantonese and English, nonverbal ability, and English word reading to 123 Cantonese-English bilingual children ages 7 and 8 years. Structural equation modeling revealed a longitudinal prediction of Cantonese tone sensitivity to English word reading between 8 and 9 years of age. This relation was realized through two parallel routes. In one, Cantonese tone sensitivity predicted English stress sensitivity, and English stress sensitivity, in turn, significantly predicted English word reading, as postulated by the prosodic hypothesis. In the second, Cantonese tone sensitivity predicted English word reading through the transfer of segmental phonological awareness between Cantonese and English, as predicted by segmental phonological transfer. These results support a unified model of phonological transfer, emphasizing the role of tone in English word reading for Cantonese-English bilingual children.
Pirogov, Yury F
2016-01-01
In the framework of the minimal quartet-metric gravity/systogravity, a scalar graviton/systolon is stated as a universal dark component, with supplementary manifestations in the different contexts either as dark matter or dark energy. An ensuing extension to the standard {\\Lambda}CDM model is developed. A modification of the late expansion of the Universe, with an attractor of a scalar master equation defining an effective cosmological constant, which supersedes the true one, is proposed. A new partial solution to the cosmological constant problem is discussed.
Di Bari, Pasquale; Palomares-Ruiz, Sergio
2016-01-01
We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, $N_{\\rm DM}$ with mass $M_{\\rm DM}$, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, $N_{\\rm S}$ with mass $M_{\\rm S}$, induced by Higgs portal interactions. The same interactions are also responsible for $N_{\\rm DM}$ decays. We discuss in detail the constraints coming from DM abundance and stability conditions, showing that in the hierarchical case ($M_{\\rm DM} \\gg M_{\\rm S}$) there is an allowed window on $M_{\\rm DM}$, which necessarily implies a contribution from DM decays to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV $\\lesssim M_{\\rm S} <...
Kaplinghat, Manoj; Tulin, Sean; Yu, Hai-Bo
2016-01-29
Astrophysical observations spanning dwarf galaxies to galaxy clusters indicate that dark matter (DM) halos are less dense in their central regions compared to expectations from collisionless DM N-body simulations. Using detailed fits to DM halos of galaxies and clusters, we show that self-interacting DM (SIDM) may provide a consistent solution to the DM deficit problem across all scales, even though individual systems exhibit a wide diversity in halo properties. Since the characteristic velocity of DM particles varies across these systems, we are able to measure the self-interaction cross section as a function of kinetic energy and thereby deduce the SIDM particle physics model parameters. Our results prefer a mildly velocity-dependent cross section, from σ/m≈2 cm^{2}/g on galaxy scales to σ/m≈0.1 cm^{2}/g on cluster scales, consistent with the upper limits from merging clusters. Our results dramatically improve the constraints on SIDM models and may allow the masses of both DM and dark mediator particles to be measured even if the dark sector is completely hidden from the standard model, which we illustrate for the dark photon model.
DEFF Research Database (Denmark)
Torgersen, Mads
of the most complex type relations put forth in type systems research, without compromising such fundamental qualities as conceptuality, modularity and static typing. While many new constructs and unifications are put forth to substantiate their conceptual validity, type rules are given to support......This thesis presents the RUNE language, a semantic construction of related and tightly coupled programming constructs presented in the shape of a programming language. The major contribution is the succesfull design of a highly unified and general programming model, capable of expressing some...... their typeability and examples are described to demonstrate their use. Novel constructs include a parallel approach to object generation, and a blend of structural and nominal subtyping, while a very general class construct integrates the notions of procedures, parameterisation and genericity, and provides...
Goradia, Shantilal
2013-04-01
Century old GR fails to unify quantum physics, nuclear force or distinguish between the mass of living bodies from inert mass. Probabilistic gravity [1] explains strong coupling (nuclear force). The natural log of the age of the universe, 10E60 in Planck times, equaling 137 (1/Alpha) extends physics to deeper science, if we stand on the shoulders of giants like Feynman and Gamow. Implications of [1] are that it is not the earth, but M and S numbers of the particles of the earth are remotely interacting with corresponding numbers of the particles of the moon and the sun respectively, neglecting other heavenly bodies in this short draft. This new physics is likely to enable creative scientific minds to throw light on a theoretical basis for an otherwise arbitrary cosmological constant, uniformity of microwave background, further vindication of Boltzmann, quantum informatics, Einstein’s later publicized views and more, eliminating the need to spend money for implicitly nonexistent quantum gravity and graviton.[4pt] [1] Journal of Physical Science and Applications 2 (7) (2012) 265-268.
Unified models of the cosmological dark sector
Energy Technology Data Exchange (ETDEWEB)
Zimdahl, W; Velten, H E S [Universidade Federal do EspIrito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, EspIrito Santo (Brazil); Hipolito-Ricaldi, W S, E-mail: winfried.zimdahl@pq.cnpq.br, E-mail: hipolito@ceunes.ufes.br, E-mail: velten@cce.ufes.br [Universidade Federal do EspIrito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil)
2011-09-22
We model the cosmological substratum by a viscous fluid that is supposed to provide a unified description of the dark sector and pressureless baryonic matter. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically non-adiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0} {approx} -0.53 of the deceleration parameter. Moreover, different from other approaches, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.
Discovery of the Grand Unified Theory
Nair, Radhakrishnan
2010-11-01
I have discovered the Grand Unified Theory which unites quantum with classical mechanics. This discovery is based on a geocentric universe, the myth of empty space, four states of matter in three dimensional space and space-time exponentiation, instead of space-time curvature.
Unifying physical concepts of reality
Energy Technology Data Exchange (ETDEWEB)
Gilbert, T.L.
1983-08-01
Physics may be characterized as the science of matter and energy. It anchors the two ends of the frontiers of science: the frontier of the very small and the frontier of the very large. All of the phenomena that we observe and study at the frontiers of science - all external experiences - are manifestations of matter and energy. One may, therefore, use physics to exemplify both the diversity and unity of science. This theme will be developed in two separate examples: first by sketching, very briefly, the historical origins of frontiers of the very small and very large and the converging unity of these two frontiers; and then by describing certain unifying concepts that play a central role in physics and provide a framework for relating developments in different sciences.
Phenomenology of SU(5) finite unified theories
Energy Technology Data Exchange (ETDEWEB)
Heinemeyer, S [Instituto de Fisica de Cantabria (CSIC-UC), Edificio Juan Jorda, Avda. de Los Castros s/n, 39005 Santander (Spain); Mondragon, M [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G, E-mail: heinemey@mail.cern.c, E-mail: myriam@fisica.unam.m, E-mail: zoupanos@mail.cern.c [Physics Department, National Technical University of Athens, Zografou Campus: Heroon Polytechniou 9, 15780 Zografou, Athens (Greece)
2009-06-01
Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all-loop orders, leading to a large reduction in the number of free parameters. We confront the predictions of SU(5) FUTs with the top and bottom quark masses, which allows us to discriminate among different models. We include further low-energy phenomenology constraints, such as B physics observables, the bound on the SM Higgs mass and the cold dark matter density, and then are able to make predictions for the lightest Higgs boson mass and the sparticle spectrum.
On the dynamics of unified k-essence cosmologies
De-Santiago, Josue
2012-01-01
We analyze the phase space of a particular unified model of dark matter, dark energy, and inflation that we recently studied in [Phys. Rev. D 83, 063502 (2011)] whose Lagrangian is of the form L(X,phi) = F(X) - V(phi). We show that this model possesses a large set of initial conditions consistent with a successful cosmological model in which an inflationary phase is possible, followed by a matter era to end with dark energy domination. In order to understand the success of the model, we study the general features that unified dark matter (UDM) models should comply and then we analyze some particular models and find their constrictions.
Embedding cosmological inflation, axion dark matter and seesaw mechanism in a 3-3-1 gauge model
Ferreira, J. G.; de S. Pires, C. A.; Rodrigues, J. G.; Rodrigues da Silva, P. S.
2017-08-01
The Peccei-Quinn symmetry is an intrinsic global symmetry of the 3-3-1 gauge models. Its spontaneous breaking mechanism engendering an invisible KSVZ-like axion links the 3-3-1 models with new physics at ∼1010 GeV scale. The axion that results from this mechanism is an interesting candidate for the dark matter of the universe, while its real partner may drive inflation if radiative corrections are taken into account. This is obtained by connecting the type I seesaw mechanism with the spontaneous breaking of the Peccei-Quinn symmetry. In the end of the day we have a scenario providing a common answer to the strong-CP problem, inflation, dark matter and neutrino mass.
Embedding cosmological inflation, axion dark matter and seesaw mechanism in a 3-3-1 gauge model
Directory of Open Access Journals (Sweden)
J.G. Ferreira, Jr.
2017-08-01
Full Text Available The Peccei–Quinn symmetry is an intrinsic global symmetry of the 3-3-1 gauge models. Its spontaneous breaking mechanism engendering an invisible KSVZ-like axion links the 3-3-1 models with new physics at ∼1010 GeV scale. The axion that results from this mechanism is an interesting candidate for the dark matter of the universe, while its real partner may drive inflation if radiative corrections are taken into account. This is obtained by connecting the type I seesaw mechanism with the spontaneous breaking of the Peccei–Quinn symmetry. In the end of the day we have a scenario providing a common answer to the strong-CP problem, inflation, dark matter and neutrino mass.
Unified Models of Inflation and Quintessence
González, A; Quirós, I; Gonzalez, Andro; Matos, Tonatiuh; Quiros, Israel
2004-01-01
We apply an extended version of the method developed in reference Int.J.Mod.Phys.D5(1996)71, to derive exact cosmological (flat) Friedmann-Robertson-Walker solutions in RS2 brane models with a perfect fluid of ordinary matter plus a scalar field fluid trapped on the brane. We found new exact solutions, that can serve to unify inflation and quintessence in a common theoretical framework.
Klev, Ansten
2016-10-01
Unified science is a recurring theme in Carnap's work from the time of the Aufbau until the end of the 1930's. The theme is not constant, but knows several variations. I shall extract three quite precise formulations of the thesis of unified science from Carnap's work during this period: from the Aufbau, from Carnap's so-called syntactic period, and from Testability and Meaning and related papers. My main objective is to explain these formulations and to discuss their relation, both to each other and to other aspects of Carnap's work. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)
1993-09-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
Toward a Unified AGN Structure
Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis
2012-01-01
We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.
Hybrid Unifying Variable Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the
Can the laws of physics be unified ?
Langacker, Paul
2017-01-01
The standard model of particle physics describes our current understanding of nature's fundamental particles and their interactions, yet gaps remain. For example, it does not include a quantum theory of gravity, nor does it explain the existence of dark matter. Once complete, however, the standard model could provide a unified description of the very building blocks of the universe. Researchers have been chasing this dream for decades, and many wonder whether such a dream can ever be made a reality. Can the Laws of Physics Be Unified? is a short introduction to this exciting frontier of physics. The book is accessibly written for students and researchers across the sciences, and for scientifically minded general readers. Paul Langacker begins with an overview of the key breakthroughs that have shaped the standard model, and then describes the fundamental particles, their interactions, and their role in cosmology. He goes on to explain field theory, internal symmetries, Yang-Mills theories, strong and electro...
Institute of Scientific and Technical Information of China (English)
RENWEI
2005-01-01
China unveiled a unified stock index to track both markets in Shanghai and Shenzhen in April, a move likely to open a floodgate for more trading derivatives such as index futures. The new index, with 300 component companies traded on Shanghai and Shenzhen stock exchanges, will be the first of its kind on the mainland. The index members will be the largest 300 stocks - 180 from Shanghai and 120 from Shenzhen - in terms of market capitalization,
Unified Engineering Software System
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
DEFF Research Database (Denmark)
Buhl, Kenneth Øhlenschlæger
2012-01-01
Formålet med denne artikel er at se nærmere på erfaringerne fra den maritime kampagne under den militære indsats i konflikten i Libyen i 2011, som i NATO regi blev kendt som Operation Unified Protector (OUP). Dækningen i de danske medier fokuserede primært på luftkampagnen, hvilket må tilskrives,...
Directory of Open Access Journals (Sweden)
Philip J. Kellman
2011-05-01
Full Text Available What is the relation between perceptual learning (PL in basic sensory discriminations and in more complex tasks, including real-world learning tasks? Most recent PL work focuses on the former, using simple sensory dimensions and a few specific stimulus values. In contrast, other PL research and virtually all real-world tasks involve discovery of invariance amidst variation, and may also involve PL working synergistically with other cognitive abilities. In this talk I will suggest that, despite superficial differences, low- and high-level PL tasks draw upon—and reveal—a unified type of learning. I will consider several arguments that have been advanced in favor of confining perceptual learning to plasticity at the earliest cortical levels along with models of PL based on receptive field change vs. selection. These analyses do not support the idea of a separate low-level process but do support both the abstract character of PL and its dependence on unifying notions of discovery and selection. In the final part of the talk, I will relate this unified view of PL to direct practical applications. Learning technology based on PL modules (PLMs can address elusive aspects of learning, including pattern recognition, transfer, and fluency, even in high-level, symbolic domains, such as mathematics learning.
Vizgin, Vladimir P
2011-01-01
Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of
Ramaswamy, Sriram
2017-05-01
The study of systems with sustained energy uptake and dissipation at the scale of the constituent particles is an area of central interest in nonequilibrium statistical physics. Identifying such systems as a distinct category—Active matter—unifies our understanding of autonomous collective movement in the living world and in some surprising inanimate imitations. In this article I present the active matter framework, briefly recall some early work, review our recent results on single-particle and collective behaviour, including experiments on active granular monolayers, and discuss new directions for the future.
A Unified Evolution of the Universe
Codello, Alessandro
2016-01-01
We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction $R^2$ and the leading non-local term $R\\frac{1}{\\square^2}R$ to the classical gravitational action. We find that the inflationary phase driven by $R^2$ term gracefully exits in a transitory regime characterized by coherent oscillations of the Hubble parameter. The universe then naturally enters into a radiation dominated epoch followed by a matter dominated era. At sufficiently late times after radiation-matter equality, the non-local term starts to dominate inducing an accelerated expansion of the universe at the present epoch. We further exhibit the fact that both the leading local and non-local terms can be obtained within the covariant effective field theory of gravity. Our scenario thus provides a unified picture of inflation and dark energy in a single framework by means of a purely gravitational action without the usual need of a scalar field.
Energy Technology Data Exchange (ETDEWEB)
Mondragon, M [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G, E-mail: myriam@fisica.unam.m, E-mail: zoupanos@mail.cern.c [Physics Department, National Technical University of Athens, Zografou Campus: Heroon Polytechniou 9, 15780 Zografou, Athens (Greece)
2009-06-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 GUTs in which a complete reduction of couplings has been achieved. FUTs realize an old field theoretical dream and have remarkable predictive power. Reduction of dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exists RGI relations among dimensionless couplings that guarantee the vanishing of the beta-functions in certain N=1 supersymmetric GUTS even to all orders. Furthermore, developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations also in this dimensionful sector of the theories. Of particular interest for the construction of realistic theories is a RGI sum rule for the soft scalar masses holding to all orders.
Proposal of Unified Fermion Texture
Krolikowski, W.
1998-03-01
unified form of mass matrix is proposed for neutrinos, charged leptons, up quarks and down quarks. Some constraints for the parameters involved are tentatively postulated. Then, the predictions are neatly consistent with available experimental data. Among the predictions are: (i) mτ ~1776.80 MeV (with the inputs of me and mμ ), (ii) mν_0 ≪ mν_1~(0.6 to )× 10-2 eV and mν_2~ (0.2 to 1)× 10-1 eV (with the atmospheric-neutrino inputs of |mν_22 - mν_12| × (0.0003 to 0.01) eV2 and the νμ → ντ oscillation amplitude × 0.8), and also ( iii) ms ~270 MeV, |Vub/Vcb| ~0.082 and argVub ~-640 (with the inputs of mc = 1.3 GeV, mb = 4.5 GeV, |Vus| = 0.221 and |Vcb| = 0.041, where mu ≪ mc ≪ mt and md ≪ ms ≪ mb ). All elements of the Cabibbo--Kobayashi--Maskawa matrix are evaluated. All elements of its lepton counterpart are calculated up to an unknown phase (Appendix B). Some items related to dynamical aspects of the proposed fermion ``texture'' are briefly commented on (Appendix A). In particular, the notion of a novel dark matter, free of any Standard Model interactions (and their supersymmetric variants), appears in the case of preon option.
A Unifying Modularity in Networks
Institute of Scientific and Technical Information of China (English)
HAO Jun-Jun; CAI Shui-Ming; HE Qin-Bin; LIU Zeng-Rong
2010-01-01
@@ We propose a new modularity criterion in complex networks,called the unifying modularity q which is independent of the number of partitions.It is shown that,for a given network,the relationship between the upper limit of Q and the number of the partitions,k,is sup(Qk)=(k-1)/k.Since the range of Q for each partition number is inconsistent,we try to extend the concept Q to unifying modularity q,which is independent of the number of partitions.Subsequently,we indicate that it is more accurately to determine the number of partitions by using unifying modularity q than Q.
Seven Deadliest Unified Communications Attacks
York, Dan
2010-01-01
Do you need to keep up with the latest hacks, attacks, and exploits effecting Unified Communications technology? Then you need Seven Deadliest Unified Communication Attacks. This book pinpoints the most dangerous hacks and exploits specific to Unified Communications, laying out the anatomy of these attacks including how to make your system more secure. You will discover the best ways to defend against these vicious hacks with step-by-step instruction and learn techniques to make your computer and network impenetrable. Attacks featured in this book include: UC Ecosystem Attacks Insecure Endpo
Unified Maximally Natural Supersymmetry
Huang, Junwu
2016-01-01
Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ unification: $\\sin^2 \\theta_W(M_Z) \\simeq 0.231$ is predicted to $\\pm 2\\%$ by unifying $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ into a 5D $SU(3)_{\\rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 \\sim 4.4\\,{\\rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{\\rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 \\sim 40 \\,{\\rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{\\rm EW}$ with masses lighter than $\\sim 1.2\\,{\\rm TeV}$, and squarks in the mass range $1.4\\,{\\rm TeV} - 2.3\\,{\\rm TeV}$, providing distinct signature...
Unified School Districts, Census 2000
Earth Data Analysis Center, University of New Mexico — The New Mexico 2000 Unified School Districts layer was derived from the TIGER Line files from the US Census Bureau. The districts are clipped to the state...
Unified approach to hard diffraction
Peschanski, R
2001-01-01
Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bj} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions.
Unified metamodel of object system
Oleynik, P. P.
2015-01-01
This article describes the unified metamodel of object system which can be used for domain-driven design (DDD) of information system. At the beginning of the work carried out in-depth analysis of existing studies devoted to the organization different metamodels. Metamodel for representing fragments in the figures presented class diagrams of Unified Modeling Language (UML). In the beginning of this article provides a general diagram which displays important associations. Next are separately sh...
Proposal of unified fermion texture
Energy Technology Data Exchange (ETDEWEB)
Krolikowski, W. [Institute of Theoretical Physics, Warsaw University, Warsaw (Poland)
1998-03-01
A unified form of mass matrix is proposed for neutrinos, charged leptons, up quarks and down quarks. Some constraints for the parameters involved are tentatively postulated. Then, the predictions are neatly consistent with available experimental data. Among the predictions are: (i) m{sub {tau}} {approx_equal} 1776.80 MeV (with the inputs of m{sub e} and m{sub {mu}}), (ii) m{sub {nu}0}<
On the History of Unified Field Theories
Directory of Open Access Journals (Sweden)
Goenner Hubert F.M.
2004-01-01
Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
Dark radiation from a unified dark fluid model
Geng, Chao-Qiang; Zhang, Xin
2014-01-01
We present a unified dark fluid model to describe the possible evolutionary behavior of $\\Delta N_\\mathrm{eff}$ in dark radiation. This model can be viewed as an interacting model for the dark sectors, in which dark matter interacts with dark radiation. We show that the evolution of $\\Delta N_\\mathrm{eff}$ can be nicely explained without some drawbacks, such as the blowup of $\\Delta N_\\mathrm{eff}$ at the late time and the interaction term at the early time.
A new pressure-parametrization unified dark fluid model
Energy Technology Data Exchange (ETDEWEB)
Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)
2017-04-15
We propose a new pressure-parametrization model to explain the accelerated expansion of the late-time Universe by considering the baryon matter and dark contents (dark matter and dark energy) as a unified dark fluid. To realize this model more physically, we reconstruct it with the quintessence and phantom scalar fields, respectively. We use the recent cosmological data to constrain this model, distinguish it from the standard cosmological model and find that the value of the Hubble constant H{sub 0} = 68.34{sup +0.53}{sub -0.92} supports the global measurement by the Planck satellite at the 1σ confidence level. (orig.)
Memory materials: a unifying description
Directory of Open Access Journals (Sweden)
Massimiliano Di Ventra
2011-12-01
Full Text Available There are so many materials properties leading to memory that a unifying description seems impossible. However, it is easy to show that the majority of two-terminal electronic devices based on memory materials and systems, when subject to time-dependent perturbations, behave simply as, or as a combination of, memristors, memcapacitors, and meminductors; namely non-linear circuit elements with memory. This unifying description opens up new venues for digital and analog applications ranging from information storage to biologically-inspired circuits. In this review, interesting research opportunities that emerge from this new perspective will be outlined.
The Simplest Unified Growth Theory
DEFF Research Database (Denmark)
Strulik, Holger; Weisdorf, Jacob Louis
This paper provides a unified growth theory, i.e. a model that explains the very long-run economic and demographic development path of industrialized economies, stretching from the pre-industrial era to present-day and beyond. Making strict use of Malthus' (1798) so-called preventive check...... hypothesis - that fertility rates vary inversely with the price of food - the current study offers a new and straightforward explanation for the demographic transition and the break with the Malthusian era. The current framework lends support to existing unified growth theories and is well in tune...... with historical evidence about structural transformation...
Constraining Logotropic Unified Dark Energy Models
Ferreira, V M C
2016-01-01
A unification of dark matter and dark energy in terms of a logotropic perfect dark fluid has recently been proposed, where deviations with respect to the standard $\\Lambda {\\rm CDM}$ model are dependent on a single parameter $B$. In this paper we show that the requirement that the linear growth of cosmic structures on comoving scales larger than $8 h^{-1} \\, {\\rm Mpc}$ is not significantly affected with respect to the standard $\\Lambda {\\rm CDM}$ result provides the strongest constraint to date on the model ($B <6 \\times 10^{-7}$), an improvement of more than three orders of magnitude over previous constraints on the value of $B$. We further show that this constraint rules out the logotropic Unified Dark Energy model as a possible solution to the small scale problems of the $\\Lambda$CDM model, including the cusp problem of Dark Matter halos or the missing satellite problem, as well as the original version of the model where the Planck energy density was taken as one of the two parameters characterizing the...
The Simplest Unified Growth Theory
DEFF Research Database (Denmark)
Strulik, Holger; Weisdorf, Jacob Louis
This paper provides a unified growth theory, i.e. a model that explains the very long-run economic and demographic development path of industrialized economies, stretching from the pre-industrial era to present-day and beyond. Making strict use of Malthus' (1798) so-called preventive check...
Unifying approach to hard diffraction
Navelet, H
2001-01-01
We find a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. A theoretical interpretation in terms of S-Matrix and perturbative QCD properties in the small x_{Bj} regime is proposed.
Indian Academy of Sciences (India)
Mridula Garg; Shweta Mittal
2004-05-01
In the present paper we derive a unified new integral whose integrand contains products of Fox -function and a general class of polynomials having general arguments. A large number of integrals involving various simpler functions follow as special cases of this integral.
Large Unifying Hybrid Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.
Unified Field Theory and Principle of Representation Invariance
Ma, Tian
2012-01-01
This is part of a research program to establish a unified field model for interactions in nature. The aim of this article is to postulate a new principle of representation invariance (PRI), to provide a needed mathematical foundation for PRI, and to use PRI to refine the unified field equations of four interactions. Intuitively, PRI amounts to saying that all SU(N) gauge theories should be invariant under transformations of different representations of SU(N). With PRI, we are able to substantially reduce the number of to-be-determined parameters in the unified model to two SU(2) and SU(3) constant vectors $\\{\\alpha^1_\\mu \\}$ and $\\{\\alpha^2_k\\}$, containing 11 parameters, which represent the portions distributed to the gauge potentials by the weak and strong charges. Furthermore, both PRI and PID can be directly applied to individual interactions, leading to a unified theory for dark matter and dark energy, and theories on strong and weak interaction potentials. As a direct application of the strong interacti...
76 FR 19893 - Unified Command Plan 2011
2011-04-08
...#0;#0; ] Memorandum of April 6, 2011 Unified Command Plan 2011 Memorandum for the Secretary of... the revised Unified Command Plan. Consistent with title 10, United States Code, section 161(b)(2)...
Unified Hybrid Network Theoretical Model Trilogy
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.
A Unified Scaling Law in Spiral Galaxies.
Koda; Sofue; Wada
2000-03-01
We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega00.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.
Unifiability in extensions of K4
Gencer, Ç.; de Jongh, D.
2009-01-01
We extend and generalize the work on unifiability of [8]. We give a semantic characterization for unifiability and non-unifiability in the extensions of K4. We apply this in particular to extensions of KD4, GL and K4.3 to obtain a syntactic characterization and give a concrete decision procedure for
Unified relativistic physics from a standing wave particle model
Vera, R A
1995-01-01
An extremely simple and unified base for physics comes out by starting all over from a single postulate on the common nature of matter and stationary forms of radiation quanta. Basic relativistic, gravitational (G) and quantum mechanical properties of a standing wave particle model have been derived. This has been done from just dual properties of radiation's and strictly homogeneous relationships for nonlocal cases in G fields. This way reduces the number of independent variables and puts into relief (and avoid) important inhomogeneity errors of some G theories. It unifies and accounts for basic principles and postulates physics. The results for gravity depend on linear radiation properties but not on arbitrary field relations. They agree with the conventional tests. However they have some fundamental differences with current G theories. The particle model, at a difference of the conventional theories, also fixes well-defined cosmological and astrophysical models that are different from the rather convention...
Unit Invariance as a Unifying Principle of Physics
Shaukat, Abrar
2010-01-01
A basic principle of physics is the freedom to locally choose any unit system when describing physical quantities. Its implementation amounts to treating Weyl invariance as a fundamental symmetry of all physical theories. In this thesis, we study the consequences of this "unit invariance" principle and find that it is a unifying one. Unit invariance is achieved by introducing a gauge field called the scale, designed to measure how unit systems vary from point to point. In fact, by a uniform and simple Weyl invariant coupling of scale and matter fields, we unify massless, massive, and partially massless excitations. As a consequence, masses now dictate the response of physical quantities to changes of scale. This response is calibrated by certain "tractor Weyl weights". Reality of these weights yield Breitenlohner-Freedman stability bounds in anti de Sitter spaces. Another valuable outcome of our approach is a general mechanism for constructing conformally invariant theories. In particular, we provide direct d...
Unified capacitance modelling of MOSFETs
Johannessen, O. G.; Fjeldly, T. A.; Ytterdal, T.
1994-01-01
A unified physics based capacitance model for MOSFETs suitable for implementation in circuit simulators is presented. This model is based on the charge conserving, so-called Meyer-like approach proposed by Turchetti et al., and utilizes a unified charge control model to assure a continuous description of the MOSFET capacitances both above and below threshold. The capacitances associated with the model are comparable to those of the well-known BSIM model in the above-threshold regime, but it is more precise in the description of near-threshold and subthreshold behaviour. Moreover, the discontinuities at the transitions between the various regimes of operation are removed. The present modelling scheme was implemented in our circuit simulator AIM-Spice, and simulations of the dynamic behaviour of various demanding benchmark circuits clearly reveal its superiority over simulations using the simple Meyer model.
Unified Theory of Fundamental Interactions
Institute of Scientific and Technical Information of China (English)
WU Ning
2003-01-01
Based on local gauge invariance, four different kinds of fundamental interactions in nature are unified in a theory which has SU(3)C( )SU SU(2)L( )U(1)( )s Gravitational Gauge Group gauge symmetry. In this approach,gravitational field, like electromagnetic field, intermediate gauge field, and gluon field, is represented by gauge potential.Four kinds of fundamental interactions are formulated in the similar manner, and therefore can be unified in a direct or semi-direct product group. The model discussed in this paper is a renormalizable quantum model and can be regarded as an extension of the standard model to gravitational interactions, so it can be used to study quantum effects of gravitational interactions.
Proposal of unified fermion texture
Królikowski, W
1998-01-01
A unified form of mass matrix is proposed for neutrinos, charged leptons, up quarks and down quarks. Some constraints for the parameters involved are tent% atively postulated. Then, the predictions are neatly consistent with available experimental data. Among the predictions are: (i) $ m_\\tau \\simeq 1776.80 $~MeV (with the inputs of $ m_e $ and $ m_\\mu $), (ii) $ m_{\
A New Unified Evolution Equation
1998-01-01
WE propose a new unified evolution equation for parton distribution functions appropriate for both large and small Bjorken x. Compared with the Ciafaloni- Catani-Fiorani-Marchesini equation, the cancellation of soft poles between virtual and real gluon emissions is made explicitly without introducing infrared cutoffs, next-to-leading contributions to the Sudakov resummation can be included systematically, and the scales of the running coupling constants are determined unambiguously.
Unified broadcast in sensor networks
DEFF Research Database (Denmark)
Hansen, Morten Tranberg; Jurdak, Raja; Kusy, Branislav
2011-01-01
to consolidate these broadcasts focus on piggybacking information into existing services but such tight coupling between protocols limits code reuse and interoperability of applications. We present Unified Broadcast (UB) which combines broadcasts from multiple protocols while maintaining a modular architecture......Complex sensor network applications include multiple services such as collection, dissemination, time synchronization, and failure detection protocols. Many of these protocols require local state maintenance through periodic broadcasts which leads to high control overhead. Recent attempts...
Viscous dark fluid Universe: a unified model of the dark sector?
Zimdahl, W; Hipólito-Ricaldi, W S; 10.1142/S2010194511001413
2011-01-01
The Universe is modeled as consisting of pressureless baryonic matter and a bulk viscous fluid which is supposed to represent a unified description of the dark sector. In the homogeneous and isotropic background the \\textit{total} energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value of the deceleration parameter. Moreover, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis. A problem of simple bulk viscous models, however, is the behavior of the gravitational potential and ...
A new view of Baryon symmetric cosmology based on grand unified theories
Stecker, F. W.
1981-01-01
Within the framework of grand unified theories, it is shown how spontaneous CP violation leads to a domain structure in the universe with the domains evolving into separate regions of matter and antimatter excesses. Subsequent to exponential horizon growth, this can result in a universe of matter galaxies and antimatter galaxies. Various astrophysical data appear to favor this form of big bang cosmology. Future direct tests for cosmologically significant antimatter are discussed.
A unified slip boundary condition for flow over a surface
Thalakkottor, Joseph John
2015-01-01
Interface between two phases of matter are ubiquitous in nature and technology. Determining the correct velocity condition at an interface is essential for understanding and designing of flows over a surface. We demonstrate that both the widely used no-slip and the Navier and Maxwell slip boundary conditions do not capture the complete physics associated with complex problems, such as spreading of liquids or corner flows. Hence, we present a unified boundary condition that is applicable to a wide-range of flow problems.
Towards a unified description of the electroweak nuclear response
Benhar, Omar
2015-01-01
We briefly review the growing efforts to set up a unified framework for the description of neutrino interactions with atomic nuclei and nuclear matter, applicable in the broad kinematical region corresponding to neutrino energies ranging between few MeV and few GeV. The emerging picture suggests that the formalism of nuclear many-body theory can be exploited to obtain the neutrino-nucleus cross sections needed for both the interpretation of oscillation signals and simulation of neutrino transport in compact stars.
Grand unified theories from superstrings
Cleaver, G B
1996-01-01
I discuss how traditional grand unified theories, which require adjoint (or higher representation) Higgs fields for breaking to the standard model, can be contained within string theory. The status of stringy free fermionic three generation SO(10) SUSY--GUT models is reviewed. Progress in classification of both SO(10)_2 charged and uncharged embeddings and in N=1 spacetime solutions is discussed. Based on talks presented at the Workshop on SUSY Phenomena and SUSY GUTs, Santa Barbara, California, Dec. 7-11, 1995, and at the Orbis Scientiae, Coral Gables, Florida, January 25-28, 1996. To appear in the Proceedings of Orbis Scientiae, 1996.
Unifying suspension and granular rheology.
Boyer, François; Guazzelli, Élisabeth; Pouliquen, Olivier
2011-10-28
Using an original pressure-imposed shear cell, we study the rheology of dense suspensions. We show that they exhibit a viscoplastic behavior similarly to granular media successfully described by a frictional rheology and fully characterized by the evolution of the friction coefficient μ and the volume fraction ϕ with a dimensionless viscous number I(v). Dense suspension and granular media are thus unified under a common framework. These results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
Sedenion unified theory of gravi-electromagnetism
Chanyal, B. C.
2014-11-01
In this paper, we represent 16-component sedenions, the generalization of octonions, which is noncommutative space-time algebra. The sedenions is neither a composition algebra nor a division algebra because it has zero divisors. Here we have formulated the sedenionic unified potential equations, unified fields equations and unified current equations of dyons and gravito-dyons. We have developed the sedenionic unified theory of dyons and gravito-dyons in terms of two eight-potentials leading to the structural symmetry between generalized electromagnetic fields of dyons and generalized gravito-Heavisidian fields of gravito-dyons. Thus we have obtained the sedenionic form of generalized Dirac-Maxwell's equations, unified work-energy theorem (Poynting theorem), generalized unified gravi-electromagnetic force and other quantum equations of dyons and gravito-dyons in simple, compact and consistent way incorporating the non-associativity and non-commutativity of sedenion variables.
Vanishing Matter and the Laws of Nature Descartes and Beyond
Anstey, Peter
2010-01-01
This volume explores the themes of vanishing matter, matter and the laws of nature, the qualities of matter, and the diversity of the debates about matter in the early modern period. Chapters are unified by a number of interlocking themes which together enable some of the broader contours of the philosophy of matter to be charted in new ways. Part I concerns Cartesian Matter; Part II covers Matter, Mechanism and Medicine; Part III covers Matter and the Laws of Motion; and Part IV covers Leibniz and Hume. Bringing together some of the world's leading scholars of early modern philosophy, as well
Unified symmetry of Vacco dynamical systems
Institute of Scientific and Technical Information of China (English)
Li Yuan-Cheng; Jing Hong-Xing; Xia Li-Li; Wang Jing; Hou Qi-Bao
2007-01-01
Based on the total time derivative along the trajectory of the time, we study the unified symmetry of Vacco dynamical systems. The definition and the criterion of the unified symmetry for the system are given. Three kinds of conserved quantities, i.e. the Noether conserved quantity, the generalized Hojman conserved quantity and the Mei conserved quantity, are deduced from the unified symmetry. An example is presented to illustrate the results.
Unifying Memory and Database Transactions
Dias, Ricardo J.; Lourenço, João M.
Software Transactional Memory is a concurrency control technique gaining increasing popularity, as it provides high-level concurrency control constructs and eases the development of highly multi-threaded applications. But this easiness comes at the expense of restricting the operations that can be executed within a memory transaction, and operations such as terminal and file I/O are either not allowed or incur in serious performance penalties. Database I/O is another example of operations that usually are not allowed within a memory transaction. This paper proposes to combine memory and database transactions in a single unified model, benefiting from the ACID properties of the database transactions and from the speed of main memory data processing. The new unified model covers, without differentiating, both memory and database operations. Thus, the users are allowed to freely intertwine memory and database accesses within the same transaction, knowing that the memory and database contents will always remain consistent and that the transaction will atomically abort or commit the operations in both memory and database. This approach allows to increase the granularity of the in-memory atomic actions and hence, simplifies the reasoning about them.
Yukawa-unified natural supersymmetry
Baer, Howard; Kulkarni, Suchita
2012-01-01
Previous work on t-b-\\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\\sim125 GeV. As Yukawa unification requires large tan\\beta\\sim50, while EWFT requires rather light third generation squarks and low \\mu\\sim100-250 GeV, B-physics constraints from BR(B\\to X_s\\gamma) and BR(B_s\\to \\mu+\\mu-) can be severe. We are able to find models with EWFT \\Delta\\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be a...
Dai, Wenlin
2017-09-01
Difference-based methods do not require estimating the mean function in nonparametric regression and are therefore popular in practice. In this paper, we propose a unified framework for variance estimation that combines the linear regression method with the higher-order difference estimators systematically. The unified framework has greatly enriched the existing literature on variance estimation that includes most existing estimators as special cases. More importantly, the unified framework has also provided a smart way to solve the challenging difference sequence selection problem that remains a long-standing controversial issue in nonparametric regression for several decades. Using both theory and simulations, we recommend to use the ordinary difference sequence in the unified framework, no matter if the sample size is small or if the signal-to-noise ratio is large. Finally, to cater for the demands of the application, we have developed a unified R package, named VarED, that integrates the existing difference-based estimators and the unified estimators in nonparametric regression and have made it freely available in the R statistical program http://cran.r-project.org/web/packages/.
A new unified theory of electromagnetic and gravitational interactions
Li, Li-Xin
2016-12-01
In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.
Supersymmetric axion grand unified theories and their predictions
Co, Raymond T.; D'Eramo, Francesco; Hall, Lawrence J.
2016-10-01
We introduce a class of unified supersymmetric axion theories with unified and Peccei-Quinn (PQ) symmetries broken by the same set of fields at a scale ˜2 ×1 016 GeV . A typical domain wall number of order 30 leads to an axion decay constant fa of order 1 015 GeV . Inflation generates a large saxion condensate, giving a reheat temperature TR below the QCD scale for supersymmetry breaking of order 1-10 TeV. Axion field oscillations commence in the saxion matter-dominated era near the QCD scale, and recent lattice computations of the temperature dependence of the axion mass in this era allow a controlled calculation of the axion dark matter abundance. The observed abundance can be successfully explained by an initial axion misalignment angle of order unity, θi˜1 . A highly correlated set of predictions is discussed for fa, TR, the supersymmetric Higgs mass parameter μ , the amount of dark radiation Δ Neff, the proton decay rate Γ (p →e+π0), isocurvature density perturbations and the B mode of the cosmic microwave background. The last two are particularly interesting when the energy scale of inflation is also of order 1 016 GeV .
Towards a Unified Programming Language
DEFF Research Database (Denmark)
Madsen, Ole Lehrmann
2000-01-01
find that the languages of the future should integrate the best available concepts and constructs in such a way that the programmer does not think of multiple paradigms when using a given language. In this paper, we describe to what extent the BETA language has been successful in obtaining a unified......The goal of research in programming languages should be to develop languages that integrates the best of concepts and constructs from the various programming paradigms. We do not argue for a multi-paradigm language, where the programmer alternates between the different paradigms/styles. Instead, we...... style and where more research is needed. In addition to traditional paradigms such as object-oriented-, imperative-functional- and logic programming, we also discuss concurrent programming and prototype-based programming. We discuss language features such as the BETA pattern construct, virtual...
A unifying process capability metric
Directory of Open Access Journals (Sweden)
John Jay Flaig
2009-07-01
Full Text Available A new economic approach to process capability assessment is presented, which differs from the commonly used engineering metrics. The proposed metric consists of two economic capability measures – the expected profit and the variation in profit of the process. This dual economic metric offers a number of significant advantages over other engineering or economic metrics used in process capability analysis. First, it is easy to understand and communicate. Second, it is based on a measure of total system performance. Third, it unifies the fraction nonconforming approach and the expected loss approach. Fourth, it reflects the underlying interest of management in knowing the expected financial performance of a process and its potential variation.
Unifying Theories of Mobile Channels
Directory of Open Access Journals (Sweden)
Gerard Ekembe Ngondi
2016-06-01
Full Text Available In this paper we present the denotational semantics for channel mobility in the Unifying Theories of Programming (UTP semantics framework. The basis for the model is the UTP theory of reactive processes (precisely, the UTP semantics for Communicating Sequential Processes (CSP, which is slightly extended to allow the mobility of channels: the set of actions in which a process is authorised to participate, originally static or constant (set during the process's definition, is now made dynamic or variable: it can change during the process's execution. A channel is thus moved around by communicating it via other channels and then allowing the receiving process to extend its alphabet with the received channel. New healthiness conditions are stated to ensure an appropriate use of mobile channels.
Neutron star radii and crusts: uncertainties and unified equations of state
Fortin, M; Raduta, A R; Gulminelli, F; Zdunik, J L; Haensel, P; Bejger, M
2016-01-01
The uncertainties in neutron star (NS) radii and crust properties due to our limited knowledge of the equation of state (EOS) are quantitatively analysed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core EOS based on models with different properties at nuclear matter saturation, the uncertainties can be as large as $\\sim 30\\%$ for the crust thickness and $4\\%$ for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified EOS for purely nucleonic matter is obtained based on 24 Skyrme interactions and 9 relativistic mean-field nuclear parametrizations. In addition, for relativistic models 17 EOS including a transition to hyperonic matter at high density are presented. All these EOS have in common the property of describing a $2\\;M_\\odot$ star a...
Harmonious Unifying Hybrid Preferential Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
The basic concepts and methods for harmonious unifying hybrid preferential model(HUHPM)are based on random preferential attachment(RPA)mixed with deterministic preferential attachment(DPA),so there is only one unified hybrid ratio dr,which is defined as:
Harigaya, Keisuke; Lou, Hou Keong
2016-01-01
Motivated by gauge coupling unification and dark matter, we present an extension to the Standard Model where both are achieved by adding an extra new matter multiplet. Such considerations lead to a Grand Unified Theory with very heavy WIMPzilla dark matter, which has mass greater than ~10^7 GeV and must be produced before reheating ends. Naturally, we refer to this scenario as GUTzilla dark matter. Here we present a minimal GUTzilla model, adding a vector-like quark multiplet to the Standard Model. Proton decay constraints require the new multiplet to be both color and electroweak charged, which prompts us to include a new confining SU(3) gauge group that binds the multiplet into a neutral composite dark matter candidate. Current direct detection constraints are evaded due to the large dark matter mass; meanwhile, next-generation direct detection and proton decay experiments will probe much of the parameter space. The relic abundance is strongly dependent on the dynamics of the hidden confining sector, and we...
Yukawa-unified natural supersymmetry
Baer, Howard; Kraml, Sabine; Kulkarni, Suchita
2012-12-01
Previous work on t - b - τ Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m h 125 GeV. As Yukawa unification requires large tan β 50, while EWFT requires rather light third generation squarks and low μ ≈ 100 - 250 GeV, B-physics constraints from BR( B → X s γ) and BR( B s → μ + μ -) can be severe. We are able to find models with EWFT Δ ≲ 50 - 100 (better than 1-2% EWFT) and with Yukawa unification as low as R yuk 1.2 (20% unification). The unification is lessened to R yuk 1.3 when B-physics constraints are imposed. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1 - 2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A → μ + μ - decay might allow a determination of tan β 50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e + e - collider with sqrt{s}˜ 0.5 TeV.
Seagrass from Unified Florida Reef Tract Map (NODC Accession 0123059)
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a subset of the Unified Map representing Seagrass areas. Version 1.1 - December 2013. The Unified Florida Reef Tract Map (Unified Reef Map) provides...
A unified multiwavelength model of galaxy formation
Lacey, Cedric G.; Baugh, Carlton M.; Frenk, Carlos S.; Benson, Andrew J.; Bower, Richard G.; Cole, Shaun; Gonzalez-Perez, Violeta; Helly, John C.; Lagos, Claudia D. P.; Mitchell, Peter D.
2016-11-01
We present a new version of the GALFORM semi-analytical model of galaxy formation. This brings together several previous developments of GALFORM into a single unified model, including a different initial mass function (IMF) in quiescent star formation and in starbursts, feedback from active galactic nuclei suppressing gas cooling in massive haloes, and a new empirical star formation law in galaxy discs based on their molecular gas content. In addition, we have updated the cosmology, introduced a more accurate treatment of dynamical friction acting on satellite galaxies, and updated the stellar population model. The new model is able to simultaneously explain both the observed evolution of the K-band luminosity function and stellar mass function, and the number counts and redshift distribution of sub-mm galaxies selected at 850 μm. This was not previously achieved by a single physical model within the Λcold dark matter framework, but requires having an IMF in starbursts that is somewhat top-heavy. The new model is tested against a wide variety of observational data covering wavelengths from the far-UV to sub-mm, and redshifts from z = 0 to 6, and is found to be generally successful. These observations include the optical and near-infrared (IR) luminosity functions, H I mass function, fraction of early type galaxies, Tully-Fisher, metallicity-luminosity and size-luminosity relations at z = 0, as well as far-IR number counts, and far-UV luminosity functions at z ˜ 3-6. Discrepancies are, however, found in galaxy sizes and metallicities at low luminosities, and in the abundance of low-mass galaxies at high-z, suggesting the need for a more sophisticated model of supernova feedback.
Nothing From Everything- A Unified Theory
Mehra, Vijay Kumar
2016-07-01
Nothing From Everything-A Unified Theory is a philosophical insight into principles of nature through principle of complementary spontaneity and principle of vertical continuity. This work is intended to explain various cosmological phenomena in light of behaviour of particles in range of their respective and relative speed of light. This theory explains creation of Universe from nothing or zero spacetime through scalar energy field collapsing into Higgs field resulting into giving mass to various particles. The energy particles taking origin from nothing while moving away from zero space-time would create space-time of their own order because energy/matter needs space to exist. The particles while moving away from zero space-time would end up in breaking symmetry of matter/energy at their mass infinity (highest possible mass of any particle, which is function of speed of spin). This break in symmetry would lead to curving of particles upon themselves and hence would lead to creation of antiparticles going back in time towards zero spacetime. Therefore the Universe could have been created by alternate layers of particles and antiparticles and also alternate layers of matter and antimatter with decelerating speed of light, which would lead to creation a closed and flat Universe. With increase in mass of Universe (creation of more and more Universe's matter from nothing), the gravitational force of Universe is bound to increase and hence with quantum by quantum increase in gravity, it would apply brakes on relative speed of photon/light out of its reference frame or designated space and hence speed of photon would decrease. If closed and flat Universe was created with decelerating speed of light, then such Universe is bound to contract back with accelerating speed of light which would have inverse impact on gravitational constant across various spacetime zones of Universe. And hence mass bodies would drift away spontaneously purely on basis and proportional to
Khoury, Justin
2015-01-01
In this talk we present a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known cold at...
Khoury, Justin
2016-01-01
In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. This framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known co...
A unified theory of superconductivity
Huang, Xiuqing
2008-01-01
In this work, we argue that the phonon-mediated BCS theory may be incorrect. Two kinds of glues, pairing (pseudogap) glue and superconducting glue, are suggested based on a real space Coulomb confinement effect. The scenarios provide a unified explanation of the pairing symmetry, pseudogap and superconducting states, spin--charge stripe order, magic doping fractions and vortex structures in conventional and unconventional (the high-Tc cuprates, MgB2 and the newly-discovered Fe-based family) superconductors. The theory agrees with the existence of a pseudogap in high-temperature superconductors, while no pseudogap feature could be observed in MgB2, iron-based and most of the conventional superconductors. Our results indicate that the superconducting phase can coexist with a triangular vortex lattice in pure MgB2 single crystal with a charge carrier density n=1.49*10^22/cm3. For iron-based superconductors, the relationship between the superconducting vortex phases and the optimal doping levels are analytically ...
Unifying evolutionary and network dynamics
Swarup, Samarth; Gasser, Les
2007-06-01
Many important real-world networks manifest small-world properties such as scale-free degree distributions, small diameters, and clustering. The most common model of growth for these networks is preferential attachment, where nodes acquire new links with probability proportional to the number of links they already have. We show that preferential attachment is a special case of the process of molecular evolution. We present a single-parameter model of network growth that unifies varieties of preferential attachment with the quasispecies equation (which models molecular evolution), and also with the Erdős-Rényi random graph model. We suggest some properties of evolutionary models that might be applied to the study of networks. We also derive the form of the degree distribution resulting from our algorithm, and we show through simulations that the process also models aspects of network growth. The unification allows mathematical machinery developed for evolutionary dynamics to be applied in the study of network dynamics, and vice versa.
Einasto, Jaan
2013-01-01
I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...
Magnetic monopoles and strange matter
Sañudo, J.; Seguí, A.
1986-01-01
We show that if the density of grand unified monopoles at T⋍200 MeV id of the order of or greater than 4.4×1021 cm-3 they annihilate all of the strange matter produced in the quagma-hadron phase transition which of the unverse undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yield upper limits on the density of monopoles for different sizes of strange ball. On leave of absence from Departamento de Física Atómica y Nuclear, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Unified Approach in the DSS Development Process
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available The structure of today's decision support environment become very complex due to new generation of Business Intelligence applications and technologies like Data Warehouse, OLAP (On Line Analytical Processing and Data Mining. In this respect DSS development process are not simple and needs an adequate methodology or framework able to manage different tools and platforms to achieve manager's requirements. The DSS development process must be view like a unified and iterative set of activities and operations. The new techniques based on Unified Process (UP methodology and UML (Unified Modeling Language it seems to be appropriate for DSS development using prototyping and RAD (Rapid Application Development techniques. In this paper we present a conceptual framework for development and integrate Decision Support Systems using Unified Process Methodology and UML.
A unified approach to the Painleve Transcendents
2016-01-01
We utilise a recent approach via the so-called re-scaling method to derive a unified and comprehensive theory of the solutions to Painleve's differential equations (I), (II) and (IV), with emphasis on the most elaborate equation (IV).
Exhaustivity and intonation: a unified theory
Westera, M.
2017-01-01
This dissertation presents a precise, unified and explanatory theory of human conversation, centered on two broad phenomena: exhaustivity implications and intonational meaning. In a nutshell: (i) speakers have two types of communicative intentions, namely information sharing and attention sharing, (
Some Representations of Unified Voigt Functions
Institute of Scientific and Technical Information of China (English)
M. KAMARUJJAMA; Dinesh SINGH
2005-01-01
The authors derive a set of unified representations of the Voigt functions in terms of familiar special functions of Mathematical Physics. Some deductions from these representations are also considered.
A Unified Framework for Systematic Model Improvement
DEFF Research Database (Denmark)
Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay
2003-01-01
A unified framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation (SDE) modelling, statistical tests and multivariate nonparametric regression...
Unified Data Model for Biological Data
Directory of Open Access Journals (Sweden)
Muhammad Idrees
2014-07-01
Full Text Available A data model empowers us to store, retrieve and manipulate data in a unified way. We consider the biological data consists of DNA (De-Oxyribonucleic Acid, RNA (Ribonucleic Acid and protein structures. In our Bioinformatics Lab (Bioinformatics Lab, Alkhawarizmi Institute of Computer Science, University of Engineering & Technology, Lahore, Pakistan, we have already proposed two data models for DNA and protein structures individually. In this paper, we propose a unified data model by using the data models of TOS (Temporal Object Oriented System after making some necessary modifications to this data model and our already proposed the two data models. This proposed unified data model can be used for the modeling and maintaining the biological data (i.e. DNA, RNA and protein structures, in a single unified way
Unified characterisations of resolution hardness measures
Beyersdorff, O; Kullmann, O.
2014-01-01
Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations b...
Chimera multiscale simulation of complex flowing matter
Succi, Sauro
2016-01-01
We discuss a unified mesoscale framework for the simulation of complex states of flowing matter across scales of motion which requires no explicit coupling between different macro-meso-micro levels. The idea is illustrated through selected examples of complex flows at the micro and nanoscale.
Unified Description of Charmonium Suppression in QGP Medium
Singh, Captain R; Ganesh, S; Mishra, M
2015-01-01
Recent experimental and theoretical studies suggest that the quarkonia suppression in a thermal QCD medium created at heavy ion collisions is a complex interplay of various physical processes. In this article we put together most of these processes in a unified way to calculate the charmonium survival probability (nuclear modification factor) at energies available at relativistic heavy ion collider (RHIC) and large hadron collider (LHC) experiments. We have included shadowing as the dominant cold nuclear matter (CNM) effect. Further, gluo-dissociation and collision damping has been included which provide width to the spectral function of charmonia in a thermal medium and causes the dissociation of charmonium along with usual colour screening. We include the colour screening using our recently proposed modified Chu and Matsui model. Furthermore we incorporate the recombination of uncorrelated charm and anti-charm quark for the regeneration of charmonium over the entire temporal evolution of QGP medium. Finally...
A Unified Algorithm for Finding the Intersection Curve of Surfaces
Institute of Scientific and Technical Information of China (English)
谭建荣; 郑建民; 等
1994-01-01
In this papaer,an INTEGRAL CURVE ALGORITHM is presented,which turns the intersection curve of surfaces into the form of integral one and then uses “PREDICTORCORRECTOR” technique to evaluate the intersection of surfaces.No matter how the surfaces are defined,the method always deals with the intersection curves in the same way.To find a point on the curve one need only to calculate the JACOBI determinants of “PREDICTOR point”and “CORRECTOR point” while the second order precision is guatanteed.Thus,not only is the problem of finding the intersection of surfaces resolved,but also the algorithms for generating both plane curve and space curve are unified.
Foundations to the unified psycho-cognitive engine.
Energy Technology Data Exchange (ETDEWEB)
Bernard, Michael Lewis; Bier, Asmeret Brooke; Backus, George A.; Verzi, Stephen J.; Glickman, Matthew R.
2010-10-01
This document outlines the key features of the SNL psychological engine. The engine is designed to be a generic presentation of cognitive entities interacting among themselves and with the external world. The engine combines the most accepted theories of behavioral psychology with those of behavioral economics to produce a unified simulation of human response from stimuli through executed behavior. The engine explicitly recognizes emotive and reasoned contributions to behavior and simulates the dynamics associated with cue processing, learning, and choice selection. Most importantly, the model parameterization can come from available media or survey information, as well subject-matter-expert information. The framework design allows the use of uncertainty quantification and sensitivity analysis to manage confidence in using the analysis results for intervention decisions.
Marder, Michael P.
2000-01-01
A modern, unified treatment of condensed matter physics This new work presents for the first time in decades a sweeping review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching "not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, electron interference in nanometer-sized channels, and the quantum Hall effect." Six major areas are covered---atomic structure, electronic structure, mechanical properties, electron transport, optical properties, and magnetism. But rather than defining the field in terms of particular materials, the author focuses on the way condensed matter physicists approach physical problems, combining phenomenology and microscopic arguments with information from experiments. For graduate students and professionals, researchers and engineers, applied mathematicians and materials scientists, Condensed Matter Physics provides: * An exciting collection of new topics from the past two decades. * A thorough treatment of classic topics, including band theory, transport theory, and semiconductor physics. * Over 300 figures, incorporating many images from experiments. * Frequent comparison of theory and experiment, both when they agree and when problems are still unsolved. * More than 50 tables of data and a detailed index. * Ample end-of-chapter problems, including computational exercises. * Over 1000 references, both recent and historically significant.
Groundwater modelling in decision support: reflections on a unified conceptual framework
Doherty, John; Simmons, Craig T.
2013-11-01
Groundwater models are commonly used as basis for environmental decision-making. There has been discussion and debate in recent times regarding the issue of model simplicity and complexity. This paper contributes to this ongoing discourse. The selection of an appropriate level of model structural and parameterization complexity is not a simple matter. Although the metrics on which such selection should be based are simple, there are many competing, and often unquantifiable, considerations which must be taken into account as these metrics are applied. A unified conceptual framework is introduced and described which is intended to underpin groundwater modelling in decision support with a direct focus on matters regarding model simplicity and complexity.
Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation
Directory of Open Access Journals (Sweden)
Richard eBeare
2016-03-01
Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for
Prospects of a Unified Management System
DEFF Research Database (Denmark)
Jørgensen, Tine Herreborg; Simonsen, Gorm
2002-01-01
In this article, the trend among management systems towards a common structure and the inclusion of additional areas of corporate concern (quality, environment, occupational health and safety and social responsibility) is outlined. The article suggests that a large part of the work associated...... that the company could wish to include in their management system and possibly have certified. It is estimated that such a unified management system would contribute to synergy between the activities related to each area of concern, resulting in a more careful and efficient treatment of the increasing number...... with implementing and maintaining standardised management systems can be rationalised by developing a ?unified system?. The unified system is proposed to consist of a common basic standard of general managerial methodology expandable with supplements, which are related to the specific areas of concern...
Recent progress on dense nuclear matter in skyrmion approaches
Ma, YongLiang; Rho, Mannque
2017-03-01
The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence (IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.
Einasto, J.
2011-01-01
I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Properties of dark matter particles determine the structure of the cosmic web.
A Unified Approach to Generalized Stirling Functions
Institute of Scientific and Technical Information of China (English)
Tianxiao HE
2012-01-01
Here presented is a unified approach to generalized Stirling functions by using generalized factorial functions,k-Gamma functions,generalized divided difference,and the unified expression of Stirling numbers defined in[16].Previous well-known Stirling functions introduced by Butzer and Hauss[4],Butzer,Kilbas,and Trujilloet[6]and others are included as particular cases of our generalization.Some basic properties related to our general pattern such as their recursive relations,generating functions,and asymptotic properties are discussed,which extend the corresponding results about the Stirling numbers shown in[21]to the defined Stirling functions.
A consistent scalar-tensor cosmology for inflation, dark energy and the Hubble parameter
Wang, C H -T; Murphy, A St J; Bingham, R; Mendonca, J T; Davies, T B
2013-01-01
A generic homogenous and isotropic cosmology is investigated based on the scalar-tensor theory of gravitation involving general metric coupling and scalar potential functions. We show that for a broad class of such functions, the scalar gravitational field can be dynamically trapped using a recently suggested mechanism. The corresponding scalar potential can drive inflation, accelerating expansion in the early and late universe respectively, with features consistent with standard requirements. Remarkably, the inflationary phase admits a natural exit with a well-defined value of the Hubble parameter dictated by the duration of inflation in a parameter independent manner, regardless of the detailed forms of the metric coupling and scalar potential. For an inflation duration consistent with the GUT description of the early universe, the resulting Hubble parameter is found to be consistent with its observed value.
A consistent scalar-tensor cosmology for inflation, dark energy and the Hubble parameter
Wang, C. H.-T.; Reid, J. A.; Murphy, A. St. J.; Rodrigues, D.; Al Alawi, M.; Bingham, R.; Mendonça, J. T.; Davies, T. B.
2016-11-01
A Friedman cosmology is investigated based on scalar-tensor gravitation with general metric coupling and scalar potential functions. We show that for a broad class of such functions, the scalar field can be dynamically trapped using a recently suggested mechanism. The trapped scalar can drive inflation and accelerated cosmic expansion, compatible with standard requirements. The inflationary phase admits a natural exit with a value of the Hubble parameter dictated by the duration of inflation in a parameter independent manner. For inflationary duration consistent with the GUT description, the resulting Hubble parameter is found to be consistent with its observed value.
New limit on logotropic unified dark energy models
Directory of Open Access Journals (Sweden)
V.M.C. Ferreira
2017-07-01
Full Text Available A unification of dark matter and dark energy in terms of a logotropic perfect dark fluid has recently been proposed, where deviations with respect to the standard ΛCDM model are dependent on a single parameter B. In this paper we show that the requirement that the linear growth of cosmic structures on comoving scales larger than 8h−1Mpc is not significantly affected with respect to the standard ΛCDM result provides the strongest limit to date on the model (B<6×10−7, an improvement of more than three orders of magnitude over previous upper limits on the value of B. We further show that this limit rules out the logotropic Unified Dark Energy model as a possible solution to the small scale problems of the ΛCDM model, including the cusp problem of Dark Matter halos or the missing satellite problem, as well as the original version of the model where the Planck energy density was taken as one of the two parameters characterizing the logotropic dark fluid.
Angelo, Joseph A
2011-01-01
Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S
Hydrodynamics of soft active matter
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi
2013-07-01
This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.
Halo formation and evolution: unifying physical properties with structure
Ernest, Alllan David; Collins, Matthew P.
2015-08-01
The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp
Toward a Unified View of Cognitive Control
Salvucci, Dario D.; Taatgen, Niels A.
2011-01-01
Allen Newell (1973) once observed that psychology researchers were playing "twenty questions with nature," carving up human cognition into hundreds of individual phenomena but shying away from the difficult task of integrating these phenomena with unifying theories. We argue that research on cogniti
Unified Modern Mathematics, Course 3, Teachers Commentary.
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
This commentary is to be used with "Unified Modern Mathematics, Course III." Statements of specific purposes and goals of each section of every chapter of Course III are included in the "Commentary." Also included are suggestions for teaching concepts presented in each section; time estimates for each section; suggested instructional aids for…
Unified Modern Mathematics, Course 1, Teachers Commentary.
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
This commentary is designed for use with "Unified Modern Mathematics, Course I," Parts 1 and 2. Included in the commentary are statements of the specific purposes and goals of each section of every chapter, suggestions for teaching the concepts presented in each section, time estimates for each section, suggested instructional aids for presenting…
Unified Modern Mathematics, Course 2, Teachers Commentary.
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
This commentary is designed for use with "Unified Modern Mathematics, Course II," Parts 1 and 2. As in the commentary for "Course I," statements of the specific purposes and goals of each section of every chapter are presented. Also included are suggestions for teaching the concepts presented in each section, time estimates for each section,…
Unifying Quantitative Methodology in Social Research.
Willson, Victor L.
A case is made for representing quantitative methods in use in the social sciences within a unified framework based on structural equation methodology (SEM). Most of the methods now in use are shown in their SEM representation. It is suggested that the visual and verbal representations of SEM are of most use, while specific estimation and…
A Unified Introduction to Ordinary Differential Equations
Lutzer, Carl V.
2006-01-01
This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)
A unified theory in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1990-10-11
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space (Su(3)/U(1)xU(1))/Z{sub 2} giving in four dimensions the standard model. (orig.).
Toward a Unified Theory of Reading
Sadoski, Mark; Paivio, Allan
2007-01-01
Despite nearly 40 years of scientific theorizing about reading, the field remains fragmented with little progress toward unification. In this article, we (a) emphasize the privileged position of unified theories in all science, (b) compare the growth of theory in cognitive science and reading, (c) identify the phenomenal domain of a unified…
Unified classical path theories of pressure broadening.
Bottcher, C.
1971-01-01
Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.
A Grand Unified Theory of Interdisciplinarity
Davis, Lennard J.
2007-01-01
Aside from the appeal to administrators as a tool to reduce costs by combining less robust departments with heftier relations, interdisciplinarity is a powerful idea because it implies that different branches of knowledge can benefit from talking to one another: a grand, unified theory of knowledge in which each discipline contributes building…
A unified approach to Fierz identities
Babalic, E. M.; Coman, I. A.; Lazaroiu, C. I.
2013-11-01
We summarize a unified and computationally efficient treatment of Fierz identities for form-valued pinor bilinears in various dimensions and signatures, using concepts and techniques borrowed from a certain approach to spinors known as "geometric algebra". Our formulation displays the real, complex and quaternionic structures in a conceptually clear manner, which is moreover amenable to implementation in various symbolic computation systems.
A unifying approach to CoDesign
Achterop, S; Milligan, P; Coor, P
1998-01-01
Basic arguments are described to create a unified CoDesign environment. A unique feature is the use of a single language to describe systems. Different subsets describe hardware, both structure and behavior, as well a software. It vividly shows that software and hardware are much more alike than usu
A Unifying Curriculum for Museum-Schools
Povis, Kaleen E.
2011-01-01
There are over two dozen schools in the United States with the word "museum" in their names. However, the philosophy and pedagogy that tie these schools together is unclear. A consistent definition, criteria for classification, and a unifying curriculum to guide museum- schools is lacking. Yet, museum-schools continue to open across the country.…
A Unifying View of Computational Electrochemistry
Bieniasz, L. K.
2007-11-01
The current state of development of Computational Electrochemistry is briefly discussed, and a unifying view of the field is proposed, with the aim of stimulating a communication between, and unity of, computationally oriented electrochemists involved in diverse kinds of computations. The most recent work of the author, pertaining to the field, is also reviewed.
A unified stability property in spin glasses
Panchenko, Dmitry
2011-01-01
Gibbs' measures in the Sherrington-Kirkpatrick type models satisfy two asymptotic stability properties, the Aizenman-Contucci stochastic stability and the Ghirlanda-Guerra identities, which play a fundamental role in our current understanding of these models. In this paper we show that one can combine these two properties very naturally into one unified stability property.
Computational Unified Set Theory and Application
Institute of Scientific and Technical Information of China (English)
Zhang Jiang; Li Xuewei; He Zhongxiong
2006-01-01
The computational unified set model (CUSM) as the latest progress of Unified Set theory is introduced in this paper. The model combines unified set theory, information granule, complex adaptive system and cognitive science to present a new approach to simulate the cognition of human beings that can be viewed as the evolutionary process through the automatic learning from data sets. The information granule, which is the unit of cognition in CUSM, can be synthesized and created by the basic operators. It also can form the granule network by linking with other granules. With the learning from database, the system can evolve under the pressure of selection. As the adaptive results, fuzzy sets, vague sets and rough sets, etc can emerge out spontaneously. The CUSM answers the question of the origin of the uncertainties in thinking process described by unified set theory, that is due to the emergent properties of a holistic system of multiple cognitive units. And also the CUSM creates a dynamic model that can adapt to the environment. As a result, the "closed world" limitation in machine learning may be broken. The paper also discusses the applications of CUSM in rules discovery, problem solving, clustering analysis and data mining etc. The main features of the model comparing with the classical approaches toward those problems are its adaptability, flexibility and robustness but not accuracy.
DEFF Research Database (Denmark)
Hasse Jørgensen, Stina
2011-01-01
About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011.......About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011....
... Emergency Room? What Happens in the Operating Room? Memory Matters KidsHealth > For Kids > Memory Matters A A ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...
UNIFIED THEORETICAL MOMENT EXPRESSIONS FOR ELUTION CHROMATOGRAPHY AND FRONTAL CHROMATOGRAPHY
Institute of Scientific and Technical Information of China (English)
YANGGengliang; TAOZuyi
1992-01-01
The unified theoretical moment expressions for elution chromatography and frontal chromatography when the sorption process is described by a linear model were derived. The moment expressions derived by previous authors can be obtained from these unified theoretical moment expressions. In this paper, a mathematical analysis has been carried out so as to set up a unified theoretical basis for elution and frontal chromatography.
Tachyon cosmology with non-vanishing minimum potential: a unified model
Energy Technology Data Exchange (ETDEWEB)
Li, Huiquan, E-mail: hqli@ustc.edu.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2012-07-01
We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behaves quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
Improving naturalness in Gauge Mediation with non-unified messenger sectors
Calibbi, Lorenzo; Mustafayev, Azar; Raza, Shabbar
2016-01-01
We study models of gauge-mediated supersymmetry breaking with messengers that do not belong to complete representations of grand-unified gauge groups. We show that certain setups characterized by heavy Wino can greatly improve the fine tuning with respect to models with unified messengers, such as minimal gauge mediation. The typical models with low tuning feature multi-TeV superparticles, with the exception of the Higgsinos and possibly Bino and right-handed sleptons. As a consequence, the absence of signals for supersymmetry at the LHC is trivially accommodated in our framework. On the other hand, testing these models will be challenging at the LHC. We finally show that the gravitino can be a consistent candidate for cold dark matter, provided a rather low reheating temperature, if a standard thermal history of the universe is assumed.
Towards a unified medical lexicon for French.
Zweigenbaum, Pierre; Baud, Robert; Burgun, Anita; Namer, Fiammetta; Jarrousse, Eric; Grabar, Natalia; Ruch, Patrick; Le Duff, Franck; Thirion, Benoît; Darmoni, Stéfan
2003-01-01
Medical Informatics has a constant need for basic Medical Language Processing tasks, e.g., for coding into controlled vocabularies, free text indexing and information retrieval. Most of these tasks involve term matching and rely on lexical resources: lists of words with attached information, including inflected forms and derived words, etc. Such resources are publicly available for the English language with the UMLS Specialist Lexicon, but not in other languages. For the French language, several teams have worked on the subject and built local lexical resources. The goal of the present work is to pool and unify these resources and to add extensively to them by exploiting medical terminologies and corpora, resulting in a unified medical lexicon for French (UMLF). This paper exposes the issues raised by such an objective, describes the methods on which the project relies and illustrates them with experimental results.
UMLF: a unified medical lexicon for French.
Zweigenbaum, Pierre; Baud, Robert; Burgun, Anita; Namer, Fiammetta; Jarrousse, Eric; Grabar, Natalia; Ruch, Patrick; Le Duff, Franck; Forget, Jean-François; Douyère, Magaly; Darmoni, Stéfan
2005-03-01
Medical Informatics has a constant need for basic medical language processing tasks, e.g. for coding into controlled vocabularies, free text indexing and information retrieval. Most of these tasks involve term matching and rely on lexical resources: lists of words with attached information, including inflected forms and derived words, etc. Such resources are publicly available for the English language with the UMLS Specialist Lexicon, but not in other languages. For the French language, several teams have worked on the subject and built local lexical resources. The goal of the present work is to pool and unify these resources and to add extensively to them by exploiting medical terminologies and corpora, resulting in a unified medical lexicon for French (UMLF). This paper exposes the issues raised by such an objective, describes the methods on which the project relies and illustrates them with experimental results.
A survey of unified constitutive theories
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.; Walker, K. P.
1985-01-01
The state of the art of time temperature dependent elastic viscoplastic constitutive theories which are based on the unified approach werre assessed. This class of constitutive theories is characterized by the use of kinetic equations and internal variables with appropriate evolutionary equations for treating all aspects of inelastic deformation including plasticity, creep, and stress relaxation. More than 10 such unified theories which are shown to satisfy the uniqueness and stability criteria imposed by Drucker's postulate and Ponter's inequalities are identified. The theories are compared for the types of flow law, kinetic equation, evolutionary equation of the internal variables, and treatment of temperature dependence. The similarities and differences of these theories are outlined in terms of mathematical formulations and illustrated by comparisons of theoretical calculations with experimental results which include monotonic stress-strain curves, cyclic hysteresis loops, creep and stress relaxation rates, and thermomechanical loops. Numerical methods used for integrating these stiff time temperature dependent constitutive equations are reviewed.
Multi-planed unified switching topologies
Energy Technology Data Exchange (ETDEWEB)
Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka
2017-07-04
An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.
Unified viscoplastic constitutive equations and their applications
Lindholm, U. S.
1987-01-01
Unified constitutive equations for time- and temperature-dependent metallic plastic deformation have been applied in FEM simulations of forming processes; increasingly powerful computational tools and physical models are being used to numerically model complex engineering problems. Once confidence has been gained through adequate verification, these numerical models will increasingly replace experimental models. Attention is presently given to the contributions made by physical metallurgy, continuum mechanics, and computational mechanics.
Implementation of a Unified DSP Coprocessor
Directory of Open Access Journals (Sweden)
2012-01-01
Full Text Available Utilizing the DFT, the DHT, the DCT or the DST is an obvious choice in signal processing domain. This paper describes the implementation of a unified coprocessor of transform length '8' for the synchronous design in XC3S1400AN-4FG484 FPGA device of Xilinx Company. The operating frequency of 20 MHz is achieved. The paper presents the trade-offs involved in designing the architecture, the design for performance issues and the possibilities for future development.
Unifying Theories in Isabelle/HOL
Feliachi, Abderrahmane; Gaudel, Marie-Claude; Wolff, Burkhart
In this paper, we present various extensions of Isabelle/HOL by theories that are essential for several formal methods. First, we explain how we have developed an Isabelle/HOL theory for a part of the Unifying Theories of Programming (UTP). It contains the theories of alphabetized relations and designs. Then we explain how we have encoded first the theory of reactive processes and then the UTP theory for CSP. Our work takes advantage of the rich existing logical core of HOL.
Towards a unified theory of reciprocity.
Rosas, Alejandro
2012-02-01
In a unified theory of human reciprocity, the strong and weak forms are similar because neither is biologically altruistic and both require normative motivation to support cooperation. However, strong reciprocity is necessary to support cooperation in public goods games. It involves inflicting costs on defectors; and though the costs for punishers are recouped, recouping costs requires complex institutions that would not have emerged if weak reciprocity had been enough.
Unifying Ancient and Modern Geometries Through Octonions
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent
2016-01-01
We show the first unified description of some of the oldest known geometries such as the Pappus’ theorem with more modern ones like Desargues' theorem, Monge's theorem and Ceva's theorem, through octonions, the highest normed division algebra in eight dimensions. We also show important applications in hadronic physics, giving a full description of the algebra of color applicable to quark physics, and comment on further applications.
Unified sensor management in unknown dynamic clutter
Mahler, Ronald; El-Fallah, Adel
2010-04-01
In recent years the first author has developed a unified, computationally tractable approach to multisensor-multitarget sensor management. This approach consists of closed-loop recursion of a PHD or CPHD filter with maximization of a "natural" sensor management objective function called PENT (posterior expected number of targets). In this paper we extend this approach so that it can be used in unknown, dynamic clutter backgrounds.
Unifying physics of accelerators, lasers and plasma
Seryi, Andrei
2015-01-01
Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.
A unified architecture of transcriptional regulatory elements
DEFF Research Database (Denmark)
Andersson, Robin; Sandelin, Albin Gustav; Danko, Charles G.
2015-01-01
Gene expression is precisely controlled in time and space through the integration of signals that act at gene promoters and gene-distal enhancers. Classically, promoters and enhancers are considered separate classes of regulatory elements, often distinguished by histone modifications. However...... and enhancers are considered a single class of functional element, with a unified architecture for transcription initiation. The context of interacting regulatory elements and the surrounding sequences determine local transcriptional output as well as the enhancer and promoter activities of individual elements....
Unified QCD picture of hard diffraction
Navelet, H
2001-01-01
Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bjorken} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. In particular, we show that all three approaches give an unique and mutually compatible formula for the proton diffractive structure functions incorporating perturbative and non perturbative QCD features.
Unified treatment of lifting atmospheric entry
Nachtsheim, P. R.; Lehman, L. L.
1980-01-01
This paper presents a unified treatment of the effect of lift on peak acceleration during atmospheric entry. Earlier studies were restricted to different regimes because of approximations invoked to solve the same transcendental equation. This paper shows the connection between the earlier studies by employing a general expression for the peak acceleration and obtains solutions to the transcendental equation without invoking the earlier approximations. Results are presented and compared with earlier studies where appropriate.
Image segmentation with a unified graphical model.
Zhang, Lei; Ji, Qiang
2010-08-01
We propose a unified graphical model that can represent both the causal and noncausal relationships among random variables and apply it to the image segmentation problem. Specifically, we first propose to employ Conditional Random Field (CRF) to model the spatial relationships among image superpixel regions and their measurements. We then introduce a multilayer Bayesian Network (BN) to model the causal dependencies that naturally exist among different image entities, including image regions, edges, and vertices. The CRF model and the BN model are then systematically and seamlessly combined through the theories of Factor Graph to form a unified probabilistic graphical model that captures the complex relationships among different image entities. Using the unified graphical model, image segmentation can be performed through a principled probabilistic inference. Experimental results on the Weizmann horse data set, on the VOC2006 cow data set, and on the MSRC2 multiclass data set demonstrate that our approach achieves favorable results compared to state-of-the-art approaches as well as those that use either the BN model or CRF model alone.
Unified strength theory and its applications
Yu, Mao-Hong
2004-01-01
This is a completely new theory dealing with the yield and failure of materials under multi-axial stresses. It provides a system of yield and failure criteria adopted for most materials, from metallic materials to rocks, concretes, soils, polymers etc. The Unified Strength Theory has been applied successfully to analyse the elastic limit, plastic limit capacities, the dynamic response behavior for some structures under static and moderate impulsive load, and may be implemented in some elasto-plastic finite element computer codes. The Unified Strength Theory is described in detail and by using this theory a series of results can be obtained. The Unified Strength Theory can improve the conservative Mohr-Coulomb Theory, and since intermediate principal stress is not taken into account in the Mohr-Coulomb theory and most experimental data is not pertainable to the Mohr-Coulomb Theory, a considerable economic benefit may be obtained. The book can also increase the effect of most commercial finite element computer ...
Unifying theory for terrestrial research infrastructures
Mirtl, Michael
2016-04-01
The presentation will elaborate on basic steps needed for building a common theoretical base between Research Infrastructures focusing on terrestrial ecosystems. This theoretical base is needed for developing a better cooperation and integrating in the near future. An overview of different theories will be given and ways to a unifying approach explored. In the second step more practical implications of a theory-guided integration will be developed alongside the following guiding questions: • How do the existing and planned European environmental RIs map on a possible unifying theory on terrestrial ecosystems (covered structures and functions, scale; overlaps and gaps) • Can a unifying theory improve the consistent definition of RÍs scientific scope and focal science questions? • How could a division of tasks between RIs be organized in order to minimize parallel efforts? • Where concretely do existing and planned European environmental RIs need to interact to respond to overarching questions (top down component)? • What practical fora and mechanisms (across RIs) would be needed to bridge the gap between PI driven (bottom up) efforts and the centralistic RI design and operations?
Unified Gauge Field Theory and Topological Transitions
Patwardhan, A
2004-01-01
The search for a Unified description of all interactions has created many developments of mathematics and physics. The role of geometric effects in the Quantum Theory of particles and fields and spacetime has been an active topic of research. This paper attempts to obtain the conditions for a Unified Gauge Field Theory, including gravity. In the Yang Mills type of theories with compactifications from a 10 or 11 dimensional space to a spacetime of 4 dimensions, the Kaluza Klein and the Holonomy approach has been used. In the compactifications of Calabi Yau spaces and sub manifolds, the Euler number Topological Index is used to label the allowed states and the transitions. With a SU(2) or SL(2,C) connection for gravity and the U(1)*SU(2)*SU(3) or SU(5) gauge connection for the other interactions, a Unified gauge field theory is expressed in the 10 or 11 dimension space. Partition functions for the sum over all possible configurations of sub spaces labeled by the Euler number index and the Action for gauge and m...
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The unified solutions are presented for stresses and displacements around a circular tunnel subjected to a hydrostatic stress field.The rock mass is assumed to be elastic-brittle-plastic and governed by the Unified Strength Theory.The displacements are obtained accounting for three different definitions for elastic strains and different Young’s modulus in the plastic zone.The unified solutions obtained in this paper are especially versatile in reflecting the intermediate principal stress effect to different extents for different materials.The conventional solutions,based on the Mohr-Coulomb failure criterion and the Generalized Twin Shear Stress yield criterion,are special cases of the present unified solutions.The new unified solutions can compare with those computed by the latest generalized Hoek-Brown failure criterion.The results obtained demonstrate the importance of the intermediate principal stress influence for the stresses and displacements analysis.The effects of different definitions for elastic strains and different Young’s modulus in the plastic zone on the displacements are significant.
Unifying the Booch and OMT OO Development Methods Introduction to the Unified Method
Rumbaugh, James
1995-01-01
The Booch and OMT methods represent the two most mature and widely used approaches to object-oriented analysis and design.Since their introduction 6 years ago both have evolved and from other methods. This talk describes the unification of the Booch and OMT methods by Grady Booch and Jim Rumbaugh leading to the recent public release of over 100 pages of documentation describing the Unified Method models and notation.THE aUTHORS ARE NOW AWAITING PUBLIC FEEDBACK BEFORE COMPLETING A FINAL VERSION OF THE METHOD NEXT YEAR. Contents: The Drive to Unification - why and how it happened The Unified Metamodel - the formal description of the models The Unified Notation - the new notation based on Booch and OMT Future Work - open problems that we are working on Roadmap - how users can get involved
Entropy, a Unifying Concept: from Physics to Cognitive Psychology
Tsallis, Constantino; Tsallis, Alexandra C.
Together with classical, relativistic and quantum mechanics, as well as Maxwell electromagnetism, Boltzmann-Gibbs (BG) statistical mechanics constitutes one of the main theories of contemporary physics. This theory primarily concerns inanimate matter, and at its generic foundation we find nonlinear dynamical systems satisfying the ergodic hypothesis. This hypothesis is typically guaranteed for systems whose maximal Lyapunov exponent is positive. What happens when this crucial quantity is zero instead? We suggest here that, in what concerns thermostatistical properties, we typically enter what in some sense may be considered as a new world — the world of living systems — . The need emerges, at least for many systems, for generalizing the basis of BG statistical mechanics, namely the Boltzmann-Gibbs-von Neumann-Shannon en-tropic functional form, which connects the oscopic, thermodynamic quantity, with the occurrence probabilities of microscopic configurations. This unifying approach is briefly reviewed here, and its widespread applications — from physics to cognitive psychology — are overviewed. Special attention is dedicated to the learning/memorizing process in humans and computers. The present observations might be related to the gestalt theory of visual perceptions and the actor-network theory.
Unifying X-ray Scaling Relations from Galaxies to Clusters
Anderson, Michael E; White, Simon D M; Wang, Wenting; Dai, Xinyu
2014-01-01
We examine a sample of $\\sim 250 000$ "locally brightest galaxies" selected from the Sloan Digital Sky Survey to be central galaxies within their dark matter halos. These were previously stacked by the Planck Collaboration to measure the Sunyaev-Zel'dovich signal as a function of central galaxy stellar mass. Here, we stack the X-ray emission from these halos using data from the ROSAT All-Sky Survey. We detect emission across almost our entire sample, including emission which we attribute to hot gas around galaxies spanning a range of 1.2 dex in stellar mass (corresponding to nearly two orders of magnitude in halo mass) down to $M* = 10^{10.8} M_{\\odot}$ ($M_{500} \\approx 10^{12.6} M_{\\odot}$). Over this range, the X-ray luminosity can be fit by a power-law, either of stellar mass or of halo mass. A single unified scaling relation between mass and $L_X$ applies for galaxies, groups, and clusters. This relation has a steeper slope than expected for self-similarity, in contrast to the $Y_{SZ}$-$M_{500}$ relation...
Higgs and Sparticle Masses from Yukawa Unified SO(10): A Snowmass White Paper
Ajaib, M Adeel; Shafi, Qaisar; Un, Cem Salih
2013-01-01
We discuss ways to probe t-b-tau Yukawa coupling unification condition at the Energy and Intensity frontiers. We consider non-universal soft supersymmetry breaking mass terms for gauginos related by the SO(10) grand unified theory (GUT). We have previously shown that t-b-tau Yukawa coupling unification prefers a mass of around 125 GeV for the Standard Model-like Higgs boson with all colored sparticle masses above 3 TeV. The well-known MSSM parameter tan(beta) is about 47-48 and neutralino-stau coannihilation yields the desired relic dark matter density.
Particle Physics and Condensed Matter: The Saga Continues
Wilczek, Frank
2016-01-01
Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here I'll supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on "New Forms of Matter, Topological Insulators and Superconductors". Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction.
Dolgov, A. D.
These lectures have been given to particle physicists, mostly experimentalists and very briefly and at a pedestrian level review the problems of dark matter. The content of the lectures is the following: 1. Introduction. 2. Cosmological background. 3. Luminous matter. 4. Primordial nucleosynthesis and the total amount of baryons. 5. Gravitating invisible matter. 6. Baryonic crisis. 7. Inflationary omega. 8. Intermediate summary. 9. Possible forms of dark matter. 10. Structure formation: basic assumptions. 11. Structure formations: basics of the theory. 12. Evolution of perturbations with different forms of dark matter. 13. Conclusion. The presentation and conclusion reflect personal view of the author that a considerable amount of invisible energy in the universe is in the form of vacuum energy (cosmological constant) and possibly in the form of a classical field which adjusts vacuum energy to the value permitted and requested by astronomical data.
Inflationary Reheating in Grand Unified Theories
Bassett, B A; Bassett, Bruce A.; Tamburini, Fabrizio
1998-01-01
Grand unified theories may display multiply interacting fields with strong coupling dynamics. This poses two new problems: (1) What is the nature of chaotic reheating after inflation, and (2) How is reheating sensitive to the mass spectrum of these theories ? We answer these questions in two interesting limiting cases and demonstrate an increased efficiency of reheating which strongly enhances non-thermal topological defect formation, including monopoles and domain walls. Nevertheless, the large fluctuations may resolve this monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which non-thermal destabilsation of discrete symmetries occurs at reheating.
Leading gravitational corrections and a unified universe
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
Leading order gravitational corrections to the Einstein-Hilbert action can lead to a consistent picture of the universe by unifying the epochs of inflation and dark energy in a single framework. While the leading local correction induces an inflationary phase in the early universe, the leading...... nonlocal term leads to an accelerated expansion of the universe at the present epoch. We argue that both the leading UV and IR terms can be obtained within the framework of a covariant effective field theory of gravity. The perturbative gravitational corrections therefore provide a fundamental basis...
Principles for a Unified Picture of Fermions
Nishimura, Kimihide
2012-01-01
The principles and conceptual foundations required for a unified picture of fermions are clarified, which in turn suggest that the standard theory may be reducible in a far simpler form. The resultant three generation model describes quarks and leptons as quasi excitations of a single chiral doublet, while electromagnetic and strong interactions as secondary interactions mediated by Nambu-Goldstone bosons originated from spontaneous violations of global SU(2) and Lorentz symmetries. The model also provides an alternative scenario for baryon and lepton asymmetries of the Universe.
TOWARDS A UNIFIED VIEW OF METAHEURISTICS
Directory of Open Access Journals (Sweden)
El-Ghazali Talbi
2013-02-01
Full Text Available This talk provides a complete background on metaheuristics and presents in a unified view the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. The key search components of metaheuristics are considered as a toolbox for: - Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems for optimization problems. - Designing efficient metaheuristics for multi-objective optimization problems. - Designing hybrid, parallel and distributed metaheuristics. - Implementing metaheuristics on sequential and parallel machines.
Unified Framework for Finite Element Assembly
Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160
2012-01-01
At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.
Evolution of OO Methods: the unified case
Directory of Open Access Journals (Sweden)
Matti Rossi
1997-05-01
Full Text Available This paper takes an evaluative look into OO methods and especially the evolution of the new snified method from its ancestors, OMT and OODA. The paper ries to classify the components of the earlier ethods and identify the parts that have been taken into the Unified ethod. The research applies the method metrics approach. For the sake of compactness we limit ourselves to the class diagram technique of all methods. We make observations about the number of concepts in each variation and show how the metrics can be used to analyse the changes in the techniques.
Excitation energy transfer processes in condensed matter theory and applications
Singh, Jai
1994-01-01
Applying a unified quantum approach, contributors offer fresh insights into the theoretical developments in the excitation energy transfer processes in condensed matter This comprehensive volume examines Frenkel and Wannier excitonic processes; rates of excitonic processes; theory of laser sputter and polymer ablation; and polarons, excitonic polarons and self-trapping
Control of a Unified Chaotic System via Single Variable Feedback
Guo, Rong-Wei; Vincent E., U.
2009-09-01
Based on the LaSalle invariance principle, we propose a simple adaptive-feedback for controlling the unified chaotic system. We show explicitly with numerical proofs that our method can easily achieve the control of chaos in the unified chaotic system using only a single variable feedback. The present controller, to our knowledge, is the simplest control scheme for controlling a unified chaotic system.
Circuit realization of the fractional-order unified chaotic system
Institute of Scientific and Technical Information of China (English)
Chen Xiang-Rong; Liu Chong-Xin; Wang Fa-Qiang
2008-01-01
This paper studies the chaotic behaviours of the fractional-order unified chaotic system.Based on the approximation method in frequency domain,it proposes an electronic circuit model of tree shape to realize the fractional-order operator.According to the tree shape model,an electronic circuit is designed to realize the 2.7-order unified chaotic system.Numerical simulations and circuit experiments have verified the existence of chaos in the fraction-order unified system.
Cascade adaptive control of uncertain unified chaotic systems
Institute of Scientific and Technical Information of China (English)
Wei Wei; Li Dong-Hai; Wang Jing
2011-01-01
The chaos control of uncertain unified chaotic systems is considered. Cascade adaptive control approach with only one control input is presented to stabilize states of the uncertain unified chaotic system at the zero equilibrium point.Since an adaptive controller based on dynamic compensation mechanism is employed, the exact model of the unified chaotic system is not necessarily required.By choosing appropriate controller parameters, chaotic phenomenon can be suppressed and the response speed is tunable. Sufficient condition for the asymptotic stability of the approach is derived. Numerical simulation results confirm that the cascade adaptive control approach with only one control signal is valid in chaos control of uncertain unified chaotic systems.
A Unified Theoretical Framework for Cognitive Sequencing.
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.
Simplification of the unified gas kinetic scheme
Chen, Songze; Guo, Zhaoli; Xu, Kun
2016-08-01
The unified gas kinetic scheme (UGKS) is an asymptotic preserving (AP) scheme for kinetic equations. It is superior for transition flow simulation and has been validated in the past years. However, compared to the well-known discrete ordinate method (DOM), which is a classical numerical method solving the kinetic equations, the UGKS needs more computational resources. In this study, we propose a simplification of the unified gas kinetic scheme. It allows almost identical numerical cost as the DOM, but predicts numerical results as accurate as the UGKS. In the simplified scheme, the numerical flux for the velocity distribution function and the numerical flux for the macroscopic conservative quantities are evaluated separately. The equilibrium part of the UGKS flux is calculated by analytical solution instead of the numerical quadrature in velocity space. The simplification is equivalent to a flux hybridization of the gas kinetic scheme for the Navier-Stokes (NS) equations and the conventional discrete ordinate method. Several simplification strategies are tested, through which we can identify the key ingredient of the Navier-Stokes asymptotic preserving property. Numerical tests show that, as long as the collision effect is built into the macroscopic numerical flux, the numerical scheme is Navier-Stokes asymptotic preserving, regardless the accuracy of the microscopic numerical flux for the velocity distribution function.
A Unified Theoretical Framework for Cognitive Sequencing
Directory of Open Access Journals (Sweden)
Tejas Savalia
2016-11-01
Full Text Available The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit versus explicit and goal-directed versus habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops ─ basal ganglia-frontal cortex and hippocampus-frontal cortex loops ─ mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI on developing awareness in implicit learning tasks.
Towards a Unified Global ICT Infrastructure
DEFF Research Database (Denmark)
Madsen, Ole Brun
2006-01-01
A successful evolution towards a unified global WAN platform allowing for the coexistence and interoperability of all kind of services requires careful planning of the next generation global cooperative wired and wireless information infrastructure. The absence of commonly agreed upon and adopted...... to be solved can be found in the interrelation between communication, connectivity and convergence. This paper will focus on steps to be taken in planning the physical infrastructure as a prerequisite for a successful evolution.......A successful evolution towards a unified global WAN platform allowing for the coexistence and interoperability of all kind of services requires careful planning of the next generation global cooperative wired and wireless information infrastructure. The absence of commonly agreed upon and adopted...... design principles, allowing for smooth and cost efficient scalability without loss of control over the structurally based properties may prevent or seriously delay this evolution and as consequence be a barrier for introduction of new foreseen types of demanding services. Some of the key problems...
DataSpread: Unifying Databases and Spreadsheets.
Bendre, Mangesh; Sun, Bofan; Zhang, Ding; Zhou, Xinyan; Chang, Kevin ChenChuan; Parameswaran, Aditya
2015-08-01
Spreadsheet software is often the tool of choice for ad-hoc tabular data management, processing, and visualization, especially on tiny data sets. On the other hand, relational database systems offer significant power, expressivity, and efficiency over spreadsheet software for data management, while lacking in the ease of use and ad-hoc analysis capabilities. We demonstrate DataSpread, a data exploration tool that holistically unifies databases and spreadsheets. It continues to offer a Microsoft Excel-based spreadsheet front-end, while in parallel managing all the data in a back-end database, specifically, PostgreSQL. DataSpread retains all the advantages of spreadsheets, including ease of use, ad-hoc analysis and visualization capabilities, and a schema-free nature, while also adding the advantages of traditional relational databases, such as scalability and the ability to use arbitrary SQL to import, filter, or join external or internal tables and have the results appear in the spreadsheet. DataSpread needs to reason about and reconcile differences in the notions of schema, addressing of cells and tuples, and the current "pane" (which exists in spreadsheets but not in traditional databases), and support data modifications at both the front-end and the back-end. Our demonstration will center on our first and early prototype of the DataSpread, and will give the attendees a sense for the enormous data exploration capabilities offered by unifying spreadsheets and databases.
A unified view of "how allostery works".
Directory of Open Access Journals (Sweden)
Chung-Jung Tsai
2014-02-01
Full Text Available The question of how allostery works was posed almost 50 years ago. Since then it has been the focus of much effort. This is for two reasons: first, the intellectual curiosity of basic science and the desire to understand fundamental phenomena, and second, its vast practical importance. Allostery is at play in all processes in the living cell, and increasingly in drug discovery. Many models have been successfully formulated, and are able to describe allostery even in the absence of a detailed structural mechanism. However, conceptual schemes designed to qualitatively explain allosteric mechanisms usually lack a quantitative mathematical model, and are unable to link its thermodynamic and structural foundations. This hampers insight into oncogenic mutations in cancer progression and biased agonists' actions. Here, we describe how allostery works from three different standpoints: thermodynamics, free energy landscape of population shift, and structure; all with exactly the same allosteric descriptors. This results in a unified view which not only clarifies the elusive allosteric mechanism but also provides structural grasp of agonist-mediated signaling pathways, and guides allosteric drug discovery. Of note, the unified view reasons that allosteric coupling (or communication does not determine the allosteric efficacy; however, a communication channel is what makes potential binding sites allosteric.
Inelastic mechanics: A unifying principle in biomechanics.
Gralka, Matti; Kroy, Klaus
2015-11-01
Many soft materials are classified as viscoelastic. They behave mechanically neither quite fluid-like nor quite solid-like - rather a bit of both. Biomaterials are often said to fall into this class. Here, we argue that this misses a crucial aspect, and that biomechanics is essentially damage mechanics, at heart. When deforming an animal cell or tissue, one can hardly avoid inducing the unfolding of protein domains, the unbinding of cytoskeletal crosslinkers, the breaking of weak sacrificial bonds, and the disruption of transient adhesions. We classify these activated structural changes as inelastic. They are often to a large degree reversible and are therefore not plastic in the proper sense, but they dissipate substantial amounts of elastic energy by structural damping. We review recent experiments involving biological materials on all scales, from single biopolymers over cells to model tissues, to illustrate the unifying power of this paradigm. A deliberately minimalistic yet phenomenologically very rich mathematical modeling framework for inelastic biomechanics is proposed. It transcends the conventional viscoelastic paradigm and suggests itself as a promising candidate for a unified description and interpretation of a wide range of experimental data. This article is part of a Special Issue entitled: Mechanobiology.
Angelo, Joseph A
2011-01-01
aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of
CERN
2016-01-01
This video is a teaser-introduction to the Antimatter Matters exhibtion at the Royal Society's Summer Science exhibition July 4-10 2016. The exhibition is jointly organised and hosted by UK members of the ALPHA and LHCb collaborations.
Rivasseau, Vincent; Fuchs, Jean-Nöel
2017-01-01
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...
Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration
Capozziello, Salvatore; Lobo, Francisco S N; Olmo, Gonzalo J
2013-01-01
The non-equivalence between the metric and Palatini formalisms of $f(R)$ gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an $f(\\cal R)$ term constructed \\`{a} la Palatini, the "true" gravitational field is described by the interpolation of these two non-equivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.
A Unified ASrchitecture Model of Web Applications
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
With the increasing popularity,scale and complexity of web applications,design and development of web applications are becoming more and more difficult,However,the current state of their design and development is characterized by anarchy and ad hoc methodologies,One of the causes of this chaotic situation is that different researchers and designers have different understanding of web applications.In this paper,based on an explicit understanding of web applications,we present a unified architecture model of wed applications,the four-view model,which addresses the analysis and design issues of web applications from four perspectives,namely,logical view,data view,navigation view and presentation view,each addrssing a specific set of concerns of web applications,the purpose of the model is to provide a clear picture of web applications to alleviate the chaotic situation and facilitate its analysis,design and implementation.
A Model of Unified Gauge Interactions
Lindesay, James
2016-01-01
Linear spinor fields are a generalization of the Dirac field that have direct correspondence with the known physics of fermions, inherent causality properties in their most fundamental constructions, and positive mass eigenvalues for all particle types. The algebra of the generators for infinitesimal transformations of these fields directly constructs the Minkowski metric \\emph{within} the internal group space as a consequence of non-vanishing commutation relations between generators that carry space-time indexes. In addition, the generators have a fundamental matrix representation that includes Lorentz transformations within a group that unifies internal gauge symmetries generated by a set of hermitian generators for SU(3)$\\times$SU(2)$\\times$U(1), and nothing else. The construction of linearly independent internal SU(3) and SU(2) symmetry groups necessarily involves the mixing of three generations of the mass eigenstates labeling the (massive) representations of the linear spinor fields. The group algebra a...
Towards unifying inheritance and automatic program specialization
DEFF Research Database (Denmark)
Schultz, Ulrik Pagh
2002-01-01
Inheritance allows a class to be specialized and its attributes refined, but implementation specialization can only take place by overriding with manually implemented methods. Automatic program specialization can generate a specialized, effcient implementation. However, specialization of programs...... and specialization of classes (inheritance) are considered different abstractions. We present a new programming language, Lapis, that unifies inheritance and program specialization at the conceptual, syntactic, and semantic levels. This paper presents the initial development of Lapis, which uses inheritance...... with covariant specialization to control the automatic application of program specialization to class members. Lapis integrates object-oriented concepts, block structure, and techniques from automatic program specialization to provide both a language where object-oriented designs can be e#ciently implemented...
A unified theory of coronal heating
Ionson, J. A.
1985-01-01
Solar coronal heating mechanisms are analyzed within the framework of a unified theory of heating processes. The theory is based on the standing wave equation of Ionson (1982) for the global current driven by emfs from the convection Beta less than 1. The equation has the same form as a driven LRC equation in which the equivalent inductance is scaled with the coronal loop length. The theory is used to classify various heating mechanisms inside the coronal loops. It is shown that the total global current can be obtained from an integration of the local currents, the degree of coherency between local currents being the dominant factor governing the global current amplitude. Active region loops appear to be heated by electrodynamic coupling to p-mode oscillations in the convection Beta less than 1.
A unified innovation approach to emerging markets
DEFF Research Database (Denmark)
Agarwal, Nivedita; Brem, Alexander; Grottke, Michael
2014-01-01
Previous research shows a plethora of overlapping and interrelated innovation approaches to understand the bottom of the pyramid customer needs and markets specifications. This research attempts to (1) identify the key factors that make a product relevant to be considered as an innovation...... for emerging markets (2) and establish relative importance of key factors for product managers while conceptualizing a new product for emerging markets. In the first part, the study assembles the list of characteristics from the selected innovation theories revolving around emerging markets. Subsequently...... the identified characteristics are clustered into eight key factors using semantic similarities scores and Ward’s clustering method. An analytical hierarchy process method is employed to obtain the priorities of these eight key factors. The study concludes with a Unified Innovation Framework which presents...
A UNIFIED MODEL FOR SOLAR FLARES
Institute of Scientific and Technical Information of China (English)
ChenPengfei; FangCheng; DingMingde; TangYuhua
1999-01-01
We performed 2.5 - dimensional numerical simulation for two cases, one with the the reconnection point at a high altitude, the other with the reconnection point at a low altitude, in the high-altitude case, the bright loop appears to rise for a long time, with its two footpoints separating and the field lines below the bright loop shrinking,which are all typical features of two - ribbon flares. In the low- altitude case, the bright loops cease rising only a short time after the impulsive phase of the reconnection and then become rather stable, which shows a large similarity to the compact flares. The results imply that the two types of solar flares, i. e., the two - ribbon flares and the compact ones, might be unified into the same magnetic reconnection model, where the height of the reconnection point leads to the bifurcation.
Hilltop supernatural inflation and SUSY unified models
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Inflationary spectra in generalized gravity Unified forms
Noh, H
2001-01-01
The classical evolution and the quantum generation processes of the scalar- and tensor-type cosmological perturbations in the context of a broad class of generalized gravity theories are presented in unified forms. The exact forms of final spectra of the two types of structures generated during a generalized slow-roll inflation are derived. Results in generalized gravity are characterized by two additional parameters which are the coupling between gravity and field, and the nonminimal coupling in the kinetic part of the field. Our general results include widely studied gravity theories and inflation models as special cases, and show how the well known consistency relation and spectra in ordinary Einstein gravity inflation models are affected by the generalized nature of the gravity theories.
A unifying conceptual model of entrepreneurial management
DEFF Research Database (Denmark)
Senderovitz, Martin
This article offers a systematic analysis and synthesis of the area of entrepreneurial management. Through a presentation of two main perspectives on entrepreneurial management and a newly developed unifying conceptual entrepreneurial management model, the paper discusses a number of theoretical...... disagreements, managerial dilemmas and paradoxes. On the basis of the findings and conclusions of the study, the article contributes with and overview of the entrepreneurial management field, and offers an answer to the overall research question: What constitutes the most essential areas and challenges...... of entrepreneurial management? The paper builts on the seminal work by Stevenson (1983, 1990) and proposes a discussion and elaboration of the understanding and definition of entrepreneurial management in terms of the relationship between entrepreneurial opportunities and firm resources....
A unified grand tour of theoretical physics
Lawrie, Ian D
2013-01-01
A Unified Grand Tour of Theoretical Physics invites its readers to a guided exploration of the theoretical ideas that shape our contemporary understanding of the physical world at the fundamental level. Its central themes, comprising space-time geometry and the general relativistic account of gravity, quantum field theory and the gauge theories of fundamental forces, and statistical mechanics and the theory of phase transitions, are developed in explicit mathematical detail, with an emphasis on conceptual understanding. Straightforward treatments of the standard models of particle physics and cosmology are supplemented with introductory accounts of more speculative theories, including supersymmetry and string theory. This third edition of the Tour includes a new chapter on quantum gravity, focusing on the approach known as Loop Quantum Gravity, while new sections provide extended discussions of topics that have become prominent in recent years, such as the Higgs boson, massive neutrinos, cosmological perturba...
Passivity-Based Synchronization of Unified Chaotic System
Directory of Open Access Journals (Sweden)
K. Kemih
2008-01-01
Full Text Available This letter further improves and extends the work of Kemih et al. In detail, feedback passivity synchronization with only one controller for a unified chaotic system is discussed here. It is noticed that the unified system contains the noted Lorenz, Lu, and Chen systems. Numerical simulations are given to show the effectiveness of these methods.
Supporting Teachers, Principals--and Students--through Unified Discipline.
Algozzine, Bob; Audette, Bob; Ellis, Edward; Marr, Mary Beth; White, Richard
2000-01-01
This article profiles Unified Discipline, a schoolwide systemic model of discipline that incorporates factors associated with best practices in teaching behavior and improving discipline. The four components of the program are described and include unified attitudes, expectations, correction, and team roles. Implications for practice are…
Unified symmetry of non-holonomic singular systems
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, the unified symmetry of non-holonomic singular systems is studied. The differential equations of motion of the systems are given. The definition and the criterion of the unified symmetry for the systems are presented. The Noether conserved quantity, the Hojman conserved quantity and the Mei conserved quantity are obtained. An example is given to illustrate the application of the results.
Particle physics and condensed matter: the saga continues
Wilczek, Frank
2016-12-01
Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here I will supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on ‘New Forms of Matter, Topological Insulators and Superconductors’. Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction. Invited presentation of concluding remarks at Nobel Symposium 156 on New Forms of Matter, Topological Insulators and Superconductors, 13-15 June 2014, Högberga Gård, Stockholm.
Coral Reef and Hardbottom from Unified Florida Reef Tract Map (NODC Accession 0123059)
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a subset of the Unified Map representing Coral reef and Hardbottom areas. Version 1.1 - December 2013. The Unified Florida Reef Tract Map (Unified...
Neutron star radii and crusts: Uncertainties and unified equations of state
Fortin, M.; Providência, C.; Raduta, Ad. R.; Gulminelli, F.; Zdunik, J. L.; Haensel, P.; Bejger, M.
2016-09-01
The uncertainties in neutron star radii and crust properties due to our limited knowledge of the equation of state are quantitatively analyzed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core equation of state based on models with different properties at nuclear matter saturation, the uncertainties can be as large as ˜30 % for the crust thickness and 4% for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified equations of state for purely nucleonic matter is obtained based on twenty-four Skyrme interactions and nine relativistic mean-field nuclear parametrizations. In addition, for relativistic models fifteen equations of state including a transition to hyperonic matter at high density are presented. All these equations of state have in common the property of describing a 2 M⊙ star and of being causal within stable neutron stars. Spans of ˜3 and ˜4 km are obtained for the radius of, respectively, 1.0 M⊙ and 2.0 M⊙ stars. Applying a set of nine further constraints from experiment and ab initio calculations the uncertainty is reduced to ˜1 and 2 km, respectively. These residual uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence of the equation of state near the nuclear matter saturation point. The most important parameter to be constrained is shown to be the symmetry energy slope L . Indeed, this parameter exhibits a linear correlation with the stellar radius, which is particularly clear for small mass stars around 1.0 M⊙ . The other equation-of-state parameters do not show clear correlations with the radius, within the present uncertainties. Potential constraints on L , the neutron star radius, and the equation of
Dark Matter Superfluidity and Galactic Dynamics
Berezhiani, Lasha
2015-01-01
We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ~mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Holographic duality in condensed matter physics
Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad
2015-01-01
A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...
Dark matter superfluidity and galactic dynamics
Directory of Open Access Journals (Sweden)
Lasha Berezhiani
2016-02-01
Full Text Available We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful and galaxy clusters (where MOND is not: dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Towards a unification of unified theories of biodiversity.
McGill, Brian J
2010-05-01
A unified theory in science is a theory that shows a common underlying set of rules that regulate processes previously thought to be distinct. Unified theories have been important in physics including the unification of electricity and magnetism and the unification of the electromagnetic with the weak nuclear force. Surprisingly, ecology, specifically the subfields of biodiversity and macroecology, also possess not one but at least six unified theories. This is problematic as only one unified theory is desirable. Superficially, the six unified theories seem very different. However, I show that all six theories use the same three rules or assertions to describe a stochastic geometry of biodiversity. The three rules are: (1) intraspecifically individuals are clumped together; (2) interspecifically global or regional abundance varies according to a hollow curve distribution; and (3) interspecifically individuals are placed without regard to individuals of other species. These three rules appear sufficient to explain local species abundance distributions, species-area relationships, decay of similarity of distance and possibly other patterns of biodiversity. This provides a unification of the unified theories. I explore implications of this unified theory for future research.
Soar and the case for unified theories of cognition.
Cooper, R; Shallice, T
1995-05-01
Despite the potential importance to cognitive psychology of unified theories no attempt has been made to assess concretely the methodological problems that such theorising produces. This paper addresses this issue of unified theorising, and in particular the arguments for unified theories put forward by Newell (1990). Close examination of these arguments reveals that Newell's approach does not adequately counter the difficulties which beset the grand theories of the 1930s, nor the problems of irrelevant specification which arise in modern computational psychological work. These difficulties do not prevent the development of unified theories, but they do pose serious problems, problems which it is argued can only be met by rigorous empirical testing together with extreme methodological sensitivity. The methodological concerns lead us to examine Soar, perhaps the most well-developed unified theory, from methodological, computational, and empirical perspectives. Our conclusions are that, whilst Soar represents an impressive body of research, its methodological foundations are insecure, it is ill specified as a computational/psychological theory, and under empirical testing it does not stand up to close scrutiny as a unified theory. The Soar research programme as it currently stands thus fails to meet the necessary methodological demands imposed by unified theorising.
The Research of Carrier-grade Unified Communication Services
Institute of Scientific and Technical Information of China (English)
Jiang Nianling; Wang Xiaohua; Tao Hong
2008-01-01
Unified Communication (UC) has been one of the hot topics in telecommunication field, and venders introduce various platforms and products for it. Due to the diversification of platform technologies and lacking of unified application interface, curtent applications are hard to be extended and interconnected. Taking example for China Netcom NGN open service platform, this paper briefly presents how to build up carrier-grade unified communication applications under the direction of operator, which will be the reference to make fast development and large scale deployment for UC services.
Pragmatic Information as a Unifying Biological Concept
Directory of Open Access Journals (Sweden)
Reza Maleeh
2014-09-01
Full Text Available This paper aims to introduce a developed reading of Roederer’s interpretation of pragmatic information as a good candidate for a Unifying Information Concept required for an as-yet-unavailable Science of Information. According to pragmatic information, information and information processing are exclusive attributes of biological systems related to the very definition of life. I will apply the notion to give new accounts in the following areas: (1 quantum interpretation: based on a modified version of David Bohm’s interpretation of quantum mechanics, I propose an ontological, information-based interpretation of quantum mechanics which, unlike Roederer’s interpretation, satisfies all conditions of pragmatic information; (2 artificial intelligence: the notion successfully distinguishes natural living systems from artifacts and natural non-living systems, providing a context to pose an information-based argument against the thesis of Strong Artificial Intelligence; (3 phenomenal consciousness: I will use pragmatic information to modify and update Chalmers’s Double-aspect Theory of Information to be explanatorily more powerful regarding the physical aspect of his theory; (4 causation: based on pragmatic information, I pose a new account of causation which differentiates causation in biology from causation in natural abiotic world.
Experimental Validation of the Unified Theory
Directory of Open Access Journals (Sweden)
Erol Cubukcu
2006-09-01
Full Text Available
Hatsopoulos and Gyftopoulos (1976a,b,c,d founded the Unified Quantum Theory of Mechanics and Thermodynamics. This theory encompasses both quantum mechanics and thermodynamics within a single mathematical framework. Unlike statistical approaches, it treats thermodynamics as a non-statistical (hence, a physical theory and is intended to describe all reversible and irreversible phenomena. Unfortunately, the theory has long been criticized for not bringing anything new beyond statistical quantum thermodynamics. To break through this misconception that thermodynamics is a statistical theory, experimental validation at a microscopic scale, where statistical effects are negligible, would be fruitful. In this paper, which is based on the dissertation work of the author (1993, experiments that were previously reported are investigated within the framework of the new theory. It is argued that they provide an undeniable confirmation of the theory and the existence of irreversibility at the microscopic scale.
A Unified Taxonomy for Ciliary Dyneins
Hom, Erik F.Y.; Witman, George B.; Harris, Elizabeth H.; Dutcher, Susan K.; Kamiya, Ritsu; Mitchell, David R.; Pazour, Gregory J.; Porter, Mary E.; Sale, Winfield S.; Wirschell, Maureen; Yagi, Toshiki; King, Stephen M.
2011-01-01
The formation and function of eukaryotic cilia/flagella require the action of a large array of dynein microtubule motor complexes. Due to genetic, biochemical, and microscopic tractability, Chlamydomonas reinhardtii has become the premier model system in which to dissect the role of dyneins in flagellar assembly, motility, and signaling. Currently, fifty-four proteins have been described as components of various Chlamydomonas flagellar dyneins or as factors required for their assembly in the cytoplasm and/or transport into the flagellum; orthologues of nearly all these components are present in other ciliated organisms including humans. For historical reasons, the nomenclature of these diverse dynein components and their corresponding genes, mutant alleles and orthologues has become extraordinarily confusing. Here, we unify Chlamydomonas dynein gene nomenclature and establish a systematic classification scheme based on structural properties of the encoded proteins. Furthermore, we provide detailed tabulations of the various mutant alleles and protein aliases that have been used and explicitly define the correspondence with orthologous components in other model organisms and humans. PMID:21953912
Texture Repairing by Unified Low Rank Optimization
Institute of Scientific and Technical Information of China (English)
Xiao Liang; Xiang Ren; Zhengdong Zhang; Yi Ma
2016-01-01
In this paper, we show how to harness both low-rank and sparse structures in regular or near-regular textures for image completion. Our method is based on a unified formulation for both random and contiguous corruption. In addition to the low rank property of texture, the algorithm also uses the sparse assumption of the natural image: because the natural image is piecewise smooth, it is sparse in certain transformed domain (such as Fourier or wavelet transform). We combine low-rank and sparsity properties of the texture image together in the proposed algorithm. Our algorithm based on convex optimization can automatically and correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. This algorithm integrates texture rectification and repairing into one optimization problem. Through extensive simulations, we show our method can complete and repair textures corrupted by errors with both random and contiguous supports better than existing low-rank matrix recovery methods. Our method demonstrates significant advantage over local patch based texture synthesis techniques in dealing with large corruption, non-uniform texture, and large perspective deformation.
Toward a unified chromatic induction model.
Otazu, Xavier; Parraga, C Alejandro; Vanrell, Maria
2010-10-01
In a previous work (X. Otazu, M. Vanrell, & C. A. Párraga, 2008b), we showed how several brightness induction effects can be predicted using a simple multiresolution wavelet model (BIWaM). Here we present a new model for chromatic induction processes (termed Chromatic Induction Wavelet Model or CIWaM), which is also implemented on a multiresolution framework and based on similar assumptions related to the spatial frequency and the contrast surround energy of the stimulus. The CIWaM can be interpreted as a very simple extension of the BIWaM to the chromatic channels, which in our case are defined in the MacLeod-Boynton (lsY) color space. This new model allows us to unify both chromatic assimilation and chromatic contrast effects in a single mathematical formulation. The predictions of the CIWaM were tested by means of several color and brightness induction experiments, which showed an acceptable agreement between model predictions and psychophysical data.
Aspects Of Grand Unified And String Phenomenology
Walker, J W
2005-01-01
Explored in this report is the essential interconnectedness of Grand Unified and String Theoretic Phenomenology. In order to extract a modeled connection to low-energy physics from the context of superstring theory, it is presently necessary to input some preferred region of parameter space in which to search. This need may be well filled by a parallel study of Grand Unification, which is by contrast in immediate proximity to a wealth of experimental data. The favored GUT so isolated may then reasonably transfer this phenomenological correlation to a string embedding, receiving back by way of trade a greater sense of primary motivation, and potentially enhanced predictability for parameters taken as input in a particle physics context. The Flipped SU(5) GUT will be our preferred framework in which to operate and first receives an extended study in a non-string derived setting. Of particularly timely interest are predictions for super-particle mass ranges and the interrelated question of proton decay lifetime....
New unifying procedure for PC index calculations.
Stauning, P.
2012-04-01
The Polar Cap (PC) index is a controversial topic within the IAGA scientific community. Since 1997 discussions of the validity of the index to be endorsed as an official IAGA index have ensued. Currently, there are now the three separate PC index versions constructed from the different procedures used at the three institutes: the Arctic and Antarctic Research Institute (AARI), the Danish Meteorological Institute (DMI), and the Danish National Space Institute (DTU Space). It is demonstrated in this presentation, that two consistent unifying procedures can be built from the best elements of the three different versions. One procedure uses a set of coefficients aimed at the calculation of final PC index values to be accepted by IAGA. The other procedure uses coefficients aimed at on-line real-time production of preliminary PC index values for Space Weather monitoring applications. For each of the two cases the same procedure is used for the northern (PCN) and the southern (PCS) polar cap indices, and the derived PCN and PCS coefficients are similar.
Structural basis unifying diverse GTP hydrolysis mechanisms.
Anand, Baskaran; Majumdar, Soneya; Prakash, Balaji
2013-02-12
Central to biological processes is the regulation rendered by GTPases. Until recently, the GTP hydrolysis mechanism, exemplified by Ras-family (and G-α) GTPases, was thought to be universal. This mechanism utilizes a conserved catalytic Gln supplied "in cis" from the GTPase and an arginine finger "in trans" from a GAP (GTPase activating protein) to stabilize the transition state. However, intriguingly different mechanisms are operative in structurally similar GTPases. MnmE and dynamin like cation-dependent GTPases lack the catalytic Gln and instead employ a Glu/Asp/Ser situated elsewhere and in place of the arginine finger use a K(+) or Na(+) ion. In contrast, Rab33 possesses the Gln but does not utilize it for catalysis; instead, the GAP supplies both a catalytic Gln and an arginine finger in trans. Deciphering the underlying principles that unify seemingly unrelated mechanisms is central to understanding how diverse mechanisms evolve. Here, we recognize that steric hindrance between active site residues is a criterion governing the mechanism employed by a given GTPase. The Arf-ArfGAP structure is testimony to this concept of spatial (in)compatibility of active site residues. This understanding allows us to predict an as yet unreported hydrolysis mechanism and clarifies unexplained observations about catalysis by Rab11 and the need for HAS-GTPases to employ a different mechanism. This understanding would be valuable for experiments in which abolishing GTP hydrolysis or generating constitutively active forms of a GTPase is important.
Randomized central limit theorems: A unified theory
Eliazar, Iddo; Klafter, Joseph
2010-08-01
The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles’ aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles’ extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic—scaling all ensemble components by a common deterministic scale. However, there are “random environment” settings in which the underlying scaling schemes are stochastic—scaling the ensemble components by different random scales. Examples of such settings include Holtsmark’s law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)—in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes—and present “randomized counterparts” to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.
LFRic: Building a new Unified Model
Melvin, Thomas; Mullerworth, Steve; Ford, Rupert; Maynard, Chris; Hobson, Mike
2017-04-01
The LFRic project, named for Lewis Fry Richardson, aims to develop a replacement for the Met Office Unified Model in order to meet the challenges which will be presented by the next generation of exascale supercomputers. This project, a collaboration between the Met Office, STFC Daresbury and the University of Manchester, builds on the earlier GungHo project to redesign the dynamical core, in partnership with NERC. The new atmospheric model aims to retain the performance of the current ENDGame dynamical core and associated subgrid physics, while also enabling a far greater scalability and flexibility to accommodate future supercomputer architectures. Design of the model revolves around a principle of a 'separation of concerns', whereby the natural science aspects of the code can be developed without worrying about the underlying architecture, while machine dependent optimisations can be carried out at a high level. These principles are put into practice through the development of an autogenerated Parallel Systems software layer (known as the PSy layer) using a domain-specific compiler called PSyclone. The prototype model includes a re-write of the dynamical core using a mixed finite element method, in which different function spaces are used to represent the various fields. It is able to run in parallel with MPI and OpenMP and has been tested on over 200,000 cores. In this talk an overview of the both the natural science and computational science implementations of the model will be presented.
A unified grand tour of theoretical physics
Griffiths, J
2002-01-01
Anyone offering a grand tour is faced with several options. Should they concentrate on what may be considered to be essential features, or should they attempt to present a brief glimpse of almost everything? The present offering is a compromise between these two extremes. The area considered - theoretical physics - is now such a vast subject that some kind of compromise is essential. Indeed, the field is now so wide that few could even attempt to review it in a single-authored work. My task here is to assess how well this book has succeeded in its main aim of providing a unified (though introductory) tour of this subject. Constrained within a single volume, this is clearly not an updated Landau-Lifschitz. It cannot be expected to take any particular topic to the level of recent research. Nevertheless, it does seem to cover the broad range of essential topics which now constitute the subject. It starts (most appropriately in my opinion) with geometry. It then covers classical physics, general relativity and qu...
Unified water isotherms for clayey porous materials
Revil, A.; Lu, N.
2013-09-01
We provide a unified model for the soil-water retention function, including the effect of bound and capillary waters for all types of soils, including clayey media. The model combines a CEC-normalized isotherm describing the sorption of the bound water (and the filling of the trapped porosity) and the van Genuchten model to describe the capillary water sorption retention but ignore capillary condensation. For the CEC-normalized isotherm, we tested both the BET and Freundlich isotherms, and we found that the Freundlich is more suitable than the BET isotherm in fitting the data. It is also easier to combine the Freundlich isotherm with the van Genuchten model. The new model accounts for (1) the different types of clay minerals, (2) the different types of ions sorbed in the Stern layer and on the basal planes of 2:1 clays, and (3) the pore size distribution. The model is validated with different data sets, including mixtures of kaolinite and bentonite. The model parameters include two exponents (the pore size exponent of the van Genuchten model and the exponent of the Freundlich isotherm), the capillary entry pressure, and two critical water contents. The first critical water content is the water content at saturation (porosity), and the second is the maximum water content associated with adsorption forces, including the trapped nonbound water.
Sensor Deployment and Relocation: A Unified Scheme
Institute of Scientific and Technical Information of China (English)
Michele Garetto; Marco Gribaudo; Carla-Fabiana Chiasserini; Emilio Leonardi
2008-01-01
Sensor networks are envisioned to revolutionize our daily life by ubiquitously monitoring our environment and/or adjusting it to suit our needs. Recent progress in robotics and low-power embedded systems has made it possible to add mobility to small, light, low-cost sensors to be used in teams or swarms. Augmenting static sensor networks with mobile nodes addresses many design challenges that exist in traditional static sensor networks. This paper addresses the problem of topology control in mobile wireless networks. Limitations in communication, computation and energy capabilities push towards the adoption of distributed, energy-efficient solutions to perform self-deployment and relocation of the nodes. We develop a unified, distributed algorithm that has the following features. During deployment, our algorithm yields a regular tessellation of the geographical area with a given node density, called monitoring configuration. Upon the occurrence of a physical phenomenon, network nodes relocate themselves so as to properly sample and control the event, while maintaining the network connectivity. Then, as soon as the event ends, all nodes return to the monitoring configuration. To achieve these goals, we use a virtual force-based strategy which proves to be very effective even when compared to an optimal centralized solution. We assess the performance of our approach in the presence of events with different shapes, and we investigate the transient behavior of our algorithm. This allows us to evaluate the effectiveness and the response time of the proposed solution under various environmental conditions.
A unified model for yeast transcript definition.
de Boer, Carl G; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D; Nislow, Corey; Greenblatt, Jack F; Hughes, Timothy R
2014-01-01
Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.
Towards gauge unified, supersymmetric hidden strong dynamics
Chiang, Cheng-Wei; Ye, Fang
2016-01-01
We consider a class of models with extra complex scalars that are charged under both the Standard Model and a hidden strongly coupled $SU(N)_H$ gauge sector, and discuss the scenarios where the new scalars are identified as the messenger fields that mediate the spontaneously broken supersymmetries from the hidden sector to the visible sector. The new scalars are embedded into 5-plets and 10-plets of an $SU(5)_V$ gauge group that potentially unifies the Standard Model gauge groups. They also form a tower of bound states via hidden strong dynamics around the TeV scale. The Higgs bosons remain as elementary particles. Quadratically divergent contributions to the Higgs mass from the Standard Model fermions are canceled by the new scalar contributions to alleviate the fine-tuning problem. We also discuss a supersymmetrized version of this class of models, consisting of the minimal supersymmetric Standard Model plus extra chiral multiplets where the new scalars reside. Due to the hidden strong force, the new low-en...
A Unifying Theory for Camera Calibration.
Ramalingam, SriKumar; Sturm, Peter
2016-07-19
This paper proposes a unified theory for calibrating a wide variety of camera models such as pinhole, fisheye, cata-dioptric, and multi-camera networks. We model any camera as a set of image pixels and their associated camera rays in space. Every pixel measures the light traveling along a (half-) ray in 3-space, associated with that pixel. By this definition, calibration simply refers to the computation of the mapping between pixels and the associated 3D rays. Such a mapping can be computed using images of calibration grids, which are objects with known 3D geometry, taken from unknown positions. This general camera model allows to represent non-central cameras; we also consider two special subclasses, namely central and axial cameras. In a central camera, all rays intersect in a single point, whereas the rays are completely arbitrary in a non-central one. Axial cameras are an intermediate case: the camera rays intersect a single line. In this work, we show the theory for calibrating central, axial and non-central models using calibration grids, which can be either three-dimensional or planar.
Argumentation and Inference: A Unified Approach
Directory of Open Access Journals (Sweden)
Christophe Fouqueré
2013-12-01
Full Text Available We propose in this paper to use Ludics as a unified framework for the analysis of dialogue and the reasoning system. Not only is Ludics a logical theory, but it may also be built by means of concepts of game theory. We first present the main concepts of Ludics. A design is an abstraction and a generalization of the concept of proof. Interaction between designs is equivalent to cut elimination or modus ponens in logical theories. It appears to be a natural means for representing dialogues and also for reasoning. A design is a set of sequences of alternate actions, similar to a move in game theory. We apply Ludics to argumentative dialogues. We discuss how to model the speech acts of argumentative dialogues in terms of dialogue acts. A dialogue act is given by a Ludics action together with the expression that reveals the action in a turn of speech. We show also how arguments may be stored in a commitment state used for reasoning. Finally we revisit an example of juridical dialogue that has been analyzed by Prakken in a different framework.
Directory of Open Access Journals (Sweden)
Ramasubramanian Jayashree
2008-01-01
Full Text Available This paper proposes a unified optimization model and algorithm for assessing Available Transfer Capability (ATC and carrying out Congestion Management (CM in a Deregulated power system handling both pool and bilateral transactions. It uses a power injection model for Unified Power Flow Controller (UPFC, DC load flow model for power network and repeated linear programming technique for optimization. The DC model enforces the line operating lines in MW. A computer package has been developed and the effectiveness of the proposed unified method has been verified by solving 4 bus and an IEEE 30 bus systems. The results demonstrate the effectiveness of UPFC control on ATC enhancement and Congestion Management.
DEFF Research Database (Denmark)
Andreasen, Karen Egedal; Rasmussen, Annette
During 2011 national standardised testing within areas such as reading, mathematics, science etc. has been introduced in Danish compulsory school by the Educational Ministry as something new. The inspirations behind this initiative are both the international comparative educational studies such a...... the introduction of standardised testing meens to pupils perception of school matters, selfperception etc. In my analysis and discussion I will among others draw on Basil Bernsteins theoretical...
Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool Project
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...
A unified viscoplasticity constitutive model based on irreversible thermodynamics
Institute of Scientific and Technical Information of China (English)
LIU ChangChun; LV HeXiang; GUAN Ping
2008-01-01
A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity con-stitutive model is given. Compared with the typical unified viscoplasticity constitu-tive models, the presented model evidently satisfies the irreversible thermody-namics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.
A Unified Mathematical Definition of Classical Information Retrieval.
Dominich, Sandor
2000-01-01
Presents a unified mathematical definition for the classical models of information retrieval and identifies a mathematical structure behind relevance feedback. Highlights include vector information retrieval; probabilistic information retrieval; and similarity information retrieval. (Contains 118 references.) (Author/LRW)
Electrostatics and confinement in Einstein's unified field theory
Antoci, S.; Liebscher, D. -E.; Mihich, L.
2007-01-01
A way for appending sources at the right-hand sides of the field equations of Einstein's unified field theory is recalled. Two exact solutions endowed with point sources in equilibrium are shown, and their physical meaning is discussed.
A unified viscoplasticity constitutive model based on irreversible thermodynamics
Institute of Scientific and Technical Information of China (English)
2008-01-01
A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity constitutive model is given. Compared with the typical unified viscoplasticity constitutive models, the presented model evidently satisfies the irreversible thermodynamics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.
Influence of Deterministic Attachments for Large Unifying Hybrid Network Model
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Large unifying hybrid network model (LUHPM) introduced the deterministic mixing ratio fd on the basis of the harmonious unification hybrid preferential model, to describe the influence of deterministic attachment to the network topology characteristics,
Decomposition of Data Mining Algorithms into Unified Functional Blocks
Directory of Open Access Journals (Sweden)
Ivan Kholod
2016-01-01
Full Text Available The present paper describes the method of creating data mining algorithms from unified functional blocks. This method splits algorithms into independently functioning blocks. These blocks must have unified interfaces and implement pure functions. The method allows us to create new data mining algorithms from existing blocks and improves the existing algorithms by optimizing single blocks or the whole structure of the algorithms. This becomes possible due to a number of important properties inherent in pure functions and hence functional blocks.
Unified Power Quality Conditioner for voltage and current compensation
P.Annapandi; Dr.M.Rajaram
2012-01-01
This paper deals with a Unified Power Quality Conditioner (UPQC) for load balancing, power factorcorrection, voltage regulation, voltage and current harmonics mitigation, mitigation of voltage sag, swelland voltage dip in a three-phase three-wire distribution system for different combinations of linear and nonlinear loads.The unified power quality conditioner (UPQC) is a combination of back to back connected shunt and series active power filters (APFs) to a common DC link voltage, which compe...
Low energy gauge couplings in grand unified theories and high precision physics
Energy Technology Data Exchange (ETDEWEB)
Lynn, B.W. [Stanford Univ., CA (United States). Dept. of Physics]|[Superconducting Super Collider Lab., Dallas, TX (United States)
1993-09-01
I generalize the leading log relations between low energy SU(3){sub QCD}, SU(2){sub {rvec I}} and U(l){sub Y} effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3){sub QCD} {times} U(L){sub QED} subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs` masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs` or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the {tau} and {nu}{sub {tau}} can affect the relation between gauge couplings for {vert_bar}q{sub 2}{vert_bar} {yields} m{sub b}{sup 2} as can hadronic resonances and multi-hadron states for lower {vert_bar}q{sub 2}{vert_bar}. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations.
Bounce inflation in f (T ) cosmology: A unified inflaton-quintessence field
Bamba, Kazuharu; Nashed, G. G. L.; El Hanafy, W.; Ibraheem, Sh. K.
2016-10-01
We investigate a bounce inflation model with a graceful exit into the Friedmann-Robertson-Walker (FRW) decelerated Universe within f (T )-gravity framework, where T is the torsion scalar in the teleparallelism. We study the cosmic thermal evolution, the model predicts a supercold universe during the precontraction phase, which is consistent with the requirements of the slow-roll models, while it performs a reheating period by the end of the contraction with a maximum temperature just below the grand unified theory (GUT) temperature. However, it matches the radiation temperature of the hot big bang at later stages. The equation-of-state due to the effective gravitational sector suggests that our Universe is self-accelerated by teleparallel gravity. We assume the matter component to be a canonical scalar field. We obtain the scalar field potential that is induced by the f (T ) theory. The power spectrum of the model is nearly scale invariant. In addition, we show that the model unifies inflaton and quintessence fields in a single model. Also, we revisited the primordial fluctuations in f (T ) bounce cosmology, to study the fluctuations that are produced at the precontraction phase.
Directory of Open Access Journals (Sweden)
Cédric L Meunier
Full Text Available Stoichiometric homeostasis is the ability of an organism to keep its body chemical composition constant, despite varying inputs. Stoichiometric homeostasis therefore constrains the metabolic needs of consumers which in turn often feed on resources not matching these requirements. In a broader context, homeostasis also relates to the capacity of an organism to maintain other biological parameters (e.g. body temperature at a constant level over ambient environmental variations. Unfortunately, there are discrepancies in the literature and ecological and physiological definitions of homeostasis are disparate and partly contradictory. Here, we address this matter by reviewing the existing knowledge considering two distinct groups, regulators and conformers and, based on examples of thermo- and osmoregulation, we propose a new approach to stoichiometric homeostasis, unifying ecological and physiological concepts. We suggest a simple and precise graphical way to identify regulators and conformers: for any given biological parameter (e.g. nutrient stoichiometry, temperature, a sigmoidal relation between internal and external conditions can be observed for conformers while an inverse sigmoidal response is characteristic of regulators. This new definition and method, based on well-studied physiological mechanisms, unifies ecological and physiological approaches and is a useful tool for understanding how organisms are affected by and affect their environment.
DEFF Research Database (Denmark)
In today’s globalized world, halal (meaning ‘permissible’ or ‘lawful’) is about more than food. Politics, power and ethics all play a role in the halal industry in setting new standards for production, trade, consumption and regulation. The question of how modern halal markets are constituted...... is illustrated by rich ethnographic case studies from a range of contexts, and consideration is given to both Muslim majority and minority societies. Halal Matters will be of interest to students and scholars working across the humanities and social sciences, including anthropology, sociology and religious...
Gauss-Bonnet Cosmology Unifying Late and Early-time Acceleration Eras with Intermediate Eras
Oikonomou, V K
2016-01-01
In this paper we demonstrate that with vacuum $F(G)$ gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the $F(G)$ description is no, since the resulting power spectrum is not scale invariant, in contrast to the $F(R)$ description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum $F(G)$ gravity, the evolu...
Supersymmetric Yang Mills Fields and Black Holes ; In Ten Dimensional Unified Field Theory
Patwardhan, Ajay
2007-01-01
The Ten dimensional Unified field theory has a 4 dimensional Riemannian spacetime and six dimensional Calabi Yau space structure. The supersymmetric Yang Mills fields and black holes are solutions in these theories. The formation of primordial black holes in early universe, the collapse to singularity of stellar black holes, the Hawking evaporation of microscopic black holes in LHC are topics of observational and theoretical interest. The observation of gamma ray bursts and creation of spectrum of particles and radiation of dark and normal matter occur due to primordial and microscopic black holes. The approach to singularity in black hole interior solutions, require the Bogoliubov transforms of SUSY YM fields in black hole geometries; both during formation and in evaporation. The Hawking effect of radiating black holes is applicable for all the fields. Invariants can be defined to give the conditions for these processes.
Dynamics and chaos in the unified scalar field cosmology II - in a box
Acquaviva, Giovanni
2016-01-01
We revisit the global dynamics of unified dark matter cosmological models and analyze it in a new dynamical system setting. In particular, by defining a suitable set of variables we obtain a bounded variable space, a feature that allows a better control of the critical elements of the system. First, we give a comprehensive cosmological interpretation of the critical points. Then, we turn our focus on particular representative trajectories with physically motivated initial conditions studied in the first paper of the series, and we discuss how the scale factor relates to the equation of state parameter. We review and complement these results in the light of the new variable approach by discussing the issue whether the system is chaotic or not.
Chimaera simulation of complex states of flowing matter
Succi, S.
2016-11-01
We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro-meso-micro levels through suitable `mutations' of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Nuclear superfluidity in isospin asymmetric matter within the Skyrme model
Aguirre, R.
2013-01-01
The phase diagram of the superfluid phase coupled to spin singlet (S=0) and isospin triplet (T=1) states in infinite nuclear matter is analyzed within the nonrelativistic Skyrme model. We use an approach that allows a unified and consistent treatment of the particle-hole and particle-particle channels. The gap equation is solved for the full range of accessible densities, isospin asymmetries, and temperatures. The characteristic features of each of the components Tz=0, +1, -1 are emphasized. ...
Bel, Lluís
2017-01-01
I show that a very simple model in the context of Newtonian physics promoted to a first approximation of general relativity can mimic Dark matter and explain most of its intriguing properties. Namely: i) Dark matter is a halo associated to ordinary matter; ii) Dark matter does not interact with ordinary matter nor with itself; iii) Its influence grows with the size of the aggregate of ordinary matter that is considered, and iv) Dark matter influences the propagation of light.
Eisenberg, Bob
2016-01-01
Charges are everywhere because most atoms are charged. Chemical bonds are formed by electrons with their charge. Charges move and interact according to Maxwell's equations in space and in atoms where the equations of electrodynamics are embedded in Schroedinger's equation as the potential. Maxwell's equations are universal, valid inside atoms and between stars from times much shorter than those of atomic motion (0.1 femtoseconds) to years (32 mega-seconds). Maxwell's equations enforce the conservation of current. Analysis shows that the electric field can take on whatever value is needed to ensure conservation of current. The properties of matter rearrange themselves to satisfy Maxwell's equations and conservation of current. Conservation of current is as universal as Maxwell's equations themselves. Yet equations of electrodynamics find little place in the literature of material physics, chemistry, or biochemistry. Kinetic models of chemistry and Markov treatments of atomic motion are ordinary differential eq...
Observational Constraints on the Unified Dark-Energy-Dark-Matter Model
Institute of Scientific and Technical Information of China (English)
WU Pu-Xun; YU Hong-Wei
2007-01-01
We investigate the constraints on a generalized Chaplygin gas (GCC) model using the gold sample type-Ia supernovae (She Ia) data, the new Supernova Legacy Survey (SNLS) She Ia data and the size of baryonic acoustic oscillation peak found in Sloan Digital Sky Survey (SDSS). In a spatially flat universe case we obtain, at a 95.4% confidence level, As = 0.76-0.07+0.07 and α = 0.028-0.238+0.322. Our results are consistent with the ACDM model (α = 0), but rule out the standard Chaplygin gas model (α = 1).
2017-03-29
the band- gap modification resulting from ionization (the band- gap collapse effect). All of those impairments have been corrected in the model...middle), and 8 fs after the pulse reaches the focus (bottom). Vacuum intensity that would be achieved at the geometrical focus in the absence of the...that can be achieved inside microexplosions produced by tightly focused ordinary Gaussian beams. We have shown that the application of the SSTF
Mechanical systems a unified approach to vibrations and controls
Gans, Roger F
2015-01-01
This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical. This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: · Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...
Trilepton Signal of Grand Unified Models at the Tevatron
Accomando, E; Dutta, B
2000-01-01
At the Tevatron, the most promising channel to detect supersymmetry is three leptons plus missing energy, where the leptons are $e$'s and/or $\\mu$'s. This final state appears from the production of chargino and second lighetst neutralino. However in grand unified models with universal scalar masses at the grand unified scale, this final state mostly consists of $\\tau$'s which are hard to detect. We show that for some regions of non universality in the scalar masses at the GUT scale based on unifying groups like SU(5) or SO(10), the final state mostly consists of 3$l$+${\\rlap/E}_T$ and $\\tau ll$+${\\rlap/E}_T$. The first mode has very high detection efficiency and the second one is expected to have high detection efficency as well. We also show that these models can have enough events in these modes to be detected in RUN II.
Unified framework and algorithm for quantized compressed sensing
Yang, Zai; Zhang, Cishen
2012-01-01
Compressed sensing (CS) studies the recovery of high dimensional signals from their low dimensional linear measurements under a sparsity prior. This paper is focused on the CS problem with quantized measurements. There have been research results dealing with different scenarios including a single/multiple bits per measurement, noiseless/noisy environment, and an unsaturated/saturated quantizer. While the existing methods are only for one or more specific cases, this paper presents a framework to unify all the above mentioned scenarios of the quantized CS problem. Under the unified framework, a variational Bayesian inference based algorithm is proposed which is applicable to the signal recovery of different application cases. Numerical simulations are carried out to illustrate the improved signal recovery accuracy of the unified algorithm in comparison with state-of-the-art methods for both multiple and single bit CS problems.
Disturbed state concept as unified constitutive modeling approach
Directory of Open Access Journals (Sweden)
Chandrakant S. Desai
2016-06-01
Full Text Available A unified constitutive modeling approach is highly desirable to characterize a wide range of engineering materials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creep deformations, stress path, volume change, microcracking leading to fracture, failure and softening, stiffening, and mechanical and environmental forces. There are hardly available such unified models. The disturbed state concept (DSC is considered to be a unified approach and is able to provide material characterization for almost all of the above factors. This paper presents a description of the DSC, and statements for determination of parameters based on triaxial, multiaxial and interface tests. Statements of DSC and validation at the specimen level and at the boundary value problem levels are also presented. An extensive list of publications by the author and others is provided at the end. The DSC is considered to be a unique and versatile procedure for modeling behaviors of engineering materials and interfaces.
Disturbed state concept as unified constitutive modeling approach
Institute of Scientific and Technical Information of China (English)
Chandrakant S. Desai
2016-01-01
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineering materials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creep deformations, stress path, volume change, microcracking leading to fracture, failure and softening, stiffening, and mechanical and environmental forces. There are hardly available such unified models. The disturbed state concept (DSC) is considered to be a unified approach and is able to provide material characterization for almost all of the above factors. This paper presents a description of the DSC, and statements for determination of parameters based on triaxial, multiaxial and interface tests. Statements of DSC and validation at the specimen level and at the boundary value problem levels are also presented. An extensive list of publications by the author and others is provided at the end. The DSC is considered to be a unique and versatile procedure for modeling behaviors of engineering materials and interfaces.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Unified flavor symmetry from warped dimensions
Directory of Open Access Journals (Sweden)
Mariana Frank
2015-03-01
Full Text Available In a model of warped extra-dimensions with all matter fields in the bulk, we propose a scenario which explains all the masses and mixings of the SM fermions. In this scenario, the same flavor symmetric structure is imposed on all the fermions of the Standard Model (SM, including neutrinos. Due to the exponential sensitivity on bulk fermion masses, a small breaking of this symmetry can be greatly enhanced and produce seemingly un-symmetric hierarchical masses and small mixing angles among the charged fermion zero-modes (SM quarks and charged leptons, thus washing out visible effects of the symmetry. If the Dirac neutrinos are sufficiently localized towards the UV boundary, and the Higgs field leaking into the bulk, the neutrino mass hierarchy and flavor structure will still be largely dominated and reflect the fundamental flavor structure, whereas localization of the quark sector would reflect the effects of the flavor symmetry breaking sector. We explore these features in an example based on which a family permutation symmetry is imposed in both quark and lepton sectors.
Towards a Unified Sentiment Lexicon Based on Graphics Processing Units
Directory of Open Access Journals (Sweden)
Liliana Ibeth Barbosa-Santillán
2014-01-01
Full Text Available This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL. This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P,N,Z} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and −1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and −1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.
Commutative deformations of general relativity: nonlocality, causality, and dark matter
Energy Technology Data Exchange (ETDEWEB)
De Vegvar, P.G.N. [SWK Research, Bellingham, WA (United States)
2017-01-15
Hopf algebra methods are applied to study Drinfeld twists of (3+1)-diffeomorphisms and deformed general relativity on commutative manifolds. A classical nonlocality length scale is produced above which microcausality emerges. Matter fields are utilized to generate self-consistent Abelian Drinfeld twists in a background independent manner and their continuous and discrete symmetries are examined. There is negligible experimental effect on the standard model of particles. While baryonic twist producing matter would begin to behave acausally for rest masses above ∝1-10 TeV, other possibilities are viable dark matter candidates or a right-handed neutrino. First order deformed Maxwell equations are derived and yield immeasurably small cosmological dispersion and produce a propagation horizon only for photons at or above Planck energies. This model incorporates dark matter without any appeal to extra dimensions, supersymmetry, strings, grand unified theories, mirror worlds, or modifications of Newtonian dynamics. (orig.)
Semidegenerate Self-Gravitating System of Fermion as Dark Matter on Galaxies i: Universality Laws
Fraga, Bernardo M. O.; Argüelles, Carlos; Ruffini, Remo; Siutsou, Ivan
2015-01-01
We present a unified model for galactic Dark Matter (DM) halos as well as galactic DM central cores (alternatively to the central Supermassive Black Hole scenario), based on systems of self-gravitating fermions at finite temperatures. This work will deal mainly with the halo part, leaving the core description to another part of this proceedings...
Energy Technology Data Exchange (ETDEWEB)
Stapp, H.P.
1992-09-10
The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science.
Energy Technology Data Exchange (ETDEWEB)
Stapp, H.P.
1992-09-10
The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science.
Design of output feedback controller for a unified chaotic system
Institute of Scientific and Technical Information of China (English)
Li Wen-Lin; Chen Xiu-Qin; Shen Zhi-Ping
2008-01-01
In this paper,the synchronization of a unified chaotic system is investigated by the use of output feedback controllers;a two-input single-output feedback controller and single-input single-output feedback controller are presented to synchronize the unified chaotic system when the states are not all measurable.Compared with the existing results,the controllers designed in this paper have some advantages such as small feedback gain,simple structure and less conservation.Finally,numerical simulations results are provided to demonstrate the validity and effectiveness of the proposed method.
Unifying acute stroke treatment guidelines for a Bayesian belief network.
Love, Alexa; Arnold, Corey W; El-Saden, Suzie; Liebeskind, David S; Andrada, Lewellyn; Saver, Jeffrey; Bui, Alex A T
2013-01-01
With the large number of clinical practice guidelines available, there is an increasing need for a comprehensive unified model for acute ischemic stroke treatment to assist in clinical decision making. We present a unified treatment model derived through review of existing clinical practice guidelines, meta-analyses, and clinical trials. Using logic from the treatment model, a Bayesian belief network was defined and fitted to data from our institution's observational quality improvement database for acute stroke patients. The resulting network validates known relationships between variables, treatment decisions and outcomes, and enables the exploration of new correlative relationships not defined in current guidelines.
Unified Model of Purification Units in Hydrogen Networks
Institute of Scientific and Technical Information of China (English)
吴思东; 王彧斐; 冯霄
2014-01-01
Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addi-tion, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different pu-rification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.
Synchronization of Unified Chaotic System Using Occasional Driving
Institute of Scientific and Technical Information of China (English)
Wu Xiao-qun; Lu Jun-an
2003-01-01
The synchronization of the unified chaotic systems using occasional driving technique is studied. The relation among interim period T, sampling interval 2ε, feedback gain r and the parameter α of the system is thoroughly investigated. Numerical results show that smaller interim period T and properly larger sampling interval 2ε can accelerate the synchronizing pace. Furthermore, for a unified chaotic system in which a is given, we can achieve satisfying synchronizing results as long as T,ε and r are appropriately chosen. As we adopt the occasional driving method, we greatly reduce the control cost. Therefore with this method we can obtain the expecting goals with little control cost.
Synchronization of Unified Chaotic System Using Occasional Driving
Institute of Scientific and Technical Information of China (English)
WuXiao-qun; LuJun-an
2003-01-01
The synchronization of the unified chaotic systems using occasional driving technique is studied. The relation among interim period T, sampling interval 2ε, feedback gain r and the parameter α of the system is thoroughly investigated. Numerical results show that smaller interim period T and properly larger sampling interval 2ε can accelerate the synchronizing pace. Furthermore, for a unified chaotic systemin which α is given, we can achieve satisfying synchronizing results as long as T,ε and r are appropriately chosen. As we adopt the occasional driving method, we greatly reduce the control cost. Therefore with this method we can obtain the expeetlng goals with little control cost.
The SELEX Measurements in the Unified Picture for Hadron Spectra
Arkhipov, A A
2004-01-01
We give an analysis of the experimental material presented by the SELEX Collaboration to find the true place for the SELEX state $D_{sJ}^+$(2632) in the unified picture for hadron spectra developed early. It is found that the SELEX measurements are excellently incorporated in the unified picture for hadron spectra. Our analysis shows that the measured values for the masses of the SELEX state exactly coincide with the calculated masses of the states living in the corresponding KK towers. We also found quite a natural but rather model dependent explanation of the decay pattern for the SELEX state being dominated by the $D_s^+\\eta$ decay mode.
A Unified Model of All Generalizations from the Jones Polynomial
Institute of Scientific and Technical Information of China (English)
QIAN Shang-Wu; GU Zhi-Yu
2001-01-01
From the basic properties of skein systems, we build a generalized tangle algebra (GTA). The elements of GTA are four basic tangles. There are three operations, which are connection, splicing and scalar multiplication. From GTA we derive two generalized recursion formulae (GRF) and prove the existence of a generalized skein relation which satisfies GRF. The obtained generalized skein relation epitomizes all generalizations from the Jones polynomial and thus forms a unified model. Two important topological parameters, twisting measure and loop values, appear explicitly in the expressions of the unified model, and this fact greatly simplifies the operations.
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
A unified approach of catastrophic events
Directory of Open Access Journals (Sweden)
S. Nikolopoulos
2004-01-01
Full Text Available Although there is an accumulated charge of theoretical, computational, and numerical work, like catastrophe theory, bifurcation theory, stochastic and deterministic chaos theory, there is an important feeling that these matters do not completely cover the physics of real catastrophic events. Recent studies have suggested that a large variety of complex processes, including earthquakes, heartbeats, and neuronal dynamics, exhibits statistical similarities. Here we are studying in terms of complexity and non linear techniques whether isomorphic signatures emerged indicating the transition from the normal state to the both geological and biological shocks. In the last 15 years, the study of Complex Systems has emerged as a recognized field in its own right, although a good definition of what a complex system is, actually is eluded. A basic reason for our interest in complexity is the striking similarity in behaviour close to irreversible phase transitions among systems that are otherwise quite different in nature. It is by now recognized that the pre-seismic electromagnetic time-series contain valuable information about the earthquake preparation process, which cannot be extracted without the use of important computational power, probably in connection with computer Algebra techniques. This paper presents an analysis, the aim of which is to indicate the approach of the global instability in the pre-focal area. Non-linear characteristics are studied by applying two techniques, namely the Correlation Dimension Estimation and the Approximate Entropy. These two non-linear techniques present coherent conclusions, and could cooperate with an independent fractal spectral analysis to provide a detection concerning the emergence of the nucleation phase of the impending catastrophic event. In the context of similar mathematical background, it would be interesting to augment this description of pre-seismic electromagnetic anomalies in order to cover biological
Directory of Open Access Journals (Sweden)
Gillian Warner-Søderholm
2012-12-01
Full Text Available Whether managers are concerned with financial issues, marketing, or human resource management (HRM, cultural values and practices do matter. The purpose of this article is to understand Norwegian managers’ cultural values within the cross-cultural landscape of her neighbors in the “Scandinavian cluster.” Clearly, subtle but disturbing differences may surface even when representatives from similar cultures work together. As a follow on from the GLOBE project, data based on the GLOBE instrument were collected on culture and communication values in Norway from 710 Norwegian middle managers for this present study. Although the Scandinavian cultures appear ostensibly similar, the results illustrate that research can reveal subtle but important cultural differences in nations that are similar yet dissimilar. All three Scandinavian societies appear intrinsically egalitarian; they appear to value low Power Distance, directness, and consensus in decision making and to promote Gender Egalitarianism. Nevertheless, there are significant differences in the degrees of commitment to these values by each individual Scandinavian partner. These differences need to be understood and appreciated to avoid misunderstandings.
Patwardhan, Ajay
2008-01-01
In unified field theory the cosmological model of the universe has supersymmetric fields. Supersymmetric particles as dark and normal matter in galaxy clusters have a phase separation. Dark matter in halos have a statistical physics equation of state. Neutralino particle gas with gravitation can have a collapse of dark matter lumps. A condensate phase due to boson creation by annhillation and exchange can occur at high densities. The collapse of the boson condensate, including neutralinos, into the Schwarzschild radius creates dark matter black holes. Microscopic dark matter black holes can evaporate with Hawking effect giving gamma ray bursts and create a spectrum of normal particles. The phase separation of normal and dark matter in galaxy clusters and inside galaxies is given by statistical physics.
Fermion Mass Generation in SO(10) with a Unified Higgs Sector
Babu, K S; Nath, P; Syed, R M; Gogoladze, Ilia; Nath, Pran; Syed, Raza M.
2006-01-01
An analysis of generating fermion masses via cubic couplings in SO(10) grand unification with a unified Higgs sector is given. The new framework utilizes a single pair of vector--spinor representation $144+\\bar{144}$ to break the gauge symmetry all the way to $SU(3)_C \\times U(1)_{em}$. Typically the matter--Higgs couplings in this framework are quartic and lead to naturally suppressed Yukawa couplings for the first two generations. Here we show that much larger third generation couplings naturally arise at the cubic level with additional matter in 10--plet and 45--plet representations of SO(10). Thus the physical third generation is a mixture of 16, 10 and 45--plet representations while the remaining components become superheavy and are removed from the low energy spectrum. In this scenario it is possible to understand the heaviness of the top in a natural way since the analysis generates a hierarchy in the Yukawa couplings so that $h_{\\textnormal {t}}/h_{\\textnormal {b}}>> 1$ where $h_{\\textnormal {t}} (h_{...
Experimental Studies of the Transport Parameters of Warm Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)
2014-12-01
There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.
Unified Schemes for Radio-loud AGN: Recent Results
Padovani, Paolo
1997-01-01
After briefly summarizing the main tenets of unified schemes of Active Galactic Nuclei, I review some recent results in the field of unification of radio-loud sources, both for the low-luminosity (BL Lacs and Fanaroff-Riley type I radio galaxies) and high-luminosity (radio quasars and Fanaroff-Riley type II radio galaxies) populations.
Catastrophe Theory: A Unified Model for Educational Change.
Cryer, Patricia; Elton, Lewis
1990-01-01
Catastrophe Theory and Herzberg's theory of motivation at work was used to create a model of change that unifies and extends Lewin's two separate stage and force field models. This new model is used to analyze the behavior of academics as they adapt to the changing university environment. (Author/MLW)
A Unified Approach for Solving Nonlinear Regular Perturbation Problems
Khuri, S. A.
2008-01-01
This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…
A vielbein formulation of unified Einstein-Maxwell theory
Vignolo, Stefano
2016-01-01
In the framework of J-bundles a vielbein formulation of unified Einstein-Maxwell theory is proposed. In the resulting scheme, field equations matching the gravitational and electromagnetic fields are derived by constraining a five-dimensional variational principle. No dynamical scalar field is involved.
Unified rotational dynamics of molecular crystals with orientational phase transition
Michel, K.H.; Raedt, H. De
1976-01-01
A unified theory for the rotational dynamics of molecular crystals with orientational phase transitions is given. As basic secular variables one takes symmetry adapted functions, which describe the molecular orientations, and the angular momenta of the molecules. Using Mori’s projection operator tec
Reciprocal Symmetric Boltzmann Function and Unified Boson-Fermion Statistics
2007-01-01
The differential equation for Boltzmann's function is replaced by the corresponding discrete finite difference equation. The difference equation is, then, symmetrized so that the equation remains invariant when step d is replaced by -d. The solutions of this equation come in Boson-Fermion pairs. Reciprocal symmetric Boltzmann's function, thus, unifies both Bosonic and Fermionic distributions.
When Unified Teacher Pay Scales Meet Differential Alternative Returns
Walsh, Patrick
2014-01-01
This paper quantifies the extent to which unified teacher pay scales and differential alternatives produce opportunity costs that are asymmetric in math and verbal skills. Data from the Baccalaureate and Beyond 1997 and 2003 follow-ups are used to estimate a fully parametric, selection-corrected wage equation for nonteachers, which is then used to…
A unifying approach to existence of Nash equilibria
Balder, E.J.
2001-01-01
An approach initiated in [4] is shown to unify results about the existence of (i) Nash equilibria in games with at most countably many players, (ii) Cournot-Nash equilibrium distributions for large, anonymous games, and (iii) Nash equilibria (both mixed and pure) for continuum games. A new, central
A unifying theory The universe on a string
Greene, Brian
2006-01-01
Seventy-five years ago, Albert Einstein completed his unified field theory; but, as had happened before and would happen again, Einstein had to go bak to the drawing board. Much progress have been inspired, with the most recent advances coming from an approach called string theory. (1,5 page)
Unified Technical Concepts. Supplementary Modules S1-S8.
Technical Education Research Center, Waco, TX.
Prepared for use with thirteen modules (CE 025 468-480) in the Unified Technical Concepts postsecondary physics instructional package, this set of eight support modules is designed to strengthen mathematical and laboratory skills in areas such as units, graphing, logarithms, dimensional analysis, and basic trigonometry. Module titles include…
Finite unified theories and the top quark mass
Energy Technology Data Exchange (ETDEWEB)
Mondragon, M. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Zoupanos, G. [Physics Dept., Nat. Technical Univ., Athens (Greece)
1995-01-01
We present results of a study of two phenomenologically interesting SU(5) supersymmetric Grand Unified models, which are finite to all-loops before spontaneous symmetry breaking. The finiteness conditions provide us with relationships among the Yukawa and gauge couplings at the unification point, which in turn predict a heavy top quark mass ( similar 175-190GeV). ((orig.))
Optimization and Sampling for NLP from a Unified Viewpoint
Dymetman, M.; Bouchard, G.; Carter, S.; Bhattacharyya, B.; Ekbal, A.; Saha, S.; Johnson, M.; Molla-Aliod, D.; Dras, M.
2012-01-01
The OS* algorithm is a unified approach to exact optimization and sampling, based on incremental refinements of a functional upper bound, which combines ideas of adaptive rejection sampling and of A* optimization search. We first give a detailed description of OS*. We then explain how it can be
Unified State Model theory and application in astrodynamics
Vittaldev, V.; Mooij, E.; Naeije, M.C.
2012-01-01
The Unified State Model is a method for expressing orbits using a set of seven elements. The elements consist of a quaternion and three parameters based on the velocity hodograph. A complete derivation of the original model is given in addition to two proposed modifications. Both modifications reduc
Performance Aspects of Orbit Propagation using the Unified State Model
Vittaldev, V.; Mooij, E.; Naeije, M.C.
2010-01-01
The Unified State Model is a method for expressing orbits using a set of seven elements. The elements consist of a quaternion and three parameters based on the velocity hodograph. The equations of this model and the background theory necessary to understand them have been shown here. Numerical simul
A UNIFIED APPROACH TO CERTAIN PROBLEMS OF BEST LOCAL APPROXIMATION
Institute of Scientific and Technical Information of China (English)
H.H.Cuenya; M.D.Lorenzo; C.N.Rodriguez
2007-01-01
In this paper we study best local quasi-rational approximation and best local approximation from finite dimensional subspaces of vectorial functions of several variables.Our approach extends and unifies several problems concerning best local multi-point approximation in different norms.
Unified asymptotic theory for all partial directed coherence forms.
Baccalá, L A; de Brito, C S N; Takahashi, D Y; Sameshima, K
2013-08-28
This paper presents a unified mathematical derivation of the asymptotic behaviour of the three main forms of partial directed coherence (PDC). Numerical examples are used to contrast PDC, gPDC (generalized PDC) and iPDC (information PDC) as to meaning and applicability and, more importantly, to show their essential statistical equivalence insofar as connectivity inference is concerned.
Seismic monitoring: a unified system for research and verifications
Energy Technology Data Exchange (ETDEWEB)
Thigpen, L.
1979-02-06
A system for characterizing either a seismic source or geologic media from observational data was developed. This resulted from an examination of the forward and inverse problems of seismology. The system integrates many seismic monitoring research efforts into a single computational capability. Its main advantage is that it unifies computational and research efforts in seismic monitoring. 173 references, 9 figures, 3 tables.
Towards a unified theory of task-specific motivation
De Brabander, Cees; Martens, Rob
2014-01-01
This study aims to integrate the current proliferation of motivation theories in a Unified Model of Task-specific Motivation (UMTM). According to this model readiness for action results from an interaction between four relatively independent types of valences that can be classified as affective or c
78 FR 18235 - Unified Rule for Loss on Subsidiary Stock
2013-03-26
... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 Unified Rule for Loss on Subsidiary Stock CFR Correction 0 In Title..., the preferred stock is treated as entitled to a distribution no later than the time the...
On a Unified Theory of Estimation in Linear Models
which depends on the numerical evaluation of a g-inverse of a partitioned matrix. Another is an analogue of least square theory and is called unified... least square (ULS) method. The aim of the paper is to bring out the salient features of these two methods and to point out some interesting features of
Schr"odinger's Unified Field Theory: Physics by Public Relations
Halpern, Paul
2009-05-01
We will explore the circumstances surrounding Erwin Schr"odinger's announcement in January 1947 that he had developed a comprehensive unified field theory of gravitation and electromagnetism. We will speculate on Schr"odinger's motivations for the mode and tone of his statements, consider the reaction of the international press within the context of the postwar era, and examine Einstein's response.
Effects of Positive Unified Behavior Support on Instruction
Scott, John S.; White, Richard; Algozzine, Bob; Algozzine, Kate
2009-01-01
"Positive Unified Behavior Support" (PUBS) is a school-wide intervention designed to establish uniform attitudes, expectations, correction procedures, and roles among faculty, staff, and administration. PUBS is grounded in the general principles of positive behavior support and represents a straightforward, practical implementation model. When…
THE UNIFIED LEVELLING NETWORK OF SARAWAK AND ITS ADJUSTMENT
Directory of Open Access Journals (Sweden)
Z. A. M. Som
2016-09-01
Full Text Available The height reference network of Sarawak has seen major improvement in over the past two decades. The most significant improvement was the establishment of extended precise leveling network of which is now able to connect all three major datum points at Pulau Lakei, Original and Bintulu. Datum by following the major accessible routes across Sarawak. This means the leveling network in Sarawak has now been inter-connected and unified. By having such a unified network leads to the possibility of having a common single least squares adjustment been performed for the first time. The least squares adjustment of this unified levelling network was attempted in order to compute the height of all Bench Marks established in the entire levelling network. The adjustment was done by using MoreFix levelling adjustment package developed at FGHT UTM. The computational procedure adopted is linear parametric adjustment by minimum constraint. Since Sarawak has three separate datums therefore three separate adjustments were implemented by utilizing datum at Pulau Lakei, Original Miri and Bintulu Datum respectively. Results of the MoreFix unified adjustment agreed very well with adjustment repeated using Starnet. Further the results were compared with solution given by Jupem and they are in good agreement as well. The difference in height analysed were within 10mm for the case of minimum constraint at Pulau Lakei datum and with much better agreement in the case of Original Miri Datum.
Unifying the Universe the physics of heaven and earth
Padamsee, Hasan S
2003-01-01
Unifying the Universe: The Physics of Heaven and Earth provides a solid background in basic physics. With a humanistic perspective, it shows how science is significant for more than its technological consequences. The book includes clear and well-planned links to the arts and philosophies of relevant historical periods to bring science and the humanities together.
RIEMANNIAN GEOMETRY AND UNIFIED FIELD THEORY IN 6D
Directory of Open Access Journals (Sweden)
Trunev A. P.
2015-01-01
Full Text Available The article discusses the Riemann's unified field theory and its extension in 6D in general relativity. It is shown that in 6D there are possible movements on two spherical areas in the form of nonlinear waves
Catastrophe Theory: A Unified Model for Educational Change.
Cryer, Patricia; Elton, Lewis
1990-01-01
Catastrophe Theory and Herzberg's theory of motivation at work was used to create a model of change that unifies and extends Lewin's two separate stage and force field models. This new model is used to analyze the behavior of academics as they adapt to the changing university environment. (Author/MLW)
Unified Model for Generation Complex Networks with Utility Preferential Attachment
Institute of Scientific and Technical Information of China (English)
WU Jian-Jun; GAO Zi-You; SUN Hui-Jun
2006-01-01
In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics ofthis new network are given.
Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity
Chavez, Lisa; Frankenberg, Erica
2009-01-01
In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…
A Unified Mutual Coupling Model for Multiple Antenna Systems
Institute of Scientific and Technical Information of China (English)
WU Yu-jiang; NIE Zai-ping
2006-01-01
A unified mutual coupling model for multiple antenna communication systems based on moment methods is proposed. This model combines antenna coupling and RF front-end circuit coupling, thus providing a more accurate and complete analysis of the mutual coupling effect on multiple antenna systems.
Unified characteristics line theory of spacial axisymmetric plastic problem
Institute of Scientific and Technical Information of China (English)
俞茂宏; 李建春; 张永强
2001-01-01
The unified strength theory proposed by Yu in 1991 is extended to spacial axisymmetric problem. A unified spacial axismymmetric characteristics line theory based on the unified strength theory is proposed. This theory takes account of different effects of intermediate principal stress on yielding or failure and the SD effect (tensile-compression strength difference) of materials. Various conventional axisymmetric characteristics line theories, whihc are based on the Haar-von Karman plastic condition, Szczepinski hypothesis, Tresca criterion, von Mises criterion and Mohr-Coulomb theory, are special cases of the new theory. Besides, a series of new spacial axisymmetric characteristics fields for different materials can be introduced. It forms a unified spacial axisymmetric characteristics theory. Two examples are calculated with the new theory, the results are compared with those obtained by the finite element program UEPP and those based on the Mohr-Coulomb strength theory. It is shown that the new theory is reliable and feasible. The economic benefit can be obtained from the engineering application of the new theory.
Modeling associated protein-DNA pattern discovery with unified scores.
Chan, Tak-Ming; Lo, Leung-Yau; Sze-To, Ho-Yin; Leung, Kwong-Sak; Xiao, Xinshu; Wong, Man-Hon
2013-01-01
Understanding protein-DNA interactions, specifically transcription factor (TF) and transcription factor binding site (TFBS) bindings, is crucial in deciphering gene regulation. The recent associated TF-TFBS pattern discovery combines one-sided motif discovery on both the TF and the TFBS sides. Using sequences only, it identifies the short protein-DNA binding cores available only in high-resolution 3D structures. The discovered patterns lead to promising subtype and disease analysis applications. While the related studies use either association rule mining or existing TFBS annotations, none has proposed any formal unified (both-sided) model to prioritize the top verifiable associated patterns. We propose the unified scores and develop an effective pipeline for associated TF-TFBS pattern discovery. Our stringent instance-level evaluations show that the patterns with the top unified scores match with the binding cores in 3D structures considerably better than the previous works, where up to 90 percent of the top 20 scored patterns are verified. We also introduce extended verification from literature surveys, where the high unified scores correspond to even higher verification percentage. The top scored patterns are confirmed to match the known WRKY binding cores with no available 3D structures and agree well with the top binding affinities of in vivo experiments.
Unified Approach to Universal Cloning and Phase-Covariant Cloning
Hu, Jia-Zhong; Yu, Zong-Wen; Wang, Xiang-Bin
2008-01-01
We analyze the problem of approximate quantum cloning when the quantum state is between two latitudes on the Bloch's sphere. We present an analytical formula for the optimized 1-to-2 cloning. The formula unifies the universal quantum cloning (UQCM) and the phase covariant quantum cloning.
Approximation analytical solutions for a unified plasma sheath model by double decomposition method
Institute of Scientific and Technical Information of China (English)
FangJin－Qing
1998-01-01
A unified plasma sheath model and its potential equation are proposed.Any higher-order approximation analytical solutions for the unified plasma sheath potential equation are derived by double decomposition method.
2012-06-01
... Unified Air Pollution Control District; Prevention of Significant Deterioration AGENCY: Environmental... submitted for the San Joaquin Valley Unified Air Pollution Control District (District) portion of the... authority to address disproportionate human health or environmental effects with practical, appropriate,...
2011-07-15
... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Valley Unified Air Pollution Control District portion of the California State Implementation Plan (SIP... Valley Unified Air Pollution Control District (SJVUAPCD) Rule 4682, Polystyrene, Polyethylene, and...
2011-11-03
... Unified Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...
2012-11-06
... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is approving revisions to the San Joaquin Valley Unified Air Pollution Control District... State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District's Rule 4352,...
Energy Technology Data Exchange (ETDEWEB)
Bansil, Arun [Northeastern Univ., Boston, MA (United States)
2016-12-01
Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.
2011-11-03
... Unified Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Rulemaking For the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control...
Directory of Open Access Journals (Sweden)
Lissa eVentura-Antunes
2013-04-01
Full Text Available Expansion of the cortical grey matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the grey matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the grey matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to grey matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern grey and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.
Matter and twin matter in bimetric MOND
Milgrom, Mordehai
2010-01-01
Bimetric MOND (BIMOND) theories, propounded recently, predict peculiar gravitational interactions between matter and twin matter (TM). Twin matter is hypothetical matter that might couple directly only to the second metric of the theory. Considerations of cosmology in the BIMOND framework suggest that such TM might exist and copy matter in its attributes. Here I investigate the indirect interactions that BIMOND theories predict between nonrelativistic masses of matter and TM. The most salient result is that in the deep-MOND regime of the matter-TM-symmetric theories, TM behaves as if it has a negative gravitational mass. To wit, interaction within each sector is attractive MOND gravity, but between matter and TM it is repulsive MOND gravity. In the high-acceleration regime, the interaction depends on a parameter, beta. For the favored value beta=1, matter and TM do not interact in this regime; for beta1 they repel each other. Such interactions may have substantial ramifications for all aspects of structure fo...
An assessment of Evans' unified field theory I
Hehl, F W
2007-01-01
Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe theta and a (metric compatible) Lorentz connection Gamma. These two potentials yield the field strengths torsion T and curvature R. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe theta to be proportional to four extended electromagnetic potentials A; these are assumed to encompass the conventional Maxwellian potential in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans' ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.
A Unified Theory of Information,Knowledge and Intelligence
Institute of Scientific and Technical Information of China (English)
ZHONGYixin
2003-01-01
Information, knowledge and intelligence have long been widely regarded as the most valuable wealth to mankind and there have been great number of papersdis cussing the issues on each of the three. There has also been strong belief on the point of view that there must be a deep linkage existing among information, knowledge and intelligence. On the other hand, however, there has not yet appeared a thoroughly unified theory of information,knowledge and intelligence till the present time. This is mainly because of the lack of a systemic theory of knowl-edge that in fact is a channel through which information may finally be refined into intelligence. An attempt is thus made in the paper to present a foundation and a frame-work of knowledge Theory that should be able to bridge the information theory on one hand and the intelligence theory on the other hand, thus forming a unified theory of information, knowledge, and intelligence.
Partial and unified crossed products are weak crossed products
Vilaboa, J M Fernández; Raposo, A B Rodríguez
2011-01-01
In [J.M. Fern\\'andez Vilaboa, R. Gonz\\'alez Rodr\\'iguez and A.B. Rodr\\'iguez Raposo: Preunits and weak crossed products. J. of Pure Appl. Algebra 213, 2244-2261 (2009)] the notion of a weak crossed product of an algebra by an object, both living in a monoidal category was presented. Unified crossed products defined in [A. Agore, G. Militaru: Extending structures II: The quantum version. arXiv:1011.2174v3 (2011)] and partial crossed products defined in [M. Muniz S. Alves, E. Batista, M. Dokuchaev, A. Paques: Twisted partial actions of Hopf algebras. preprint (2011)] are crossed product structures defined for a Hopf algebra and another object. In this paper we prove that unified crossed products and partial crossed products are particular instances of weak crossed products.
Unified Model in Identity Subspace for Face Recognition
Institute of Scientific and Technical Information of China (English)
Pin Liao; Li Shen; Yi-Qiang Chen; Shu-Chang Liu
2004-01-01
Human faces have two important characteristics: (1) They are similar objects and the specific variations of each face are similar to each other; (2) They are nearly bilateral symmetric. Exploiting the two important properties, we build a unified model in identity subspace (UMIS) as a novel technique for face recognition from only one example image per person. An identity subspace spanned by bilateral symmetric bases, which compactly encodes identity information, is presented. The unified model, trained on an obtained training set with multiple samples per class from a known people group A, can be generalized well to facial images of unknown individuals,and can be used to recognize facial images from an unknown people group B with only one sample per subject.Extensive experimental results on two public databases (the Yale database and the Bern database) and our own database (the ICT-JDL database) demonstrate that the UMIS approach is significantly effective and robust for face recognition.
A unified model explains commonness and rarity on coral reefs.
Connolly, Sean R; Hughes, Terry P; Bellwood, David R
2017-04-01
Abundance patterns in ecological communities have important implications for biodiversity maintenance and ecosystem functioning. However, ecological theory has been largely unsuccessful at capturing multiple macroecological abundance patterns simultaneously. Here, we propose a parsimonious model that unifies widespread ecological relationships involving local aggregation, species-abundance distributions, and species associations, and we test this model against the metacommunity structure of reef-building corals and coral reef fishes across the western and central Pacific. For both corals and fishes, the unified model simultaneously captures extremely well local species-abundance distributions, interspecific variation in the strength of spatial aggregation, patterns of community similarity, species accumulation, and regional species richness, performing far better than alternative models also examined here and in previous work on coral reefs. Our approach contributes to the development of synthetic theory for large-scale patterns of community structure in nature, and to addressing ongoing challenges in biodiversity conservation at macroecological scales.
Constructal Law and the Unifying Principle of Design
Lorente, Sylvie; Bejan, Adrian
2013-01-01
Design happens everywhere, whether in animate objects (e.g., dendritic lung structures, bacterial colonies, and corals), inanimate patterns (river basins, beach slope, and dendritic crystals), social dynamics (pedestrian traffic flows), or engineered systems (heat dissipation in electronic circuitry). This “design in nature” often takes on remarkably similar patterns, which can be explained under one unifying Constructal Law. This book explores the unifying power of the Constructal Law and its applications in all domains of design generation and evolution, ranging from biology and geophysics to globalization, energy, sustainability, and security. The Constructal Law accounts for the universal tendency of flow systems to morph into evolving configurations that provide greater and easier access over time. The Constructal Law resolves the many and contradictory ad hoc statements of “optimality”, end design, and destiny in nature, such as minimum and maximum entropy production and minimum and maximum fl...
Unified Power Quality Conditioner for voltage and current compensation
Directory of Open Access Journals (Sweden)
P.Annapandi
2012-07-01
Full Text Available This paper deals with a Unified Power Quality Conditioner (UPQC for load balancing, power factorcorrection, voltage regulation, voltage and current harmonics mitigation, mitigation of voltage sag, swelland voltage dip in a three-phase three-wire distribution system for different combinations of linear and nonlinear loads.The unified power quality conditioner (UPQC is a combination of back to back connected shunt and series active power filters (APFs to a common DC link voltage, which compensates voltage and current based distortions, independently.Using instantaneous active and reactive Power theory ,harmonic detection, reactive power compensation, voltage sag and swell have been simulated and the results are analyzed. The operation and capability of the proposed system was analyzed through simulations with MATLAB / SIMULINK.
A Unifying Framework for Local Throughput in Wireless Networks
Pinto, Pedro C
2010-01-01
With the increased competition for the electromagnetic spectrum, it is important to characterize the impact of interference in the performance of a wireless network, which is traditionally measured by its throughput. This paper presents a unifying framework for characterizing the local throughput in wireless networks. We first analyze the throughput of a probe link from a connectivity perspective, in which a packet is successfully received if it does not collide with other packets from nodes within its reach (called the audible interferers). We then characterize the throughput from a signal-to-interference-plus-noise ratio (SINR) perspective, in which a packet is successfully received if the SINR exceeds some threshold, considering the interference from all emitting nodes in the network. Our main contribution is to generalize and unify various results scattered throughout the literature. In particular, the proposed framework encompasses arbitrary wireless propagation effects (e.g, Nakagami-m fading, Rician fa...
Unified EEG terminology and criteria for nonconvulsive status epilepticus.
Beniczky, Sándor; Hirsch, Lawrence J; Kaplan, Peter W; Pressler, Ronit; Bauer, Gerhard; Aurlien, Harald; Brøgger, Jan C; Trinka, Eugen
2013-09-01
The diagnosis of nonconvulsive status epilepticus (NCSE) relies largely on electroencephalography (EEG) findings. The lack of a unified EEG terminology, and of evidence-based EEG criteria, leads to varying criteria for and ability to diagnose NCSE. We propose a unified terminology and classification system for NCSE, using, as a template, the Standardised Computer-based Organised Reporting of EEG (SCORE). This approach integrates the terminology recently proposed for the rhythmic and periodic patterns in critically ill patients, the electroclinical classification of NCSE (type of NCSE) and the context for the pathologic conditions and age-related epilepsy syndromes. We propose flexible EEG criteria that employ the SCORE system to assemble a database for determining evidence-based EEG criteria for NCSE.
Modeling Enterprise Authorization: A Unified Metamodel and Initial Validation
Directory of Open Access Journals (Sweden)
Matus Korman
2016-07-01
Full Text Available Authorization and its enforcement, access control, have stood at the beginning of the art and science of information security, and remain being crucial pillar of security in the information technology (IT and enterprises operations. Dozens of different models of access control have been proposed. Although Enterprise Architecture as the discipline strives to support the management of IT, support for modeling access policies in enterprises is often lacking, both in terms of supporting the variety of individual models of access control nowadays used, and in terms of providing a unified ontology capable of flexibly expressing access policies for all or the most of the models. This study summarizes a number of existing models of access control, proposes a unified metamodel mapped to ArchiMate, and illustrates its use on a selection of example scenarios and two business cases.
Unified dark fluid in Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Tripathy, Sunil K. [Indira Gandhi Institute of Technology, Department of Physics, Dhenkanal, Odisha (India); Behera, Dipanjali [Government College of Engineering, Department of Physics, Kalahandi, Odisha (India); Mishra, Bivudutta [Birla Institute of Technology and Science-Pilani, Department of Mathematics, Hyderabad (India)
2015-04-01
Anisotropic dark energy cosmological models are constructed in the frame work of generalised Brans-Dicke theory with a self-interacting potential. A unified dark fluid characterised by a linear equation of state is considered as the source of dark energy. The shear scalar is considered to be proportional to the expansion scalar simulating an anisotropic relationship among the directional expansion rates. The dynamics of the universe in the presence of a unified dark fluid in anisotropic background have been discussed. The presence of an evolving scalar field makes it possible to get an accelerating phase of expansion even for a linear relationship among the directional Hubble rates. It is found that the anisotropy in expansion rates does not affect the scalar field, the self-interacting potential, but it controls the non-evolving part of the Brans-Dicke parameter. (orig.)
A simplification of the unified gas kinetic scheme
Chen, Songze; Xu, Kun
2016-01-01
Unified gas kinetic scheme (UGKS) is an asymptotic preserving scheme for the kinetic equations. It is superior for transition flow simulations, and has been validated in the past years. However, compared to the well known discrete ordinate method (DOM) which is a classical numerical method solving the kinetic equations, the UGKS needs more computational resources. In this study, we propose a simplification of the unified gas kinetic scheme. It allows almost identical numerical cost as the DOM, but predicts numerical results as accurate as the UGKS. Based on the observation that the equilibrium part of the UGKS fluxes can be evaluated analytically, the equilibrium part in the UGKS flux is not necessary to be discretized in velocity space. In the simplified scheme, the numerical flux for the velocity distribution function and the numerical flux for the macroscopic conservative quantities are evaluated separately. The simplification is equivalent to a flux hybridization of the gas kinetic scheme for the Navier-S...
Unifying inflation with late-time acceleration in BIonic system
Sepehri, Alireza; Setare, Mohammad Reza; Pradhan, Anirudh; Capozziello, Salvatore; Sardar, Iftikar Hossain
2015-01-01
In this research, we propose a new model that allows to unify inflation, deceleration and acceleration phases of expansion history in BIonic system. In this model, in the beginning, there have been $k$ black fundamental strings that transited to the BIon configuration at a corresponding point. At this point, two universe brane and universe antibrane have been created, interacted with each other via one wormhole and inflated. With decreasing temperature, the energy of this wormhole flowed into universe branes and lead to inflation. After a short time, wormhole died, inflation ended and deceleration epoch started. With approaching two universe brane and antibrane together, tachyon was born, grew and caused creation of one new wormhole. At this time, two universe brane and antibrane connected again and late-time acceleration era of the universe began. We compare our model with previous unified phantom model and observational data and obtain some cosmological parameters like temperature in terms of time. We also ...
Research on a didtributed simulation based on unified interface
Institute of Scientific and Technical Information of China (English)
孙知信; 王汝传; 王绍棣; 张钦
2004-01-01
With the scale of simulation system increasing rapidly, the distributed interactive simulation (DIS) faces the problem fo system scalability. One of main factors, which influence the DIS scalability, is that the lacks of standard defining interface methods, as the number of the system modules increased. This paper presents a method of defining an unified interface among different models. Then a DIS development platform based on it is established after thorough studies of the reasons that cause the DIS scalability problems. Finally we demonstrate the method by realization of an experiment DIS system in LAN environment. It validates that a practical system development can be carried out rapidly and efectively on this DIS development plaform. The experimental results show that the unified interface has general purpose for the design and implementation of DIS systems.
Research and Design in Unified Coding Architecture for Smart Grids
Directory of Open Access Journals (Sweden)
Gang Han
2013-09-01
Full Text Available Standardized and sharing information platform is the foundation of the Smart Grids. In order to improve the dispatching center information integration of the power grids and achieve efficient data exchange, sharing and interoperability, a unified coding architecture is proposed. The architecture includes coding management layer, coding generation layer, information models layer and application system layer. Hierarchical design makes the whole coding architecture to adapt to different application environments, different interfaces, loosely coupled requirements, which can realize the integration model management function of the power grids. The life cycle and evaluation method of survival of unified coding architecture is proposed. It can ensure the stability and availability of the coding architecture. Finally, the development direction of coding technology of the Smart Grids in future is prospected.
Testing a non-minimal coupling between matter and curvature
Páramos, J
2011-01-01
One of the most interesting and current phenomenological extensions of General Relativity is the so-called $f (R)$ class of theories; a natural generalization of this includes an explicit non-minimal coupling between matter and curvature. The purpose of this work is to present a unified view of the applicability of the latter to various contexts, ranging from astrophysical matter distributions to a cosmological setting. Various results are discussed, including the impact of this non-minimal coupling in the choice of Lagrangian density, a mechanism to mimic galactic dark matter and a Cosmological Constant at a astrophysical scale, the possibility of accounting for the accelerated expansion of the Universe and modifications to post-inflationary reheating. The equivalence between a model exhibiting a non-minimal coupling and multi-scalar-theories is also discussed.
An informationally-complete unification of quantum spacetime and matter
Chen, Zeng-Bing
2014-01-01
It was known long ago that quantum theory and general relativity, two pillars of modern physics, are in sharp conflict in their foundations. Their fundamental inconsistencies render a consistent theory of quantum gravity the most challenging problem in physics. Here we propose an informationally-complete quantum field theory (ICQFT), which describes elementary particles, their gauge fields and gravity as a trinity without the Hilbert-space inconsistency of Einstein's equation. We then argue that the ICQFT provide a coherent picture and conceptual framework of unifying matter and spacetime. The trinary field is characterized by dual entanglement and dual dynamics. Spacetime-matter entanglement allows us to give a natural explanation of the holographic principle, as well as two conjectures on black-hole states and on a possible candidate to dark matter/energy.
New Constraints on the Unified Model of Seyfert Galaxies
Maiolino, R.; Ruiz, M.; Rieke, G. H.; Keller, L. D.
1995-06-01
We present new 10 microns (N-band) photometry for 70 Seyfert galaxies, 43 of them previously unobserved. These observations, together with those collected from the literature, complete the 10 microns photometry for the CfA Sy galaxies and cover 80% of the Sy found in the RSA and 70% of the Sy in the IRAS 12 microns sample. From this data set, we find that Sy not showing any evidence for broad lines are systematically weaker in 10 microns nuclear emission than Sy nuclei having broad lines. This result may indicate the existence of a group of very low-luminosity Sy2 galaxies that do not have Sy1 counterparts in equal numbers, contrary to the strict unified theory. Alternately, the result can be reconciled with unified theories if a specific type of geometry is assumed for the circumnuclear obscuring material. By comparing the 10 microns ground-based observations with the IRAS 12 microns fluxes, we also study the properties of the extended mid-IR emission, i.e., the star forming activity of the host galaxy of the Sy nucleus. We find Sy2 to lie preferentially in galaxies experiencing enhanced star-forming activity, while Sy1 lie in normal or quiescent galaxies. This result appears to be inconsistent with the strict unified model, since the host galaxy properties should be independent of the orientation of a circumnuclear torus and therefore should be independent of nuclear type. Our finding could be explained by adding to the unified model a link between star-forming activity and the amount of obscuring material collected in the circumnuclear region.
Weyl, Majorana and Dirac fields from a unified perspective
Aste, Andreas
2016-01-01
A self-contained derivation of the formalism describing Weyl, Majorana and Dirac fields from a unified perspective is given based on a concise description of the representation theory of the proper orthochronous Lorentz group. Lagrangian methods play no role in the present exposition, which covers several fundamental aspects of relativistic field theory which are commonly not included in introductory courses treating fermionic fields via the Dirac equation in the first place.
Maxwell and Dirac theories as an already unified theory
1995-01-01
In this paper we formulate Maxwell and Dirac theories as an already unified theory (in the sense of Misner and Wheeler). We introduce Dirac spinors as "Dirac square root" of the Faraday bivector, and use this in order to find a spinorial representation of Maxwell equations. Then we show that under certain circunstances this spinor equation reduces to an equation formally identical to Dirac equation. Finally we discuss certain conditions under which this equation can be really interpreted as D...
A Unified Access Model for Interconnecting Heterogeneous Wireless Networks
2015-05-01
with each other via a central controller. The 2 access technologies used were 802.11 ( WiFi ) and a Carrier-Sense Multiple Access (CSMA) protocol ...wireless subnets could communicate with each other. 3. Results and Discussion Using the 3-VM LTE/ WiFi configuration, we placed a User Datagram Protocol ...control plane protocols . A network model that can abstract disparate MAC layers in heterogeneous networks and interconnect them using a unified and
A unified theory of plastic buckling of columns and plates
Stowell, Elbridge Z
1948-01-01
On the basis of modern plasticity considerations, a unified theory of plastic buckling applicable to both columns and plates has been developed. For uniform compression, the theory shows that long columns which bend without appreciable twisting require the tangent modulus and that long flanges which twist without appreciable bending require the secant modulus. Structures that both bend and twist when they buckle require a modulus which is a combination of the secant modulus and the tangent modulus. (author)
Synchronization in a unified fractional-order chaotic system
Institute of Scientific and Technical Information of China (English)
Wu Zheng-Mao; Xie Jian-Ying
2007-01-01
In this paper, the synchronization in a unified fractional-order chaotic system is investigated by two methods. One is the frequency-domain method that is analysed by using the Laplace transform theory. The other is the time-domain method that is analysed by using the Lyapunov stability theory. Finally, the numerical simulations are used-to illustrate the effectiveness of the proposed synchronization methods.
State feedback design for singularly perturbed system using unified approach
Institute of Scientific and Technical Information of China (English)
Chenxiao CAI; Yun ZOU; Duanjin ZHANG
2004-01-01
The state feedback design for singularly perturbed systems described in Delta operator is considered.The composite state feedback controller for slow and fast subsystems is designed by using the direct method.The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework.A simulation example is presented to demonstrate the validity and efficiency of the design.
Estimating High-Frequency Based (Co-) Variances: A Unified Approach
DEFF Research Database (Denmark)
Voev, Valeri; Nolte, Ingmar
We propose a unified framework for estimating integrated variances and covariances based on simple OLS regressions, allowing for a general market microstructure noise specification. We show that our estimators can outperform, in terms of the root mean squared error criterion, the most recent...... frequency derived in Bandi & Russell (2005a) and Bandi & Russell (2005b). For a realistic trading scenario, the efficiency gains resulting from our approach are in the range of 35% to 50%....
Post-Unified Korean Foreign Policy Options: Regional Implications
2002-09-01
Korean War, the U.S. security policy toward Korea has been instrumental in promoting peace and stability on the peninsula. The strong defense alliance...request the removal of United States troops from the Korean peninsula and the nullification of the United States-South Korea Mutual Defense Treaty...security alliance. However, after the elimination of the North Korean threat, a unified Korea will be able to redefine its foreign policy options
Weyl, Majorana and Dirac Fields from a Unified Perspective
Directory of Open Access Journals (Sweden)
Andreas Aste
2016-08-01
Full Text Available A self-contained derivation of the formalism describing Weyl, Majorana and Dirac fields from a unified perspective is given based on a concise description of the representation theory of the proper orthochronous Lorentz group. Lagrangian methods play no role in the present exposition, which covers several fundamental aspects of relativistic field theory, which are commonly not included in introductory courses when treating fermionic fields via the Dirac equation in the first place.
Probing flavor structure in unified theory with scalar spectroscopy
Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi
2007-01-01
The flavor structure in unified theory is probed with superparticle mass spectrum observed in future particle experiments. A key ingredient is the generation dependence of scalar mass non-degeneracy. The observed non-degeneracy in low-energy regime is shown to provide a direct imprint of flavor structure in high-energy fundamental theory. The implication from flavor-violating rare process is also discussed.
A unified cell biological perspective on axon-myelin injury
Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin
2014-01-01
Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a loc...
A Unified Pseudospectral Framework for Nonlinear Controller and Observer Design
Gong, Qi; Ross, I. Michael; Kang,Wei
2007-01-01
Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July 11-13, 2007 As a result of significant progress in pseudospectral methods for real-time dynamic optimization, it has become apparent in recent years that it is possible to present a unified framework for both controller and observer design. In this paper, we present such an approach for nonlinear systems. The method can be applied to a wide variety of nonlinear systems....
Skinner-Rusk unified formalism for higher-order systems
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-07-01
The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.
Unified Communications: Simplifying DoD Communication Methods
2013-04-18
result of a DDOS attack could shut down IP services for any organization. According to J. Dawkins , CEO and founder of True Digital Security, DDOS...Applications 4, no. 4 (2012): 143. 21 J. Dawkins , G. Manes, and M. Papa, A Framework for Unified Network Security Management: Identifying and Tracking...34 IEEE Network 17, no. 5 (2003): 40-46. Clinger-Cohen Act. Public Law 104-106 (February 10, 1996). Dawkins , J., K. Clark, G. Manes, and M. Papa. "A
Dynamics of Inductive Inference in a Unified Framework
Gilboa, Itzhak; Samuelson, Larry; Schmeidler, David
2012-01-01
We present a model of inductive inference that includes, as special cases, Bayesian reasoning, case-based reasoning, and rule-based reasoning. This unified framework allows us to examine, positively or normatively, how the various modes of inductive inference can be combined and how their relative weights change endogenously. We establish conditions under which an agent who does not know the structure of the data generating process will decrease, over the course of her reasoning, the weight o...
A unified approach to mapping and clustering of bibliometric networks
Waltman, L.R.; Eck, van, H.N.; Noyons, E.C.M.
2010-01-01
In the analysis of bibliometric networks, researchers often use mapping and clustering techniques in a combined fashion. Typically, however, mapping and clustering techniques that are used together rely on very different ideas and assumptions. We propose a unified approach to mapping and clustering of bibliometric networks. We show that the VOS mapping technique and a weighted and parameterized variant of modularity-based clustering can both be derived from the same underlying principle. We i...
Coordination in Disaster Management and Response: A Unified Approach
2007-05-14
Unified Aproach 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. 2nd edn. MIT Press (2001) 6. Kuhn, H.W.: The hungarian method for the
A unified approach to infinite-dimensional integration
Albeverio, S.; Mazzucchi, S.
2016-04-01
An approach to infinite-dimensional integration which unifies the case of oscillatory integrals and the case of probabilistic type integrals is presented. It provides a truly infinite-dimensional construction of integrals as linear functionals, as much as possible independent of the underlying topological and measure theoretical structure. Various applications are given, including, next to Feynman path integrals, Schrödinger and diffusion equations, as well as higher order hyperbolic and parabolic equations.
Chassidic Teachings and Modern Psychology: Toward a More Unified Approach.
Turner, Akiva
2016-06-01
This article describes how many modern psychological constructs and theories exist in older as well as newer Chassidic and Jewish teachings, particularly those of Chabad Lubavitch. This exploration points toward a potential benefit for a unification of psychology and Chassidic teachings. Psychological theories and constructs explored are Freudian psychoanalysis, cognitive dissonance, cognitive restructuring/reframing, self-efficacy/planned behavior, and logotherapy/existentialism. The article then concludes with a discussion of possible implications of moving toward a unified approach for clinical practitioners.
A Programmable Controller for Unified Management of Virtualized Network Infrastructures
Yassin, Mohamad; GUILLOUARD, Karine; Ouzzif, Meryem; Picard, Roland; Aluze, Denis
2017-01-01
International audience; We are currently witnessing an evolution towards network virtualization and Software Defined Networking (SDN) paradigm. SDN permits the decoupling of the control and data planes of traditional networks, and offers flexible and programmable networks. Besides, the need for dynamic provisioning and composition of networking services leads to the deployment of software components on virtualized network infrastructures. In this paper, we propose a unified management of netw...
Unified Stochastic Geometry Model for MIMO Cellular Networks with Retransmissions
Afify, Laila H.
2016-10-11
This paper presents a unified mathematical paradigm, based on stochastic geometry, for downlink cellular networks with multiple-input-multiple-output (MIMO) base stations (BSs). The developed paradigm accounts for signal retransmission upon decoding errors, in which the temporal correlation among the signal-to-interference-plus-noise-ratio (SINR) of the original and retransmitted signals is captured. In addition to modeling the effect of retransmission on the network performance, the developed mathematical model presents twofold analysis unification for MIMO cellular networks literature. First, it integrates the tangible decoding error probability and the abstracted (i.e., modulation scheme and receiver type agnostic) outage probability analysis, which are largely disjoint in the literature. Second, it unifies the analysis for different MIMO configurations. The unified MIMO analysis is achieved by abstracting unnecessary information conveyed within the interfering signals by Gaussian signaling approximation along with an equivalent SISO representation for the per-data stream SINR in MIMO cellular networks. We show that the proposed unification simplifies the analysis without sacrificing the model accuracy. To this end, we discuss the diversity-multiplexing tradeoff imposed by different MIMO schemes and shed light on the diversity loss due to the temporal correlation among the SINRs of the original and retransmitted signals. Finally, several design insights are highlighted.
The performance of FLake in the Met Office Unified Model
Directory of Open Access Journals (Sweden)
Gabriel Gerard Rooney
2013-12-01
Full Text Available We present results from the coupling of FLake to the Met Office Unified Model (MetUM. The coupling and initialisation are first described, and the results of testing the coupled model in local and global model configurations are presented. These show that FLake has a small statistical impact on screen temperature, but has the potential to modify the weather in the vicinity of areas of significant inland water. Examination of FLake lake ice has revealed that the behaviour of lakes in the coupled model is unrealistic in some areas of significant sub-grid orography. Tests of various modifications to ameliorate this behaviour are presented. The results indicate which of the possible model changes best improve the annual cycle of lake ice. As FLake has been developed and tuned entirely outside the Unified Model system, these results can be interpreted as a useful objective measure of the performance of the Unified Model in terms of its near-surface characteristics.
Creation and Maintenance of a Unified Astronomy Thesaurus
Gray, Norman; Erdmann, C.; Accomazzi, A.; Soles, J.; McCann, G.; Cassar, M.; Biemesderfer, C.
2013-01-01
We describe a collaborative effort to update and unify the various vocabularies currently in use in Astronomy into a single thesaurus that can be further developed and updated through broad community participation. The Unified Astronomy Thesaurus (UAT) will be an open, interoperable and community-supported thesaurus which unifies the existing divergent and isolated Astronomy & Astrophysics thesauri into a single high-quality, freely-available open thesaurus formalizing astronomical concepts and their inter-relationships. The UAT builds upon the existing IAU Thesaurus with major contributions from the Astronomy portions of the thesauri developed by the Institute of Physics Publishing and the American Institute of Physics. While the AAS has assumed formal ownership of the UAT, the work will be available under a Creative Commons License, ensuring its widest use while protecting the intellectual property of the contributors. We envision that development and maintenance will be stewarded by a broad group of parties having a direct stake in it. This includes professional associations (IVOA, IAU), learned societies (AAS, RAS), publishers (IOP, AIP), librarians and other curators working for major astronomy institutes and data archives. While the impetus behind the creation of a single thesaurus has been the wish to support semantic enrichment of the literature, we expect that use of the UAT (along with other vocabularies and ontologies currently being developed) will be much broader and will have a greater impact on discovery of both literatue and data products.
A Cartesian grid-based unified gas kinetic scheme
Chen, Songze; Xu, Kun
2014-12-01
A Cartesian grid-based unified gas kinetic scheme is developed. In this approach, any oriented boundary in a Cartesian grid is represented by many directional boundary points. The numerical flux is evaluated on each boundary point. Then, a boundary flux interpolation method (BFIM) is constructed to distribute the boundary effect to the flow evolution on regular Cartesian grid points. The BFIM provides a general strategy to implement any kind of boundary condition on Cartesian grid. The newly developed technique is implemented in the unified gas kinetic scheme, where the scheme is reformulated into a finite difference format. Several typical test cases are simulated with different geometries. For example, the thermophoresis phenomenon for a plate with infinitesimal thickness immersed in a rarefied flow environment is calculated under different orientations on the same Cartesian grid. These computational results validate the BFIM in the unified scheme for the capturing of different thermal boundary conditions. The BFIM can be extended to the moving boundary problems as well.
Neutralino event rates in dark matter detectors
Arnowitt, Richard Lewis; Pran Nath
1995-01-01
ABSTRACT: The expected event rates for {\\tilde Z_{1}} dark matter for a variety of dark matter detectors are studied over the full parameter space with tan \\beta\\leq 20 for supergravity grand unified models. Radiative breaking constraints are implemented and effects of the heavy netural Higgs included as well as loop corrections to the neutral Higgs sector. The parameter space is restricted so that the {\\tilde Z_{1}} relic density obeys 0.10 \\leq\\Omega_{\\tilde Z_{1}}h^2\\leq 0.35, consistent with the COBE data and astronomical determinations of the Hubble constant. It is found that the best detectors sensitive to coherrent {\\tilde Z_{1}} scattering (e.g. Pb) is about 5-10 more sensitive than those based on incoherrent spin dependent scattering (e.g. CaF). In general, the dark matter detectors are most sensistive to the large tan \\beta and small m_o and m_{\\tilde g} sector of the parameter space.
Combustion of nuclear matter into strange matter
Energy Technology Data Exchange (ETDEWEB)
Lugones, G. (Departamento di Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata (Argentina)); Benvenuto, O.G.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina))
1994-11-15
We study the properties of the combustion of pure neutron matter into strange matter in the framework of relativistic hydrodynamical theory of combustion. Because of the uncertainties in the actual properties of neutron matter, we employ the free neutron, Bethe-Johnson, Lattimer-Ravenhall, and Walecka equations of state and for strange matter we adopt the MIT bag model approximation. We find that combustion is possible for free neutron, Bethe-Johnson, and Lattimer-Ravenhall neutron matter but not for Walecka neutron matter. We interpret these results using a simple polytropic approximation showing that there exists a general flammability condition. We also study the burning of neutron matter into strange matter in a pipe showing that hydrodynamics demands flames faster than predicted by kinetics by several orders of magnitude, implying that the flame must be turbulent. Also the conditions for the deflagration to detonation transition are addressed, showing that in a pipe some of them are satisfied, strongly suggesting that the actual combustion mode should be detonation.
Quantum Haplodynamics, Dark Matter, and Dark Energy
Directory of Open Access Journals (Sweden)
Harald Fritzsch
2014-01-01
of the associated gauge group SU(2h is of the order of Λh≃0.3 TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD, and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density, will evolve with time. This could explain the dark energy of the universe.
Asorey, Manuel
2016-01-01
An old branch of mathematics, Topology, has opened the road to the discovery of new phases of matter. A hidden topology in the energy spectrum is the key for novel conducting/insulating properties of topological matter.
Energy Technology Data Exchange (ETDEWEB)
Avakyan, R.M.; Sarkisyan, A.V.
1987-07-01
The properties of degenerate stellar matter in the region of nuclear densities are considered. The threshold of the transition of the electron-nucleus phase to the state of continuous nuclear matter is found.
... Term(s): Teachers / NIDA Teaching Guide / Mind Over Matter Teaching Guide and Series / Cocaine Print Mind Over Matter: Cocaine Order Free Publication in: English Spanish Download PDF 806.08 KB Cocaine is ...
... Artery Disease Venous Thromboembolism Aortic Aneurysm More Why Arrhythmia Matters Updated:Dec 21,2016 When the heart's ... fibrillation. This content was last reviewed September 2016. Arrhythmia • Home • About Arrhythmia • Why Arrhythmia Matters • Understand Your ...
Pappadopulo, Duccio; Trevisan, Gabriele
2016-01-01
A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the Cannibal Dark Matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of Cannibal Dark Matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.
DEFF Research Database (Denmark)
Del Nobile, Eugenio; Sannino, Francesco
2012-01-01
We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....
Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...
Wambach, Jochen
2013-01-01
In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.
Singh, R., Captain; Srivastava, P. K.; Ganesh, S.; Mishra, M.
2015-09-01
Recent experimental and theoretical studies suggest that the quarkonium suppression in a thermal QCD medium created in heavy ion collisions is a complex interplay of various physical processes. In this article we put together most of these processes in a unified way to calculate the charmonium survival probability (nuclear modification factor) at energies available at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) experiments. We include shadowing as the dominant cold-nuclear-matter effect. Further, gluonic dissociation and collision damping are included, which provide width to the spectral function of charmonia in a thermal medium and cause the dissociation of charmonium along with the usual color screening. We include color screening by using our recently proposed modified Chu-Matsui model. Furthermore, we incorporate the recombination of uncorrelated charm and anticharm quarks for the regeneration of charmonium over the entire temporal evolution of the QGP medium. Finally, we do a feed-down correction from the excited states to calculate the survival probability of charmonium. We find that our unified model suitably and simultaneously describes the experimental nuclear modification data of J /ψ at RHIC and LHC.
Structural gray and white matter changes in patients with HIV.
Küper, Michael; Rabe, K; Esser, S; Gizewski, E R; Husstedt, I W; Maschke, M; Obermann, M
2011-06-01
In this cross-sectional study we used magnetic resonance imaging (MRI)-based voxel based morphometry (VBM) in a sample of HIV positive patients to detect structural gray and white matter changes. Forty-eight HIV positive subjects with (n = 28) or without (n = 20) cognitive deficits (mean age 48.5 ± 9.6 years) and 48 age- and sex-matched HIV negative controls underwent MRI for VBM analyses. Clinical testing in HIV patients included the HIV dementia scale (HDS), Unified Parkinson's Disease Rating Scale (UPDRS) and the grooved pegboard test. Comparing controls with HIV positive patients with cognitive dysfunction (n = 28) VBM showed gray matter decrease in the anterior cingulate and temporal cortices along with white matter reduction in the midbrain region. These changes were more prominent with increasing cognitive decline, when assigning HIV patients to three cognitive groups (not impaired, mildly impaired, overtly impaired) based on performance in the HIV dementia scale. Regression analysis including all HIV positive patients with available data revealed that prefrontal gray matter atrophy in HIV was associated with longer disease duration (n = 48), while motor dysfunction (n = 48) was associated with basal ganglia gray matter atrophy. Lower CD4 cell count (n = 47) correlated with decrease of occipital gray matter. Our results provide evidence for atrophy of nigro-striatal and fronto-striatal circuits in HIV. This pattern of atrophy is consistent with motor dysfunction and dysexecutive syndrome found in HIV patients with HIV-associated neurocognitive disorder.
A Unified Framework for the Ergodic Capacity of Spectrum Sharing Cognitive Radio Systems
Sboui, Lokman
2012-12-29
We consider a spectrum sharing communication scenario in which a primary and a secondary users are communicating, simultaneously, with their respective destinations using the same frequency carrier. Both optimal power profile and ergodic capacity are derived for fading channels, under an average transmit power and an instantaneous interference outage constraints. Unlike previous studies, we assume that the secondary user has a noisy version of the cross link and the secondary link Channel State Information (CSI). After deriving the capacity in this case, we provide an ergodic capacity generalization, through a unified expression, that encompasses several previously studied spectrum sharing settings. In addition, we provide an asymptotic capacity analysis at high and low signal-to-noise ratio (SNR). Numerical results, applied for independent Rayleigh fading channels, show that at low SNR regime, only the secondary channel estimation matters with no effect of the cross link on the capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. Furthermore, a practical on-off power allocation scheme is proposed and is shown, through numerical results, to achieve the full capacity at high and low SNR regimes and suboptimal rates in the medium SNR regime.
Weakly-Interacting Massive Particles in Non-supersymmetric SO(10) Grand Unified Models
Nagata, Natsumi; Zheng, Jiaming
2015-01-01
Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting DM candidates in terms of their quantum numbers of $\\text{SU}(2)_L \\otimes \\text{U}(1)_Y$, $B-L$, and $\\text{SU}(2)_R$. We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2)$_L$ singlets with zero hypercharge or doublets with $Y=1/2$ satisfy all constraints for $\\text{SU}(4)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R$ and $\\text{SU}(3)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R \\otimes \\text{U}(1)_{B-L}$ intermediate scale gauge groups. Among fermion triplets with zero hypercharge, o...
Conceptual foundations of the unified theory of weak and electromagnetic interaction
Weinberg, Steven
Our job in physics is to see things simply, to understand a great many complicated phenomena in a unified way, in terms of a few simple principles. At times, our efforts are illuminated by a brilliant experiment, such as the 1973 discovery of neutral current neutrino reactions. But even in the dark times between experimental breakthroughs, there always continues a steady evolution of theoretical ideas, leading almost imperceptibly to changes in previous beliefs. In this talk, I want to discuss the development of two lines of thought in theoretical physics. One of them is the slow growth in our understanding of symmetry, and in particular, broken or hidden symmetry. The other is the old struggle to come to terms with the infinities in quantum field theories. To a remarkable degree, our present detailed theories of elementary particle interactions can be understood deductively, as consequences of symmetry principles and of a principle of renormalizability which is invoked to deal with the infinities. I will also briefly describe how the convergence of these lines of thought led to my own work on the unification of weak and electromagnetic interactions. For the most part, my talk will center on my own gradual education in these matters, because that is one subject on which I can speak with some confidence. With rather less confidence, I will also try to look ahead, and suggest what role these lines of thought may play in the physics of the future…
Reif, Frederick
1999-12-01
Heat and thermodynamics are traditionally taught in the introductory physics course from a predominantly macroscopic point of view. However, it is advantageous to adopt a more modern approach that systematically builds on students' knowledge of the atomic structure of matter and of elementary mechanics. By focusing on the essential physics without requiring more than elementary classical mechanics, this approach can be made sufficiently simple to be readily teachable during five or six weeks of an ordinary calculus-based introductory physics course. This approach can be highly unified, using atomic considerations to infer the properties of macroscopic systems while also enabling thermodynamic analyses independent of specific atomic models. Furthermore, this integrated point of view provides a deeper physical understanding of basic concepts (such as internal energy, heat, entropy, and absolute temperature) and of important phenomena (such as equilibrium, fluctuations, and irreversibility).
A Model of Radiative Neutrino Mass: with or without Dark Matter
Ahriche, Amine; Nasri, Salah
2014-01-01
We present a three-loop model of neutrino mass whose most-general Lagrangian possesses a softly-broken accidental $Z_2$ symmetry. In the limit that a single parameter vanishes, $\\lambda\\rightarrow0$, the $Z_2$ symmetry becomes exact and the model contains a stable dark-matter candidate. However, even for finite $\\lambda\\ll1$, long-lived dark matter is possible, giving a unified solution to the neutrino mass and dark matter problems that does not invoke a new symmetry. Taken purely as a neutrino mass model, the new physics can be at the TeV scale. When dark matter is incorporated, however, only a singlet scalar can remain this light, though the dark matter can be tested in direct-detection experiments.
Recent results on searches for direct production of dark matter with the CMS detector
CERN. Geneva
2015-01-01
With observed galactic excesses, tighter constraints from underground experiments, and a precise measurement of the relic density, our understanding of dark matter has greatly improved. As one of the few sources which can potentially produce dark matter, the LHC has the capability of complementing existing measurements. Recently, work by both ATLAS and CMS has been undertaken to unify the presentation of dark matter results, allowing for a robust comparison with other detector experiments. In this new light, we present two new results from CMS: the search for dark matter in Z + MET final state (Z decaying to leptons) and the search for dark matter in the monojet and hadronically decaying vector boson final state. Results are presented for simplified models, EFT and in terms of Higgs to invisible decays.
MBAT: A scalable informatics system for unifying digital atlasing workflows
Directory of Open Access Journals (Sweden)
Sane Nikhil
2010-12-01
Full Text Available Abstract Background Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. Results The MouseBIRN Atlasing Toolkit (MBAT project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. Conclusions MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context
Unifying Prepositions and Prefixes in Russian: Conceptual structure versus syntax
Directory of Open Access Journals (Sweden)
Inna Tolskaya
2007-12-01
Full Text Available This paper is an attempt to unify the polysemous verbal prefixes and prepositions in Russian. At first glance, the variety of possible denotations of a given prefix might appear a chaotic set of idiomatic meanings, e.g., the prefix za- may refer to beginning of an action, movement to a position behind an object, a brief deviation from a path, completion of an action, while the corresponding preposition za can mean ‘behind,’ ‘after,’ ‘for,’ ‘in’ (like in ‘in an hour’, ‘at’ (like in ‘at the table’. I will propose a unified analysis, where the differences in meaning are claimed to arise from different syntactic positions, while the lexical entry of a prefix remains the same. The main focus is on the verbs of motion due to the consistent duality displayed by the prefix meanings when added to directional and non-directional motion verbs. It will turn out that many prefixes appear to modify path when added onto a directional motion verb and to refer to movement in time with non-directional motion verbs. This semantic distinction corresponds to distinct sets of syntactic properties, specific for each set of prefixes. These two classes of prefixes correspond to the lexical versus superlexical distinction. However, a tripartite division will emerge in each set, corresponding to source, path, and goal of motion (FROM, VIA and TO for lexical prefixes and to initiation, process and result for superlexical prefixes. This leads to the suggestion that the syntactic representation of a VP contains at least six distinct nodes for the Russian verbal prefixes, each characterized by predictable semantic and syntactic properties. The same prefix with a consistent meaning, shared with the corresponding preposition, will receive part of its denotation from the syntactic head it attaches to, thus allowing the polysemy to arise from position, rather than from arbitrary homophony. Thus, conceptual structure will be unified with syntax.
Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...
How dark matter came to matter
de Swart, J. G.; Bertone, G.; van Dongen, J.
2017-03-01
The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of 'missing matter' was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward accumulation of evidence alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed interest in the theory of relativity and changes in the manpower division of astronomy in the 1960s are key to understanding how dark matter came to matter. At the same time, this story may also enlighten us on the methodological dimensions of past practices of physics and cosmology.
Nonlinear/linear unified thermal stress formulations - Transfinite element approach
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
A new unified computational approach for applicability to nonlinear/linear thermal-structural problems is presented. Basic concepts of the approach including applicability to nonlinear and linear thermal structural mechanics are first described via general formulations. Therein, the approach is demonstrated for thermal stress and thermal-structural dynamic applications. The proposed transfinite element approach focuses on providing a viable hybrid computational methodology by combining the modeling versatility of contemporary finite element schemes in conjunction with transform techniques and the classical Bubnov-Galerkin schemes. Comparative samples of numerical test cases highlight the capabilities of the proposed concepts.
A unified cell biological perspective on axon-myelin injury.
Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin
2014-08-04
Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon-myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders.
On the Feasibility of a Unified Modelling and Programming Paradigm
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth; Peleska, Jan
2016-01-01
, in particular for complex cyber-physical systems or systems of systems. Though modelling, programming, and verification will certainly become more closely integrated in the future, we do not expect a single formalism to become universally applicable and accepted by the development and verification communities......In this article, the feasibility of a unified modelling and programming paradigm is discussed from the perspective of large scale system development and verification in collaborative development environments. We motivate the necessity to utilise multiple formalisms for development and verification...
Fluctuation-response relation unifies dynamical behaviors in neural fields
Fung, C. C. Alan; Wong, K. Y. Michael; Mao, Hongzi; Wu, Si
2015-08-01
Anticipation is a strategy used by neural fields to compensate for transmission and processing delays during the tracking of dynamical information and can be achieved by slow, localized, inhibitory feedback mechanisms such as short-term synaptic depression, spike-frequency adaptation, or inhibitory feedback from other layers. Based on the translational symmetry of the mobile network states, we derive generic fluctuation-response relations, providing unified predictions that link their tracking behaviors in the presence of external stimuli to the intrinsic dynamics of the neural fields in their absence.
Toward a Unified Framework for Web Service Trustworthiness
DEFF Research Database (Denmark)
Miotto, N.; Dragoni, Nicola
2012-01-01
The intrinsic openness of the Service-Oriented Computing vision makes crucial to locate useful services and recognize them as trustworthy. What does it mean that a Web service is trustworthy? How can a software agent evaluate the trustworthiness of a Web service? In this paper we present an ongoing...... research aiming at providing an answer to these key issues to realize this vision. In particular, starting from an analysis of the weaknesses of current approaches, we discuss the possibility of a unified framework for Web service trustworthiness. The founding principle of our novel framework is that “hard...
A unifying property for distribution-sensitive priority queues
DEFF Research Database (Denmark)
Elmasry, Amr Ahmed Abd Elmoneim; Farzan, Arash; Iacono, John
2011-01-01
, before) the last access of x and are still in the priority queue at the time when the corresponding operation is performed. Our priority queue then has both the working-set and the queueish properties; and, more strongly, it satisfies these properties in the worst-case sense. We also argue...... that these bounds are the best possible with respect to the considered measures. Moreover, we modify our priority queue to satisfy a new unifying property - the time-finger property - which encapsulates both the working-set and the queueish properties. In addition, we prove that the working-set bound...
Unified communications forensics anatomy of common UC attacks
Grant, Nicholas Mr
2013-01-01
Unified Communications Forensics: Anatomy of Common UC Attacks is the first book to explain the issues and vulnerabilities and demonstrate the attacks, forensic artifacts, and countermeasures required to establish a secure (UC) environment. This book is written by leading UC experts Nicholas Grant and Joseph W. Shaw II and provides material never before found on the market, including: analysis of forensic artifacts in common UC attacks an in-depth look at established UC technologies and attack exploits hands-on understanding of UC attack vectors and associated countermeasures
Development of the unified version of COBRA/RELAP5
Energy Technology Data Exchange (ETDEWEB)
Jeong, J. J.; Ha, K. S.; Chung, B. D.; Lee, W. J.; Sim, S. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
The COBRA/RELAP5 code, an integrated version of the COBRA-TF and RELAP5/MOD3 codes, has been developed for the realistic simulations of complicated, multi-dimensional, two-phase, thermal-hydraulic system transients in light water reactors. Recently, KAERI developed an unified version of the COBRA/RELAP5 code, which can run in serial mode on both workstations and personal computers. This paper provides the brief overview of the code integration scheme, the recent code modifications, the developmental assessments, and the future development plan. 13 refs., 5 figs., 2 tabs. (Author)
Unified Description of Tokamak Ideal MHD Instabilities（I）
Institute of Scientific and Technical Information of China (English)
石秉仁
2002-01-01
By using a coordinate system associated with magnetic surfaces,a unified eigenmode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation.Based on this equation having a general operator form,the eigen-mode equation governing the large-scale perturbation (such as the kink mode,the low-n ballooning mode and the Alfven mode) and small-scale perturbation(such as the high-n ballooning mode,the local mode) can be further deduced.In the first part of the present study,the small-scale perturbation is discussed in detail.
Horseshoe and entropy in a fractional-order unified system
Institute of Scientific and Technical Information of China (English)
Li Qing-Du; Chen Shu; Zhou Ping
2011-01-01
This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory the corresponding map is semiconjugate to a shift map with four symbols. By estimating the topological entropy of the map and the original time-continuous system, it provides a computer assisted verification on existence of chaos in this system, which is much more convincible than the common method of Lyapunov exponents. This new method can potentially be used in rigorous studies of chaos in such a kind of system. This paper may be a start for proving a given fractional-order differential equation to be chaotic.
Logarithmic diffusion and porous media equations: a unified description.
Pedron, I T; Mendes, R S; Buratta, T J; Malacarne, L C; Lenzi, E K
2005-09-01
In this work we present the logarithmic diffusion equation as a limit case when the index that characterizes a nonlinear Fokker-Planck equation, in its diffusive term, goes to zero. A linear drift and a source term are considered in this equation. Its solution has a Lorentzian form, consequently this equation characterizes a superdiffusion like a Lévy kind. In addition an equation that unifies the porous media and the logarithmic diffusion equations, including a generalized diffusion equation in fractal dimension, is obtained. This unification is performed in the nonextensive thermostatistics context and increases the possibilities about the description of anomalous diffusive processes.
Unified Description of Tokamak Ideal MHD Instabilities (Ⅰ)
Institute of Scientific and Technical Information of China (English)
石秉仁
2002-01-01
By using a coordinate system associated with magnetic surfaces, a unified eigen mode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation. Based on this equation having a general operator form, the eigen-mode equation governing the large-scale perturbation (such as the kink mode, the low-n ballooning mode and the Alfven mode) and small-scale perturbation (such as the high-n ballooning mode, the local mode)can be further deduced. In the first part of the present study, the small-scale perturbation is discussed in detail.
A unified tool for performance modelling and prediction
Energy Technology Data Exchange (ETDEWEB)
Gilmore, Stephen [Laboratory for Foundations of Computer Science, University of Edinburgh, King' s Buildings, Mayfield Road, Edinburgh, Scotland EH9 3JZ (United Kingdom)]. E-mail: stg@inf.ed.ac.uk; Kloul, Leila [Laboratory for Foundations of Computer Science, University of Edinburgh, King' s Buildings, Mayfield Road, Edinburgh, Scotland EH9 3JZ (United Kingdom)
2005-07-01
We describe a novel performability modelling approach, which facilitates the efficient solution of performance models extracted from high-level descriptions of systems. The notation which we use for our high-level designs is the Unified Modelling Language (UML) graphical modelling language. The technology which provides the efficient representation capability for the underlying performance model is the multi-terminal binary decision diagram (MTBDD)-based PRISM probabilistic model checker. The UML models are compiled through an intermediate language, the stochastic process algebra PEPA, before translation into MTBDDs for solution. We illustrate our approach on a real-world analysis problem from the domain of mobile telephony.
A unified framework for Schelling's model of segregation
Rogers, Tim
2011-01-01
Schelling's model of segregation is one of the first and most influential models in the field of social simulation. There are many variations of the model which have been proposed and simulated over the last forty years, though the present state of the literature on the subject is somewhat fragmented and lacking comprehensive analytical treatments. In this article a unified mathematical framework for Schelling's model and its many variants is developed. This methodology is useful in two regards: firstly, it provides a tool with which to understand the differences observed between models; secondly, phenomena which appear in several model variations may be understood in more depth through analytic studies of simpler versions.
A unified framework for Schelling's model of segregation
Rogers, Tim; McKane, Alan J.
2011-07-01
Schelling's model of segregation is one of the first and most influential models in the field of social simulation. There are many variations of the model which have been proposed and simulated over the last forty years, though the present state of the literature on the subject is somewhat fragmented and lacking comprehensive analytical treatments. In this paper a unified mathematical framework for Schelling's model and its many variants is developed. This methodology is useful in two regards: firstly, it provides a tool with which to understand the differences observed between models; secondly, phenomena which appear in several model variations may be understood in more depth through analytic studies of simpler versions.
Baryon number violation catalysed by grand unified monopoles
Ellis, Jonathan Richard; Olive, Keith A
1982-01-01
It has been recognized for some time that grand unified monopoles may catalyze Delta B not=0 processes. The authors obtain model-independent upper bounds on the rates for such reactions from the survival of the baryon number generated in the early Universe and from present-day baryon stability. These constraints are compatible with recent estimates of large baryon number violating monopole cross sections, but a monopole flux close to present experimental upper limits could be detectable in forthcoming baryon decay experiments. The authors mention signatures for monopole-induced baryon 'decay' and point out that it could be used to solve the energy crisis.
Unifying CP violations of quark and lepton sectors
Energy Technology Data Exchange (ETDEWEB)
Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, 02447, Seoul (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, 34141, Taejon (Korea, Republic of); Department of Physics, Seoul National University, 1 Gwanakro, Gwanak-Gu, 08826, Seoul (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, 02447, Seoul (Korea, Republic of)
2016-01-08
A preliminary determination of the Dirac phase in the PMNS matrix is δ{sub PMNS}≈-(π/2). A rather accurately determined Jarlskog invariant J in the CKM matrix is close to the maximum. Since the phases in the CKM and PMNS matrices will be accurately determined in the future, it is an interesting problem to relate these two phases. This can be achieved in a families-unified grand unification if the weak CP violation is introduced spontaneously à la Froggatt and Nielsen at a high energy scale, where only one meaningful Dirac CP phase appears.
Unifying CP violations of quark and lepton sectors
Energy Technology Data Exchange (ETDEWEB)
Kim, Jihn E. [Kyung Hee University, Department of Physics, Seoul (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), Taejon (Korea, Republic of); Seoul National University, Department of Physics, Seoul (Korea, Republic of); Nam, Soonkeon [Kyung Hee University, Department of Physics, Seoul (Korea, Republic of)
2015-12-15
A preliminary determination of the Dirac phase in the PMNS matrix is δ{sub PMNS} ∼ -(π)/(2). A rather accurately determined Jarlskog invariant J in the CKM matrix is close to the maximum. Since the phases in the CKM and PMNS matrices will be accurately determined in the future, it is an interesting problem to relate these two phases. This can be achieved in a families-unified grand unification if the weak CP violation is introduced spontaneously a la Froggatt and Nielsen at a high energy scale, where only one meaningful Dirac CP phase appears. (orig.)
A unified minimax result for restricted parameter spaces
Marchand, Éric; 10.3150/10-BEJ336
2012-01-01
We provide a development that unifies, simplifies and extends considerably a number of minimax results in the restricted parameter space literature. Various applications follow, such as that of estimating location or scale parameters under a lower (or upper) bound restriction, location parameter vectors restricted to a polyhedral cone, scale parameters subject to restricted ratios or products, linear combinations of restricted location parameters, location parameters bounded to an interval with unknown scale, quantiles for location-scale families with parametric restrictions and restricted covariance matrices.
LDRD final report on a unified linear reference system
Energy Technology Data Exchange (ETDEWEB)
Espinoza, J. Jr.; Mackoy, R.D. [Sandia National Labs., Albuquerque, NM (United States). Decision Support Systems Software Engineering Dept.; Fletcher, D.R. [Univ. of New Mexico, Albuquerque, NM (United States). Alliance for Transportation Research
1997-06-01
The purpose of the project was to describe existing deficiencies in Geographic Information Systems for transportation (GIS-T) applications and prescribe solutions that would benefit the transportation community in general. After an in-depth literature search and much consultation with noted transportation experts, the need for a common linear reference system that integrated and supported the planning and operational needs of the transportation community became very apparent. The focus of the project was set on a unified linear reference system and how to go about its requirements definition, design, implementation, and promulgation to the transportation community.
Universality of efficiency at unified trade-off optimization.
Zhang, Yanchao; Huang, Chuankun; Lin, Guoxing; Chen, Jincan
2016-03-01
We calculate the efficiency at the unified trade-off optimization criterion (the so-called maximum Ω criterion) representing a compromise between the useful energy and the lost energy of heat engines operating between two reservoirs at different temperatures and chemical potentials, and demonstrate that the linear coefficient 3/4 and quadratic coefficient 1/32 of the efficiency at maximum Ω are universal for heat engines under strong coupling and symmetry conditions. It is further proved that the conclusions obtained here also apply to the ecological optimization criterion.
Unified universe history through phantom extended Chaplygin gas
Pourhassan, B
2015-01-01
We investigate the universe evolution from inflation to late-time acceleration in a unified way, using a two-component fluid constituted from extended Chaplygin gas alongside a phantom scalar field. We extract solutions for the various cosmological eras, focusing on the behavior of the scale factor, the various density parameters and the equation-of-state parameter. Furthermore, we extract and discuss bouncing solutions. Finally, we examine the perturbations of the model, ensuring about their stability and extracting the predictions for the tensor-to-scalar ratio.
Unified mass-action theory for virus neutralization and radioimmunology.
Trautman, R
1976-01-01
All ideas implicit in the papers since 1953 involved in applying mass-action thermodynamics to antibody-antigen reactions are unified by the use of: (a) the intermediary concept of extent of reaction; (b) the concept of intrinsic association constant; (c) a statistical analysis for probable complexes; and (d) identification of the complex or complexes that contribute to the bioassay. Several general theoretical examples are given that show the limitations of linear interpretations of equilibrium data. Two practical examples from the literature illustrate foot-and-mouth disease virus and influenza virus neutralization.
A Unified Computational Model for Solar and Stellar Flares
Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats
2015-01-01
We present a unified computational framework which can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into...
Peningkatan Available Transfer Capability Mengggunakan Unified Power Flow Controller
Directory of Open Access Journals (Sweden)
Adyatmoko Wirananto
2012-09-01
Full Text Available Available Transfer Capability (ATC adalah kemampuan transfer yang masih mungkin bisa dilakukan pada sistem tenaga listrik. Pemasangan perangkat FACTS, yaitu Unified Power Flow Controller (UPFC dilakukan untuk meningkatkan nilai ATC. UPFC akan mengontrol injeksi daya reaktif dan mengontrol tegangan pada saluran transmisi yang dipasangi UPFC sehingga akan merubah aliran daya pada sistem tenaga listrik. Melalui analisis optimal power flow pada Sistem IEEE 14 bus, variabel-variabel kontrol akan diinjeksikan dari UPFC ke aliran daya Sistem IEEE 14 bus. Setelah dipasang UPFC sistem mampu mencapai nilai load margin maksimal pada 0,1511 ketika UPFC dipasang di Saluran 2-5, dengan ATC yang dicapai adalah 35,38 MW.
Skinner Rusk unified formalism for optimal control systems and applications
Barbero-Liñán, María; Echeverría-Enríquez, Arturo; Martín de Diego, David; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso
2007-10-01
A geometric approach to time-dependent optimal control problems is proposed. This formulation is based on the Skinner and Rusk formalism for Lagrangian and Hamiltonian systems. The corresponding unified formalism developed for optimal control systems allows us to formulate geometrically the necessary conditions given by a weak form of Pontryagin's maximum principle, provided that the differentiability with respect to controls is assumed and the space of controls is open. Furthermore, our method is also valid for implicit optimal control systems and, in particular, for the so-called descriptor systems (optimal control problems including both differential and algebraic equations).
A method for unified optimization of systems and controllers
DEFF Research Database (Denmark)
Abildgaard, Ole
1990-01-01
A unified method for solving control system optimization problems is suggested. All system matrices are allowed to be functions of the design variables. The method makes use of an implementation of a sequential quadratic programming algorithm (NLPQL) for solution of general constrained nonlinear...... programming problems. It is shown how to compute the gradients of the objective function and the constraint functions imposing eigenvalue constraints. In an example it is demonstrated how the method can solve a high-dimensional problem, where the initial condition covariance assumption is used to ensure...
A Unified Semantic Framework for the description of assistive technologies.
Konstadinidou, Aggeliki; Kaklanis, Nikolaos; Votis, Konstantinos; Tzovaras, Dimitrios
2015-01-01
This paper presents the Semantic Alignment Tool, a unified, classified, ontological framework, for the description of assistive solutions that comprises information from different sources automatically. The Semantic Alignment Tool is a component of the Cloud4All/GPII infrastructure that enables users to add and/or modify descriptions of assistive technologies and align their specific settings with similar settings in an ontological model based on ISO 9999. The current work presents the interaction of the Semantic Alignment Tool with external sources that contain descriptions and metadata for Assistive Technologies (ATs) in order to achieve their synchronization in the same semantic model.
A Grammar Analysis Model for the Unified Multimedia Query Language
Institute of Scientific and Technical Information of China (English)
Zhong-Sheng Cao; Zong-Da Wu; Yuan-Zhen Wang
2008-01-01
The unified multimedia query language(UMQL) is a powerful general-purpose multimediaquery language, and it is very suitable for multimediainformation retrieval. The paper proposes a grammaranalysis model to implement an effective grammaticalprocessing for the language. It separates the grammaranalysis of a UMQL query specification into two phases:syntactic analysis and semantic analysis, and thenrespectively uses Backus-Naur form (EBNF) and logicalalgebra to specify both restrictive grammar rules. As aresult, the model can present error guiding informationfor a query specification which owns incorrect grammar.The model not only suits well the processing of UMQLqueries, but also has a guiding significance for otherprojects concerning query processings of descriptivequery languages.
Unifying model for two-state and downhill protein folding
Mi, D.; Meng, W. Q.; Sun, Y. Q.
2011-04-01
A protein-folding model is proposed at the amino acid level, in which the folding process is divided into two successive stages: the rate-determining step, dominated by the “stochastic interactions”of solvent molecules, and the rapid phase, dominated by the “order interactions”among atoms in polypeptide. The master equation approach is used to investigate the folding kinetics, and an analytical treatment of the master equation yields a simple three-parameter expression for folding time. It is found that both two-state and downhill protein-folding kinetics can be described by a unifying model.
The strong coupling constant in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Pierce, D.M.
1997-01-01
The prediction of the strong coupling constant in grand unified theories is reviewed, first in the standard model, then in the supersymmetric version. Various corrections are considered. The predictions in both supergravity-induced and gauge-mediated supersymmetry breaking models are discussed. In the region of parameter space without large fine tuning the strong coupling is predicted to be {alpha}{sub s} (M{sub Z}) {approx}> 0.13. Imposing {alpha}{sub s} (M{sub Z}) = 0.118, the authors require a unification scale threshold correction of typically -2%, which is accommodated by some GUT models but in conflict with others.
A unified approach to mapping and clustering of bibliometric networks
Waltman, Ludo; Noyons, Ed C M
2010-01-01
In the analysis of bibliometric networks, researchers often use mapping and clustering techniques in a combined fashion. Typically, however, mapping and clustering techniques that are used together rely on very different ideas and assumptions. We propose a unified approach to mapping and clustering of bibliometric networks. We show that the VOS mapping technique and a weighted and parameterized variant of modularity-based clustering can both be derived from the same underlying principle. We illustrate our proposed approach by producing a combined mapping and clustering of the most frequently cited publications that appeared in the field of information science in the period 1999-2008.
A Unifying Theory for Scaling Laws of Human Populations
Lin, Henry W
2015-01-01
The spatial distribution of people exhibits clustering across a wide range of scales, from household (~$10^{-2}$ km) to continental (~$10^4$ km) scales. Empirical data indicates simple power-law scalings for the size distribution of cities (known as Zipf's law), the geographic distribution of friends, and the population density fluctuations as a function of scale. We derive a simple statistical model that explains all of these scaling laws based on a single unifying principle involving the random spatial growth of clusters of people on all scales. The model makes important new predictions for the spread of diseases and other social phenomena.
Unified Modeling of Complex Real-Time Control Systems
Hai, He; Chi-Lan, Cai
2011-01-01
Complex real-time control system is a software dense and algorithms dense system, which needs modern software engineering techniques to design. UML is an object-oriented industrial standard modeling language, used more and more in real-time domain. This paper first analyses the advantages and problems of using UML for real-time control systems design. Then, it proposes an extension of UML-RT to support time-continuous subsystems modeling. So we can unify modeling of complex real-time control systems on UML-RT platform, from requirement analysis, model design, simulation, until generation code.
Unified analysis of pressure melting of ice around horizontal columns
Institute of Scientific and Technical Information of China (English)
LIU Feng; CHEN Wenzhen; MENG Bin; GONG Miao
2007-01-01
The contact melting processes of ice, caused by pressure under the two-dimension axisymmetric horizontal columns, are generally studied. The unified mathematical expressions of the characteristic parameters for the pressure contact melting processes are obtained. Applying these expressions to the analysis of the pressure contact melting of ice around the horizontal cylinder, elliptical cylinder and flat plate, the related results in the published literatures are obtained, which prove the correctness and validity of the expressions. In addition, the expressions for the pressure contact melting of ice around the wedge-shaped object are also derived.
Unified description of light- and strange-baryon spectra
Glozman, L Ya; Varga, K; Wagenbrunn, R F
1998-01-01
We present a chiral constituent quark model for light and strange baryons providing a unified description of their ground states and excitation spectra. The model relies on constituent quarks and Goldstone bosons arising as effective degrees of freedom of low-energy QCD from the spontaneous breaking of chiral symmetry. The spectra of the three-quark systems are obtained from a precise variational solution of the Schrödinger equation with a semirelativistic Hamiltonian. The theoretical predictions are found in close agreement with experiment.
A unified constructive network model for problem-solving.
Takahashi, Y
1996-01-01
We develop a neural network model that relieves time-consuming trial-and-error computer experiments usually performed in problem-solving with networks where problems, including the traveling salesman problem, pattern matching and pattern classification/learning, are formulated as optimization problems with constraint. First, we specify and uniquely distinguish the model as a set of constituent functions that should comply with restrictive conditions. Next, we demonstrate that it is unified, i.e., it yields most current networks. Finally, we verify that it is constructive, that is, we show a standard method that systematically constructs from a given optimization problem a particular network in that model to solve it.
Quantum Machine and SR Approach: a Unified Model
Garola, C; Sozzo, S; Garola, Claudio; Pykacz, Jaroslav; Sozzo, Sandro
2005-01-01
The Geneva-Brussels approach to quantum mechanics (QM) and the semantic realism (SR) nonstandard interpretation of QM exhibit some common features and some deep conceptual differences. We discuss in this paper two elementary models provided in the two approaches as intuitive supports to general reasonings and as a proof of consistency of general assumptions, and show that Aerts' quantum machine can be embodied into a macroscopic version of the microscopic SR model, overcoming the seeming incompatibility between the two models. This result provides some hints for the construction of a unified perspective in which the two approaches can be properly placed.
A Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
How Dark Matter Came to Matter
de Swart, Jaco; Bertone, Gianfranco; Dongen, Jeroen
2017-01-01
The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of 'missing matter' was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward 'accumulation of evidence' alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed int...
Unified Electronic Currency Based on the Fourth Party Platform Integrated Payment Service
Yong, Xu; Qiqi, Hu
This paper presents a solution of unified e-currency based on the fourth party platform integrated payment service. The purpose of the paper is to solve the problem of distribution and resource-wasting caused by the lack of unified electronic currency, and to solve regulatory difficulties due to regulation size caused by a wide variety of e-currency. Methods: This article first analyzes the problems in the development of electronic money, and then proposes the concept of a unified electronic currency based on the fourth party platform integrated payment service. Besides, it proposes a unified mechanism and transaction procedures for unified e-currency, and analyzes the liquidation process, security and regulatory requirements, which are involved in using unified electronic currency.
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
GUAN Ping; LIU ChangChun; L(U) HeXiang
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials. The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model, thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model. Moreover, this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method, which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials. The numerical simulation indicates that the construction should be both reasonable and practical.
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.
Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems
Institute of Scientific and Technical Information of China (English)
ZHANG Ming-Jiang; FANG Jian-Hui; LU Kai; PANG Ting; LIN Peng
2009-01-01
Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained.
GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare.
Ali, Rahman; Siddiqi, Muhammad Hameed; Idris, Muhammad; Ali, Taqdir; Hussain, Shujaat; Huh, Eui-Nam; Kang, Byeong Ho; Lee, Sungyoung
2015-07-02
A wide array of biomedical data are generated and made available to healthcare experts. However, due to the diverse nature of data, it is difficult to predict outcomes from it. It is therefore necessary to combine these diverse data sources into a single unified dataset. This paper proposes a global unified data model (GUDM) to provide a global unified data structure for all data sources and generate a unified dataset by a "data modeler" tool. The proposed tool implements user-centric priority based approach which can easily resolve the problems of unified data modeling and overlapping attributes across multiple datasets. The tool is illustrated using sample diabetes mellitus data. The diverse data sources to generate the unified dataset for diabetes mellitus include clinical trial information, a social media interaction dataset and physical activity data collected using different sensors. To realize the significance of the unified dataset, we adopted a well-known rough set theory based rules creation process to create rules from the unified dataset. The evaluation of the tool on six different sets of locally created diverse datasets shows that the tool, on average, reduces 94.1% time efforts of the experts and knowledge engineer while creating unified datasets.
14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.
2010-01-01
..., reproduction art, stationery, forms, publications, signs, films, video productions, vehicles, aircraft, and spacecraft markings and other items. It creates a unified image which is representative and symbolic of...
National Research Council Canada - National Science Library
S. Ravindra; Chintalapudi V. Suresh; S. Sivanagaraju; V.C. Veera Reddy
2017-01-01
.... An improved teaching learning based optimization (ITLBO) algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC...
GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare
Directory of Open Access Journals (Sweden)
Rahman Ali
2015-07-01
Full Text Available A wide array of biomedical data are generated and made available to healthcare experts. However, due to the diverse nature of data, it is difficult to predict outcomes from it. It is therefore necessary to combine these diverse data sources into a single unified dataset. This paper proposes a global unified data model (GUDM to provide a global unified data structure for all data sources and generate a unified dataset by a “data modeler” tool. The proposed tool implements user-centric priority based approach which can easily resolve the problems of unified data modeling and overlapping attributes across multiple datasets. The tool is illustrated using sample diabetes mellitus data. The diverse data sources to generate the unified dataset for diabetes mellitus include clinical trial information, a social media interaction dataset and physical activity data collected using different sensors. To realize the significance of the unified dataset, we adopted a well-known rough set theory based rules creation process to create rules from the unified dataset. The evaluation of the tool on six different sets of locally created diverse datasets shows that the tool, on average, reduces 94.1% time efforts of the experts and knowledge engineer while creating unified datasets.
A Unified Framework for Multilingual Text-to-Speech Synthesis with SSML Specification as Interface
Institute of Scientific and Technical Information of China (English)
WU Zhiyong; CAO Guangqi; MENG M. Helen; CAI Lianhong
2009-01-01
This paper describes the design of a unified framework for a multilingual text-to-speech (TTS) synthesis engine -Crystal. The unified framework defines the common TTS modules for different languages and/or dialects. The interfaces between consecutive modules conform to the speech synthesis markup lan-guage (SSML) specification for standardization, interoperability, mulUlinguality, and extensibility. Detailed module divisions and implementation technologies for the unified framework are introduced, together with possible extensions for the algorithm research and evaluation of the TTS synthesis. Implementation of a mixed-language TTS system for Chinese Putonghua, Chinese Cantonese, and English demonstrates the feasibility of the proposed unified framework.
Liu, Ping
2013-07-01
This paper deals with the finite-time stabilization of unified chaotic complex systems with known and unknown parameters. Based on the finite-time stability theory, nonlinear control laws are presented to achieve finite-time chaos control of the determined and uncertain unified chaotic complex systems, respectively. The two controllers are simple, and one of the uncertain unified chaotic complex systems is robust. For the design of a finite-time controller on uncertain unified chaotic complex systems, only some of the unknown parameters need to be bounded. Simulation results for the chaotic complex Lorenz, Lü and Chen systems are presented to validate the design and analysis.
A Unifying Model of Orientation Crowding in Peripheral Vision.
Harrison, William J; Bex, Peter J
2015-12-21
Peripheral vision is fundamentally limited not by the visibility of features, but by the spacing between them [1]. When too close together, visual features can become "crowded" and perceptually indistinguishable. Crowding interferes with basic tasks such as letter and face identification and thus informs our understanding of object recognition breakdown in peripheral vision [2]. Multiple proposals have attempted to explain crowding [3], and each is supported by compelling psychophysical and neuroimaging data [4-6] that are incompatible with competing proposals. In general, perceptual failures have variously been attributed to the averaging of nearby visual signals [7-10], confusion between target and distractor elements [11, 12], and a limited resolution of visual spatial attention [13]. Here we introduce a psychophysical paradigm that allows systematic study of crowded perception within the orientation domain, and we present a unifying computational model of crowding phenomena that reconciles conflicting explanations. Our results show that our single measure produces a variety of perceptual errors that are reported across the crowding literature. Critically, a simple model of the responses of populations of orientation-selective visual neurons accurately predicts all perceptual errors. We thus provide a unifying mechanistic explanation for orientation crowding in peripheral vision. Our simple model accounts for several perceptual phenomena produced by crowding of orientation and raises the possibility that multiple classes of object recognition failures in peripheral vision can be accounted for by a single mechanism.
The Goddard multi-scale modeling system with unified physics
Directory of Open Access Journals (Sweden)
W.-K. Tao
2009-08-01
Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.
This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.
New unified fracture toughness estimation scheme for structural integrity assessment
Energy Technology Data Exchange (ETDEWEB)
Wallin, K.; Nevasmaa, P. [VTT, Espoo (Finland); Bannister, A. [Research and Development, British Steel plc., Swinden Technology Centre Rotherham (United Kingdom)
1998-12-31
At present, treatment of fracture toughness data varies depending on the type of data (K{sub IC}, J, CTOD) that are available for fracture mechanics analysis. This complicates structural integrity assessment and makes it difficult to apply any single, unified procedure. Within the Brite-Euram project `SINTAP` a fracture toughness estimation scheme has been developed for the unified treatment of data for use in structural integrity assessment. As a procedure, it can be applied to Charpy data, as well as to fracture toughness data, and is suitable for the treatment of data at both single and different temperatures. The data sets may contain results from both homogeneous and inhomogeneous material, making the procedure applicable also to welded joints. The procedure allows fracture toughness assessment with quantified probability and confidence levels. Irrespective of the type of the original data, one material-specific K{sub mat} value representing a conservative estimate of the mean fracture toughness is obtained (with its probability distribution). This information can then be applied to structural integrity assessment. (orig.) 4 refs.
Unified solutions of extended Gauss-Bonnet gravity
Keskin, A. I.; Açıkgöz, I.
2016-12-01
We study some scale factor power-law solutions of the field equations of the extended Gauss Bonnet gravity in the spatial FRW (Friedmann-Robertson-Walker) universe. We consider the lagrangian density given by F ( R, G ) =f ( G ) + R + α R2 which exhibits a modification comparing with the modified Gauss Bonnet gravity. After constructing the Friedmann equations and finding the power-law solution we obtain the real valued of our model describing a mechanism that shows transitions among three stages of the universe (inflation, deceleration, acceleration) in an unified way. In particular, in this unified solution we obtained an inflation model without using any scalar field description when α>0, and also we verified our early time inflationary scenario using observational parameters, i.e. ns, r. Further, we research for the power-law solution of our model when the universe is in the phantom phase. Here, it is observed that the acceleration of the universe in phantom region is composed of two phases which congruent with the recent observations.
A unified theory of calcium alternans in ventricular myocytes
Qu, Zhilin; Liu, Michael B.; Nivala, Michael
2016-01-01
Intracellular calcium (Ca2+) alternans is a dynamical phenomenon in ventricular myocytes, which is linked to the genesis of lethal arrhythmias. Iterated map models of intracellular Ca2+ cycling dynamics in ventricular myocytes under periodic pacing have been developed to study the mechanisms of Ca2+ alternans. Two mechanisms of Ca2+ alternans have been demonstrated in these models: one relies mainly on fractional sarcoplasmic reticulum Ca2+ release and uptake, and the other on refractoriness and other properties of Ca2+ sparks. Each of the two mechanisms can partially explain the experimental observations, but both have their inconsistencies with the experimental results. Here we developed an iterated map model that is composed of two coupled iterated maps, which unifies the two mechanisms into a single cohesive mathematical framework. The unified theory can consistently explain the seemingly contradictory experimental observations and shows that the two mechanisms work synergistically to promote Ca2+ alternans. Predictions of the theory were examined in a physiologically-detailed spatial Ca2+ cycling model of ventricular myocytes. PMID:27762397
Finite element analysis of structures through unified formulation
Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico
2014-01-01
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...
A word from the DG: A unified Laboratory
2008-01-01
I complete my five years at the helm of CERN at the end of December and would like to take this opportunity to remind you of the route we have travelled during that time and to express my best wishes to you for the future. In addition to the vital priority of completing the LHC, I set myself two essential goals at the beginning of my term of office: to define a clear long-term strategy for CERN and to unify the Laboratory. These aims were essential in order to regain the confidence of the Member States, partly lost as a result of the crisis that occurred before I took up office, and to transform CERN into the key player in the European strategy for particle physics. We have succeeded in completing the LHC. Despite the incident in the machine, we were able to show very rapidly that the accelerator and its injection chain were well poised to deliver efficient operation and use. Our efforts to unify the Laboratory, to define the strateg...
Modern Fysics Phallacies: The Best Way Not to Unify Physics
Beichler, James E.
Too many physicists believe the `phallacy' that the quantum is more fundamental than relativity without any valid supporting evidence, so the earliest attempts to unify physics based on the continuity of relativity have been all but abandoned. This belief is probably due to the wealth of pro-quantum propaganda and general `phallacies in fysics' that were spread during the second quarter of the twentieth century, although serious `phallacies' exist throughout physics on both sides of the debate. Yet both approaches are basically flawed because both relativity and the quantum theory are incomplete and grossly misunderstood as they now stand. Had either side of the quantum versus relativity controversy sought common ground between the two worldviews, total unification would have been accomplished long ago. The point is, literally, that the discrete quantum, continuous relativity, basic physical geometry, theoretical mathematics and classical physics all share one common characteristic that has never been fully explored or explained - a paradoxical duality between a dimensionless point (discrete) and an extended length (continuity) in any dimension - and if the problem of unification is approached from an understanding of how this paradox relates to each paradigm, all of physics and indeed all of science could be unified under a single new theoretical paradigm.
Effective Utilization of Multicore Processor for Unified Threat Management Functions
Directory of Open Access Journals (Sweden)
Radhakrishnan Shanmugasundaram
2012-01-01
Full Text Available Problem statement: Multicore and multithreaded CPUs have become the new approach for increase in the performance of the processor based systems. Numerous applications benefit from use of multiple cores. Unified threat management is one such application that has multiple functions to be implemented at high speeds. Increasing performance of the system by knowing the nature of the functionality and effective utilization of multiple processors for each of the functions warrants detailed experimentation. In this study, some of the functions of Unified Threat Management are implemented using multiple processors for each of the functions. Approach: This evaluation was conducted on SunfireT1000 server having Sun Ultras ARC T1 multicore processor. OpenMP parallelization methods are used for scheduling the logical CPUs for the parallelized application. Results: Execution time for some of the UTM functions implemented was analyzed to arrive at an effective allocation and parallelization methodology that is dependent on the hardware and the workload. Conclusion/Recommendations: Based on the analysis, the type of parallelization method for the implemented UTM functions are suggested.
Dynamics systems vs. optimal control--a unifying view.
Schaal, Stefan; Mohajerian, Peyman; Ijspeert, Auke
2007-01-01
In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.
A Unified Approach for Developing Efficient Algorithmic Programs
Institute of Scientific and Technical Information of China (English)
薛锦云
1997-01-01
A unified approach called partition-and-recur for developing efficient and correct algorithmic programs is presented.An algorithm(represented by recurrence and initiation)is separated from program,and special attention is paid to algorithm manipulation rather than proram calculus.An algorithm is exactly a set of mathematical formulae.It is easier for formal erivation and proof.After getting efficient and correct algorithm,a trivial transformation is used to get a final rogram,The approach covers several known algorithm design techniques,e.g.dynamic programming,greedy,divide-and-conquer and enumeration,etc.The techniques of partition and recurrence are not new.Partition is a general approach for dealing with complicated objects and is typically used in divide-and-conquer approach.Recurrence is used in algorithm analysis,in developing loop invariants and dynamic programming approach.The main contribution is combining two techniques used in typical algorithm development into a unified and systematic approach to develop general efficient algorithmic programs and presenting a new representation of algorithm that is easier for understanding and demonstrating the correctness and ingenuity of algorithmicprograms.
A unified impulse response model for DCE-MRI.
Schabel, Matthias C
2012-11-01
We describe the gamma capillary transit time model, a generalized impulse response model for DCE-MRI that mathematically unifies the Tofts-Kety, extended Tofts-Kety, adiabatic tissue homogeneity, and two-compartment exchange models. By including a parameter (α⁻¹) representing the width of the distribution of capillary transit times within a tissue voxel, the GCTT model discriminates tissues having relatively monodisperse transit time distributions from those having a large degree of heterogeneity. All five models were compared using in vivo data acquired in three brain tumors (one glioblastoma multiforme, one pleomorphic xanthoastrocytoma, and one anaplastic meningioma) and Monte Carlo simulations. Our principal findings are : (1) The four most commonly used models for dynamic contrast-enhanced magnetic resonance imaging can be unified within a single formalism. (2) Application of the GCTT model to in vivo data incurs only modest penalties in parameter uncertainty and computational cost. (3) Measured nonparametric impulse response functions in human brain tumors are well described by the GCTT model. (4) Estimation of α⁻¹ is feasible but achieving statistical significance requires higher SNR than is typically obtained in single voxel dynamic contrast-enhanced magnetic resonance imaging data. These results suggest that the GCTT model may be useful for extraction of information about tumor physiology beyond what is obtained using current modeling methodologies.
An Unified Approach for Process Quality Analysis and Control
Directory of Open Access Journals (Sweden)
Prof.Chandrakanth Biradar,Aruna Kawdi
2012-09-01
Full Text Available Abstract— The process in a company finally results in product of the company, which represents the company standard. Hence, during the process execution time quality of the process needs to be taken care before and after the work done. In this paper, an unified approach to quality analysis and control of a process development is presented. This approach gives an overview of what the task the company assigned to the employers. The process is defined as the set of action items to achieve the work completion. Quality means grade of excellence. Quality analysis of a process is an improvement of the process and making sure that all the standard procedures are followed. An unified approach designed in this paper is a combination of software cost estimation and a financial market forecasting with the support of historical data, statistical data mining technique and artificial neural networks, which helps the developers as well as investors in strategic planning and investment decision making. Therefore, the paper describes a recommended process to develop software (SW cost estimates for software managers, perform financial market forecasting to control quality of process development. As a result, the improvement and analysis of the process quality can be performed from basic level to the corporate level. By this work, we conclude that the process quality control can be made easier and efficient compared to the old graphical analytics technique.
Microphysics in Multi-scale Modeling System with Unified Physics
Tao, Wei-Kuo
2012-01-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
A Unified Approach to Model-Based Planning and Execution
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Norvig, Peter (Technical Monitor)
2000-01-01
Writing autonomous software is complex, requiring the coordination of functionally and technologically diverse software modules. System and mission engineers must rely on specialists familiar with the different software modules to translate requirements into application software. Also, each module often encodes the same requirement in different forms. The results are high costs and reduced reliability due to the difficulty of tracking discrepancies in these encodings. In this paper we describe a unified approach to planning and execution that we believe provides a unified representational and computational framework for an autonomous agent. We identify the four main components whose interplay provides the basis for the agent's autonomous behavior: the domain model, the plan database, the plan running module, and the planner modules. This representational and problem solving approach can be applied at all levels of the architecture of a complex agent, such as Remote Agent. In the rest of the paper we briefly describe the Remote Agent architecture. The new agent architecture proposed here aims at achieving the full Remote Agent functionality. We then give the fundamental ideas behind the new agent architecture and point out some implication of the structure of the architecture, mainly in the area of reactivity and interaction between reactive and deliberative decision making. We conclude with related work and current status.
The unified equation by the Proportion 19 (-1:3
Directory of Open Access Journals (Sweden)
Vinoo Cameron
2013-03-01
Full Text Available As mankind is created in the image of a creator, the mathematical continuum is understandably connected, not by “Strings”, but by rational coordinates of mathematics. That is what this manuscript is all about; the rationalization of the natural expanse of mathematics and the stark reality of -1. The section on the mathematical PI (π clearly proves the -1 constriction of 4-1. Definition of the Unified Theorem: “The ascension and expansion of all space (and mass is curved, spiral and warped because of the -1 zero inverse primordial constriction of all space by -1. 4-(1 =+3. Bounded space is inverse at -1, a non-collapsible curve. The value of -1 is -1 for numbers and 0.5/60(1/120 for non-linear space. The minus 1 is manifested at proportion 19 as a composite of the of the values 9 and 10, both by numbers and prime angle (1:3. The proof of -1 is and has always been in the mathematical Pi (π, corrected trigonometry, and the spiral curved ascension of Prime numbers.” This proof is clearly stated under the section for the “mathematical Pi (π where the author has clearly proven -1 by theorem.” This manuscript has been preceded by several manuscripts on Prime numbers, -1 and Prime number 19 that show the unified mathematics as a consequence of a -1 Vedic zero, and the overall -1 ( 4-3 . As the treatise on the Unified Theorem, this is all written by simple theorem .This manuscript completely disregards current mathematical theory with regard to non- linear mathematics as irrelevant to mathematics. The clear assertion is that the -1 Vedic zeros is the correct zero, but that the current null zero is in error. The inverse curved value off-set of -1 is the value that precedes the +1 value, and it is clearly stated by this author that mathematically a curve cannot ever be collapsed to null. There is no logical compromise in this regard. Essentially and mathematically the author validates the primordial -1, and the absolute primordial value of
Teachers Matter. Yes. Schools Matter. Yes. Districts Matter--Really?
Chenoweth, Karin
2015-01-01
School districts shape the conditions in which schools operate and as such can support or undermine school success and thus student success. All of which is to say that school districts matter. This article looks at the success of two districts whose low-income and minority students beat the odds in academic achievement. Lessons from these…
Energy Technology Data Exchange (ETDEWEB)
Ibarra, Alejandro [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)
2015-07-15
Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.
Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao
2016-11-18
We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.
Trusted, Jennifer
1999-01-01
As Russell said The word matter is, in philosophy, the name of a problem and our scientific investigations and philosophical inquiries show that it becomes more and more complex and interesting as we study it. This book seeks to show how ideas of matter have developed from Democritus to Heisenberg. The problem of matter may well be insoluble but at least we can begin to appreciate the mystery of what is so often taken to be the mundane 'stuff' of common sense.
Gorbunov, D
2013-01-01
Assuming existence of (very) heavy fourth generation of quarks and antiquarks we argue that antibaryon composed of the three heavy antiquarks can be light, stable and invisible, hence a good candidate for the Dark matter particle. Such opportunity allows to keep the baryon number conservation for the generation of the visible baryon asymmetry. The dark matter particles traveling through the ordinary matter will annihilate with nucleons inducing proton(neutron)-decay-like events with ~5GeV energy release in outcoming particles.
Price, Catherine C.; Jared Tanner; Nguyen, Peter T.; Nadine A Schwab; Sandra Mitchell; Elizabeth Slonena; Babette Brumback; Okun, Michael S; Mareci, Thomas H.; Dawn Bowers
2016-01-01
Objective This prospective investigation examined: 1) processing speed and working memory relative to other cognitive domains in non-demented medically managed idiopathic Parkinson’s disease, and 2) the predictive role of cortical/subcortical gray thickness/volume and white matter fractional anisotropy on processing speed and working memory. Methods Participants completed a neuropsychological protocol, Unified Parkinson’s Disease Rating Scale, brain MRI, and fasting blood draw to rule out vas...