WorldWideScience

Sample records for infant intestinal microbiota

  1. Maternal prenatal stress is associated with the infant intestinal microbiota.

    Science.gov (United States)

    Zijlmans, Maartje A C; Korpela, Katri; Riksen-Walraven, J Marianne; de Vos, Willem M; de Weerth, Carolina

    2015-03-01

    Maternal prenatal stress has been often associated with infant physical development and health, as well as psychological functioning and behavior. However, the mechanisms underlying these relations remain elusive. The goal of the present study was to prospectively investigate the development of the intestinal microbiota as a potential pathway linking maternal prenatal stress and infant health. The development of the infant intestinal microbiota was followed over the first 110 days after birth in a healthy cohort of 56 vaginally born Dutch infants. Additionally, the relation between infant intestinal microbiota and gastrointestinal and allergic symptoms was examined. Results showed that maternal prenatal stress, i.e., either reported stress or elevated basal maternal salivary cortisol concentrations or both, was strongly and persistently associated with the infants' microbiota composition as determined by a phylogenetic microarray. Infants of mothers with high cumulative stress (i.e., high reported stress and high cortisol concentrations) during pregnancy had significantly higher relative abundances of Proteobacterial groups known to contain pathogens (related to Escherichia, Serratia, and Enterobacter), and lower relative abundances of lactic acid bacteria (i.e., Lactobacillus, Lactoccus, Aerococcus) and Bifidobacteria, altogether characteristics of a potentially increased level of inflammation. Furthermore, this aberrant colonization pattern was related to more maternally reported infant gastrointestinal symptoms and allergic reactions. In conclusion, clear links were found between maternal prenatal stress and the infant intestinal microbiota and health. Although causality cannot be concluded, the results suggest a possible mechanism by which maternal prenatal stress influences the offspring development. These results suggest a potential for bacterial interventions to enhance offspring health and development in pregnant women with stress.

  2. Development of the human infant intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2007-07-01

    Full Text Available Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  3. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota.

    Science.gov (United States)

    Newburg, David S; Morelli, Lorenzo

    2015-01-01

    Infants begin acquiring intestinal microbiota at parturition. Initial colonization by pioneer bacteria is followed by active succession toward a dynamic ecosystem. Keystone microbes engage in reciprocal transkingdom communication with the host, which is essential for human homeostasis and health; therefore, these bacteria should be considered mutualists rather than commensals. This review discusses the maternal role in providing infants with functional and stable microbiota. The initial fecal inoculum of microbiota results from the proximity of the birth canal and anus; the biological significance of this anatomic proximity could underlie observed differences in microbiota between vaginal and cesarean birth. Secondary sources of inocula include mouths and skin of kin, animals and objects, and the human milk microbiome, but guiding microbial succession may be a primary role of human milk. The unique glycans of human milk cannot be digested by the infant, but are utilized by mutualist bacteria. These prebiotic glycans support expansion of mutualist microbiota, which manifests as differences in microbiota among breastfed and artificially fed infants. Human milk glycans vary by maternal genotype. Milks of genetically distinct mothers and variations in infant mucosal glycan expression support discrete microbiota. Early colonization may permanently influence microbiota composition and function, with ramifications for health.

  4. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  5. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants.

    Directory of Open Access Journals (Sweden)

    Volker Mai

    Full Text Available Late onset sepsis (LOS is a major contributor to neonatal morbidity and mortality, especially in premature infants. Distortions in the establishment of normal gut microbiota, commensal microbes that colonize the digestive tract, might increase the risk of LOS via disruption of the mucosal barrier with resultant translocation of luminal contents. Correlation of distortions of the intestinal microbiota with LOS is a necessary first step to design novel microbiota-based screening approaches that might lead to early interventions to prevent LOS in high risk infants. Using a case/control design nested in a cohort study of preterm infants, we analyzed stool samples that had been prospectively collected from ten preterm infants with LOS and from 18 matched controls. A 16S rRNA based approach was utilized to compare microbiota diversity and identify specific bacterial signatures that differed in their prevalence between cases and controls. Overall α-diversity (Chao1 was lower in cases two weeks before (p<0.05 but not one week before or at the time of diagnosis of LOS. Overall microbiota structure (Unifrac appeared distinct in cases 2 weeks and 1 week before but not at diagnosis (p<0.05. Although we detected few operational taxonomic units (OTUs unique or enriched in cases, we found many OTUs common in controls that were lacking in cases (p<0.01. Bifidobacteria counts were lower in cases at all time points. Our results support the hypothesis that a distortion in normal microbiota composition, and not an enrichment of potential pathogens, is associated with LOS in preterm infants.

  6. Lactation and Intestinal Microbiota: How Early Diet Shapes the Infant Gut.

    Science.gov (United States)

    Goldsmith, Felicia; O'Sullivan, Aifric; Smilowitz, Jennifer T; Freeman, Samara L

    2015-12-01

    Breast milk is a multifunctional biofluid that provides nutrients along with highly diverse non-nutritive bioactive components such as antibodies, glycans, bacteria, and immunomodulatory proteins. Research over the past decade has confirmed the essential role of breast milk bioactives in the establishment a healthy intestinal microbiota within the infant. The intestinal microbiota of an exclusively breastfed baby is dominated by several species of Bifidobacteria - the most influential member of which is Bifidobacterium longum subspecies infantis (B. infantis) - and is referred to as the milk-oriented microbiome (MOM). MOM is associated with reduced risk of infection in infancy as well as a reduced risk of certain chronic illnesses in adulthood. Establishment and persistence of MOM is dependent on the selective digestion of complex sugar structures in breast milk that are otherwise indigestible to the infant by B. infantis and its relatives. This review focuses primarily on the influence of breast milk glycans and glycosylated proteins on the development of the intestinal microbiome, and how maternal phenotype may influence the development of MOM providing a framework to understand how variation in diet shapes a protective intestinal microbiome.

  7. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota.

    Directory of Open Access Journals (Sweden)

    Hiroshi Makino

    Full Text Available OBJECTIVES: Bifidobacterium species are one of the major components of the infant's intestine microbiota. Colonization with bifidobacteria in early infancy is suggested to be important for health in later life. However, information remains limited regarding the source of these microbes. Here, we investigated whether specific strains of bifidobacteria in the maternal intestinal flora are transmitted to their infant's intestine. MATERIALS AND METHODS: Fecal samples were collected from healthy 17 mother and infant pairs (Vaginal delivery: 12; Cesarean section delivery: 5. Mother's feces were collected twice before delivery. Infant's feces were collected at 0 (meconium, 3, 7, 30, 90 days after birth. Bifidobacteria isolated from feces were genotyped by multilocus sequencing typing, and the transitions of bifidobacteria counts in infant's feces were analyzed by quantitative real-time PCR. RESULTS: Stains belonging to Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium catenulatum, Bifidobacterium longum subsp. longum, and Bifidobacterium pseudocatenulatum, were identified to be monophyletic between mother's and infant's intestine. Eleven out of 12 vaginal delivered infants carried at least one monophyletic strain. The bifidobacterial counts of the species to which the monophyletic strains belong, increased predominantly in the infant's intestine within 3 days after birth. Among infants delivered by C-section, monophyletic strains were not observed. Moreover, the bifidobacterial counts were significantly lower than the vaginal delivered infants until 7 days of age. CONCLUSIONS: Among infants born vaginally, several Bifidobacterium strains transmit from the mother and colonize the infant's intestine shortly after birth. Our data suggest that the mother's intestine is an important source for the vaginal delivered infant's intestinal microbiota.

  8. Human milk oligosaccharide consumption by intestinal microbiota

    OpenAIRE

    Marcobal, A.; Sonnenburg, J L

    2012-01-01

    Human milk oligosaccharides (HMO) constitute the third most abundant class of molecules in breast milk. Since infants lack the enzymes required for milk glycan digestion, this group of carbohydrates passes undigested to the lower part of the intestinal tract, where they can be consumed by specific members of the infant gut microbiota. We review proposed mechanisms for the depletion and metabolism of HMO by two major bacterial genera within the infant intestinal microbiota, Bifidobacterium and...

  9. Can nutritional modulation of maternal intestinal microbiota influence the development of the infant gastrointestinal tract?

    Science.gov (United States)

    Thum, Caroline; Cookson, Adrian L; Otter, Don E; McNabb, Warren C; Hodgkinson, Alison J; Dyer, Jolon; Roy, Nicole C

    2012-11-01

    The gastrointestinal microbiota plays an important role in maintaining host health by preventing the colonization of pathogens, fermenting dietary compounds, and maintaining normal mucosal immunity. Particularly in early life, the composition of the microbiota profoundly influences the development and maturation of the gastrointestinal tract (GIT) mucosa, which may affect health in later life. Therefore, strategies to manipulate the microbiota during infancy may prevent the development of some diseases later in adult life. Earlier research suggested that term fetuses are sterile and that the initial bacterial colonization of the newborn GIT occurs only after the baby transits through the birth canal. However, recent studies have demonstrated that the colonization and/or contact of the fetus with the maternal GIT microbiota may start in utero. After vaginal birth, the colonization of the neonate GIT continues through contact with maternal feces and vaginal bacteria, leading to a relatively simple microbial community that is influenced by feeding type (breast vs. formula feeding). Maternal GIT microbiota, vaginal microbiota, and breast milk composition are influenced by maternal diet. Alterations of the maternal GIT microbiota composition via supplementation with probiotics and prebiotics have been shown; however, transfer of these benefits to the offspring remains to be demonstrated. This review focuses on the influence of maternal GIT microbiota during the pre- and postpartum periods on the colonization of the infant GIT. In particular, it examines the manipulation of the maternal GIT microbiota composition through the use of probiotics and/or prebiotics and subsequent consequences for the health of the offspring.

  10. Infant formula supplemented with low protein and high carbohydrate alters the intestinal microbiota in neonatal SD rats

    OpenAIRE

    Fan, Wenguang; Tang, Yaru; Qu, Yi; Cao, Fengbo; Huo, Guicheng

    2014-01-01

    Background Infant microbiota is influenced by numerous factors, such as delivery mode, environment, prematurity and diet (breast milk or formula) and last but not least, the diet composition. In the diet composition, protein and carbohydrate are very important for the growth of microbiota, many infant fomulas (different ratio protein/carbohydrate) can regulate the development of gut microbiota by different metabolism. The effect of low-protein, high-carbohydrate infant formula on the establis...

  11. Center Variation in Intestinal Microbiota Prior to Late-Onset Sepsis in Preterm Infants.

    Directory of Open Access Journals (Sweden)

    Diana H Taft

    Full Text Available Late onset sepsis (LOS contributes to mortality and morbidity in preterm infants. We tested the hypotheses that microbes causing LOS originate from the gut, and that distortions in the gut microbial community increases subsequent risk of LOS.We examined the gut microbial community in prospectively collected stool samples from preterm infants with LOS and an equal number of age-matched controls at two sites (Cincinnati, OH and Birmingham, AL, by sequencing the bacterial 16S rDNA. We confirmed our findings in a subset of infants by whole genome shotgun sequencing, and analyzed the data using R and LEfSe.Infants with LOS in Cincinnati, as compared to controls, had less abundant Actinobacteria in the first samples after birth (median 18 days before sepsis onset, and less abundant Pseudomonadales in the last samples collected prior to LOS (median 8 days before sepsis onset. Infants with LOS in Birmingham, as compared to controls, had no differences identified in the first sample microbial communities, but Lactobacillales was less abundant in the last samples prior to LOS (median 4 days before sepsis onset. Sequencing identified detectable levels of the sepsis-causative organism in stool samples prior to disease onset for 82% of LOS cases.Translocation of gut microbes may account for the majority of LOS cases. Distortions in the fecal microbiota occur prior to LOS, but the form of distortion depends on timing and site. The microbial composition of fecal samples does not predict LOS onset in a generalizable fashion.

  12. Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease

    Directory of Open Access Journals (Sweden)

    Nylund Lotta

    2013-01-01

    Full Text Available Abstract Background Deviations in composition and diversity of intestinal microbiota in infancy have been associated with both the development and recurrence of atopic eczema. Thus, we decided to use a deep and global microarray-based method to characterize the diversity and temporal changes of the intestinal microbiota in infancy and to define specific bacterial signatures associated with eczema. Faecal microbiota at 6 and 18 months of age were analysed from 34 infants (15 with eczema and 19 healthy controls selected from a prospective follow-up study based on the availability of faecal samples. The infants were originally randomized to receive either Lactobacillus rhamnosus GG or placebo. Results Children with eczema harboured a more diverse total microbiota than control subjects as assessed by the Simpson’s reciprocal diversity index of the microarray profiles. Composition of the microbiota did not differ between study groups at age of 6 months, but was significantly different at age of 18 months as assessed by MCPP (p=0.01. At this age healthy children harboured 3 -fold greater amount of members of the Bacteroidetes (p=0.01. Microbiota of children suffering from eczema had increased abundance of the Clostridium clusters IV and XIVa, which are typically abundant in adults. Probiotic Lactobacillus rhamnosus GG supplementation in early infancy was observed to have minor long-term effects on the microbiota composition. Conclusion A diverse and adult-type microbiota in early childhood is associated with eczema and it may contribute to the perpetuation of eczema.

  13. Center Variation in Intestinal Microbiota Prior to Late-Onset Sepsis in Preterm Infants

    Science.gov (United States)

    Taft, Diana H.; Ambalavanan, Namasivayam; Schibler, Kurt R.; Yu, Zhuoteng; Newburg, David S.; Deshmukh, Hitesh; Ward, Doyle V.; Morrow, Ardythe L.

    2015-01-01

    Objective Late onset sepsis (LOS) contributes to mortality and morbidity in preterm infants. We tested the hypotheses that microbes causing LOS originate from the gut, and that distortions in the gut microbial community increases subsequent risk of LOS. Study Design We examined the gut microbial community in prospectively collected stool samples from preterm infants with LOS and an equal number of age-matched controls at two sites (Cincinnati, OH and Birmingham, AL), by sequencing the bacterial 16S rDNA. We confirmed our findings in a subset of infants by whole genome shotgun sequencing, and analyzed the data using R and LEfSe. Results Infants with LOS in Cincinnati, as compared to controls, had less abundant Actinobacteria in the first samples after birth (median 18 days before sepsis onset), and less abundant Pseudomonadales in the last samples collected prior to LOS (median 8 days before sepsis onset). Infants with LOS in Birmingham, as compared to controls, had no differences identified in the first sample microbial communities, but Lactobacillales was less abundant in the last samples prior to LOS (median 4 days before sepsis onset). Sequencing identified detectable levels of the sepsis-causative organism in stool samples prior to disease onset for 82% of LOS cases. Conclusions Translocation of gut microbes may account for the majority of LOS cases. Distortions in the fecal microbiota occur prior to LOS, but the form of distortion depends on timing and site. The microbial composition of fecal samples does not predict LOS onset in a generalizable fashion. PMID:26110908

  14. Intestinal microbiota and ulcerative colitis.

    Science.gov (United States)

    Ohkusa, Toshifumi; Koido, Shigeo

    2015-11-01

    There is a close relationship between the human host and the intestinal microbiota, which is an assortment of microorganisms, protecting the intestine against colonization by exogenous pathogens. Moreover, the intestinal microbiota play a critical role in providing nutrition and the modulation of host immune homeostasis. Recent reports indicate that some strains of intestinal bacteria are responsible for intestinal ulceration and chronic inflammation in inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). Understanding the interaction of the intestinal microbiota with pathogens and the human host might provide new strategies treating patients with IBD. This review focuses on the important role that the intestinal microbiota plays in maintaining innate immunity in the pathogenesis and etiology of UC and discusses new antibiotic therapies targeting the intestinal microbiota.

  15. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study.

    Directory of Open Access Journals (Sweden)

    Giada De Palma

    Full Text Available Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD. This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder.

  16. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants.

    Science.gov (United States)

    Bergström, Anders; Skov, Thomas Hjort; Bahl, Martin Iain; Roager, Henrik Munch; Christensen, Line Brinch; Ejlerskov, Katrine Tschentscher; Mølgaard, Christian; Michaelsen, Kim F; Licht, Tine Rask

    2014-05-01

    Fecal samples were obtained from a cohort of 330 healthy Danish infants at 9, 18, and 36 months after birth, enabling characterization of interbacterial relationships by use of quantitative PCR targeting 31 selected bacterial 16S rRNA gene targets representing different phylogenetic levels. Nutritional parameters and measures of growth and body composition were determined and investigated in relation to the observed development in microbiota composition. We found that significant changes in the gut microbiota occurred, particularly from age 9 to 18 months, when cessation of breastfeeding and introduction of a complementary feeding induce replacement of a microbiota characterized by lactobacilli, bifidobacteria, and Enterobacteriaceae with a microbiota dominated by Clostridium spp. and Bacteroides spp. Classification of samples by a proxy enterotype based on the relative levels of Bacteroides spp. and Prevotella spp. showed that enterotype establishment occurs between 9 and 36 months. Thirty percent of the individuals shifted enterotype between 18 and 36 months. The composition of the microbiota was most pronouncedly influenced by the time of cessation of breastfeeding. From 9 to 18 months, a positive correlation was observed between the increase in body mass index and the increase of the short-chain-fatty-acid-producing clostridia, the Clostridum leptum group, and Eubacterium hallii. Considering previously established positive associations between rapid infant weight gain, early breastfeeding discontinuation, and later-life obesity, the corresponding microbial findings seen here warrant attention.

  17. Establishment of Intestinal Microbiota during Early Life: a Longitudinal, Explorative Study of a Large Cohort of Danish Infants

    Science.gov (United States)

    Bergström, Anders; Skov, Thomas Hjort; Bahl, Martin Iain; Roager, Henrik Munch; Christensen, Line Brinch; Ejlerskov, Katrine Tschentscher; Mølgaard, Christian; Michaelsen, Kim F.

    2014-01-01

    Fecal samples were obtained from a cohort of 330 healthy Danish infants at 9, 18, and 36 months after birth, enabling characterization of interbacterial relationships by use of quantitative PCR targeting 31 selected bacterial 16S rRNA gene targets representing different phylogenetic levels. Nutritional parameters and measures of growth and body composition were determined and investigated in relation to the observed development in microbiota composition. We found that significant changes in the gut microbiota occurred, particularly from age 9 to 18 months, when cessation of breastfeeding and introduction of a complementary feeding induce replacement of a microbiota characterized by lactobacilli, bifidobacteria, and Enterobacteriaceae with a microbiota dominated by Clostridium spp. and Bacteroides spp. Classification of samples by a proxy enterotype based on the relative levels of Bacteroides spp. and Prevotella spp. showed that enterotype establishment occurs between 9 and 36 months. Thirty percent of the individuals shifted enterotype between 18 and 36 months. The composition of the microbiota was most pronouncedly influenced by the time of cessation of breastfeeding. From 9 to 18 months, a positive correlation was observed between the increase in body mass index and the increase of the short-chain-fatty-acid-producing clostridia, the Clostridum leptum group, and Eubacterium hallii. Considering previously established positive associations between rapid infant weight gain, early breastfeeding discontinuation, and later-life obesity, the corresponding microbial findings seen here warrant attention. PMID:24584251

  18. Intestinal integrity and Akkermansia muciniphila: a mucin-degrading member of the intestinal microbiota present in infants, adults and elderly

    NARCIS (Netherlands)

    Collado, M.C.; Derrien, M.M.N.; Isolauri, E.; Vos, de W.M.; Salminen, S.

    2007-01-01

    Fluorescence in situ hybridization and real-time PCR analysis targeting the 16S rRNA gene of Akkermansia muciniphila were performed to determine its presence in the human intestinal tract. These techniques revealed that an A. muciniphila-like bacterium is a common member of the human intestinal trac

  19. Intestinal Microbiota Metabolism and Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Tian-Xing Liu; Hai-Tao Niu; Shu-Yang Zhang

    2015-01-01

    Objective:This review aimed to summarize the relationship between intestinal microbiota metabolism and cardiovascular disease (CVD) and to propose a novel CVD therapeutic target.Data Sources:This study was based on data obtained from PubMed and EMBASE up to June 30,2015.Articles were selected using the following search temps:"Intestinal microbiota","trimethylamine N-oxide (TMAO)","trimethylamine (TMA)","cardiovascular",and "atherosclerosis".Study Selection:Studies were eligible if they present information on intestinal microbiota metabolism and atherosclerosis.Studies on TMA-containing nutrients were also included.Results:A new CVD risk factor,TMAO,was recently identified.It has been observed that several TMA-containing compounds may be catabolized by specific intestinal microbiota,resulting in TMA release.TMA is subsequently converted to TMAO in the liver.Several preliminary studies have linked TMAO to CVD,particularly atherosclerosis;however,the details of this relationship remain unclear.Conclusions:Intestinal microbiota metabolism is associated with atherosclerosis and may represent a promising therapeutic target with respect to CVD management.

  20. Immunogenetic control of the intestinal microbiota.

    Science.gov (United States)

    Marietta, Eric; Rishi, Abdul; Taneja, Veena

    2015-07-01

    All vertebrates contain a diverse collection of commensal, symbiotic and pathogenic microorganisms, such as bacteria, viruses and fungi, on their various body surfaces, and the ecological community of these microorganisms is referred to as the microbiota. Mucosal sites, such as the intestine, harbour the majority of microorganisms, and the human intestine contains the largest community of commensal and symbiotic bacteria. This intestinal community of bacteria is diverse, and there is a significant variability among individuals with respect to the composition of the intestinal microbiome. Both genetic and environmental factors can influence the diversity and composition of the intestinal bacteria with the predominant environmental factor being diet. So far, studies have shown that diet-dependent differences in the composition of intestinal bacteria can be classified into three groups, called enterotypes. Other environmental factors that can influence the composition include antibiotics, probiotics, smoking and drugs. Studies of monozygotic and dizygotic twins have proven that genetics plays a role. Recently, MHC II genes have been associated with specific microbial compositions in human infants and transgenic mice that express different HLA alleles. There is a growing list of genes/molecules that are involved with the sensing and monitoring of the intestinal lumen by the intestinal immune system that, when genetically altered, will significantly alter the composition of the intestinal microflora. The focus of this review will be on the genetic factors that influence the composition of the intestinal microflora.

  1. Lymphoma caused by intestinal microbiota.

    Science.gov (United States)

    Yamamoto, Mitsuko L; Schiestl, Robert H

    2014-09-01

    The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on the one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT) lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma.

  2. Metagenomics and development of the gut microbiota in infants

    DEFF Research Database (Denmark)

    Vallès, Y.; Gosalbes, M. J.; de Vries, Lisbeth Elvira

    2012-01-01

    Clin Microbiol Infect 2012; 18 (Suppl. 4): 21–26 The establishment of a balanced intestinal microbiota is essential for numerous aspects of human health, yet the microbial colonization of the gastrointestinal tract of infants is both complex and highly variable among individuals. In addition......, the gastrointestinal tract microbiota is often exposed to antibiotics, and may be an important reservoir of resistant strains and of transferable resistance genes from early infancy. We are investigating by means of diverse metagenomic approaches several areas of microbiota development in infants, including...

  3. Microbiota, Intestinal Immunity, and Mouse Bustle

    OpenAIRE

    Kruglov, A.; Nedospasov, S

    2014-01-01

    The composition of the intestinal microbiota is regulated by the immune system. This paper discusses the role of cytokines and innate immunity lymphoid cells in the intestinal immune regulation by means of IgA.

  4. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria

    NARCIS (Netherlands)

    Nylund, L.; Nermes, M.; Isolauri, E.; Salminen, S.; Vos, de W.M.; Satokari, R.

    2015-01-01

    The reports on atopic diseases and microbiota in early childhood remain contradictory and both decreased and increased microbiota diversity have been associated with atopic eczema. In this study, the intestinal microbiota signatures associated with the severity of eczema in 6-month-old infants were

  5. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria

    NARCIS (Netherlands)

    Nylund, L.; Nermes, M.; Isolauri, E.; Salminen, S.; Vos, de W.M.; Satokari, R.

    2015-01-01

    The reports on atopic diseases and microbiota in early childhood remain contradictory and both decreased and increased microbiota diversity have been associated with atopic eczema. In this study, the intestinal microbiota signatures associated with the severity of eczema in 6-month-old infants were

  6. Human intestinal microbiota and type 1 diabetes.

    Science.gov (United States)

    Vaarala, Outi

    2013-10-01

    The role of intestinal microbiota in immune-mediated diseases, such as type 1 diabetes, has deservedly received a lot of attention. Evidently, changes in the intestinal microbiota are associated with type 1 diabetes as demonstrated by recent studies. Children with beta-cell autoimmunity have shown low abundance of butyrate-producing bacteria and increase in the abundance of members of the Bacteroidetes phylum in fecal microbiota. These alterations could explain increased gut permeability, subclinical small intestinal inflammation, and dysregulation of oral tolerance in type 1 diabetes. However, these studies do not provide evidence of the causative role of the gut microbiota in the development of beta-cell autoimmunity, yet. In animal models, the composition of gut microbiota modulates the function of both innate and adaptive immunity, and intestinal bacteria are regulators of autoimmune diabetes. Thus, prevention of type 1 diabetes could, in the future, be based on the interventions targeted to the gut microbiota.

  7. Intestinal Microbiota and Metabolic Diseases: Pharmacological Implications.

    Science.gov (United States)

    Shen, Liang; Ji, Hong-Fang

    2016-03-01

    An increasing number of studies show that alterations in intestinal microbiota are linked with metabolic diseases. Here, we propose that intestinal microbiota regulation by polyphenols may be an important mechanism underlying their therapeutic benefits for metabolic diseases. This helps elucidate the intriguing pharmacology of polyphenols and optimize the treatment of metabolic diseases.

  8. Role of Gut Microbiota in Early Infant Development

    Directory of Open Access Journals (Sweden)

    R Wall

    2009-01-01

    Full Text Available Early colonization of the infant gastrointestinal tract is crucial for the overall health of the infant, and establishment and maintenance of non-pathogenic intestinal microbiota may reduce several neonatal inflammatory conditions. Much effort has therefore been devoted to manipulation of the composition of the microbiota through 1 the role of early infant nutrition, particularly breast milk, and supplementation of infant formula with prebiotics that positively influence the enteric microbiota by selectively promoting growth of beneficial bacteria and 2 oral administration of probiotic bacteria which when administered in adequate amounts confer a health benefit on the host. While the complex microbiota of the adult is difficult to change in the long-term, there is greater impact of the diet on infant microbiota as this is not as stable as in adults. Decreasing excessive use of antibiotics and increasing the use of pre- and probiotics have shown to be beneficial in the prevention of several important infant diseases such as necrotizing enterocolitis and atopic eczema as well as improvement of short and long-term health. This review addresses how the composition of the gut microbiota becomes established in early life, its relevance to infant health, and dietary means by which it can be manipulated.

  9. Intestinal Microbiota and Weight-Gain in Preterm Neonates

    Science.gov (United States)

    Arboleya, Silvia; Martinez-Camblor, Pablo; Solís, Gonzalo; Suárez, Marta; Fernández, Nuria; de los Reyes-Gavilán, Clara G.; Gueimonde, Miguel

    2017-01-01

    The involvement of the gut microbiota on weight-gain and its relationship with childhood undernutrition and growth has been reported. Thus, the gut microbiota constitutes a potential therapeutic target for preventing growth impairment. However, our knowledge in this area is limited. In this study we aimed at evaluating the relationship among early microbiota, growth, and development in preterm infants. To this end we assessed the levels of specific microorganisms by qPCR, and those of short chain fatty acids by mean of gas-chromatography, in feces from 63 preterm newborns and determined their weight-gain during the first months. The statistical analyses performed indicate an influence of the intestinal microbiota in weight-gain, with the levels of some microorganisms showing a significant association with the weight-gain of the infant. The levels of specific microbial groups during the first days of life were found to affect weight gain by the age of 1 month. Moreover, clustering of the infants on the basis of the microbiota composition at 1 month of age rendered groups which showed differences in weight z-scores. Our results suggest an association between the gut microbiota composition and weight-gain in preterm infants at early life and point out potential microbial targets for favoring growth and maturation in these infants. PMID:28228752

  10. Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease

    NARCIS (Netherlands)

    Nylund, L.; Satokari, R.; Nikkilä, J.; Rajilic-Stojanovic, M.; Kalliomäki, M.; Isolauri, E.; Salminen, S.; Vos, de W.M.

    2013-01-01

    BACKGROUND: Deviations in composition and diversity of intestinal microbiota in infancy have been associated with both the development and recurrence of atopic eczema. Thus, we decided to use a deep and global microarray-based method to characterize the diversity and temporal changes of the intestin

  11. The intestinal microbiota and obesity.

    Science.gov (United States)

    Kallus, Samuel J; Brandt, Lawrence J

    2012-01-01

    Obesity has been and continues to be an epidemic in the United States. Obesity has been addressed in multiple health initiatives, including Healthy People 2010, with no state meeting the proposed goal of a prevalence of obesity fad diets, incentive-based exercise programs, and gastric bypass surgery; none of which have been optimal. In a murine model, it was shown that the majority of the intestinal microbiome consists of two bacterial phyla, the Bacteroidetes and the Firmicutes, and that the relative abundance of these two phyla differs among lean and obese mice; the obese mouse had a higher proportion of Firmicutes to Bacteroidetes (50% greater) than the lean mouse. The same results were appreciated in obese humans compared to lean subjects. The postulated explanation for this finding is that Firmicutes produce more complete metabolism of a given energy source than do Bacteroidetes, thus promoting more efficient absorption of calories and subsequent weight gain. Researchers were able to demonstrate that colonizing germ-free mice with the intestinal microbiome from obese mice led to an increased total body fat in the recipient mice despite a lack of change in diet. The converse, that, colonizing germ-free obese mice with the intestinal microbiome of thin mice causing a decreased total body fat in the recipient mice, has not yet been done. Other possible mechanisms by which the intestinal microbiome affects host obesity include induction of low-grade inflammation with lipopolysaccharide, regulation of host genes responsible for energy expenditure and storage, and hormonal communication between the intestinal microbiome and the host. The following review discusses the microbiome-obesity relationship and proposed mechanisms by which the intestinal microbiota is hypothesized to influence weight gain.

  12. Intestinal microbiota and HIV-1 infection

    Directory of Open Access Journals (Sweden)

    E. B. S. M. Trindade

    2007-01-01

    Full Text Available The intestinal microbiota consists of a qualitatively and quantitatively diverse range of microorganisms dynamically interacting with the host. It is remarkably stable with regard to the presence of microorganisms and their roles which, however, can be altered due to pathological conditions, diet composition, gastrointestinal disturbances and/or drug ingestion. The present review aimed at contributing to the discussion about changes in the intestinal microbiota due to HIV-1 infection, focusing on the triad infection-microbiota-nutrition as factors that promote intestinal bacterial imbalance. Intestinal microbiota alterations can be due to the HIV-1 infection as a primary factor or the pharmacotherapy employed, or they can be one of the consequences of the disease.

  13. The enterocyte-associated intestinal microbiota of breast-fed infants and adults responds differently to a TNF-α-mediated pro-inflammatory stimulus.

    Directory of Open Access Journals (Sweden)

    Manuela Centanni

    Full Text Available Co-evolved as an integral component of our immune system, the gut microbiota provides specific immunological services at different ages, supporting the immune education during our infancy and sustaining a well-balanced immunological homeostasis during the course of our life. In order to figure out whether this involves differences in the microbial groups primarily interacting with the host immune system, we developed a non-invasive HT29 cell-based minimal model to fingerprint the enterocyte-associated microbiota fraction in infants and adults. After depicting the fecal microbial community of 12 breast-fed infants and 6 adults by 16S rDNA amplicon pools 454 pyrosequencing, their respective HT29 cell-associated gut microbiota fractions were characterized by the universal phylogenetic array platform HTF-Microbi.Array, both in the presence and absence of a tumor necrosis factor-alpha (TNF-α-mediated pro-inflammatory stimulus. Our data revealed remarkable differences between the enterocyte-associated microbiota fractions in breast-fed infants and adults, being dominated by Bifidobacterium and Enterobacteriaceae the first and Bacteroides-Prevotella and Clostridium clusters IV and XIVa the second. While in adults TNF-α resulted in a profound impairment of the structure of the enterocyte-associated microbiota fraction, in infants it remained unaffected. Differently from the adult-type gut microbial community, the infant-type microbiota is structured to cope with inflammation, being co-evolved to prime the early immune response by means of transient inflammatory signals from gut microorganisms.

  14. The enterocyte-associated intestinal microbiota of breast-fed infants and adults responds differently to a TNF-α-mediated pro-inflammatory stimulus.

    Science.gov (United States)

    Centanni, Manuela; Turroni, Silvia; Consolandi, Clarissa; Rampelli, Simone; Peano, Clelia; Severgnini, Marco; Biagi, Elena; Caredda, Giada; De Bellis, Gianluca; Brigidi, Patrizia; Candela, Marco

    2013-01-01

    Co-evolved as an integral component of our immune system, the gut microbiota provides specific immunological services at different ages, supporting the immune education during our infancy and sustaining a well-balanced immunological homeostasis during the course of our life. In order to figure out whether this involves differences in the microbial groups primarily interacting with the host immune system, we developed a non-invasive HT29 cell-based minimal model to fingerprint the enterocyte-associated microbiota fraction in infants and adults. After depicting the fecal microbial community of 12 breast-fed infants and 6 adults by 16S rDNA amplicon pools 454 pyrosequencing, their respective HT29 cell-associated gut microbiota fractions were characterized by the universal phylogenetic array platform HTF-Microbi.Array, both in the presence and absence of a tumor necrosis factor-alpha (TNF-α)-mediated pro-inflammatory stimulus. Our data revealed remarkable differences between the enterocyte-associated microbiota fractions in breast-fed infants and adults, being dominated by Bifidobacterium and Enterobacteriaceae the first and Bacteroides-Prevotella and Clostridium clusters IV and XIVa the second. While in adults TNF-α resulted in a profound impairment of the structure of the enterocyte-associated microbiota fraction, in infants it remained unaffected. Differently from the adult-type gut microbial community, the infant-type microbiota is structured to cope with inflammation, being co-evolved to prime the early immune response by means of transient inflammatory signals from gut microorganisms.

  15. Intestinal colonisation, microbiota and future probiotics

    NARCIS (Netherlands)

    Salminen, S.; Benno, Y.; Vos, de W.M.

    2006-01-01

    The human intestine is colonized by a large number of microorganisms, collectively termed microbiota, which support a variety of physiological functions. As the major part of the microbiota has not yet been cultured, molecular methods are required to determine microbial composition and the impact of

  16. Intestinal colonisation, microbiota and future probiotics

    NARCIS (Netherlands)

    Salminen, S.; Benno, Y.; Vos, de W.M.

    2006-01-01

    The human intestine is colonized by a large number of microorganisms, collectively termed microbiota, which support a variety of physiological functions. As the major part of the microbiota has not yet been cultured, molecular methods are required to determine microbial composition and the impact of

  17. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    2015-01-01

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  18. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    2015-01-01

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  19. Intestinal microbiota: its role in digestive diseases.

    Science.gov (United States)

    Bustos Fernandez, Luis M; Lasa, Juan S; Man, Fernando

    2014-09-01

    It is now well known that intestinal microbiota exerts not only several physiological functions, but has also been implied in the mechanisms of many conditions, both intestinal and extraintestinal. These advances, to the best of our knowledge, have been made possible by the development of new ways of studying gut flora. Metagenomics, the study of genetic material taken directly from environmental samples, avoiding individual culture, has become an excellent tool to study the human microbiota. Therefore, it has demonstrated an association between an altered intestinal microbiota and inflammatory bowel disease or irritable bowel syndrome, perhaps the most extensively studied conditions associated with this particular subject. However, microbiota has a potential role in the development of other diseases; their manifestations are not confined to the intestine only. In this article, an extensive updated review is conducted on the role intestinal microbiota has in health and in different diseases. Focus is made on the following conditions: inflammatory bowel disease, irritable bowel syndrome, celiac disease, hepatic encephalopathy, and obesity.

  20. Establishment of Intestinal Microbiota during Early Life: a Longitudinal, Explorative Study of a Large Cohort of Danish Infants

    DEFF Research Database (Denmark)

    Bergström, Anders; Skov, Thomas Hjort; Bahl, Martin Iain

    2014-01-01

    Fecal samples were obtained from a cohort of 330 healthy Danish infants at 9, 18, and 36 months after birth, enabling characterization of interbacterial relationships by use of quantitative PCR targeting 31 selected bacterial 16S rRNA gene targets representing different phylogenetic levels. Nutri...

  1. Opportunities to assess factors contributing to the development of the intestinal microbiota in infants living in developing countries

    Directory of Open Access Journals (Sweden)

    Dennis Lang

    2015-05-01

    Full Text Available Recent evidence suggests that establishment of a healthy gut microbiota shortly after birth is important to achieve optimal growth and development of children. Being born into a resource-poor environment presents challenges to the establishment of a healthy gut microbial flora in the newborn. Among these challenges are births that occur at home, traditional pre-lacteal feeding of newborns leading to failure to initiate lactation, poor sanitation and water quality, early environmental exposure to, and infection with, enteric or other pathogens, suboptimal breast feeding duration and intensity, deficiencies in weaning and childhood diets contributing to micro- and macro-nutrient deficiencies, and the frequent use of antibiotics. These factors should be considered in the design and implementation of preventive and therapeutic interventions aimed at improving the health and development of these children.

  2. Anaerobic bacteria in the intestinal microbiota of Brazilian children

    Science.gov (United States)

    Talarico, Silvia T; Santos, Florenza E; Brandt, Katia Galeão; Martinez, Marina B; Taddei, Carla R

    2017-01-01

    OBJECTIVE: Changes in the neonatal gut environment allow for the colonization of the mucin layer and lumen by anaerobic bacteria. The aim of the present study was to evaluate Bifidobacterium, Lactobacillus and Lactococcus colonization through the first year of life in a group of 12 Brazilian infants and to correlate these data with the levels of Escherichia coli. The presence of anaerobic members of the adult intestinal microbiota, including Eubacterium limosum and Faecalibacterium prausnitzii, was also evaluated. METHODS: Fecal samples were collected during the first year of life, and 16S rRNA from anaerobic and facultative bacteria was detected by real-time PCR. RESULTS: Bifidobacterium was present at the highest levels at all of the studied time points, followed by E. coli and Lactobacillus. E. limosum was rarely detected, and F. prausnitzii was detected only in the samples from the latest time points. CONCLUSION: These results are consistent with reports throughout the world on the community structure of the intestinal microbiota in infants fed a milk diet. Our findings also provide evidence for the influence of the environment on intestinal colonization due to the high abundance of E. coli. The presence of important anaerobic genera was observed in Brazilian infants living at a low socioeconomic level, a result that has already been well established for infants living in developed countries.

  3. Interaction between food components, intestinal microbiota and intestinal mucosa as a function of intestinal health

    NARCIS (Netherlands)

    Venema, K.; Sandt, H. van de

    2003-01-01

    Interaction between food components, intestinal microbiota and intestinal mucosa was studied as a function of intestinal health. A microbiota was found to be important for the onset and progression of inflammatory diseases. Studies revealed a prominent effect of micro-organisms on the gene expressio

  4. Unbalance of intestinal microbiota in atopic children.

    Science.gov (United States)

    Candela, Marco; Rampelli, Simone; Turroni, Silvia; Severgnini, Marco; Consolandi, Clarissa; De Bellis, Gianluca; Masetti, Riccardo; Ricci, Giampaolo; Pession, Andrea; Brigidi, Patrizia

    2012-06-06

    Playing a strategic role in the host immune function, the intestinal microbiota has been recently hypothesized to be involved in the etiology of atopy. In order to investigate the gastrointestinal microbial ecology of atopic disease, here we performed a pilot comparative molecular analysis of the faecal microbiota in atopic children and healthy controls. Nineteen atopic children and 12 healthy controls aged 4-14 years were enrolled. Stools were collected and the faecal microbiota was characterized by means of the already developed phylogenetic microarray platform, HTF-Microbi.Array, and quantitative PCR. The intestinal microbiota of atopic children showed a significant depletion in members of the Clostridium cluster IV, Faecalibacterium prausnitzii, Akkermansia muciniphila and a corresponding increase of the relative abundance of Enterobacteriaceae. Depleted in key immunomodulatory symbionts, the atopy-associated microbiota can represent an inflammogenic microbial consortium which can contribute to the severity of the disease. Our data open the way to the therapeutic manipulation of the intestinal microbiota in the treatment of atopy by means of pharmaceutical probiotics.

  5. Unbalance of intestinal microbiota in atopic children

    Directory of Open Access Journals (Sweden)

    Candela Marco

    2012-06-01

    Full Text Available Abstract Background Playing a strategic role in the host immune function, the intestinal microbiota has been recently hypothesized to be involved in the etiology of atopy. In order to investigate the gastrointestinal microbial ecology of atopic disease, here we performed a pilot comparative molecular analysis of the faecal microbiota in atopic children and healthy controls. Results Nineteen atopic children and 12 healthy controls aged 4–14 years were enrolled. Stools were collected and the faecal microbiota was characterized by means of the already developed phylogenetic microarray platform, HTF-Microbi.Array, and quantitative PCR. The intestinal microbiota of atopic children showed a significant depletion in members of the Clostridium cluster IV, Faecalibacterium prausnitzii, Akkermansia muciniphila and a corresponding increase of the relative abundance of Enterobacteriaceae. Conclusion Depleted in key immunomodulatory symbionts, the atopy-associated microbiota can represent an inflammogenic microbial consortium which can contribute to the severity of the disease. Our data open the way to the therapeutic manipulation of the intestinal microbiota in the treatment of atopy by means of pharmaceutical probiotics.

  6. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria.

    Science.gov (United States)

    Nylund, L; Nermes, M; Isolauri, E; Salminen, S; de Vos, W M; Satokari, R

    2015-02-01

    The reports on atopic diseases and microbiota in early childhood remain contradictory, and both decreased and increased microbiota diversity have been associated with atopic eczema. In this study, the intestinal microbiota signatures associated with the severity of eczema in 6-month-old infants were characterized. Further, the changes in intestinal microbiota composition related to the improvement of this disease 3 months later were assessed. The severity of eczema correlated inversely with microbiota diversity (r = -0.54, P = 0.002) and with the abundance of butyrate-producing bacteria (r = -0.52, P = 0.005). During the 3-month follow-up, microbiota diversity increased (P microbiota and high abundance of butyrate-producing bacteria were associated with milder eczema, thus suggesting they have a role in alleviating symptoms of atopic eczema.

  7. The Intestinal Microbiota and Irritable Bowel Syndrome.

    Science.gov (United States)

    Ringel, Yehuda; Ringel-Kulka, Tamar

    2015-01-01

    Irritable bowel syndrome (IBS) is the most prevalent and the best studied functional gastrointestinal disorder. The etiology and the pathogenesis of IBS are still not clear; however, recent studies have implicated a role for alterations in the intestinal microbiota (dysbiosis) in the pathophysiology of the disorder. Epidemiological observations have demonstrated that the development of IBS symptoms is often preceded by a disruption of the individual's normal intestinal microbiota, and microbiological studies have demonstrated compositional differences in the intestinal microbiota between patients with IBS patients and healthy controls. In addition, animal studies and a few recent human clinical studies have demonstrated that compositional changes in the intestinal microbiota in IBS are associated with relevant abnormal gastrointestinal and brain-gut axis functions that are often observed in patients with IBS. This article discusses points of interest from the current research on the microbiota-gut-brain interactions in IBS and highlights the relevance of the emerging data to our understanding of the disorder and the clinical implications for patients' care.

  8. Effect of administration of bifidobacteria on intestinal microbiota in low-birth-weight infants and transition of administered bifidobacteria: a comparison between one-species and three-species administration.

    Science.gov (United States)

    Ishizeki, Shinobu; Sugita, Masaoki; Takata, Masaaki; Yaeshima, Tomoko

    2013-10-01

    The effects of administration of bifidobacteria on the intestinal microbiota in low-birth-weight infants, and the transition of each strain of administered bifidobacteria were investigated. A single strain of Bifidobacterium breve M-16V (5 × 10(8); one-species group) or a mixture of three species composed of B. breve M-16V, Bifidobacterium longum subsp. infantis M-63 and B. longum subsp. longum BB536 (5 × 10(8) of each strain; three-species group) were administered daily for 6 weeks. Bifidobacterial administration significantly increased the detection rates and cell numbers of bifidobacteria in the feces (weeks 1-6). The proportion of bifidobacteria was significantly higher in the one-species group at weeks 1-4, and in the three-species group at weeks 1-6 compared with the control group. Furthermore, the proportion of bifidobacteria in the three-species group was significantly higher than that in the one-species group at weeks 1 and 6. The proportion of infants with bifidobacteria-predominant microbiota was significantly higher in the three-species group than in the control group during the test period. The detection rates of Clostridium were lower in the bifidobacteria-administered groups. The proportions of Enterobacteriaceae were significantly lower in the three-species group compared to the other groups (weeks 4 and 6). Among the three strains administered, B. breve M-16V and Bifidobacterium infantis M-63 were detected in 85% or more of the infants during the administration period, while B. longum BB536 was detected in 40% or less. Compared with administration of one species, administration of three species of bifidobacteria resulted in earlier formation of a bifidobacteria-predominant fecal microbiota and maintenance of this microbiota.

  9. Autism spectrum disorders and intestinal microbiota.

    Science.gov (United States)

    De Angelis, Maria; Francavilla, Ruggiero; Piccolo, Maria; De Giacomo, Andrea; Gobbetti, Marco

    2015-01-01

    Through extensive microbial-mammalian co-metabolism, the intestinal microbiota have evolved to exert a marked influence on health and disease via gut-brain-microbiota interactions. In this addendum, we summarize the findings of our recent study on the fecal microbiota and metabolomes of children with pervasive developmental disorder-not otherwise specified (PDD-NOS) or autism (AD) compared with healthy children (HC). Children with PDD-NOS or AD have altered fecal microbiota and metabolomes (including neurotransmitter molecules). We hypothesize that the degree of microbial alteration correlates with the severity of the disease since fecal microbiota and metabolomes alterations were higher in children with PDD-NOS and, especially, AD compared to HC. Our study indicates that the levels of free amino acids (FAA) and volatile organic compounds (VOC) differ in AD subjects compared to children with PDD-NOS, who are more similar to HC. Finally, we propose a new perspective on the implications for the interaction between intestinal microbiota and AD.

  10. Relationship between intestinal microbiota and colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Gokhan; Cipe; Ufuk; Oguz; Idiz; Deniz; Firat; Huseyin; Bektasoglu

    2015-01-01

    The human gastrointestinal tract hosts a complexand vast microbial community with up to 1011-1012 microorganisms colonizing the colon. The gut microbiota has a serious effect on homeostasis and pathogenesis through a number of mechanisms. In recent years, the relationship between the intestinal microbiota and sporadic colorectal cancer has attracted much scientific interest. Mechanisms underlying colonic carcinogenesis include the conversion of procarcinogenic diet-related factors to carcinogens and the stimulation of procarcinogenic signaling pathways in luminal epithelial cells. Understanding each of these mechanisms will facilitate future studies, leading to the development of novel strategies for the diagnosis, treatment, and prevention of colorectal cancer. In this review, we discuss the relationship between colorectal cancer and the intestinal microbiota.

  11. Gut microbiota of the very-low-birth-weight infant.

    Science.gov (United States)

    Unger, Sharon; Stintzi, Alain; Shah, Prakeshkumar; Mack, David; O'Connor, Deborah L

    2015-01-01

    The microbiome, of which the bacterial component alone (microbiota), is estimated to include 10 times more cells than human cells of the body, blooms immediately after birth and evolves in composition and complexity throughout childhood. The gut microbiome has a profound impact on gastrointestinal tract development, maintenance of mucosal surface integrity, and contributes to the nutritional status of the host and thus plays a pivotal role in health and disease. New technologies have enabled the detailed characterization of normal microbial symbionts and dysbiosis-disease associations. This review summarizes the stepwise establishment of the intestinal microbiota, influential environmental factors, and how this may be perturbed in preterm very-low-birth-weight infants. The contribution of the microbiota to provision of energy and nutrients for intestinal development and the nutritional status of the host are reviewed. In addition, the crucial role of the gut microbiota in maintaining mucosal integrity is explored along with how its breakdown can lead to sepsis, necrotizing enterocolitis, and systemic inflammatory response syndrome. Finally, the role of enteral feeding type (human milk, formula, and nutrient fortification) in mediating these processes is discussed, and guidance is provided for nutritional strategies to promote health in these fragile infants.

  12. PHYLOMETABOLIC CORE OF INTESTINAL MICROBIOTA

    Directory of Open Access Journals (Sweden)

    S. I. Sitkin

    2015-01-01

    Full Text Available The authors  discuss the  theory  of human  superorganism and its microbiota (microbiome, whose mutualistic  interactions  is realized within the  microbiota – gut – brain axis that includes endocrine, immune and neurohumoral pathways. The newest concepts  of microbiome enterotypes and core microbiota  are  presented, which are  important  for understanding of the  role of symbiotic  microorganisms  in human  vital activities, for explanation of pathophysiology of many  chronic  human  diseases  (beyond  gastrointestinal disorders, as well as for the  search of effective therapeutic targets. As highly promising are considered  the functional approaches to studies  of microbiota  that  allowed to formulate the concept  of phylometabolic (phylofunctional core. This is a series of evolutionally stable microorganisms  responsible  for majority of the  main microbiome  functions, such as fermentation  of polysaccharides  (glycans, production of short-chain  fatty acids (butyrate, propionate, acetate, hydrogen  utilization, production of lactate, metabolism of aminoacids, bile acids, choline, production  of vitamins and  some  biologically active substances – anti-inflammatory, anti-microbial, immunostimulatory. The authors are first to describe the main functional groups  of microorganisms  of   gut microbiota phylometabolic core, providing key metabolic functions, as well as the leading characteristics of the  phylometabolic core as such. The perspectives  of modification  of composition  and functions  of phylometabolic microbiota  core are discussed based on metabiotics  as a virtually new class of therapeutic agents. A hypothesis has been proposed that  the  ratios  between main  components of the key gut microbiota may reflect fundamental  processed  related  to a mutualistic interactions between microbiota and human body, as well as they may serve as effective biological markers of

  13. Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study

    Directory of Open Access Journals (Sweden)

    Silvia Arboleya

    2016-04-01

    Full Text Available Background: The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. Methods: We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Results: Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. Conclusion: A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.

  14. Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study.

    Science.gov (United States)

    Arboleya, Silvia; Sánchez, Borja; Solís, Gonzalo; Fernández, Nuria; Suárez, Marta; Hernández-Barranco, Ana M; Milani, Christian; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G; Ventura, Marco; Gueimonde, Miguel

    2016-04-29

    The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.

  15. Dynamic efficiency of the human intestinal microbiota.

    Science.gov (United States)

    Candela, Marco; Biagi, Elena; Turroni, Silvia; Maccaferri, Simone; Figini, Paolo; Brigidi, Patrizia

    2015-06-01

    The emerging dynamic dimensions of the human intestinal microbiota (IM) are challenging the traditional definition of healthy gut microbiota, principally based on the static concepts of phylogenetic and functional core. On the other hand, recent researches are revealing that the microbiota plasticity is strategic for several aspects of our biology, addressing the different immunological and metabolic needs at various ages, and adjusting the ecosystem services in response to different lifestyle, physiological states or diets. In light of these studies, we propose to revise the traditional concept of healthy human IM, including its degree of plasticity among the fundamental requisites for providing host health. In order to make a model taking into account the relative importance of IM core functions and plasticity for the maintenance of host health, we address to Economics, where the efficiency of a productive system is measured by computing static and dynamic parameters.

  16. Community and genomic analysis of the human small intestine microbiota

    NARCIS (Netherlands)

    Bogert, van den B.

    2013-01-01

      Our intestinal tract is densely populated by different microbes, collectively called microbiota, of which the majority are bacteria. Research focusing on the intestinal microbiota often use fecal samples as a representative of the bacteria that inhabit the end of the large intestine. These s

  17. The intestinal microbiota and allergic asthma.

    Science.gov (United States)

    Arrieta, Marie-Claire; Finlay, Brett

    2014-11-01

    There is increasing evidence that environmental changes are involved in the sharp increase in asthma incidence, as well as with other immune-mediated diseases. This increase matches the introduction of modern life advances such as antibiotics and caesarean sections. Several epidemiological studies provide convincing evidence that a lack of exposure to microbes early in life is associated with later development of allergic asthma. In addition, animal studies have shown that early life modulation of the intestinal microbiota with antibiotics has profound effects in the immune cellular mechanisms that lead to asthma. By describing some of the most relevant human and animal studies in this field, we explore the concept that significant perturbations of the intestinal and perhaps the lung microbiota are a cause of allergic asthma.

  18. Gut microbiota and probiotics in maternal and infant health.

    Science.gov (United States)

    Sanz, Yolanda

    2011-12-01

    The interplay between both heredity and environmental factors seems to affect every stage of development from conception to the early postnatal period with potential long-term effects on child and adult health. During pregnancy, immune and metabolic functions of the fetus are dependent on the mother; moreover, the refinement of these functions seems to commence inside the uterus and to be diet sensitive. The microbiota inhabiting the intestinal tract develop an array of physiologic roles within the human body, which influences both metabolic and immune functions, particularly during early neonatal life and possibly even in utero. Transmission of bacteria from the mother to the neonate through direct contact with maternal microbiota during birth and through breast milk during lactation also seems to influence the infant's gut colonization, with potential health consequences. In this context, intentional modulation of microbiota composition through the use of probiotics during the perinatal and early postnatal period has been proposed as a possible dietary strategy to reduce risk of disease. Herein, studies are reviewed on the composition of the intestinal microbiota during pregnancy and clinical trials evaluating the effects of perinatal administration of probiotics on different clinical outcomes.

  19. Unraveling the ties between irritable bowel syndrome and intestinal microbiota.

    Science.gov (United States)

    Hong, Sung Noh; Rhee, Poong-Lyul

    2014-03-14

    Irritable bowel syndrome (IBS) is the most prevalent functional gastrointestinal disorder. It is a multifactorial disorder. Intestinal microbiota may cause the pathogenesis of IBS by contributing to abnormal gastrointestinal motility, low-grade inflammation, visceral hypersensitivity, communication in the gut-brain axis, and so on. Previous attempts to identify the intestinal microbiota composition in IBS patients have yielded inconsistent and occasionally contradictory results. This inconsistency may be due to the differences in the molecular techniques employed, the sample collection and handling methods, use of single samples that are not linked to fluctuating symptoms, or other factors such as patients' diets and phenotypic characterizations. Despite these difficulties, previous studies found that the intestinal microbiota in some IBS patients was completely different from that in healthy controls, and there does appear to be a consistent theme of Firmicutes enrichment and reduced abundance of Bacteroides. Based on the differences in intestinal microbiota composition, many studies have addressed the roles of microbiota-targeted treatments, such as antibiotics and probiotics, in alleviating certain symptoms of IBS. This review summarizes the current knowledge of the associations between intestinal microbiota and IBS as well as the possible modes of action of intestinal microbiota in the pathogenesis of IBS. Improving the current level of understanding of host-microbiota interactions in IBS is important not only for determining the role of intestinal microbiota in IBS pathogenesis but also for therapeutic modulation of the microbiota.

  20. Interactions between the intestinal microbiota and innate lymphoid cells.

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells.

  1. The Intestinal Microbiota in Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Anni Woting

    2016-04-01

    Full Text Available Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions.

  2. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?

    Science.gov (United States)

    Cenit, María Carmen; Olivares, Marta; Codoñer-Franch, Pilar; Sanz, Yolanda

    2015-08-17

    It is widely recognized that the intestinal microbiota plays a role in the initiation and perpetuation of intestinal inflammation in numerous chronic conditions. Most studies report intestinal dysbiosis in celiac disease (CD) patients, untreated and treated with a gluten-free diet (GFD), compared to healthy controls. CD patients with gastrointestinal symptoms are also known to have a different microbiota compared to patients with dermatitis herpetiformis and controls, suggesting that the microbiota is involved in disease manifestation. Furthermore, a dysbiotic microbiota seems to be associated with persistent gastrointestinal symptoms in treated CD patients, suggesting its pathogenic implication in these particular cases. GFD per se influences gut microbiota composition, and thus constitutes an inevitable confounding factor in studies conducted in CD patients. To improve our understanding of whether intestinal dysbiosis is the cause or consequence of disease, prospective studies in healthy infants at family risk of CD are underway. These studies have revealed that the CD host genotype selects for the early colonizers of the infant's gut, which together with environmental factors (e.g., breast-feeding, antibiotics, etc.) could influence the development of oral tolerance to gluten. Indeed, some CD genes and/or their altered expression play a role in bacterial colonization and sensing. In turn, intestinal dysbiosis could promote an abnormal response to gluten or other environmental CD-promoting factors (e.g., infections) in predisposed individuals. Here, we review the current knowledge of host-microbe interactions and how host genetics/epigenetics and environmental factors shape gut microbiota and may influence disease risk. We also summarize the current knowledge about the potential mechanisms of action of the intestinal microbiota and specific components that affect CD pathogenesis.

  3. [The association of intestinal microbiota with obesity].

    Science.gov (United States)

    Morales, Pamela; Brignardello, Jerusa; Gotteland, Martín

    2010-08-01

    Intestinal microbiota (IM) plays a role in the development of obesity and its associated low grade inflammation. Bacterial colonization of the gastrointestinal tract of germ free mice (without microbiota) increases by 60% their fat mass, alters their fasting glucose and insulin levels, triples their hepatic triglycerides and induces adipocyte hypertrophy. IM favors fat storage in adipocytes through the inhibition of Fiaf (Fasting Induced Adipocyte Factor), an inhibitor of lipoprotein lipase. Compared with normal weight subjects, the IM from obese exhibits a higher proportion of Firmicutes/Bacteroidetes and is more efficient in extracting energy from foodstuffs. The loss of bodyweight by a hypocaloric diet reverts the proportion of bacteria to that of lean subjects. The intake of a high fat diet also alters the IM, affecting intestinal barrier function and favoring endotoxinemia. These events increase oxidative and pro-inflammatory processes in plasma and peripheral tissues and increment the risk of insulin resistance. Such events are reverted by the administration of prebiotics which stimulate the growth of Bifdobacterium and Lactobacillus species in the colon, reestablishing the gut homeostasis. Interestingly, products resulting from the fermentation of prebiotics stimulate the differentiation of enteroendocrine cells and the release of glucagon like peptide 1 and peptide YY, that have insulin like and anorexigenic activities, thus contributing to body weight equilibrium.

  4. Obesity, fatty liver disease and intestinal microbiota.

    Science.gov (United States)

    Arslan, Nur

    2014-11-28

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations.

  5. Impact of diet on human intestinal microbiota and health.

    Science.gov (United States)

    Salonen, Anne; de Vos, Willem M

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate systemic immune and metabolic responses. Due to the immense metabolic capacity of the intestinal microbiota and its relatively high plasticity, there is great interest in identifying dietary approaches that allow intentional and predictable modulation of the microbiota. In this article, we review the current insights on dietary influence on the human intestinal microbiota based on recent high-throughput molecular studies and interconnections with health. We focus especially on the emerging data that identify the amount and type of dietary fat as significant modulators of the colonic microbiota and its metabolic output.

  6. Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome

    NARCIS (Netherlands)

    Vrieze, Anne; Van Nood, Els; Holleman, Frits; Salojarvi, Jarkko; Kootte, Ruud S.; Bartelsman, Joep F. W. M.; Dallinga-Thie, Geesje M.; Ackermans, Mariette T.; Serlie, Mireille J.; Oozeer, Raish; Derrien, Muriel; Druesne, Anne; van Hylckama Vlieg, Johan E.T.; Bloks, Vincent W.; Groen, Albert K.; Heilig, Hans G. H. J.; Zoetendal, Erwin G.; Stroes, Erik S.; de Vos, Willem M.; Hoekstra, Joost B. L.; Nieuwdorp, Max

    2012-01-01

    Alterations in intestinal microbiota are associated with obesity and insulin resistance. We studied the effects of infusing intestinal microbiota from lean donors to male recipients with metabolic syndrome on the recipients' microbiota composition and glucose metabolism. Subjects were assigned rando

  7. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.

  8. Intestinal microbiota is a plastic factor responding to environmental changes.

    Science.gov (United States)

    Candela, Marco; Biagi, Elena; Maccaferri, Simone; Turroni, Silvia; Brigidi, Patrizia

    2012-08-01

    Traditionally regarded as stable through the entire lifespan, the intestinal microbiota has now emerged as an extremely plastic entity, capable of being reconfigured in response to different environmental factors. In a mutualistic context, these microbiome fluctuations allow the host to rapidly adjust its metabolic and immunologic performances in response to environmental changes. Several circumstances can disturb this homeostatic equilibrium, inducing the intestinal microbiota to shift from a mutualistic configuration to a disease-associated profile. A mechanistic comprehension of the dynamics involved in this process is needed to deal more rationally with the role of the human intestinal microbiota in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might

  10. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease.

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-10-28

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models.

  11. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  12. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?

    Directory of Open Access Journals (Sweden)

    María Carmen Cenit

    2015-08-01

    Full Text Available It is widely recognized that the intestinal microbiota plays a role in the initiation and perpetuation of intestinal inflammation in numerous chronic conditions. Most studies report intestinal dysbiosis in celiac disease (CD patients, untreated and treated with a gluten-free diet (GFD, compared to healthy controls. CD patients with gastrointestinal symptoms are also known to have a different microbiota compared to patients with dermatitis herpetiformis and controls, suggesting that the microbiota is involved in disease manifestation. Furthermore, a dysbiotic microbiota seems to be associated with persistent gastrointestinal symptoms in treated CD patients, suggesting its pathogenic implication in these particular cases. GFD per se influences gut microbiota composition, and thus constitutes an inevitable confounding factor in studies conducted in CD patients. To improve our understanding of whether intestinal dysbiosis is the cause or consequence of disease, prospective studies in healthy infants at family risk of CD are underway. These studies have revealed that the CD host genotype selects for the early colonizers of the infant’s gut, which together with environmental factors (e.g., breast-feeding, antibiotics, etc. could influence the development of oral tolerance to gluten. Indeed, some CD genes and/or their altered expression play a role in bacterial colonization and sensing. In turn, intestinal dysbiosis could promote an abnormal response to gluten or other environmental CD-promoting factors (e.g., infections in predisposed individuals. Here, we review the current knowledge of host-microbe interactions and how host genetics/epigenetics and environmental factors shape gut microbiota and may influence disease risk. We also summarize the current knowledge about the potential mechanisms of action of the intestinal microbiota and specific components that affect CD pathogenesis.

  13. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?

    Science.gov (United States)

    Cenit, María Carmen; Olivares, Marta; Codoñer-Franch, Pilar; Sanz, Yolanda

    2015-01-01

    It is widely recognized that the intestinal microbiota plays a role in the initiation and perpetuation of intestinal inflammation in numerous chronic conditions. Most studies report intestinal dysbiosis in celiac disease (CD) patients, untreated and treated with a gluten-free diet (GFD), compared to healthy controls. CD patients with gastrointestinal symptoms are also known to have a different microbiota compared to patients with dermatitis herpetiformis and controls, suggesting that the microbiota is involved in disease manifestation. Furthermore, a dysbiotic microbiota seems to be associated with persistent gastrointestinal symptoms in treated CD patients, suggesting its pathogenic implication in these particular cases. GFD per se influences gut microbiota composition, and thus constitutes an inevitable confounding factor in studies conducted in CD patients. To improve our understanding of whether intestinal dysbiosis is the cause or consequence of disease, prospective studies in healthy infants at family risk of CD are underway. These studies have revealed that the CD host genotype selects for the early colonizers of the infant’s gut, which together with environmental factors (e.g., breast-feeding, antibiotics, etc.) could influence the development of oral tolerance to gluten. Indeed, some CD genes and/or their altered expression play a role in bacterial colonization and sensing. In turn, intestinal dysbiosis could promote an abnormal response to gluten or other environmental CD-promoting factors (e.g., infections) in predisposed individuals. Here, we review the current knowledge of host-microbe interactions and how host genetics/epigenetics and environmental factors shape gut microbiota and may influence disease risk. We also summarize the current knowledge about the potential mechanisms of action of the intestinal microbiota and specific components that affect CD pathogenesis. PMID:26287240

  14. Composition, variability, and temporal stability of the intestinal microbiota of the elderly.

    LENUS (Irish Health Repository)

    Claesson, Marcus J

    2011-03-15

    Alterations in the human intestinal microbiota are linked to conditions including inflammatory bowel disease, irritable bowel syndrome, and obesity. The microbiota also undergoes substantial changes at the extremes of life, in infants and older people, the ramifications of which are still being explored. We applied pyrosequencing of over 40,000 16S rRNA gene V4 region amplicons per subject to characterize the fecal microbiota in 161 subjects aged 65 y and older and 9 younger control subjects. The microbiota of each individual subject constituted a unique profile that was separable from all others. In 68% of the individuals, the microbiota was dominated by phylum Bacteroides, with an average proportion of 57% across all 161 baseline samples. Phylum Firmicutes had an average proportion of 40%. The proportions of some phyla and genera associated with disease or health also varied dramatically, including Proteobacteria, Actinobacteria, and Faecalibacteria. The core microbiota of elderly subjects was distinct from that previously established for younger adults, with a greater proportion of Bacteroides spp. and distinct abundance patterns of Clostridium groups. Analyses of 26 fecal microbiota datasets from 3-month follow-up samples indicated that in 85% of the subjects, the microbiota composition was more like the corresponding time-0 sample than any other dataset. We conclude that the fecal microbiota of the elderly shows temporal stability over limited time in the majority of subjects but is characterized by unusual phylum proportions and extreme variability.

  15. Intestinal microbiota during early life - impact on health and disease.

    Science.gov (United States)

    Nylund, Lotta; Satokari, Reetta; Salminen, Seppo; de Vos, Willem M

    2014-11-01

    In the first years after birth, the intestinal microbiota develops rapidly both in diversity and complexity while being relatively stable in healthy adults. Different life-style-related factors as well as medical practices have an influence on the early-life intestinal colonisation. We address the impact of some of these factors on the consecutive microbiota development and later health. An overview is presented of the microbial colonisation steps and the role of the host in that process. Moreover, new early biomarkers are discussed with examples that include the association of microbiota and atopic diseases, the correlation of colic and early development and the impact of the use of antibiotics in early life. Our understanding of the development and function of the intestinal microbiota is constantly improving but the long-term influence of early-life microbiota on later life health deserves careful clinical studies.

  16. Fecal microbiota transplantation broadening its application beyond intestinal disorders.

    Science.gov (United States)

    Xu, Meng-Que; Cao, Hai-Long; Wang, Wei-Qiang; Wang, Shan; Cao, Xiao-Cang; Yan, Fang; Wang, Bang-Mao

    2015-01-07

    Intestinal dysbiosis is now known to be a complication in a myriad of diseases. Fecal microbiota transplantation (FMT), as a microbiota-target therapy, is arguably very effective for curing Clostridium difficile infection and has good outcomes in other intestinal diseases. New insights have raised an interest in FMT for the management of extra-intestinal disorders associated with gut microbiota. This review shows that it is an exciting time in the burgeoning science of FMT application in previously unexpected areas, including metabolic diseases, neuropsychiatric disorders, autoimmune diseases, allergic disorders, and tumors. A randomized controlled trial was conducted on FMT in metabolic syndrome by infusing microbiota from lean donors or from self-collected feces, with the resultant findings showing that the lean donor feces group displayed increased insulin sensitivity, along with increased levels of butyrate-producing intestinal microbiota. Case reports of FMT have also shown favorable outcomes in Parkinson's disease, multiple sclerosis, myoclonus dystonia, chronic fatigue syndrome, and idiopathic thrombocytopenic purpura. FMT is a promising approach in the manipulation of the intestinal microbiota and has potential applications in a variety of extra-intestinal conditions associated with intestinal dysbiosis.

  17. Liver injury from ampicillin-induced intestinal microbiota distresses ...

    African Journals Online (AJOL)

    characterize changes in intestinal microbiota induced by ..... and Management of Laboratory and Other Research. Animals ... Antibiotics on Colonization Resistance. Infect. Immun ... Saunders Company, Philadelphia;1986; p 1845. 20. Knothe ...

  18. Impact of Diet on Human Intestinal Microbiota and Health

    NARCIS (Netherlands)

    Salonen, A.; Vos, de W.M.

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate

  19. Contribution of microbiota to the intestinal physicochemical barrier.

    Science.gov (United States)

    Malago, J J

    2015-01-01

    The large number of intestinal microorganisms, which exceeds the total number of human cells by ten folds, alludes to a significant contribution to human health. This is vivid in enteric and some systemic diseases emanating from disruption of the microbiota. As life style keeps shifting towards disruption of the microbiota in most societies worldwide, interest in the contribution of the microbiota to gut health has grown enormously. Many studies have been conducted to elucidate the exact contribution of the microbiota to human health. The knowledge gained from these studies indicates that the microbiota interacts with the intestinal milieu to maintain gut health. In this review, the crosstalk of microbiota with the intestinal physicochemical barrier pivotal to the gut innate immunity is highlighted. In particular, the review focuses on the role of the microbiota on competitive exclusion of pathogens, intestinal pH, epithelial mechanical barrier integrity, apical actin cytoskeleton, antimicrobial peptides, and the mucus layer. Understanding this microbe-host relationship will provide useful insight into overcoming some diseases related to the disruption of the host microbiota.

  20. The role of the intestinal microbiota in pneumonia and sepsis

    NARCIS (Netherlands)

    Lankelma, J.M.

    2017-01-01

    Humans carry with them trillions of bacteria, viruses and fungi that are collectively called the human microbiota. The intestinal microbiota fulfills essential functions in human physiology and has recently been suggested as a potential therapeutic target for several diseases. This thesis focuses on

  1. Impact of Diet on Human Intestinal Microbiota and Health

    NARCIS (Netherlands)

    Salonen, A.; Vos, de W.M.

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate

  2. Intestinal microbiota during early life - impact on health and disease

    NARCIS (Netherlands)

    Nylund, L.; Satokari, R.M.; Salminen, S.; Vos, de W.M.

    2014-01-01

    In the first years after birth, the intestinal microbiota develops rapidly both in diversity and complexity while being relatively stable in healthy adults. Different life-style-related factors as well as medical practices have an influence on the early-life intestinal colonisation. We address the i

  3. Intestinal microbiota during early life - impact on health and disease

    NARCIS (Netherlands)

    Nylund, L.; Satokari, R.M.; Salminen, S.; Vos, de W.M.

    2014-01-01

    In the first years after birth, the intestinal microbiota develops rapidly both in diversity and complexity while being relatively stable in healthy adults. Different life-style-related factors as well as medical practices have an influence on the early-life intestinal colonisation. We address the i

  4. Intestinal microbiota during early life - impact on health and disease

    NARCIS (Netherlands)

    Nylund, L.; Satokari, R.M.; Salminen, S.; Vos, de W.M.

    2014-01-01

    In the first years after birth, the intestinal microbiota develops rapidly both in diversity and complexity while being relatively stable in healthy adults. Different life-style-related factors as well as medical practices have an influence on the early-life intestinal colonisation. We address the

  5. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota.

    Science.gov (United States)

    Cox, Laura M; Cho, Ilseung; Young, Scott A; Anderson, W H Kerr; Waters, Bartholomew J; Hung, Shao-Ching; Gao, Zhan; Mahana, Douglas; Bihan, Monika; Alekseyenko, Alexander V; Methé, Barbara A; Blaser, Martin J

    2013-02-01

    Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high-fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low-fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454-pyrosequencing of the microbial 16S rRNA gene, decreased microbial α-diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3- and 12.4-fold) and decreased Lachnospiraceae (2.0- and 2.7-fold), while only HPMC increased Peptostreptococcaceae (3.4-fold) and decreased Ruminococcaceae (2.7-fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.

  6. Late preterm birth has direct and indirect effects on infant gut microbiota development during the first six months of life.

    Science.gov (United States)

    Forsgren, M; Isolauri, E; Salminen, S; Rautava, S

    2017-07-01

    Preterm infants display aberrant gut microbial colonisation. We investigated whether the differences in gut microbiota between late preterm and full-term infants results from prematurity or external exposures. This study comprised 43 late preterm infants (34(0/7) -36(6/7) ) and 75 full-term infants based on faecal samples collected following birth and at two to four weeks and six months of age. We assessed clinically relevant bacteria using quantitative polymerase chain reaction. Logistic regression analyses were performed to determine whether the observed differences in gut microbiota were attributable to prematurity or perinatal exposure. The prevalence of bifidobacteria differed in the intestinal microbiota of the full-term and late preterm neonates. Differences in the presence of specific species were detected at the age of six months, although the microbiota alterations were most prominent following delivery. As well as prematurity, the mode of birth, intrapartum and neonatal antibiotic exposure, and the duration of breastfeeding had an additional impact on gut microbiota development. The gut microbiota composition was significantly different between late preterm and full-term infants at least six months after birth. Antibiotic exposure was common in late preterm infants and modulated gut colonisation, but preterm birth also affected gut microbiota development independently. ©2017 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  7. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice.

    Science.gov (United States)

    Galipeau, Heather J; McCarville, Justin L; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G; Verdu, Elena F

    2015-11-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.

  8. Dietary additive probiotics modulation of the intestinal microbiota.

    Science.gov (United States)

    Hu, Shenglan; Wang, Li; Jiang, Zongyong

    2017-02-23

    The importance of the intestinal microbiota of animals is widely acknowledged because of its vital role in the health of animals. There are complex communities of microbiota, which colonize the gastrointestinal tract. Intestinal microbiota are conductive to animal health and the development of the host immune system. Probiotics are commonly used dietary additives where they provide the host with many beneficial functions, such as modulating intestinal homeostasis and promoting gut health. These beneficial effects of probiotics may accrue from the inhibiting the growth of pathogenic bacteria and promoting the growth of beneficial flora in the gastrointestinal tract. Probiotics colonization and its impact on gut microbiota members are highly species specific. Different probiotics have been shown to have dramatically different capacities of modulation physiological function. This review summarizes existing studies of the influence of dietary additive probiotics on the gut microbiota in different animals, such as humans, mice, pigs and chickens, to clarify the contribution of different kinds of probiotics to the intestinal microbiota. Moreover, the probable mechanism for the benefits of dietary supplementation with probiotics will be discussed.

  9. Rectal swabs for analysis of the intestinal microbiota.

    Science.gov (United States)

    Budding, Andries E; Grasman, Matthijs E; Eck, Anat; Bogaards, Johannes A; Vandenbroucke-Grauls, Christina M J E; van Bodegraven, Adriaan A; Savelkoul, Paul H M

    2014-01-01

    The composition of the gut microbiota is associated with various disease states, most notably inflammatory bowel disease, obesity and malnutrition. This underlines that analysis of intestinal microbiota is potentially an interesting target for clinical diagnostics. Currently, the most commonly used sample types are feces and mucosal biopsy specimens. Because sampling method, storage and processing of samples impact microbiota analysis, each sample type has its own limitations. An ideal sample type for use in routine diagnostics should be easy to obtain in a standardized fashion without perturbation of the microbiota. Rectal swabs may satisfy these criteria, but little is known about microbiota analysis on these sample types. In this study we investigated the characteristics and applicability of rectal swabs for gut microbiota profiling in a clinical routine setting in patients presenting with various gastro-intestinal disorders. We found that rectal swabs appeared to be a convenient means of sampling the human gut microbiota. Swabs can be performed on demand, whenever a patient presents; swab-derived microbiota profiles are reproducible, whether they are gathered at home by patients or by medical professionals in an outpatient setting and may be ideally suited for clinical diagnostics and large-scale studies.

  10. Rectal swabs for analysis of the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Andries E Budding

    Full Text Available The composition of the gut microbiota is associated with various disease states, most notably inflammatory bowel disease, obesity and malnutrition. This underlines that analysis of intestinal microbiota is potentially an interesting target for clinical diagnostics. Currently, the most commonly used sample types are feces and mucosal biopsy specimens. Because sampling method, storage and processing of samples impact microbiota analysis, each sample type has its own limitations. An ideal sample type for use in routine diagnostics should be easy to obtain in a standardized fashion without perturbation of the microbiota. Rectal swabs may satisfy these criteria, but little is known about microbiota analysis on these sample types. In this study we investigated the characteristics and applicability of rectal swabs for gut microbiota profiling in a clinical routine setting in patients presenting with various gastro-intestinal disorders. We found that rectal swabs appeared to be a convenient means of sampling the human gut microbiota. Swabs can be performed on demand, whenever a patient presents; swab-derived microbiota profiles are reproducible, whether they are gathered at home by patients or by medical professionals in an outpatient setting and may be ideally suited for clinical diagnostics and large-scale studies.

  11. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity

    NARCIS (Netherlands)

    Verdam, F.J.; Fuentes Enriquez de Salamanca, S.; Jonge, de C.; Zoetendal, E.G.; Erbil, R.; Greve, J.W.; Buurman, W.A.; Vos, de W.M.; Rensen, S.S.

    2013-01-01

    OBJECTIVE: Intestinal microbiota have been suggested to contribute to the development of obesity, but the mechanism remains elusive. The relationship between microbiota composition, intestinal permeability, and inflammation in nonobese and obese subjects was investigated. DESIGN AND METHODS: Fecal m

  12. Recurrent Clostridium difficile infections: the importance of the intestinal microbiota.

    Science.gov (United States)

    Zanella Terrier, Marie Céline; Simonet, Martine Louis; Bichard, Philippe; Frossard, Jean Louis

    2014-06-21

    Clostridium difficile infections (CDI) are a leading cause of antibiotic-associated and nosocomial diarrhea. Despite effective antibiotic treatments, recurrent infections are common. With the recent emergence of hypervirulent isolates of C. difficile, CDI is a growing epidemic with higher rates of recurrence, increasing severity and mortality. Fecal microbiota transplantation (FMT) is an alternative treatment for recurrent CDI. A better understanding of intestinal microbiota and its role in CDI has opened the door to this promising therapeutic approach. FMT is thought to resolve dysbiosis by restoring gut microbiota diversity thereby breaking the cycle of recurrent CDI. Since the first reported use of FMT for recurrent CDI in 1958, systematic reviews of case series and case report have shown its effectiveness with high resolution rates compared to standard antibiotic treatment. This article focuses on current guidelines for CDI treatment, the role of intestinal microbiota in CDI recurrence and current evidence about FMT efficacy, adverse effects and acceptability.

  13. Factors determining colorectal cancer: the role of the intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Esther eNistal

    2015-10-01

    Full Text Available The gastrointestinal tract, in particular the colon, holds a complex community of microorganisms, which are essential for maintaining homeostasis. However, in recent years, many studies have implicated microbiota in the development of colorectal cancer (CRC, with this disease considered a major cause of death in the western world. The mechanisms underlying bacterial contribution in its development are complex and are not yet fully understood. However, there is increasing evidence showing a connection between intestinal microbiota and CRC. Intestinal microorganisms cause the onset and progression of CRC using different mechanisms, such as the induction of a chronic inflammation state, the biosynthesis of genotoxins that interfere with cell cycle regulation, the production of toxic metabolites or heterocyclic amine activation of pro-diet carcinogenic compounds. Despite these advances additional studies in humans and animal models will further decipher the relationship between microbiota and CRC, and aid in developing alternate therapies based on microbiota manipulation.

  14. Longitudinal Analysis of the Intestinal Microbiota in Liver Transplantation

    Science.gov (United States)

    Kato, Karin; Nagao, Miki; Miyamoto, Kentaro; Oka, Kentaro; Takahashi, Motomichi; Yamamoto, Masaki; Matsumura, Yasufumi; Kaido, Toshimi; Uemoto, Shinji; Ichiyama, Satoshi

    2017-01-01

    Background Increasing evidence suggests that the intestinal microbiota plays an important role in liver diseases. However, the dynamics of the intestinal microbiota during liver transplantation (LT) and its potential role in clinical course remain unknown. Methods We prospectively analyzed the intestinal microbiota of 38 patients who underwent LT in Kyoto University Hospital. We characterized the microbial compositions of fecal specimens from LT patients using a metagenomics approach by an Illumina MiSeq platform. We analyzed the diversity of microbiota sequentially from pretransplantation until 2 months after LT and also compared the microbiota during an episode of acute cellular rejection (ACR) and bloodstream infections (BSI) to the microbial composition of time-matched fecal specimens obtained from patients who did not experience ACR or BSI, respectively. Results Three hundred twenty fecal specimens were analyzed. Dynamic changes were observed in the microbial composition of LT recipients during the perioperative period. Over the course of LT, the mean diversity index decreased during the first 3 weeks after LT and gradually increased during our observation period. The loss of intestinal microbiota diversity was associated with high Child-Pugh scores, high model for end-stage liver disease scores, ACR, and BSI. At the family level, Bacteroides, Enterobacteriaceae, Streptococcaceae, and Bifidobacteriaceae were increased whereas Enterococcaceae, Lactobacillaceae, Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae were decreased in ACR patients. Conclusions The microbiota of LT patients was associated with the severity of liver diseases and the presence of ACR and BSI. These results lay the groundwork for more comprehensive investigations of microbiota characteristics to identify diagnostic markers for transplant health and to guide intervention strategies to improve transplant outcomes.

  15. Intestinal microbiota and its role in irritable bowel syndrome (IBS).

    Science.gov (United States)

    Ohman, Lena; Simrén, Magnus

    2013-05-01

    Gut microbiota alterations are increasingly being recognized as an important factor in the pathogenesis and pathophysiology of Irritable bowel syndrome (IBS). The onset of IBS symptoms after a bout of gastroenteritis comprises one of the strongest indications for the importance of gut microbiota for IBS. Moreover, recent studies have identified several susceptibility genes for IBS involved in the innate immunity and recognition of bacteria but also maintaining the integrity of the intestinal barrier. During recent years, it has also been demonstrated that IBS patients, or subgroups thereof, may have an altered microbiota composition relative to healthy individuals, mainly based on the analysis of fecal microbiota. Moreover, a positive effect of treatment with non-absorbable antibiotics and probiotics in IBS provides further indirect support for the relevance of gut microbiota alterations in IBS.

  16. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine

    Science.gov (United States)

    Caballero, Silvia; Pamer, Eric G.

    2015-01-01

    The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis. PMID:25581310

  17. Modulation of immune development and function by intestinal microbiota.

    Science.gov (United States)

    Kabat, Agnieszka M; Srinivasan, Naren; Maloy, Kevin J

    2014-11-01

    The immune system must constantly monitor the gastrointestinal tract for the presence of pathogens while tolerating trillions of commensal microbiota. It is clear that intestinal microbiota actively modulate the immune system to maintain a mutually beneficial relation, but the mechanisms that maintain homeostasis are not fully understood. Recent advances have begun to shed light on the cellular and molecular factors involved, revealing that a range of microbiota derivatives can influence host immune functions by targeting various cell types, including intestinal epithelial cells, mononuclear phagocytes, innate lymphoid cells, and B and T lymphocytes. Here, we review these findings, highlighting open questions and important challenges to overcome in translating this knowledge into new therapies for intestinal and systemic immune disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Intestinal microbiota and allergic diseases: A systematic review.

    Science.gov (United States)

    Melli, L C F L; do Carmo-Rodrigues, M S; Araújo-Filho, H B; Solé, D; de Morais, M B

    2016-01-01

    Evidence suggests that possible imbalances in intestinal microbiota composition may be implicated in the occurrence of allergic diseases. Although several studies published until 2006 indicated a correlation between microbiota composition and allergic symptoms, it has not been possible to distinguish protective microorganisms from those associated with increased risk of allergic diseases. Therefore, the objective of this study was to review the studies published since 2007 that address the intestinal microbiota in allergic diseases. Twenty-one studies were identified after excluding those that performed a clinical intervention before stool collection. In the early microbiota of children who later developed allergies, lower bacterial diversity was observed, with a predominance of Firmicutes; a higher count of Bacteroidaceae; a higher prevalence of the anaerobic bacteria Bacteroides fragilis, Escherichia coli, Clostridium difficile, Bifidobacterium catenulatum, Bifidobacterium bifidum, and Bifidobacterium longum; and a lower prevalence of Bifidobacterium adolescentis, B. bifidum, and Lactobacillus. In the microbiota of allergic children whose intestinal microbiota was assessed at the onset of allergic symptoms, there was a higher count of Bacteroides; a lower count of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Clostridium; a higher prevalence of B. adolescentis; a lower prevalence of B. catenulatum and Staphylococcus aureus; and a lower bacterial diversity.

  19. Microbiota intestinal en la salud y en la enfermedad

    OpenAIRE

    Gómez Arce, Andrea

    2016-01-01

    La microbiota intestinal, formada por más de 100 billones de organismos, es el ecosistema más complejo y densamente poblado que coloniza el cuerpo humano. El conocimiento sobre el papel de la microbiota y su relación de beneficio mutuo con el huésped ha aumentado notablemente gracias al reciente desarrollo de las tecnologías de secuenciación del ADN de nueva generación y la metagenómica. La colonización del intestino comienza en el nacimiento y la microbiota está expuesta a constantes modific...

  20. Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants.

    Science.gov (United States)

    Hill, Cian J; Brown, Jillian R M; Lynch, Denise B; Jeffery, Ian B; Ryan, C Anthony; Ross, R Paul; Stanton, Catherine; O'Toole, Paul W

    2016-05-10

    Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults. Use of the storage vials increased the quality of extracted bacterial DNA by reduction of DNA shearing. When infant and elderly datasets were examined separately, no differences in microbiota composition were observed due to storage. When the two datasets were combined, there was a difference according to a Wilcoxon test in the relative proportions of Faecalibacterium, Sporobacter, Clostridium XVIII, and Clostridium XlVa after 1 week's storage compared to immediately extracted samples. After 2 weeks' storage, Bacteroides abundance was also significantly different, showing an apparent increase from week 1 to week 2. The microbiota composition of infant samples was more affected than that of elderly samples by storage, with significantly higher Spearman distances between paired freshly extracted and stored samples (p microbiota profiles were analysed at the operational taxonomic unit (OTU) level, three infant datasets in the study did not cluster together, while only one elderly dataset did not. The lower microbiota diversity of the infant gut microbiota compared to the elderly gut microbiota (p microbiota samples, but may be less appropriate for lower diversity samples. Differences between fresh and stored samples mean that where storage is

  1. The interplay between the intestinal microbiota and the brain.

    Science.gov (United States)

    Collins, Stephen M; Surette, Michael; Bercik, Premysl

    2012-11-01

    The intestinal microbiota consists of a vast bacterial community that resides primarily in the lower gut and lives in a symbiotic relationship with the host. A bidirectional neurohumoral communication system, known as the gut-brain axis, integrates the host gut and brain activities. Here, we describe the recent advances in our understanding of how the intestinal microbiota communicates with the brain via this axis to influence brain development and behaviour. We also review how this extended communication system might influence a broad spectrum of diseases, including irritable bowel syndrome, psychiatric disorders and demyelinating conditions such as multiple sclerosis.

  2. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms

    NARCIS (Netherlands)

    Jalanka-Tuovinen, J.; Vos, de W.M.

    2011-01-01

    BACKGROUND: While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability,

  3. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity.

    Science.gov (United States)

    Laursen, Martin Frederik; Andersen, Louise B B; Michaelsen, Kim F; Mølgaard, Christian; Trolle, Ellen; Bahl, Martin Iain; Licht, Tine Rask

    2016-01-01

    The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through vertically transmitted microbes or through the dietary habits of the family. Additionally, very little is known about the effect of diet during the complementary feeding period, which is potentially important for gut microbiota development. Here, the gut microbiotas of two different cohorts of infants, born either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal obesity did not influence microbial diversity or specific taxon abundances during the complementary feeding period. Across cohorts, breastfeeding duration and composition of the complementary diet were found to be the major determinants of gut microbiota development. In both cohorts, gut microbial composition and alpha diversity were thus strongly affected by introduction of family foods with high protein and fiber contents. Specifically, intake of meats, cheeses, and Danish rye bread, rich in protein and fiber, were associated with increased alpha diversity. Our results reveal that the transition from early infant feeding to family foods is a major determinant for gut microbiota development. IMPORTANCE The potential influence of maternal obesity on infant gut microbiota may occur either through vertically transmitted microbes or through the dietary habits of the family. Recent studies have suggested that the heritability of obesity may partly be caused by the transmission of "obesogenic" gut microbes. However, the findings presented here suggest that maternal obesity per

  4. INTESTINAL MICROBIOTA AND USE OF PROBIOTICS IN PEDIATRIC PRACTICE: NEWS

    Directory of Open Access Journals (Sweden)

    S. G. Makarova

    2015-01-01

    Full Text Available Condition of intestinal microbiota is a key factor of a child's health. According to the latest studies, distinctness and certain stability of every person's microbiota is to a large extent determined genetically; at the same time, microbiocenosis is sensitive to external exposure, i.e. it is labile. The article presents new data on the intestinal microflora's composition and function, as well as on the nature of interaction in the microbiocenosis-host system. Intestinal microflora directly affects formation of a child's immune system, ensures protection from pathogens and takes part in all types of metabolism. The article presents modern approaches to intestinal microflora modulation and use of probiotics to prevent and treat various pathologies in pediatric practice.

  5. The microbiota shifts the iron sensing of intestinal cells.

    Science.gov (United States)

    Deschemin, Jean-Christophe; Noordine, Marie-Louise; Remot, Aude; Willemetz, Alexandra; Afif, Clément; Canonne-Hergaux, François; Langella, Philippe; Karim, Zoubida; Vaulont, Sophie; Thomas, Muriel; Nicolas, Gaël

    2016-01-01

    The amount of iron in the diet directly influences the composition of the microbiota. Inversely, the effects of the microbiota on iron homeostasis have been little studied. So, we investigate whether the microbiota itself may alter host iron sensing. Duodenal cytochrome b and divalent metal transporter 1, involved in apical iron uptake, are 8- and 10-fold, respectively, more abundant in the duodenum of germ-free (GF) mice than in mice colonized with a microbiota. In contrast, the luminal exporter ferroportin is 2-fold less abundant in GF. The overall signature of microbiota on iron-related proteins is similar in the colon. The colonization does not modify systemic parameters as plasma transferrin saturation (20%), plasma ferritin (150 ng/L), and liver (85 µg/g) iron load. Commensal organisms (Bacteroides thetaiotaomicron VPI-5482 and Faecalibacterium prausnitzii A2-165) and a probiotic strain (Streptococcus thermophilus LMD-9) led to up to 12-fold induction of ferritin in colon. Our data suggest that the intestinal cells of GF mice are depleted of iron and that following colonization, the epithelial cells favor iron storage. This study is the first to demonstrate that gut microbes induce a specific iron-related protein signature, highlighting new aspects of the crosstalk between the microbiota and the intestinal epithelium.

  6. Microbiota intestinal en la salud y la enfermedad

    Directory of Open Access Journals (Sweden)

    M.E. Icaza-Chávez

    2013-10-01

    Full Text Available La microbiota intestinal es la comunidad de microorganismos vivos residentes en el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado al conocimiento de un número importante de bacterias que no son cultivables, y de la relación entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispensable para el correcto crecimiento corporal, el desarrollo de la inmunidad y la nutrición. Las alteraciones en la microbiota podrían explicar, por lo menos en parte, algunas epidemias de la humanidad como el asma y la obesidad. La disbiosis se ha asociado a una serie de trastornos gastrointestinales que incluyen el hígado graso no alcohólico, la enfermedad celíaca y el síndrome de intestino irritable. En el presente trabajo trataremos sobre la nomenclatura, las técnicas de estudio modernas, las funciones de la microbiota intestinal y la relación que tiene con la salud y la enfermedad.

  7. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  8. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    Science.gov (United States)

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria.

  9. Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants.

    LENUS (Irish Health Repository)

    Hill, Cian J

    2016-05-01

    Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults.

  10. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  11. Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota

    NARCIS (Netherlands)

    Bogert, van den B.; Meijerink, M.; Zoetendal, E.G.; Wells, J.M.; Kleerebezem, M.

    2014-01-01

    The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains

  12. Comprehensive Survey of Intestinal Microbiota Changes in Offspring of Human Microbiota-Associated Mice

    Science.gov (United States)

    von Klitzing, Eliane; Öz, Fulya; Ekmekciu, Ira; Escher, Ulrike; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species. PMID:28386472

  13. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena?

    Science.gov (United States)

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-02-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS.

  14. Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota

    Science.gov (United States)

    Davis, Jasmine C. C.; Lewis, Zachery T.; Krishnan, Sridevi; Bernstein, Robin M.; Moore, Sophie E.; Prentice, Andrew M.; Mills, David A.; Lebrilla, Carlito B.; Zivkovic, Angela M.

    2017-01-01

    Human milk oligosaccharides (HMOs) play an important role in the health of an infant as substrate for beneficial gut bacteria. Little is known about the effects of HMO composition and its changes on the morbidity and growth outcomes of infants living in areas with high infection rates. Mother’s HMO composition and infant gut microbiota from 33 Gambian mother/infant pairs at 4, 16, and 20 weeks postpartum were analyzed for relationships between HMOs, microbiota, and infant morbidity and growth. The data indicate that lacto-N-fucopentaose I was associated with decreased infant morbidity, and 3′-sialyllactose was found to be a good indicator of infant weight-for-age. Because HMOs, gut microbiota, and infant health are interrelated, the relationship between infant health and their microbiome were analyzed. While bifidobacteria were the dominant genus in the infant gut overall, Dialister and Prevotella were negatively correlated with morbidity, and Bacteroides was increased in infants with abnormal calprotectin. Mothers nursing in the wet season (July to October) produced significantly less oligosaccharides compared to those nursing in the dry season (November to June). These results suggest that specific types and structures of HMOs are sensitive to environmental conditions, protective of morbidity, predictive of growth, and correlated with specific microbiota. PMID:28079170

  15. Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota

    Science.gov (United States)

    Davis, Jasmine C. C.; Lewis, Zachery T.; Krishnan, Sridevi; Bernstein, Robin M.; Moore, Sophie E.; Prentice, Andrew M.; Mills, David A.; Lebrilla, Carlito B.; Zivkovic, Angela M.

    2017-01-01

    Human milk oligosaccharides (HMOs) play an important role in the health of an infant as substrate for beneficial gut bacteria. Little is known about the effects of HMO composition and its changes on the morbidity and growth outcomes of infants living in areas with high infection rates. Mother’s HMO composition and infant gut microbiota from 33 Gambian mother/infant pairs at 4, 16, and 20 weeks postpartum were analyzed for relationships between HMOs, microbiota, and infant morbidity and growth. The data indicate that lacto-N-fucopentaose I was associated with decreased infant morbidity, and 3‧-sialyllactose was found to be a good indicator of infant weight-for-age. Because HMOs, gut microbiota, and infant health are interrelated, the relationship between infant health and their microbiome were analyzed. While bifidobacteria were the dominant genus in the infant gut overall, Dialister and Prevotella were negatively correlated with morbidity, and Bacteroides was increased in infants with abnormal calprotectin. Mothers nursing in the wet season (July to October) produced significantly less oligosaccharides compared to those nursing in the dry season (November to June). These results suggest that specific types and structures of HMOs are sensitive to environmental conditions, protective of morbidity, predictive of growth, and correlated with specific microbiota.

  16. Gut microbiota and the development of obesity La microbiota intestinal y el desarrollo de la obesidad

    Directory of Open Access Journals (Sweden)

    A. P. Boroni Moreira

    2012-10-01

    Full Text Available Introduction: Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. Objective: The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. Results and discussion: The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in

  17. The Fecal Microbiota Profile and Bronchiolitis in Infants.

    Science.gov (United States)

    Hasegawa, Kohei; Linnemann, Rachel W; Mansbach, Jonathan M; Ajami, Nadim J; Espinola, Janice A; Petrosino, Joseph F; Piedra, Pedro A; Stevenson, Michelle D; Sullivan, Ashley F; Thompson, Amy D; Camargo, Carlos A

    2016-07-01

    Little is known about the association of gut microbiota, a potentially modifiable factor, with bronchiolitis in infants. We aimed to determine the association of fecal microbiota with bronchiolitis in infants. We conducted a case-control study. As a part of multicenter prospective study, we collected stool samples from 40 infants hospitalized with bronchiolitis. We concurrently enrolled 115 age-matched healthy controls. By applying 16S rRNA gene sequencing and an unbiased clustering approach to these 155 fecal samples, we identified microbiota profiles and determined the association of microbiota profiles with likelihood of bronchiolitis. Overall, the median age was 3 months, 55% were male, and 54% were non-Hispanic white. Unbiased clustering of fecal microbiota identified 4 distinct profiles: Escherichia-dominant profile (30%), Bifidobacterium-dominant profile (21%), Enterobacter/Veillonella-dominant profile (22%), and Bacteroides-dominant profile (28%). The proportion of bronchiolitis was lowest in infants with the Enterobacter/Veillonella-dominant profile (15%) and highest in the Bacteroides-dominant profile (44%), corresponding to an odds ratio of 4.59 (95% confidence interval, 1.58-15.5; P = .008). In the multivariable model, the significant association between the Bacteroides-dominant profile and a greater likelihood of bronchiolitis persisted (odds ratio for comparison with the Enterobacter/Veillonella-dominant profile, 4.24; 95% confidence interval, 1.56-12.0; P = .005). In contrast, the likelihood of bronchiolitis in infants with the Escherichia-dominant or Bifidobacterium-dominant profile was not significantly different compared with those with the Enterobacter/Veillonella-dominant profile. In this case-control study, we identified 4 distinct fecal microbiota profiles in infants. The Bacteroides-dominant profile was associated with a higher likelihood of bronchiolitis. Copyright © 2016 by the American Academy of Pediatrics.

  18. Effects of specific carbohydrates on the intestinal microbiota

    DEFF Research Database (Denmark)

    Hemmingsen, Lene; Holck, Jesper; Meyer, Anne S.

    The current screening study aimed at testing a set of well-characterized carbohydrates derived from pectic oligosaccharides (POS) from sugar beet for their specific effect on intestinal microbiotas derived from healthy people and from patients suffering from the inflammatory bowel disease...... microbiotas. Changes in the microbial composition were addressed by Denaturing Gradient Gel Electrophoresis, DGGE, using Fructo- Oligosaccharides (FOS, a goldenstandard prebiotic) and glucose as reference substrates. Comparison between the DGGE profiles obtained by fermentations of S1, S2 and FOS showed...

  19. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish

    Science.gov (United States)

    Semova, Ivana; Carten, Juliana D.; Stombaugh, Jesse; Mackey, Lantz C.; Knight, Rob; Farber, Steven A.; Rawls, John F.

    2012-01-01

    SUMMARY Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host’s energy balance, their role in intestinal absorption and extra-intestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance. PMID:22980325

  20. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease.

    Science.gov (United States)

    Noel, Sanjeev; Martina-Lingua, Maria N; Bandapalle, Samatha; Pluznick, Jennifer; Hamad, Abdel Rahim A; Peterson, Daniel A; Rabb, Hamid

    2014-01-01

    The pathophysiology of acute kidney injury (AKI) involves multiple and overlapping immunological, biochemical, and hemodynamic mechanisms that modulate the effects of both the initial insult and the subsequent repair. Limited but recent experimental data have revealed that the intestinal microbiota significantly affects outcomes in AKI. Additional evidence shows significant changes in the intestinal microbiota in chronic kidney disease patients and in experimental AKI. In this minireview, we discuss the current status of the effect of intestinal microbiota on kidney diseases, the immunomodulatory effects of intestinal microbiota, and the potential mechanisms by which microbiota can modify kidney diseases and vice versa. We also propose future studies to clarify the role of intestinal microbiota in kidney diseases and to explore how the modification of gut microbiota may be a potential therapeutic tool.

  1. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection

    Science.gov (United States)

    Ren, Wenkai; Yin, Jie; Xiao, Hao; Chen, Shuai; Liu, Gang; Tan, Bie; Li, Nengzhang; Peng, Yuanyi; Li, Tiejun; Zeng, Benhua; Li, Wenxia; Wei, Hong; Yin, Zhinan; Wu, Guoyao; Hardwidge, Philip R.; Yin, Yulong

    2017-01-01

    Intestinal microbiota has critical importance in pathogenesis of intestinal infection; however, the role of intestinal microbiota in intestinal immunity during enterotoxigenic Escherichia coli (ETEC) infection is poorly understood. The present study tested the hypothesis that the intestinal microbiota is associated with intestinal interleukin-17 (IL-17) expression in response to ETEC infection. Here, we found ETEC infection induced expression of intestinal IL-17 and dysbiosis of intestinal microbiota, increasing abundance of γ-aminobutyric acid (GABA)-producing Lactococcus lactis subsp. lactis. Antibiotics treatment in mice lowered the expression of intestinal IL-17 during ETEC infection, while GABA or L. lactis subsp. lactis administration restored the expression of intestinal IL-17. L. lactis subsp. lactis administration also promoted expression of intestinal IL-17 in germ-free mice during ETEC infection. GABA enhanced intestinal IL-17 expression in the context of ETEC infection through activating mechanistic target of rapamycin complex 1 (mTORC1)-ribosomal protein S6 kinase 1 (S6K1) signaling. GABA–mTORC1 signaling also affected intestinal IL-17 expression in response to Citrobacter rodentium infection and in drug-induced model of intestinal inflammation. These findings highlight the importance of intestinal GABA signaling in intestinal IL-17 expression during intestinal infection and indicate the potential of intestinal microbiota-GABA signaling in IL-17-associated intestinal diseases. PMID:28138329

  2. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality

    Directory of Open Access Journals (Sweden)

    Rebecca I. Clark

    2015-09-01

    Full Text Available Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.

  3. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality.

    Science.gov (United States)

    Clark, Rebecca I; Salazar, Anna; Yamada, Ryuichi; Fitz-Gibbon, Sorel; Morselli, Marco; Alcaraz, Jeanette; Rana, Anil; Rera, Michael; Pellegrini, Matteo; Ja, William W; Walker, David W

    2015-09-08

    Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.

  4. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Jonna Jalanka-Tuovinen

    Full Text Available BACKGROUND: While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. PRINCIPAL FINDINGS: A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. CONCLUSIONS/SIGNIFICANCE: A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the

  5. Intestinal microbiota signatures associated with inflammation history in mice experiencing recurring colitis

    OpenAIRE

    David eBerry; Orest eKuzyk; Isabella eRauch; Susanne eHeider; Clarissa eSchwab; Eva eHainzl; Thomas eDecker; Mathias eMüller; Birgit eStrobl; Christa eSchleper; Tim eUrich; Michael eWagner; Lukas eKenner; Alexander eLoy

    2015-01-01

    Acute colitis causes alterations in the intestinal microbiota, but the microbiota is thought to recover after such events. Extreme microbiota alterations are characteristic of human chronic inflammatory bowel diseases, although alterations reported in different studies are divergent and sometimes even contradictory. To better understand the impact of periodic disturbances on the intestinal microbiota and its compositional difference between acute and relapsing colitis, we investigated the beg...

  6. Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis

    OpenAIRE

    Berry, David; Kuzyk, Orest; Rauch, Isabella; Heider, Susanne; Schwab, Clarissa; Hainzl, Eva; Decker, Thomas; Müller, Mathias; Strobl, Birgit; Schleper, Christa; Urich, Tim; Wagner, Michael; Kenner, Lukas; Loy, Alexander

    2015-01-01

    Acute colitis causes alterations in the intestinal microbiota, but the microbiota is thought to recover after such events. Extreme microbiota alterations are characteristic of human chronic inflammatory bowel diseases, although alterations reported in different studies are divergent and sometimes even contradictory. To better understand the impact of periodic disturbances on the intestinal microbiota and its compositional difference between acute and relapsing colitis, we investigated the beg...

  7. Impacto da microbiota intestinal na saúde mental

    OpenAIRE

    Landeiro, Joana Almeida Vilão Raposo

    2016-01-01

    Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz A microbiota intestinal consiste no conjunto de microrganismos residentes no intestino humano e que é responsável pela execução de diversas funções, sendo essencial para a manutenção da homeostase. Esta encontra-se em comunicação com o sistema nervoso central através do eixo intestino-cérebro, sendo esta comunicação bidirecional. Vários estudos têm revelado que a microbiota intestinal influenc...

  8. Effects of specific carbohydrates on the intestinal microbiota

    DEFF Research Database (Denmark)

    Hemmingsen, Lene; Holck, Jesper; Meyer, Anne S.;

    The current screening study aimed at testing a set of well-characterized carbohydrates derived from pectic oligosaccharides (POS) from sugar beet for their specific effect on intestinal microbiotas derived from healthy people and from patients suffering from the inflammatory bowel disease...... designated Ulcerative Colitis (UC). Two such oligosaccharides having different degrees of polymerization, in the following designated S1 and S2, respectively, were tested. Small scale anaerobic fermentation studies were performed to test the effect of S1 and S2 on the composition of the intestinal...... microbiotas. Changes in the microbial composition were addressed by Denaturing Gradient Gel Electrophoresis, DGGE, using Fructo- Oligosaccharides (FOS, a goldenstandard prebiotic) and glucose as reference substrates. Comparison between the DGGE profiles obtained by fermentations of S1, S2 and FOS showed...

  9. Sepsis in preterm infants causes alterations in mucosal gene expression and microbiota profiles compared to non-septic twins.

    Science.gov (United States)

    Cernada, María; Bäuerl, Christine; Serna, Eva; Collado, Maria Carmen; Martínez, Gaspar Pérez; Vento, Máximo

    2016-05-16

    Sepsis is a life-threatening condition in preterm infants. Neonatal microbiota plays a pivotal role in the immune system maturation. Changes in gut microbiota have been associated to inflammatory disorders; however, a link with sepsis in the neonatal period has not yet been established. We aimed to analyze gut microbiota and mucosal gene expression using non-invasively obtained samples to provide with an integrative perspective of host-microbe interactions in neonatal sepsis. For this purpose, a prospective observational case-control study was conducted in septic preterm dizygotic twins and their non-septic twin controls. Fecal samples were used for both microbiota analysis and host genome-wide expression using exfoliated intestinal cells. Gene expression of exfoliated intestinal cells in septic preterm showed an induction of inflammatory and oxidative stress pathways in the gut and pro-oxidant profile that caused dysbiosis in the gut microbiota with predominance of Enterobacteria and reduction of Bacteroides and Bifidobacterium spp.in fecal samples, leading to a global reduction of beneficial anaerobic bacteria. Sepsis in preterm infants induced low-grade inflammation and oxidative stress in the gut mucosa, and also changes in the gut microbiota. This study highlights the role of inflammation and oxidative stress in neonatal sepsis on gut microbial profiles.

  10. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    OpenAIRE

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible cau...

  11. Alterations of intestinal barrier and microbiota in chronic kidney disease.

    Science.gov (United States)

    Sabatino, Alice; Regolisti, Giuseppe; Brusasco, Irene; Cabassi, Aderville; Morabito, Santo; Fiaccadori, Enrico

    2015-06-01

    Recent studies have highlighted the close relationship between the kidney and the gastrointestinal (GI) tract--frequently referred to as the kidney--gut axis--in patients with chronic kidney disease (CKD). In this regard, two important pathophysiological concepts have evolved: (i) production and accumulation of toxic end-products derived from increased bacterial fermentation of protein and other nitrogen-containing substances in the GI tract, (ii) translocation of endotoxins and live bacteria from gut lumen into the bloodstream, due to damage of the intestinal epithelial barrier and quantitative/qualitative alterations of the intestinal microbiota associated with the uraemic milieu. In both cases, these gut-centred alterations may have relevant systemic consequences in CKD patients, since they are able to trigger chronic inflammation, increase cardiovascular risk and worsen uraemic toxicity. The present review is thus focused on the kidney-gut axis in CKD, with special attention to the alterations of the intestinal barrier and the local microbiota (i.e. the collection of microorganisms living in a symbiotic coexistence with their host in the intestinal lumen) and their relationships to inflammation and uraemic toxicity in CKD. Moreover, we will summarize the most important clinical data suggesting the potential for nutritional modulation of gut-related inflammation and intestinal production of noxious by-products contributing to uraemic toxicity in CKD patients.

  12. 婴儿肠道菌群研究现状%Research Situation of Infant Gastrointestinal Microbiota

    Institute of Scientific and Technical Information of China (English)

    张和平; 霍冬雪

    2013-01-01

    肠道菌群在机体消化代谢、免疫调节和抵抗疾病等方面有着不可替代的作用.婴儿时期是肠道菌群建立的关键时期.如果此时肠道菌群结构合理、代谢平衡,那么今后该机体免疫系统发育将更加完善,并且患代谢类疾病的风险相对较小.本文从婴儿肠道菌群的起源、建立及其与疾病的关系,婴儿食品的开发等方面详细论述婴儿肠道菌群的研究现状及发展趋势.%The human gastrointestinal microbiota plays a major role in aiding gastrointestinal functions,including the nutrient bioavailability,the modulation of gastrointestinal immune activity and disease prevention.Babyhood is the critical period for the establishment of the gastrointestinal microbiota.In this period,the well establishment of intestinal microbiota will significantly promote the body health and decrease the risk of suffering the metabolic type disease.In this review,we concluded the research situation and developmental tendency of infant gastrointestinal microbiota from the following aspects of the origin and the establishment of the infant intestinal microbiota,the relationship of the metabolic disease and the infant intestinal microbiota and the development of infant food.

  13. On the origin of species: Factors shaping the establishment of infant's gut microbiota.

    Science.gov (United States)

    van Best, Niels; Hornef, Mathias W; Savelkoul, Paul H M; Penders, John

    2015-12-01

    The human gut microbiota is a complex and dynamic ecosystem, which naturally lives in a symbiotic relationship with the host. Perturbations of the microbial composition (dysbiosis) and reduced diversity may promote disease susceptibility and recurrence. In contrast to the mature intestinal microbiota of healthy adults, which appears relatively stable over time, the infant's microbiome only establishes and matures during the first years of life. In this respect, early childhood seems to represent a crucial age-window in disease prevention, since microbial diversification and maturation of the microbiome primarily occurs during this period of life. A better understanding of ecological processes and pioneer consortia in microbial development is crucial, in order to support the development of a beneficial microbiota. Various deterministic and stochastic aspects seem to shape the microbiome in early life, including maternal, environmental, and host factors. Here, we review the current understanding of the origin of pioneer bacteria and the evolutionary factors that influence the development of the gut microbiota in infants. In addition, future perspectives, including manipulating and promoting the succession of initial bacteria during infancy, will be highlighted.

  14. Association of the Intestinal Microbiota and Obesity.

    Science.gov (United States)

    López-Cepero, Andrea A; Palacios, Cristina

    2015-06-01

    Obesity is a condition mainly caused by an alteration in energy intake, shifting towards positive energy balance, which can be influenced by genetic and environmental factors. The human gut is heavily populated with microbial organisms. Recent evidence suggests that obesity is influenced by specific bacterial phyla present in the human gut that have increased energy harvesting capabilities. The main objective of this review is to identify the microbial taxa that are related to obesity and weight loss. In this review, we also discuss the differences between the phylum ratio of the gut microbiota population of obese individuals and that of individuals who have healthy weight. It has been shown that obese individuals have a higher ratio of Firmicutes to Bacteroidetes than healthy weight individuals. The few studies to date have shown that weight-loss treatment may change microbial population of the gut, as there is a decrease in the ratio of Firmicutes to Bacteroidetes. Treating imbalances of the gut microbiota may offer new possibilities for treating obesity.

  15. The role of the intestinal microbiota in type 1 diabetes.

    Science.gov (United States)

    Hara, Naoko; Alkanani, Aimon K; Ir, Diana; Robertson, Charles E; Wagner, Brandie D; Frank, Daniel N; Zipris, Danny

    2013-02-01

    The digestive tract hosts trillions of bacteria that interact with the immune system and can influence the balance between pro-inflammatory and regulatory immune responses. Recent studies suggest that alterations in the composition of the intestinal microbiota may be linked with the development of type 1 diabetes (T1D). Data from the biobreeding diabetes prone (BBDP) and the LEW1.WR1 models of T1D support the hypothesis that intestinal bacteria may be involved in early disease mechanisms. The data indicate that cross-talk between the gut microbiota and the innate immune system may be involved in islet destruction. Whether a causal link between intestinal microbiota and T1D exists, the identity of the bacteria and the mechanism whereby they promote the disease remain to be examined. A better understanding of the interplay between microbes and innate immune pathways in early disease stages holds promise for the design of immune interventions and disease prevention in genetically susceptible individuals.

  16. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study

    Science.gov (United States)

    Murphy, Kiera; Curley, David; O’Callaghan, Tom F.; O’Shea, Carol-Anne; Dempsey, Eugene M.; O’Toole, Paul W.; Ross, R. Paul; Ryan, C. Anthony; Stanton, Catherine

    2017-01-01

    Human milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine. PMID:28094284

  17. Intestinal microbiota transplant - current state of knowledge.

    Science.gov (United States)

    Leszczyszyn, Jarosław Jerzy; Radomski, Marek; Leszczyszyn, Anna Maria

    2016-01-01

    Faecal microbiota transplantation (FMT) has induced a lot scientific interest and hopes for the last couple of years. FMT has been approved as a treatment of recurrent Clostridium difficile colitis. Highly sophisticated molecular DNA identification methods have been used to assess the healthy human microbiome as well as its disturbances in several diseases. The metabolic and immunologic functions of the microbiome have become more clear and understandable. A lot of pathological changes, such as production of short-chain fatty acids or components of the inflammatory cascade, caused by changes in microbiome diversity, variability and richness have been observed among patients suffering from inflammatory bowel diseases, irritable bowel syndrome, type 2 diabetes or rheumatoid arthritis. The published clinical results are encouraging, but still there is huge demand for FMT controlled clinical trials.

  18. Intestinal microbiota in healthy U.S. young children and adults--a high throughput microarray analysis.

    Directory of Open Access Journals (Sweden)

    Tamar Ringel-Kulka

    Full Text Available It is generally believed that the infant's microbiota is established during the first 1-2 years of life. However, there is scarce data on its characterization and its comparison to the adult-like microbiota in consecutive years.To characterize and compare the intestinal microbiota in healthy young children (1-4 years and healthy adults from the North Carolina region in the U.S. using high-throughput bacterial phylogenetic microarray analysis.Detailed characterization and comparison of the intestinal microbiota of healthy children aged 1-4 years old (n = 28 and healthy adults of 21-60 years (n = 23 was carried out using the Human Intestinal Tract Chip (HITChip phylogenetic microarray targeting the V1 and V6 regions of 16S rRNA and quantitative PCR.The HITChip microarray data indicate that Actinobacteria, Bacilli, Clostridium cluster IV and Bacteroidetes are the predominant phylum-like groups that exhibit differences between young children and adults. The phylum-like group Clostridium cluster XIVa was equally predominant in young children and adults and is thus considered to be established at an early age. The genus-like level show significant 3.6 fold (higher or lower differences in the abundance of 26 genera between young children and adults. Young U.S. children have a significantly 3.5-fold higher abundance of Bifidobacterium species than the adults from the same location. However, the microbiota of young children is less diverse than that of adults.We show that the establishment of an adult-like intestinal microbiota occurs at a later age than previously reported. Characterizing the microbiota and its development in the early years of life may help identify 'windows of opportunity' for interventional strategies that may promote health and prevent or mitigate disease processes.

  19. Intestinal microbiota in inflammatory bowel disease: Friend of foe?

    Institute of Scientific and Technical Information of China (English)

    Francesca Fava; Silvio Danese

    2011-01-01

    Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota,leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e.digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modulatory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows coexistence of mammals with their commensal bacteria.In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e.Clostridium Ⅸa and Ⅳ groups, Bacteroides , bifidobacteria)and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coli ).The observed dysbiosis is concomitant with defective innate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis)and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogenesis.However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.

  20. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota.

    Science.gov (United States)

    Mirpuri, Julie; Raetz, Megan; Sturge, Carolyn R; Wilhelm, Cara L; Benson, Alicia; Savani, Rashmin C; Hooper, Lora V; Yarovinsky, Felix

    2014-01-01

    The intestinal microbiota changes dynamically from birth to adulthood. In this study we identified γ-Proteobacteria as a dominant phylum present in newborn mice that is suppressed in normal adult microbiota. The transition from a neonatal to a mature microbiota was in part regulated by induction of a γ-Proteobacteria-specific IgA response. Neocolonization experiments in germ-free mice further revealed a dominant Proteobacteria-specific IgA response triggered by the immature microbiota. Finally, a role for B cells in the regulation of microbiota maturation was confirmed in IgA-deficient mice. Mice lacking IgA had persistent intestinal colonization with γ-Proteobacteria that resulted in sustained intestinal inflammation and increased susceptibility to neonatal and adult models of intestinal injury. Collectively, these results identify an IgA-dependent mechanism responsible for the maturation of the intestinal microbiota.

  1. Low diversity of the gut microbiota in infants with atopic eczema.

    Science.gov (United States)

    Abrahamsson, Thomas R; Jakobsson, Hedvig E; Andersson, Anders F; Björkstén, Bengt; Engstrand, Lars; Jenmalm, Maria C

    2012-02-01

    It is debated whether a low total diversity of the gut microbiota in early childhood is more important than an altered prevalence of particular bacterial species for the increasing incidence of allergic disease. The advent of powerful, cultivation-free molecular methods makes it possible to characterize the total microbiome down to the genus level in large cohorts. We sought to assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to atopic eczema development. Microbial diversity and composition were analyzed with barcoded 16S rDNA 454-pyrosequencing in stool samples at 1 week, 1 month, and 12 months of age in 20 infants with IgE-associated eczema and 20 infants without any allergic manifestation until 2 years of age (ClinicalTrials.gov ID NCT01285830). Infants with IgE-associated eczema had a lower diversity of the total microbiota at 1 month (P = .004) and a lower diversity of the bacterial phylum Bacteroidetes and the genus Bacteroides at 1 month (P = .02 and P = .01) and the phylum Proteobacteria at 12 months of age (P = .02). The microbiota was less uniform at 1 month than at 12 months of age, with a high interindividual variability. At 12 months, when the microbiota had stabilized, Proteobacteria, comprising gram-negative organisms, were more abundant in infants without allergic manifestation (Empirical Analysis of Digital Gene Expression in R [edgeR] test: P = .008, q = 0.02). Low intestinal microbial diversity during the first month of life was associated with subsequent atopic eczema. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans.

    Science.gov (United States)

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-02-08

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota.

  3. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  4. The intestinal microbiota and microenvironment in liver.

    Science.gov (United States)

    Ma, Hong-Di; Wang, Yin-Hu; Chang, Christopher; Gershwin, M Eric; Lian, Zhe-Xiong

    2015-03-01

    The intestinal microbiome plays a significant role in the development of autoimmune diseases, in particular, inflammatory bowel diseases. But the interplay between the intestinal tract and the liver may explain the increased association with autoimmune liver diseases and inflammatory bowel diseases. The gut-liver axis involves multiple inflammatory cell types and cytokines, chemokines and other molecules which lead to the destruction of normal liver architecture. Triggers for the initiation of these events are unclear, but appear to include multiple environmental factors, including pathogenic or even commensal microbial agents. The variation in the gut microbiome has been cited as a major factor in the pathogenesis of autoimmune liver disease and even other autoimmune diseases. The unique positioning of the liver at the juncture of the peripheral circulation and the portal circulation augments the interaction between naïve T cells and other hepatic cells and leads to the disruption in the development of tolerance to commensal bacteria and other environmental agents. Finally, the innate immune system and in particular toll-like receptors play a significant role in the pathogenesis of autoimmune liver disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Host genetic and environmental effects on mouse intestinal microbiota.

    Science.gov (United States)

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana; Campbell, Alisha G; Yang, Zamin K; Wymore, Ann; Palumbo, Anthony V; Chesler, Elissa J; Podar, Mircea

    2012-11-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.

  6. [The intestinal microbiota: A new player in depression?

    Science.gov (United States)

    Meyrel, M; Varin, L; Detaint, B; Mouaffak, F

    2017-04-21

    Depression is the leading cause of disability in the world according to the World Health Organization. The effectiveness of the available antidepressant therapies is limited. Data from the literature suggest that some subtypes of depression may be associated with chronic low grade inflammation. The uncovering of the role of intestinal microbiota in the development of the immune system and its bidirectional communication with the brain have led to growing interest on reciprocal interactions between inflammation, microbiota and depression. Our purpose is to review the state of knowledge on these interactions. We carried out a literature search on Pubmed, Go pubmed, psyC info, Elsevier, Embase until August 13, 2016 using the keywords "depression", "microbiota" and "inflammation". Dysbiosis reported in patients suffering from depression seems to contribute to low grade systemic inflammation which in turn feeds back depression. The hypothetical mechanisms behind these interactions are multiple: leaky gut, hyperreactivity of the corticotropic axis, disturbed neurotransmission. Abnormal microbial exposure during childhood and perinatal stress are reported to influence both the maturation of the immune system and the microbiota hence contributing to the ethiopathogeny of depression. There is no evidence in the literature to support a role for diet. The evidence supporting a causal relationship between dysbiosis and depression through low grade inflammation is limited and precludes us from drawing firm conclusions. Further studies are needed to improve our knowledge. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  7. Intestinal Microbiota as an Alternative Therapeutic Target for Epilepsy

    Directory of Open Access Journals (Sweden)

    Jiaying Wu

    2016-01-01

    Full Text Available Epilepsy is one of the most widespread serious neurological disorders, and an aetiological explanation has not been fully identified. In recent decades, a growing body of evidence has highlighted the influential role of autoimmune mechanisms in the progression of epilepsy. The hygiene hypothesis draws people’s attention to the association between gut microbes and the onset of multiple immune disorders. It is also believed that, in addition to influencing digestive system function, symbiotic microbiota can bidirectionally and reversibly impact the programming of extraintestinal pathogenic immune responses during autoimmunity. Herein, we investigate the concept that the diversity of parasitifer sensitivity to commensal microbes and the specific constitution of the intestinal microbiota might impact host susceptibility to epilepsy through promotion of Th17 cell populations in the central nervous system (CNS.

  8. Gut microbiota in Malawian infants in a nutritional supplementation trial.

    Science.gov (United States)

    Cheung, Yin Bun; Xu, Ying; Mangani, Charles; Fan, Yue-Mei; Dewey, Kathryn G; Salminen, Seppo Jaakko; Maleta, Kenneth; Ashorn, Per

    2016-02-01

    To examine whether two forms of lipid-based nutrient supplements (LNS) or a micronutrient-fortified corn-soya blend were associated with development of the gut microbiota in Malawian infants, to assess the microbiota profiles at the age of 6 and 18 months and to follow the changes during the 12-month period. This was a substudy of a 4-arm randomised controlled trial conducted in rural Malawi. Infants at the age of 6 months were randomised to receive no supplement during the primary follow-up period (control), 54 g/day of micronutrient-fortified LNS with milk protein base (milk LNS), 54 g/day of micronutrient-fortified LNS with soya protein base (soya LNS), or 71 g/day of micronutrient-fortified corn-soya blend for 12 months. Stool samples were collected at baseline (6 months) and end of trial (18 months). The 16S rRNA gene was amplified and subjected to multiplex sequencing. A total of 213 infants had paired microbiota data at 6 and 18 months of age. The Dirichlet-multinomial test showed no significant difference in microbiota profile between the four intervention groups at either age (each P > 0.10). Bifidobacterium longum was most abundant at both ages. Lactobacillus ruminis, Shigella and Salmonella were present. The abundance of Prevotella and Faecalibacterium increased with age (each P < 0.001), while Bifidobacteriaceae and Enterobacteriaceae exhibited significant decrease (each P < 0.001). Nutritional supplementation by LNS or corn-soya blend for twelve months did not affect the gut microbiota profile in the rural Malawian context. © 2015 John Wiley & Sons Ltd.

  9. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective.

    Science.gov (United States)

    Han, Jun-Ling; Lin, Hui-Ling

    2014-12-21

    The incidence of type 2 diabetes (T2DM) is rapidly increasing worldwide. However, the pathogenesis of T2DM has not yet been well explained. Recent evidence suggests that the intestinal microbiota composition is associated with obesity and T2DM. In this review, we provide an overview about the mechanisms underlying the role of intestinal microbiota in the pathogenesis of T2DM. There is clear evidence that the intestinal microbiota influences the host through its effect on body weight, bile acid metabolism, proinflammatory activity and insulin resistance, and modulation of gut hormones. Modulating gut microbiota with the use of probiotics, prebiotics, antibiotics, and fecal microbiota transplantation may have benefits for improvement in glucose metabolism and insulin resistance in the host. Further studies are required to increase our understanding of the complex interplay between intestinal microbiota and the host with T2DM. Further studies may be able to boost the development of new effective therapeutic approaches for T2DM.

  10. Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis

    NARCIS (Netherlands)

    Nikkilä, J.; Vos, de W.M.

    2010-01-01

    GOALS: We describe advanced approaches for the computational meta-analysis of a collection of independent studies, including over 1000 phylogenetic array datasets, as a means to characterize the variability of human intestinal microbiota. BACKGROUND: The human intestinal microbiota is a complex micr

  11. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition

    NARCIS (Netherlands)

    Ladirat, S.E.; Schols, H.A.; Nauta, A.; Schoterman, M.H.C.; Keijser, B.J.F.; Montijn, R.C.; Gruppen, H.; Schuren, F.H.J.

    2013-01-01

    Antibiotic treatments can lead to a disruption of the human microbiota. In this in-vitro study, the impact of antibiotics on adult intestinal microbiota was monitored in a new high-throughput approach: a fermentation screening-platform was coupled with a phylogenetic microarray analysis (Intestinal-

  12. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4

    NARCIS (Netherlands)

    Out, Carolien; Patankar, Jay V.; Doktorova, Marcela; Boesjes, Marije; Bos, Trijnie; de Boer, Sanna; Havinga, Rick; Wolters, Henk; Boverhof, Renze; van Dijk, Theo H.; Smoczek, Anna; Bleich, Andre; Sachdev, Vinay; Kratky, Dagmar; Kuipers, Folkert; Verkade, Henkjan J.; Groen, Albert K.

    2015-01-01

    Background & Aims: Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice. Methods: Bile acid homeostasis was assessed in

  13. Contribution of the Intestinal Microbiota to Human Health: From Birth to 100 Years of Age

    NARCIS (Netherlands)

    Cheng, J.; Palva, A.M.; Vos, de W.M.; Satokari, R.

    2013-01-01

    Our intestinal tract is colonized since birth by multiple microbial species that show a characteristic succession in time. Notably the establishment of the microbiota in early life is important as it appears to impact later health. While apparently stable in healthy adults, the intestinal microbiota

  14. The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination.

    Science.gov (United States)

    Ang, Li; Arboleya, Silvia; Lihua, Guo; Chuihui, Yuan; Nan, Qin; Suarez, Marta; Solís, Gonzalo; de los Reyes-Gavilán, Clara G; Gueimonde, Miguel

    2014-12-10

    The microbial colonization of the intestine during the first months of life constitutes the most important process for the microbiota-induced host-homeostasis. Alterations in this process may entail a high-risk for disease in later life. However, the potential factors affecting this process in the infant are not well known. Moreover, the potential impact of orally administered vaccines upon the establishing microbiome remains unknown. Here we assessed the intestinal microbiome establishment process and evaluated the impact of rotavirus vaccination upon this process. Metagenomic, PCR-DGGE and faecal short chain fatty acids analyses were performed on faecal samples obtained from three infants before and after the administration of each dose of vaccine. We found a high inter-individual variability in the early life gut microbiota at microbial composition level, but a large similarity between the infants' microbiomes at functional level. Rotavirus vaccination did not show any major effects upon the infant gut microbiota. Thus, the individual microbiome establishment and development process seems to occur in a defined manner during the first stages of life and rotavirus vaccination appears to be inconsequential for this process.

  15. Influencia de la microbiota intestinal en la obesidad

    OpenAIRE

    SANTACRUZ LOPEZ, YOLANDA ARLETTE

    2012-01-01

    La prevalencia de la obesidad es cada vez mayor y especialmente en niños y adolescentes. En el desarrollo de la obesidad interviene la dieta, factores genéticos, endócrinos, psicológicos y ambientales. El primer objetivo específico fue determinar la influencia de una intervención para el tratamiento de la obesidad sobre la microbiota intestinal de adolescentes obesos y con sobrepeso. Mediante las técnicas de la reacción en cadena de la polimerasa a tiempo real (q-PCR) y de hibridación...

  16. Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection▿

    OpenAIRE

    Sekirov, Inna; Tam, Nicola M.; Jogova, Maria; Robertson, Marilyn L.; Li, Yuling; Lupp, Claudia; Finlay, B. Brett

    2008-01-01

    Intestinal microbiota comprises microbial communities that reside in the gastrointestinal tract and are critical to normal host physiology. Understanding the microbiota's role in host response to invading pathogens will further advance our knowledge of host-microbe interactions. Salmonella enterica serovar Typhimurium was used as a model enteric pathogen to investigate the effect of intestinal microbiota perturbation on host susceptibility to infection. Antibiotics were used to perturb the in...

  17. Effects of rice bran oil on the intestinal microbiota and metabolism of isoflavones in adult mice.

    Science.gov (United States)

    Tamura, Motoi; Hori, Sachiko; Hoshi, Chigusa; Nakagawa, Hiroyuki

    2012-01-01

    This study examined the effects of rice bran oil (RBO) on mouse intestinal microbiota and urinary isoflavonoids. Dietary RBO affects intestinal cholesterol absorption. Intestinal microbiota seem to play an important role in isoflavone metabolism. We hypothesized that dietary RBO changes the metabolism of isoflavonoids and intestinal microbiota in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 10% RBO diet (RO group) and those fed a 0.05% daidzein with 10% lard control diet (LO group) for 30 days. Urinary amounts of daidzein and dihydrodaidzein were significantly lower in the RO group than in the LO group. The ratio of equol/daidzein was significantly higher in the RO group (p microbiota differed between the RO and LO groups. The occupation ratios of Lactobacillales were significantly higher in the RO group (p intestinal microbiota.

  18. Antibiotic treatment of pregnant non-obese diabetic mice leads to altered gut microbiota and intestinal immunological changes in the offspring.

    Science.gov (United States)

    Tormo-Badia, N; Håkansson, Å; Vasudevan, K; Molin, G; Ahrné, S; Cilio, C M

    2014-10-01

    The intestinal microbiota is important for tolerance induction through mucosal immunological responses. The composition of the gut microbiota of an infant is affected by environmental factors such as diet, disease and antibiotic treatment. However, already in utero, these environmental factors can affect the immunological development of the foetus and influence the future gut microbiota of the infant. To investigate the effects of antibiotic treatment of pregnant mothers on the offspring's gut microbiome and diabetes development, we treated non-obese diabetic (NOD) mice with a cocktail of antibiotics during gestation and the composition of the gut microbiota, diabetes incidence and major gut-related T lymphocyte populations were investigated in the offspring. We observed a persistent reduction in the general diversity of the gut microbiota in the offspring from NOD mothers treated with antibiotics during gestation compared with offspring from control mothers. In addition, by clustering the present bacterial taxa with principal component analysis, we found a differential clustering of gut microbiota in the offspring from NOD mothers treated with antibiotics during gestation compared with offspring from control mothers. Offspring from NOD mothers treated with antibiotics during gestation also showed some immunological alterations in the gut immune system, which could be related to the diversity of the gut microbiome and influence modulation of diabetes development at 20 weeks. Our data point out maternal derangement of the intestinal microbiota as a potential environmental risk factor for T1D development.

  19. Intestinal Microbiota Is Influenced by Gender and Body Mass Index

    Science.gov (United States)

    Haro, Carmen; Rangel-Zúñiga, Oriol A.; Alcalá-Díaz, Juan F.; Gómez-Delgado, Francisco; Pérez-Martínez, Pablo; Delgado-Lista, Javier; Quintana-Navarro, Gracia M.; Landa, Blanca B.; Navas-Cortés, Juan A.; Tena-Sempere, Manuel; Clemente, José C.; López-Miranda, José

    2016-01-01

    Intestinal microbiota changes are associated with the development of obesity. However, studies in humans have generated conflicting results due to high inter-individual heterogeneity in terms of diet, age, and hormonal factors, and the largely unexplored influence of gender. In this work, we aimed to identify differential gut microbiota signatures associated with obesity, as a function of gender and changes in body mass index (BMI). Differences in the bacterial community structure were analyzed by 16S sequencing in 39 men and 36 post-menopausal women, who had similar dietary background, matched by age and stratified according to the BMI. We observed that the abundance of the Bacteroides genus was lower in men than in women (P 33. In fact, the abundance of this genus decreased in men with an increase in BMI (P<0.001, Q<0.001). However, in women, it remained unchanged within the different ranges of BMI. We observed a higher presence of Veillonella (84.6% vs. 47.2%; X2 test P = 0.001, Q = 0.019) and Methanobrevibacter genera (84.6% vs. 47.2%; X2 test P = 0.002, Q = 0.026) in fecal samples in men compared to women. We also observed that the abundance of Bilophila was lower in men compared to women regardless of BMI (P = 0.002, Q = 0.041). Additionally, after correcting for age and sex, 66 bacterial taxa at the genus level were found to be associated with BMI and plasma lipids. Microbiota explained at P = 0.001, 31.17% variation in BMI, 29.04% in triglycerides, 33.70% in high-density lipoproteins, 46.86% in low-density lipoproteins, and 28.55% in total cholesterol. Our results suggest that gut microbiota may differ between men and women, and that these differences may be influenced by the grade of obesity. The divergence in gut microbiota observed between men and women might have a dominant role in the definition of gender differences in the prevalence of metabolic and intestinal inflammatory diseases. PMID:27228093

  20. Intestinal Microbiota Is Influenced by Gender and Body Mass Index.

    Directory of Open Access Journals (Sweden)

    Carmen Haro

    Full Text Available Intestinal microbiota changes are associated with the development of obesity. However, studies in humans have generated conflicting results due to high inter-individual heterogeneity in terms of diet, age, and hormonal factors, and the largely unexplored influence of gender. In this work, we aimed to identify differential gut microbiota signatures associated with obesity, as a function of gender and changes in body mass index (BMI. Differences in the bacterial community structure were analyzed by 16S sequencing in 39 men and 36 post-menopausal women, who had similar dietary background, matched by age and stratified according to the BMI. We observed that the abundance of the Bacteroides genus was lower in men than in women (P 33. In fact, the abundance of this genus decreased in men with an increase in BMI (P<0.001, Q<0.001. However, in women, it remained unchanged within the different ranges of BMI. We observed a higher presence of Veillonella (84.6% vs. 47.2%; X2 test P = 0.001, Q = 0.019 and Methanobrevibacter genera (84.6% vs. 47.2%; X2 test P = 0.002, Q = 0.026 in fecal samples in men compared to women. We also observed that the abundance of Bilophila was lower in men compared to women regardless of BMI (P = 0.002, Q = 0.041. Additionally, after correcting for age and sex, 66 bacterial taxa at the genus level were found to be associated with BMI and plasma lipids. Microbiota explained at P = 0.001, 31.17% variation in BMI, 29.04% in triglycerides, 33.70% in high-density lipoproteins, 46.86% in low-density lipoproteins, and 28.55% in total cholesterol. Our results suggest that gut microbiota may differ between men and women, and that these differences may be influenced by the grade of obesity. The divergence in gut microbiota observed between men and women might have a dominant role in the definition of gender differences in the prevalence of metabolic and intestinal inflammatory diseases.

  1. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids.

    Science.gov (United States)

    Klaassen, Curtis D; Cui, Julia Yue

    2015-10-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.

  2. Role of intestinal microbiota in the development of multiple sclerosis.

    Science.gov (United States)

    Castillo-Álvarez, F; Marzo-Sola, M E

    2017-04-01

    Multiple sclerosis (MS) is a demyelinating disease that affects young adults; in that age group, it represents the second leading cause of disability in our setting. Its precise aetiology has not been elucidated, but it is widely accepted to occur in genetically predisposed patients who are exposed to certain environmental factors. The discovery of the regulatory role played by intestinal microbiota in various autoimmune diseases has opened a new line of research in this field, which is discussed in this review. We reviewed published studies on the role of the microbiota in the development of both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). In mice, it has been shown that intestinal microorganisms regulate the polarisation of T helper cells from Th1-Th17 up to Th2, the function of regulatory T cells, and the activity of B cells; they participate in the pathogenesis of EAE and contribute to its prevention and treatment. In contrast, evidence in humans is still scarce and mainly based on case-control studies that point to the presence of differences in certain bacterial communities. Multiple evidence points to the role of microbiota in EAE. Extrapolation of these results to MS is still in the early stages of research, and studies are needed to define which bacterial populations are associated with MS, the role they play in pathogenesis, and the therapeutic possibilities this knowledge offers us. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates

    DEFF Research Database (Denmark)

    Zoetendal, Erwin G; Raes, Jeroen; van den Bogert, Bartholomeus

    2012-01-01

    The human gastrointestinal tract (GI tract) harbors a complex community of microbes. The microbiota composition varies between different locations in the GI tract, but most studies focus on the fecal microbiota, and that inhabiting the colonic mucosa. Consequently, little is known about...... the microbiota at other parts of the GI tract, which is especially true for the small intestine because of its limited accessibility. Here we deduce an ecological model of the microbiota composition and function in the small intestine, using complementing culture-independent approaches. Phylogenetic microarray...... analyses demonstrated that microbiota compositions that are typically found in effluent samples from ileostomists (subjects without a colon) can also be encountered in the small intestine of healthy individuals. Phylogenetic mapping of small intestinal metagenome of three different ileostomy effluent...

  4. Rational identification of diet-derived postbiotics for improving intestinal microbiota function.

    Science.gov (United States)

    Klemashevich, Cory; Wu, Charmian; Howsmon, Daniel; Alaniz, Robert C; Lee, Kyongbum; Jayaraman, Arul

    2014-04-01

    The intestinal microbiota plays an important role in a wide range of functions and whole body homeostasis. Recent advances have linked microbiota dysbiosis to conditions ranging from Crohn's disease to cancer. The restoration or strengthening of the intestinal microbiota through diet-based approaches such as probiotics and prebiotics has been proposed for combating the onset or progression of these diseases. In this review, we highlight the importance of postbiotics for the manipulation of the intestinal microbiota, with special emphasis on systems biology computational tools and targeted metabolomics for the rational discovery and identification of these bioactive molecules. The identification of novel postbiotics and the pathways responsible for their production should lead to improved mechanistic understanding of the role that specific probiotics, prebiotics, and postbiotics have in restoring intestinal microbiota composition and function.

  5. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate

    OpenAIRE

    Gallo, Antonella; Passaro, Giovanna; Gasbarrini, Antonio; Landolfi, Raffaele; Montalto, Massimo

    2016-01-01

    Alterations of intestinal microflora may significantly contribute to the pathogenesis of different inflammatory and autoimmune disorders. There is emerging interest on the role of selective modulation of microflora in inducing benefits in inflammatory intestinal disorders, by as probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). To summarize recent evidences on microflora modulation in main intestinal inflammatory disorders, PubMed was searched using ...

  6. [Intestinal microbiota and ageing: A new intervention route?].

    Science.gov (United States)

    Ribera Casado, José Manuel

    2016-01-01

    Intestinal microbiota (IM) has continued to be the subject in all types of studies and publications. More is known on its different components and functions, as well as the changes that take place in IM through the life cycle, and the role of the factors involved in these changes. The aim of this review is to update the relationship between IM and aging. The presentation in 4 sections: (i)main factors of the human ageing process, underlining those related with gut changes; (ii)conceptual meaning of words like microbiota and other related terms; (iii)to comment on the most current findings as regards the changes in IM that occur in the ageing process, whether arising from the physiology or from disease situations, or other factors (environment, diet, drugs, etc.), and the health-consequences of these changes, and (iv)possibilities of different active positive interventions, with emphasis on diet measures. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Development of the infant intestinal microbiome: A bird's eye view of a complex process.

    Science.gov (United States)

    Meropol, Sharon B; Edwards, Amy

    2015-12-01

    Infants undergo profound shifts in colonizing intestinal microorganisms during their first year, especially during and after birth and during weaning. Microbiota are passed to infants through the placenta, during the vaginal birth process, and from early diet and other environmental exposures. These microbiota play an active role in the development of healthy infant metabolic and immunologic systems; profound shifts in microbiotal populations can be persistent, are associated with immediate alterations in gene expression, metabolic, immunologic, and neurologic function, and with downstream metabolic and immunologic consequences such as obesity, allergies, asthma, autoimmune diseases, and potentially neurologic conditions. Many modern exposures, including Cesarean section, formula feeding, and antibiotics, have been associated with microbiome shifts, and also with downstream diseases; while many published studies considered exposures individually, a more comprehensive understanding of their interaction and impact will consider the entirety of the infant's environment. It is not possible, nor desirable, to return to a world without toilets, sewers, tap water, delivery room antisepsis, Cesarean sections, antibiotics, immunizations, and refrigerators; our other alternative is to better understand these complex changes in infant developmental and molecular physiology. Protecting and repairing the developmental processes of the healthy infant microbiome is the modern medical frontier.

  8. Abundant and diverse fungal microbiota in the murine intestine.

    Science.gov (United States)

    Scupham, Alexandra J; Presley, Laura L; Wei, Bo; Bent, Elizabeth; Griffith, Natasha; McPherson, Michael; Zhu, Feilin; Oluwadara, Oluwadayo; Rao, Nagesh; Braun, Jonathan; Borneman, James

    2006-01-01

    Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4',6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.

  9. Short- and long-term effects of oral vancomycin on the human intestinal microbiota

    Science.gov (United States)

    Isaac, Sandrine; Scher, Jose U.; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R.; Abramson, Steven B.; Pamer, Eric G.; Ubeda, Carles

    2017-01-01

    Background Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. Methods We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. Results During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Conclusions Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost–benefit equation for antibiotic prescription. PMID

  10. Short- and long-term effects of oral vancomycin on the human intestinal microbiota.

    Science.gov (United States)

    Isaac, Sandrine; Scher, Jose U; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R; Abramson, Steven B; Pamer, Eric G; Ubeda, Carles

    2017-01-01

    Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription. © The Author 2016. Published by Oxford

  11. Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations

    OpenAIRE

    Sonnenburg, Erica D.; Zheng, Hongjun; Joglekar, Payal; Higginbottom, Steven K.; Firbank, Susan J.; Bolam, David N.; Sonnenburg, Justin L

    2010-01-01

    The intestinal microbiota impacts many facets of human health and is associated with human diseases. Diet impacts microbiota composition, yet mechanisms that link dietary changes to microbiota alterations remain ill-defined. Here we elucidate the basis of Bacteroides proliferation in response to fructans, a class of fructose-based dietary polysaccharides. Structural and genetic analysis disclosed a fructose-binding, hybrid-two-component signaling sensor that controls the fructan utilization l...

  12. Association between the ABO blood group and the human intestinal microbiota composition

    Directory of Open Access Journals (Sweden)

    Mäkivuokko Harri

    2012-06-01

    Full Text Available Abstract Background The mucus layer covering the human intestinal epithelium forms a dynamic surface for host-microbial interactions. In addition to the environmental factors affecting the intestinal equilibrium, such as diet, it is well established that the microbiota composition is individually driven, but the host factors determining the composition have remained unresolved. Results In this study, we show that ABO blood group is involved in differences in relative proportion and overall profiles of intestinal microbiota. Specifically, the microbiota from the individuals harbouring the B antigen (secretor B and AB differed from the non-B antigen groups and also showed higher diversity of the Eubacterium rectale-Clostridium coccoides (EREC and Clostridium leptum (CLEPT -groups in comparison with other blood groups. Conclusions Our novel finding indicates that the ABO blood group is one of the genetically determined host factors modulating the composition of the human intestinal microbiota, thus enabling new applications in the field of personalized nutrition and medicine.

  13. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of IBS and stabilises intestinal microbiota

    NARCIS (Netherlands)

    Kajander, K.; Myllyluoma, E.; Rajlic-Stojanovic, M.; Kyronpalo, S.S.; Rasmussen, M.; Jarvenpaa, S.S.; Zoetendal, E.G.; Vos, de W.M.; Vapaatalo, H.; Korpela, R.

    2008-01-01

    Aim To investigate the effects of multispecies probiotic supplementation (Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium animalis ssp. lactis Bb12) on abdominal symptoms, quality of life, intestinal microbiota and inflammatory m

  14. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation

    NARCIS (Netherlands)

    Lankelma, Jacqueline M.; Vught, van Lonneke A.; Belzer, Clara; Schultz, Marcus J.; Poll, van der Tom; Vos, de Willem M.; Wiersinga, W.J.

    2017-01-01

    Purpose: The intestinal microbiota has emerged as a virtual organ with essential functions in human physiology. Antibiotic-induced disruption of the microbiota in critically ill patients may have a negative influence on key energy resources and immunity. We set out to characterize the fecal micro

  15. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men

    NARCIS (Netherlands)

    Salonen, A.; Lahti, L.M.; Salojärvi, J.; Holtrop, G.; Korpela, K.; Duncan, S.H.; Date, P.; Farquharson, F.; Johnstone, A.M.; Lobley, G.E.; Louis, P.; Flint, H.J.; Vos, de W.M.

    2014-01-01

    There is growing interest in understanding how diet affects the intestinal microbiota, including its possible associations with systemic diseases such as metabolic syndrome. Here we report a comprehensive and deep microbiota analysis of 14 obese males consuming fully controlled diets supplemented wi

  16. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition

    NARCIS (Netherlands)

    Ladirat, S.E.; Schols, H.A.; Nauta, A.; Schoterman, M.H.C.; Keijser, B.J.F.; Montijn, R.C.; Gruppen, H.; Schuren, F.H.J.

    2013-01-01

    Antibiotic treatments can lead to a disruption of the human microbiota. In this in-vitro study, the impact of antibiotics on adult intestinal microbiota was monitored in a new high-throughput approach: a fermentation screening-platform was coupled with a phylogenetic microarray analysis

  17. Common occurrence of antibacterial agents in human intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  18. High taxonomic level fingerprint of the human intestinal microbiota by Ligase Detection Reaction - Universal Array approach

    Directory of Open Access Journals (Sweden)

    Vitali Beatrice

    2010-04-01

    Full Text Available Abstract Background Affecting the core functional microbiome, peculiar high level taxonomic unbalances of the human intestinal microbiota have been recently associated with specific diseases, such as obesity, inflammatory bowel diseases, and intestinal inflammation. Results In order to specifically monitor microbiota unbalances that impact human physiology, here we develop and validate an original DNA-microarray (HTF-Microbi.Array for the high taxonomic level fingerprint of the human intestinal microbiota. Based on the Ligase Detection Reaction-Universal Array (LDR-UA approach, the HTF-Microbi.Array enables specific detection and approximate relative quantification of 16S rRNAs from 30 phylogenetically related groups of the human intestinal microbiota. The HTF-Microbi.Array was used in a pilot study of the faecal microbiota of eight young adults. Cluster analysis revealed the good reproducibility of the high level taxonomic microbiota fingerprint obtained for each of the subject. Conclusion The HTF-Microbi.Array is a fast and sensitive tool for the high taxonomic level fingerprint of the human intestinal microbiota in terms of presence/absence of the principal groups. Moreover, analysis of the relative fluorescence intensity for each probe pair of our LDR-UA platform can provide estimation of the relative abundance of the microbial target groups within each samples. Focusing the phylogenetic resolution at division, order and cluster levels, the HTF-Microbi.Array is blind with respect to the inter-individual variability at the species level.

  19. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha

    Science.gov (United States)

    Davison, James M.; Lickwar, Colin R.; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E.; Rawls, John F.

    2017-01-01

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota. PMID:28385711

  20. Cerebral Low-Molecular Metabolites Influenced by Intestinal Microbiota: A Pilot Study

    OpenAIRE

    Mitsuharu eMatsumoto; Ryoko eKibe; Takushi eOoga; Yuji eAiba; Emiko eSawaki; Yasuhiro eKoga; Yoshimi eBenno

    2013-01-01

    Recent studies suggest that intestinal microbiota influences gut-brain communication. In this study, we aimed to clarify the influence of intestinal microbiota on cerebral metabolism. We analyzed the cerebral metabolome of germ-free (GF) mice and ex-germ-free (Ex-GF) mice, which were inoculated with suspension of feces obtained from specific pathogen free mice, using capillary electrophoresis with time-of-flight mass spectrometry (CE-TOFMS). CE-TOFMS identified 196 metabolites from the cerebr...

  1. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system

    Science.gov (United States)

    Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying

    2017-04-01

    The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon (Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.

  2. Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer.

    Science.gov (United States)

    Candela, Marco; Guidotti, Marco; Fabbri, Alessia; Brigidi, Patrizia; Franceschi, Claudio; Fiorentini, Carla

    2011-02-01

    In this review, we discuss the multifactorial role of intestinal microbiota in colorectal cancer. The peculiar metabolism of dietary compounds of the individual microbiota complement, its overall immunostimulation and immunomodulatory activity, and eventually the production of toxins that perturb the regulation of cell growth, define the balance of positive and negative risk factors for colorectal cancer development. Moreover, shaping the composition of the human intestinal microbiota, diet has an indirect impact in determining the balance between health and disease. The integration of diet, microbial, and host factors in a system approach is mandatory to determine the overall balance of risk and protective factors for colorectal cancer onset.

  3. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review.

    Science.gov (United States)

    Rutayisire, Erigene; Huang, Kun; Liu, Yehao; Tao, Fangbiao

    2016-07-30

    The human gut is the habitat for diverse and dynamic microbial ecosystem. The human microbiota plays a critical role in functions that sustain health and is a positive asset in host defenses. Establishment of the human intestinal microbiota during infancy may be influenced by multiple factors including delivery mode. Present review compiles existing evidences on the effect of delivery mode on the diversity and colonization pattern of infants gut microbiota. Two investigators searched for relevant scientific publications from four databases (Pubmed, Medline, Embase, and Web of Science). The last search was performed on September 21, 2015, using key terms ((delivery mode OR caesarean delivery OR cesarean section OR vaginal delivery) AND (gut microbiota OR gut microbiome OR gut microflora OR intestinal microflora OR microbial diversity) AND (infants OR children)). All included studies described at least two types of gut microbiota in relation to delivery mode (caesarean section vs vaginal delivery) and used fecal samples to detect gut microbiota. Seven out of 652 retrieved studies met inclusion criteria, were included in systematic analysis. Caesarean Section (CS) was associated with both lower abundance and diversity of the phyala Actinobacteria and Bacteroidetes, and higher abundance and diversity of the phylum Firmicute from birth to 3 months of life. At the colonization level, Bifidobacterium, and Bacteroides genera seems to be significantly more frequent in vaginally delivered infants compared with CS delivered. These infants were more colonized by the Clostridium, and Lactobacillus genera. From the reports, it is tempting to say that delivery mode has less effect on colonization and diversity of Bifidobacteria, Bacteroides, Clostridium, and Lactobacillus genera from the age of 6 to 12 months of life. The diversity and colonization pattern of the gut microbiota were significantly associated to the mode of delivery during the first three months of life, however

  4. Molecular characterization of the intestinal microbiota in patients with and without abdominal bloating.

    Science.gov (United States)

    Ringel-Kulka, Tamar; Benson, Andrew K; Carroll, Ian M; Kim, Jaehyoung; Legge, Ryan M; Ringel, Yehuda

    2016-03-15

    Recent studies have demonstrated differences in the intestinal microbiota between patients with irritable bowel syndrome (IBS) and healthy controls (HC), suggesting a role for the intestinal microbiota in the pathogenesis of IBS. Alterations in the microbiota have also been implicated in the pathogenesis of abdominal bloating, a commonly reported symptom in IBS. We investigated the relationship between the intestinal microbiota, abdominal bloating, and altered bowel patterns in a cohort of patients with IBS and HC. The 16S rRNA gene from fresh fecal samples was amplified and pyrosequenced by using Roche-454 Titanium chemistry. A Core Measurable Microbiome (CMM) was generated for Operational Taxonomic Unit (OTU) detected in >75% of all samples and compositional features of CMM were compared between groups by Linear Discriminant Analysis (LDA). IBS differentiated from HC by LDA using continuous variation in the species/OTUs or the CMM genera. When subcategorized based on bloating symptoms and bowel characteristics, the same subjects were also well differentiated from one another and from HC. ANOVA analysis showed quantitative species/OTU differences between the subgroups including IBS with and without bloating, and subtypes based on bowel characteristics. The clear LDA differentiation and the significant microbial taxa differences between the groups imply a significant association of the microbiota with bloating symptoms and bowel characteristics in IBS. These changes in the microbiota may serve as a biomarker for IBS and its clinical subtypes and suggest a role for the intestinal microbiota in the pathogenesis of the main symptoms of the disorder.

  5. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age.

    Science.gov (United States)

    Bisgaard, Hans; Li, Nan; Bonnelykke, Klaus; Chawes, Bo Lund Krogsgaard; Skov, Thomas; Paludan-Müller, Georg; Stokholm, Jakob; Smith, Birgitte; Krogfelt, Karen Angeliki

    2011-09-01

    Changes in the human microbiome have been suggested as a risk factor for a number of lifestyle-related disorders, such as atopic diseases, possibly through a modifying influence on immune maturation in infancy. We aimed to explore the association between neonatal fecal flora and the development of atopic disorders until age 6 years, hypothesizing that the diversity of the intestinal microbiota influences disease development. We studied the intestinal microbiota in infants in the Copenhagen Prospective Study on Asthma in Childhood, a clinical study of a birth cohort of 411 high-risk children followed for 6 years by clinical assessments at 6-month intervals, as well as at acute symptom exacerbations. Bacterial flora was analyzed at 1 and 12 months of age by using molecular techniques based on 16S rRNA PCR combined with denaturing gradient gel electrophoresis, as well as conventional culturing. The main outcome measures were the development of allergic sensitization (skin test and specific serum IgE), allergic rhinitis, peripheral blood eosinophil counts, asthma, and atopic dermatitis during the first 6 years of life. We found that bacterial diversity in the early intestinal flora 1 and 12 months after birth was inversely associated with the risk of allergic sensitization (serum specific IgE P = .003; skin prick test P = .017), peripheral blood eosinophils (P = .034), and allergic rhinitis (P = .007). There was no association with the development of asthma or atopic dermatitis. Reduced bacterial diversity of the infant's intestinal flora was associated with increased risk of allergic sensitization, allergic rhinitis, and peripheral blood eosinophilia, but not asthma or atopic dermatitis, in the first 6 years of life. These results support the general hypothesis that an imbalance in the intestinal microbiome is influencing the development of lifestyle-related disorders, such as allergic disease. Copyright © 2011 American Academy of Allergy, Asthma & Immunology

  6. Denaturing gradient gel electrophoresis of neonatal intestinal microbiota in relation to the development of asthma

    Directory of Open Access Journals (Sweden)

    Desager Kristine N

    2011-04-01

    Full Text Available Abstract Background The extended 'hygiene hypothesis' suggests that the initial composition of the infant gut microbiota is a key determinant in the development of atopic disease. Several studies have demonstrated that the microbiota of allergic and non-allergic infants are different even before the development of symptoms, with a critical time window during the first 6 months of life. The aim of the study was to investigate the association between early intestinal colonisation and the development of asthma in the first 3 years of life using DGGE (denaturing gradient gel electrophoresis. Methods In a prospective birth cohort, 110 children were classified according to the API (Asthma Predictive Index. A positive index included wheezing during the first three years of life combined with eczema in the child in the first years of life or with a parental history of asthma. A fecal sample was taken at the age of 3 weeks and analysed with DGGE using universal and genus specific primers. Results The Asthma Predictive Index was positive in 24/110 (22% of the children. Using universal V3 primers a band corresponding to a Clostridum coccoides XIVa species was significantly associated with a positive API. A Bacteroides fragilis subgroup band was also significantly associated with a positive API. A final DGGE model, including both bands, allowed correct classification of 73% (80/110 of the cases. Conclusion Fecal colonisation at age 3 weeks with either a Bacteroides fragilis subgroup or a Clostridium coccoides subcluster XIVa species is an early indicator of possible asthma later in life. These findings need to be confirmed in a new longitudinal follow-up study.

  7. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Gabriel Horta-Baas

    2017-01-01

    Full Text Available Characterization and understanding of gut microbiota has recently increased representing a wide research field, especially in autoimmune diseases. Gut microbiota is the major source of microbes which might exert beneficial as well as pathogenic effects on human health. Intestinal microbiome’s role as mediator of inflammation has only recently emerged. Microbiota has been observed to differ in subjects with early rheumatoid arthritis compared to controls, and this finding has commanded this study as a possible autoimmune process. Studies with intestinal microbiota have shown that rheumatoid arthritis is characterized by an expansion and/or decrease of bacterial groups as compared to controls. In this review, we present evidence linking intestinal dysbiosis with the autoimmune mechanisms involved in the development of rheumatoid arthritis.

  8. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology.

    Science.gov (United States)

    Sommer, Felix; Bäckhed, Fredrik

    2016-05-01

    Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology.

  9. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study

    Directory of Open Access Journals (Sweden)

    Mitsuharu eMatsumoto

    2013-04-01

    Full Text Available Recent studies suggest that intestinal microbiota influences gut-brain communication. In this study, we aimed to clarify the influence of intestinal microbiota on cerebral metabolism. We analyzed the cerebral metabolome of germ-free (GF mice and ex-germ-free (Ex-GF mice, which were inoculated with suspension of feces obtained from specific pathogen free mice, using capillary electrophoresis with time-of-flight mass spectrometry (CE-TOFMS. CE-TOFMS identified 196 metabolites from the cerebral metabolome in both GF and Ex-GF mice. The concentrations of 38 metabolites differed significantly (p < 0.05 between GF and Ex-GF mice. Approximately 10 of these metabolites are known to be involved in brain function, whilst the functions of the remainder are unclear. Furthermore, we observed a novel association between cerebral glycolytic metabolism and intestinal microbiota. Our work shows that cerebral metabolites are influenced by normal intestinal microbiota through the microbiota-gut-brain axis, and indicates that normal intestinal microbiota closely connected with brain health and disease, development, attenuation, learning, memory, and behavior.

  10. Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota

    NARCIS (Netherlands)

    Bello Gonzalez, T.D.G.; Passel, van M.W.J.; Tims, S.; Fuentes, S.; Vos, de W.M.; Smidt, H.; Belzer, C.

    2015-01-01

    The human intestinal microbiota is responsible for various health-related functions, and its diversity can be readily mapped with the 16S ribosomal RNA targeting Human Intestinal Tract (HIT) Chip. Here we characterise distal gut samples from chimpanzees, gorillas and marmosets, and compare them with

  11. Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota

    NARCIS (Netherlands)

    Bello Gonzalez, T.D.G.; Passel, van M.W.J.; Tims, S.; Fuentes, S.; Vos, de W.M.; Smidt, H.; Belzer, C.

    2015-01-01

    The human intestinal microbiota is responsible for various health-related functions, and its diversity can be readily mapped with the 16S ribosomal RNA targeting Human Intestinal Tract (HIT) Chip. Here we characterise distal gut samples from chimpanzees, gorillas and marmosets, and compare them with

  12. Role of Intestinal Microbiota in Ulcerative Colitis – Effects of Novel Carbohydrate Preparations

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine

    2011-01-01

    The microbiota of the human intestinal tract is complex with variable populations of bacteria who are either permanent gut residents (commensal bacteria) or transient inhabitants introduced from the environment. The commensal bacteria are believed to be important for human health due to actions......, which could affect colonic health. In the experimental part of this thesis, the fecal microbiota derived from UC patients in either remission or with active disease and healthy subjects was quantified using quantitative Real‐Time PCR (qPCR) to examine the microbiota composition. The results demonstrated...... that the microbiota composition was different in UC patients in relapse compared to healthy subjects and the difference could be ascribed Gramnegative bacteria, hence indicating that an altered microbiota composition is associated with colonic inflammation. Additionally, results revealed that the microbiota...

  13. Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus.

    Science.gov (United States)

    Udayappan, S D; Hartstra, A V; Dallinga-Thie, G M; Nieuwdorp, M

    2014-07-01

    The prevalence of obesity and diabetes mellitus type 2 is increasing rapidly around the globe. Recent insights have generated an entirely new perspective that the intestinal microbiota may play a significant role in the development of these metabolic disorders. Alterations in the intestinal microbiota composition promote systemic inflammation that is a hallmark of obesity and subsequent insulin resistance. Thus, it is important to understand the reciprocal relationship between intestinal microbiota composition and metabolic health in order to eventually prevent disease progression. In this respect, faecal transplantation studies have implicated that butyrate-producing intestinal bacteria are crucial in this process and be considered as key players in regulating diverse signalling cascades associated with human glucose and lipid metabolism.

  14. Methodological issues in the study of intestinal microbiota in irritable bowel syndrome

    OpenAIRE

    2014-01-01

    Irritable bowel syndrome (IBS) is an intestinal functional disorder with the highest prevalence in the industrialized world. The intestinal microbiota (IM) plays a role in the pathogenesis of IBS and is not merely a consequence of this disorder. Previous research efforts have not revealed unequivocal microbiological signatures of IBS, and the experimental results are contradictory. The experimental methodologies adopted to investigate the complex intestinal ecosystem drastically impact the qu...

  15. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδT cells

    OpenAIRE

    Benakis, Corinne; Brea, David; Caballero, Silvia; Faraco, Giuseppe; Moore, Jamie; Murphy, Michelle; Sita, Giulia; Racchumi, Gianfranco; Ling, Lilan; Pamer, Eric G.; Iadecola, Costantino; Anrather, Josef

    2016-01-01

    Commensal gut bacteria impact the host immune system and can influence disease processes in several organs, including the brain. However, it remains unclear whether the microbiota has an impact on the outcome of acute brain injury. Here we show that antibiotic-induced alterations in the intestinal flora reduces ischemic brain injury in mice, an effect transmissible by fecal transplants. Intestinal dysbiosis alters immune homeostasis in the small intestine leading to an increase in regulatory ...

  16. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota

    OpenAIRE

    Yu, Zhuo-Teng; Chen, Ceng; Kling, David E.; Liu, Bo; McCoy, John M.; Merighi, Massimo; Heidtman, Matthew; Newburg, David S.

    2012-01-01

    Breast-fed infant microbiota is typically rich in bifidobacteria. Herein, major human milk oligosaccharides (HMOS) are assessed for their ability to promote the growth of bifidobacteria and to acidify their environment, key features of prebiotics. During in vitro anaerobic fermentation of infant microbiota, supplementation by HMOS significantly decreased the pH even greater than supplementation by fructooligosaccharide (FOS), a prebiotic positive control. HMOS elevated lactate concentrations,...

  17. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Rosanna eDrumo

    2016-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  18. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Motoi Tamura

    2013-12-01

    Full Text Available This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group and those fed a 0.05% daidzein-containing control diet (CD group for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05. Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05. The fecal lipid contents (% dry weight were significantly greater in the XD group than in the CD group (p < 0.01. The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05. This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  19. Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics

    Directory of Open Access Journals (Sweden)

    Sandra Tavares da Silva

    2013-08-01

    Full Text Available Introduction: The intestinal microbiota has several beneficial functions related to host health. Studies suggest that it may be related to the presence of metabolic diseases, including obesity. Objective: A bibliographic survey was carried out upon the relationship between the intestinal microbiota and obesity and the possible impacts of the use of prebiotics and probiotics, aiming to understand this complex and promising interaction. Methods: A search was conducted in the Lilacs, PubMed, SciElo and ScienceDirect databases, using the keywords "gut microbiota" and "obesity". Results and discussion: We identified 613 original studies. After careful selection, 61 original articles were included in this review. The others indicated that there are differences in the microbial composition between obese and non-obese patients and the possible mechanisms involved. Alteration is caused in the energy homeostasis, in the use of dietary intake and storage of lipids due to the composition of the intestinal microbiota. Among the studies that evaluated the microbiota modulation, seven used probiotics; 24 used prebiotics, and five studies were performed using food. After dietary manipulation, the growth of bifidobacteria was obtained in 10 studies, in association with weight reduction, adipogenic effects of diet, intestinal permeability and inflammatory markers. Conclusion: Knowledge on the impact of the microbiota on metabolic pathways allows to conceive new factors associated with obesity and modulation by prebiotics and probiotics. In this sense, the main effect observed was the increase in bifidobacteria, usually accompanied by weight loss and enhancement of parameters related to obesity.

  20. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men.

    Science.gov (United States)

    Salonen, Anne; Lahti, Leo; Salojärvi, Jarkko; Holtrop, Grietje; Korpela, Katri; Duncan, Sylvia H; Date, Priya; Farquharson, Freda; Johnstone, Alexandra M; Lobley, Gerald E; Louis, Petra; Flint, Harry J; de Vos, Willem M

    2014-11-01

    There is growing interest in understanding how diet affects the intestinal microbiota, including its possible associations with systemic diseases such as metabolic syndrome. Here we report a comprehensive and deep microbiota analysis of 14 obese males consuming fully controlled diets supplemented with resistant starch (RS) or non-starch polysaccharides (NSPs) and a weight-loss (WL) diet. We analyzed the composition, diversity and dynamics of the fecal microbiota on each dietary regime by phylogenetic microarray and quantitative PCR (qPCR) analysis. In addition, we analyzed fecal short chain fatty acids (SCFAs) as a proxy of colonic fermentation, and indices of insulin sensitivity from blood samples. The diet explained around 10% of the total variance in microbiota composition, which was substantially less than the inter-individual variance. Yet, each of the study diets induced clear and distinct changes in the microbiota. Multiple Ruminococcaceae phylotypes increased on the RS diet, whereas mostly Lachnospiraceae phylotypes increased on the NSP diet. Bifidobacteria decreased significantly on the WL diet. The RS diet decreased the diversity of the microbiota significantly. The total 16S ribosomal RNA gene signal estimated by qPCR correlated positively with the three major SCFAs, while the amount of propionate specifically correlated with the Bacteroidetes. The dietary responsiveness of the individual's microbiota varied substantially and associated inversely with its diversity, suggesting that individuals can be stratified into responders and non-responders based on the features of their intestinal microbiota.

  1. Intestinal Microbiota and the Innate Immune System – A Crosstalk in Crohn’s Disease Pathogenesis

    Science.gov (United States)

    Haag, Lea-Maxie; Siegmund, Britta

    2015-01-01

    Crohn’s disease (CD) is a chronic, relapsing inflammatory disorder that can occur anywhere along the gastrointestinal tract. The precise etiology of CD is still unclear but it is widely accepted that a complex series of interactions between susceptibility genes, the immune system and environmental factors are implicated in the onset and perpetuation of the disease. Increasing evidence from experimental and clinical studies implies the intestinal microbiota in disease pathogenesis, thereby supporting the hypothesis that chronic intestinal inflammation arises from an abnormal immune response against the microorganisms of the intestinal flora in genetically susceptible individuals. Given that CD patients display changes in their gut microbiota composition, collectively termed “dysbiosis,” the question raises whether the altered microbiota composition is a cause of disease or rather a consequence of the inflammatory state of the intestinal environment. This review will focus on the crosstalk between the gut microbiota and the innate immune system during intestinal inflammation, thereby unraveling the role of the microbiota in CD pathogenesis. PMID:26441993

  2. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota.

    Science.gov (United States)

    Engen, Phillip A; Green, Stefan J; Voigt, Robin M; Forsyth, Christopher B; Keshavarzian, Ali

    2015-01-01

    The excessive use of alcohol is a global problem causing many adverse pathological health effects and a significant financial health care burden. This review addresses the effect of alcohol consumption on the microbiota in the gastrointestinal tract (GIT). Although data are limited in humans, studies highlight the importance of changes in the intestinal microbiota in alcohol-related disorders. Alcohol-induced changes in the GIT microbiota composition and metabolic function may contribute to the well-established link between alcohol-induced oxidative stress, intestinal hyperpermeability to luminal bacterial products, and the subsequent development of alcoholic liver disease (ALD), as well as other diseases. In addition, clinical and preclinical data suggest that alcohol-related disorders are associated with quantitative and qualitative dysbiotic changes in the intestinal microbiota and may be associated with increased GIT inflammation, intestinal hyperpermeability resulting in endotoxemia, systemic inflammation, and tissue damage/organ pathologies including ALD. Thus, gut-directed interventions, such as probiotic and synbiotic modulation of the intestinal microbiota, should be considered and evaluated for prevention and treatment of alcohol-associated pathologies.

  3. A novel combined approach based on HTF-Microbi.Array and qPCR for a reliable characterization of the Bifidobacterium-dominated gut microbiota of breast-fed infants.

    Science.gov (United States)

    Centanni, Manuela; Turroni, Silvia; Biagi, Elena; Severgnini, Marco; Consolandi, Clarissa; Brigidi, Patrizia; Candela, Marco

    2013-06-01

    The High Taxonomic Fingerprint (HTF)-Microbi.Array is a fully validated phylogenetic microarray platform for a high taxonomic level characterization of the human gut microbiota. However, suffering from PCR-dependent biases in Bifidobacterium quantification, this tool is less appropriate when utilized for the characterization of the Bifidobacterium-dominated gut microbiota of breast-fed infants. To overcome this, we implemented a new combined approach based on HTF-Microbi.Array and qPCR for a reliable fingerprint of the infant-type microbiota. This methodology was applied in a preliminary comparative study of the faecal microbiota of eight breast-fed infants, aged 2-6 months, and five young adults. Whereas the adult gut microbiota was largely dominated by Firmicutes and Bacteroidetes, the infant-type community was mainly dominated by Bifidobacterium, with Enterobacteriaceae as the second dominant component. In accordance with the most recent literature in the field, the obtained microbiota fingerprints properly depicted the adult- and the infant-type microbiota, demonstrating the reliability of the HTF-Microbi.Array/qPCR combined approach in reflecting the peculiarities of the two intestinal microbial ecosystems. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer

    Science.gov (United States)

    Dominguez-Bello, Maria G.; De Jesus-Laboy, Kassandra M.; Shen, Nan; Cox, Laura M.; Amir, Amnon; Gonzalez, Antonio; Bokulich, Nicholas A.; Song, Se Jin; Hoashi, Marina; Rivera-Vina, Juana I.; Mendez, Keimari; Knight, Rob; Clemente, Jose C.

    2016-01-01

    Exposure of newborns to the maternal vaginal microbiota is interrupted with cesarean birthing. Babies delivered by Cesarean section (C-section) acquire a microbiota that differs from that of vaginally delivered infants, and C-section delivery has been associated with increased risk for immune and metabolic disorders. Here we conducted a pilot study in which infants delivered by C-section are exposed to maternal vaginal fluids at birth. Similar to vaginally delivered babies, the gut, oral, and skin microbiome of these newborns during the first 30 days of life was enriched in vaginal bacteria underrepresented in unexposed C-section infants, albeit similarity to vaginally-delivered infants was higher in oral and skin than in anal samples. Although the long-term health consequences of restoring the microbiota of C-section born infants remain unclear, our results demonstrate that vaginal microbes can be partially restored at birth in C-section delivered babies. PMID:26828196

  5. INTESTINAL MICROBIOTE IN AGOUTIS BRED IN CAPTIVITY MICROBIOTA INTESTINAL EM CUTIAS CRIADAS EM CATIVEIRO

    Directory of Open Access Journals (Sweden)

    LEANDRO LUÍS MARTINS

    2009-07-01

    Full Text Available Intestines are colonized by microorganisms, which vary according to the species and the intestinal region. Thus, due the lack of information about this subject in literature, this research was developed for better knowing some aspects of the intestinal microbiology of the agouti, considered one of the biggest Brazilian wild rodents. Three males and three not pregnant adult females, belonging to the Catanduva City Zoo, SP, went through laparotomy after anesthesia. Samples were collected with sterile swab in the medium thirds of the jejune, cecum and greater colon after enterotomy. They were cultivated in Sabouraud agar and in TSA (triptone-soy agar. In the jejune, the growth of Staphylococcus aureus and Escherichia coli was of 83.33%, Salmonella spp. of 66.67% and Clostridium spp. of 50.00% of the samples. In the cecum, they were identified Staphylococcus aureus in 33.33%, Escherichia coli, Salmonella spp. and Clostridium spp. in 100% and Streptococcus spp. in 16.67% of the samples were identified. In the greater colon, the growth of Salmonella spp., Escherichia coli and Clostridium spp. in 66.67%, Staphylococcus aureus in 83.33%, and Streptococcus spp. in 16.67% of the samples was observed, showing the occurrence of variations in the bacteriae proportion according to the intestinal region. 

    KEY WORDS: Dasyprocta azarae, intestines, microbiote.

    Os intestinos são colonizados por microorganismos, variáveis de acordo com a espécie e região intestinal. Assim, em virtude da ausência de informações sobre esse assunto na literatura, esta pesquisa foi desenvolvida para melhor se conhecer alguns aspectos da microbiota intestinal da cutia, um dos maiores roedores selvagens brasileiros. Três machos e três fêmeas adultas vazias, pertencentes ao Zoológico Municipal de Catanduva, SP, foram submetidos a laparotomia mediante anestesia. Amostras com swab estéril foram coletadas nos terços médios do jejuno, ceco e c

  6. Inflammasomes and intestinal homeostasis: regulating and connecting infection, inflammation and the microbiota.

    Science.gov (United States)

    Gagliani, Nicola; Palm, Noah W; de Zoete, Marcel R; Flavell, Richard A

    2014-09-01

    Inflammasomes are large cytosolic protein complexes that detect infection and stress-associated signals and promote immediate inflammatory responses. In the intestine, activation of the inflammasome leads to an inflammatory response that is important for controlling enteric infections but can also result in pathological tissue damage. Recent studies have suggested that the inflammasome also regulates intestinal homeostasis through its effects on the intestinal microbiota. Notably, many conflicting studies have been published regarding the effect of inflammasome deficiencies on intestinal homeostasis. Here, we attempt to reconcile these contrasting data by highlighting the many ways that the inflammasome contributes to intestinal homeostasis and pathology and exploring the potential role of alterations in the microbiota in these conflicting studies.

  7. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer.

    Science.gov (United States)

    Aviles-Jimenez, Francisco; Vazquez-Jimenez, Flor; Medrano-Guzman, Rafael; Mantilla, Alejandra; Torres, Javier

    2014-02-26

    We aimed to characterize microbiota of the gastric mucosa as it progress to intestinal type of cancer. Study included five patients each of non-atrophic gastritis (NAG), intestinal metaplasia (IM) and intestinal-type gastric cancer (GC). Gastric tissue was obtained and DNA extracted for microbiota analyses using the microarray G3 PhyloChip. Bacterial diversity ranged from 8 to 57, and steadily decreased from NAG to IM to GC (p = 0.004). A significant microbiota difference was observed between NAG and GC based on Unifrac-presence/absence and weighted-Unifrac-abundance metrics of 283 taxa (p gastric microbiota profile from NAG to IM to GC.

  8. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Andersen, Louise B. B.; Michaelsen, Kim F.;

    2016-01-01

    The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through...... vertically transmitted microbes or through the dietary habits of the family. Additionally, very little is known about the effect of diet during the complementary feeding period, which is potentially important for gut microbiota development. Here, the gut microbiotas of two different cohorts of infants, born...... either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal...

  9. Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing.

    Science.gov (United States)

    Wu, Shan-Gong; Tian, Jing-Yun; Gatesoupe, François-Joël; Li, Wen-Xiang; Zou, Hong; Yang, Bao-Juan; Wang, Gui-Tang

    2013-09-01

    The intestinal microbiota has received increasing attention, as it influences growth, feed conversion, epithelial development, immunity as well as the intrusion of pathogenic microorganisms in the intestinal tract. In this study, pyrosequencing was used to explore the bacterial community of the intestine in gibel carp (Carassius auratus gibelio), and the origin of these microorganisms. The results disclosed great bacterial diversities in the carp intestines and cultured environments. The gibel carp harbored characteristic intestinal microbiota, where Proteobacteria were predominant, followed by Firmicutes. The analysis on the 10 most abundant bacterial operational taxonomic units (OTUs) revealed a majority of Firmicutes in the intestinal content (by decreasing order: Veilonella sp., Lachnospiraceae, Lactobacillales, Streptococcus sp., and Lactobacillus sp.). The second most abundant OTU was Rothia sp. (Actinobacteria). The most likely potential probiotics (Lactobacillus sp., and Bacillus sp.) and opportunists (Aeromonas sp., and Acinetobacter sp.) were not much abundant. Bacterial community comparisons showed that the intestinal community was closely related to that of the sediment, indicating the importance of sediment as source of gut bacteria in gibel carp. However, 37.95 % of the OTUs detected in feed were retrieved in the intestine, suggesting that food may influence markedly the microbiota of gibel carp, and therefore may be exploited for oral administration of probiotics.

  10. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis.

    Directory of Open Access Journals (Sweden)

    Michel J van Vliet

    2010-05-01

    Full Text Available Mucositis, also referred to as mucosal barrier injury, is one of the most debilitating side effects of radiotherapy and chemotherapy treatment. Clinically, mucositis is associated with pain, bacteremia, and malnutrition. Furthermore, mucositis is a frequent reason to postpone chemotherapy treatment, ultimately leading towards a higher mortality in cancer patients. According to the model introduced by Sonis, both inflammation and apoptosis of the mucosal barrier result in its discontinuity, thereby promoting bacterial translocation. According to this five-phase model, the intestinal microbiota plays no role in the pathophysiology of mucositis. However, research has implicated a prominent role for the commensal intestinal microbiota in the development of several inflammatory diseases like inflammatory bowel disease, pouchitis, and radiotherapy-induced diarrhea. Furthermore, chemotherapeutics have a detrimental effect on the intestinal microbial composition (strongly decreasing the numbers of anaerobic bacteria, coinciding in time with the development of chemotherapy-induced mucositis. We hypothesize that the commensal intestinal microbiota might play a pivotal role in chemotherapy-induced mucositis. In this review, we propose and discuss five pathways in the development of mucositis that are potentially influenced by the commensal intestinal microbiota: 1 the inflammatory process and oxidative stress, 2 intestinal permeability, 3 the composition of the mucus layer, 4 the resistance to harmful stimuli and epithelial repair mechanisms, and 5 the activation and release of immune effector molecules. Via these pathways, the commensal intestinal microbiota might influence all phases in the Sonis model of the pathogenesis of mucositis. Further research is needed to show the clinical relevance of restoring dysbiosis, thereby possibly decreasing the degree of intestinal mucositis.

  11. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity.

    Science.gov (United States)

    Reynolds, Lisa A; Finlay, B Brett; Maizels, Rick M

    2015-11-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions.

  12. The enteric nervous system promotes intestinal health by constraining microbiota composition.

    Science.gov (United States)

    Rolig, Annah S; Mittge, Erika K; Ganz, Julia; Troll, Josh V; Melancon, Ellie; Wiles, Travis J; Alligood, Kristin; Stephens, W Zac; Eisen, Judith S; Guillemin, Karen

    2017-02-01

    Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS), a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.

  13. The relationship between nasopharyngeal CCL5 and microbiota on disease severity among infants with bronchiolitis.

    Science.gov (United States)

    Hasegawa, Kohei; Mansbach, Jonathan M; Ajami, Nadim J; Petrosino, Joseph F; Freishtat, Robert J; Teach, Stephen J; Piedra, Pedro A; Camargo, Carlos A

    2017-03-17

    Emerging evidence suggests that the airway microbiota plays an important role in viral bronchiolitis pathobiology. However, little is known about the combined role of airway microbiota and CCL5 in infants with bronchiolitis. In this multicenter prospective cohort study of 1,005 infants (age airway CCL5 levels and microbiota profiles with regard to the risk of both intensive care use (Pinteraction =0.02) and hospital length-of-stay ≥3 days (Pinteraction =0.03). Among infants with lower CCL5 levels, the Haemophilus-dominant microbiota profile was associated with a higher risk of intensive care use (OR, 3.20; 95%CI, 1.18-8.68; P=0.02) and hospital length-of-stay ≥3 days (OR, 4.14; 95%CI, 2.08-8.24; Pmicrobiota profiles and these severity outcomes (all P≥0.10). This article is protected by copyright. All rights reserved.

  14. Effects of Lactococcus lactis on composition of intestinal microbiota: Role of nisin

    DEFF Research Database (Denmark)

    Bernbom, Nete; Licht, Tine Rask; Brogren, Carl-Henrik

    2006-01-01

    in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different...... from that of control animals dosed with saline. However, profiles of the microbiota from animals dosed with nisin did not differ from the controls. The concentrations of nisin estimated by competitive enzyme-linked immunosorbent assay (ELISA) were approximately 10-fold higher in the small intestine...

  15. New aspects on the metabolic role of intestinal microbiota in the development of atherosclerosis.

    Science.gov (United States)

    Drosos, Ioannis; Tavridou, Anna; Kolios, George

    2015-04-01

    Gut microbiota remains a very interesting, yet largely unexplored ecosystem inside the human organism. The importance of this ecosystem for the physiology and the pathophysiology of the organism is being slowly unraveled. Recent studies reveal a connection between intestinal microbiota and atherosclerosis development. It seems that alterations in the function and composition of this bacterial population lead through complex mechanisms to a high risk for atherosclerosis. Although these mechanisms remain largely unknown, published studies show that microbiota can lead to atherosclerosis either by augmenting known risk factors or via other, more "direct" mechanisms. This review article summarizes the available literature regarding this matter.

  16. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism

    DEFF Research Database (Denmark)

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich

    2016-01-01

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids......, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host...... by altered microbiota composition....

  17. Effect of diet on the intestinal microbiota and its activity

    NARCIS (Netherlands)

    Zoetendal, E.G.; Vos, de W.M.

    2014-01-01

    AB Purpose of review: To summarize and discuss recent findings concerning diet-microbiota-health relations. Recent findings: Mouse and other model animal studies have provided detailed insight into host-microbiota interactions, but cannot be extrapolated easily to humans that have different dietary

  18. Effect of diet on the intestinal microbiota and its activity

    NARCIS (Netherlands)

    Zoetendal, E.G.; Vos, de W.M.

    2014-01-01

    AB Purpose of review: To summarize and discuss recent findings concerning diet-microbiota-health relations. Recent findings: Mouse and other model animal studies have provided detailed insight into host-microbiota interactions, but cannot be extrapolated easily to humans that have different dietary

  19. Mining microbiota signatures in human intestinal tract metagenomes

    NARCIS (Netherlands)

    Tims, S.

    2016-01-01

    The gut microbiota is shaped by host genotype, early life imprinting, lifestyle and diet. Moreover, specific dietary components, such as prebiotics and probiotics, can have pronounced effects on the microbiota composition and functioning. The work presented in this thesis focused on studying the hum

  20. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador.

    Science.gov (United States)

    Gainza, Oreste; Ramírez, Carolina; Ramos, Alfredo Salinas; Romero, Jaime

    2017-09-20

    The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2-V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.

  1. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications.

    Science.gov (United States)

    Rokhsefat, Sana; Lin, Aifeng; Comelli, Elena M

    2016-06-01

    The mucus layer and gut microbiota interplay contributes to host homeostasis. The mucus layer serves as a scaffold and a carbon source for gut microorganisms; conversely, gut microorganisms, including mucin degraders, influence mucin gene expression, glycosylation, and secretion. Conjointly they shield the epithelium from luminal pathogens, antigens, and toxins. Importantly, the mucus layer and gut microbiota are established in parallel during early postnatal life. During this period, the development of gut microbiota and mucus layer is coupled with that of the immune system. Developmental changes of different mucin types can impact the age-dependent patterns of intestinal infection in terms of incidence and severity. Altered mucus layer, dysbiotic microbiota, and abnormal mucus-gut microbiota interaction have the potential for inducing systemic effects, and accompany several intestinal diseases such as inflammatory bowel disease, colorectal cancer, and radiation-induced mucositis. Early life provides a pivotal window of opportunity to favorably modulate the mucus-microbiota interaction. The support of a health-compatible mucin-microbiota maturation in early life is paramount for long-term health and serves as an important opportunity for clinical intervention.

  2. Reciprocal interaction between intestinal microbiota and mucosal lymphocyte in cynomolgus monkeys after alemtuzumab treatment.

    Science.gov (United States)

    Li, Q R; Wang, C Y; Tang, C; He, Q; Li, N; Li, J S

    2013-04-01

    It has been known that the gut microbiota plays a central role in shaping normal mucosal immunity, however, little information is available whether the variability of mucosal lymphocytes impacts the commensal flora. Here, we applied a cynomolgus monkey model to characterize the structure and composition of the gut microbiota in response to lymphocyte depletion and to determine their potential association. Molecular profiling of 16S rDNA showed that the intestinal microbiota composition was perturbed after the depletion of mucosal lymphocytes and were recovered following the repopulation. Some specific bacteria from the orders Lactobacillales, Enterobacteriales and Clostridiales, and the genus Prevotella and Faecalibacterium, were primarily responsible for the variations of the gut microbiota after lymphocyte depletion. Interestingly, the species richness of the ileal mucosal microbiota was associated the proportions of TCRαβ+ or TCRγδ+ T cells (pmicrobiota composition after lymphocyte depletion and provide novel evidence that the perturbation of gut microbiota is associated with lymphocyte depletion. It may contribute to understand the relationship between gut commensal microbiota and mucosal immune system. Study results provide insight into biological activity of alemtuzumab in intestinal barrier in organ transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape

    Science.gov (United States)

    Camp, J. Gray; Frank, Christopher L.; Lickwar, Colin R.; Guturu, Harendra; Rube, Tomas; Wenger, Aaron M.; Chen, Jenny; Bejerano, Gill; Crawford, Gregory E.

    2014-01-01

    Microbiota regulate intestinal physiology by modifying host gene expression along the length of the intestine, but the underlying regulatory mechanisms remain unresolved. Transcriptional specificity occurs through interactions between transcription factors (TFs) and cis-regulatory regions (CRRs) characterized by nucleosome-depleted accessible chromatin. We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin accessibility. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome-depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is preprogrammed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs. PMID:24963153

  4. Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape.

    Science.gov (United States)

    Camp, J Gray; Frank, Christopher L; Lickwar, Colin R; Guturu, Harendra; Rube, Tomas; Wenger, Aaron M; Chen, Jenny; Bejerano, Gill; Crawford, Gregory E; Rawls, John F

    2014-09-01

    Microbiota regulate intestinal physiology by modifying host gene expression along the length of the intestine, but the underlying regulatory mechanisms remain unresolved. Transcriptional specificity occurs through interactions between transcription factors (TFs) and cis-regulatory regions (CRRs) characterized by nucleosome-depleted accessible chromatin. We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin accessibility. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome-depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is preprogrammed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs. © 2014 Camp et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Gram-negative intestinal indigenous microbiota from two Siluriform fishes in a tropical reservoir.

    Science.gov (United States)

    Duarte, Silvana; e Silva, Flávia Cristina de Paula; Zauli, Danielle Alves Gomes; Nicoli, Jacques Robert; Araújo, Francisco Gerson

    2014-01-01

    The Gram-negative intestinal microbiota of Hypostomus auroguttatus and Pimelodus maculatus, a detritivorous and an omnivorous fish species, respectively, were compared between fishes from the reservoir and the stretch of the river below the dam of the Funil hydroelectric plant, Rio de Janeiro, Brazil. Four selective culture media were used under aerobic and two under anaerobic conditions. The omnivorous species had microbiota with higher population levels compared to the detritivorous species. The number of morphotypes and population levels of total bacteria, vibrio and Bacteroides tended to be higher in summer and autumn in the reservoir, and not different in the river. The number of morphotypes of enterobacteria and total bacteria were higher in the lotic environment compared with the lentic one. The bacteria Aeromonas hydrophila and Plesiomonas shigelloides and the obligate anaerobic Fusobacterium mortiferum were the most frequently identified microorganisms in the intestine of both H. auroguttatus and P. maculatus. Both season and habitat influenced the Gram-negative intestinal microbiota of H. auroguttatus and P. maculatus. Environmental factors influenced the Gram-negative intestinal microbiota of both species with possible impact on the interrelationship between the fishes and their digestive ecosystem, although the gut microbiota composition of fishes may result from host-specific selective pressures within the gut.

  6. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    Science.gov (United States)

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p XD group than in the CD group (p XD group than in the CD group (p XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  7. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity

    OpenAIRE

    Meghan B. Azad; Konya, Theodore; Maughan, Heather; Guttman, David S.; Field, Catherine J.; Sears, Malcolm R.; Becker, Allan B; Scott, James A.; Kozyrskyj, Anita L

    2013-01-01

    Background Multiple studies have demonstrated that early-life exposure to pets or siblings affords protection against allergic disease; these associations are commonly attributed to the “hygiene hypothesis”. Recently, low diversity of the infant gut microbiota has also been linked to allergic disease. In this study, we characterize the infant gut microbiota in relation to pets and siblings. Methods The study population comprised a small sub-sample of 24 healthy, full term infants from the Can...

  8. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp.

    Science.gov (United States)

    Yang, Hui-Ting; Yang, Ming-Chong; Sun, Jie-Jie; Guo, Fang; Lan, Jiang-Feng; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2015-11-01

    Intestinal innate immune response is an important defense mechanism of animals and humans against external pathogens. The mechanism of microbiota homeostasis in host intestines has been well studied in mammals and Drosophila. The reactive oxygen species (ROS) and antimicrobial peptides have been reported to play important roles in homeostasis. However, how to maintain the microbiota homeostasis in crustacean intestine needs to be elucidated. In this study, we identified a novel catalase (MjCAT) involved in ROS elimination in kuruma shrimp, Marsupenaeus japonicus. MjCAT mRNA was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. After the shrimp were challenged with pathogenic bacteria via oral infection, the expression level of MjCAT was upregulated, and the enzyme activity was increased in the intestine. ROS level was also increased in the intestine at early time after oral infection and recovered rapidly. When MjCAT was knocked down by RNA interference (RNAi), high ROS level maintained longer time, and the number of bacteria number was declined in the shrimp intestinal lumen than those in the control group, but the survival rate of the MjCAT-RNAi shrimp was declined. Further study demonstrated that the intestinal villi protruded from epithelial lining of the intestinal wall were damaged by the high ROS level in MjCAT-knockdown shrimp. These results suggested that MjCAT participated in the intestinal host-microbe homeostasis by regulating ROS level.

  9. Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease: the PROFICEL study

    Directory of Open Access Journals (Sweden)

    Tamara Pozo-Rubio

    2013-04-01

    Full Text Available Introduction: It is known that the HLA genotype can explain about a 40% of the genetic risk of celiac disease (CD, thus, other genetic predisposing factors as well as factors that subtly modulate T cell activation and differentiation need to be studied. This includes environmental factors that are currently believed to impact on the immune system and gut microbiota development. Aim: To assess the associations between early environmental factors (EEF, lymphocyte subsets, and intestinal microbiota composition in infants at familial risk for CD. Study design: Prospective observational study. Subjects: Fifty-five 4 month-old infants with at least a first-degree relative suffering CD. Infants were classified according to type of delivery, mother's antibiotic intake during pregnancy and during labor, milk-feeding practices, early infections and antibiotic intake, rotavirus vaccine administration, and allergy incidence within the first 18 months of life. Methods: Lymphocyte subsets and gut microbiota composition were studied at the age of 4 months. Results: Formula feeding and infant's infections were associated with higher CD3+, CD4+, CD4+CD38+, CD4+CD28+ and CD3+CD4+CD45RO+ counts (P0.01. Infant s infections were also associated with higher CD4+CD25+, CD4+HLA-DR+ and NK cell counts (P0.01. Cesarean delivery and rotavirus vaccine administration were associated with lower percentage of CD4+CD25+ cells. Infant's antibiotic intake was associated and correlated with lower counts of Bifidobacterium longum and higher counts of Bacteroides fragilis group. Conclusions: Infant s infections and antibiotic intake in the first 4 months of life are the EEF more strongly and/or frequently associated to lymphocyte subpopulations and microbiota composition, respectively, in infants at risk of CD.

  10. Gut microbiota and the development of obesity La microbiota intestinal y el desarrollo de la obesidad

    OpenAIRE

    A. P. Boroni Moreira; T. Fiche Salles Teixeira; M.ª do C. Gouveia Peluzio; R. de Cássia Gonçalves Alfenas

    2012-01-01

    Introduction: Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. Objective: The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. Results and discussion: The gut microbiota is important for norma...

  11. The piglet as a model for studying dietary components in infant diets: effects of galacto-oligosaccharides on intestinal functions.

    Science.gov (United States)

    Alizadeh, A; Akbari, P; Difilippo, E; Schols, H A; Ulfman, L H; Schoterman, M H C; Garssen, J; Fink-Gremmels, J; Braber, S

    2016-02-28

    Prebiotic oligosaccharides, including galacto-oligosaccharides (GOS), are used in infant formula to mimic human milk oligosaccharides, which are known to have an important role in the development of the intestinal microbiota and the immune system in neonates. The maturation of the intestines in piglets closely resembles that of human neonates and infants. Hence, a neonatal piglet model was used to study the multi-faceted effect of dietary GOS in early life. Naturally farrowed piglets were separated from the mother sow 24-48 h postpartum and received a milk replacer with or without the addition of GOS for 3 or 26 d, whereafter several indicators of intestinal colonisation and maturation were measured. Dietary GOS was readily fermented in the colon, leading to a decreased pH, an increase in butyric acid in caecum digesta and an increase in lactobacilli and bifidobacteria numbers at day 26. Histomorphological changes were observed in the intestines of piglets fed a GOS diet for 3 or 26 d. In turn, differences in the intestinal disaccharidase activity were observed between control and GOS-fed piglets. The mRNA expression of various tight junction proteins was up-regulated in the intestines of piglet fed a GOS diet and was not accompanied by an increase in protein expression. GOS also increased defensin porcine β-defensin-2 in the colon and secretory IgA levels in saliva. In conclusion, by applying a neonatal piglet model, it could be demonstrated that a GOS-supplemented milk replacer promotes the balance of the developing intestinal microbiota, improves the intestinal architecture and seems to stimulate the intestinal defence mechanism.

  12. Intestinal microbiota-related effects on graft-versus-host disease.

    Science.gov (United States)

    Shono, Yusuke; Docampo, Melissa D; Peled, Jonathan U; Perobelli, Suelen M; Jenq, Robert R

    2015-05-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an increasingly important treatment for conditions including hematopoietic malignancies and inherited hematopoietic disorders, and is considered to be the most effective form of tumor immunotherapy available to date. However, graft-versus-host disease (GVHD) remains a major source of morbidity and mortality following allo-HSCT, and understanding the mechanisms of GVHD has been highlighted as a key research priority. During development of GVHD, activation of various immune cells, especially donor T cells, leads to damage of target organs including skin, liver, hematopoietic system, and of particular clinical importance, gut. In addition to histocompatibility complex differences between the donor and recipient, pretransplant conditioning with chemotherapy and irradiation also contributes to GVHD by damaging the gut, resulting in systemic exposure to microbial products normally confined to the intestinal lumen. The intestinal microbiota is a modulator of gastrointestinal immune homeostasis. It also promotes the maintenance of epithelial cells. Recent reports provide growing evidence of the impact of intestinal microbiota on GVHD pathophysiology. This review summarizes current knowledge of changes and effects of intestinal microbiota in the setting of allo-HSCT. We will also discuss potential future strategies of intestinal microbiota manipulation that might be advantageous in decreasing allo-HSCT-related morbidity and mortality.

  13. Single fecal microbiota transplantation failed to change intestinal microbiota and had limited effectiveness against ulcerative colitis in Japanese patients

    Science.gov (United States)

    Mizuno, Shinta; Nanki, Kosaku; Matsuoka, Katsuyoshi; Saigusa, Keiichiro; Ono, Keiko; Arai, Mari; Sugimoto, Shinya; Kiyohara, Hiroki; Nakashima, Moeko; Takeshita, Kozue; Naganuma, Makoto; Suda, Wataru; Hattori, Masahira

    2017-01-01

    Background/Aims Recent developments in analytical techniques including next-generation sequencing have clarified the correlation between intestinal microbiota and inflammatory bowel disease. Fecal microbiota transplantation (FMT) for patients with ulcerative colitis (UC) is proposed as a potential approach to resolving their dysbiosis; however, its safety and efficacy have not been confirmed. This single-arm, open-label, non-randomized study aimed to evaluate the safety and efficacy of FMT for Japanese patients with UC as the first registered clinical trial in Japan. Methods We enrolled 10 patients with active UC despite medical therapy. The donors were the patients' relatives and were carefully screened for infectious diseases. Fecal material was administered via colonoscopy, and the primary endpoint was the presence or absence of serious adverse events related to FMT. The secondary endpoint was a change in partial Mayo score at 12 weeks post-FMT. Scores ≤2 were considered a clinical response. Fecal samples were collected to follow changes in gut microbiota, while extracted complementary DNA were analyzed by a next-generation sequencer. We obtained written informed consent from all patients and donors. This study was approved by our Institutional Review Board and is registered in the University hospital Medical Information Network (UMIN) Clinical Trials Registry (UMIN 000012814). Results Five patients with moderate disease and five with severe disease were enrolled. No severe adverse effects were observed. One patient achieved clinical response; however, none of the patients' microbiota diversity recovered to the donor levels. Conclusions The use of single FMT for UC was safe; however, we failed to show its clinical efficacy and potential to change the intestinal microbiota. PMID:28239315

  14. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut

    Science.gov (United States)

    Shulzhenko, Natalia; Morgun, Andrey; Hsiao, William; Battle, Michele; Yao, Michael; Gavrilova, Oksana; Orandle, Marlene; Mayer, Lloyd; Macpherson, Andrew J; McCoy, Kathy D; Fraser-Liggett, Claire; Matzinger, Polly

    2014-01-01

    Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV that also have intestinal malabsorption were very similar to those of the B cell–deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans. PMID:22101768

  15. Intestinal microbiota composition in fishes is influenced by host ecology and environment

    Science.gov (United States)

    WONG, SANDI; RAWLS, JOHN F.

    2016-01-01

    The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins

  16. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease

    Science.gov (United States)

    Becattini, Simone; Taur, Ying; Pamer, Eric G.

    2016-01-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. PMID:27178527

  17. Interleukin (IL)-21 promotes intestinal IgA response to microbiota.

    Science.gov (United States)

    Cao, A T; Yao, S; Gong, B; Nurieva, R I; Elson, C O; Cong, Y

    2015-09-01

    Commensal microbiota-specific T helper type 17 (Th17) cells are enriched in the intestines, which can convert into T follicular helper (Tfh) in Peyer's patches, and are crucial for production of intestinal immunoglobulin A (IgA) against microbiota; however, the role of Th17 and Tfh cytokines in regulating the mucosal IgA response to enteric microbiota is still not completely known. In this study, we found that intestinal IgA was impaired in mice deficient in interleukin (IL)-17 or IL-21 signaling. IL-21, but not IL-17, is able to augment B-cell differentiation to IgA(+) cells as mediated by transforming growth factor β1 (TGFβ1) and accelerate IgA class switch recombination (CSR). IL-21 and retinoic acid (RA) induce IgA(+) B-cell development and IgA production and drives autocrine TGFβ1 production to initiate IgA CSR. Repletion of T-cell-deficient TCRβxδ(-/-) mice with Th17 cells specific for commensal bacterial antigen increased the levels of IgA(+) B cells and IgA production in the intestine, which was blocked by neutralizing IL-21. Thus IL-21 functions to strongly augment IgA production under intestinal environment. Furthermore, IL-21 promotes intestinal B-cell homing through α4β7 expression, alone or with TGFβ and RA. Together, IL-21 from microbiota-specific Th17 and/or Tfh cells contributes to robust intestinal IgA levels by enhancing IgA(+) CSR, IgA production and B-cell trafficking into the intestine.

  18. Interleukin (IL)-21 promotes intestinal IgA response to microbiota

    Science.gov (United States)

    Cao, Anthony T.; Yao, Suxia; Gong, Bin; Nurieva, Roza I.; Elson, Charles O.; Cong, Yingzi

    2014-01-01

    Commensal microbiota-specific Th17 cells are enriched in the intestines, which can convert into Tfh in Peyer’s patches, and are crucial for production of intestinal IgA against microbiota, however, the role of Th17 and Tfh cytokines in regulating the mucosal IgA response to enteric microbiota is still not completely known. In this study, we found that intestinal IgA was impaired in mice deficient in IL-17 or IL-21 signaling. IL-21, but not IL-17, is able to augment B cell differentiation to IgA+ cells as mediated by TGFβ1, and accelerate IgA class switch recombination (CSR). IL-21 and retinoic acid (RA) induce IgA+ B cell development and IgA production, and drives autocrine TGFβ1 production to initiate IgA CSR. Repletion of T cell-deficient TCRβxδ−/− mice with Th17 cells specific for commensal bacterial antigen, increased levels of IgA+ B cells and IgA production in the intestine, which was blocked by neutralizing IL-21. Thus, IL-21 functions to strongly augment IgA production under intestinal environment. Furthermore, IL-21 promotes intestinal B cell homing through α4β7 expression, alone or with TGFβ and RA. Together, IL-21 from microbiota-specific Th17 and/or Tfh cells contributes to robust intestinal IgA levels by enhancing IgA+ CSR, IgA production, and B cell trafficking into the intestine. PMID:25586558

  19. Comparison between terminal-restriction fragment length polymorphism (T-RFLP) and quantitative culture for analysis of infants' gut microbiota.

    Science.gov (United States)

    Sjöberg, Fei; Nowrouzian, Forough; Rangel, Ignacio; Hannoun, Charles; Moore, Edward; Adlerberth, Ingegerd; Wold, Agnes E

    2013-07-01

    The infantile intestinal microbiota is a major stimulus for immune maturation. Both culture and DNA-based methods can be used for microbiota characterization, but few studies have systematically compared their performance for analysis of the gut microbiota. Here, we examined fecal samples obtained on six occasions between one week and 12 months of age from six vaginally delivered infants. After quantitative aerobic and anaerobic culture of the samples on selective and non-selective media, DNA was extracted from the fecal samples and analyzed regarding 16S rRNA gene polymorphism by terminal-restriction fragment length polymorphism (T-RFLP). A database was constructed for direct identification of T-RFLP peaks by analysis of pure-culture bacteria and analysis of a limited number of samples by 16S rRNA cloning and sequencing. Bacterial genera present at >10⁶ CFU/g feces, as determined by quantitative culture, were generally readily detected by T-RFLP, while culture on selective media was more sensitive in detecting facultative anaerobes with lower population counts. In contrast, T-RFLP more readily than culture detected several anaerobic species, also taxa that could not be identified using the database. T-RFLP readily identified bacteria to the genus level and also provided some sub-genus discrimination. Both T-RFLP and culture identified Bifidobacterium, Clostridium and Bacteroides spp. among the most common colonizers of the infantile microbiota throughout the first year of life. T-RFLP analysis showed that microbiota complexity was high in the first weeks of life, declined to a minimum at 1-2 months of age, and thereafter increased again. Principal component analysis revealed that early samples (1 week-6 months) chiefly differed between individual infants, while 12-month samples were similar between children, but different from the early samples. Our results indicate that T-RFLP has high sensitivity and adequate taxonomic discrimination capacity for analysis of

  20. Intestinal proteome changes during infant necrotizing enterocolitis

    DEFF Research Database (Denmark)

    Jiang, Pingping; Smith, Birgitte; Qvist, Niels;

    2013-01-01

    Background: Changes in the intestinal and colonic proteome in patients with necrotizing enterocolitis (NEC) may help to characterize the disease pathology and identify new biomarkers and treatment targets for NEC. Methods: Using gel-based proteomics, proteins in NEC-affected intestinal and coloni...

  1. Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens.

    Science.gov (United States)

    Pedroso, Adriana A; Batal, Amy B; Lee, Margie D

    2016-05-01

    OBJECTIVE To determine effects of in ovo administration of a probiotic on development of the intestinal microbiota of 2 genetic lineages (modern and heritage) of chickens. SAMPLE 10 newly hatched chicks and 40 fertile eggs to determine intestinal microbiota at hatch, 900 fertile eggs to determine effects of probiotic on hatchability, and 1,560 chicks from treated or control eggs. PROCEDURES A probiotic competitive-exclusion product derived from adult microbiota was administered in ovo to fertile eggs of both genetic lineages. Cecal contents and tissues were collected from embryos, newly hatched chicks, and chicks. A PCR assay was used to detect bacteria present within the cecum of newly hatched chicks. Fluorescence in situ hybridization and vitality staining were used to detect viable bacteria within intestines of embryos. The intestinal microbiota was assessed by use of 16S pyrosequencing. RESULTS Microscopic evaluation of embryonic cecal contents and tissues subjected to differential staining techniques revealed viable bacteria in low numbers. Development of the intestinal microbiota of broiler chicks of both genetic lineages was enhanced by in ovo administration of adult microbiota. Although the treatment increased diversity and affected composition of the microbiota of chicks, most bacterial species present in the probiotic were transient colonizers. However, the treatment decreased the abundance of undesirable bacterial species within heritage lineage chicks. CONCLUSIONS AND CLINICAL RELEVANCE In ovo inoculation of a probiotic competitive-exclusion product derived from adult microbiota may be a viable method of managing development of the microbiota and reducing the prevalence of pathogenic bacteria in chickens.

  2. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4

    Science.gov (United States)

    Out, Carolien; Patankar, Jay V.; Doktorova, Marcela; Boesjes, Marije; Bos, Trijnie; de Boer, Sanna; Havinga, Rick; Wolters, Henk; Boverhof, Renze; van Dijk, Theo H.; Smoczek, Anna; Bleich, André; Sachdev, Vinay; Kratky, Dagmar; Kuipers, Folkert; Verkade, Henkjan J.; Groen, Albert K.

    2017-01-01

    Background & Aims Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice. Methods Bile acid homeostasis was assessed in four mouse models. Germfree mice, conventionally-raised mice, Asbt-KO mice and intestinal-specific Gata4-iKO mice were treated with antibiotics (bacitracin, neomycin and vancomycin; 100 mg/kg) for five days and subsequently compared with untreated mice. Results Attenuation of the bacterial flora by antibiotics strongly reduced fecal excretion and synthesis of bile acids, but increased the expression of the bile acid synthesis enzyme CYP7A1. Similar effects were seen in germfree mice. Intestinal bile acid absorption was increased and accompanied by increases in plasma bile acid levels, biliary bile acid secretion and enterohepatic cycling of bile acids. In the absence of microbiota, the expression of the intestinal bile salt transporter Asbt was strongly increased in the ileum and was also expressed in more proximal parts of the small intestine. Most of the effects of antibiotic treatment on bile acid homeostasis could be prevented by genetic inactivation of either Asbt or the transcription factor Gata4. Conclusions Attenuation of gut microbiota alters Gata4-controlled expression of Asbt, increasing absorption and decreasing synthesis of bile acids. Our data support the concept that under physiological conditions microbiota stimulate Gata4, which suppresses Asbt expression, limiting the expression of this transporter to the terminal ileum. Our studies expand current knowledge on the bacterial control of bile acid homeostasis. PMID:26022694

  3. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken.

    Science.gov (United States)

    Gao, Pengfei; Ma, Chen; Sun, Zheng; Wang, Lifeng; Huang, Shi; Su, Xiaoquan; Xu, Jian; Zhang, Heping

    2017-08-03

    Reducing antibiotics overuse in animal agriculture is one key in combat against the spread of antibiotic resistance. Probiotics are a potential replacement of antibiotics in animal feed; however, it is not clear whether and how probiotics and antibiotics differ in impact on physiology and microbial ecology of host animals. Host phenotype and fecal microbiota of broilers with either antibiotics or probiotics as feed additive were simultaneously sampled at four time points from birth to slaughter and then compared. Probiotic feeding resulted in a lower feed conversion ratio (FCR) and induced the highest level of immunity response, suggesting greater economic benefits in broiler farming. Probiotic use but not antibiotic use recapitulated the characteristics of age-dependent development of gut microbiota in the control group. The maturation of intestinal microbiota was greatly accelerated by probiotic feeding, yet significantly retarded and eventually delayed by antibiotic feeding. LP-8 stimulated the growth of many intestinal Lactobacillus spp. and led to an altered bacterial correlation network where Lactobacillus spp. are negatively correlated with 14 genera and positively linked with none, yet from the start antibiotic feeding featured a less-organized network where such inter-genera interactions were fewer and weaker. Consistently, microbiota-encoded functions as revealed by metagenome sequencing were highly distinct between the two groups. Thus, "intestinal microbiota maturation index" was proposed to quantitatively compare impact of feed additives on animal microecology. Our results reveal a tremendous potential of probiotics as antibiotics' substitute in poultry farming.

  4. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  5. Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice.

    Science.gov (United States)

    Ma, Betty W; Bokulich, Nicholas A; Castillo, Patricia A; Kananurak, Anchasa; Underwood, Mark A; Mills, David A; Bevins, Charles L

    2012-01-01

    The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals.

  6. Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease?

    Institute of Scientific and Technical Information of China (English)

    Roberto; Bringiotti; Enzo; Ierardi; Rosa; Lovero; Giuseppe; Losurdo; Alfredo; Di; Leo; Mariabeatrice; Principi

    2014-01-01

    Inflammatory bowel diseases(IBDs), namely Crohn’s disease and ulcerative colitis, are lifelong chronic disorders arising from interactions among genetic, immunological and environmental factors. Although the origin of IBDs is closely linked to immune response alterations, which governs most medical decision-making, recent findings suggest that gut microbiota may be involved in IBD pathogenesis. Epidemiologic evidence and several studies have shown that a dysregulation of gut microbiota(i.e., dysbiosis) may trigger the onset of intestinal disorders such as IBDs. Animal and human investigations focusing on the microbiota-IBD relationship have suggested an altered balance of the intestinal microbial population in the active phase of IBD. Rigorous microbiota typing could, therefore, soon become part of a complete phenotypic analysis of IBD patients. Moreover, individual susceptibility and environmental triggers such as nutrition, medications, age or smoking could modify bacterial strains in the bowel habitat. Pharmacological manipulation of bowel microbiota is somewhat controversial. The employment of antibiotics, probiotics, prebiotics and synbiotics has been widely addressed in theliterature worldwide, with the aim of obtaining positive results in a number of IBD patient settings, and determining the appropriate timing and modality of this intervention. Recently, novel treatments for IBDs, such as fecal microbiota transplantation, when accepted by patients, have shown promising results. Controlled studies are being designed. In the near future, new therapeutic strategies can be expected, with non-pathogenic or modified food organisms that can be genetically modified to exert anti-inflammatory properties.

  7. Effects of n-3 PUFAs on Intestinal Mucosa Innate Immunity and Intestinal Microbiota in Mice after Hemorrhagic Shock Resuscitation

    Directory of Open Access Journals (Sweden)

    Feng Tian

    2016-09-01

    Full Text Available n-3 polyunsaturated fatty acids (PUFAs can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR. However, the effects of n-3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n-3 PUFAs and HSR + n-6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n-3 and n-6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n-3 PUFAs had an advantage over n-6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n-3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n-3 PUFAs to patients recovering from ischemia-reperfusion.

  8. Toxicity of Methylated Bismuth Compounds Produced by Intestinal Microorganisms to Bacteroides thetaiotaomicron, a Member of the Physiological Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Beatrix Bialek

    2011-01-01

    Full Text Available Methanoarchaea have an outstanding capability to methylate numerous metal(loids therefore producing toxic and highly mobile derivatives. Here, we report that the production of methylated bismuth species by the methanoarchaeum Methanobrevibacter smithii, a common member of the human intestine, impairs the growth of members of the beneficial intestinal microbiota at low concentrations. The bacterium Bacteroides thetaiotaomicron, which is of great importance for the welfare of the host due to its versatile digestive abilities and its protective function for the intestine, is highly sensitive against methylated, but not against inorganic, bismuth species. The level of methylated bismuth species produced by the methanoarchaeum M. smithii in a coculture experiment causes a reduction of the maximum cell density of B. thetaiotaomicron. This observation suggests that the production of methylated organometal(loid species in the human intestine, caused by the activity of methanoarchaea, may affect the health of the host. The impact of the species to reduce the number of the physiological intestinal microbiota brings an additional focus on the potentially harmful role of methanoarchaea in the intestine of a higher organism.

  9. Effects of intestinal microbiota on the bioavailability of geniposide in rats.

    Science.gov (United States)

    Jin, Ming Ji; Kim, In Sook; Kim, Dong-Hyun; Yoo, Hye Hyun

    2014-10-08

    This study investigated the effects of intestinal microbiota on the metabolism of geniposide by using a rat model treated with a mixture of antibiotics. The plasma concentration of geniposide was determined after oral administration in control and antibiotics-treated rats by using liquid chromatography-tandem mass spectrometry. The maximum plasma concentrations (Cmax) of geniposide in control and antibiotics-treated rats were 0.91 ± 0.26 and 1.01 ± 0.04 μg/mL, respectively, and the area under the curve (AUC) values were 7.34 ± 3.32 and 11.9 ± 2.1 μg·h/mL (p intestinal microbiota. These results suggest that the gut microbiota may have an impact on the bioavailability of geniposide.

  10. Role of the intestinal microbiota and fecal transplantation in inflammatory bowel diseases.

    Science.gov (United States)

    Liang, Jie; Sha, Su Mei; Wu, Kai Chun

    2014-12-01

    Ulcerative colitis and Crohn's disease are the two major types of inflammatory bowel disease (IBD). Despite intensive study, it is still challenging because the precise etiology and pathogenesis remains unclear. Studies have shown that IBD is associated with changes in the composition of intestinal microbiota, as either a cause or a consequence of abnormal host immune response in genetic susceptible population. Two specific microorganisms (Mycobacterium avium subsp. paratuberculosis and Escherichia coli) get more widely studied, but till now no single microorganism has been identified as the only pathogen. Genetic susceptibility data also suggest impaired handling of bacteria as well as an improper immune response to potential pathogens. The microbiota provides new therapeutic methods, and fecal microbiota transplantation may restore the balance of intestinal flora to supplement or optimize the current therapies. © 2014 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  11. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43.

    Science.gov (United States)

    Wu, W; Sun, M; Chen, F; Cao, A T; Liu, H; Zhao, Y; Huang, X; Xiao, Y; Yao, S; Zhao, Q; Liu, Z; Cong, Y

    2016-12-14

    Intestinal IgA, which is regulated by gut microbiota, has a crucial role in maintenance of intestinal homeostasis and in protecting the intestines from inflammation. However, the means by which microbiota promotes intestinal IgA responses remain unclear. Emerging evidence suggests that the host can sense gut bacterial metabolites in addition to pathogen-associated molecular patterns and that recognition of these small molecules influences host immune response in the intestines and beyond. We reported here that microbiota metabolite short-chain fatty acid acetate promoted intestinal IgA responses, which was mediated by "metabolite-sensing" GPR43. GPR43(-/-) mice demonstrated lower levels of intestinal IgA and IgA(+) gut bacteria compared with those in wild type (WT) mice. Feeding WT but not GPR43(-/-) mice acetate but not butyrate promoted intestinal IgA response independent of T cells. Acetate promoted B-cell IgA class switching and IgA production in vitro in the presence of WT but not GPR43(-/-) dendritic cells (DCs). Mechanistically, acetate-induced DC expression of Aldh1a2, which converts Vitamin A into its metabolite retinoic acid (RA). Moreover, blockade of RA signaling inhibited the acetate induction of B-cell IgA production. Our studies thus identified a new pathway by which microbiota promotes intestinal IgA response through its metabolites.Mucosal Immunology advance online publication 14 December 2016. doi:10.1038/mi.2016.114.

  12. Intestinal microbiota in human health and disease: the impact of probiotics

    NARCIS (Netherlands)

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos, de W.M.

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the

  13. Intestinal microbiota in human health and disease: the impact of probiotics

    NARCIS (Netherlands)

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos, de W.M.

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the

  14. Analysis of diversity and function of the human small intestinal microbiota

    NARCIS (Netherlands)

    Booijink, C.C.G.M.

    2009-01-01

    The gastrointestinal (GI) tract is the main site where the conversion and absorption of food components takes place in humans. As the small intestine is the first site of interaction between the microbiota and ingested food, knowledge about the microbial composition as well as functionality is essen

  15. Analysis of diversity and function of the human small intestinal microbiota

    NARCIS (Netherlands)

    Booijink, C.C.G.M.

    2009-01-01

    The gastrointestinal (GI) tract is the main site where the conversion and absorption of food components takes place in humans. As the small intestine is the first site of interaction between the microbiota and ingested food, knowledge about the microbial composition as well as functionality is

  16. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Holm, Thomas L.; Krych, Lukasz

    2013-01-01

    Intestinal epithelial cells (IECs) are one of a few cell types in the body with constitutive surface expression of natural killer group 2 member D (NKG2D) ligands, although the magnitude of ligand expression by IECs varies. Here, we investigated whether the gut microbiota regulates the NKG2D ligand...

  17. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation.

    Science.gov (United States)

    Bailey, Michael T

    2014-01-01

    The body is colonized by a vast population of genetically diverse microbes, the majority of which reside within the intestines to comprise the intestinal microbiota. During periods of homeostasis, these microbes reside within stable climax communities, but exposure to physical, physiological, as well as psychological stressors can significantly impact the structure of the intestinal microbiota. This has been demonstrated in humans and laboratory animals, with the most consistent finding being a reduction in the abundance of bacteria in the genus Lactobacillus. Whether stressor exposure also changes the function of the microbiota, has not been as highly studied. The studies presented in this review suggest that stressor-induced disruption of the intestinal microbiota leads to increased susceptibility to enteric infection and overproduction of inflammatory mediators that can induce behavioral abnormalities, such as anxiety-like behavior. Studies involving germfree mice also demonstrate that the microbiota are necessary for stressor-induced increases in innate immunity to occur. Exposing mice to a social stressor enhances splenic macrophage microbicidal activity, but this effect fails to occur in germfree mice. These studies suggest a paradigm in which stressor exposure alters homeostatic interactions between the intestinal microbiota and mucosal immune system and leads to the translocation of pathogenic, and/or commensal, microbes from the lumen of the intestines to the interior of the body where they trigger systemic inflammatory responses and anxiety-like behavior. Restoring homeostasis in the intestines, either by removing the microbiota or by administering probiotic microorganisms, can ameliorate the stressor effects.

  18. Intestinal microbiota composition after antibiotic treatment in early life : the INCA study

    NARCIS (Netherlands)

    Rutten, N B M M; Rijkers, G T; Meijssen, C B; Crijns, C E; Oudshoorn, J H; van der Ent, C K; Vlieger, A M; van der Ent, CK

    2015-01-01

    BACKGROUND: The acquisition and development of infant gut microbiota can be influenced by numerous factors, of which early antibiotic treatment is an important one. However, studies on the effects of antibiotic treatment in early life on clinical outcomes and establishment and development of the gut

  19. Glucocorticoids and microbiota regulate ontogeny of intestinal fucosyltransferase 2 requisite for gut homeostasis.

    Science.gov (United States)

    Nanthakumar, N Nanda; Meng, Di; Newburg, David S

    2013-10-01

    At weaning, the intestinal mucosa surface glycans change from predominantly sialylated to fucosylated. Intestinal adaptation from milk to solid food is regulated by intrinsic and extrinsic factors. The contribution by glucocorticoid, an intrinsic factor, and colonization by microbiota, an extrinsic factor, was measured as the induction of α1,2/3-fucosyltransferase and sucrase-isomaltase (SI) activity and gene expression in conventionally raised, germ-free, and bacteria-depleted mice. In conventionally raised mice, cortisone acetate (CA) precociously accelerated SI gene expression up to 3 weeks and fut2 to 4 weeks of age. In germ-free mice, CA treatment induces only SI expression but not fucosyltransferase. In post-weaning bacteria-deficient (germ-free and bacteria-depleted) mice, fut2 expression remains at low suckling levels. In microbiota deficient mice, intestinal fut2 (but not fut1, fut4 or fut7) was induced only by adult microbiota, but not immature microbiota or CA. Fut2 induction could also be restored by colonization by Bacteroides fragilis, but not by a B. fragilis mutant unable to utilize fucose. Restoration of fut2 expression (by either microbiota or B. fragilis) in bacteria-depleted mice is necessary for recovery from dextran sulfate sodium-induced mucosal injury. Thus, glucocorticoids and microbes regulate distinct aspects of gut ontogeny: CA precociously accelerates SI expression and, only in colonized mice, fut2 early expression. The adult microbiota is required for the fut2 induction responsible for the highly fucosylated adult gut phenotype and is necessary for recovery from intestinal injury. Fut2-dependent recovery from inflammation may explain the high incidence of inflammatory disease (Crohn's and necrotizing enterocolitis) in populations with mutant FUT2 polymorphic alleles.

  20. Human milk glycobiome and its impact on the infant gastrointestinal microbiota

    OpenAIRE

    Zivkovic, Angela M.; German, J. Bruce; Lebrilla, Carlito B.; David A. Mills

    2010-01-01

    Human milk contains an unexpected abundance and diversity of complex oligosaccharides apparently indigestible by the developing infant and instead targeted to its cognate gastrointestinal microbiota. Recent advances in mass spectrometry-based tools have provided a view of the oligosaccharide structures produced in milk across stages of lactation and among human mothers. One postulated function for these oligosaccharides is to enrich a specific “healthy” microbiota containing bifidobacteria, a...

  1. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Eliette Riboulet-Bisson

    Full Text Available Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially

  2. Effects of different complementary feeding regimens on iron status and enteric microbiota in breastfed infants.

    Science.gov (United States)

    Krebs, Nancy F; Sherlock, Laurie G; Westcott, Jamie; Culbertson, Diana; Hambidge, K Michael; Feazel, Leah M; Robertson, Charles E; Frank, Daniel N

    2013-08-01

    To compare iron status in breastfed infants randomized to groups receiving complementary feeding regimens that provided iron from fortified infant cereals or meats, and to examine the development of the enteric microbiota in these groups. Forty-five exclusively breastfed 5-month-old infants were randomized to 1 of 3 feeding groups (FGs)-commercially available pureed meats, iron- and zinc-fortified infant cereals, or iron-only fortified infant cereals-as the first and primary complementary food through 9-10 months of age. Dietary iron was determined by monthly 3-day diet records. Iron status was assessed at the end of the study by measurements of hemoglobin, serum ferritin, and soluble transferrin receptor levels. In a subsample of 14 infants, enteric microbiota were profiled in monthly stool samples (5-9 months) by 16S ribosomal RNA gene pyrosequencing. Infants in the 2 cereal FGs had 2- to 3-fold greater daily iron intakes versus the meat FG (P deficient, and complementary feeding, including iron exposure, influenced the development of the enteric microbiota. If these findings are confirmed, then reconsideration of strategies to both meet infants' iron requirements and optimize the developing microbiome may be warranted. Copyright © 2013 Mosby, Inc. All rights reserved.

  3. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of lactobacilli

    DEFF Research Database (Denmark)

    Holm, Jacob Bak; Sorobetea, Daniel; Kiilerich, Pia

    2015-01-01

    microbiota by 16S ribosomal-RNA gene-based sequencing. Our results demonstrate that persistent T. muris infection dramatically affects the large-intestinal microbiota, most notably with a drop in the diversity of bacterial communities, as well as a marked increase in the relative abundance......The intestinal microbiota is vital for shaping the local intestinal environment as well as host immunity and metabolism. At the same time, epidemiological and experimental evidence suggest an important role for parasitic worm infections in maintaining the inflammatory and regulatory balance...... microbiota, as well as potential downstream effects on the immune system, remain largely unknown. We have assessed the influence of chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the human pathogen Trichuris trichiura, on the composition of the murine intestinal...

  4. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Andersen, Louise B. B.; Michaelsen, Kim F.;

    2016-01-01

    The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through...... either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal...

  5. Gut microbiota and its relationship with obesity/Microbiota intestinal e sua relacao com a obesidade

    National Research Council Canada - National Science Library

    Spezia, Gabriela; da Silva, Leticia Theodoro; dos Santos, Samira Petry; Liberali, Rafaela; Navarro, Francisco

    2009-01-01

    ... nutritional disorder of developed and developing countries. Microbiota can be seen as a metabolic organ synergistically adjusted to our physiology, wich plays important roles in the maintaining and defense of our organism...

  6. Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome.

    Science.gov (United States)

    Tap, Julien; Derrien, Muriel; Törnblom, Hans; Brazeilles, Rémi; Cools-Portier, Stéphanie; Doré, Joël; Störsrud, Stine; Le Nevé, Boris; Öhman, Lena; Simrén, Magnus

    2017-01-01

    We have limited knowledge about the association between the composition of the intestinal microbiota and clinical features of irritable bowel syndrome (IBS). We collected information on the fecal and mucosa-associated microbiota of patients with IBS and evaluated whether these were associated with symptoms. We collected fecal and mucosal samples from adult patients who met the Rome III criteria for IBS at a secondary/tertiary care outpatient clinics in Sweden, as well as from healthy subjects. The exploratory set comprised 149 subjects (110 with IBS and 39 healthy subjects); 232 fecal samples and 59 mucosal biopsy samples were collected and analyzed by 16S ribosomal RNA targeted pyrosequencing. The validation set comprised 46 subjects (29 with IBS and 17 healthy subjects); 46 fecal samples, but no mucosal samples, were collected and analyzed. For each subject, we measured exhaled H2 and CH4, oro-anal transit time, and the severity of psychological and gastrointestinal symptoms. Fecal methanogens were measured by quantitative polymerase chain reaction. Numerical ecology analyses and a machine learning procedure were used to analyze the data. Fecal microbiota showed covariation with mucosal adherent microbiota. By using classic approaches, we found no differences in fecal microbiota abundance or composition between patients with IBS vs healthy patients. A machine learning procedure, a computational statistical technique, allowed us to reduce the 16S ribosomal RNA data complexity into a microbial signature for severe IBS, consisting of 90 bacterial operational taxonomic units. We confirmed the robustness of the intestinal microbial signature for severe IBS in the validation set. The signature was able to discriminate between patients with severe symptoms, patients with mild/moderate symptoms, and healthy subjects. By using this intestinal microbiota signature, we found IBS symptom severity to be associated negatively with microbial richness, exhaled CH4, presence of

  7. Fenugreek seed affects intestinal microbiota and immunological variables in piglets after weaning.

    Science.gov (United States)

    Zentek, Jürgen; Gärtner, Stefanie; Tedin, Lydia; Männer, Klaus; Mader, Anneluise; Vahjen, Wilfried

    2013-03-14

    Fenugreek seed has been shown to affect the intestinal microbiota and immunological responses in animals. A feeding trial with male castrated piglets was performed over 28 d without or with the addition of 1·5 g fenugreek seeds/kg complete diet in ten and eleven piglets, weaned at 21 d. In the intestinal tract, pH, lactate and SCFA were measured as major bacterial metabolites. Immune cell phenotypes, phagocytic activity and lymphocyte proliferation after stimulation with pokeweed mitogen, concanavalin A and phytohaemagglutinin M were measured by flow cytometry. Health status and performance of the piglets were not affected by fenugreek. The pH in the caecum and colon were reduced compared with the control (Pingredient for young piglets due to their effects on the intestinal microbiota and immunological variables. The impact on performance and animal health has to be further evaluated.

  8. Effects of specific carbohydrates on the intestinal microbiota

    DEFF Research Database (Denmark)

    Hemmingsen, Lene; Holck, Jesper; Meyer, Anne S.

    microbiotas. Changes in the microbial composition were addressed by Denaturing Gradient Gel Electrophoresis, DGGE, using Fructo- Oligosaccharides (FOS, a goldenstandard prebiotic) and glucose as reference substrates. Comparison between the DGGE profiles obtained by fermentations of S1, S2 and FOS showed...

  9. The role of breast-feeding in infant immune system: a systems perspective on the intestinal microbiome.

    Science.gov (United States)

    Praveen, Paurush; Jordan, Ferenc; Priami, Corrado; Morine, Melissa J

    2015-09-24

    The human intestinal microbiota changes from being sparsely populated and variable to possessing a mature, adult-like stable microbiome during the first 2 years of life. This assembly process of the microbiota can lead to either negative or positive effects on health, depending on the colonization sequence and diet. An integrative study on the diet, the microbiota, and genomic activity at the transcriptomic level may give an insight into the role of diet in shaping the human/microbiome relationship. This study aims at better understanding the effects of microbial community and feeding mode (breast-fed and formula-fed) on the immune system, by comparing intestinal metagenomic and transcriptomic data from breast-fed and formula-fed babies. We re-analyzed a published metagenomics and host gene expression dataset from a systems biology perspective. Our results show that breast-fed samples co-express genes associated with immunological, metabolic, and biosynthetic activities. The diversity of the microbiota is higher in formula-fed than breast-fed infants, potentially reflecting the weaker dependence of infants on maternal microbiome. We mapped the microbial composition and the expression patterns for host systems and studied their relationship from a systems biology perspective, focusing on the differences. Our findings revealed that there is co-expression of more genes in breast-fed samples but lower microbial diversity compared to formula-fed. Applying network-based systems biology approach via enrichment of microbial species with host genes revealed the novel key relationships of the microbiota with immune and metabolic activity. This was supported statistically by data and literature.

  10. The role of the intestinal microbiota in type 1 diabetes mellitus.

    Science.gov (United States)

    Knip, Mikael; Siljander, Heli

    2016-03-01

    Type 1 diabetes mellitus (T1DM) is a chronic immune-mediated disease with a subclinical prodromal period, characterized by selective loss of insulin-producing-β cells in the pancreatic islets of genetically susceptible individuals. The incidence of T1DM has increased several fold in most developed countries since World War II, in conjunction with other immune-mediated diseases. Rapid environmental changes and modern lifestyles are probably the driving factors that underlie this increase. These effects might be mediated by changes in the human microbiota, particularly the intestinal microbiota. Research on the gut microbiome of individuals at risk of developing T1DM and in patients with established disease is still in its infancy, but initial findings indicate that the intestinal microbiome of individuals with prediabetes or diabetes mellitus is different to that of healthy individuals. The gut microbiota in individuals with preclinical T1DM is characterized by Bacteroidetes dominating at the phylum level, a dearth of butyrate-producing bacteria, reduced bacterial and functional diversity and low community stability. However, these changes seem to emerge after the appearance of autoantibodies that are predictive of T1DM, which suggests that the intestinal microbiota might be involved in the progression from β-cell autoimmunity to clinical disease rather than in the initiation of the disease process.

  11. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    Science.gov (United States)

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  12. Rebamipide protects small intestinal mucosal injuries caused by indomethacin by modulating intestinal microbiota and the gene expression in intestinal mucosa in a rat model.

    Science.gov (United States)

    Kurata, Satoshi; Nakashima, Takako; Osaki, Takako; Uematsu, Naoya; Shibamori, Masafumi; Sakurai, Kazushi; Kamiya, Shigeru

    2015-01-01

    The effect of rebamipide, a mucosal protective drug, on small intestinal mucosal injury caused by indomethacin was examined using a rat model. Indomethacin administration (10 mg/kg, p.o.) induced intestinal mucosal injury was accompanied by an increase in the numbers of intestinal bacteria particularly Enterobacteriaceae in the jejunum and ileum. Rebamipide (30 and 100 mg/kg, p.o., given 5 times) was shown to inhibit the indomethacin-induced small intestinal mucosal injury and decreased the number of Enterococcaceae and Enterobacteriaceae in the jejunal mucosa to normal levels. It was also shown that the detection rate of segmented filamentous bacteria was increased by rebamipide. PCR array analysis of genes related to inflammation, oxidative stress and wound healing showed that indomethacin induced upregulation and downregulation of 14 and 3 genes, respectively in the rat jejunal mucosa by more than 5-fold compared to that of normal rats. Rebamipide suppressed the upregulated gene expression of TNFα and Duox2 in a dose-dependent manner. In conclusion, our study confirmed that disturbance of intestinal microbiota plays a crucial role in indomethacin-induced small intestinal mucosal injury, and suggests that rebamipide could be used as prophylaxis against non-steroidal anti-inflammatory drugs -induced gastrointestinal mucosal injury, by modulating microbiota and suppressing mucosal inflammation in the small intestine.

  13. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?

    Science.gov (United States)

    Brahe, L K; Astrup, A; Larsen, L H

    2013-12-01

    It is increasingly recognized that there is a connection between diet, intestinal microbiota, intestinal barrier function and the low-grade inflammation that characterizes the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment relevant. In this context, the ability of some Gram-positive anaerobic bacteria to produce the short-chain fatty acid butyrate is interesting. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans, and recent studies suggest that butyrate might have an anti-inflammatory potential that can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Here, we review and discuss the potential of butyrate as an anti-inflammatory mediator in metabolic diseases, and the potential for dietary interventions increasing the intestinal availability of butyrate.

  14. Dietary inulin affects the intestinal microbiota in sows and their suckling piglets

    OpenAIRE

    2015-01-01

    Background Several studies have focused on the effects of dietary inulin on the intestinal microbiota of weaned piglets. In the present study, inulin was added to a diet for gestating and lactating sows, expecting not only effects on the faecal microbiota of sows, but also on the bacterial cell numbers in the gastrointestinal tract of their piglets during the suckling period. Sows were fed a diet without (n = 11) or with (n = 10) 3% inulin, and selected bacterial groups were determined in the...

  15. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.

    Science.gov (United States)

    Cox, Laura M; Yamanishi, Shingo; Sohn, Jiho; Alekseyenko, Alexander V; Leung, Jacqueline M; Cho, Ilseung; Kim, Sungheon G; Li, Huilin; Gao, Zhan; Mahana, Douglas; Zárate Rodriguez, Jorge G; Rogers, Arlin B; Robine, Nicolas; Loke, P'ng; Blaser, Martin J

    2014-08-14

    Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. PAPERCLIP:

  16. Contributions of the Interaction between Dietary Protein and Gut Microbiota to Intestinal Health.

    Science.gov (United States)

    Ma, Ning; Tian, Yanan; Wu, Yi; Ma, Xi

    2017-02-16

    There is growing recognition that composition and metabolic activity of the gut microbiota can be modulated by the dietary proteins which in turn impact health. The amino acid composition and digestibility of proteins, which are influenced by its source and amount of intake, play a pivotal role in determining the microbiota. Reciprocally, it appears that the gut microbiota is also able to affect protein metabolism which give rise to the view that function between the microbiota and protein can proceed in both directions. In response to the alterations in dietary protein components, there are significant changes in the microbial metabolites including short chain fatty acids (SCFAs), ammonia, amines, gases such as hydrogen, sulfide and methane which are cytotoxins, genotoxins and carcinogens associated with development of colon cancer and inflammatory bowel diseases. A suitable ratio between protein and carbohydrate or even a low protein diet is recommended based on the evidence that excessive protein intake adversely affect health. Supplying high and undigested proteins will encourage pathogens and protein-fermenting bacteria to increase the risk of diseases. These changes of microbiota can affect gut barrier and immune system by regulating genes expression in relevant signaling pathways and by regulating the secretion of metabolites. The objective of this review is to assess the impact of dietary proteins on microbiota composition and activity in the gastro-intestinal tract. The attention should be give to the dietary strategies with judicious selection of source and supplementation of dietary protein to benefit gut health.

  17. Longitudinal analysis of the premature infant intestinal microbiome prior to necrotizing enterocolitis: a case-control study.

    Directory of Open Access Journals (Sweden)

    Yanjiao Zhou

    Full Text Available Necrotizing enterocolitis (NEC is an inflammatory disease of the newborn bowel, primarily affecting premature infants. Early intestinal colonization has been implicated in the pathogenesis of NEC. The objective of this prospective case-control study was to evaluate differences in the intestinal microbiota between infants who developed NEC and unaffected controls prior to disease onset. We conducted longitudinal analysis of the 16S rRNA genes of 312 samples obtained from 12 NEC cases and 26 age-matched controls with a median frequency of 7 samples per subject and median sampling interval of 3 days. We found that the microbiome undergoes dynamic development during the first two months of life with day of life being the major factor contributing to the colonization process. Depending on when the infant was diagnosed with NEC (i.e. early vs. late onset, the pattern of microbial progression was different for cases and controls. The difference in the microbiota was most overt in early onset NEC cases and controls. In proximity to NEC onset, the abundances of Clostridium sensu stricto from Clostridia class were significantly higher in early onset NEC subjects comparing to controls. In late onset NEC, Escherichia/Shigella among Gammaproteobacteria, showed an increasing pattern prior to disease onset, and was significantly higher in cases than controls six days before NEC onset. Cronobacter from Gammaproteobacteria was also significantly higher in late onset NEC cases than controls 1-3 days prior to NEC onset. Thus, the specific infectious agent associated with NEC may vary by the age of infant at disease onset. We found that intravenously administered antibiotics may have an impact on the microbial diversity present in fecal material. Longitudinal analysis at multiple time points was an important strategy utilized in this study, allowing us to appreciate the dynamics of the premature infant intestinal microbiome while approaching NEC at various points.

  18. Alterations of digestive enzyme activities, intestinal morphology and microbiota in juvenile paddlefish, Polyodon spathula, fed dietary probiotics.

    Science.gov (United States)

    Fang, Cheng; Ma, Mingyang; Ji, Hong; Ren, Tongjun; Mims, Steven D

    2015-02-01

    The effects of dietary supplementation of probiotics on digestive enzymes activities, intestinal morphology and microbiota in juvenile paddlefish (Polyodon spathula) were studied. A total of 400 fish were reared in two cages and fed with a basal diet (control group, CG) or diet supplemented with commercial probiotics (treatment group, TG) for 80 days. Enzymes activities analysis indicated that protease and α-amylase activities increased (P intestinal microbial species increased in TG. The similarity between the commercial bacteria product and intestinal microbiota of TG were higher than the microbiota from CG. The quantities of bacterium, Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, present an increasing trend from foregut to hindgut both in two groups. To our knowledge, this is the first in vivo study to reveal the effect of dietary probiotics on intestinal digestive enzymes activities, morphology and microbiota in paddlefish.

  19. Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans.

    Science.gov (United States)

    Liu, Zhibin; Lin, Xiuchun; Huang, Guangwei; Zhang, Wen; Rao, Pingfan; Ni, Li

    2014-04-01

    Almonds and almond skins are rich in fiber and other components that have potential prebiotic properties. In this study we investigated the prebiotic effects of almond and almond skin intake in healthy humans. A total of 48 healthy adult volunteers consumed a daily dose of roasted almonds (56 g), almond skins (10 g), or commercial fructooligosaccharides (8 g) (as positive control) for 6 weeks. Fecal samples were collected at defined time points and analyzed for microbiota composition and selected indicators of microbial activity. Different strains of intestinal bacteria had varying degrees of growth sensitivity to almonds or almond skins. Significant increases in the populations of Bifidobacterium spp. and Lactobacillus spp. were observed in fecal samples as a consequence of almond or almond skin supplementation. However, the populations of Escherichia coli did not change significantly, while the growth of the pathogen Clostridum perfringens was significantly repressed. Modification of the intestinal microbiota composition induced changes in bacterial enzyme activities, specifically a significant increase in fecal β-galactosidase activity and decreases in fecal β-glucuronidase, nitroreductase and azoreductase activities. Our observations suggest that almond and almond skin ingestion may lead to an improvement in the intestinal microbiota profile and a modification of the intestinal bacterial activities, which would induce the promotion of health beneficial factors and the inhibition of harmful factors. Thus we believe that almonds and almond skins possess potential prebiotic properties.

  20. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis.

    Science.gov (United States)

    Kump, Patrizia K; Gröchenig, Hans-Peter; Lackner, Stefan; Trajanoski, Slave; Reicht, Gerhard; Hoffmann, K Martin; Deutschmann, Andrea; Wenzl, Heimo H; Petritsch, Wolfgang; Krejs, Guenter J; Gorkiewicz, Gregor; Högenauer, Christoph

    2013-09-01

    In patients with ulcerative colitis (UC), alterations of the intestinal microbiota, termed dysbiosis, have been postulated to contribute to intestinal inflammation. Fecal microbiota transplantation (FMT) has been used as effective therapy for recurrent Clostridium difficile colitis also caused by dysbiosis. The aims of the present study were to investigate if patients with UC benefit from FMT and if dysbiosis can be reversed. Six patients with chronic active UC nonresponsive to standard medical therapy were treated with FMT by colonoscopic administration. Changes in the colonic microbiota were assessed by 16S rDNA-based microbial community profiling using high-throughput pyrosequencing from mucosal and stool samples. All patients experienced short-term clinical improvement within the first 2 weeks after FMT. However, none of the patients achieved clinical remission. Microbiota profiling showed differences in the modification of the intestinal microbiota between individual patients after FMT. In 3 patients, the colonic microbiota changed toward the donor microbiota; however, this did not correlate with clinical response. On phylum level, there was a significant reduction of Proteobacteria and an increase in Bacteroidetes after FMT. FMT by a single colonoscopic donor stool application is not effective in inducing remission in chronic active therapy-refractory UC. Changes in the composition of the intestinal microbiota were significant and resulted in a partial improvement of UC-associated dysbiosis. The results suggest that dysbiosis in UC is at least in part a secondary phenomenon induced by inflammation and diarrhea rather than being causative for inflammation in this disease.

  1. Intestinal microbiota transplant – current state of knowledge

    OpenAIRE

    2016-01-01

    Faecal microbiota transplantation (FMT) has induced a lot scientific interest and hopes for the last couple of years. FMT has been approved as a treatment of recurrent Clostridium difficile colitis. Highly sophisticated molecular DNA identification methods have been used to assess the healthy human microbiome as well as its disturbances in several diseases. The metabolic and immunologic functions of the microbiome have become more clear and understandable. A lot of pathological changes, such ...

  2. High taxonomic level fingerprint of the human intestinal microbiota by ligase detection reaction--universal array approach.

    Science.gov (United States)

    Candela, Marco; Consolandi, Clarissa; Severgnini, Marco; Biagi, Elena; Castiglioni, Bianca; Vitali, Beatrice; De Bellis, Gianluca; Brigidi, Patrizia

    2010-04-19

    Affecting the core functional microbiome, peculiar high level taxonomic unbalances of the human intestinal microbiota have been recently associated with specific diseases, such as obesity, inflammatory bowel diseases, and intestinal inflammation. In order to specifically monitor microbiota unbalances that impact human physiology, here we develop and validate an original DNA-microarray (HTF-Microbi.Array) for the high taxonomic level fingerprint of the human intestinal microbiota. Based on the Ligase Detection Reaction-Universal Array (LDR-UA) approach, the HTF-Microbi.Array enables specific detection and approximate relative quantification of 16S rRNAs from 30 phylogenetically related groups of the human intestinal microbiota. The HTF-Microbi.Array was used in a pilot study of the faecal microbiota of eight young adults. Cluster analysis revealed the good reproducibility of the high level taxonomic microbiota fingerprint obtained for each of the subject. The HTF-Microbi.Array is a fast and sensitive tool for the high taxonomic level fingerprint of the human intestinal microbiota in terms of presence/absence of the principal groups. Moreover, analysis of the relative fluorescence intensity for each probe pair of our LDR-UA platform can provide estimation of the relative abundance of the microbial target groups within each samples. Focusing the phylogenetic resolution at division, order and cluster levels, the HTF-Microbi.Array is blind with respect to the inter-individual variability at the species level.

  3. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  4. Factors influencing gastrointestinal tract and microbiota immune interaction in preterm infants.

    Science.gov (United States)

    Collado, María Carmen; Cernada, María; Neu, Josef; Pérez-Martínez, Gaspar; Gormaz, María; Vento, Máximo

    2015-06-01

    The role of microbial colonization is indispensable for keeping a balanced immune response in life. However, the events that regulate the establishment of the microbiota, their timing, and the way in which they interact with the host are not yet fully understood. Factors such as gestational age, mode of delivery, environment, hygienic measures, and diet influence the establishment of microbiota in the perinatal period. Environmental microbes constitute the most important group of exogenous stimuli in this critical time frame. However, the settlement of a stable gut microbiota in preterm infants is delayed compared to term infants. Preterm infants have an immature gastrointestinal tract and immune system which predisposes to infectious morbidity. Neonatal microbial dynamics and alterations in early gut microbiota may precede and/or predispose to diseases such as necrotizing enterocolitis (NEC), late-onset sepsis or others. During this critical period, nutrition is the principal contributor for immunological and metabolic development, and microbiological programming. Breast milk is a known source of molecules that act synergistically to protect the gut barrier and enhance the maturation of the gut-related immune response. Host-microbe interactions in preterm infants and the protective role of diet focused on breast milk impact are beginning to be unveiled.

  5. Association of nasopharyngeal microbiota profiles with bronchiolitis severity in infants hospitalised for bronchiolitis.

    Science.gov (United States)

    Hasegawa, Kohei; Mansbach, Jonathan M; Ajami, Nadim J; Espinola, Janice A; Henke, David M; Petrosino, Joseph F; Piedra, Pedro A; Shaw, Chad A; Sullivan, Ashley F; Camargo, Carlos A

    2016-11-01

    Little is known about the relationship between the specific airway microbiota composition and severity of bronchiolitis. We aimed to identify nasopharyngeal microbiota profiles and link these profiles to acute severity in infants hospitalised for bronchiolitis.We conducted a multicentre prospective cohort study of 1005 infants (age microbiota profiles and their association with bronchiolitis severity. The primary outcome was intensive care use, i.e. admission to an intensive care unit or use of mechanical ventilation.We identified four nasopharyngeal microbiota profiles: three profiles were dominated by one of Haemophilus, Moraxella or Streptococcus, while the fourth profile had the highest bacterial richness. The rate of intensive care use was highest in infants with a Haemophilus-dominant profile and lowest in those with a Moraxella-dominant profile (20.2% versus 12.3%; unadjusted OR 1.81, 95% CI 1.07-3.11, p=0.03). After adjusting for 11 patient-level confounders, the rate remained significantly higher in infants with Haemophilus-dominant profiles (OR 1.98, 95% CI 1.08-3.62, p=0.03). These findings were externally validated in a separate cohort of 307 children hospitalised for bronchiolitis.

  6. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Andersen, Louise B. B.; Michaelsen, Kim F.

    2016-01-01

    obesity did not influence microbial diversity or specific taxon abundances during the complementary feeding period. Across cohorts, breastfeeding duration and composition of the complementary diet were found to be the major determinants of gut microbiota development. In both cohorts, gut microbial......The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through...... either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal...

  7. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases.

    Science.gov (United States)

    Tomasello, Giovanni; Mazzola, Margherita; Leone, Angelo; Sinagra, Emanuele; Zummo, Giovanni; Farina, Felicia; Damiani, Provvidenza; Cappello, Francesco; Gerges Geagea, Alice; Jurjus, Abdo; Bou Assi, Tarek; Messina, Massimiliano; Carini, Francesco

    2016-12-01

    Microbiota refers to the population of microorganisms (bacteria, viruses and fungi) that inhabit the entire gastrointestinal tract, more particularly the colon whose role is to maintain the integrity of the intestinal mucosa and control the proliferation of pathogenic bacteria. Alteration in the composition of the gut microbiota is called dysbiosis. Dysbiosis redisposes to inflammatory bowel diseases such as ulcerative colitis, Crohn disease and indeterminate colitis. The purpose of this literature review is to elucidate the influence of diet on the composition of the gastrointestinal microbiota in the healthy gut and the role of diet in the development of dysbiosis. The "Western diet", in particular a low - fiber high fat/high carbohydrate diet is one factor that can lead to severe dysbiosis. In contrast, "mediterranean" and vegetarian diets that includes abundant fruits, vegetables, olive oil and oily fish are known for their anti-inflammatory effects and could prevent dysbiosis and subsequent inflammatory bowel disease.

  8. Role of Intestinal Microbiota in Ulcerative Colitis – Effects of Novel Carbohydrate Preparations

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine

    2011-01-01

    in a study of this thesis to elucidate, if the adhesion capacity is different depending on disease state. For this purpose, an in vitro dynamic gut model was used. Several bacterial taxa from both lumen and mucus were quantified using qPCR. The results revealed that the bacterial community of the mucus......, which could affect colonic health. In the experimental part of this thesis, the fecal microbiota derived from UC patients in either remission or with active disease and healthy subjects was quantified using quantitative Real‐Time PCR (qPCR) to examine the microbiota composition. The results demonstrated...... composition in remission either resembled the composition in healthy or in relapse, demonstrating that the microbiota in remission is unstable. The mucus layer lining the epithelium of the intestinal tract is important for the protection of the epithelium in humans. The commensal bacteria that colonize...

  9. Structure of protein emulsion in food impacts intestinal microbiota, caecal luminal content composition and distal intestine characteristics in rats.

    Science.gov (United States)

    Beaumont, Martin; Jaoui, Daphné; Douard, Véronique; Mat, Damien; Koeth, Fanny; Goustard, Bénédicte; Mayeur, Camille; Mondot, Stanislas; Hovaghimian, Anais; Le Feunteun, Steven; Chaumontet, Catherine; Davila, Anne-Marie; Tomé, Daniel; Souchon, Isabelle; Michon, Camille; Fromentin, Gilles; Blachier, François; Leclerc, Marion

    2017-05-17

    Few studies have evaluated in vivo the impact of food structure on digestion, absorption of nutrients and on microbiota composition and metabolism. In this study we evaluated in rat the impact of two structures of protein emulsion in food on gut microbiota, luminal content composition, and intestinal characteristics. Rats received for 3 weeks two diets of identical composition but based on lipid-protein matrices of liquid fine (LFE) or gelled coarse (GCE) emulsion. LFE diet led to higher abundance, when compared to the GCE, of Lactobacillaceae (Lactobacillus reuteri) in the ileum, higher β-diversity of the caecum mucus-associated bacteria. In contrast, the LFE diet led to a decrease in Akkermansia municiphila in the caecum. This coincided with heavier caecum content and higher amount of isovalerate in the LFE group. LFE diet induced an increased expression of (i) amino acid transporters in the ileum (ii) glucagon in the caecum, together with an elevated level of GLP-1 in portal plasma. However, these intestinal effects were not associated with modification of food intake or body weight gain. Overall, the structure of protein emulsion in food affects the expression of amino acid transporters and gut peptides concomitantly with modification of the gut microbiota composition and activity. Our data suggest that these effects of the emulsion structure are the result of a modification of protein digestion properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation.

    Science.gov (United States)

    Wang, Jian; Li, Fengqi; Wei, Haiming; Lian, Zhe-Xiong; Sun, Rui; Tian, Zhigang

    2014-11-17

    Influenza in humans is often accompanied by gastroenteritis-like symptoms such as diarrhea, but the underlying mechanism is not yet understood. We explored the occurrence of gastroenteritis-like symptoms using a mouse model of respiratory influenza infection. We found that respiratory influenza infection caused intestinal injury when lung injury occurred, which was not due to direct intestinal viral infection. Influenza infection altered the intestinal microbiota composition, which was mediated by IFN-γ produced by lung-derived CCR9(+)CD4(+) T cells recruited into the small intestine. Th17 cells markedly increased in the small intestine after PR8 infection, and neutralizing IL-17A reduced intestinal injury. Moreover, antibiotic depletion of intestinal microbiota reduced IL-17A production and attenuated influenza-caused intestinal injury. Further study showed that the alteration of intestinal microbiota significantly stimulated IL-15 production from intestinal epithelial cells, which subsequently promoted Th17 cell polarization in the small intestine in situ. Thus, our findings provide new insights into an undescribed mechanism by which respiratory influenza infection causes intestinal disease.

  11. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Joshua M Uronis

    Full Text Available It is well established that the intestinal microbiota plays a key role in the pathogenesis of Crohn's disease (CD and ulcerative colitis (UC collectively referred to as inflammatory bowel disease (IBD. Epidemiological studies have provided strong evidence that IBD patients bear increased risk for the development of colorectal cancer (CRC. However, the impact of the microbiota on the development of colitis-associated cancer (CAC remains largely unknown. In this study, we established a new model of CAC using azoxymethane (AOM-exposed, conventionalized-Il10(-/- mice and have explored the contribution of the host intestinal microbiota and MyD88 signaling to the development of CAC. We show that 8/13 (62% of AOM-Il10(-/- mice developed colon tumors compared to only 3/15 (20% of AOM- wild-type (WT mice. Conventionalized AOM-Il10(-/- mice developed spontaneous colitis and colorectal carcinomas while AOM-WT mice were colitis-free and developed only rare adenomas. Importantly, tumor multiplicity directly correlated with the presence of colitis. Il10(-/- mice mono-associated with the mildly colitogenic bacterium Bacteroides vulgatus displayed significantly reduced colitis and colorectal tumor multiplicity compared to Il10(-/- mice. Germ-free AOM-treated Il10(-/- mice showed normal colon histology and were devoid of tumors. Il10(-/-; Myd88(-/- mice treated with AOM displayed reduced expression of Il12p40 and Tnfalpha mRNA and showed no signs of tumor development. We present the first direct demonstration that manipulation of the intestinal microbiota alters the development of CAC. The TLR/MyD88 pathway is essential for microbiota-induced development of CAC. Unlike findings obtained using the AOM/DSS model, we demonstrate that the severity of chronic colitis directly correlates to colorectal tumor development and that bacterial-induced inflammation drives progression from adenoma to invasive carcinoma.

  12. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs.

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-04-01

    Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (Pcocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,Pcocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,Pcocoa powder/d compared with pigs not supplemented with cocoa powder. This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity. © 2016 American Society for Nutrition.

  13. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice.

    Science.gov (United States)

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-08-03

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p microbiota (p intestinal microbiota.

  14. Comparative analysis of fecal microbiota in infants with and without eczema.

    Directory of Open Access Journals (Sweden)

    Pei-Ying Hong

    Full Text Available Eczema is a chronic form of childhood disorder that is gaining in prevalence in affluent societies. Previous studies hypothesized that the development of eczema is correlated with changes in microbial profile and composition of early life endemic microbiota, but contradictory conclusions were obtained, possibly due to the lack of minimization of apparent non-health related confounders (e.g., age, antibiotic consumption, diet and mode of delivery. In this study, we recruited seven caesarean-delivered and total formula-fed infants, and comparatively examined the early-life endemic microbiota in these infants with and without eczema. Using 16S pyrosequencing, infants' fecal microbiota were observed to comprise Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the four main phyla, and the presence and absence of specific populations within these four phyla are primarily mediated by ageing. Quantitative analysis of bacterial targets on a larger sample size (n = 36 at 1, 3, and 12 months of age revealed that the abundances of Bifidobacterium and Enterobacteriaceae were different among caesarean-delivered infants with and without eczema, and the bacterial targets may be potential biomarkers that can correlate to the health status of these infants. Our overall findings suggest that the minimization of possible confounders is essential prior to comparative evaluation and correlation of fecal microbiota to health status, and that stool samples collected from caesarean-delivered infants at less than 1 year of age may represent a good cohort to study for potential biomarkers that can distinguish infants with eczema from those without. These findings would greatly facilitate future efforts in understanding the possible pathogenesis behind certain bacterial targets, and may lead to a timely intervention that reduces the occurrence of early life eczema and possibly allergic disorders in later life.

  15. Can attention to the intestinal microbiota improve understanding and treatment of anorexia nervosa?

    Science.gov (United States)

    Carr, Jacquelyn; Kleiman, Susan C; Bulik, Cynthia M; Bulik-Sullivan, Emily C; Carroll, Ian M

    2016-01-01

    Anorexia nervosa (AN) is characterized by severe dietary restriction or other weight loss behaviors and exhibits the highest mortality rate of any psychiatric disorder. Therapeutic renourishment in AN is founded primarily on clinical opinion and guidelines, with a weak evidence base. Genetic factors do not fully account for the etiology of AN, and non-genetic factors that contribute to the onset and persistence of this disease warrant investigation. Compelling evidence that the intestinal microbiota regulates adiposity and metabolism, and more recently, anxiety behavior, provides a strong rationale for exploring the role of this complex microbial community in the onset, maintenance of, and recovery from AN. This review explores the relationship between the intestinal microbiota and AN and a potential role for this enteric microbial community as a therapy for this severe illness.

  16. Intestinal Microbiota in Premature Children — the Modern State of the Problem (Literature Analysis

    Directory of Open Access Journals (Sweden)

    I. A. Belyaeva

    2015-01-01

    Full Text Available The problem of intestinal microbiota influencing the health of early aged children has become especially relevant over the past few years. On one hand, this is due to the significant worsening of the human environment ecology, on the other — due to the high prevalence of digestive disorders in children, especially premature ones. The introduction of modern high-informative molecular-genetic research methods (PCR-amplification with gene sequenation made it possible to reveal the primary stage of human colonization by bacteria even at the stage of fetal ontogenesis and to thoroughly decode the microbiota structure in newborns and first-year babies. It is established, that the mothers microbiota has a direct effect on the quantity and quality of the child’s microbiota. The mother’s microbiota depends not only on her possessing inflammatory, but also metabolic diseases (obesity. There is also a direct correlation between the children’s microbiota and the wway they were born (microbiota is better in cases of natural birth, and these differences are prevalent after a number of months after birth. One of the main factors affecting microbiota after birth from the very first day is nutrition. Most studies earnestly confirm the role of breastfeeding in contributing to an optimal microbiocenosis in the child. Antibacterial therapy, being received by either the mother or the child has a negative effect on the colonization of the intestines by symbiont microbes. The negative impacts on the micro flora are especially significant for premature children especially those born with a very low and extremely low body mass. The ontogenesis of these children is most severed by malicious factors (infections followed by the necessity of a massive antibacterial therapy, hypoxia, surgical birth, forced artificial feeding in connection with a general immaturity, including not yet fully-fledged body defense systems. Directive microbiota correction in premature

  17. Heat Shock Proteins: Intestinal Gatekeepers that Are Influenced by Dietary Components and the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Haoyu Liu

    2014-02-01

    Full Text Available Trillions of microorganisms that inhabit the intestinal tract form a diverse and intricate ecosystem with a deeply embedded symbiotic relationship with their hosts. As more detailed information on gut microbiota complexity and functional diversity accumulates, we are learning more about how diet-microbiota interactions can influence the immune system within and outside the gut and host health in general. Heat shock proteins are a set of highly conserved proteins that are present in all types of cells, from microbes to mammals. These proteins carry out crucial intracellular housekeeping functions and unexpected extracellular immuno-regulatory features in order to maintain the mucosal barrier integrity and gut homeostasis. It is becoming evident that the enteric microbiota is one of the major determinants of heat shock protein production in intestinal epithelial cells. This review will focus on the interactions between diet, gut microbiota and their role for regulating heat shock protein production and, furthermore, how these interactions influence the immune system and the integrity of the mucosal barrier.

  18. Late onset sepsis and intestinal bacterial colonization in very low birth weight infants receiving long-term parenteral nutrition

    Directory of Open Access Journals (Sweden)

    Priscila Castro Cordeiro Fernandes

    2011-08-01

    Full Text Available INTRODUCTION: The purpose of this study was to establish the late onset sepsis (LOS rate of our service, characterize the intestinal microbiota and evaluate a possible association between gut flora and sepsis in surgical infants who were receiving parenteral nutrition (PN. METHODS: Surveillance cultures of the gut were taken at the start of PN and thereafter once a week. Specimens for blood culture were collected based on clinical criteria established by the medical staff. The central venous catheter (CVC tip was removed under aseptic conditions. Standard laboratory methods were used to identify the microorganisms that grew on cultures of gut, blood and CVC tip. RESULTS: 74 very low birth weight infants were analyzed. All the infants were receiving PN and antibiotics when the gut culture was started. In total, 21 (28.4% infants experienced 28 episodes of LOS with no identified source. Coagulase negative staphylococci were the most common bacteria identified, both in the intestine (74.2% and blood (67.8%. All infections occurred in patients who received PN through a central venous catheter. Six infants experienced episodes of microbial translocation. CONCLUSIONS: In this study, LOS was the most frequent episode in neonates receiving parenteral nutrition who had been submitted to surgery; 28.6% of this infection was probably a gut-derived phenomenon and requires novel strategies for prevention.

  19. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial.

    Directory of Open Access Journals (Sweden)

    Eugenia Bruzzese

    Full Text Available BACKGROUND & AIMS: Intestinal inflammation is a hallmark of cystic fibrosis (CF. Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG administration in children with CF with and without antibiotic treatment. METHODS: The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE, real-time polymerase chain reaction (RT-PCR, and fluorescence in situ hybridization (FISH. Intestinal inflammation was assessed by measuring fecal calprotectin (CLP and rectal nitric oxide (rNO production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. RESULTS: Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2-9 years. Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 (-, respectively; P<0.01. Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. CONCLUSIONS: CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF

  20. THE INTESTINAL MICROBIOTA AND THE ROLE OF PROBIOTICS IN IRRITABLE BOWEL SYNDROME: a review

    OpenAIRE

    2015-01-01

    Irritable bowel syndrome is a common, chronic relapsing gastrointestinal disorder that affects 7%-22% of the population worldwide. According to Rome III Criteria, the disorder is defined by the coexistence of abdominal discomfort or pain associated with an alteration in bowel habits. Its pathophysiology is not completely understood but, in addition to some important abnormalities, the disturbed intestinal microbiota has also been described supported by several strands of evidence. The treatme...

  1. Long-term alteration of intestinal microbiota in patients with ulcerative colitis by antibiotic combination therapy.

    Science.gov (United States)

    Koido, Shigeo; Ohkusa, Toshifumi; Kajiura, Takayuki; Shinozaki, Junko; Suzuki, Manabu; Saito, Keisuke; Takakura, Kazuki; Tsukinaga, Shintaro; Odahara, Shunichi; Yukawa, Toyokazu; Mitobe, Jimi; Kajihara, Mikio; Uchiyama, Kan; Arakawa, Hiroshi; Tajiri, Hisao

    2014-01-01

    Previous work has demonstrated that intestinal bacteria, such as Fusobacterium varium (F. varium), contribute to the clinical activity in ulcerative colitis (UC); thus, an antibiotic combination therapy (amoxicillin, tetracycline, and metronidazole (ATM)) against F. varium can induce and maintain UC remission. Therefore, we investigated whether ATM therapy induces a long-term alteration of intestinal microbiota in patients with UC. Patients with UC were enrolled in a multicenter, randomized, double-blind, placebo-controlled study. Biopsy samples at the beginning of the trial and again at 3 months after treatment completion were randomly obtained from 20 patients. The terminal restriction fragment length polymorphism (T-RFLP) in mucosa-associated bacterial components was examined to assess the alteration of the intestinal microbiota. Profile changes of T-RFLP in mucosa-associated bacterial components were found in 10 of 12 patients in the treatment group and in none of 8 in the placebo group. Dice similarity coefficients using the unweighted pair group method with arithmetic averages (Dice-UPGMA) confirmed that the similarity of mucosal microbiota from the descending colon was significantly decreased after the ATM therapy, and this change was maintained for at least 3 months. Moreover, at 3 months after treatment completion, the F. varium/β-actin ratio, examined by real-time PCR using nested PCR products from biopsy samples, was reduced less than 40% in 8 of 12 treated patients, which was higher, but not significantly, than in 4 of 8 patients in the placebo group. Together, these results suggest that ATM therapy induces long-term alterations in the intestinal microbiota of patients with UC, which may be associated, at least in part, with clinical effects of the therapy.

  2. Antibiotic Manipulation of Intestinal Microbiota To Identify Microbes Associated with Campylobacter jejuni Exclusion in Poultry▿ †

    OpenAIRE

    Scupham, A. J.; Jones, J. A.; Rettedal, E. A.; Weber, T. E.

    2010-01-01

    The ability of various subsets of poultry intestinal microbiota to protect turkeys from colonization by Campylobacter jejuni was investigated. Community subsets were generated in vivo by inoculation of day-old poults with the cecal contents of a Campylobacter-free adult turkey, followed by treatment with one antimicrobial, either virginiamycin, enrofloxacin, neomycin, or vancomycin. The C. jejuni loads of the enrofloxacin-, neomycin-, and vancomycin-derived communities were decreased by 1 log...

  3. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part I – autointoxication revisited

    OpenAIRE

    Bested, Alison C; Logan, Alan C.; Selhub, Eva Michelle

    2013-01-01

    Mental health disorders, depression in particular, have been described as a global epidemic. Research suggests that a variety of lifestyle and environmental changes may be driving at least some portion of the increased prevalence. One area of flourishing research involves the relationship between the intestinal microbiota (as well as the related functional integrity of the gastrointestinal tract) and mental health. In order to appreciate the recent scientific gains in this area, and its poten...

  4. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice.

    Science.gov (United States)

    Jump, Robin L P; Polinkovsky, Alex; Hurless, Kelly; Sitzlar, Brett; Eckart, Kevin; Tomas, Myreen; Deshpande, Abhishek; Nerandzic, Michelle M; Donskey, Curtis J

    2014-01-01

    The intestinal microbiota protect the host against enteric pathogens through a defense mechanism termed colonization resistance. Antibiotics excreted into the intestinal tract may disrupt colonization resistance and alter normal metabolic functions of the microbiota. We used a mouse model to test the hypothesis that alterations in levels of bacterial metabolites in fecal specimens could provide useful biomarkers indicating disrupted or intact colonization resistance after antibiotic treatment. To assess in vivo colonization resistance, mice were challenged with oral vancomycin-resistant Enterococcus or Clostridium difficile spores at varying time points after treatment with the lincosamide antibiotic clindamycin. For concurrent groups of antibiotic-treated mice, stool samples were analyzed using quantitative real-time polymerase chain reaction to assess changes in the microbiota and using non-targeted metabolic profiling. To assess whether the findings were applicable to another antibiotic class that suppresses intestinal anaerobes, similar experiments were conducted with piperacillin/tazobactam. Colonization resistance began to recover within 5 days and was intact by 12 days after clindamycin treatment, coinciding with the recovery bacteria from the families Lachnospiraceae and Ruminococcaceae, both part of the phylum Firmicutes. Clindamycin treatment caused marked changes in metabolites present in fecal specimens. Of 484 compounds analyzed, 146 (30%) exhibited a significant increase or decrease in concentration during clindamycin treatment followed by recovery to baseline that coincided with restoration of in vivo colonization resistance. Identified as potential biomarkers of colonization resistance, these compounds included intermediates in carbohydrate or protein metabolism that increased (pentitols, gamma-glutamyl amino acids and inositol metabolites) or decreased (pentoses, dipeptides) with clindamycin treatment. Piperacillin/tazobactam treatment caused

  5. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate.

    Science.gov (United States)

    Gallo, Antonella; Passaro, Giovanna; Gasbarrini, Antonio; Landolfi, Raffaele; Montalto, Massimo

    2016-08-28

    Alterations of intestinal microflora may significantly contribute to the pathogenesis of different inflammatory and autoimmune disorders. There is emerging interest on the role of selective modulation of microflora in inducing benefits in inflammatory intestinal disorders, by as probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). To summarize recent evidences on microflora modulation in main intestinal inflammatory disorders, PubMed was searched using terms microbiota, intestinal flora, probiotics, prebiotics, fecal transplantation. More than three hundred articles published up to 2015 were selected and reviewed. Randomized placebo-controlled trials and meta-analysis were firstly included, mainly for probiotics. A meta-analysis was not performed because of the heterogeneity of these studies. Most of relevant data derived from studies on probiotics, reporting some efficacy in ulcerative colitis and in pouchitis, while disappointing results are available for Crohn's disease. Probiotic supplementation may significantly reduce rates of rotavirus diarrhea. Efficacy of probiotics in NSAID enteropathy and irritable bowel syndrome is still controversial. Finally, FMT has been recently recognized as an efficacious treatment for recurrent Clostridium difficile infection. Modulation of intestinal flora represents a very interesting therapeutic target, although it still deserves some doubts and limitations. Future studies should be encouraged to provide new understanding about its therapeutical role.

  6. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides.

    Science.gov (United States)

    Yang, Hong-Ling; Xia, Han-Qin; Ye, Yi-Dan; Zou, Wen-Chao; Sun, Yun-Zhang

    2014-09-30

    The health benefits of probiotics are thought to occur, at least in part, through an improved intestinal microbial balance in fish, although the molecular mechanisms whereby probiotics modulate the intestinal microbiota by means of activation of mucosal immunity are rarely explored. In this study, the effects of viable and heat-inactivated probiotic Bacillus pumilus SE5 on the intestinal dominant microbial community and mucosal immune gene expression were evaluated. The fish were fed for 60 d with 3 different diets: control (without probiotic), and diets T1 and T2 supplemented with 1.0 × 10⁸ cells g⁻¹ viable and heat-inactivated B. pumilus SE5, respectively. Upregulated expression of TLR1, TLR2 and IL-8, but not MyD88 was observed in fish fed the viable probiotic, while elevated expression of TLR2, IL-8 and TGF-β1, but not MyD88 was observed in fish fed the heat-inactivated B. pumilus SE5. The induced activation of intestinal mucosal immunity, especially the enhanced expression of antibacterial epinecidin-1, was consistent with the microbial data showing that several potentially pathogenic bacterial species such as Psychroserpens burtonensis and Pantoea agglomerans were suppressed by both the viable and heat-inactivated probiotic B. pumilus SE5. These results lay the foundation for future studies on the molecular interactions between probiotics, intestinal microbiota and mucosal immunity in fish.

  7. Pulmonary exposure of mice to engineered pseudomonads influences intestinal microbiota populations

    Energy Technology Data Exchange (ETDEWEB)

    George, S.E.; Kohan, M.J.; Creason, J.P.; Claxton, L.D. (U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). Health Effects Research Lab.)

    1993-09-01

    In this study, a mouse model was used to evaluate indirect effects of pulmonary exposure to representative biotechnology agents (Pseudomonas aeruginosa strain AC869 and Pseudomonas cepacia strain AC1100) selected for their ability to degrade hazardous chemicals. CD-1[reg sign] mice were challenged intranasally with approximately 10[sup 3] or 10[sup 7] colony-forming units (cfu) of strain AC869 or 10[sup 8] cfu of strain AC1100. At time intervals, clearance of the microorganisms and effects on resident microbiota were determined. When the low (10[sup 3] cfu) dose was administered, strain AC869 was not recovered from the small intestine but was detectable in the cecum and lungs 3 h after treatment and persisted in the nasal cavity intermittently for 14 d. Treatment of animals with 10[sup 7] cfu of strain AC869 resulted in detection 14 d following treatment. Strain AC869 challenge modified the small intestinal anaerobe count and cecal obligately anaerobic gram-negative rods (OAGNR) and lactobacilli. Following exposure, Pseudomonas cepacia strain AC1100 persisted in the lungs for 7 d and was recovered from the small intestine, cecum, and nasal cavity 2 d following treatment. Strain AC1100 treatment impacted the small intestinal anaerobe count, OAGNR counts, and reduced lactobacilli numbers. Strain AC1100 also altered the cecal OAGNR and lactobacilli. Therefore, pulmonary treatment of mice with Pseudomonas aeruginosa or cepacia affects the balance of the protective intestinal microbiota, which may cause further negative health effects.

  8. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens.

    Science.gov (United States)

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health.

  9. The Early Intestinal Microbiota of Healthy Korean Newborns

    Directory of Open Access Journals (Sweden)

    Eu Kyoung Lee

    2015-10-01

    Full Text Available Background: The microflora hypothesis may be the underlying explanation for the growth of inflammatory disease. In addition to many known affecting factors, knowing the gut microbiota of healthy newborns can help to understand the gut immunity and modulate it. Objectives: This study examined the microbiota of healthy newborns from urban regions. Patients and Methods: We enrolled 128 full-term newborns, born at Seoul St. Mary and St. Paul hospital from January 2009 to February 2010. All 143 samples of feces were cultivated in six culture plates to determine the amounts of total bacteria, anaerobes, gram-positive bacteria, coliforms, lactobacilli, and bifidobacteria. The samples were evaluated with a bivariate correlation between coliforms and lactobacilli. Terminal restriction fragment length polymorphism (T-RFLP analysis with HhaI and MspI and a clustering analysis were performed for determination of diversity. Results: Bacteria were cultured in 61.5% of feces in the following order: anaerobes, gram-positive bacteria, lactobacilli, coliform, and bifidobacteria. The growth of total bacteria and lactobacilli increased in feces defecated after 24 hours of birth (P < 0.001, P = 0.008 and anaerobes decreased (P = 0.003. A negative correlation between the growth of lactobacilli and coliforms was found (r = -463, P < 0.001. Conclusions: This study confirms that bacterial colonization of healthy newborns born in cities is non-sterile, but has early diversification and inter-individuality.

  10. Wheat and barley differently affect porcine intestinal microbiota

    DEFF Research Database (Denmark)

    Weiss, Eva; Aumiller, Tobias; Spindler, Hanns K

    2016-01-01

    Diet influences the porcine intestinal microbial ecosystem. Barrows were fitted with ileal T-cannulas to compare short-term effects of eight different wheat or barley genotypes and period-to-period effects on seven bacterial groups in ileal digesta and faeces by qPCR. Within genotypes of wheat an...

  11. Taxonomic composition of microbiota of colon in breastfed infants with acute colienteritis

    Directory of Open Access Journals (Sweden)

    L. I. Sydorchuk

    2017-02-01

    Full Text Available Introduction: In recent years, paradoxical situation has been created, that testifies adverse evolution of modern acute intestinal infections, especially in infants and vital prognosis for patients by measure of deep study of this disease in patients, which number is significant and continues to grow, and the prognosis is getting worse. Aim: To define the etiology of colienteritis in infants (1–6 months old, the taxonomic composition of pathogenic and conditionally pathogenic microorganisms. Materials and methods: Content of colon of 48 children (one to six months old with colienteritis underwent bacterial and mycological examination (control group – 35 samples of colon content of practically healthy infants. Results: Etiological structure was determined in 28 (58,33 % of investigations. Consistency index, frequency of occurrence, Margalef species richness, Whittaker species diversity, Simpson and Berger–Parker species dominance indices of bacteria of genera Bifidobacterium, Lactobacillus, Bacteroides and Escherichia did not differ in patients and healthy children. These indices grow in Peptostreptococci: constancy index – by 78,26 %, frequency of occurrence – by 60,00 %, Margalef species richness index – by 2 times, Whittaker species diversity index – by 97,32 %, Simpson species dominance index – by 3 times and Berger - Parker index – by 65,31 %. These indices also grew in conditionally pathogenic Enterobacteria (Proteus by 82,24 %, by 2 times, by 2,03 times, by 68,18 % respectively. Study of taxonomic composition of colon microbiota in children with acute colienteritis showed widespread contamination of biotope (cavity by pathogenic (E. coli Hly +, enteropathogenic E. coli and conditionally pathogenic (C. diversus, Proteus ssp. Enterobacteria, Staphylococci, Peptococcus. This is accompanied with elimination of bacteria of genus Eubacterium from colon cavity. Conclusions: Acute colienteritis in one to six months old breastfed

  12. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    2010-01-01

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...... the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium....... The intestinal mucus layer of germ free mice has been shown to display a distinctly different composition and structure compared to mucus from conventionally bred animals in vitro and in vivo. This points towards an important role of the microbiota in the regulation of mucin production. To which extent...

  13. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...... the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium....... The intestinal mucus layer of germ free mice has been shown to display a distinctly different composition and structure compared to mucus from conventionally bred animals in vitro and in vivo. This points towards an important role of the microbiota in the regulation of mucin production. To which extent...

  14. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort......, with 700 mother-infant pairs. The objectives were to perform a detailed examination of the mothers’ vaginal microbiota, describe the early composition and development of the microbiota in the airways of their infants, and determine whether the infants’ microbiota are affected by that of their mothers...

  15. Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics.

    Science.gov (United States)

    da Silva, Sandra Tavares; dos Santos, Carolina Araújo; Bressan, Josefina

    2013-01-01

    Introducción: La microbiota intestinal tiene varias funciones beneficiosas relacionadas con la salud del hombre y estudios sugieren una posible relación con la presencia de enfermedades metabólicas como la obesidad. Objetivos: Se realizó una revisión sobre la relación entre la microbiota intestinal y la obesidad, así como los posibles impactos del uso de pre y probióticos, a fin de conocer como ocurre esta compleja interacción. Métodos: Se realizó una búsqueda electrónica de la literatura en las bases de datos Lilacs, PubMed, Science Direct y Scielo utilizandose las palabras clave “microbiota intestinal” y “obesidad”. Resultados y discusión: Se identificaron 613 estudios. Después de aplicar los criterios de inclusión y exclusión, 61 artículos originales fueron incluidos. La composición de la microbiota intestinal promueve alteración en la homeostasis energética, en la utilización de la dieta ingerida y en el almacenamiento de los lípidos. De los estudios que evaluaron la modulación de la microbiota, siete utilizaron probióticos y 24 prebióticos, de estos cinco estudios con alimentos. El aumento de bifidobacterias tras la manipulación dietética se observó en 10 estudios, asociándose a la reducción de peso, a los efectos adipogénicos de la dieta, a la permeabilidad intestinal y a los marcadores inflamatorios. Conclusiones: La aclaración del impacto de la microbiota en las vías metabólicas permite encontrar nuevos factores asociados a la obesidad y la modulación por prey probióticos. En este sentido, el principal efecto observado fue un aumento de bifidobacterias, que usualmente está acompañado por la pérdida de peso y los parámetros relacionados con la obesidad.

  16. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial.

    Science.gov (United States)

    Bruzzese, Eugenia; Callegari, Maria Luisa; Raia, Valeria; Viscovo, Sara; Scotto, Riccardo; Ferrari, Susanna; Morelli, Lorenzo; Buccigrossi, Vittoria; Lo Vecchio, Andrea; Ruberto, Eliana; Guarino, Alfredo

    2014-01-01

    Intestinal inflammation is a hallmark of cystic fibrosis (CF). Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG) administration in children with CF with and without antibiotic treatment. The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE), real-time polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH). Intestinal inflammation was assessed by measuring fecal calprotectin (CLP) and rectal nitric oxide (rNO) production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2-9 years). Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 (-), respectively; PBacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of probiotics restored gut microbiota, supporting the efficacy of probiotics in reducing intestinal inflammation and pulmonary exacerbations. ClinicalTrials.gov NCT 01961661.

  17. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    Directory of Open Access Journals (Sweden)

    Guillermo Tellez

    Full Text Available Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group. At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d. After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05 intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM candidates that produce exogenous enzymes in rye fed

  18. Laminaria japonica combined with probiotics improves intestinal microbiota: a randomized clinical trial.

    Science.gov (United States)

    Ko, Seok-Jae; Kim, Jinsung; Han, Gajin; Kim, Seul-Ki; Kim, Hong-Geol; Yeo, Inkwon; Ryu, Bongha; Park, Jae-Woo

    2014-01-01

    Laminaria japonica--a widely used ingredient in seaweed kimchi--and lactic acid bacteria (LAB)--a main component of traditional fermented Korean food--may alter human intestinal microbiota composition and have a positive effect on various digestive problems. However, few clinical trials have investigated the potential benefits of L. japonica when combined with LAB for human intestinal microbiota. Therefore, this study was designed to evaluate the effects of L. japonica and representative LAB on the human intestine. Forty participants with no known digestive diseases were randomly assigned to one of the two combination groups: (1) L. japonica with LAB and (2) L. japonica with placebo LAB. The study agents were administered for 4 weeks with a 2-week follow-up period. The primary outcome measure was the number of each of the seven LAB species in the human intestine, and the secondary outcome measures included the Korean version of the Gastrointestinal Symptom Rating Scale, the World Health Organization Quality of Life, and bowel functions. The primary outcome was evaluated before and after administration of the study agents (0 and 4 weeks), and the secondary outcomes were evaluated at 0, 4, and 6 weeks. Four of the seven LAB species were found to be significantly increased in the L. japonica with the LAB group and five species were significantly different from those of the placebo group. The secondary outcome measures did not change significantly. In conclusion, L. japonica with LAB facilitated the proliferation of beneficial human intestinal microbiota. ( ClinicalTrials.gov NCT01651741).

  19. Intestinal microbiota transplant – current state of knowledge

    Science.gov (United States)

    Radomski, Marek; Leszczyszyn, Anna Maria

    2016-01-01

    Faecal microbiota transplantation (FMT) has induced a lot scientific interest and hopes for the last couple of years. FMT has been approved as a treatment of recurrent Clostridium difficile colitis. Highly sophisticated molecular DNA identification methods have been used to assess the healthy human microbiome as well as its disturbances in several diseases. The metabolic and immunologic functions of the microbiome have become more clear and understandable. A lot of pathological changes, such as production of short-chain fatty acids or components of the inflammatory cascade, caused by changes in microbiome diversity, variability and richness have been observed among patients suffering from inflammatory bowel diseases, irritable bowel syndrome, type 2 diabetes or rheumatoid arthritis. The published clinical results are encouraging, but still there is huge demand for FMT controlled clinical trials. PMID:27407273

  20. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of lactobacilli

    DEFF Research Database (Denmark)

    Holm, Jacob Bak; Sorobetea, Daniel; Kiilerich, Pia;

    2015-01-01

    microbiota, as well as potential downstream effects on the immune system, remain largely unknown. We have assessed the influence of chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the human pathogen Trichuris trichiura, on the composition of the murine intestinal...

  1. [Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome].

    Science.gov (United States)

    Halmos, Tamás; Suba, Ilona

    2016-01-03

    The intestinal microbiota is well-known for a long time, but due to newly recognized functions, clinician's attention has turned to it again in the last decade. About 100 000 billion bacteria are present in the human intestines. The composition of bacteriota living in diverse parts of the intestinal tract is variable according to age, body weight, geological site, and diet as well. Normal bacteriota defend the organism against the penetration of harmful microorganisms, and has many other functions in the gut wall integrity, innate immunity, insulin sensitivity, metabolism, and it is in cross-talk with the brain functions as well. It's a recent recognition, that intestinal microbiota has a direct effect on the brain, and the brain also influences the microbiota. This two-way gut-brain axis consists of microbiota, immune and neuroendocrine system, as well as of the autonomic and central nervous system. Emerging from fermentation of carbohydrates, short-chain fatty acids develop into the intestines, which produce butyrates, acetates and propionates, having favorable effects on different metabolic processes. Composition of the intestinal microbiota is affected by the circadian rhythm, such as in shift workers. Dysruption of circadian rhythm may influence intestinal microbiota. The imbalance between the microbiota and host organism leads to dysbacteriosis. From the membrane of Gram-negative bacteria lipopolysacharides penetrate into the blood stream, via impaired permeability of the intestinal mucosa. These processes induce metabolic endotoxaemia, inflammation, impaired glucose metabolism, insulin resistance, obesity, and contribute to the development of metabolic syndrome, type 2 diabetes, inflammarory bowel diseases, autoimmunity and carcinogenesis. Encouraging therapeutic possibility is to restore the normal microbiota either using pro- or prebiotics, fecal transplantation or bariatric surgery. Human investigations seem to prove that fecal transplant from lean

  2. Impact of a probiotic, inulin, or their combination on the piglets' microbiota at different intestinal locations.

    Science.gov (United States)

    Sattler, V A; Bayer, K; Schatzmayr, G; Haslberger, A G; Klose, V

    2015-01-01

    Natural feed additives are used to maintain health and to promote performance of pigs without antibiotics. Effects of a probiotic, inulin, and their combination (synbiotic), on the microbial diversity and composition at different intestinal locations were analysed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and 16S rRNA gene pyrosequencing. Bacterial diversity assessed by DGGE and/or pyrosequencing was increased by inulin in all three gut locations and by the synbiotic in the caecum and colon. In contrast, the probiotic did only affect the microbiota diversity in the ileum. Shifts in the DGGE microbiota profiles of the caecum and colon were detected for the pro- and synbiotic fed animals, whereas inulin profiles were more similar to the ones of the control. 16S rRNA gene pyrosequencing revealed that all three additives could reduce Escherichia species in each gut location, indicating a potential beneficial effect on the gut microbiota. An increase of relative abundance of Clostridiaceae in the large intestine was found in the inulin group and of Enterococcaceae in the ileum of probiotic fed pigs. Furthermore, real-time PCR results showed that the probiotic and synbiotic increased bifidobacterial numbers in the ileum, which was supported by sequencing results. The probiotic and inulin, to different extents, changed the diversity, relative abundance of phylotypes, and community profiles of the porcine microbiota. However, alterations of the bacterial community were not uniformly between gut locations, demonstrating that functionality of feed additives is site specific. Therefore, gut sampling from various locations is crucial when investigations aim to identify the composition of a healthy gut microbiota after its manipulation through feed additives.

  3. Establishment of tolerance to commensal bacteria requires a complex microbiota and is accompanied by decreased intestinal chemokine expression

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Metzdorff, S. B.; Zeuthen, Louise

    2012-01-01

    . Gene expression in the intestine of mouse pups born to dams that were either colonized with a conventional microbiota or monocolonized (Lactobacillus acidophilus or Eschericia coli) or germ free was examined on day 1 and day 6 after birth. Intestinal epithelial cells from all groups of pups were...... stimulated ex vivo with L. acidophilus and E. coli to assess tolerance establishment. Intestine from pups exposed to a conventional microbiota displayed lower expression of Ccl2, Ccl3, Cxcl1, Cxcl2, and Tslp than germ-free mice, whereas genes encoding proteins in Toll-like receptor signaling pathways...

  4. Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken.

    Science.gov (United States)

    Dumonceaux, Tim J; Hill, Janet E; Hemmingsen, Sean M; Van Kessel, Andrew G

    2006-04-01

    The inclusion of antibiotic growth promoters, such as virginiamycin, at subtherapeutic levels in poultry feeds has a positive effect on health and growth characteristics, possibly due to beneficial effects on the host gastrointestinal microbiota. To improve our understanding of the chicken gastrointestinal microbiota and the effect of virginiamycin on its composition, we characterized the bacteria found in five different gastrointestinal tract locations (duodenal loop, mid-jejunum, proximal ileum, ileocecal junction, and cecum) in 47-day-old chickens that were fed diets excluding or including virginiamycin throughout the production cycle. Ten libraries (five gastrointestinal tract locations from two groups of birds) of approximately 555-bp chaperonin 60 PCR products were prepared, and 10,932 cloned sequences were analyzed. A total of 370 distinct cpn60 sequences were identified, which ranged in frequency of recovery from 1 to 2,872. The small intestinal libraries were dominated by sequences from the Lactobacillales (90% of sequences), while the cecum libraries were more diverse and included members of the Clostridiales (68%), Lactobacillales (25%), and Bacteroidetes (6%). To assess the effects of virginiamycin on the gastrointestinal microbiota, 15 bacterial targets were enumerated using quantitative, real-time PCR. Virginiamycin was associated with increased abundance of many of the targets in the proximal gastrointestinal tract (duodenal loop to proximal ileum), with fewer targets affected in the distal regions (ileocecal junction and cecum). These findings provide improved profiling of the composition of the chicken intestinal microbiota and indicate that microbial responses to virginiamycin are most significant in the proximal small intestine.

  5. Human milk glycobiome and its impact on the infant gastrointestinal microbiota.

    Science.gov (United States)

    Zivkovic, Angela M; German, J Bruce; Lebrilla, Carlito B; Mills, David A

    2011-03-15

    Human milk contains an unexpected abundance and diversity of complex oligosaccharides apparently indigestible by the developing infant and instead targeted to its cognate gastrointestinal microbiota. Recent advances in mass spectrometry-based tools have provided a view of the oligosaccharide structures produced in milk across stages of lactation and among human mothers. One postulated function for these oligosaccharides is to enrich a specific "healthy" microbiota containing bifidobacteria, a genus commonly observed in the feces of breast-fed infants. Isolated culture studies indeed show selective growth of infant-borne bifidobacteria on milk oligosaccharides or core components therein. Parallel glycoprofiling documented that numerous Bifidobacterium longum subsp. infantis strains preferentially consume small mass oligosaccharides that are abundant early in the lactation cycle. Genome sequencing of numerous B. longum subsp. infantis strains shows a bias toward genes required to use mammalian-derived carbohydrates by comparison with adult-borne bifidobacteria. This intriguing strategy of mammalian lactation to selectively nourish genetically compatible bacteria in infants with a complex array of free oligosaccharides serves as a model of how to influence the human supraorganismal system, which includes the gastrointestinal microbiota.

  6. Breast Milk and Gut Microbiota in African Mothers and Infants from an Area of High HIV Prevalence

    OpenAIRE

    Raquel González; Antonio Maldonado; Virginia Martín; Inácio Mandomando; Victoria Fumadó; Metzner, Karin J.; Charfudin Sacoor; Leónides Fernández; Eusébio Macete; Alonso, Pedro L.; Rodríguez, Juan M; Clara Menendez

    2013-01-01

    BACKGROUND: Human milk and infant gut microbiota are essential for the immune system maturation and protection against infections. There is scarce information on the microbiological composition of breast milk in general, and none from developing countries. The objective of the study was to characterize the breast milk and gut microbiota from mothers and infants from southern Mozambique, where infections and breastfeeding are prevalent. METHODS: A community-based study was undertaken among 121...

  7. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis.

    Science.gov (United States)

    Yang, Lianjun; Wang, Liping; Wang, Xin; Xian, Cory J; Lu, Hai

    2016-12-17

    Ankylosing spondylitis (AS) is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one's susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.

  8. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis

    Science.gov (United States)

    Yang, Lianjun; Wang, Liping; Wang, Xin; Xian, Cory J.; Lu, Hai

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated. PMID:27999312

  9. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons.

    Science.gov (United States)

    Deriu, Elisa; Boxx, Gayle M; He, Xuesong; Pan, Calvin; Benavidez, Sammy David; Cen, Lujia; Rozengurt, Nora; Shi, Wenyuan; Cheng, Genhong

    2016-05-01

    Human influenza viruses replicate almost exclusively in the respiratory tract, yet infected individuals may also develop gastrointestinal symptoms, such as vomiting and diarrhea. However, the molecular mechanisms remain incompletely defined. Using an influenza mouse model, we found that influenza pulmonary infection can significantly alter the intestinal microbiota profile through a mechanism dependent on type I interferons (IFN-Is). Notably, influenza-induced IFN-Is produced in the lungs promote the depletion of obligate anaerobic bacteria and the enrichment of Proteobacteria in the gut, leading to a "dysbiotic" microenvironment. Additionally, we provide evidence that IFN-Is induced in the lungs during influenza pulmonary infection inhibit the antimicrobial and inflammatory responses in the gut during Salmonella-induced colitis, further enhancing Salmonella intestinal colonization and systemic dissemination. Thus, our studies demonstrate a systemic role for IFN-Is in regulating the host immune response in the gut during Salmonella-induced colitis and in altering the intestinal microbial balance after influenza infection.

  10. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis.

    Science.gov (United States)

    Tojo, Rafael; Suárez, Adolfo; Clemente, Marta G; de los Reyes-Gavilán, Clara G; Margolles, Abelardo; Gueimonde, Miguel; Ruas-Madiedo, Patricia

    2014-11-07

    The pool of microbes inhabiting our body is known as "microbiota" and their collective genomes as "microbiome". The colon is the most densely populated organ in the human body, although other parts, such as the skin, vaginal mucosa, or respiratory tract, also harbour specific microbiota. This microbial community regulates some important metabolic and physiological functions of the host, and drives the maturation of the immune system in early life, contributing to its homeostasis during life. Alterations of the intestinal microbiota can occur by changes in composition (dysbiosis), function, or microbiota-host interactions and they can be directly correlated with several diseases. The only disease in which a clear causal role of a dysbiotic microbiota has been demonstrated is the case of Clostridium difficile infections. Nonetheless, alterations in composition and function of the microbiota have been associated with several gastrointestinal diseases (inflammatory bowel disease, colorectal cancer, or irritable bowel syndrome), as well as extra-intestinal pathologies, such as those affecting the liver, or the respiratory tract (e.g., allergy, bronchial asthma, and cystic fibrosis), among others. Species of Bifidobacterium genus are the normal inhabitants of a healthy human gut and alterations in number and composition of their populations is one of the most frequent features present in these diseases. The use of probiotics, including bifidobacteria strains, in preventive medicine to maintain a healthy intestinal function is well documented. Probiotics are also proposed as therapeutic agents for gastrointestinal disorders and other pathologies. The World Gastroenterology Organization recently published potential clinical applications for several probiotic formulations, in which species of lactobacilli are predominant. This review is focused on probiotic preparations containing Bifidobacterium strains, alone or in combination with other bacteria, which have been tested

  11. Probiotics and the gut microbiota in intestinal health and disease.

    Science.gov (United States)

    Gareau, Mélanie G; Sherman, Philip M; Walker, W Allan

    2010-09-01

    The use of probiotics is increasing in popularity for both the prevention and treatment of a variety of diseases. While a growing number of well-conducted, prospective, randomized, controlled, clinical trials are emerging and investigations of underlying mechanisms of action are being undertaken, questions remain with respect to the specific immune and physiological effects of probiotics in health and disease. This Review considers recent advances in clinical trials of probiotics for intestinal disorders in both adult and pediatric populations. An overview of recent in vitro and in vivo research related to potential mechanisms of action of various probiotic formulations is also considered.

  12. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    Science.gov (United States)

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Hargis, Billy M; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (pBacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are currently being evaluated.

  13. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available BACKGROUND: Intestinal ischemia-reperfusion (I/R plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing gradient gel electrophoresis (DGGE was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing. CONCLUSION/SIGNIFICANCE: This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.

  14. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    Full Text Available The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  15. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro.

    Science.gov (United States)

    Zhang, Xin; Yang, Yang; Wu, Zufang; Weng, Peifang

    2016-03-30

    In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P microbiota, contributing to improvements in human health.

  16. Sphingolipids as Mediators in the Crosstalk between Microbiota and Intestinal Cells: Implications for Inflammatory Bowel Disease

    Science.gov (United States)

    Bryan, Phillips-Farfán; Edgar Alejandro, Medina-Torres; Sara Elva, Espinosa-Padilla; Gemma, Fabrias

    2016-01-01

    Inflammatory bowel disease (IBD) describes different illnesses characterized by chronic inflammation of the gastrointestinal tract. Although the pathogenic mechanisms leading to IBD are poorly understood, immune system disturbances likely underlie its development. Sphingolipids (SLs) have been identified as important players and promising therapeutic targets to control inflammation in IBD. Interestingly, it seems that microorganisms of the normal gut microbiota and probiotics are involved in sphingolipid function. However, there is a great need to investigate the role of SLs as intermediates in the crosstalk between intestinal immunity and microorganisms. This review focuses on recent investigations that describe some mechanisms involved in the regulation of cytokine profiles by SLs. We also describe the importance of gut microbiota in providing signaling molecules that favor the communication between resident bacteria and intestinal cells. This, in turn, modulates the immune response in the bowel and likely in other peripheral organs. The potential of SLs and gut microbiota as targets or therapeutic agents for IBD is also discussed. PMID:27656050

  17. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease.

    Science.gov (United States)

    Orel, Rok; Kamhi Trop, Tina

    2014-09-07

    It has been presumed that aberrant immune response to intestinal microorganisms in genetically predisposed individuals may play a major role in the pathogenesis of the inflammatory bowel disease, and there is a good deal of evidence supporting this hypothesis. Commensal enteric bacteria probably play a central role in pathogenesis, providing continuous antigenic stimulation that causes chronic intestinal injury. A strong biologic rationale supports the use of probiotics and prebiotics for inflammatory bowel disease therapy. Many probiotic strains exhibit anti-inflammatory properties through their effects on different immune cells, pro-inflammatory cytokine secretion depression, and the induction of anti-inflammatory cytokines. There is very strong evidence supporting the use of multispecies probiotic VSL#3 for the prevention or recurrence of postoperative pouchitis in patients. For treatment of active ulcerative colitis, as well as for maintenance therapy, the clinical evidence of efficacy is strongest for VSL#3 and Escherichia coli Nissle 1917. Moreover, some prebiotics, such as germinated barley foodstuff, Psyllium or oligofructose-enriched inulin, might provide some benefit in patients with active ulcerative colitis or ulcerative colitis in remission. The results of clinical trials in the treatment of active Crohn's disease or the maintenance of its remission with probiotics and prebiotics are disappointing and do not support their use in this disease. The only exception is weak evidence of advantageous use of Saccharomyces boulardii concomitantly with medical therapy in maintenance treatment.

  18. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Andersen, Louise B. B.; Michaelsen, Kim F.

    vertically transmitted microbes or through the dietary habits of the family. Additionally, very little is known about the effect of diet during the complementary feeding period, which is potentially important for gut microbiota development. Here, the gut microbiotas of two different cohorts of infants, born...... either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal...... composition and alpha diversity were thus strongly affected by introduction of family foods with high protein and fiber contents. Specifically, intake of meats, cheeses and Danish rye bread, rich in protein and fiber, were associated with increased alpha diversity. Our results reveal that the transition from...

  19. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury.

    Science.gov (United States)

    Frazier, Thomas H; DiBaise, John K; McClain, Craig J

    2011-09-01

    Obesity and its metabolic complications are major health problems in the United States and worldwide, and increasing evidence implicates the microbiota in these important health issues. Indeed, it appears that the microbiota function much like a metabolic "organ," influencing nutrient acquisition, energy homeostasis, and, ultimately, the control of body weight. Moreover, alterations in gut microbiota, increased intestinal permeability, and metabolic endotoxemia likely play a role in the development of a chronic low-grade inflammatory state in the host that contributes to the development of obesity and associated chronic metabolic diseases such as nonalcoholic fatty liver disease. Supporting these concepts are the observations that increased gut permeability, low-grade endotoxemia, and fatty liver are observed in animal models of obesity caused by either high-fat or high-fructose feeding. Consistent with these observations, germ-free mice are protected from obesity and many forms of liver injury. Last, many agents that affect gut flora/permeability, such as probiotics/prebiotics, also appear to affect obesity and certain forms of liver injury in animal model systems. Here the authors review the role of the gut microbiota and metabolic endotoxemia-induced inflammation in the development of obesity and liver injury, with special reference to the intensive care unit setting.

  20. Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations

    Science.gov (United States)

    Sonnenburg, Erica D.; Zheng, Hongjun; Joglekar, Payal; Higginbottom, Steven; Firbank, Susan J.; Bolam, David N.; Sonnenburg, Justin L.

    2010-01-01

    Summary The intestinal microbiota impacts many facets of human health and is associated with human diseases. Diet impacts microbiota composition, yet mechanisms that link dietary changes to microbiota alterations remain ill-defined. Here we elucidate the basis of Bacteroides proliferation in response to fructans, a class of fructose-based dietary polysaccharides. Structural and genetic analysis disclosed a fructose-binding, hybrid-two-component signaling sensor that controls the fructan utilization locus in Bacteroides thetaiotaomicron. Gene content of this locus differs among Bacteroides species and dictates the specificity and breadth of utilizable fructans. BT1760, an extracellular β2-6 endo-fructanase, distinguishes B. thetaiotaomicron genetically and functionally, and enables the use of the β2-6-linked fructan levan. The genetic and functional differences between Bacteroides species are predictive of in vivo competitiveness in the presence of dietary fructans. Genes that differentiate function serve as potential biomarkers in microbiomic datasets to enable rational manipulation of the microbiota via diet. PMID:20603004

  1. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations.

    Science.gov (United States)

    Sonnenburg, Erica D; Zheng, Hongjun; Joglekar, Payal; Higginbottom, Steven K; Firbank, Susan J; Bolam, David N; Sonnenburg, Justin L

    2010-06-25

    The intestinal microbiota impacts many facets of human health and is associated with human diseases. Diet impacts microbiota composition, yet mechanisms that link dietary changes to microbiota alterations remain ill-defined. Here we elucidate the basis of Bacteroides proliferation in response to fructans, a class of fructose-based dietary polysaccharides. Structural and genetic analysis disclosed a fructose-binding, hybrid two-component signaling sensor that controls the fructan utilization locus in Bacteroides thetaiotaomicron. Gene content of this locus differs among Bacteroides species and dictates the specificity and breadth of utilizable fructans. BT1760, an extracellular beta2-6 endo-fructanase, distinguishes B. thetaiotaomicron genetically and functionally, and enables the use of the beta2-6-linked fructan levan. The genetic and functional differences between Bacteroides species are predictive of in vivo competitiveness in the presence of dietary fructans. Gene sequences that distinguish species' metabolic capacity serve as potential biomarkers in microbiomic datasets to enable rational manipulation of the microbiota via diet.

  2. Effects on intestinal microbiota and immune genes of Solea senegalensis after suspension of the administration of Shewanella putrefaciens Pdp11.

    Science.gov (United States)

    Vidal, Sara; Tapia-Paniagua, Silvana Teresa; Moriñigo, Jesús Miguel; Lobo, Carmen; García de la Banda, Inés; Balebona, María Del Carmen; Moriñigo, Miguel Ángel

    2016-11-01

    The interaction host-intestinal microbiota is essential for the immunological homeostasis of the host. Probiotics, prebiotics and synbiotics are promising tools for the manipulation of the intestinal microbiota towards beneficial effects to the host. The objective of this study was to evaluate the modulation effect on the intestinal microbiota and the transcription of genes involved in the immune response in head kidney of Solea senegalensis after administration of diet supplemented with the prebiotic alginate and the probiotic Shewanella putrefaciens Pdp11 CECT 7627 (SpPdp11). The results showed higher adaptability to dietary changes in the intestinal microbiota of fish fed diet with alginate and SpPdp11 together compared to those fish that received an alginate-supplemented diet. The alginate-supplemented diet produced up-regulation of genes encoding proteins involved in immunological responses, such as complement, lysozyme G and transferrin, and oxidative stress, such as NADPH oxidase and glutation peroxidase. On the other hand, the administration of alginate combined with SpPdp11 resulted in a significant increase of the transcription of genes encoding for glutation peroxidase and HSP70, indicating a potential protective effect of SpPdp11 against oxidative stress. In addition, these effects were maintained after the suspension of the probiotic treatment. The relationship between the modulation of the intestinal microbiota and the expression of genes with protective effect against the oxidative stress was demonstrated by the Principal Components Analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Replacing corn with sorghum in the diet alters intestinal microbiota without altering chicken performance.

    Science.gov (United States)

    Fagundes, N S; Pereira, R; Bortoluzzi, C; Rafael, J M; Napty, G S; Barbosa, J G M; Sciencia, M C M; Menten, J F M

    2017-10-01

    Sorghum grain can be used to replace corn in broiler diets. However, the effects related to an abrupt change between these grains are not yet clear. The aim of this study was to evaluate the performance and intestinal health of broilers fed diets containing corn and/or sorghum during different periods of rearing. To accomplish this aim, 2100 male chicks were fed the following experimental diets: C100% (corn-based diet); S100% (sorghum-based diet); C:S50% (diet based on corn and sorghum 1:1); PC-S (corn-based diet in the pre-starter phase and sorghum-based diet in subsequent phases); and PS-C (sorghum-based diet in the pre-starter phase and corn-based diet in subsequent phases). The study was conducted with two simultaneous trials in a randomized block design as follows: a performance trial up to 40 days occurred in floor pens (n = 8), and the metabolism trial occurred in cages (n = 10). Performance, jejunal morphometry, number of goblet cells, apparent metabolizable energy (AME), apparent metabolizable energy corrected for nitrogen (AMEn) and the coefficient of apparent metabolizability of dry matter (CMDM) of the diets, and the intestinal microbiota of small intestine and caeca at 10 and 21 days of age (16S gene sequencing) were evaluated. The different experimental diets did not affect performance, jejunal epithelium, AME, AMEn or CMDM. However, the experimental diets altered the percentages of the genera Clostridium, Weissella, Bacillus and Alkaliphilus in the small intestine. In addition, the genera Lactobacillus and Desulfotomaculum in the caeca were altered. The age also affected the microbiota of the intestinal segments. In conclusion, feeding sorghum in place of corn as well as the grain change after the pre-starter phase does not alter broiler performance. However, sorghum alters the intestinal microbiota, resulting in a lower percentage of Clostridium and a higher percentage of Lactobacillus in the small intestine and caeca, respectively. Journal of

  4. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5.

    Science.gov (United States)

    Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-03-15

    Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Storage conditions of intestinal microbiota matter in metagenomic analysis

    Directory of Open Access Journals (Sweden)

    Cardona Silvia

    2012-07-01

    Full Text Available Abstract Background The structure and function of human gut microbiota is currently inferred from metagenomic and metatranscriptomic analyses. Recovery of intact DNA and RNA is therefore a critical step in these studies. Here, we evaluated how different storage conditions of fecal samples affect the quality of extracted nucleic acids and the stability of their microbial communities. Results We assessed the quality of genomic DNA and total RNA by microcapillary electrophoresis and analyzed the bacterial community structure by pyrosequencing the 16S rRNA gene. DNA and RNA started to fragment when samples were kept at room temperature for more than 24 h. The use of RNAse inhibitors diminished RNA degradation but this protection was not consistent among individuals. DNA and RNA degradation also occurred when frozen samples were defrosted for a short period (1 h before nucleic acid extraction. The same conditions that affected DNA and RNA integrity also altered the relative abundance of most taxa in the bacterial community analysis. In this case, intra-individual variability of microbial diversity was larger than inter-individual one. Conclusions Though this preliminary work explored a very limited number of parameters, the results suggest that storage conditions of fecal samples affect the integrity of DNA and RNA and the composition of their microbial community. For optimal preservation, stool samples should be kept at room temperature and brought at the laboratory within 24 h after collection or be stored immediately at −20°C in a home freezer and transported afterwards in a freezer pack to ensure that they do not defrost at any time. Mixing the samples with RNAse inhibitors outside the laboratory is not recommended since proper homogenization of the stool is difficult to monitor.

  6. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli.

    Science.gov (United States)

    Holm, Jacob Bak; Sorobetea, Daniel; Kiilerich, Pia; Ramayo-Caldas, Yuliaxis; Estellé, Jordi; Ma, Tao; Madsen, Lise; Kristiansen, Karsten; Svensson-Frej, Marcus

    2015-01-01

    The intestinal microbiota is vital for shaping the local intestinal environment as well as host immunity and metabolism. At the same time, epidemiological and experimental evidence suggest an important role for parasitic worm infections in maintaining the inflammatory and regulatory balance of the immune system. In line with this, the prevalence of persistent worm infections is inversely correlated with the incidence of immune-associated diseases, prompting the use of controlled parasite infections for therapeutic purposes. Despite this, the impact of parasite infection on the intestinal microbiota, as well as potential downstream effects on the immune system, remain largely unknown. We have assessed the influence of chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the human pathogen Trichuris trichiura, on the composition of the murine intestinal microbiota by 16S ribosomal-RNA gene-based sequencing. Our results demonstrate that persistent T. muris infection dramatically affects the large-intestinal microbiota, most notably with a drop in the diversity of bacterial communities, as well as a marked increase in the relative abundance of the Lactobacillus genus. In parallel, chronic T. muris infection resulted in a significant shift in the balance between regulatory and inflammatory T cells in the intestinal adaptive immune system, in favour of inflammatory cells. Together, these data demonstrate that chronic parasite infection strongly influences the intestinal microbiota and the adaptive immune system. Our results illustrate the complex interactions between these factors in the intestinal tract, and contribute to furthering the understanding of this interplay, which is of crucial importance considering that 500 million people globally are suffering from these infections and their potential use for therapeutic purposes.

  7. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli.

    Directory of Open Access Journals (Sweden)

    Jacob Bak Holm

    Full Text Available The intestinal microbiota is vital for shaping the local intestinal environment as well as host immunity and metabolism. At the same time, epidemiological and experimental evidence suggest an important role for parasitic worm infections in maintaining the inflammatory and regulatory balance of the immune system. In line with this, the prevalence of persistent worm infections is inversely correlated with the incidence of immune-associated diseases, prompting the use of controlled parasite infections for therapeutic purposes. Despite this, the impact of parasite infection on the intestinal microbiota, as well as potential downstream effects on the immune system, remain largely unknown. We have assessed the influence of chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the human pathogen Trichuris trichiura, on the composition of the murine intestinal microbiota by 16S ribosomal-RNA gene-based sequencing. Our results demonstrate that persistent T. muris infection dramatically affects the large-intestinal microbiota, most notably with a drop in the diversity of bacterial communities, as well as a marked increase in the relative abundance of the Lactobacillus genus. In parallel, chronic T. muris infection resulted in a significant shift in the balance between regulatory and inflammatory T cells in the intestinal adaptive immune system, in favour of inflammatory cells. Together, these data demonstrate that chronic parasite infection strongly influences the intestinal microbiota and the adaptive immune system. Our results illustrate the complex interactions between these factors in the intestinal tract, and contribute to furthering the understanding of this interplay, which is of crucial importance considering that 500 million people globally are suffering from these infections and their potential use for therapeutic purposes.

  8. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis

    DEFF Research Database (Denmark)

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Zitoun, Carine

    2016-01-01

    Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date......, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose...... homeostasis. Accordingly, dietary succinate improved glucose and insulin tolerance in wild-type mice, but those effects were absent in mice deficient in IGN. Conventional mice colonized with the succinate producer Prevotella copri exhibited metabolic benefits, which could be related to succinate-activated IGN...

  9. Association between Yogurt Consumption and Intestinal Microbiota in Healthy Young Adults Differs by Host Gender.

    Science.gov (United States)

    Suzuki, Yoshio; Ikeda, Keiichi; Sakuma, Kazuhiko; Kawai, Sachio; Sawaki, Keisuke; Asahara, Takashi; Takahashi, Takuya; Tsuji, Hirokazu; Nomoto, Koji; Nagpal, Ravinder; Wang, Chongxin; Nagata, Satoru; Yamashiro, Yuichiro

    2017-01-01

    Human intestinal microbiota are influenced by various factors viz. diet, environment, age, gender, geographical, and socioeconomic situation, etc. among which diet has the most profound impact. However, studies investigating this impact have mostly included subjects from diverse geographic/socioeconomic backgrounds and hence the precise effects of dietary factors on gut microbiota composition remain largely confounded. Herein, with an aim to evaluate the association between dietary habits, specifically yogurt consumption, and the gut microbiota in healthy young adults sharing similar age, lifestyle routine, geographical setting, etc., we conducted a cross-sectional study wherein 293 collegiate freshmen answered a questionnaire about their frequency of yogurt consumption over the last 2 months and provided stool specimens for microbiota analysis. Fecal microbiota were analyzed by highly sensitive reverse-transcription-quantitative-PCR assays targeting bacterial 16S rRNA molecules. Fecal organic acids were measured by HPLC. Overall, the gut microbiota were predominated (97.1 ± 8.6%) by Clostridium coccoides group, Clostridium leptum subgroup, Bacteroides fragilis group, Bifidobacterium and Atopobium cluster. Interestingly, after adjusting the data for yogurt consumption, females were found to have higher total bacterial (P = 0.013) and Bifidobacterium (P = 0.046) count and fecal pH (P = 0.007) and lower fecal concentration of total organic acids (P = 0.030), succinic acid (P = 0.007) and formic acid (P = 0.046) as compared to males. Altogether, yogurt consumption showed positive linear association with Lactobacillus and Lactobacillus gasseri subgroup in both male and female subjects; however, several gender-specific disparities were also detected in this yogurt-microbiota association. Yogurt consumption demonstrated a negative association with L. sakei subgroup, Enterobacteriaceae and Staphylococcus in males but shared a positive association with L. casei subgroup

  10. Association between Yogurt Consumption and Intestinal Microbiota in Healthy Young Adults Differs by Host Gender

    Directory of Open Access Journals (Sweden)

    Yoshio Suzuki

    2017-05-01

    Full Text Available Human intestinal microbiota are influenced by various factors viz. diet, environment, age, gender, geographical, and socioeconomic situation, etc. among which diet has the most profound impact. However, studies investigating this impact have mostly included subjects from diverse geographic/socioeconomic backgrounds and hence the precise effects of dietary factors on gut microbiota composition remain largely confounded. Herein, with an aim to evaluate the association between dietary habits, specifically yogurt consumption, and the gut microbiota in healthy young adults sharing similar age, lifestyle routine, geographical setting, etc., we conducted a cross-sectional study wherein 293 collegiate freshmen answered a questionnaire about their frequency of yogurt consumption over the last 2 months and provided stool specimens for microbiota analysis. Fecal microbiota were analyzed by highly sensitive reverse-transcription-quantitative-PCR assays targeting bacterial 16S rRNA molecules. Fecal organic acids were measured by HPLC. Overall, the gut microbiota were predominated (97.1 ± 8.6% by Clostridium coccoides group, Clostridium leptum subgroup, Bacteroides fragilis group, Bifidobacterium and Atopobium cluster. Interestingly, after adjusting the data for yogurt consumption, females were found to have higher total bacterial (P = 0.013 and Bifidobacterium (P = 0.046 count and fecal pH (P = 0.007 and lower fecal concentration of total organic acids (P = 0.030, succinic acid (P = 0.007 and formic acid (P = 0.046 as compared to males. Altogether, yogurt consumption showed positive linear association with Lactobacillus and Lactobacillus gasseri subgroup in both male and female subjects; however, several gender-specific disparities were also detected in this yogurt-microbiota association. Yogurt consumption demonstrated a negative association with L. sakei subgroup, Enterobacteriaceae and Staphylococcus in males but shared a positive association with L

  11. Progreso en el conocimiento de la microbiota intestinal humana

    Directory of Open Access Journals (Sweden)

    Virginia Robles-Alonso

    2013-06-01

    Full Text Available La aparición de nuevas técnicas de secuenciación así como el desarrollo de herramientas bioinformáticas han permitido no sólo describir la composición de la comunidad bacteriana que habita el tracto gastrointestinal, sino también las funciones metabólicas de las que proveen al huésped. La mayoría de los miembros de esta amplia comunidad bacteriana pertenecen a Dominio Bacteria, aunque encontramos también Archaea y formas eucariotas y virus. Únicamente entre 7 y 9 de las 55 Phyla del Dominio Bacteria conocidos están presentes en flora fecal humana. Su mayoría pertenecen además a las Divisiones Bacteroidetes and Firmicutes, encontrando también Proteobacteria, Actinobacteria, Fusobacteria y Verrucomicrobia. Bacteroides, Faecalibacterium y Bifidobacterium son los Géneros más abundantes aunque su abundancia relativa es muy variable entre individuos. El análisis metagenómico de la flora intestinal ha permitido describir una colección de 5 millones de genes microbianos que codifican para aproximadamente 20.000 funciones biológicas relacionadas con la vida de las bacterias. El ecosistema intestinal humano puede clasificarse en torno a tres grupos de acuerdo a la abundancia relativa de tres Géneros: Bacteroides (enterotipo 1, Prevotella (enterotipo 2 y Ruminococcus (enterotype 3. Estos grupos han sido denominados "enterotipos" y su descripción sugiere que las variaciones entre individuos están estratificadas. Una vez descrita la composición bacteriana sería interesante establecer la relación entre la alteración de equilibrios ecológicos con estados de enfermedad que puedan desembocar en una novedosa vía terapéutica.

  12. Evidence from Animal Models: Is a Restricted or Conventional Intestinal Microbiota Composition Predisposing to Risk for High-LET Radiation Injury?

    Science.gov (United States)

    Maier, Irene; Schiestl, Robert H

    2015-06-01

    Intestinal microbiota affect cell responses to ionizing radiation at the molecular level and can be linked to the development of the immune system, controlled cell death or apoptosis. We have developed a microbiota mouse model and report here that high-linear energy transfer (LET) radiation induced the repair of chromosomal DNA lesions more efficiently in conventional than in restricted intestinal microbiota mice. Based on different phylotype densities after whole-body irradiation, bacterial indicator phylotypes were found to be more abundant in restricted in microbiota than in conventional microbiota. Genotoxic phenotypes of irradiated restricted and conventional microbiota mice were compared with ataxia telangiectasia-deficient restricted and conventional microbiota mice, respectively. Those indicator phylotypes, including Bacteroides (Gram-negative bacterium cTPY-13), Barnesiella intestinihominis and others, which were identified in nonirradiated restricted microbiota mice, increase in radiation-exposed conventional microbiota along with a reduction of persistent DNA double-strand breaks in blood lymphocytes. The dynamic change of phylotype abundances elucidated a feedback mechanism and effect of intestinal microbiota composition on the adaptive response to high-LET radiation. Several other bacterial phylotypes ( Helicobacter hepaticus , Helicobacter spp and others) were found to be more abundant in conventional than restricted microbiota. In this commentary, mouse models used in cancer research and radiotherapy for the study on the effects of intestinal microbiota composition on normal tissue radiation response are characterized and discussed. Highlights of this commentary: 1. Restricted microbiota phylotypes were correlated with persistent DNA double-strand breaks (DSBs) and were found to orchestrate onco-protective controlled cell death after radiation; 2. Restricted microbiota composition reduced proinflammatory extracellular-stimulated immune responses, but

  13. Diet type and challenge by Yersinia Ruckeri influence the intestinal microbiota in rainbow trout (Oncorhynchus Mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Dalsgaard, Inger; Jørgensen, L. von Gersdorff

    In warm-blooded animals such as humans and pigs the intestinal microbial composition is dependent on the type of ingested diet. It is known that it also influences the immune system and prevent colonization of pathogenic bacteria. The question is if the gut microbiota has the same impact in lower....... These ‘high Yersinia level’ fish had a significantly lower amount of reads from the order Burkholderiales relative to the ‘low Yersinia level’ fish and non-infected control fish. Further, the ‘high Yersinia level’ fish further clustered separately when analyzing the bacterial community on a PCA plot...... indicate that the gut microbiota in rainbow trout, like in warm-blooded animals, is highly plastic according to the type of diet and does also seem to be involved in the immunological response in connection to pathogenic challenge....

  14. Alteration of the intestinal microbiome: fecal microbiota transplant and probiotics for Clostridium difficile and beyond.

    Science.gov (United States)

    Vindigni, Stephen M; Broussard, Elizabeth K; Surawicz, Christina M

    2013-09-01

    Clostridium difficile infection is increasingly common with a high risk of recurrence despite antibiotic treatment. In cases of recurrent C. difficile infection, fecal microbiota transplant (FMT) is a highly effective treatment option promoting the restoration of normal gut microbiota. Furthermore, preliminary uncontrolled evidence demonstrates possible benefit of FMT in the management of some cases of inflammatory bowel disease and chronic constipation. In addition to presenting an overview of FMT, we discuss the role of probiotics, a more common approach to modifying the intestinal microbiome. Probiotics have been utilized broadly for many disease processes, including gastrointestinal, cardiovascular and allergic disease settings, although with limited and inconsistent results. Multiple potential areas for research are also identified.

  15. Regulation of Lung Immunity and Host Defense by the Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Derrick Richard Samuelson

    2015-10-01

    Full Text Available Every year in the United States approximately 200,000 people die from pulmonary infections, such as influenza and pneumonia, or from lung disease that is exacerbated by pulmonary infection. In addition, respiratory diseases such as, asthma, affect 300 million people worldwide. Therefore, understanding the mechanistic basis for host defense against infection and regulation of immune processes involved in asthma are crucial for the development of novel therapeutic strategies. The identification, characterization, and manipulation of immune regulatory networks in the lung represents one of the biggest challenges in treatment of lung associated disease. Recent evidence suggests that the gastrointestinal (GI microbiota plays a key role in immune adaptation and initiation in the GI tract as well as at other distal mucosal sites, such as the lung. This review explores the current research describing the role of the GI microbiota in the regulation of pulmonary immune responses. Specific focus is given to understanding how intestinal dysbiosis affects lung health.

  16. Methodological issues in the study of intestinal microbiota in irritable bowel syndrome.

    Science.gov (United States)

    Taverniti, Valentina; Guglielmetti, Simone

    2014-07-21

    Irritable bowel syndrome (IBS) is an intestinal functional disorder with the highest prevalence in the industrialized world. The intestinal microbiota (IM) plays a role in the pathogenesis of IBS and is not merely a consequence of this disorder. Previous research efforts have not revealed unequivocal microbiological signatures of IBS, and the experimental results are contradictory. The experimental methodologies adopted to investigate the complex intestinal ecosystem drastically impact the quality and significance of the results. Therefore, to consider the methodological aspects of the research on IM in IBS, we reviewed 29 relevant original research articles identified through a PubMed search using three combinations of keywords: "irritable bowel syndrome + microflora", "irritable bowel syndrome + microbiota" and "irritable bowel syndrome + microbiome". For each study, we reviewed the quality and significance of the scientific evidence obtained with respect to the experimental method adopted. The data obtained from each study were compared with all considered publications to identify potential inconsistencies and explain contradictory results. The analytical revision of the studies referenced in the present review has contributed to the identification of microbial groups whose relative abundance significantly alters IBS, suggesting that these microbial groups could be IM signatures for this syndrome. The identification of microbial biomarkers in the IM can be advantageous for the development of new diagnostic tools and novel therapeutic strategies for the treatment of different subtypes of IBS.

  17. Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1985-07-01

    Benzidine-based azo dyes are proven mutagens and have been linked to bladder cancer. Previous studies have indicated that their initial reduction is the result of the azo reductase activity of the intestinal microbiota. Metabolism of the benzidine-based dye Direct Black 38 was examined by using a semicontinuous culture system that simulates the lumen of the human large intestine. The system was inoculated with freshly voided feces, and an active flora was maintained as evidenced by volatile fatty acid and gas production. Within 7 days after exposure to the dye, the following metabolites were isolated and identified by gas chromatography - mass spectrometry: benzidine, 4-aminobiphenyl, monoacetylbenzidine, and acetylaminobiphenyl. Benzidine reached its peak level after 24 h, accounting for 39.1% of the added dye. Its level began to decline, and by day 7 the predominant metabolite was acetylaminobiphenyl, which accounted for 51.1% of the parent compound. Formation of the deaminated and N-acetylated analogs of benzidine, which have enhanced mutagenicity and lipophilicity, previously has not been attributed to the intestinal microbiota.

  18. Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria.

    Science.gov (United States)

    Cisek, A A; Binek, M

    2014-01-01

    Bacterial colonization of the chicken gut by environmental microbes begins immediately after hatching. Composition of the intestinal microbiota is dependent on the surrounding environment, diet variation, pathological conditions, antibiotic therapy, and others. The genomes of all these intestinal microbes form a microbiome which by far outnumbers the host's genome. As a consequence, the microbiome provides additional metabolic functions to the host, including nutrient utilization and absorption, fermentation of non-digestible dietary fiber, synthesis of some vitamins, biotransformation of bile acids, and the well-being of their chicken host. Microorganisms can also directly interact with the lining of the gastrointestinal tract, which may alter the physiology and immunological status of the bird. Since newly hatched broiler chickens demonstrate delayed commensal colonization and low bacterial diversity, the most effective and harmless method available to control the development and composition of the intestinal microbiota is a competitive exclusion treatment by applying probiotic bacteria. Additionally, recent research has shown that probiotic bacteria have a variety of beneficial effects, including counteraction of dysbiosis, promotion of gut health and homeostasis, enhancement of immune defenses and antagonization of infectious agents.

  19. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota

    Science.gov (United States)

    Round, June L.; Mazmanian, Sarkis K.

    2010-01-01

    To maintain intestinal health, the immune system must faithfully respond to antigens from pathogenic microbes while limiting reactions to self-molecules. The gastrointestinal tract represents a unique challenge to the immune system, as it is permanently colonized by a diverse amalgam of bacterial phylotypes producing multitudes of foreign microbial products. Evidence from human and animal studies indicates that inflammatory bowel disease results from uncontrolled inflammation to the intestinal microbiota. However, molecular mechanisms that actively promote mucosal tolerance to the microbiota remain unknown. We report herein that a prominent human commensal, Bacteroides fragilis, directs the development of Foxp3+ regulatory T cells (Tregs) with a unique “inducible” genetic signature. Monocolonization of germ-free animals with B. fragilis increases the suppressive capacity of Tregs and induces anti-inflammatory cytokine production exclusively from Foxp3+ T cells in the gut. We show that the immunomodulatory molecule, polysaccharide A (PSA), of B. fragilis mediates the conversion of CD4+ T cells into Foxp3+ Treg cells that produce IL-10 during commensal colonization. Functional Foxp3+ Treg cells are also produced by PSA during intestinal inflammation, and Toll-like receptor 2 signaling is required for both Treg induction and IL-10 expression. Most significantly, we show that PSA is not only able to prevent, but also cure experimental colitis in animals. Our results therefore demonstrate that B. fragilis co-opts the Treg lineage differentiation pathway in the gut to actively induce mucosal tolerance. PMID:20566854

  20. Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.

    Science.gov (United States)

    Bongers, Gerold; Pacer, Michelle E; Geraldino, Thais H; Chen, Lili; He, Zhengxiang; Hashimoto, Daigo; Furtado, Glaucia C; Ochando, Jordi; Kelley, Kevin A; Clemente, Jose C; Merad, Miriam; van Bakel, Harm; Lira, Sergio A

    2014-03-10

    The preferential localization of some neoplasms, such as serrated polyps (SPs), in specific areas of the intestine suggests that nongenetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine but developed SPs only in the cecum. Here we show that a host-specific microbiome was associated with SPs and that alterations of the microbiota induced by antibiotic treatment or by embryo transfer rederivation markedly inhibited the formation of SPs in the cecum. Mechanistically, development of SPs was associated with a local decrease in epithelial barrier function, bacterial invasion, production of antimicrobials, and increased expression of several inflammatory factors such as IL-17, Cxcl2, Tnf-α, and IL-1. Increased numbers of neutrophils were found within the SPs, and their depletion significantly reduced polyp growth. Together these results indicate that nongenetic factors contribute to the development of SPs and suggest that the development of these intestinal neoplasms in the cecum is driven by the interplay between genetic changes in the host, an inflammatory response, and a host-specific microbiota.

  1. Absence of intestinal microbiota does not protect mice from diet-induced obesity.

    Science.gov (United States)

    Fleissner, Christine K; Huebel, Nora; Abd El-Bary, Mohamed Mostafa; Loh, Gunnar; Klaus, Susanne; Blaut, Michael

    2010-09-01

    The gut microbiota has been implicated in host nutrient absorption and energy homeostasis. We studied the influence of different diets on body composition in germ-free (GF) and conventional (CV) mice. GF and CV male adult C3H mice were fed ad libitum a semi-synthetic low-fat diet (LFD; carbohydrate-protein-fat ratio: 41:42:17; 19.8 kJ/g), a high-fat diet (HFD; 41:16:43; 21.4 kJ/g) or a commercial Western diet (WD; 41:19:41; 21.5 kJ/g). There was no difference in body weight gain between GF and CV mice on the LFD. On the HFD, GF mice gained more body weight and body fat than CV mice, and had lower energy expenditure. GF mice on the WD gained significantly less body fat than GF mice on the HFD. GF mice on both HFD and WD showed increased intestinal mRNA expression of fasting-induced adipose factor/angiopoietin-like protein 4 (Fiaf/Angptl4), but they showed no major changes in circulating Fiaf/Angptl4 compared with CV mice. The faecal microbiota composition of the CV mice differed between diets: the proportion of Firmicutes increased on both HFD and WD at the expense of the Bacteroidetes. This increase in the Firmicutes was mainly due to the proliferation of one family within this phylum: the Erysipelotrichaceae. We conclude that the absence of gut microbiota does not provide a general protection from diet-induced obesity, that intestinal production of Fiaf/Angptl4 does not play a causal role in gut microbiota-mediated effects on fat storage and that diet composition affects gut microbial composition to larger extent than previously thought.

  2. Impact of Bifidobacterium lactis supplementation on fecal microbiota in infants delivered vaginally compared to Caesarean section

    Directory of Open Access Journals (Sweden)

    Tetty Yuniaty

    2013-03-01

    Full Text Available AbstractBackground It has been reported that infants born by Caesarean section have altered gut microbiota, with lower numbers of bifidobacteria and Bacteroides, compared to that of infants who were delivered vaginally. Probiotic supplementation has been reported to have beneficial effects on the immune response, generally in relation to allergies.Objective To assess the effect of Bifidobacterium lactis (B. lactis supplementation on the presence of B. lactis and bifidobacteria counts in stool of infants during the first 2 months of life.Methods We conducted an observational study of 122 healthy, breast-fed infants delivered vaginally or by Caesarean section. Infants assigned to the test group received breast milk and formula supplemented with the B. lactis probiotics. Infants in the control group received breast milk and formula without probiotics. The presence of B. lactis and stool bifidobacteria counts were determined at 1 month and 2 months of age. Growth, morbidity, serum immune markers, and stool immunoglobulin (Ig A were also assessed.Results B. lactis was more frequently detected in the stool of infants who received breast milk and probiotic-supplemented formula than in stool of infants who received breast milk and non-supplemented formula, both at 1 month and 2 months of age (OR 1,263; 95%CI 11 to 151,030; P=0.003. Of infants who received probiotic-supplemented formula, B. lactis was detected in 80% of those delivered by Caesarean section and in 38% of those delivered vaginally, at the 1-month mark. In infants delivered by Caesarean section, the mean stool bifidobacteria level at 1 month was significantly higher in the probiotic-supplemented group compared to that of the non-supplemented group (P=0.021.Conclusion Eearly bifidobacteria supplementation of infants, particularly those delivered by Caesarean section, is associated with higher levels of stool bifidobacteria. Anthropometric data suggests beneficial effects of bifidobacteria

  3. Impact of Bifidobacterium lactis supplementation on fecal microbiota in infants delivered vaginally compared to Caesarean section

    Directory of Open Access Journals (Sweden)

    Tetty Yuniaty

    2013-03-01

    Full Text Available Background It has been reported that infants born by Caesarean section have altered gut microbiota, with lower numbers of bifidobacteria and Bacteroides, compared to that of infants who were delivered vaginally. Probiotic supplementation has been reported to have beneficial effects on the immune response, generally in relation to allergies. Objective To assess the effect of Bifidobacterium lactis (B. lactis supplementation on the presence of B. lactis and bifidobacteria counts in stool of infants during the first 2 months of life. Methods We conducted an observational study of 122 healthy, breast-fed infants delivered vaginally or by Caesarean section. Infants assigned to the test group received breast milk and formula supplemented with the B. lactis probiotics. Infants in the control group received breast milk and formula without probiotics. The presence of B. lactis and stool bifidobacteria counts were determined at 1 month and 2 months of age. Growth, morbidity, serum immune markers, and stool immunoglobulin (Ig A were also assessed. Results B. lactis was more frequently detected in the stool of infants who received breast milk and probiotic-supplemented formula than in stool of infants who received breast milk and non-supplemented formula, both at 1 month and 2 months of age (OR 1,263; 95%CI 11 to 151,030; P=0.003. Of infants who received probiotic-supplemented formula, B. lactis was detected in 80% of those delivered by Caesarean section and in 38% of those delivered vaginally, at the 1-month mark. In infants delivered by Caesarean section, the mean stool bifidobacteria level at 1 month was significantly higher in the probiotic-supplemented group compared to that of the non-supplemented group (P=0.021. Conclusion Eearly bifidobacteria supplementation of infants, particularly those delivered by Caesarean section, is associated with higher levels of stool bifidobacteria. Anthropometric data suggests beneficial effects of bifidobacteria

  4. Stress and the Commensal Microbiota: Importance in parturition and infant neurodevelopment

    Directory of Open Access Journals (Sweden)

    Tamar L Gur

    2015-02-01

    Full Text Available The body is colonized by an enormous array of microbes that are collectively called the microbiota. During quiescent periods, microbial communities within the gut are relatively resistant to change. However, several factors that disrupt homeostasis can also significantly change gut microbial community structure. One factor that has been shown to change the composition of the gut microbiota is exposure to psychological stressors. Studies demonstrate that the commensal microbiota are involved in stressor-induced immunomodulation, but other biological effects are not yet known. This review discusses emerging evidence that the microbiota can impact the brain and behavior and indicates that stressor-induced alterations in the composition of gut microbial communities contribute to stressor-induced behavioral changes. This review will also discuss the evidence that such effects are most evident early in life, where both stress and the microbiota have been linked to birth outcomes, such as prematurity, and neurodevelopment. When considered together, a paradigm emerges in which stressor-induced alterations in commensal microbial populations significantly impact parturition and infant neurodevelopment.

  5. Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth.

    Directory of Open Access Journals (Sweden)

    Richard A White

    Full Text Available It is acknowledged that some obesity trajectories are set early in life, and that rapid weight gain in infancy is a risk factor for later development of obesity. Identifying modifiable factors associated with early rapid weight gain is a prerequisite for curtailing the growing worldwide obesity epidemic. Recently, much attention has been given to findings indicating that gut microbiota may play a role in obesity development. We aim at identifying how the development of early gut microbiota is associated with expected infant growth. We developed a novel procedure that allows for the identification of longitudinal gut microbiota patterns (corresponding to the gut ecosystem developing, which are associated with an outcome of interest, while appropriately controlling for the false discovery rate. Our method identified developmental pathways of Staphylococcus species and Escherichia coli that were associated with expected growth, and traditional methods indicated that the detection of Bacteroides species at day 30 was associated with growth. Our method should have wide future applicability for studying gut microbiota, and is particularly important for translational considerations, as it is critical to understand the timing of microbiome transitions prior to attempting to manipulate gut microbiota in early life.

  6. Concordance between upper and lower airway microbiota in infants with cystic fibrosis.

    Science.gov (United States)

    Prevaes, Sabine M P J; de Steenhuijsen Piters, Wouter A A; de Winter-de Groot, Karin M; Janssens, Hettie M; Tramper-Stranders, Gerdien A; Chu, Mei Ling J N; Tiddens, Harm A; van Westreenen, Mireille; van der Ent, Cornelis K; Sanders, Elisabeth A M; Bogaert, Debby

    2017-03-01

    Nasopharyngeal and oropharyngeal samples are commonly used to direct therapy for lower respiratory tract infections in non-expectorating infants with cystic fibrosis (CF).We aimed to investigate the concordance between the bacterial community compositions of 25 sets of nasopharyngeal, oropharyngeal and bronchoalveolar lavage (BAL) samples from 17 infants with CF aged ∼5 months (n=13) and ∼12 months (n=12) using conventional culturing and 16S-rRNA sequencing.Clustering analyses demonstrated that BAL microbiota profiles were in general characterised by a mixture of oral and nasopharyngeal bacteria, including commensals like Streptococcus, Neisseria, Veillonella and Rothia spp. and potential pathogens like Staphylococcus aureus, Haemophilus influenzae and Moraxella spp. Within each individual, however, the degree of concordance differed between microbiota of both upper respiratory tract niches and the corresponding BAL.The inconsistent intra-individual concordance between microbiota of the upper and lower respiratory niches suggests that the lungs of infants with CF may have their own microbiome that seems seeded by, but is not identical to, the upper respiratory tract microbiome.

  7. Effects of Coriander Essential Oil on the Performance, Blood Characteristics, Intestinal Microbiota and Histological of Broilers

    Directory of Open Access Journals (Sweden)

    S Ghazanfari

    2015-12-01

    Full Text Available ABSTRACT Present study was conducted to investigate the effects of the dietary supplementation of coriander oil on broiler performance, blood characteristics, microbiota, and small intestine morphology measurements. A number of one-day-old broiler chickens (Ross 308 were allocated to five treatments, with four replicates according to a completely randomized design (CRD. Birds were offered either a corn-soybean meal basal diet (control, or the basal diet supplemented with 600 mg/kg of a flavophospholipol antibiotic, 100, 200, or 300 mg/kg coriander essential oil. At 42 days of age, two birds per replicate were selected for blood collection, slaughtered, and its intestinal microbiota and morphology were investigated. The results indicated that weight gain, feed intake, and feed conversion ratio significantly improved by the dietary inclusion of the coriander oil and antibiotic compared with the control treatment (p0.05. Birds fed the coriander oil and antibiotic diets had lower populations of Escherichia coli than control group in cecum (p<0.05. The dietary treatments influenced the morphology of small intestinal villi. Birds fed antibiotic and coriander essential oil presented higher villus height and crypt depth compared with those in the control treatment (p<0.01. Coriander essential oil supplementation significantly decreased epithelial thickness and the number of goblet cell of the small intestinal compared with the control treatment (p<0.0001. In conclusion, coriander oil was shown to be an efficient growth promoter. The intestinal health improvement obtained with coriander oil was associated with improvements in broiler growth performance.

  8. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  9. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis

    Science.gov (United States)

    Tojo, Rafael; Suárez, Adolfo; Clemente, Marta G; de los Reyes-Gavilán, Clara G; Margolles, Abelardo; Gueimonde, Miguel; Ruas-Madiedo, Patricia

    2014-01-01

    The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. The colon is the most densely populated organ in the human body, although other parts, such as the skin, vaginal mucosa, or respiratory tract, also harbour specific microbiota. This microbial community regulates some important metabolic and physiological functions of the host, and drives the maturation of the immune system in early life, contributing to its homeostasis during life. Alterations of the intestinal microbiota can occur by changes in composition (dysbiosis), function, or microbiota-host interactions and they can be directly correlated with several diseases. The only disease in which a clear causal role of a dysbiotic microbiota has been demonstrated is the case of Clostridium difficile infections. Nonetheless, alterations in composition and function of the microbiota have been associated with several gastrointestinal diseases (inflammatory bowel disease, colorectal cancer, or irritable bowel syndrome), as well as extra-intestinal pathologies, such as those affecting the liver, or the respiratory tract (e.g., allergy, bronchial asthma, and cystic fibrosis), among others. Species of Bifidobacterium genus are the normal inhabitants of a healthy human gut and alterations in number and composition of their populations is one of the most frequent features present in these diseases. The use of probiotics, including bifidobacteria strains, in preventive medicine to maintain a healthy intestinal function is well documented. Probiotics are also proposed as therapeutic agents for gastrointestinal disorders and other pathologies. The World Gastroenterology Organization recently published potential clinical applications for several probiotic formulations, in which species of lactobacilli are predominant. This review is focused on probiotic preparations containing Bifidobacterium strains, alone or in combination with other bacteria, which have been

  10. Dietary inclusion of feathers affects intestinal microbiota and microbial metabolites in growing Leghorn-type chickens.

    Science.gov (United States)

    Meyer, B; Bessei, W; Bessei, A W; Vahjen, W; Zentek, J; Harlander-Matauschek, A

    2012-07-01

    Feather pecking in laying hens is a serious behavioral problem that is often associated with feather eating. The intake of feathers may influence the gut microbiota and its metabolism. The aim of this study was to determine the effect of 2 different diets, with or without 5% ground feathers, on the gut microbiota and the resulting microbial fermentation products and to identify keratin-degrading bacteria in chicken digesta. One-day-old Lohmann-Selected Leghorn chicks were divided into 3 feeding groups: group A (control), B (5% ground feathers in the diet), and C, in which the control diet was fed until wk 12 and then switched to the 5% feather diet to study the effect of time of first feather ingestion. The gut microbiota was analyzed by cultivation and denaturing gradient gel electrophoresis of ileum and cecum digesta. Short-chain fatty acids, ammonia, and lactate concentrations were measured as microbial metabolites. The concentration of keratinolytic bacteria increased after feather ingestion in the ileum (P < 0.001) and cecum (P = 0.033). Bacterial species that hydrolyzed keratin were identified as Enterococcus faecium, Lactobacillus crispatus, Lactobacillus reuteri-like species (97% sequence homology), and Lactobacillus salivarius-like species (97% sequence homology). Molecular analysis of cecal DNA extracts showed that the feather diet lowered the bacterial diversity indicated by a reduced richness (P < 0.001) and shannon (P = 0.012) index. The pattern of microbial metabolites indicated some changes, especially in the cecum. This study showed that feather intake induced an adaptation of the intestinal microbiota in chickens. It remains unclear to what extent the changed metabolism of the microbiota reflects the feather intake and could have an effect on the behavior of the hens.

  11. Intestinal microbiota of broiler chickens as affected by litter management regimens

    Directory of Open Access Journals (Sweden)

    Zhongtang eYu

    2016-05-01

    Full Text Available Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age and mature birds (35 days of age. Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health.

  12. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1986-01-01

    The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. (/sup 3/H)-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of (/sup 3/H)-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 d of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP.

  13. Lactobacillus rhamnosus GG Intake Modifies Preschool Children's Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use.

    Directory of Open Access Journals (Sweden)

    Katri Korpela

    Full Text Available Antibiotic use is considered among the most severe causes of disturbance to children's developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life-threatening infections. Probiotics are commonly advocated to help in preventing antibiotic-associated gastrointestinal symptoms. However, it is currently unknown whether probiotics alleviate the antibiotic-associated changes in children's microbiota. Furthermore, it is not known how long-term probiotic consumption influences the developing microbiota of children. We analysed the influence of long-term Lactobacillus rhamnosus GG intake on preschool children's antibiotic use, and antibiotic-associated gastrointestinal complaints in a double blind, randomized placebo-controlled trial with 231 children aged 2-7. In addition, we analysed the effect of L. rhanmosus GG on the intestinal microbiota in a subset of 88 children. The results show that long-term L. rhamnosus GG supplementation has an influence on the composition of the intestinal microbiota in children, causing an increase in the abundance of Prevotella, Lactococcus, and Ruminococcus, and a decrease in Escherichia. The treatment appeared to prevent some of the changes in the microbiota associated with penicillin use, but not those associated with macrolide use. The treatment, however, did reduce the frequency of gastrointestinal complaints after a macrolide course. Finally, the treatment appeared to prevent certain bacterial infections for up to 3 years after the trial, as indicated by reduced antibiotic use.ClinicalTrials.gov NCT01014676.

  14. Intestinal microbiota in adult patients with Short Bowel Syndrome: Preliminary results from a pilot study.

    Science.gov (United States)

    Boccia, Stefania; Torre, Ida; Santarpia, Lidia; Iervolino, Carmela; Del Piano, Concetta; Puggina, Anna; Pastorino, Roberta; Dragic, Miroslav; Amore, Rosarita; Borriello, Tonia; Palladino, Raffaele; Pennino, Francesca; Contaldo, Franco; Pasanisi, Fabrizio

    2016-10-01

    Intestinal bacterial flora plays a central role in human intestinal health and disease. Short Bowel Syndrome (SBS), a clinical condition deriving from extensive bowel resections, influence intestinal microbiota (IM) composition in order to reach a new metabolic balance. Little is known about IM in adult patients after wide intestinal resections. Fecal samples from 12 SBS patients and 16 controls were analyzed in their microbial profile by using both culture-dependent method and quantitative Real-Time PCR (qRT-PCR). The two methods revealed significant lower concentrations of Bacteroidetes (p-value = .02), Firmicutes (p-value = .05), Bifidobacterium (p-value < .01), and Methanobrevibacter Smithii (p-value = .04) in SBS patients than controls. The significantly different fecal microbiome in SBS patients compared with healthy controls could open new perspectives on the care of their intestinal functions. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Analysis of the human intestinal microbiota from 92 volunteers after ingestion of identical meals.

    Science.gov (United States)

    Jin, J S; Touyama, M; Kibe, R; Tanaka, Y; Benno, Y; Kobayashi, T; Shimakawa, M; Maruo, T; Toda, T; Matsuda, I; Tagami, H; Matsumoto, M; Seo, G; Chonan, O; Benno, Y

    2013-06-01

    The intestinal microbiota composition of 92 volunteers living in Japan was identified following the consumption of 'identical meals' (1,879 kcal/day) for 3 days. When faecal samples were analysed by terminal restriction fragment length polymorphism with several primer-restriction enzyme systems and then clustered, the patterns could be divided into 2 clusters. Contribution tests and partition modelling showed that OTU211 of the 35f-MspI system and OTU237 of the 35f-AluI system were key factors in the distribution of these groups. However, significant differences among these groups in terms of body mass index and age were not observed.

  16. Frog meat microbiota (Lithobates catesbeianus used in infant food

    Directory of Open Access Journals (Sweden)

    Eliane Rodrigues

    2014-03-01

    Full Text Available Captive breeding of bullfrog (Lithobates catesbeianus is of great economic potential, mainly for its thighs and leather. The nutritional quality of frog meat includes properly balanced amino acids with a protein profile of high biological value, low fat and low cholesterol, and high digestibility due to its short chain molecule structure. It is recommended by doctors and nutritionists, especially for protein restricted children or malnourished children. Aiming to aggregate value to the segment and offer a product with nutritional properties that meet the need of children aged six months and above, a meat product based on the composition of frog meat was developed experimentally. To ensure raw material quality after bleaching and deboning, the microbiota present in the frog meat was determined. The analyses were performed according to Brazilian laws. It was observed that the resident and transient microbiota met the standards set by regulations. The results found were: mesophyll 4.5 x 10(4 CFU/g; Staphylococcus coagulase positive 2.0 x 10² CFU/g; negative for Salmonella sp. and Aeromonas spp. The findings indicate that the raw material showed satisfactory sanitation even in terms of family industry.

  17. Research progress in the modulators of intestinal microbiota%肠道菌群调节制剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    房晓; 段荣帅; 王凤山

    2014-01-01

    Intestinal microbiota is closely related to the human health. The unhealthy state is often associated with disorders in intestinal microbiota. Intestinal microbiota modulators such as probiotics, prebiotics and synbiotics, which can restore and improve intestinal microbiota balance, are thus drawing wide attention. This paper reviewed the research progress of modulators of intestinal microbiota.%肠道菌群与人体健康密切相关,疾病状态常伴随肠道菌群的紊乱。以益生菌、益生素和合生素为代表的肠道菌群调节制剂可以改善肠道菌群,恢复肠道菌群平衡,因而广泛受到关注。本文综述肠道菌群调节制剂的研究进展。

  18. Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig.

    Science.gov (United States)

    Walsh, A M; Sweeney, T; O'Shea, C J; Doyle, D N; O'Doherty, J V

    2013-11-14

    A 2 × 2 factorial experiment was conducted to investigate the interactions between laminarin (LAM; 0 and 300 parts per million (ppm)) and fucoidan (FUC; 0 and 240 ppm) levels on intestinal morphology, selected microbiota and inflammatory cytokine gene expression in the weaned pig. There was an interaction between LAM and FUC supplementation on the Enterobacteriaceae population (Pintestinal morphology. Pigs offered the LAM-supplemented diets had a lower IL-6 (Pintestinal morphology and selected intestinal microbiota, but these effects were lost when offered in combination.

  19. The Impact of the Milk Glycobiome on the Neonate Gut Microbiota

    OpenAIRE

    Pacheco, Alline R.; Barile, Daniela; Underwood, Mark A.; David A. Mills

    2014-01-01

    Human milk is a complete source of nourishment for the infant. Exclusive breastfeeding not only sustains the infant’s development but also guides the proliferation of a protective intestinal microbiota. Among the many components of milk that modulate the infant gut microbiota, the milk glycans, which comprise free oligosaccharides, glycoproteins, and glycolipids, are increasingly recognized as drivers of microbiota development and overall gut health. These glycans may display pleiotropic func...

  20. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A.

    2016-01-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  1. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  2. Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets.

    Directory of Open Access Journals (Sweden)

    Dirkjan Schokker

    Full Text Available BACKGROUND: Early-life environmental variation affects gut microbial colonization and immune competence development; however, the timing and additional specifics of these processes are unknown. The impact of early-life environmental variations, as experienced under real life circumstances, on gut microbial colonization and immune development has not been studied extensively so far. We designed a study to investigate environmental variation, experienced early after birth, to gut microbial colonization and intestinal immune development. METHODOLOGY/PRINCIPAL FINDINGS: To investigate effects of early-life environmental changes, the piglets of 16 piglet litters were divided into 3 groups per litter and experimentally treated on day 4 after birth. During the course of the experiment, the piglets were kept with their mother sow. Group 1 was not treated, group 2 was treated with an antibiotic, and group 3 was treated with an antibiotic and simultaneously exposed to several routine, but stressful management procedures, including docking, clipping and weighing. Thereafter, treatment effects were measured at day 8 after birth in 16 piglets per treatment group by community-scale analysis of gut microbiota and genome-wide intestinal transcriptome profiling. We observed that the applied antibiotic treatment affected the composition and diversity of gut microbiota and reduced the expression of a large number of immune-related processes. The effect of management procedures on top of the use of an antibiotic was limited. CONCLUSIONS/SIGNIFICANCE: We provide direct evidence that different early-life conditions, specifically focusing on antibiotic treatment and exposure to stress, affect gut microbial colonization and intestinal immune development. This reinforces the notion that the early phase of life is critical for intestinal immune development, also under regular production circumstances.

  3. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Qingchao Zhu

    Full Text Available Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, p<0.001. Meanwhile, Prevotella (55.22% vs. 26.19%, Lactobacillus (3.71% vs. 2.32% and Treponema (3.04% vs. 2.43%, were found to be significantly more abundant in healthy rats than CRC rats (p<0.001, respectively. We also demonstrate a significant reduction of butyrate-producing bacteria such as Roseburia and Eubacterium in the gut microbiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant

  4. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota.

    Directory of Open Access Journals (Sweden)

    Bartholomeus van den Bogert

    Full Text Available The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains (four Streptococcus salivarius, one S. equinus, one S. parasanguinis one Veillonella parvula strain, one Enterococcus gallinarum strain, and Lactobacillus plantarum WCFS1 as a bench mark strain on human monocyte-derived dendritic cells. The different streptococci induced varying levels of the cytokines IL-8, TNF-α, and IL-12p70, while the V. parvula strain showed a strong capacity to induce IL-6. E. gallinarum strain was a potent inducer of cytokines and TLR2/6 signalling. As Streptococcus and Veillonella can potentially interact metabolically and frequently co-occur in ecosystems, immunomodulation by pair-wise combinations of strains were also tested for their combined immunomodulatory properties. Strain combinations induced cytokine responses in dendritic cells that differed from what might be expected on the basis of the results obtained with the individual strains. A combination of (some streptococci with Veillonella appeared to negate IL-12p70 production, while augmenting IL-8, IL-6, IL-10, and TNF-α responses. This suggests that immunomodulation data obtained in vitro with individual strains are unlikely to adequately represent immune responses to mixtures of gut microbiota communities in vivo. Nevertheless, analysing the immune responses of strains representing the dominant species in the intestine may help to identify immunomodulatory mechanisms that influence immune homeostasis.

  5. Human intestinal microbiota and diseases%人体肠道细菌群落与疾病

    Institute of Scientific and Technical Information of China (English)

    翁幸鐾; 糜祖煌

    2011-01-01

    肠道定植有100万亿细菌,这占到了人体细菌总量的绝大多数.一旦肠道菌群失调,就会产生一系列疾病.本文介绍了人体肠道细菌群落异常与5种肠道疾病和5种肠道外疾病的关系,并推荐用益生菌和益生素来治疗人体肠道细菌群落异常.为了解人体肠道细菌群落和人体健康的关系,美国国立卫生研究院已启动了人类微生物组计划,欧洲委员会也正在资助人类肠道宏基因组学项目,而中国在此项目中亦取得了可喜进步.基于肠道宏基因组的个体化医疗时代已不再遥远.%Gut homes 100 trillion microorganisms-the vast majority of our complement of microbes.Shifts in the microbial species that reside in our intestines have been associated with a long list of pathologies.The review introduces a strong correlation between disrupted microbial composition and 5 kinds of gastrointestinal problems as well as 5 kinds of extra-gastrointestinal problems, and recommends probiotics and prebiotics to treat microbiota-associated illness.In order to find out the relationship between human intestinal microbiota and diseases, the National Institutes of Health launched the Human Microbiome Project at the end of 2007, and the European Commission is funding a related effort, called Metagenomics of the Human Intestinal Tract, in which China makes delightful progress.In sum, individual therapy based on intestinal metagenomics is coming.

  6. Intestinal microbiota diversity and expression of pattern recognition receptors in newly weaned piglets.

    Science.gov (United States)

    Tao, Xin; Xu, Ziwei; Wan, Jing

    2015-04-01

    This study evaluated the gastrointestinal microbial diversity and the expression of pattern recognition receptors (PRRs) of the small intestine during the first week post-weaning in newly weaned piglets. Sixteen piglets were sacrificed on days 0, 1, 4, and 7 post-weaning. Luminal contents from the stomach, ileum, and colon were collected to determine the microbiota diversity; intestinal mucosa from the ileum was collected to assess mRNA expression of PRRs, including toll-like receptors (TLRs) and NOD-like receptors (NLRs); sections of ileum were examined immunohistochemically to assess the immunoglobulin-secreting cells. The results showed that the number of denaturing gradient gel electrophoresis (DGGE) bands from the ileum and colon contents were significantly reduced in the d 4 post-weaning group. Biodiversity indexes (Shannon-Wiener index, richness index, and evenness index) were significantly decreased in the ileum of weaning groups. These indexes decreased in the colon of the d 4 post-weaning group. No significant differences were obtained in the stomach. With the exception of TLR5, the mRNA expressions of TLR2, TLR4, and TLR7 increased post-weaning. The mRNA expressions of NOD1 and NOD2 were significantly affected in the d 4 post-weaning group, and there were no significant differences in the d 1 or d 7 post-weaning groups. Analysis of the immunoglobulin-secreting (IgA, IgG, and IgM) cells showed that the ratio of each immunoglobulin was significantly higher on d 7 than d 0. The results revealed that microbial diversity was lower in the ileum and on d 4 post-weaning. Weaning significantly affected the expression of intestinal PRRs mainly on d 1 and d 4 post-weaning. The expression of specific PRRs was triggered by weaning to recognize distinctive microbiota and promote the development and maturation of the intestinal mucosal immunity.

  7. Imbalance in the intestinal microbiota as a risk factor of cardiometabolic diseases

    Directory of Open Access Journals (Sweden)

    Yu. V. Lobzin

    2014-01-01

    Full Text Available The review shows the role of the intestinal microflora in the development of atherosclerosis, coronary heart disease, overweight / obesity and diabetes. It is well known that consumption of foods rich in saturated fats and cholesterol (meat, egg yolk and milk products with high fat content is associated with an increased risk of cardiovascular disease. However, new studies show that the atherogenic properties of these products are also due to the high content of L-carnitine and its structural analog choline, which, after entering the body is metabolized by intestinal bacteria up to trimethylamine (TMA, and then converted in the liver to trimethylamine-N-oxide (TMAO having direct atherogenic action. It was found that elevated levels of TMAO increases the risk of myocardial infarction, stroke, cardiac failure and death, including the common causes. In the center of international attention is also the question of the role of the intestinal microbiota imbalance in the development of insulin resistance, endothelial dysfunction, increase of the adhesive properties of macrophages, the appearance of dyslipidemia, elevated blood pressure, overweight. Attention of the doctors is focused on the extremely importance of maintaining a normal balance of the intestinal microbiota to prevent cardiometabolic diseases apart from implementation of already well-known and generally accepted preventive measures.

  8. Synergy of Astragalus polysaccharides and probiotics (Lactobacillus and Bacillus cereus) on immunity and intestinal microbiota in chicks.

    Science.gov (United States)

    Li, S P; Zhao, X J; Wang, J Y

    2009-03-01

    Probiotics and Astragalus polysaccharides (APS) can modulate systemic immunity and intestinal microbiota in animals and human beings. It is still unknown if the combined application of probiotics and APS in feed has synergistic effects on immunity and intestinal microbiota. To address this issue, this study was designed to investigate the synergistic effects on immunity and intestinal microbiota in chicks. A total of 240 female Hy-Line chicks were assigned to 4 treatments. Four treatments were fed the same corn-soy meal control diet; however, treatments 2, 3, and 4 were supplemented (per kg of feed) with 220 mg of APS, 4 x 10(10) cfu probiotics, and dual treatment, respectively. Parameters evaluated included serum Newcastle disease antibody titer, peripheral blood acid alpha-naphthyl acetate esterase-positive (ANAE(+)) T-lymphocyte percentage, immune organ relative weights and histological changes, and selected intestinal tract bacteria. Compared with the control, Newcastle disease antibody titer, ANAE(+) T-lymphocyte percentage, immune organ relative weights, histological changes, as well as lactobacilli and Bacillus cereus numbers significantly increased (P Bacillus cereus, and E.coli numbers compared with the APS or probiotics treatments (P intestinal microbiota, which is very important for the exploration of new prebiotics.

  9. Staphylococcus epidermidis: A differential trait of the fecal microbiota of breast-fed infants

    Directory of Open Access Journals (Sweden)

    Fernández Leonides

    2008-09-01

    Full Text Available Abstract Background Breast milk is an important source of staphylococci and other bacterial groups to the infant gut. The objective of this work was to analyse the bacterial diversity in feces of breast-fed infants and to compare it with that of formula-fed ones. A total of 23 women and their respective infants (16 breast-fed and 7 formula-fed participated in the study. The 16 women and their infants provided a sample of breast milk and feces, respectively, at days 7, 14, and 35. The samples were plated onto different culture media. Staphylococcal and enterococcal isolates were submitted to genetic profiling and to a characterization scheme, including detection of potential virulence traits and sensitivity to antibiotics. Results The feeding practice had a significant effect on bacterial counts. A total of 1,210 isolates (489 from milk, 531 from breast-fed and 190 from formula-fed infants were identified. Staphylococcus epidermidis was the predominant species in milk and feces of breast-fed infants while it was less prevalent in those of formula fed-infants. Enterococcus faecalis was the second predominant bacterial species among the fecal samples provided by the breast-fed infants but it was also present in all the samples from the formula-fed ones. The biofilm-related icaD gene and the mecA gene were only detected in a low number of the S. epidermidis strains. Several enterococcal isolates were also characterized and none of them contained the cylA or the vanABDEG antibiotic-resistance genes. All were sensitive to vancomycin. Conclusion The presence of S. epidermidis is a differential trait of the fecal microbiota of breast-fed infants. Globally, the staphyloccal isolates obtained from milk and feces of breast-fed infants contain a low number of virulence determinants and are sensitive to most of the antibiotics tested.

  10. Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Esther E. Fröhlich

    2016-04-01

    Full Text Available Toxicity of nanoparticles (NPs upon oral exposure has been studied in animals using physiological changes, behavior, histology, and blood analysis for evaluation. The effects recorded include the combination of the action on cells of the exposed animal and the reaction of the microorganisms that populate the external and internal surfaces of the body. The importance of these microorganisms, collectively termed as microbiota, for the health of the host has been widely recognized. They may also influence toxicity of NPs but these effects are difficult to differentiate from toxicity on cells of the gastrointestinal tract. To estimate the likelihood of preferential damage of the microbiota by NPs the relative sensitivity of enterocytes and bacteria was compared. For this comparison NPs with antimicrobial action present in consumer products were chosen. The comparison of cytotoxicity with Escherichia coli as representative for intestinal bacteria and on gastrointestinal cells revealed that silver NPs damaged bacteria at lower concentrations than enterocytes, while the opposite was true for zinc oxide NPs. These results indicate that silver NPs may cause adverse effects by selectively affecting the gut microbiota. Fecal transplantation from NP-exposed animals to unexposed ones offers the possibility to verify this hypothesis.

  11. Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications.

    Science.gov (United States)

    de Moreno de LeBlanc, Alejandra; LeBlanc, Jean Guy

    2014-11-28

    Although it is now known that the human body is colonized by a wide variety of microbial populations in different parts (such as the mouth, pharynx and respiratory system, the skin, the gastro- and urogenital tracts), many effects of the complex interactions between the human host and microbial symbionts are still not completely understood. The dysbiosis of the gastrointestinal tract microbiota is considered to be one of the most important contributing factors in the development of many gastrointestinal diseases such as inflammatory bowel disease, irritable bowel syndrome and colorectal cancer, as well as systemic diseases like obesity, diabetes, atherosclerosis and non-alcoholic fatty liver disease. Fecal microbial transplantations appear to be promising therapies for dysbiosis-associated diseases; however, probiotic microorganisms have been growing in popularity due to increasing numbers of studies proving that certain strains present health promoting properties, among them the beneficial balance of the intestinal microbiota. Inflammatory bowel diseases and obesity are the pathologies in which there are more studies showing this beneficial association using animal models and even in human clinical trials. In this review, the association of the human gut microbiota and human health will be discussed along with the benefits that probiotics can confer on this symbiotic activity and on the prevention or treatment of associated diseases.

  12. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling.

    Science.gov (United States)

    Levy, Maayan; Thaiss, Christoph A; Zeevi, David; Dohnalová, Lenka; Zilberman-Schapira, Gili; Mahdi, Jemal Ali; David, Eyal; Savidor, Alon; Korem, Tal; Herzig, Yonatan; Pevsner-Fischer, Meirav; Shapiro, Hagit; Christ, Anette; Harmelin, Alon; Halpern, Zamir; Latz, Eicke; Flavell, Richard A; Amit, Ido; Segal, Eran; Elinav, Eran

    2015-12-01

    Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.

  13. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice.

    Science.gov (United States)

    Respondek, Frederique; Gerard, Philippe; Bossis, Mathilde; Boschat, Laura; Bruneau, Aurélia; Rabot, Sylvie; Wagner, Anne; Martin, Jean-Charles

    2013-01-01

    Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS) are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat)) or an isocaloric HF diet containing 10% of scFOS (HF-scFOS). Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids) as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full) but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia.

  14. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice.

    Directory of Open Access Journals (Sweden)

    Frederique Respondek

    Full Text Available Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat or an isocaloric HF diet containing 10% of scFOS (HF-scFOS. Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia.

  15. Human seroreactivity to gut microbiota antigens.

    Science.gov (United States)

    Christmann, Benjamin S; Abrahamsson, Thomas R; Bernstein, Charles N; Duck, L Wayne; Mannon, Peter J; Berg, Göran; Björkstén, Bengt; Jenmalm, Maria C; Elson, Charles O

    2015-11-01

    Although immune responses directed against antigens from the intestinal microbiota are observed in certain diseases, the normal human adaptive immune response to intestinal microbiota is poorly defined. Our goal was to assess the adaptive immune response to the intestinal microbiota present in 143 healthy adults and compare this response with the response observed in 52 children and their mothers at risk of having allergic disease. Human serum was collected from adults and children followed from birth to 7 years of age, and the serum IgG response to a panel of intestinal microbiota antigens was assessed by using a novel protein microarray. Nearly every subject tested, regardless of health status, had serum IgG that recognized a common set of antigens. Seroreactivity to the panel of antigens was significantly lower in atopic adults. Healthy infants expressed the highest level of IgG seroreactivity to intestinal microbiota antigens. This adaptive response developed between 6 and 12 months of age and peaked around 2 years of age. Low IgG responses to certain clusters of microbiota antigens during infancy were associated with allergy development during childhood. There is an observed perturbation of the adaptive response to antigens from the microbiota in allergic subjects. These perturbations are observable even in childhood, suggesting that optimal stimulation of the adaptive immune system by the microbiota might be needed to prevent certain immune-mediated diseases. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers.

    Science.gov (United States)

    Pandey, Prashant K; Siddharth, Jay; Verma, Pankaj; Bavdekar, Ashish; Patole, Milind S; Shouche, Yogesh S

    2012-06-01

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any microeukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.

  17. Intestinal microbiota and human diseases%肠道微生物与人类疾病

    Institute of Scientific and Technical Information of China (English)

    王子恺; 杨云生

    2012-01-01

    肠道内数以亿计的微生物及其代谢产物在人体能量代谢、营养物质吸收、先天和获得性免疫、胃肠道功能等方面发挥着重要作用,一旦宿主与肠道微生物之间共栖共生的稳态被打破,就会诱发多种人类疾病.目前已经认识到肠道微生物与人类健康和疾病的密切关系,仅仅从人类自身角度出发来研究人类疾病远远不够,必须考虑到与人类共栖共生的肠道微生物的作用.本文就近年来有关肠道微生物与人类疾病关系研究的进展进行综述.%The majority of human intestinal microbiota are harmless or even beneficial by performing functions essential for our survival. Changes in the microbial species that reside in our intestines have been associated with a long list of illness. The review provided an overview of the association between the microbiota and the occurrence of human diseases, and to stimulate future researches regarding infectious diseases and their consequences.

  18. Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes.

    Science.gov (United States)

    Alkanani, Aimon K; Hara, Naoko; Gottlieb, Peter A; Ir, Diana; Robertson, Charles E; Wagner, Brandie D; Frank, Daniel N; Zipris, Danny

    2015-10-01

    We tested the hypothesis that alterations in the intestinal microbiota are linked with the progression of type 1 diabetes (T1D). Herein, we present results from a study performed in subjects with islet autoimmunity living in the U.S. High-throughput sequencing of bacterial 16S rRNA genes and adjustment for sex, age, autoantibody presence, and HLA indicated that the gut microbiomes of seropositive subjects differed from those of autoantibody-free first-degree relatives (FDRs) in the abundance of four taxa. Furthermore, subjects with autoantibodies, seronegative FDRs, and new-onset patients had different levels of the Firmicutes genera Lactobacillus and Staphylococcus compared with healthy control subjects with no family history of autoimmunity. Further analysis revealed trends toward increased and reduced abundances of the Bacteroidetes genera Bacteroides and Prevotella, respectively, in seropositive subjects with multiple versus one autoantibody. Canonical discriminant analysis suggested that the gut microbiomes of autoantibody-positive individuals and seronegative FDRs clustered together but separate from those of new-onset patients and unrelated healthy control subjects. Finally, no differences in biodiversity were evident in seropositive versus seronegative FDRs. These observations suggest that altered intestinal microbiota may be associated with disease susceptibility.

  19. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.

    Science.gov (United States)

    Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik

    2016-12-01

    Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC50, 0.008 mg/L) and Lactobacilli (MIC50, 0.008 mg/L). The MIC50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis.

    Science.gov (United States)

    Shiozaki, Arihiro; Yoneda, Satoshi; Yoneda, Noriko; Yonezawa, Rika; Matsubayashi, Takamichi; Seo, Genichiro; Saito, Shigeru

    2014-01-01

    Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP), we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group) (n = 20), those who had preterm labor but delivered term babies (PTL group) (n = 11), and those who had preterm birth (PTB group) (n = 10). Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.

  1. Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis.

    Directory of Open Access Journals (Sweden)

    Arihiro Shiozaki

    Full Text Available Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP, we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group (n = 20, those who had preterm labor but delivered term babies (PTL group (n = 11, and those who had preterm birth (PTB group (n = 10. Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.

  2. Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice

    Science.gov (United States)

    Belik, Jaques; Shifrin, Yulia; Arning, Erland; Bottiglieri, Teodoro; Pan, Jingyi; Daigneault, Michelle C.; Allen-Vercoe, Emma

    2017-01-01

    Tetrahydrobiopterin (BH4) is a cofactor of a number of regulatory enzymes. Although there are no known BH4 exogenous sources, the tissue content of this biopterin increases with age in GTP cyclohydrolase 1-deficient hyperphenylalaninemia-1 (hph-1) mice. Since certain bacteria are known to generate BH4, we hypothesize that generation of this biopterin by the intestinal microbiota contributes to its tissue increase in hph-1 adult mice. The goal of this study was to comparatively evaluate hph-1 mice and wild-type C57Bl/6 controls for the presence of intestinal BH4-producing bacteria. Newborn and adult mice fecal material was screened for 6-pyruvoyltetrahydropterin synthase (PTPS-2) an enzyme only present in BH4-generating bacteria. Adult, but not newborn, wild-type control and hph-1 mouse fecal material contained PTPS-2 mRNA indicative of the presence of BH4-generating bacteria. Utilizing chemostat-cultured human fecal bacteria, we identified the PTPS-2-producing bacteria as belonging to the Actinobacteria phylum. We further confirmed that at least two PTPS-2-producing species, Aldercreutzia equolifaciens and Microbacterium schleiferi, generate BH4 and are present in hph-1 fecal material. In conclusion, intestinal Actinobacteria generate BH4. This finding has important translational significance, since manipulation of the intestinal flora in individuals with congenital biopterin deficiency may allow for an increase in total body BH4 content. PMID:28079055

  3. Pathobiology of Salmonella, intestinal microbiota, and the host innate immune response

    Directory of Open Access Journals (Sweden)

    Renato Lima Santos

    2014-05-01

    Full Text Available Salmonella is a relevant pathogen under a clinical and public health perspective. Therefore, there has been a significant scientific effort to learn about pathogenic determinants of this pathogen. The clinical relevance of the disease, associated with the molecular tools available to study Salmonella as well as suitable animal models for salmonellosis, have provided optimal conditions to drive the scientific community to generate a large expansion of our knowledge about the pathogenesis of Salmonella-induced enterocolitis that took place during the past two decades. This research effort has also generated a wealth of information on the host immune mechanisms that complements gaps in the fundamental research in this area. This review focus on how the interaction between Salmonella, the microbiota and intestinal innate immunity leads to disease manifestation. As a highly successful enteropathogen, Salmonella actively elicits a robust acute intestinal inflammatory response from the host, which could theoretically lead to the pathogen demise. However, Salmonella has evolved redundant molecular machineries that renders this pathogen highly adapted to the inflamed intestinal environment, in which Salmonella is capable of outcompete resident commensal organisms. The adaptation of Salmonella to the inflamed intestinal lumen associated with the massive inflammatory response that leads to diarrhea, generate perfect conditions for transmission of the pathogen. These conditions illustrate the complexity of the co-evolution and ecology of the pathogen, commensals and the host.

  4. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    in the microbiota composition at the three time points, examining as well the time dependent changes of each infant separately. One week after birth, Staphylococcus, traditionally associated with skin microbiota, is dominating the microbiota, but as time passes, bacteria normally found in the airways (e......The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort...

  5. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats.

    Science.gov (United States)

    Lin, Xiaoxi B; Farhangfar, Arazm; Valcheva, Rosica; Sawyer, Michael B; Dieleman, Levinus; Schieber, Andreas; Gänzle, Michael G; Baracos, Vickie

    2014-01-01

    CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation

  6. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats.

    Directory of Open Access Journals (Sweden)

    Xiaoxi B Lin

    Full Text Available CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1 with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the

  7. Location-specific effect of microbiota and MyD88-dependent signaling on Wnt/β-catenin pathway and intestinal stem cells.

    Science.gov (United States)

    Moossavi, Shirin

    2014-01-01

    Intestinal homeostasis depends on the proper activity of the intestinal stem cells (ISCs) and an appropriate host response to the normal resident microbiota. The question on the effect of microbiota on ISCs behavior has not been addressed yet. Canonical Wnt pathway and ISC gene expression signature was compared in germfree vs. conventional and MyD88(-/-) vs. Myd88(+/+) mice based on publicly available gene expression data sets. Microbiota and MyD88-dependent signaling have distinct effects on the Wnt pathway and ISC at gene expression level. In addition, the effect of microbiota and MyD88-dependent signaling on Wnt pathway and ISCs show regional variation. The net effect of microbiota on Wnt pathway and ISCs cannot be inferred from the available data. Nonetheless, the data are suggestive of a potential regulatory mechanism of the Wnt pathway by the microbiota and plausibly by any alteration in the microbiota composition.

  8. American Journal of Gastroenterology Lecture: Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile infection.

    Science.gov (United States)

    Brandt, Lawrence J

    2013-02-01

    The vital roles that intestinal flora, now called microbiota, have in maintaining our health are being increasingly appreciated. Starting with birth, exposure to the outside world begins the life-long intimate association our microbiota will have with our diet and environment, and initiates determination of the post-natal structural and functional maturation of the gut. Moreover, vital interactions of the microbiota with our metabolic activities, as well as with the immunological apparatus that constitutes our major defense system against foreign antigens continues throughout life. A perturbed intestinal microbiome has been associated with an increasing number of gastrointestinal and non-gastrointestinal diseases including Clostridium difficile infection (CDI). It has become recognized that fecal microbiota transplantation (FMT) can correct the dysbiosis that characterizes chronic CDI, and effect a seemingly safe, relatively inexpensive, and rapidly effective cure in the vast majority of patients so treated. In addition, FMT has been used to treat an array of other gastrointestinal and non-gastrointestinal disorders, although experience in these other non-CDI diseases is in its infancy. More work needs to be done with FMT to ensure its safety and optimal route of administration. There is a conceptual sea change that is developing in our view of bacteria from their role only as pathogens to that of being critical to health maintenance in a changing world. Future studies are certain to narrow the spectrum of organisms that need to be given to patients to cure disease. FMT is but the first step in this journey.

  9. Alternative Protein Sources in the Diet Modulate Microbiota and Functionality in the Distal Intestine of Atlantic Salmon (Salmo salar)

    Science.gov (United States)

    Jaramillo-Torres, Alexander; Kortner, Trond M.; Merrifield, Daniel L.; Tinsley, John; Bakke, Anne Marie; Krogdahl, Åshild

    2016-01-01

    ABSTRACT The present study aimed to investigate whether alternative dietary protein sources modulate the microbial communities in the distal intestine (DI) of Atlantic salmon, and whether alterations in microbiota profiles are reflected in modifications in host intestinal function and health status. A 48-day feeding trial was conducted, in which groups of fish received one of five diets: a reference diet in which fishmeal (diet FM) was the only protein source and four experimental diets with commercially relevant compositions containing alternative ingredients as partial replacements of fishmeal, i.e., poultry meal (diet PM), a mix of soybean meal and wheat gluten (diet SBMWG), a mix of soy protein concentrate and poultry meal (diet SPCPM), and guar meal and wheat gluten (diet GMWG). Samples were taken of DI digesta and mucosa for microbial profiling using high-throughput sequencing and from DI whole tissue for immunohistochemistry and expression profiling of marker genes for gut health. Regardless of diet, there were significant differences between the microbial populations in the digesta and the mucosa in the salmon DI. Microbial richness was higher in the digesta than the mucosa. The digesta-associated bacterial communities were more affected by the diet than the mucosa-associated microbiota. Interestingly, both legume-based diets (SBMWG and GMWG) presented high relative abundance of lactic acid bacteria in addition to alteration in the expression of a salmon gene related to cell proliferation (pcna). It was, however, not possible to ascertain the cause-effect relationship between changes in bacterial communities and the host's intestinal responses to the diets. IMPORTANCE The intestine of cultivated Atlantic salmon shows symptoms of compromised function, which are most likely caused by imbalances related to the use of new feed ingredients. Intestinal microbiota profiling may become in the future a valuable endpoint measurement in order to assess fish intestinal

  10. 重视肠道微生物组的研究%Importance in the study of the intestinal microbiota

    Institute of Scientific and Technical Information of China (English)

    余章斌; 郭锡熔

    2013-01-01

    肠道微生物组研究人体微生物种群结构、人与微生物交互作用、人体微生物功能差异、微生物和疾病的关系.肠道微生物组在维持人体营养、代谢、生长、免疫、防御等方面发挥着重要作用.肠道微生物组紊乱可导致癌症、肥胖、糖尿病、过敏等疾病的发生和发展.因而深入研究肠道微生物组的成分功能和影响因素,将为人类疾病的治疗和预防提供新的靶标.%The study of intestinal microbiota covers human microbial community structure, human and microbial interactions, different human microbial functionals, and the relationship between microbes and disease. Intestinal microbiota plays an important role in maintaining the body's nutrition, metabolism, growth, immune and defense. The disorders of intestinal microbiota led to the development of human diseases such as cancer, obesity, diabetes, and allergy. Thus, the study of the composition, function and influencing factors of the intestinal microbiota will provide a new field for the treatment and prevention of human diseases.

  11. Lactobacillus rhamnosus GG Intake Modifies Preschool Children's Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use

    NARCIS (Netherlands)

    Korpela, Katri; Salonen, Anne; Virta, Lauri J.; Kumpu, Minna; Kekkonen, Riina A.; Vos, De Willem M.

    2016-01-01

    Antibiotic use is considered among the most severe causes of disturbance to children's developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life- Threatening infections. Probiotics are commonly advocated to help in p

  12. The effect of a multispecies probiotic on the intestinal microbiota and bowel movements in healthy volunteers taking the antibiotic amoxycillin

    NARCIS (Netherlands)

    Koning, C.J.M.; Jonkers, D.M.A.E.; Stobberingh, E.E.; Mulder, L.; Rombouts, F.M.; Stockbrügger, R.W.

    2008-01-01

    BACKGROUND: One of the side effects of antimicrobial therapy is a disturbance of the intestinal microbiota potentially resulting in antibiotic-associated diarrhea (AAD). In this placebo-controlled double-blind study, the effect of a multispecies probiotic on the composition and metabolic activity of

  13. Critical role of microbiota within cecal crypts on the regenerative capacity of the intestinal epithelium following surgical stress.

    Science.gov (United States)

    Zaborin, Alexander; Krezalek, Monika; Hyoju, Sanjiv; Defazio, Jennifer R; Setia, Namrata; Belogortseva, Natalia; Bindokas, Vytautas P; Guo, Qiti; Zaborina, Olga; Alverdy, John C

    2017-02-01

    Cecal crypts represent a unique niche that are normally occupied by the commensal microbiota. Due to their density and close proximity to stem cells, microbiota within cecal crypts may modulate epithelial regeneration. Here we demonstrate that surgical stress, a process that invariably involves a short period of starvation, antibiotic exposure, and tissue injury, results in cecal crypt evacuation of their microbiota. Crypts devoid of their microbiota display pathophysiological features characterized by abnormal stem cell activation as judged by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) staining, expansion of the proliferative zone toward the tips of the crypts, and an increase in apoptosis. In addition, crypts devoid of their microbiota display loss of their regenerative capacity as assessed by their ability to form organoids ex vivo. When a four-member human pathogen community isolated from the stool of a critically ill patient is introduced into the cecum of mice with empty crypts, crypts become occupied by the pathogens and further disruption of crypt homeostasis is observed. Fecal microbiota transplantation restores the cecal crypts' microbiota, normalizes homeostasis within crypts, and reestablishes crypt regenerative capacity. Taken together, these findings define an emerging role for the microbiota within cecal crypts to maintain epithelial cell homeostasis in a manner that may enhance recovery in response to the physiological stress imposed by the process of surgery. This study provides novel insight into the process by which surgical injury places the intestinal epithelium at risk for colonization by pathogenic microbes and impairment of its regenerative capacity via loss of its microbiota. We show that fecal transplant restores crypt homeostasis in association with repopulation of the microbiota within cecal crypts. Copyright © 2017 the American Physiological Society.

  14. Feasibility of Metatranscriptome Analysis from Infant Gut Microbiota: Adaptation to Solid Foods Results in Increased Activity of Firmicutes at Six Months

    Directory of Open Access Journals (Sweden)

    Floor Hugenholtz

    2017-01-01

    Full Text Available Newborns are rapidly colonized by microbes and their intestinal tracts contain highly dynamic and rapidly developing microbial communities in the first months of life. In this study, we describe the feasibility of isolating mRNA from rapidly processed faecal samples and applying deep RNA-Seq analysis to provide insight into the active contributors of the microbial community in early life. Specific attention is given to the impact of removing rRNA from the mRNA on the phylogenetic and transcriptional profiling and its analysis depth. A breastfed baby was followed in the first six months of life during adaptation to solid food, dairy products, and formula. It was found that, in the weaning period, the total transcriptional activity of Actinobacteria, mainly represented by Bifidobacterium, decreased while that of Firmicutes increased over time. Moreover, Firmicutes and Actinobacteria, including the canonical Bifidobacteria as well as Collinsella, were found to be important contributors to carbohydrate fermentation and vitamin biosynthesis in the infant intestine. Finally, the expression of Lactobacillus rhamnosus-like genes was detected, likely following transfer from the mother who consumed L. rhamnosus GG. The study indicates that metatranscriptome analysis of the infant gut microbiota is feasible on infant stool samples and can be used to provide insight into the core activities of the developing community.

  15. The time-course of broiler intestinal microbiota development after administration of cecal contents to incubating eggs

    Directory of Open Access Journals (Sweden)

    Erin E. Donaldson

    2017-07-01

    Full Text Available Background The microbial populations that inhabit the gastrointestinal tract (GIT are known to influence the health and growth performance of the host. Clean hatcheries and machine-based incubation practices in the commercial poultry industry can lead to the acquisition of aberrant microbiota in the GIT of chickens and a very high level of bird-to-bird variation. The lack of microbial profile flock uniformity presents challenges for harnessing and manipulating intestinal bacteria to better serve the host. Methods Cecal contents from high or low performing chickens were used to inoculate the surface of eggs prior to hatching and then the initial gut colonisation was monitored and subsequent changes in gut microbiota composition were followed over time. Two different cecal treatment groups were compared to an untreated control group (n = 32. Bacterial communities were characterised using high-throughput 16S rRNA gene sequencing techniques. Results Cecal microbiota transfer via egg surface application did not transfer the performance profile of the donors to the recipient birds. One of the cecal inoculations provided a more uniform gut microbiota, but this was not reproduced in the second group with a different inoculum. Development of the intestinal community was reproducible in all three groups with some genera like Lactobacillus showing no change, others like Faecalibacterium increased in abundance slowly and steadily over time and others like Enterobacter were abundant only in the first days of life. Discussion The cecal treatment reduced bird-to-bird variation in microbiota composition. Although the high FCR performance of donor birds was not transferred with the cecal microbiota, all three groups, including the control, performed better than standard for the breed. The pattern of microbiota development was similar in all three flocks, indicating that the normal processes of microbiota acquisition largely swamped any effect of the cecal

  16. Improvement in Human Immune Function with Changes in Intestinal Microbiota by Salacia reticulata Extract Ingestion: A Randomized Placebo-Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Yuriko Oda

    Full Text Available Plants belonging to the genus Salacia in the Hippocrateaceae family are known to inhibit sugar absorption. In a previous study, administration of Salacia reticulata extract in rats altered the intestinal microbiota and increased expression of immune-relevant genes in small intestinal epithelial cells. This study aimed to investigate the effect of S. reticulata extract in human subjects by examining the gene expression profiles of blood cells, immunological indices, and intestinal microbiota. The results revealed an improvement in T-cell proliferation activity and some other immunological indices. In addition, the intestinal microbiota changed, with an increase in Bifidobacterium and a decrease in Clostridium bacteria. The expression levels of many immune-relevant genes were altered in blood cells. We concluded that S. reticulata extract ingestion in humans improved immune functions and changed the intestinal microbiota.UMIN Clinical Trials Registry UMIN000011732.

  17. Microbiota-Independent Ameliorative Effects of Antibiotics on Spontaneous Th2-Associated Pathology of the Small Intestine.

    Science.gov (United States)

    Han, Daehee; Walsh, Matthew C; Kim, Kwang Soon; Hong, Sung-Wook; Lee, Junyoung; Yi, Jaeu; Rivas, Gloriany; Surh, Charles D; Choi, Yongwon

    2015-01-01

    We have previously generated a mouse model of spontaneous Th2-associated disease of the small intestine called TRAF6ΔDC, in which dendritic cell (DC)-intrinsic expression of the signaling mediator TRAF6 is ablated. Interestingly, broad-spectrum antibiotic treatment ameliorates TRAF6ΔDC disease, implying a role for commensal microbiota in disease development. However, the relationship between the drug effects and commensal microbiota status remains to be formally demonstrated. To directly assess this relationship, we have now generated TRAF6ΔDC bone marrow chimera mice under germ-free (GF) conditions lacking commensal microbiota, and found, unexpectedly, that Th2-associated disease is actually exacerbated in GF TRAF6ΔDC mice compared to specific pathogen-free (SPF) TRAF6ΔDC mice. At the same time, broad-spectrum antibiotic treatment of GF TRAF6ΔDC mice has an ameliorative effect similar to that observed in antibiotics-treated SPF TRAF6ΔDC mice, implying a commensal microbiota-independent effect of broad-spectrum antibiotic treatment. We further found that treatment of GF TRAF6ΔDC mice with broad-spectrum antibiotics increases Foxp3+ Treg populations in lymphoid organs and the small intestine, pointing to a possible mechanism by which treatment may directly exert an immunomodulatory effect. To investigate links between the exacerbated phenotype of the small intestines of GF TRAF6ΔDC mice and local microbiota, we performed microbiotic profiling of the luminal contents specifically within the small intestines of diseased TRAF6ΔDC mice, and, when compared to co-housed control mice, found significantly increased total bacterial content characterized by specific increases in Firmicutes Lactobacillus species. These data suggest a protective effect of Firmicutes Lactobacillus against the spontaneous Th2-related inflammation of the small intestine of the TRAF6ΔDC model, and may represent a potential mechanism for related disease phenotypes.

  18. PCR monitoring of Lactobacillus and Bifidobacterium dynamics in fermentations by piglet intestinal microbiota.

    Science.gov (United States)

    Moura, Patrícia; Simões, Fernanda; Gírio, Francisco; Loureiro-Dias, Maria C; Esteves, M Paula

    2007-04-01

    A new group-specific primer (Lact71R), targeting the 16S-23S rDNA intergenic spacer region of Lactobacillus, was tested in its specificity to amplify rDNA of lactobacilli from piglet intestinal origin by polymerase chain reaction (PCR). Lact71R and Lab0677F, a Lactobacillus group-specific primer targeting the 16S rDNA, generated a common amplicon by PCR with DNA from Lactobacillus and Pediococcus reference strains, but not from Weissella strains. Sequence analysis of clones obtained by PCR amplification with Lact71R and Lab0677F and total DNA isolated from the ileal, caecal and colonic contents of one piglet resulted in Lactobacillus and Lactobacillus-like sequences mainly retrieved from intestinal environments. The primer pair was further validated in a culture independent PCR-analysis to monitor broad fluctuations of lactobacilli populations in fructo-oligosaccharides (FOS) fermentations by piglet intestinal microbiota. Bifidobacterium genus-specific primers were also used for PCR titre determination throughout FOS fermentations, in parallel with lactate and short chain fatty acids (SCFA) quantification. Increases between PCR titres were correlated with lactate detection in early stages of fermentation. Based on the obtained results, a simple monitoring PCR approach is proposed, foreseeing its application to the study of the dynamics of specific bacterial populations in complex environments.

  19. Effect of litter treatment on growth performance, intestinal development, and selected cecum microbiota in broiler chickens

    Directory of Open Access Journals (Sweden)

    Gilaneh Taherparvar

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine whether the type of bedding materials (sand, wood shavings, and paper and of two chemical amendments (lime and bentonite could interfere with litter quality (moisture, pH, and total bacterial counts, thereby influencing also the growth performance and the development of intestinal traits and cecum microbiota of chickens. Two hundred and seventy male Ross 308 broiler chickens were randomly assigned into nine treatment groups with three replicates per treatment. Broiler productive parameters, relative weight of different intestinal segments, content of cecal total bacterial counts (total aerobic bacteria, Lactobacilli, and coliforms, as well as litter moisture, pH, and total aerobic bacteria and coliforms counts, were assessed. Litter material, per se, did not significantly affect the productivity parameters at the end of the experimental period (42 days with the exception of protein efficiency. A significant trend was found among treatments with regard to weight gain and feed intake, with lower performance in birds on sand beddings. Litter pH was relatively homogenous between bedding types and amendments, but the moisture was significantly lower when sand was used. Litter type did not influence the relative weight of the different intestinal segments; however, the type of amendment affected the relative jejunum weight, which was increased in bentonite-treated litter. The use of lime and bentonite treatments may be helpful to decrease the differences in litter moisture associated with particular bedding materials. The tested amendments do not interfere with the productive performance of birds.

  20. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota

    DEFF Research Database (Denmark)

    Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte;

    2016-01-01

    of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (mi...

  1. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture.

    Science.gov (United States)

    Sommer, Felix; Adam, Nina; Johansson, Malin E V; Xia, Lijun; Hansson, Gunnar C; Bäckhed, Fredrik

    2014-01-01

    A functional mucus layer is a key requirement for gastrointestinal health as it serves as a barrier against bacterial invasion and subsequent inflammation. Recent findings suggest that mucus composition may pose an important selection pressure on the gut microbiota and that altered mucus thickness or properties such as glycosylation lead to intestinal inflammation dependent on bacteria. Here we used TM-IEC C1galt (-/-) mice, which carry an inducible deficiency of core 1-derived O-glycans in intestinal epithelial cells, to investigate the effects of mucus glycosylation on susceptibility to intestinal inflammation, gut microbial ecology and host physiology. We found that TM-IEC C1galt (-/-) mice did not develop spontaneous colitis, but they were more susceptible to dextran sodium sulphate-induced colitis. Furthermore, loss of core 1-derived O-glycans induced inverse shifts in the abundance of the phyla Bacteroidetes and Firmicutes. We also found that mucus glycosylation impacts intestinal architecture as TM-IEC C1galt(-/-) mice had an elongated gastrointestinal tract with deeper ileal crypts, a small increase in the number of proliferative epithelial cells and thicker circular muscle layers in both the ileum and colon. Alterations in the length of the gastrointestinal tract were partly dependent on the microbiota. Thus, the mucus layer plays a role in the regulation of gut microbiota composition, balancing intestinal inflammation, and affects gut architecture.

  2. The intestinal microbiota determines the colitis-inducing potential of T-bet-deficient Th cells in mice.

    Science.gov (United States)

    Zimmermann, Jakob; Durek, Pawel; Kühl, Anja A; Schattenberg, Florian; Maschmeyer, Patrick; Siracusa, Francesco; Lehmann, Katrin; Westendorf, Kerstin; Weber, Melanie; Riedel, René; Müller, Susann; Radbruch, Andreas; Chang, Hyun-Dong

    2017-09-06

    Conflicting evidence has been provided as to whether induction of intestinal inflammation by adoptive transfer of naïve T cells into Rag(-/-) mice requires expression of the transcription factor T-bet by the T cells. Here, we formally show that the intestinal microbiota composition of the Rag(-/-) recipient determines whether or not T-bet-deficient Th cells can induce colitis and we have resolved the differences of the two microbiomes, permissive or non-permissive to T-bet-independent colitis. Our data highlight the dominance of the microbiota over particular T cell differentiation programs in the pathogenesis of chronic intestinal inflammation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity.

    Science.gov (United States)

    Nicolucci, Alissa C; Hume, Megan P; Martínez, Inés; Mayengbam, Shyamchand; Walter, Jens; Reimer, Raylene A

    2017-09-01

    It might be possible to manipulate the intestinal microbiota with prebiotics or other agents to prevent or treat obesity. However, little is known about the ability of prebiotics to specifically modify gut microbiota in children with overweight/obesity or reduce body weight. We performed a randomized controlled trial to study the effects of prebiotics on body composition, markers of inflammation, bile acids in fecal samples, and composition of the intestinal microbiota in children with overweight or obesity. We performed a single-center, double-blind, placebo-controlled trial of 2 separate cohorts (March 2014 and August 2014) at the University of Calgary in Canada. Participants included children, 7-12 years old, with overweight or obesity (>85th percentile of body mass index) but otherwise healthy. Participants were randomly assigned to groups given either oligofructose-enriched inulin (OI; 8 g/day; n=22) or maltodextrin placebo (isocaloric dose, controls; n=20) once daily for 16 weeks. Fat mass and lean mass were measured using dual-energy-x-ray absorptiometry. Height, weight, and waist circumference were measured at baseline and every 4 weeks thereafter. Blood samples were collected at baseline and 16 weeks, and analyzed for lipids, cytokines, lipopolysaccharide, and insulin. Fecal samples were collected at baseline and 16 weeks; bile acids were profiled using high-performance liquid chromatography and the composition of the microbiota was analyzed by 16S rRNA sequencing and quantitative polymerase chain reaction. The primary outcome was change in percent body fat from baseline to 16 weeks. After 16 weeks, children who consumed OI had significant decreases in body weight z-score (decrease of 3.1%), percent body fat (decrease of 2.4%), and percent trunk fat (decrease of 3.8%) compared with children given placebo (increase of 0.5%, increase of 0.05%, and decrease of 0.3%, respectively). Children who consumed OI also had a significant reduction in level of

  4. A five patient’s case study on the influence of two different probiotics on individual intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Yoko Uchiyama-Tanaka

    2013-05-01

    Full Text Available ABSTRACTBackground: The composition and activities of indigenous intestinal microbiota are of paramount importance to human immunity, nutrition, and pathological processes, and hence, the health of the individual. It is well established that the intestine is an important site for local immunity. It is known that the effect of probiotics increases beneficial microbiota and improves chronic conditions such as atopic diseases, irritable bowel disease, and obesity. However, as there are so many probiotics, it is unknown which probiotics might have more of an impact upon intestinal microbiota.Objective: To understand how two different types of probiotics influence human intestinal microbiota, we analyzed human fecal microbiota after taking each of the probiotics.Methods: Five outpatients from Yoko Clinic (1 male and 4 females; aged between 34–46 years old were enrolled in this study. None of the subjects had cancer or any active inflammatory diseases. The five patients took Lactobacillus buchneri (SU for 4 weeks, no probiotics the following week, and mixed probiotics (NS which are Lactobacillus plantarum (NS-5, Lactobacillus rhamnosus (NS-11, Lactobacillus delbruekii (NS-12, Lactobacillus helveticus (NS-8, Lactobacillus fermentum (NS-9 for the following 4 weeks. Fecal samples were collected before and after the outpatients took each of the two probiotics, and were then analyzed using a kit from Techno Suruga Laboratory Co., Ltd. The analysis of the microbiota was performed by targeting bacterial 16S rRNA genes with a terminal restriction fragment length polymorphism analysis program (Nagashima method.Results: Three patients of the five patients decreased the percentage of beneficial bacteria(Lactobacillales, Bifidobacteria after taking SU (13.7 ± 7.1% to 4.0 ± 3.5%, whereas the remaining two patients showed an increased percentage of beneficial bacteria (16.8 ± 3.4% to 30.4 ± 4.6%. After taking NS, the three patients who decreased the

  5. Antibiotic Manipulation of Intestinal Microbiota To Identify Microbes Associated with Campylobacter jejuni Exclusion in Poultry▿ †

    Science.gov (United States)

    Scupham, A. J.; Jones, J. A.; Rettedal, E. A.; Weber, T. E.

    2010-01-01

    The ability of various subsets of poultry intestinal microbiota to protect turkeys from colonization by Campylobacter jejuni was investigated. Community subsets were generated in vivo by inoculation of day-old poults with the cecal contents of a Campylobacter-free adult turkey, followed by treatment with one antimicrobial, either virginiamycin, enrofloxacin, neomycin, or vancomycin. The C. jejuni loads of the enrofloxacin-, neomycin-, and vancomycin-derived communities were decreased by 1 log, 2 logs, and 4 logs, respectively. Examination of the constituents of the derived communities via the array-based method oligonucleotide fingerprinting of rRNA genes detected a subtype of Megamonas hypermegale specific to the C. jejuni-suppressive treatments. PMID:20952640

  6. Antibiotic manipulation of intestinal microbiota to identify microbes associated with Campylobacter jejuni exclusion in poultry.

    Science.gov (United States)

    Scupham, A J; Jones, J A; Rettedal, E A; Weber, T E

    2010-12-01

    The ability of various subsets of poultry intestinal microbiota to protect turkeys from colonization by Campylobacter jejuni was investigated. Community subsets were generated in vivo by inoculation of day-old poults with the cecal contents of a Campylobacter-free adult turkey, followed by treatment with one antimicrobial, either virginiamycin, enrofloxacin, neomycin, or vancomycin. The C. jejuni loads of the enrofloxacin-, neomycin-, and vancomycin-derived communities were decreased by 1 log, 2 logs, and 4 logs, respectively. Examination of the constituents of the derived communities via the array-based method oligonucleotide fingerprinting of rRNA genes detected a subtype of Megamonas hypermegale specific to the C. jejuni-suppressive treatments.

  7. Infant intestinal Enterococcus faecalis down-regulates inflammatory responses in human intestinal cell lines

    Institute of Scientific and Technical Information of China (English)

    Shugui Wang; Lydia Hui Mei Ng; Wai Ling Chow; Yuan Kun Lee

    2008-01-01

    AIM:To investigate the ability of Lactic acid bacteria (LAB)to modulate inflammatory reaction in human intestinal celllines(Caco-2,HT-29 and HCT 116).Different strains of LAB isolatedfrom new born infants and fermented milk,together withthestrains obtained from culture collectionsweretested.METHODS:LABs were treated with human intestinal cell lines.ELISA was used to detect IL-8 and TGF-β protein secretion.Cytokines and Toll like receptors (TLRs) gene expression were assessed using RT-PCR.Conditional medium,sonicated bacteria and UV killed bacteria were used to find the effecter molecules on the bacteria.Carbohydrate oxidation and protein digestion were applied to figure out the molecules'residues.Adhesion assays were further carried out.RESULTS:It was found that Enterococcus faecalis is the main immune modulator among the LABs by downregulation of IL-8 secretion and upregulation of TGF-β.Strikingly,the effect was only observed in four strains of E.faecalis out of the 27 isolated and tested.This implies strain dependent immunomodulation in the host.In addition,E.faecalis may regulate inflammatory responses through TLR3,TLR4,TLR9 and TRAF6.Carbohydrates on the bacterial cell surface are involved in both its adhesion to intestinal cells and regulation of inflammatory responses in the host.CONCLUSION:These data provide a case for the modulation of intestinal mucosal immunity in which specific strains of E.faecalis have uniquely evolved to maintain colonic homeostasis and regulate inflammatoryresponses.

  8. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation.

    Science.gov (United States)

    Kim, Min-Soo; Hwang, Seong-Soo; Park, Eun-Jin; Bae, Jin-Woo

    2013-10-01

    Low-grade inflammation of the intestine results in metabolic dysfunction, in which dysbiosis of the gut microbiota is intimately involved. Dietary fibre induces prebiotic effects that may restore imbalances in the gut microbiota; however, no clinical trials have been reported in patients with metabolic diseases. Here, six obese subjects with type 2 diabetes and/or hypertension were assigned to a strict vegetarian diet (SVD) for 1 month, and blood biomarkers of glucose and lipid metabolisms, faecal microbiota using 454-pyrosequencing of 16S ribosomal RNA genes, faecal lipocalin-2 and short-chain fatty acids were monitored. An SVD reduced body weight and the concentrations of triglycerides, total cholesterol, low-density lipoprotein cholesterol and haemoglobin A1c, and improved fasting glucose and postprandial glucose levels. An SVD reduced the Firmicutes-to-Bacteroidetes ratio in the gut microbiota, but did not alter enterotypes. An SVD led to a decrease in the pathobionts such as the Enterobacteriaceae and an increase in commensal microbes such as Bacteroides fragilis and Clostridium species belonging to clusters XIVa and IV, resulting in reduced intestinal lipocalin-2 and short-chain fatty acids levels. This study underscores the benefits of dietary fibre for improving the risk factors of metabolic diseases and shows that increased fibre intake reduces gut inflammation by changing the gut microbiota.

  9. Targeted Therapies for Inlfammatory Bowel Disease and Colorectal Cancer:An Increasing Need for Microbiota-Intestinal Mutualism

    Institute of Scientific and Technical Information of China (English)

    Tomasello Giovanni; Tralongo Pietro; Jurjus Abdo; Matar Michel; Angelo Leone

    2015-01-01

    The involvement of intestinal microbiota and dysbiosis in the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC) is a well-established fact to be taken into real consideration when developing targeted therapies. This review aims to depict how advances in our understanding of the role of intestinal lfora in the pathogenesis of IBD and CRC are shaping up the therapeutic protocols of their management. It is demonstrated that there is a circadian regulation of colocyte gene expression in response to microbiota. Dysbiosis leading to a decrease in microbiome biodiversity is also described in IBD patients whereby thick layers of adherent mucosa associated bacteria exist both in ulcerative colitis (UC) and Crohn’s disease (CD). Probiotics based approaches using lactobacilli and bibidobacteria improved clinical symptoms of IBD’s through the GALT immune modulation. In addition, microbiota transplantation has also been used for IBD treatment. Feacal microbiota transplantation (FMT) consists of transferring gastrointestinal microbiota from a healthy donor to an IBD patient by duodenal infusion of liquid stool suspension to establish microbial homeostasis. The destruction of mucosal integrity facilitates the passage of bacteria in the injured zone to trigger chronic inlfammation, eventually leading to CRC development by creating a carcinogenic environment. Actually, a high level of fusobacterium nucleatun and other bacteria are prevalent in CRC patients, thus suggesting a potential role of these organisms in the initiation and progression due to the production of genotoxic metabolites causing a direct damage to DNA integrity. Besides, regular probiotics intake may actively prevent the whole process.

  10. THE INTESTINAL MICROBIOTA AND THE ROLE OF PROBIOTICS IN IRRITABLE BOWEL SYNDROME: a review

    Directory of Open Access Journals (Sweden)

    Joaquim Prado MORAES-FILHO

    2015-12-01

    Full Text Available Irritable bowel syndrome is a common, chronic relapsing gastrointestinal disorder that affects 7%-22% of the population worldwide. According to Rome III Criteria, the disorder is defined by the coexistence of abdominal discomfort or pain associated with an alteration in bowel habits. Its pathophysiology is not completely understood but, in addition to some important abnormalities, the disturbed intestinal microbiota has also been described supported by several strands of evidence. The treatment of irritable bowel syndrome is based upon several therapeutic approaches but few have been successful or without adverse events and more recently the gut microbiota and the use of probiotics have emerged as a factor to be considered. Probiotics are live micro-organisms which when consumed in adequate amounts confer a health benefit to the host, such as Lactic bacteria among others. An important scientific rationale has emerged for the use of probiotics in irritable bowel syndrome, although the data regarding different species are still limited. Not all probiotics are beneficial: it is important to select the specific strain which should be supported by good evidence base. The mechanisms of action of probiotics are described and the main strains are quoted.

  11. THE INTESTINAL MICROBIOTA AND THE ROLE OF PROBIOTICS IN IRRITABLE BOWEL SYNDROME: a review.

    Science.gov (United States)

    Moraes-Filho, Joaquim Prado; Quigley, Eamonn M M

    2015-12-01

    Irritable bowel syndrome is a common, chronic relapsing gastrointestinal disorder that affects 7%-22% of the population worldwide. According to Rome III Criteria, the disorder is defined by the coexistence of abdominal discomfort or pain associated with an alteration in bowel habits. Its pathophysiology is not completely understood but, in addition to some important abnormalities, the disturbed intestinal microbiota has also been described supported by several strands of evidence. The treatment of irritable bowel syndrome is based upon several therapeutic approaches but few have been successful or without adverse events and more recently the gut microbiota and the use of probiotics have emerged as a factor to be considered. Probiotics are live micro-organisms which when consumed in adequate amounts confer a health benefit to the host, such as Lactic bacteria among others. An important scientific rationale has emerged for the use of probiotics in irritable bowel syndrome, although the data regarding different species are still limited. Not all probiotics are beneficial: it is important to select the specific strain which should be supported by good evidence base. The mechanisms of action of probiotics are described and the main strains are quoted.

  12. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.

    Science.gov (United States)

    Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong

    2016-04-01

    The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health.

  13. NKT Cell-Deficient Mice Harbor an Altered Microbiota That Fuels Intestinal Inflammation during Chemically Induced Colitis.

    Science.gov (United States)

    Selvanantham, Thirumahal; Lin, Qiaochu; Guo, Cynthia Xinyi; Surendra, Anuradha; Fieve, Stephanie; Escalante, Nichole K; Guttman, David S; Streutker, Catherine J; Robertson, Susan J; Philpott, Dana J; Mallevaey, Thierry

    2016-12-01

    NKT cells are unconventional T cells that respond to self and microbe-derived lipid and glycolipid Ags presented by the CD1d molecule. Invariant NKT (iNKT) cells influence immune responses in numerous diseases. Although only a few studies have examined their role during intestinal inflammation, it appears that iNKT cells protect from Th1-mediated inflammation but exacerbate Th2-mediated inflammation. Studies using iNKT cell-deficient mice and chemically induced dextran sodium sulfate (DSS) colitis have led to inconsistent results. In this study, we show that CD1d-deficient mice, which lack all NKT cells, harbor an altered intestinal microbiota that is associated with exacerbated intestinal inflammation at steady-state and following DSS treatment. This altered microbiota, characterized by increased abundance of the bacterial phyla Proteobacteria, Deferribacteres, and TM7, among which the mucin-eating Mucispirillum, as well as members of the genus Prevotella and segmented filamentous bacteria, was transmissible upon fecal transplant, along with the procolitogenic phenotype. Our results also demonstrate that this proinflammatory microbiota influences iNKT cell function upon activation during DSS colitis. Collectively, alterations of the microbiota have a major influence on colitis outcome and therefore have to be accounted for in such experimental settings and in studies focusing on iNKT cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Rebecca Rogier

    2015-01-01

    Full Text Available In autoimmune diseases, a disturbance of the balance between T helper 17 (Th17 and regulatory T cells (Tregs is often observed. This disturbed balance is also the case in rheumatoid arthritis (RA. Genetic predisposition to RA confers the presence of several polymorphisms mainly regulating activation of T lymphocytes. However, the presence of susceptibility factors is neither necessary nor sufficient to explain the disease development, emphasizing the importance of environmental factors. Multiple studies have shown that commensal gut microbiota is of great influence on immune homeostasis and can trigger the development of autoimmune diseases by favoring induction of Th17 cells over Tregs. However the mechanism by which intestinal microbiota influences the Th cell balance is not completely understood. Here we review the current evidence supporting the involvement of commensal intestinal microbiota in rheumatoid arthritis, along with a potential role of Toll-like receptors (TLRs in modulating the relevant Th cell responses to trigger autoimmunity. A better understanding of TLR triggering by intestinal microbiota and subsequent T cell activation might offer new perspectives for manipulating the T cell response in RA patients and may lead to the discovery of new therapeutic targets or even preventive measures.

  15. Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming Ben; Juan Li; Zong-Tai Feng; Sheng-Yun Shi; Ya-Dong Lu; Rui Chen; Xiao-Yu Zhou

    2008-01-01

    AIM: To investigate the effect of a new infant formula supplemented with a low level (0.24 g/100 mL) of galacto-oligosaccharide (GOS) on intestinal micro-fiord (Bifidobacteria, Lactobacilli and E. coli) and fermentation characteristics in term infants, compared with human milk and a standard infant formula without GOS. METHODS: Term infants (n = 371) were approached in this study in three hospitals of China. All infants started breast-feeding. Those who changed to formula-feeding within 4 wk after birth were randomly assigned to one of the two formula groups. Growth and stool characteristics, and side effects that occurred in recruited infants were recorded in a 3-mo follow-up period. Fecal samples were collected from a subpopulation of recruited infants for analysis of intestinal bacteria (culture technique), acetic acid (gas chromatography) and pH (indicator strip). RESULTS: After 3 mo, the intestinal Bifidobacteria, Lactobac////, acetic acid and stool frequency were significantly increased, and fecal pH was decreased in infants fed with the GOS-formula or human milk, compared with those fed with the formula without GOS. No significant differences were observed between the GOS formula and human milk groups. Supplementation with GOS did not influence the incidence of crying, regurgitation and vomiting. CONCLUSION: A low level of GOS (0.24 g/100 mL) in infant formula can improve stool frequency, decrease fecal pH, and stimulate intestinal Bifidobacteria and Lactobacilli as in those fed with human milk.

  16. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer.

    Science.gov (United States)

    Zhu, Qingchao; Jin, Zhiming; Wu, Wen; Gao, Renyuan; Guo, Bomin; Gao, Zhiguang; Yang, Yongzhi; Qin, Huanlong

    2014-01-01

    Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH)-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, pmicrobiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant difference in intestinal bacterial flora exists between healthy rats and CRC rats.

  17. Bile acid binding resin prevents fat accumulation through intestinal microbiota in high-fat diet-induced obesity in mice.

    Science.gov (United States)

    Kusumoto, Yukie; Irie, Junichiro; Iwabu, Kaho; Tagawa, Hirotsune; Itoh, Arata; Kato, Mari; Kobayashi, Nana; Tanaka, Kumiko; Kikuchi, Rieko; Fujita, Masataka; Nakajima, Yuya; Morimoto, Kohkichi; Sugizaki, Taichi; Yamada, Satoru; Kawai, Toshihide; Watanabe, Mitsuhiro; Oike, Yuichi; Itoh, Hiroshi

    2017-06-01

    Bile acid binding resin (BAR) absorbs intestinal bile acids, and improves obesity and metabolic disorders, but the precise mechanism remains to be clarified. Recent findings reveal that obesity is associated with skewed intestinal microbiota. Thus, we investigated the effect of BAR on intestinal microbiota and the role of microbiota in the prevention of obesity in high-fat diet-induced obesity in mice. Male Balb/c mice were fed a low-fat diet (LFD), high-fat diet (HFD), or HFD with BAR (HFD+BAR), and then metabolic parameters, caecal microbiota, and metabolites were investigated. The same interventions were conducted in germ-free and antibiotic-treated mice. The frequency of Clostridium leptum subgroup was higher in both HFD-fed and HFD+BAR-fed mice than in LFD-fed mice. The frequency of Bacteroides-Prevotella group was lower in HFD-fed mice than in LFD-fed mice, but the frequency was higher in HFD+BAR-fed mice than in HFD-fed mice. Caecal propionate was lower in HFD-fed mice than in LFD-fed mice, and higher in HFD+BAR-fed mice than in HFD-fed mice. HFD+BAR-fed mice showed lower adiposity than HFD-fed mice, and the reduction was not observed in germ-free or antibiotic-treated mice. Colonized germ-free mice showed a reduction in adiposity by BAR administration. Energy expenditure was lower in HFD-fed mice and higher in HFD+BAR-fed mice, but the increments induced by administration of BAR were not observed in antibiotic-treated mice. Modulation of intestinal microbiota by BAR could be a novel therapeutic approach for obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis.

    Science.gov (United States)

    Tong, Maomeng; Jacobs, Jonathan P; McHardy, Ian H; Braun, Jonathan

    2014-11-03

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Accurate analysis of microbial composition and functional state in humans or mice requires appropriate collection and pre-processing of biospecimens. Methods to sample luminal and mucosal microbiota from human or mouse intestines and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using the methods in this unit can be used for downstream quantitative analysis of microbial ecology.

  19. [State of intestinal microbiota in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease].

    Science.gov (United States)

    Lytvynenko, K O; Bodnar, P M; Lysiana, T O; Ponomar'ova, I H; Koval'chuk, O A

    2014-01-01

    High prevalence of type 2 diabetes mellitus (DM) and nonalcoholic fatty liver disease (NAFLD) contributes to the intensification of scientific research the aim of which is to improve existing treatment. It is given the data about the state of intestinal microbiota in 64 patients with type 2 DM and NAFLD, 26 patients with type 2 DM and 28--with NAFLD. The research revealed significant changes in microbiota composition in patients with type 2 DM combined with NAFLD. Decompensated dysbiosis was registered in 71.9% of patients in this group which manifested in increased quantitative indicators of transient microflora crop with pathogenic characteristics and lack of microflora with protective characteristics.

  20. Diet shapes the ability of human intestinal microbiota to degrade phytate - in vitro studies

    OpenAIRE

    Markiewicz, L. H.; Honke, J.; Haros, Monika; Swiatecka, D.; Wróblewska, B.

    2013-01-01

    Aims: Investigation of intestinal bacterial groups involved in phytate degradation and the impact of diets with different phytate contents on phytase activity. Methods and Results: Faecal samples of adults on conventional (n = 8) or vegetarian (n = 8) diets and breastfed infants (n = 6) were used as an inoculum for modified media supplemented with phytate. Populations of Gram-positive anaerobes (GPA), lactic acid bacteria (LAB), Proteobacteria-Bacteroides (P-B), coliforms and anaerobes were s...

  1. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial

    National Research Council Canada - National Science Library

    Ho, Josephine; Reimer, Raylene A; Doulla, Manpreet; Huang, Carol

    2016-01-01

    .... Patients with type 1 diabetes (DM1) have distinct gut microbiota in comparison to non-diabetic individuals, and it has been linked to changes in intestinal permeability, inflammation and insulin resistance...

  2. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis.

    Science.gov (United States)

    Maranduba, Carlos Magno da Costa; De Castro, Sandra Bertelli Ribeiro; de Souza, Gustavo Torres; Rossato, Cristiano; da Guia, Francisco Carlos; Valente, Maria Anete Santana; Rettore, João Vitor Paes; Maranduba, Claudinéia Pereira; de Souza, Camila Maurmann; do Carmo, Antônio Márcio Resende; Macedo, Gilson Costa; Silva, Fernando de Sá

    2015-01-01

    Many immune-based intestinal disorders, such as ulcerative colitis and Crohn's disease, as well as other illnesses, may have the intestines as an initial cause or aggravator in the development of diseases, even apparently not correlating directly to the intestine. Diabetes, obesity, multiple sclerosis, depression, and anxiety are examples of other illnesses discussed in the literature. In parallel, importance of the gut microbiota in intestinal homeostasis and immunologic conflict between tolerance towards commensal microorganisms and combat of pathogens is well known. Recent researches show that the immune system, when altered by the gut microbiota, influences the state in which these diseases are presented in the patient directly and indirectly. At the present moment, a considerable number of investigations about this subject have been performed and published. However, due to difficulties on correlating information, several speculations and hypotheses are generated. Thus, the present review aims at bringing together how these interactions work-gut microbiota, immune system, and their influence in the neuroimmune system.

  3. Intestinal Microbiota as Modulators of the Immune System and Neuroimmune System: Impact on the Host Health and Homeostasis

    Directory of Open Access Journals (Sweden)

    Carlos Magno da Costa Maranduba

    2015-01-01

    Full Text Available Many immune-based intestinal disorders, such as ulcerative colitis and Crohn’s disease, as well as other illnesses, may have the intestines as an initial cause or aggravator in the development of diseases, even apparently not correlating directly to the intestine. Diabetes, obesity, multiple sclerosis, depression, and anxiety are examples of other illnesses discussed in the literature. In parallel, importance of the gut microbiota in intestinal homeostasis and immunologic conflict between tolerance towards commensal microorganisms and combat of pathogens is well known. Recent researches show that the immune system, when altered by the gut microbiota, influences the state in which these diseases are presented in the patient directly and indirectly. At the present moment, a considerable number of investigations about this subject have been performed and published. However, due to difficulties on correlating information, several speculations and hypotheses are generated. Thus, the present review aims at bringing together how these interactions work—gut microbiota, immune system, and their influence in the neuroimmune system.

  4. [Biases on community structure during DNA extraction of shrimp intestinal microbiota revealed by high-throughput sequencing].

    Science.gov (United States)

    Wen, Chongqing; He, Yaoyao; Xue, Ming; Liang, Huafang; Dong, Junde

    2016-01-04

    High-throughput sequencing technology is increasingly applied in intestinal microbiota of aquatic animals including shrimp. However, there is a lack of standard method or kit for DNA isolation from shrimp intestinal microbiota, and little is known about the effectiveness and biases regarding DNA extraction based on high-throughput sequencing. The aim of this study was to study the biases of different DNA extraction kits on community structure of shrimp intestinal microbiota through high-throughput sequencing, and to better understand the structure and composition of bacterial flora associated with healthy Litopenaeus vannamei. We extracted the total DNA of intestinal microbiota from L. vannamei with three commercial kits designed for DNA extraction from bacteria, stool and tissue (Omega, USA). DNA quality was evaluated based on the absorbance ratios of 260/280 nm by NanoDrop, while DNA concentration was quantified using PicoGreen. Then Illumina MiSeq high-throughput sequencing was used to examine the intestinal bacterial communities following PCR amplification of 16S rDNA V4 region. The yield and purity of the DNA from the Bacterial Kit (SIB) were superior to those from the Stool Kit (SIS), whereas the DNA from Tissue Kit (SIT) presented too small amount to be amplified efficiently. The average sequence reads obtained from SIB and SIS samples were 52151 ± 5085 and 55296 ± 5147 respectively. After resampling at the same depth of 46800 reads, the operational taxonomic unit (OTU) number and Shannon diversity index of SIS samples were significantly higher than those of SIB samples. By contrast, the reproducibility of OTU among SIB replicates was higher than that among SIS replicates. The dominant phyla of SIS and SIB samples were identical, including Proteobacteria, Firmicutes, Bacteroidetes, Planctomycetes, Actinobacteria, and Cyanobacteria. However, the relative abundances of almost all the dominant groups at various taxonomic levels differed greatly between these

  5. Synbiotics reduce ethanol-induced hepatic steatosis and inflammation by improving intestinal permeability and microbiota in rats.

    Science.gov (United States)

    Chiu, Wan-Chun; Huang, Ya-Li; Chen, Ya-Ling; Peng, Hsiang-Chi; Liao, Wei-Hsiang; Chuang, Hsiao-Li; Chen, Jiun-Rong; Yang, Suh-Ching

    2015-05-01

    Clinical and animal experiments indicated that gut-derived endotoxin and imbalanced intestinal microbiota contribute to the pathogenesis of alcoholic liver disease (ALD). In this study, we investigated whether synbiotic supplementation could improve ALD in rats by altering the intestinal microbial composition and improving the intestinal integrity. Male Wistar rats were divided into four groups according to plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and subjected to either a normal liquid diet (C), a normal liquid diet with synbiotic supplementation (C + S), an ethanol liquid diet (E), or an ethanol liquid diet with synbiotic supplementation (E + S) for 12 weeks. Results revealed that the ethanol-fed group showed increases in plasma AST and ALT activities, the endotoxin level, the hepatic triglyceride (TG) level, and hepatic tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels, and a decrease in the hepatic IL-10 level. Ethanol-feeding also contributed to increased intestinal permeability and decreased fecal bifidobacteria and lactobacilli amounts. However, synbiotic supplementation effectively attenuated the plasma endotoxin, hepatic TG and TNF-α levels, and increased the hepatic IL-10 level. Furthermore, synbiotic supplementation protected the rats against ethanol-induced hyperpermeability of the intestine, and significantly increased amounts of bifidobacteria and lactobacilli in the feces. This study demonstrated that synbiotics possess a novel hepatoprotective function by improving the intestinal permeability and microbiota in rats with ethanol-induced liver injury.

  6. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation.

    Science.gov (United States)

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota.

  7. Intestinal obstruction complicating Yersinia enterocolitica serotype O:21 infection in an infant.

    Science.gov (United States)

    Mufti, Areej; Al Kaabi, Nawal A; Rubin, Steven Z; Suh, Kathryn N

    2005-12-01

    Intestinal obstruction is an uncommon complication of Yersinia enterocolitica infection. We report a case of enterocolitis in an 11-month-old infant, complicated by intestinal obstruction. Y. entercolitica serotype O:21, previously reported to cause severe disease, was isolated from the patient's stool. Unusual or complicated presentations of yersiniosis may be associated with more pathogenic strains of Y. enterocolitica.

  8. EXPERIENCE IN THE CORRECTION OF THE INTESTINE MICROBIOTADYS DYSBALANCE ON THE BACKGROUND OF SECONDARY LACTASE DEFICIENCY

    Directory of Open Access Journals (Sweden)

    L.A. Tarasova

    2011-01-01

    Full Text Available One of the main conditions for normal growth and development of the child is a full-grown digestion. In this paper, the authors emphasize the importance of the intestinal microbiota condition for adequate digestion, and they are citing the main causes of disaccharidase deficiency, which contributes to the violations of the microbiota and exacerbates the intestine damage. Scientists share their experience of the correction of biocenosis and functional intestines disorders in infants.Key words: digestion, intestinal microbiota, biologics, intestine biocenosis violations, correction, children.

  9. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia.

    Science.gov (United States)

    Moreira, Ana Paula Boroni; Texeira, Tatiana Fiche Salles; Ferreira, Alessandra Barbosa; Peluzio, Maria do Carmo Gouveia; Alfenas, Rita de Cássia Gonçalves

    2012-09-01

    Lipopolysaccharide (LPS) may play an important role in chronic diseases through the activation of inflammatory responses. The type of diet consumed is of major concern for the prevention and treatment of these diseases. Evidence from animal and human studies has shown that LPS can diffuse from the gut to the circulatory system in response to the intake of high amounts of fat. The method by which LPS move into the circulatory system is either through direct diffusion due to intestinal paracellular permeability or through absorption by enterocytes during chylomicron secretion. Considering the impact of metabolic diseases on public health and the association between these diseases and the levels of LPS in the circulatory system, this review will mainly discuss the current knowledge about high-fat diets and subclinical inflammation. It will also describe the new evidence that correlates gut microbiota, intestinal permeability and alkaline phosphatase activity with increased blood LPS levels and the biological effects of this increase, such as insulin resistance. Although the majority of the studies published so far have assessed the effects of dietary fat, additional studies are necessary to deepen the understanding of how the amount, the quality and the structure of the fat may affect endotoxaemia. The potential of food combinations to reduce the negative effects of fat intake should also be considered in future studies. In these studies, the effects of flavonoids, prebiotics and probiotics on endotoxaemia should be investigated. Thus, it is essential to identify dietetic strategies capable of minimising endotoxaemia and its postprandial inflammatory effects.

  10. Altered intestinal microbiota in patients with chronic pancreatitis: implications in diabetes and metabolic abnormalities

    Science.gov (United States)

    Jandhyala, Sai Manasa; Madhulika, A.; Deepika, G.; Rao, G. Venkat; Reddy, D. Nageshwar; Subramanyam, Chivukula; Sasikala, Mitnala; Talukdar, Rupjyoti

    2017-01-01

    Intestinal dysbiosis and its functional implications in chronic pancreatitis (CP) have not been elaborately studied. We evaluated the taxonomic and functional alterations in intestinal microbiota in 30 well-characterised patients with CP (16 without, 14 with diabetes) and 10 healthy controls. The patients with CP and diabetes had significantly longer disease duration and greater degree of malnutrition. There was increase in plasma endotoxin concentrations from controls to CP non-diabetics to CP diabetics. We observed significant differences in richness and alpha diversity between the groups. We also observed increase in the Firmicutes:Bacteroidetes ratio in CP patients without and with diabetes. There was reduction in abundance of Faecalibacterium prausnitzii and Ruminococcus bromii from controls to CP non-diabetics to CP diabetics. On the other hand, there was increase in LPS (endotoxin) synthetic pathways (KEGG orthology) in the groups. Faecalibacterium prausnitzii abundance correlated negatively with plasma endotoxin and glycemic status; while plasma endotoxin correlated positively with blood glucose and negatively with plasma insulin. Our results have important implications for future studies exploring mechanistic insights on secondary diabetes in CP. PMID:28255158

  11. Impact of lifestyle on the gut microbiota of healthy infants and their mothers—the ALADDIN birth cohort.

    Science.gov (United States)

    Hesla, Helena M; Stenius, Fredrik; Jäderlund, Lotta; Nelson, Ronald; Engstrand, Lars; Alm, Johan; Dicksved, Johan

    2014-12-01

    An anthroposophic lifestyle, which has been associated with reduced allergy risk in children, has several characteristics that could influence gut microbiota. This study aimed to investigate the impact of anthroposophic lifestyle as well as specific early life exposures on the gut microbiota. In total, 665 stool samples from 128 mother-infant pairs from the ALADDIN birth cohort study were included. Samples collected from infants at ages 6 days, 3 weeks, 2 months and 6 months, and from their mothers before and after delivery, respectively, were analyzed using 454-pyrosequencing. Information regarding lifestyle exposures was collected prospectively through interviews and questionnaires. Six-month-old infants in anthroposophic families had a significantly higher abundance of Bifidobacterium and lower abundances of Bacteroides and Veillonella. Caesarean section and breastfeeding had a significant impact on the microbiota: caesarean section was primarily associated with delayed colonization of Bifidobacterium and Bacteroides, whereas breastfed children had a higher relative abundance of Bifidobacterium and a lower abundance of Clostridiales. However, despite large differences in lifestyle exposures, we determined no significant differences in the gut microbiota between the anthroposophic and non-anthroposophic mothers or their infants' before 6 months of age. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Mode of Birth Influences Preterm Infant Intestinal Colonization With Bacteroides Over the Early Neonatal Period.

    Science.gov (United States)

    Gregory, Katherine E; LaPlante, Rose D; Shan, Gururaj; Kumar, Deepak Vijaya; Gregas, Matt

    2015-12-01

    Intestinal colonization during infancy is important to short- and long-term health outcomes. Bacteroides, an early member of the intestinal microbiome, is necessary for breaking down complex molecules within the intestine and function to assist the body's immune system in fighting against potentially harmful pathogens. Little is known about the colonization pattern of Bacteroides in preterm infants during the early neonatal period. This study measured Bacteroides colonization during the early neonatal period in a population of preterm infants, based on clinical factors including mode of birth, antibiotics, and nutrition. Bacterial DNA was isolated from 144 fecal samples from 29 preterm infants and analyzed using quantitative real-time polymerase chain reaction. Analyses included liner mixed models to determine which clinical factors affect Bacteroides colonization of the infant gut. We found that infants born via vaginal canal had a higher rate of increase in Bacteroides than infants born via cesarean section (P Bacteroides colonization. These findings highlight the significant influence of mode of birth on Bacteroides colonization. While mode of birth is not always modifiable, these study findings may help develop interventions for preterm infants born via cesarean section aimed at overcoming delayed Bacteroides colonization. Greater study of the intestinal microbiome and the clinical factors relevant to the preterm infant is needed so that interventions may be developed and tested, resulting in optimal microbial and immune health.

  13. Bloodstream Infections in Very Low Birth Weight Infants with Intestinal Failure

    NARCIS (Netherlands)

    Cole, Conrad R.; Hansen, Nellie I.; Higgins, Rosemary D.; Bell, Edward F.; Shankaran, Seetha; Laptook, Abbot R.; Walsh, Michele C.; Hale, Ellen C.; Newman, Nancy S.; Das, Abhik; Stoll, Barbara J.

    2012-01-01

    Objective To examine pathogens and other characteristics associated with late-onset bloodstream infections (BSIs) in infants with intestinal failure (IF) as a consequence of necrotizing enterocolitis (NEC). Study design Infants weighing 401-1500 g at birth who survived for >72 hours and received car

  14. Composition of Intestinal Microbiota in Immune-Deficient Mice Kept in Three Different Housing Conditions

    Science.gov (United States)

    Thoene-Reineke, Christa; Fischer, André; Friese, Christian; Briesemeister, Dana; Göbel, Ulf B.; Kammertoens, Thomas; Bereswill, Stefan; Heimesaat, Markus M.

    2014-01-01

    Background Abundance of commensals constituting the intestinal microbiota (IM) affects the immune system and predisposes to a variety of diseases, including intestinal infections, cancer, inflammatory and metabolic disorders. Housing conditions determine the IM and can hence influence the immune system. We analyzed how both variables affect the IM of four immune-compromized mouse lines kept under different housing conditions. Methodology/Principal Findings We investigated the IM composition in mice by quantitative 16S rRNA RT-PCR analysis of the main fecal bacterial groups (Enterobacteriaceae, enterococci, lactobacilli, bifidobacteria, Bacteroides/Prevotella (BP) spp., Clostridium leptum and coccoides groups). Mice were homozygous (HO) or heterozygous (HE) for a targeted inactivating mutation of either the IFN-γ Receptor (R), IFN-γ, Rag1 or IL-4 genes. Overall, differences in IM composition were subtle. However, in the SPF-barrier, total eubacterial loads were higher in Rag1 HE versus Rag1 HO mice as well as in IFN-γR HE versus IFN-γR HO and WT animals. Although absent in WT mice, bifidobacterial loads were higher in HO and HE IFN-γ and Rag1 as well as IL-4 HO mice. Furthermore, BP was slightly lower in HO and HE IFN-γR and IFN-γ mice as well as in IL-4 HO mice as compared to WT controls. Interestingly, IM compositions were comparable in WT mice when kept in individual ventilated cages (IVC) or open cages (OC). IFN-γ HO and HE mice, however, had higher enterobacteria and BP loads, but lacked bifidobacteria when kept in OC versus IVC, as was the case in HO and HE Rag1 mice. In addition, Rag1 HO mice harbored higher clostridial loads when housed in OC as compared to IVC. Unexpectedly, lactobacilli levels were higher in IFN-γR mice when kept in OC versus IVC. Conclusion/Significance Housing-dependent and immune-deficiency mediated changes in intestinal microbiota composition were rather subtle but may nevertheless impact immunopathology in experimental models

  15. Composition of intestinal microbiota in immune-deficient mice kept in three different housing conditions.

    Directory of Open Access Journals (Sweden)

    Christa Thoene-Reineke

    Full Text Available Abundance of commensals constituting the intestinal microbiota (IM affects the immune system and predisposes to a variety of diseases, including intestinal infections, cancer, inflammatory and metabolic disorders. Housing conditions determine the IM and can hence influence the immune system. We analyzed how both variables affect the IM of four immune-compromized mouse lines kept under different housing conditions.We investigated the IM composition in mice by quantitative 16S rRNA RT-PCR analysis of the main fecal bacterial groups (Enterobacteriaceae, enterococci, lactobacilli, bifidobacteria, Bacteroides/Prevotella (BP spp., Clostridium leptum and coccoides groups. Mice were homozygous (HO or heterozygous (HE for a targeted inactivating mutation of either the IFN-γ Receptor (R, IFN-γ, Rag1 or IL-4 genes. Overall, differences in IM composition were subtle. However, in the SPF-barrier, total eubacterial loads were higher in Rag1 HE versus Rag1 HO mice as well as in IFN-γR HE versus IFN-γR HO and WT animals. Although absent in WT mice, bifidobacterial loads were higher in HO and HE IFN-γ and Rag1 as well as IL-4 HO mice. Furthermore, BP was slightly lower in HO and HE IFN-γR and IFN-γ mice as well as in IL-4 HO mice as compared to WT controls. Interestingly, IM compositions were comparable in WT mice when kept in individual ventilated cages (IVC or open cages (OC. IFN-γ HO and HE mice, however, had higher enterobacteria and BP loads, but lacked bifidobacteria when kept in OC versus IVC, as was the case in HO and HE Rag1 mice. In addition, Rag1 HO mice harbored higher clostridial loads when housed in OC as compared to IVC. Unexpectedly, lactobacilli levels were higher in IFN-γR mice when kept in OC versus IVC.Housing-dependent and immune-deficiency mediated changes in intestinal microbiota composition were rather subtle but may nevertheless impact immunopathology in experimental models.

  16. The longitudinal effect of a multi-strain probiotic on the intestinal bacterial microbiota of neonatal foals

    DEFF Research Database (Denmark)

    Schoster, Angelika; Guardabassi, Luca; Staempfli, H. R.

    2016-01-01

    REASONS FOR PERFORMING THE STUDY: The microbiota plays a key role in health and disease. Probiotics are a potential way to therapeutically modify the intestinal microbiota and prevent disease. OBJECTIVES: The aim of this study was to investigate the effects of probiotics on the bacterial microbiota...... of foals during and after administration. STUDY DESIGN: Randomised placebo controlled field trial. METHODS: Thirty-eight healthy neonatal foals enrolled in a prior study were selected. The foals had received a multi-strain probiotic (four Lactobacillus spp 3-4x10(3) cfu/g each, Bifidobacterium animalis spp...... or class level between treatment groups at any age (all p>0.08) but some significant changes in relative abundance of families. Probiotic administration did not result in an increased relative abundance of lactobacilli or bifidobacteria at any age (Lactobacillus: p = 0.95, p = 0.1 and p = 0...

  17. The pathophysiology of necrotizing enterocolitis in preterm infants : New insights in the interaction between the gut and its microbiota

    NARCIS (Netherlands)

    Heida, Fardou Hadewych

    2016-01-01

    Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder affecting the preterm infant. The underlying cause of NEC is partly unknown. This thesis studied the gut flora, the intestinal barrier function, and the intestinal bloodcirculation contributing to NEC. We observed NEC-associated b

  18. The pathophysiology of necrotizing enterocolitis in preterm infants : New insights in the interaction between the gut and its microbiota

    NARCIS (Netherlands)

    Heida, Fardou Hadewych

    2016-01-01

    Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder affecting the preterm infant. The underlying cause of NEC is partly unknown. This thesis studied the gut flora, the intestinal barrier function, and the intestinal bloodcirculation contributing to NEC. We observed NEC-associated

  19. EFFICACY OF PREBIOTIC DOSE OF LACTULOSE IN FUNCTIONAL NUTRITION OF INFANTS WITH ENTEROCOLITIS AND INTESTINAL DISBIOSIS

    Directory of Open Access Journals (Sweden)

    Ye.R. Meskina

    2011-01-01

    Full Text Available The article presents a data from a clinical study describing different clinical effects of lactulose. The direction of drug’s efficacy depends on different dose of lactulose. The use of prebiotic dose (milk mixture «Bifidus 1, 2» improves the state of intestinal micro flora, favors to the increase of efficacy of usually used treatment and decreases the probability of unfavorable rehabilitation period in infants with infectious enterocolitis and intestinal disbiosis.Key words: infants, infectious enterocolitis, intestinal micro flora, short-chain fatty acids, lactulose.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2011; 10 (4: 105–110

  20. The Role of the Intestinal Microbiota in the Pathogenesis of Necrotizing Enterocolitis

    Science.gov (United States)

    Grishin, Anatoly; Papillon, Stephanie; Bell, Brandon; Wang, Jin; Ford, Henri R.

    2013-01-01

    Development of necrotizing enterocolitis (NEC) requires a susceptible host, typically a premature infant or an infant with congenital heart disease, enteral feedings and bacterial colonization. Although there is little doubt that microbes are critically involved in the pathogenesis of NEC, the identity of specific causative pathogens remains elusive. Unlike established normal adult gut microbiota, which is quite complex, uniform, and stable, early postnatal bacterial populations are simple, diverse, and fluid. These properties complicate studies aimed at elucidating characteristics of the gut microbiome that may play a role in the pathogenesis of NEC. A broad variety of bacterial, viral, and fungal species have been implicated in both clinical and experimental NEC. Frequently, however, the same species have also been found in physiologically matched healthy individuals. Clustered outbreaks of NEC, in which the same strain of a suspected pathogen is detected in several patients suggest, but do not prove, a causative relationship between the specific pathogen and the disease. Studies in Cronobacter sakazakii, the best characterized NEC pathogen, have demonstrated that virulence is not a property of a bacterial species as a whole, but rather a characteristic of certain strains, which may explain why the same species can be pathogenic or non-pathogenic. The fact that a given microbe may be innocuous in a full-term, yet pathogenic in a pre-term infant has led to the idea of opportunistic pathogens in NEC. Progress in understanding the infectious nature of NEC may require identifying specific pathogenic strains and unambiguously establishing their virulence in animal models. PMID:23611609

  1. Staphylococcal enterotoxin genes are common in Staphylococcus aureus intestinal flora in Sudden Infant Death Syndrome (SIDS) and live comparison infants.

    Science.gov (United States)

    Highet, Amanda R; Goldwater, Paul N

    2009-11-01

    Pathological and epidemiological findings in sudden infant death syndrome (SIDS) suggest an infectious aetiology with indications of involvement of staphylococcal enterotoxins (SEs). While SEA, SEB and SEC have been found in the sera and tissues of SIDS cases, little is known about the role of intestinal Staphylococcus aureus or the roles of later-described toxins SEE, SEG, SEH, SEI and SEJ in SIDS. We used a molecular-based approach to define whether the intestinal tract could be a source of SEs to support the staphylococcal toxic shock hypothesis for SIDS. Intestinal contents from 57 SIDS infants and faeces from 79 age- and gender-matched live comparison infants were cultured and tested for S. aureus and sea-b-c-e-g-h-j and TSST using PCR. High proportions of infants in both groups carried toxigenic and nontoxigenic S. aureus. Significantly greater proportions of SIDS compared with comparison babies were positive for S. aureus (68.4% vs. 40.5%) and for SE genes (43.8% vs. 21.5%), suggesting a possible role in SIDS. The results indicate that colonization by S. aureus with SE genes is common in infants; however, their detection is unlikely to be a strong predictive tool for SIDS. Other factors (including immune response) may reveal a specific susceptibility to SEs in SIDS infants.

  2. [The Amben correction of disorders in the intestinal microbial colonization of newborn infants with perinatal pathology].

    Science.gov (United States)

    Iakushenko, M N; Tkhagapsoeva, Zh A; Bondarenko, V M

    1998-01-01

    The examination of 49 newborn infants revealed that at the early neonatal period the character of the microbial colonization of the intestine depended on the kind of perinatal pathology: in lesions of the central nervous system and conjugation jaundice the deficiency of Bifidobacterium and Escherichia was detected; in hemolytic disease opportunistic bacteria were dominant simultaneously with the deficiency of lactoflora. The study of these infants, divided into two groups differing in the administration of Amben (an inhibitor of proteolytic enzymes), showed the efficiency of Amben which stimulated the growth and development of resident microflora in the intestine, thus contributing to the maintenance of eubiosis in a given group of infants with perinatal pathology.

  3. From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn's disease.

    Science.gov (United States)

    Balasubramanian, Iyshwarya; Gao, Nan

    2017-07-01

    NOD2 was the first susceptibility gene identified for Crohn's disease (CD), one of the major forms of inflammatory bowel disease (IBD). The field of NOD2 research has opened up many questions critical to understanding the complexities of microbiota-host interactions. In addition to sensing its specific bacterial components as a cytosolic pattern recognition receptor, NOD2 also appears to shape the colonization of intestinal microbiota. Activated NOD2 triggers downstream signaling cascades exampled by the NF-κB pathway to induce antimicrobial activities, however, defective or loss of NOD2 functions incur a similarly activated inflammatory response. Additional studies have identified the involvement of NOD2 in protection against non-microbiota-related intestinal damages as well as extraintestinal infections. We survey recent molecular and genetic studies of NOD2-mediated bacterial sensing and immunological modulation, and integrate evidence to suggest a highly reciprocal but still poorly understood cross talk between enteric microbiota and host cells. Copyright © 2017 the American Physiological Society.

  4. Immune-Modulatory Genomic Properties Differentiate Gut Microbiotas of Infants with and without Eczema

    KAUST Repository

    Yap, Gaik Chin

    2015-10-14

    Background: The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms. Studies have suggested that selective microbial targets may influence the development of the allergic diseases. But the difference in functional gene composition remains unknown. We aim to assess the structural and functional gene composition of stool microbiota of infants with eczema and their matched (for age, gender, mode of delivery, feeding) controls at the age of 1 month. Methods: Twelve children with eczema and their controls were selected from the placebo arm of a birth cohort of at-risk infants participating in a randomized double-blind trial on the protective effects of supplemental probiotics in early life on allergic outcomes. The four were caesarean delivery followed by formula feeding (eczema = 2 and healthy control = 2) and the eight were vaginal delivery followed by partial breast feeding mixed with formula feeding (eczema = 4 and healthy control = 4). Bacterial genomic DNA were extracted from fecal samples and prepared for Illumina Miseq and Hiseq sequencing. Data analysis such as sequence quality check, contigs assembly