WorldWideScience

Sample records for industrial process monitoring

  1. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  2. Plug-and-play monitoring and performance optimization for industrial automation processes

    CERN Document Server

    Luo, Hao

    2017-01-01

    Dr.-Ing. Hao Luo demonstrates the developments of advanced plug-and-play (PnP) process monitoring and control systems for industrial automation processes. With aid of the so-called Youla parameterization, a novel PnP process monitoring and control architecture (PnP-PMCA) with modularized components is proposed. To validate the developments, a case study on an industrial rolling mill benchmark is performed, and the real-time implementation on a laboratory brushless DC motor is presented. Contents PnP Process Monitoring and Control Architecture Real-Time Configuration Techniques for PnP Process Monitoring Real-Time Configuration Techniques for PnP Performance Optimization Benchmark Study and Real-Time Implementation Target Groups Researchers and students of Automation and Control Engineering Practitioners in the area of Industrial and Production Engineering The Author Hao Luo received the Ph.D. degree at the Institute for Automatic Control and Complex Systems (AKS) at the University of Duisburg-Essen, Germany, ...

  3. Advances in statistical monitoring of complex multivariate processes with applications in industrial process control

    CERN Document Server

    Kruger, Uwe

    2012-01-01

    The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike.  Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering.  The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applica

  4. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    Science.gov (United States)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  5. Monitoring and evaluation of production processes an analysis of the automotive industry

    CERN Document Server

    Panda, Anton; Pandová, Iveta

    2016-01-01

    This book presents topics on monitoring and evaluation of production processes in the automotive industry. Regulation of production processes is also described in details. The text deals with the implementation and evaluation of these processes during the mass production of components useful in the automotive industry. It evaluates the effects and results achieved after implementation in practice. The book takes into account the different methodologies of the world's automakers and applicable standards, such as standard EN ISO 9001 and the requirements of VDA and ISO/TS 16949. The content is used to those working with the development, production and quality control of new products in the demanding automotive industry. The information provided may also be useful to engineers and technical staff in organizations working with series production and production of spare parts for the automotive and other demanding industries. The content presented was written based on discussions with various companies and organiza...

  6. Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

    Science.gov (United States)

    Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk

    2018-04-06

    Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.

  7. Automated Radioanalytical Chemistry: Applications For The Laboratory And Industrial Process Monitoring

    International Nuclear Information System (INIS)

    O'Hara, Matthew J.; Farawila, Anne F.; Grate, Jay W.

    2009-01-01

    The identification and quantification of targeted α- and β-emitting radionuclides via destructive analysis in complex radioactive liquid matrices is highly challenging. Analyses are typically accomplished at on- or off-site laboratories through laborious sample preparation steps and extensive chemical separations followed by analysis using a variety of detection methodologies (e.g., liquid scintillation, alpha energy spectroscopy, mass spectrometry). Analytical results may take days or weeks to report. When an industrial-scale plant requires periodic or continuous monitoring of radionuclides as an indication of the composition of its feed stream, diversion of safeguarded nuclides, or of plant operational conditions (for example), radiochemical measurements should be rapid, but not at the expense of precision and accuracy. Scientists at Pacific Northwest National Laboratory have developed and characterized a host of automated radioanalytical systems designed to perform reproducible and rapid radioanalytical processes. Platforms have been assembled for (1) automation and acceleration of sample analysis in the laboratory and (2) automated monitors for monitoring industrial scale nuclear processes on-line with near-real time results. These methods have been applied to the analysis of environmental-level actinides and fission products to high-level nuclear process fluids. Systems have been designed to integrate a number of discrete sample handling steps, including sample pretreatment (e.g., digestion and valence state adjustment) and chemical separations. The systems have either utilized on-line analyte detection or have collected the purified analyte fractions for off-line measurement applications. One PNNL system of particular note is a fully automated prototype on-line radioanalytical system designed for the Waste Treatment Plant at Hanford, WA, USA. This system demonstrated nearly continuous destructive analysis of the soft β-emitting radionuclide 99Tc in nuclear

  8. Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis

    Directory of Open Access Journals (Sweden)

    Marco S. Reis

    2017-06-01

    Full Text Available We provide a critical outlook of the evolution of Industrial Process Monitoring (IPM since its introduction almost 100 years ago. Several evolution trends that have been structuring IPM developments over this extended period of time are briefly referred, with more focus on data-driven approaches. We also argue that, besides such trends, the research focus has also evolved. The initial period was centred on optimizing IPM detection performance. More recently, root cause analysis and diagnosis gained importance and a variety of approaches were proposed to expand IPM with this new and important monitoring dimension. We believe that, in the future, the emphasis will be to bring yet another dimension to IPM: prognosis. Some perspectives are put forward in this regard, including the strong interplay of the Process and Maintenance departments, hitherto managed as separated silos.

  9. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, H.P.

    1992-10-01

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  10. Experiences with an expert system technology for real-time monitoring and diagnosis of industrial processes

    International Nuclear Information System (INIS)

    Chou, Q.B.; Mylopoulos, J.; Opala, J.

    1996-01-01

    The complexity of modern industrial processes and the large amount of data available to their operators make it difficult to monitor their status and diagnose potential failures. Although there have been many attempts to apply knowledge-based technologies to this problem, there have not been any convincing success. This paper describes recent experiences with a technology that combines artificial intelligence and simulation techniques for building real-time monitoring and diagnosis systems. A prototype system for monitoring and diagnosing the feedwater system of a nuclear power plant built using this technology is described. The paper then describes several interesting classes of failures that the prototype is capable of diagnosing. (author). 19 refs, 6 figs

  11. Experiences with an expert system technology for real-time monitoring and diagnosis of industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Q B [Ontario Hydro, Toronto, ON (Canada); Mylopoulos, J [Toronto Univ., ON (Canada); Opala, J [CAE Electronics, Montreal, Quebec (Canada)

    1997-12-31

    The complexity of modern industrial processes and the large amount of data available to their operators make it difficult to monitor their status and diagnose potential failures. Although there have been many attempts to apply knowledge-based technologies to this problem, there have not been any convincing success. This paper describes recent experiences with a technology that combines artificial intelligence and simulation techniques for building real-time monitoring and diagnosis systems. A prototype system for monitoring and diagnosing the feedwater system of a nuclear power plant built using this technology is described. The paper then describes several interesting classes of failures that the prototype is capable of diagnosing. (author). 19 refs, 6 figs.

  12. Low-Frequency Electrochemical Impedance Spectroscopy as a Monitoring Tool for Yeast Growth in Industrial Brewing Processes

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2017-08-01

    Full Text Available Today’s yeast total biomass and viability measurements during the brewing process are dependent on offline methods such as methylene blue or florescence dye-based staining, and/or the usage of flow cytometric measurements. Additionally, microscopic cell counting methods decelerate an easy and quick prediction of yeast viability. These processes are time consuming and result in a time-delayed response signal, which not only reduces the knowledge of the performance of the yeast itself, but also impacts the quality of the final product. Novel approaches in process monitoring during the aerobic and anaerobic fermentation of Saccharomyces cerevisiae are not only limited to classical pH, dO2 and off-gas analysis, but they also use different in situ and online sensors based on different physical principles to determine the biomass, product quality and cell death. Within this contribution, electrochemical impedance spectroscopy (EIS was used to monitor the biomass produced in aerobic and anaerobic batch cultivation approaches, simulating the propagation and fermentation unit operation of industrial brewing processes. Increases in the double-layer capacitance (CDL, determined at frequencies below 1 kHz, were proportional to the increase of biomass in the batch, which was monitored in the online and inline mode. A good correlation of CDL with the cell density was found. In order to prove the robustness and flexibility of this novel method, different state-of-the-art biomass measurements (dry cell weight—DCW and optical density—OD were performed for comparison. Because measurements in this frequency range are largely determined by the double-layer region between the electrode and media, rather minor interferences with process parameters (aeration and stirring were to be expected. It is shown that impedance spectroscopy at low frequencies is not only a powerful tool for the monitoring of viable yeast cell concentrations during operation, but it is

  13. Near-infrared spectroscopic monitoring of a series of industrial batch processes using a bilinear grey model.

    Science.gov (United States)

    van Sprang, Eric N M; Ramaker, Henk-Jan; Westerhuis, Johan A; Smilde, Age K; Gurden, Stephen P; Wienke, Dietrich

    2003-08-01

    A good process understanding is the foundation for process optimization, process monitoring, end-point detection, and estimation of the end-product quality. Performing good process measurements and the construction of process models will contribute to a better process understanding. To improve the process knowledge it is common to build process models. These models are often based on first principles such as kinetic rates or mass balances. These types of models are also known as hard or white models. White models are characterized by being generally applicable but often having only a reasonable fit to real process data. Other commonly used types of models are empirical or black-box models such as regression and neural nets. Black-box models are characterized by having a good data fit but they lack a chemically meaningful model interpretation. Alternative models are grey models, which are combinations of white models and black models. The aim of a grey model is to combine the advantages of both black-box models and white models. In a qualitative case study of monitoring industrial batches using near-infrared (NIR) spectroscopy, it is shown that grey models are a good tool for detecting batch-to-batch variations and an excellent tool for process diagnosis compared to common spectroscopic monitoring tools.

  14. Environmental and process monitoring technologies

    International Nuclear Information System (INIS)

    Vo-Dinh, Tuan

    1993-01-01

    The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases

  15. Technologies to support industrial processes

    International Nuclear Information System (INIS)

    Palazzi, G.; Savelli, D.

    1989-05-01

    Control and measuring techniques applied to industry have the common aim of increasing safety, reliability and plant availability. The industrial monitoring system needs a lot of sensors, whose signals, elaborated and interpreted, allow one to define the best working condition; moreover control instruments perform a diagnosis related to damages and breakages. The Experimental Engineering Division of ENEA's Thermal Reactor Department has developed sensors and measuring apparatus and has acquired advanced control techniques. All these systems, containing an original software, have been applied to industrial process problems and/or to experimental facilities both to increase reliability and to understand better process physics. Division activities are grouped in four sectors: non-destructive examinations (ultrasonic, eddy current, thermography, holographic interpherometry, penetrant liquids and magnetoscopy); innovative sensors (heated thermocouples, optical fiber sensors); advanced measuring systems (laser technology for fluidodynamic measures, nuclear radiation techniques, infrared measuring, mass spectrometer, hot-film anemometer, chromatographic apparatus); advanced technologies for diagnosis and signal analysis (digital image processing, statistical analysis). (author)

  16. Process industry properties in nuclear industry

    International Nuclear Information System (INIS)

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  17. Individual dose monitoring of occupational exposure in nuclear industry system (1991-2000)

    International Nuclear Information System (INIS)

    Yang Lianzhen; Ma Jizeng; Li Taosheng

    2005-01-01

    The summary and main results of individual dose monitoring (1990-2000) from occupational exposure in China Nuclear Industry System are presented in this paper. During ten years, the external collective effective dose to workers in seven plants (not uranium mines and processing mills) and institutes is 98.48 person ·Sv, the per capita effective dose is 1.97 mSv. The general situation for individual dose monitoring from internal exposure is also introduced. The annual average committed effective dose is less than 5.0 mSv. The individual dose monitoring results (1991-1992) for occupational exposure from Uranium mines and processing mills are depicted. In the end, the individual dose monitoring data in nuclear industry system are preliminarily analysed. (authors)

  18. Assessment of fiber optic sensors for aging monitoring of industrial liquid coolants

    Science.gov (United States)

    Riziotis, Christos; El Sachat, Alexandros; Markos, Christos; Velanas, Pantelis; Meristoudi, Anastasia; Papadopoulos, Aggelos

    2015-03-01

    Lately the demand for in situ and real time monitoring of industrial assets and processes has been dramatically increased. Although numerous sensing techniques have been proposed, only a small fraction can operate efficiently under harsh industrial environments. In this work the operational properties of a proposed photonic based chemical sensing scheme, capable to monitor the ageing process and the quality characteristics of coolants and lubricants in industrial heavy machinery for metal finishing processes is presented. The full spectroscopic characterization of different coolant liquids revealed that the ageing process is connected closely to the acidity/ pH value of coolants, despite the fact that the ageing process is quite complicated, affected by a number of environmental parameters such as the temperature, humidity and development of hazardous biological content as for example fungi. Efficient and low cost optical fiber sensors based on pH sensitive thin overlayers, are proposed and employed for the ageing monitoring. Active sol-gel based materials produced with various pH indicators like cresol red, bromophenol blue and chorophenol red in tetraethylorthosilicate (TEOS), were used for the production of those thin film sensitive layers deposited on polymer's and silica's large core and highly multimoded optical fibers. The optical characteristics, sensing performance and environmental robustness of those optical sensors are presented, extracting useful conclusions towards their use in industrial applications.

  19. Integrated Monitoring System of Production Processes

    Directory of Open Access Journals (Sweden)

    Oborski Przemysław

    2016-12-01

    Full Text Available Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.

  20. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Alexandros El Sachat

    2017-03-01

    Full Text Available Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11 pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  1. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    Science.gov (United States)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  2. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    Science.gov (United States)

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  3. Predictive maintenance of critical equipment in industrial processes

    Science.gov (United States)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  4. Monitoring of batch processes using spectroscopy

    NARCIS (Netherlands)

    Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    There is an increasing need for new techniques for the understanding, monitoring and the control of batch processes. Spectroscopy is now becoming established as a means of obtaining real-time, high-quality chemical information at frequent time intervals and across a wide range of industrial

  5. System theory in industrial patient monitoring: an overview.

    Science.gov (United States)

    Baura, G D

    2004-01-01

    Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.

  6. A Log Mining Approach for Process Monitoring in SCADA

    NARCIS (Netherlands)

    Hadziosmanovic, D.; Bolzoni, D.; Hartel, Pieter H.

    2012-01-01

    SCADA (Supervisory Control and Data Acquisition) systems are used for controlling and monitoring industrial processes. We propose a methodology to systematically identify potential process-related threats in SCADA. Process-related threats take place when an attacker gains user access rights and

  7. A Log Mining Approach for Process Monitoring in SCADA

    NARCIS (Netherlands)

    Hadziosmanovic, D.; Bolzoni, D.; Hartel, Pieter H.

    2010-01-01

    SCADA (Supervisory Control and Data Acquisition) systems are used for controlling and monitoring industrial processes. We propose a methodology to systematically identify potential process-related threats in SCADA. Process-related threats take place when an attacker gains user access rights and

  8. Fiber Bragg grating sensors for real-time monitoring of evacuation process

    Science.gov (United States)

    Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.

    2010-03-01

    Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

  9. An Efficient Quality-Related Fault Diagnosis Method for Real-Time Multimode Industrial Process

    Directory of Open Access Journals (Sweden)

    Kaixiang Peng

    2017-01-01

    Full Text Available Focusing on quality-related complex industrial process performance monitoring, a novel multimode process monitoring method is proposed in this paper. Firstly, principal component space clustering is implemented under the guidance of quality variables. Through extraction of model tags, clustering information of original training data can be acquired. Secondly, according to multimode characteristics of process data, the monitoring model integrated Gaussian mixture model with total projection to latent structures is effective after building the covariance description form. The multimode total projection to latent structures (MTPLS model is the foundation of problem solving about quality-related monitoring for multimode processes. Then, a comprehensive statistics index is defined which is based on the posterior probability of the monitored samples belonging to each Gaussian component in the Bayesian theory. After that, a combined index is constructed for process monitoring. Finally, motivated by the application of traditional contribution plot in fault diagnosis, a gradient contribution rate is applied for analyzing the variation of variable contribution rate along samples. Our method can ensure the implementation of online fault monitoring and diagnosis for multimode processes. Performances of the whole proposed scheme are verified in a real industrial, hot strip mill process (HSMP compared with some existing methods.

  10. Data-driven fault detection for industrial processes canonical correlation analysis and projection based methods

    CERN Document Server

    Chen, Zhiwen

    2017-01-01

    Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed. Contents A New Index for Performance Evaluation of FD Methods CCA-based FD Method for the Monitoring of Stationary Processes Projection-based FD Method for the Monitoring of Dynamic Processes Benchmark Study and Real-Time Implementat...

  11. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors

    DEFF Research Database (Denmark)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous...... of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications....

  12. Wireless Industrial Monitoring and Control Networks: The Journey So Far and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Paul Havinga

    2012-08-01

    Full Text Available While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks.

  13. Industrial chemical exposure: guidelines for biological monitoring

    National Research Council Canada - National Science Library

    Lauwerys, Robert R; Hoet, Perrine

    2001-01-01

    .... With Third Edition of Industrial Chemical Exposure you will understand the objectives of biological monitoring, the types of biological monitoring methods, their advantages and limitations, as well...

  14. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  15. Working conditions in the European meat processing industry

    NARCIS (Netherlands)

    Nossent, S.; Groot, B. de; Verschuren, R.

    1995-01-01

    This report reflects the main results of one part of the study 'Monitoring the work environment at sectorial level'. This part regards the meat processing industry in Europe. In this study, which was a project of the European Foundation for Living and Working Conditions, ten member states of the

  16. Numerical Implementation of Indicators and Statistical Control Tools in Monitoring and Evaluating CACEI-ISO Indicators of Study Program in Industrial Process by Systematization

    Science.gov (United States)

    Ayala, Gabriela Cota; Real, Francia Angélica Karlos; Ivan, Ramirez Alvarado Edqar

    2016-01-01

    The research was conducted to determine if the study program of the career of industrial processes Technological University of Chihuahua, 1 year after that it was certified by CACEI, continues achieving the established indicators and ISO 9001: 2008, implementing quality tools, monitoring of essential indicators are determined, flow charts are…

  17. Through the eye of the PLC: semantic security monitoring for industrial processes

    NARCIS (Netherlands)

    Hadziosmanovic, D.; Sommer, Robin; Zambon, Emmanuele; Hartel, Pieter H.

    2014-01-01

    Off-the-shelf intrusion detection systems prove an ill fit for protecting industrial control systems, as they do not take their process semantics into account. Specifically, current systems fail to detect recent process control attacks that manifest as unauthorized changes to the configuration of a

  18. Process monitoring

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Many of the measurements and observations made in a nuclear processing facility to monitor processes and product quality can also be used to monitor the location and movements of nuclear materials. In this session information is presented on how to use process monitoring data to enhance nuclear material control and accounting (MC and A). It will be seen that SNM losses can generally be detected with greater sensitivity and timeliness and point of loss localized more closely than by conventional MC and A systems if process monitoring data are applied. The purpose of this session is to enable the participants to: (1) identify process unit operations that could improve control units for monitoring SNM losses; (2) choose key measurement points and formulate a loss indicator for each control unit; and (3) describe how the sensitivities and timeliness of loss detection could be determined for each loss indicator

  19. Ambient air monitoring for mercury around an industrial complex

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.

    1991-01-01

    Public and scientific interest in mercury in the environment has experienced an upsurge in the past few years, due in part to disclosures that fish in certain waters, which have apparently received no direct industrial discharges, were contaminated with mercury. Atmospheric releases of mercury from fossil fuel energy generators, waste incinerators and other industrial sources are suspected to be contributing to this problem. Such releases can be evaluated in a variety of ways, including stack sampling, material balance studies, soil/vegetation sampling and ambient air monitoring. Ambient air monitoring of mercury presents significant challenges because of the typically low concentrations (ng/m 3 ) encountered and numerous opportunities for sample contamination or analyte loss. There are presently no EPA-approved protocols for such sampling and analysis. Elemental mercury was used in large quantities at a nuclear weapons plant in Oak Ridge, Tennessee between 1950 and 1963 in a process similar to chloralkali production. Soil and water contamination with mercury were known to be present at the facility but outdoor ambient air contamination had not been investigated prior to the present study. In addition, one large building still contained original process equipment with mercury residuals. The objectives of this study were to establish a monitoring network for mercury which could be used (1) to demonstrate whether or not human health and the environment was being protected, and (2), to establish a decommissioning activities at the facility

  20. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... of full-scale systems implemented in industrial fermentation processes. This thesis seeks to achieve a better understanding of the techniques near infrared and fluorescence spectroscopy and thereby to solve some of the challenges that are encountered. The thesis shows the advantages of applying real...

  1. The application of mean control chart in managing industrial processes

    Directory of Open Access Journals (Sweden)

    Papić-Blagojević Nataša

    2013-01-01

    Full Text Available Along with the advent of mass production comes the problem of monitoring and maintaining the quality of the product, which stressed the need for the application of selected statistical and mathematical methods in the control process. The main objective of applying the methods of statistical control is continuous quality improvement through permanent monitoring of the process in order to discover the causes of errors. Shewart charts are the most popular method of statistical process control, which performs separation of controlled and uncontrolled variations along with detection of increased variations. This paper presents the example of Shewart mean control chart with application in managing industrial process.

  2. Industrial wireless monitoring with energy-harvesting devices

    NARCIS (Netherlands)

    Brian Blake, M.; Das, Kallol; Zand, P.; Havinga, Paul J.M.

    Vibration monitoring and analysis techniques are used increasingly for predictive maintenance. While traditional vibration monitoring relies on wired sensor networks, recent industrial technologies such as WirelessHART, ISA100.11a, and IEEE802.15.4e have brought a paradigm shift in the automation

  3. Web monitoring of industrial signals using embedded systems

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Romero-Molano

    2016-01-01

    Full Text Available The paper presents the design of software and hardware for a system of web monitoring of industrial signals. This prototype provides a web interface which can observe in real time the status of four industrial-type signal on-off. MSP432 microcontroller is used for sampling and transmitting monitored signals to a Raspberry PI which receives by a UART link the MSP432 monitored data and presents them immediately in the front-end web application. The prototype design was verified with a pneumatic application that consists of four single-acting cylinders and it was observed an efficient synchronization between the occurrence of the triggering event or change in status of any of the monitored cylinder and web publishing.

  4. Process control monitoring systems, industrial plants, and process control monitoring methods

    Science.gov (United States)

    Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA

    2010-09-07

    A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.

  5. Monitoring Industrial Food Processes Using Spectroscopy & Chemometrics

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær; Engelsen, Søren Balling

    2001-01-01

    In the last decade rapid spectroscopic measurements have revolutionized quality control in practically all areas of primary food and feed production. Near-infrared spectroscopy (NIR & NIT) has been implemented for monitoring the quality of millions of samples of cereals, milk and meat with unprec......In the last decade rapid spectroscopic measurements have revolutionized quality control in practically all areas of primary food and feed production. Near-infrared spectroscopy (NIR & NIT) has been implemented for monitoring the quality of millions of samples of cereals, milk and meat...

  6. Industrial site particulate pollution monitoring with an eye-safe and scanning industrial fiber lidar

    Science.gov (United States)

    Belanger, Brigitte; Fougeres, Andre; Talbot, Mario

    2001-02-01

    12 Over the past few years, INO has developed an Industrial Fiber Lidar (IFL). It enables the particulate pollution monitoring on industrial sites. More particularly, it has been used to take measurements of particulate concentration at Port Facilities of an aluminum plant during boat unloading. It is an eye-safe and portable lidar. It uses a fiber laser also developed at INO emitting 1.7 microJoules at 1534 nm with a pulse repetition frequency of 5 kHz. Given the harsh environment of an industrial site, all the sensitive equipment like the laser source, detector, computer and acquisition electronics are located in a building and connected to the optical module, placed outside, via optical fibers up to 500 m long. The fiber link also offers all the flexibility for placing the optical module at a proper location. The optical module is mounted on a two axis scanning platform, able to perform an azimuth scan of 0 to 355 deg and an elevation scan of +/- 90 deg, which enables the scanning of zones defined by the user. On this industrial site, materials like bauxite, alumina, spathfluor and calcined coke having mass extinction coefficients ranging from 0.53 to 2.7 m2/g can be detected. Data for different measurement configurations have been obtained. Concentration values have been calculated for measurements in a hopper, along a wharf and over the urban area close to the port facilities. The lidar measurements have been compared to high volume samplers. Based on these comparisons, it has been established that the IFL is able to monitor the relative fluctuations of dust concentrations. It can be integrated to the process control of the industrial site for alarm generation when concentrations are above threshold.

  7. Vision Systems Illuminate Industrial Processes

    Science.gov (United States)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  8. An Efficient Wireless Sensor Network for Industrial Monitoring and Control.

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-10

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  9. NFC like wireless technology for monitoring purposes in scientific/industrial facilities

    International Nuclear Information System (INIS)

    Badillo, I.; Eguiraun, M.; Jugo, J.

    2012-01-01

    Wireless technologies are becoming more and more used in large industrial and scientific facilities like particle accelerators for facilitating the monitoring and indeed sensing in these kind of large environments. Cabled equipment means little flexibility in placement and is very expensive in both money and effort whenever reorganization or new installation is needed. So, when cabling is not really needed for performance reasons wireless monitoring and control is a good option, due to the speed of implementation. There are several wireless flavors to choose, as Bluetooth, Zigbee, WiFi, etc. depending on the requirements of each specific application. In this work a wireless monitoring system for EPICS (Experimental and Industrial Control System) is presented. The desired control system variables are acquired over the network and published in a mobile device, allowing the operator to check process variables everywhere the signal spreads. In this approach, a Python based server will be continuously getting EPICS Process Variables via Channel Access protocol and sending them through a WiFi standard 802.11 network using ICE middle-ware. ICE is a tool-kit oriented to build distributed applications. Finally, the mobile device will read the data and show it to the operator. The security of the communication can be improved by means of a weak wireless signal, following the same idea as in Near Field Communication (NFC), but for more large distances. With this approach, local monitoring and control applications, as for example a vacuum control system for several pumps, are currently implemented. (authors)

  10. Panorama Image Processing for Condition Monitoring with Thermography in Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byoung Joon; Kim, Tae Hwan; Kim, Soon Geol; Mo, Yoon Syub [UNETWARE, Seoul (Korea, Republic of); Kim, Won Tae [Kongju National University, Gongju (Korea, Republic of)

    2010-04-15

    In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnel who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography

  11. Panorama Image Processing for Condition Monitoring with Thermography in Power Plant

    International Nuclear Information System (INIS)

    Jeon, Byoung Joon; Kim, Tae Hwan; Kim, Soon Geol; Mo, Yoon Syub; Kim, Won Tae

    2010-01-01

    In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnel who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography

  12. Effects of industrial processing on folate content in green vegetables.

    Science.gov (United States)

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Monitoring of anaerobic digestion processes: A review perspective

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo; Esbensen, Kim

    2011-01-01

    to a new level of reliability and effectiveness. It is shown, how proper involvement of process sampling understanding, Theory of Sampling (TOS), constitutes a critical success factor. We survey the more recent trends within the field of AD monitoring and the powerful PAT/TOS/chemometrics application...... processes, sanitation of industrial organic waste, and benefits from degassing of manure are a few of the most important applications. Especially, renewable energy production, integrated biorefining concepts, and advanced waste handling are delineated as the major market players for AD that likely...... will expand rapidly in the near future. The complex, biologically mediated AD events are far from being understood in detail however. Despite decade-long serious academic and industrial research efforts, only a few general rules have been formulated with respect to assessing the state of the process from...

  14. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-01

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466

  15. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Juan Aponte-Luis

    2018-01-01

    Full Text Available This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  16. Process Diagnostics and Monitoring Using the Multipole Resonance Probe (MRP)

    Science.gov (United States)

    Harhausen, J.; Awakowicz, P.; Brinkmann, R. P.; Foest, R.; Lapke, M.; Musch, T.; Mussenbrock, T.; Oberrath, J.; Ohl, A.; Rolfes, I.; Schulz, Ch.; Storch, R.; Styrnoll, T.

    2011-10-01

    In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  17. Online monitoring of a belt grinding process by using a light scattering method

    International Nuclear Information System (INIS)

    Boehm, Johannes; Vernes, Andras; Vorlaufer, Georg; Vellekoop, Michael

    2010-01-01

    Industrially ground surfaces often have a characteristic surface topography known as chatter marks. The surface finishing is mainly monitored by optical measurement techniques. In this work, the monitoring of an industrial belt grinding process with a light scattering sensor is presented. Although this technique is primarily applied for parametric surface roughness analysis, here it is shown that it enables also the measurement of the surface topography, i.e., the chatter marks occurring during the belt grinding process. In particular, it is proven that the light scattering method is appropriate to measure online the topography of chatter marks. Furthermore, the frequency analysis of the data reveals that the wavelength of chatter marks strongly depends on process parameters, such as the grinding speed.

  18. Status and challenges of residential and industrial non-intrusive load monitoring

    DEFF Research Database (Denmark)

    Adabi, Ali; Mantey, Patrick; Holmegaard, Emil

    2015-01-01

    in recent years due to improvement in algorithms and methodologies. Currently, the important challenges facing residential NILM are inaccessibility of electricity meter high sampling data, and lack of reliable high resolution datasets. For industrial NILM the identification is more challenging due......Non-Intrusive Load Monitoring (NILM) is the process of identification of loads from an aggregate power interface using disaggregation algorithms. This paper identifies the current status, methodologies and challenges of NILM in residential and industrial settings. NILM has advanced substantially...... to increased number of loads and the variability of equipment type, temporal patterns and industrial secrecy. From our examination of data and its use in NILM, we observe that the number of devices that can be recognized and the training period required to achiever recognition is not only a function...

  19. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    Science.gov (United States)

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial

  20. A KPI-based process monitoring and fault detection framework for large-scale processes.

    Science.gov (United States)

    Zhang, Kai; Shardt, Yuri A W; Chen, Zhiwen; Yang, Xu; Ding, Steven X; Peng, Kaixiang

    2017-05-01

    Large-scale processes, consisting of multiple interconnected subprocesses, are commonly encountered in industrial systems, whose performance needs to be determined. A common approach to this problem is to use a key performance indicator (KPI)-based approach. However, the different KPI-based approaches are not developed with a coherent and consistent framework. Thus, this paper proposes a framework for KPI-based process monitoring and fault detection (PM-FD) for large-scale industrial processes, which considers the static and dynamic relationships between process and KPI variables. For the static case, a least squares-based approach is developed that provides an explicit link with least-squares regression, which gives better performance than partial least squares. For the dynamic case, using the kernel representation of each subprocess, an instrument variable is used to reduce the dynamic case to the static case. This framework is applied to the TE benchmark process and the hot strip mill rolling process. The results show that the proposed method can detect faults better than previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  2. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling

    Directory of Open Access Journals (Sweden)

    J. Schilp

    2014-07-01

    Full Text Available Process monitoring and modelling can contribute to fostering the industrial relevance of additive manufacturing. Process related temperature gradients and thermal inhomogeneities cause residual stresses, and distortions and influence the microstructure. Variations in wall thickness can cause heat accumulations. These occur predominantly in filigree part areas and can be detected by utilizing off-axis thermographic monitoring during the manufacturing process. In addition, numerical simulation models on the scale of whole parts can enable an analysis of temperature fields upstream to the build process. In a microscale domain, modelling of several exposed single hatches allows temperature investigations at a high spatial and temporal resolution. Within this paper, FEM-based micro- and macroscale modelling approaches as well as an experimental setup for thermographic monitoring are introduced. By discussing and comparing experimental data with simulation results in terms of temperature distributions both the potential of numerical approaches and the complexity of determining suitable computation time efficient process models are demonstrated. This paper contributes to the vision of adjusting the transient temperature field during manufacturing in order to improve the resulting part's quality by simulation based process design upstream to the build process and the inline process monitoring.

  3. Monitoring Information By Industry - Printing and Publishing

    Science.gov (United States)

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about control techniques used to reduce pollutant emissions in the printing and publishing industry.

  4. Industrial effluent quality, pollution monitoring and environmental management.

    Science.gov (United States)

    Ahmad, Maqbool; Bajahlan, Ahmad S; Hammad, Waleed S

    2008-12-01

    Royal Commission Environmental Control Department (RC-ECD) at Yanbu industrial city in Kingdom of Saudi Arabia has established a well-defined monitoring program to control the pollution from industrial effluents. The quality of effluent from each facility is monitored round the clock. Different strategic measures have been taken by the RC-ECD to implement the zero discharge policy of RC. Industries are required to pre-treat the effluent to conform pretreatment standards before discharging to central biological treatment plant. Industries are not allowed to discharge any treated or untreated effluent in open channels. After treatment, reclaimed water must have to comply with direct discharge standards before discharge to the sea. Data of industrial wastewater collected from five major industries and central industrial wastewater treatment plant (IWTP) is summarized in this report. During 5-year period, 3,705 samples were collected and analyzed for 43,436 parameters. There were 1,377 violations from pretreatment standards from all the industries. Overall violation percentage was 3.17%. Maximum violations were recorded from one of the petrochemical plants. The results show no significant pollution due to heavy metals. Almost all heavy metals were within RC pretreatment standards. High COD and TOC indicates that major pollution was due to hydrocarbons. Typical compounds identified by GC-MS were branched alkanes, branched alkenes, aliphatic ketones, substituted thiophenes, substituted phenols, aromatics and aromatic alcohols. Quality of treated water was also in compliance with RC direct discharge standards. In order to achieve the zero discharge goal, further studies and measures are in progress.

  5. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  6. Monitoring and control of fine abrasive finishing processes

    DEFF Research Database (Denmark)

    Lazarev, Ruslan

    In engineering, surfaces with specified functional properties are of high demand in various applications. Desired surface finish can be obtained using several methods. Abrasive finishing is one of the most important processes in the manufacturing of mould and dies tools. It is a principal method ...... was segmented using discretization methods. The applied methodology was proposed for implementation as an on-line system and is considered to be a part of the next generation of STRECON NanoRAP machine....... to remove unwanted material, obtain desired geometry, surface quality and surface functional properties. The automation and computerization of finishing processes involves utilisation of robots, specialized machines with several degrees of freedom, sensors and data acquisition systems. The focus...... of this work was to investigate foundations for process monitoring and control methods in application to semi-automated polishing machine based on the industrial robot. The monitoring system was built on NI data acquisition system with two sensors, acoustic emission sensor and accelerometer. Acquired sensory...

  7. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  8. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  9. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    Science.gov (United States)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  10. Computer-based diagnostic monitoring to enhance the human-machine interface of complex processes

    International Nuclear Information System (INIS)

    Kim, I.S.

    1992-02-01

    There is a growing interest in introducing an automated, on-line, diagnostic monitoring function into the human-machine interfaces (HMIs) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). This paper provides a conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS), along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community

  11. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... automatic detection of optimal process endpoint allow intelligent process control, creating fundamental elements in development of robust fully automated RAP process for its widespread industrial application....... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  12. Process defects and in situ monitoring methods in metal powder bed fusion: a review

    International Nuclear Information System (INIS)

    Grasso, Marco; Colosimo, Bianca Maria

    2017-01-01

    Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems. (paper)

  13. Process defects and in situ monitoring methods in metal powder bed fusion: a review

    Science.gov (United States)

    Grasso, Marco; Colosimo, Bianca Maria

    2017-04-01

    Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.

  14. Dust and smoke pollution monitoring in industrial unit

    International Nuclear Information System (INIS)

    Shamsi, S.S.

    1995-01-01

    Dust and smoke are the two most commonly emitted industrial pollutants which are visible to the naked eye. Cement plants and power generation plants, based on coal and fuel oil etc. are the most common examples of industry emitting these pollutants. In this article these pollutants have been briefly described and some monitoring instruments for dust and smoke emissions have been specific. These instruments are especially suitable for power station and the cement industry etc. Automotive in urban areas. However, this paper does not include equipment for automotive exhaust pollution. (author)

  15. 'Virtual' monitoring in LabVIEW 8 and process simulation of the cryogenic pilot plant

    International Nuclear Information System (INIS)

    Moraru, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Bucur, Ciprian; Stefan, Liviu; Bornea, Anisia; Stefanescu, Ioan

    2007-01-01

    Full text: The implementation of the new software and hardware's technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the use of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system's flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed, stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be carried out, and continued with the optimization of the system, by choosing new and performing methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is carried out by means of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named 'virtual' as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays an important role in the environment protection and sustainable development through new technologies, that is - the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimization of nuclear processes is also a major driving force for economic and social development. (authors)

  16. Industrial processes inventory. Sector 2

    International Nuclear Information System (INIS)

    1994-01-01

    The work objective is to conduct a greenhouse gas emission inventory of the industrial processes in Lebanon for the year 1994. The Lebanese industry has emitted 1924.063 Gg (1.924.063 tons) of Carbon dioxide CO 2 ; 0.0003 Gg (0.3 tons) of carbon monoxide CO; 0.01112 Gg of nitrogen oxide NO; 273.888 tons of non-methane volatile organic compounds and 3.382 Gg (3.382 tons) of sulphur dioxide SO 2 . The cement industry is the major source of CO 2 emissions among the industrial processes in Lebanon. The cement industry is responsible for 76.1% of the total emissions followed by the iron and steel industry which produces 21.68% of the total CO 2 emissions from industrial processes. The NMVOC emissions are mainly produced by the use of asphalt for road paving (98.5% of total emissions by industry) followed by the food and beverage industry (1.2%). The emissions of sulphur dioxide SO 2 come from three industrial sources: the first come from the production of sulphuric acid (69.9% of total industrial emissions), the second from the cement industry (26.4% of total industrial emissions) and the third from the iron and steel mills (3.7% of total industrial emissions). Figures are presented to show the percentage distribution of various industrial sources contributions to CO 2 , NMVOC and SO 2 emissions in Lebanon. Carbon monoxide CO emissions in the industrial sector are very small. The major source is iron and steel mills and the minor source is asphalt-roofing production

  17. Monitoring of a micro-smart grid: Power consumption data of some machineries of an agro-industrial test site.

    Science.gov (United States)

    Fabrizio, Enrico; Biglia, Alessandro; Branciforti, Valeria; Filippi, Marco; Barbero, Silvia; Tecco, Giuseppe; Mollo, Paolo; Molino, Andrea

    2017-02-01

    For the management of a (micro)-smart grid it is important to know the patters of the load profiles and of the generators. In this article the power consumption data obtained through a monitoring activity developed on a micro-smart grid in an agro-industrial test-site are presented. In particular, this reports the synthesis of the monitoring results of 5 loads (5 industrial machineries for crop micronization, corncob crashing and other similar processes). How these data were used within a monitoring and managing scheme of a micro-smart grid can be found in (E. Fabrizio, V. Branciforti, A. Costantino, M. Filippi, S. Barbero, G. Tecco, P. Mollo, A. Molino, 2017) [1]. The data can be useful for other researchers in order to create benchmarks of energy use input appropriate energy demand values in optimization tools for the industrial sector.

  18. Near-infrared spectroscopic monitoring of a series of industrial batch processes using a bilinear grey model

    NARCIS (Netherlands)

    van Sprang, Eric N. M.; Ramaker, Henk-Jan; Westerhuis, Johan A.; Smilde, Age K.; Gurden, Stephen P.; Wienke, Dietrich

    2003-01-01

    A good process understanding is the foundation for process optimization, process monitoring, end-point detection, and estimation of the end-product quality. Performing good process measurements and the construction of process models will contribute to a better process understanding. To improve the

  19. Signal and image processing for monitoring and testing at EDF

    International Nuclear Information System (INIS)

    Georgel, B.; Garreau, D.

    1992-04-01

    The quality of monitoring and non destructive testing devices in plants and utilities today greatly depends on the efficient processing of signal and image data. In this context, signal or image processing techniques, such as adaptive filtering or detection or 3D reconstruction, are required whenever manufacturing nonconformances or faulty operation have to be recognized and identified. This paper reviews the issues of industrial image and signal processing, by briefly considering the relevant studies and projects under way at EDF. (authors). 1 fig., 11 refs

  20. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

    Directory of Open Access Journals (Sweden)

    Feng Qian

    2017-04-01

    Full Text Available Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④ life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

  1. Multivariate Statistical Process Control Charts and the Problem of Interpretation: A Short Overview and Some Applications in Industry

    OpenAIRE

    Bersimis, Sotiris; Panaretos, John; Psarakis, Stelios

    2005-01-01

    Woodall and Montgomery [35] in a discussion paper, state that multivariate process control is one of the most rapidly developing sections of statistical process control. Nowadays, in industry, there are many situations in which the simultaneous monitoring or control, of two or more related quality - process characteristics is necessary. Process monitoring problems in which several related variables are of interest are collectively known as Multivariate Statistical Process Control (MSPC).This ...

  2. The evolution of industrial power monitoring and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, K. E.

    1998-04-01

    The evolution of power monitoring and control systems in industrial situations are described. Computer-based PMC (power monitoring and control) systems are discussed in two sections. Section 1 covers the PC/DOS based systems in use up to the 1990s. These systems had multitasking capability, sufficient for scanning a serial line running a multi-drop protocol to field instruments, which in turn were running either proprietary or PLC subsets, maintaining a level of operator display, data logging and query support. Since the mid-1990s the second generation of industrial power monitoring and control systems based on the PC/NT system came into use, driven to market by three factors: (1) availability of low cost PCs, (2) widespread availability of computer networking technologies, and (3) the appearance of the robust, industrially viable NT operating system. Second generation systems are characterized by division into two tiers; a monitoring system focused on remote metering, and a second tier of a modular system capable of fully implementing both power monitoring and supervisory control. Looking toward the future, the requirements for systems is expected to become more unique, driven by the need for information for energy procurement decision making, automatic control for integrating power acquisition from multiple suppliers, power capacity and integrated power and production control planning needs, and power quality and reliability issues. A review of the functionality of PMC systems, and system architectures was also provided. Results of a survey of PMC systems applications were also discussed. 2 refs., 4 tabs., 8 figs.

  3. Business process of reputation management of food industry enterprises

    Directory of Open Access Journals (Sweden)

    Derevianko Olena. H.

    2014-01-01

    Full Text Available The goal of the article is development of the methodical base of reputation management directed at formalisation of theoretical provisions and explanation how to organise reputation management at food industry enterprises. The article shows prospectiveness of use of the Business Process Management concept in reputation management. Using the diagram of the Reputation Management business process environment the article shows its key participants (suppliers and clients of the business process and identifies their place in formation of the enterprise reputation. It also shows that the reputation management should be considered a business process of the highest level of management. Construction of the flow structure of the Reputation Management business process allows uncovering the logic of interrelation of inlets and outlets within the framework of the specified main stages of the business process: assessment of the current state of reputation, collection of information about stakeholders, identification of PR strategy goals, planning of necessary resources, realisation of the PR strategy, assessment of efficiency and process monitoring. The article offers the flow, functional and organisational structures of the Reputation Management business process for food industry enterprises. Moreover, justification of functional and organisational structures of the Reputation Management business process gives a possibility to distribute functions of reputation management between specific executors and establish responsibility for each stage of the business process.

  4. FY09 PROGRESS: MULTI-ISOTOPE PROCESS (MIP) MONITOR

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Laspe, Amy R.; Ward, Rebecca M.

    2009-01-01

    Model and experimental estimates of the Multi-Isotope Process Monitor performance for determining burnup after dissolution and acid concentration during solvent extraction steps during reprocessing of spent nuclear fuel are presented. Modern industrial reprocessing techniques, including the PUREX and UREX+ family of separations technologies, are based on solvent extraction between organic and aqueous phases. In these bi-phase systems, product (actinide) and contaminant (fission and activation products) elements are preferentially driven (thermodynamically) to opposite phases, with small amounts of each remaining in the other phase. The distribution of each element, between the organic and aqueous phases, is determined by major process variables such as acid concentration, organic ligand concentration, reduction potential, and temperature. Hence, for consistent performance of the separation process, the distribution of each element between the organic and aqueous phases should be relatively constant. During 'normal' operations the pattern of elements distributing into the product and waste streams at each segment of the facility should be reproducible, resulting in a statistically significant signature of the nominal process conditions. Under 'abnormal' conditions, such as those expected under some protracted diversion scenarios, patterns of elements within the various streams would be expected to change measurably. The MIP monitoring approach utilizes changes in the concentrations of gamma-emitting elements as evidence of changes to the process chemistry. It exploits a suite of gamma emitting isotopes to track multiple chemical species and behaviors simultaneously, thus encompassing a large array of elements that are affected by chemical and physical changes. In-process surveillance by the MIP monitor is accomplished by coupling the gamma spectrometry of the streams with multivariate techniques, such as Principal Component Analysis (PCA). PCA is a chemometrics tool

  5. Industrial processing versus home processing of tomato sauce

    NARCIS (Netherlands)

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D.; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-01-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity

  6. Condition Monitoring of a Process Filter Applying Wireless Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2011-05-01

    Full Text Available This paper presents a novel wireless vibration-based method for monitoring the degree of feed filter clogging. In process industry, these filters are applied to prevent impurities entering the process. During operation, the filters gradually become clogged, decreasing the feed flow and, in the worst case, preventing it. The cleaning of the filter should therefore be carried out predictively in order to avoid equipment damage and unnecessary process downtime. The degree of clogging is estimated by first calculating the time domain indices from low frequency accelerometer samples and then taking the median of the processed values. Nine different statistical quantities are compared based on the estimation accuracy and criteria for operating in resource-constrained environments with particular focus on energy efficiency. The initial results show that the method is able to detect the degree of clogging, and the approach may be applicable to filter clogging monitoring.

  7. Laboratory versus industrial cutting force sensor in tool condition monitoring system

    International Nuclear Information System (INIS)

    Szwajka, K

    2005-01-01

    Research works concerning the utilisation of cutting force measures in tool condition monitoring usually present results and deliberations based on laboratory sensors. These sensors are too fragile to be used in industrial practice. Industrial sensors employed on the factory floor are less accurate, and this must be taken into account when creating a tool condition monitoring strategy. Another drawback of most of these works is that constant cutting parameters are used for the entire tool life. This does not reflect industrial practice where the same tool is used at different feeds and depths of cut in sequential passes. This paper presents a comparison of signals originating from laboratory and industrial cutting force sensors. The usability of the sensor output was studied during a laboratory simulation of industrial cutting conditions. Instead of building mathematical models for the correlation between tool wear and cutting force, an FFBP artificial neural network was used to find which combination of input data would provide an acceptable estimation of tool wear. The results obtained proved that cross talk between channels has an important influence on cutting force measurements, however this input configuration can be used for a tool condition monitoring system

  8. Cluster processing business level monitor

    International Nuclear Information System (INIS)

    Muniz, Francisco J.

    2017-01-01

    This article describes a Cluster Processing Monitor. Several applications with this functionality can be freely found doing a search in the Google machine. However, those applications may offer more features that are needed on the Processing Monitor being proposed. Therefore, making the monitor output evaluation difficult to be understood by the user, at-a-glance. In addition, such monitors may add unnecessary processing cost to the Cluster. For these reasons, a completely new Cluster Processing Monitor module was designed and implemented. In the CDTN, Clusters are broadly used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  9. Cluster processing business level monitor

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Francisco J., E-mail: muniz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This article describes a Cluster Processing Monitor. Several applications with this functionality can be freely found doing a search in the Google machine. However, those applications may offer more features that are needed on the Processing Monitor being proposed. Therefore, making the monitor output evaluation difficult to be understood by the user, at-a-glance. In addition, such monitors may add unnecessary processing cost to the Cluster. For these reasons, a completely new Cluster Processing Monitor module was designed and implemented. In the CDTN, Clusters are broadly used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  10. Quality-by-Design approach to monitor the operation of a batch bioreactor in an industrial avian vaccine manufacturing process.

    Science.gov (United States)

    Largoni, Martina; Facco, Pierantonio; Bernini, Donatella; Bezzo, Fabrizio; Barolo, Massimiliano

    2015-10-10

    Monitoring batch bioreactors is a complex task, due to the fact that several sources of variability can affect a running batch and impact on the final product quality. Additionally, the product quality itself may not be measurable on line, but requires sampling and lab analysis taking several days to be completed. In this study we show that, by using appropriate process analytical technology tools, the operation of an industrial batch bioreactor used in avian vaccine manufacturing can be effectively monitored as the batch progresses. Multivariate statistical models are built from historical databases of batches already completed, and they are used to enable the real time identification of the variability sources, to reliably predict the final product quality, and to improve process understanding, paving the way to a reduction of final product rejections, as well as to a reduction of the product cycle time. It is also shown that the product quality "builds up" mainly during the first half of a batch, suggesting on the one side that reducing the variability during this period is crucial, and on the other side that the batch length can possibly be shortened. Overall, the study demonstrates that, by using a Quality-by-Design approach centered on the appropriate use of mathematical modeling, quality can indeed be built "by design" into the final product, whereas the role of end-point product testing can progressively reduce its importance in product manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Process Industry and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Over a period of two years the NAP's Special Interest Group Energy (SIG-E) has dedicated itself to studying the way in which the process industry and its supply chain has been dealing with energy as a theme. In the past it was strongly believed that many opportunities were left unused and that different forms of cooperation inside the chain should contribute to accelerated improvement of energy efficiency in the process industry. Sixteen companies that are actively involved in the entire value chain have scrutinised their daily situation wondering how to operate more successfully. With approximately one quarter of total energy consumption the Dutch process industry is a major player in reaching national energy and climate objectives by 2020. The objective (improve energy efficiency by 2% annually) is as ambitious as that 'business as usual' is insufficient. A drastic change in how matters are approached is thus essential. The question is how to proceed? By analysing energy projects, in-depth interviews with decision makers in the industry, through literature searches and by organising lectures inside and outside the sector, SlG-E has been able to develop a true picture of the mechanisms concerning energy-related investments. Two major points of interest have been energy-oriented tendering (demand side) and the market introduction of innovations (supply side). The main problems of 'how to do more in the energy domain' is: (a) the process industry is insufficiently familiar with the capabilities of the supply chain, and (b) the supply chain is insufficiently aware of the questions that exist in the process industry. Therefore, the links in the value chain understand each other poorly. The answer to this problem is compound and consists of more interaction between the process industry and the supply chain (machine constructors, engineering firms and consultancies, education and research). As for the process industry: (a) Make improved energy

  12. Industrial chimney monitoring - contemporary methods

    Science.gov (United States)

    Kaszowska, Olga; Gruchlik, Piotr; Mika, Wiesław

    2018-04-01

    The paper presents knowledge acquired during the monitoring of a flue-gas stack, performed as part of technical and scientific surveillance of mining activity and its impact on industrial objects. The chimney is located in an area impacted by mining activity since the 1970s, from a coal mine which is no longer in existence. In the period of 2013-16, this area was subject to mining carried out by a mining entrepreneur who currently holds a license to excavate hard coal. Periodic measurements of the deflection of the 113-meter chimney are performed using conventional geodetic methods. The GIG used 3 methods to observe the stack: landbased 3D laser scanning, continuous deflection monitoring with a laser sensor, and drone-based visual inspections. The drone offered the possibility to closely inspect the upper sections of the flue-gas stack, which are difficult to see from the ground level.

  13. Multivariate statistical analysis of a multi-step industrial processes

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Høskuldsson, Agnar

    2007-01-01

    Monitoring and quality control of industrial processes often produce information on how the data have been obtained. In batch processes, for instance, the process is carried out in stages; some process or control parameters are set at each stage. However, the obtained data might not be utilized...... efficiently, even if this information may reveal significant knowledge about process dynamics or ongoing phenomena. When studying the process data, it may be important to analyse the data in the light of the physical or time-wise development of each process step. In this paper, a unified approach to analyse...... multivariate multi-step processes, where results from each step are used to evaluate future results, is presented. The methods presented are based on Priority PLS Regression. The basic idea is to compute the weights in the regression analysis for given steps, but adjust all data by the resulting score vectors...

  14. Amalgamation of Anomaly-Detection Indices for Enhanced Process Monitoring

    KAUST Repository

    Harrou, Fouzi

    2016-01-29

    Accurate and effective anomaly detection and diagnosis of modern industrial systems are crucial for ensuring reliability and safety and for maintaining desired product quality. Anomaly detection based on principal component analysis (PCA) has been studied intensively and largely applied to multivariate processes with highly cross-correlated process variables; howver conventional PCA-based methods often fail to detect small or moderate anomalies. In this paper, the proposed approach integrates two popular process-monitoring detection tools, the conventional PCA-based monitoring indices Hotelling’s T2 and Q and the exponentially weighted moving average (EWMA). We develop two EWMA tools based on the Q and T2 statistics, T2-EWMA and Q-EWMA, to detect anomalies in the process mean. The performances of the proposed methods were compared with that of conventional PCA-based anomaly-detection methods by applying each method to two examples: a synthetic data set and experimental data collected from a flow heating system. The results clearly show the benefits and effectiveness of the proposed methods over conventional PCA-based methods.

  15. The Canadian petroleum industry 1992 monitoring report: Annual

    International Nuclear Information System (INIS)

    1993-01-01

    This report provides financial aspects of activity in the Canadian petroleum and natural gas industry. Data are given in graphic and tabular form on revenues, sources and destinations of funds (including financing, incentives, dividend payments, capital and operational expenditures); on comparisons with other industries; on how revenues are shared between the industry and various levels of government; and on principal trends observed. Highlights of the year include the 1992 budget announcement of the winding up of the Petroleum Monitoring Agency and the recommendation that the monitoring function be transferred to the Department of Energy, Mines and Resources; the opening of the Lloydminster Saskatchewn By-Provincial Upgrader; substantial changes in Alberta's oil and natural gas royalty system; the rescinding of the Oil and Gas Acquisitions Policy which did not allow sale of Canadian controlled oil and gas assets valued in excess of $5 million unless the companies were in financial difficulty; and a measure announced by the federal government designed to stimulate new equity investment in the junior oil and gas sector. A chapter on the financial performance during the first quarter of 1993 is also presented. 27 figs., 22 tabs

  16. Industrial chimney monitoring - contemporary methods

    Directory of Open Access Journals (Sweden)

    Kaszowska Olga

    2018-01-01

    Full Text Available The paper presents knowledge acquired during the monitoring of a flue-gas stack, performed as part of technical and scientific surveillance of mining activity and its impact on industrial objects. The chimney is located in an area impacted by mining activity since the 1970s, from a coal mine which is no longer in existence. In the period of 2013-16, this area was subject to mining carried out by a mining entrepreneur who currently holds a license to excavate hard coal. Periodic measurements of the deflection of the 113-meter chimney are performed using conventional geodetic methods. The GIG used 3 methods to observe the stack: landbased 3D laser scanning, continuous deflection monitoring with a laser sensor, and drone-based visual inspections. The drone offered the possibility to closely inspect the upper sections of the flue-gas stack, which are difficult to see from the ground level.

  17. Monitoring and modelling of a continuous from-powder-to-tablet process line

    DEFF Research Database (Denmark)

    Mortier, Séverine T.F.C.; Nopens, Ingmar; De Beer, Thomas

    2014-01-01

    -time adjustment of critical input variables to ensure that the process stays within the Design Space. Mechanistic models are very useful for this purpose as, once validated, several tools can be applied to gain further process knowledge, for example uncertainty and sensitivity analysis. In addition, several......The intention to shift from batch to continuous production processes within the pharmaceutical industry enhances the need to monitor and control the process in-line and real-time to continuously guarantee the end-product quality. Mass and energy balances have been successfully applied to a drying...... process which is part of a continuous from-powder-to-tablet manufacturing line to calculate the residual moisture content of granules leaving the drying unit on the basis of continuously generated data from univariate sensors. Next to monitoring, the application of continuous processes demands also real...

  18. Development of graphene process control by industrial optical spectroscopy setup

    Science.gov (United States)

    Fursenko, O.; Lukosius, M.; Lupina, G.; Bauer, J.; Villringer, C.; Mai, A.

    2017-06-01

    The successful integration of graphene into microelectronic devices depends strongly on the availability of fast and nondestructive characterization methods of graphene grown by CVD on large diameter production wafers [1-3] which are in the interest of the semiconductor industry. Here, a high-throughput optical metrology method for measuring the thickness and uniformity of large-area graphene sheets is demonstrated. The method is based on the combination of spectroscopic ellipsometry and normal incidence reflectometry in UV-Vis wavelength range (200-800 nm) with small light spots ( 30 μm2) realized in wafer optical metrology tool. In the first step graphene layers were transferred on a SiO2/Si substrate in order to determine the optical constants of graphene by the combination of multi-angle ellipsometry and reflectometry. Then these data were used for the development of a process control recipe of CVD graphene on 200 mm Ge(100)/Si(100) wafers. The graphene layer quality was additionally monitored by Raman spectroscopy. Atomic force microscopy measurements were performed for micro topography evaluation. In consequence, a robust recipe for unambiguous thickness monitoring of all components of a multilayer film stack, including graphene, surface residuals or interface layer underneath graphene and surface roughness is developed. Optical monitoring of graphene thickness uniformity over a wafer has shown an excellent long term stability (s=0.004 nm) regardless of the growth of interfacial GeO2 and surface roughness. The sensitivity of the optical identification of graphene during microelectronic processing was evaluated. This optical metrology technique with combined data collection exhibit a fast and highly precise method allowing one an unambiguous detection of graphene after transferring as well as after the CVD deposition process on a Ge(100)/Si(100) wafer. This approach is well suited for industrial applications due to its repeatability and flexibility.

  19. Model-based Computer Aided Framework for Design of Process Monitoring and Analysis Systems

    DEFF Research Database (Denmark)

    Singh, Ravendra; Gernaey, Krist; Gani, Rafiqul

    2009-01-01

    In the manufacturing industry, for example, the pharmaceutical industry, a thorough understanding of the process is necessary in addition to a properly designed monitoring and analysis system (PAT system) to consistently obtain the desired end-product properties. A model-based computer....... The knowledge base provides the necessary information/data during the design of the PAT system while the model library generates additional or missing data needed for design and analysis. Optimization of the PAT system design is achieved in terms of product data analysis time and/or cost of monitoring equipment......-aided framework including the methods and tools through which the design of monitoring and analysis systems for product quality control can be generated, analyzed and/or validated, has been developed. Two important supporting tools developed as part of the framework are a knowledge base and a model library...

  20. Acoustic Emission Based In-process Monitoring in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    The applicability of acoustic emission (AE) measurements for in-process monitoring in the Robot Assisted Polishing (RAP) process was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate removal...... improving the efficiency of the process. It also allows for intelligent process control and generally enhances the robustness and reliability of the automated RAP system in industrial applications....... of the part from the machine tool. In this study, development of surface roughness during polishing rotational symmetric surfaces by the RAP process was inferred from AE measurements. An AE sensor was placed on a polishing tool, and a cylindrical rod of Vanadis 4E steel having an initial turned surface...

  1. Monitoring wear and corrosion in industrial machines and systems: A radiation tool

    International Nuclear Information System (INIS)

    Konstantinov, I.O.; Zatolokin, B.V.

    1994-01-01

    Industrial equipment and machines, transport systems, nuclear and conventional power plants, pipelines, and other materials is substantially influenced by degradation processes such as wear and corrosion. For safety and economic reasons, appropriately monitoring the damage could prevent dangerous accidents. When the surfaces of machine parts under investigation are not easy to reach or are concealed by overlying structures, nuclear methods have become powerful tools for examination. They include X-ray radiography, neutron radiography, and a technique known as thin layer activation (TLA)

  2. EDITORIAL: Industrial Process Tomography

    Science.gov (United States)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  3. The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy in Beverage and Food Fermentation Process Monitoring

    Directory of Open Access Journals (Sweden)

    Shaneel Chandra

    2017-09-01

    Full Text Available The production of several agricultural products and foods are linked with fermentation. Traditional methods used to control and monitor the quality of the products and processes are based on the use of simple chemical analysis. However, these methods are time-consuming and do not provide sufficient relevant information to guarantee the chemical changes during the process. Commonly used methods applied in the agriculture and food industries to monitor fermentation are those based on simple or single-point sensors, where only one parameter is measured (e.g., temperature or density. These sensors are used several times per day and are often the only source of data available from which the conditions and rate of fermentation are monitored. In the modern food industry, an ideal method to control and monitor the fermentation process should enable a direct, rapid, precise, and accurate determination of several target compounds, with minimal to no sample preparation or reagent consumption. Here, state-of-the-art advancements in both the application of sensors and analytical tools to monitor beverage and food fermentation processes will be discussed.

  4. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    Science.gov (United States)

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comfort monitoring? Environmental assessment follow-up under community-industry negotiated environmental agreements

    International Nuclear Information System (INIS)

    Noble, Bram; Birk, Jasmine

    2011-01-01

    Negotiated environmental agreements are becoming common practice in the mining industry. In principle, negotiated environmental agreements are said to respond to many of the shortcomings of environmental impact assessment by providing for improved follow-up of project impacts through, among other things, data provision, engaging stakeholders in the monitoring and management of project impacts, and building capacity at the local level to deal with project-induced environmental change. In practice, however, little is known about the efficacy of follow-up under negotiated environmental agreements between proponents and communities and the demonstrated value added to project impact management. This paper examines follow-up practice under negotiated environmental agreements with a view to understanding whether and how community-based monitoring under privatized agreements actually contributes to improved follow-up and impact management. Based on lessons emerging from recent experiences with environmental agreements in Canada's uranium industry, we show that follow-up under negotiated agreements may be described as 'comfort monitoring'. While such monitoring does improve community-industry relations and enhance corporate image, it does little to support effects-based management. If follow-up under negotiated agreements is to be credible over the long term, there is a need to ensure that monitoring results are useful for, and integrated with, regulatory-based monitoring and project impact management practices.

  6. Monitoring of operating processes

    International Nuclear Information System (INIS)

    Barry, R.F.

    1981-01-01

    Apparatus is described for monitoring the processes of a nuclear reactor to detect off-normal operation of any process and for testing the monitoring apparatus. The processes are evaluated by response to their paramters, such as temperature, pressure, etc. The apparatus includes a pair of monitoring paths or signal processing units. Each unit includes facilities for receiving on a time-sharing basis, a status binary word made up of digits each indicating the status of a process, whether normal or off-normal, and test-signal binary words simulating the status binary words. The status words and test words are processed in succession during successive cycles. During each cycle, the two units receive the same status word and the same test word. The test words simulate the status words both when they indicate normal operation and when they indicate off-normal operation. Each signal-processing unit includes a pair of memories. Each memory receives a status word or a test word, as the case may be, and converts the received word into a converted status word or a converted test word. The memories of each monitoring unit operate into a non-coincidence which signals non-coincidence of the converted word out of one memory of a signal-processing unit not identical to the converted word of the other memory of the same unit

  7. Study of radiation portal monitor and its application to metal recycling industry

    International Nuclear Information System (INIS)

    Pujol, L.; Lara-Calleja, S.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.

    2009-01-01

    The industry of the iron and the steel in one of the most important sectors in Spain for its economic development. the recycling of metallic materials as well as the import of metallic scrap is very significant. Several reports on accidental dispersion or smelting of radioactive sources in metal recycling industries confirm the possibility that radioactive material might be mixed with scrap. In consequence, this type of accident shows the necessity of a rigorous and specific radiation control of the sector. The control of these materials with radioactive content can be carried out with radiation portal monitors installed at the entrance of these industries. The detection of radioactive materials presents special features as the continuous background acquisition or the minimisation of the relatively large number of innocent/nuisance detections. In the present work, we study a radiation portal monitor, the FHT-1388-T Thermo-Eberline. This is one of the usual radiation portal systems installed at the entrance of the metal recycling industry. Se study the characteristics and parameters of this portal monitor to optimise its use. furthermore, we propose some rapid tests for radiation portal systems in metal recycling industry. (Author) 16 refs

  8. Near-infrared spectroscopic monitoring of a series of industrial batch processes using a bilinear grey model

    OpenAIRE

    Van Sprang, ENM; Ramaker, HJ; Westerhuis, JA; Smilde, AK; Gurden, SP; Wienke, D

    2003-01-01

    A good process understanding is the foundation for process optimization, process monitoring, end-point detection, and estimation of the end-product quality. Performing good process measurements and the construction of process models will contribute to a better process understanding. To improve the process knowledge it is common to build process models. These models are often based on first principles such as kinetic rates or mass balances. These types of models are also known as hard or white...

  9. Modularization of Industrial Service Processes

    DEFF Research Database (Denmark)

    Frandsen, Thomas; Hsuan, Juliana

    In this paper we examine how complex service processes can be dealt with through the lenses of modularization strategies. Through an illustrative case study of a manufacturer of industrial equipment for process industries we propose the use of the service modularity function to conceptualize...... and assess the service modularity of service offerings. The measured degree of modularity would allow us to sharpen our understanding of modularity in the context of industrial services, such as the role of standardization and component reuse on architecture flexibility. It would also provide a foundation...

  10. On-line bioprocess monitoring - an academic discipline or an industrial tool?

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Schulze, Ulrik; Nielsen, Jens Bredal

    1998-01-01

    Bioprocess monitoring capabilities are gaining increasing Importance bath in physiological studies and in bioprocess development, The present article focuses on on-line analytical systems since these represent the backbone of most bioprocess monitoring systems, both in academia and in industry. W...

  11. Industrial processing of canned beans

    Directory of Open Access Journals (Sweden)

    Vanderleia Schoeninger

    Full Text Available ABSTRACT: Beans are popular as a protein-filled legume of high nutritional value, being one of the most planted species in the world. However, recent years have seen a decrease in the consumption of beans, owing to the time necessary to cook it domestically. Thus, it is being replaced in people’s diets by other foods. An alternative preparation that supplies modern consumers’ demands is industrially processed beans. This article aimed to provide a literature review on the processing of canned beans. Few recent studies have been performed in Brazil on this subject, as most studies have focused instead on the technological quality of dry bean grains processing. In this article industrial processing concepts and features, production unit operations, and canned beans quality standards will be discussed. These efforts are expected to contribute to the Brazilian beans production chain, and consequently to increase consumption of canned beans and the demand for industrial processing of beans in both the domestic market and future product exports.

  12. Fault Diagnosis of Complex Industrial Process Using KICA and Sparse SVM

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-01-01

    Full Text Available New approaches are proposed for complex industrial process monitoring and fault diagnosis based on kernel independent component analysis (KICA and sparse support vector machine (SVM. The KICA method is a two-phase algorithm: whitened kernel principal component analysis (KPCA. The data are firstly mapped into high-dimensional feature subspace. Then, the ICA algorithm seeks the projection directions in the KPCA whitened space. Performance monitoring is implemented through constructing the statistical index and control limit in the feature space. If the statistical indexes exceed the predefined control limit, a fault may have occurred. Then, the nonlinear score vectors are calculated and fed into the sparse SVM to identify the faults. The proposed method is applied to the simulation of Tennessee Eastman (TE chemical process. The simulation results show that the proposed method can identify various types of faults accurately and rapidly.

  13. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  14. Supplier Performance Monitoring and Improvement (SPMI through SIPOC Analysis and PDCA Model to the ISO 9001 QMS in Sports Goods Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    2011-12-01

    Full Text Available Background: Increasing global competition and customer expectations are forcing companies to improve their supplier performance as part of their supply chain governance initiative. A sport goods manufacturing industry is intensive supplier base industry and majority of these comes under small medium enterprises with limited resources. Developing an easy - deploy, cost effective and result oriented frame work for this industry is a critical business competency. Methods: This paper lays out a framework - a "standard operating system" - for continuous supplier performance monitoring and improvement (SPMI and is composed of following sections. In the first section supplier performance monitoring and improvement is overviewed with its basic concepts, and then improvement methods used in the paper are explained based on literature review. The third and fourth section focus on the methodology, explaining the way of SIPOC Analysis and PDCA application with using ISO 9001; 2008 QMS standards and example showing its results. Results: The existing process of Supplier Performance Monitoring and Improvement (SPMI was defined and mapped and then analyzed and revised through SIPOC Analysis by incorporating to PDCA Cycle and ISO 9001 QMS to identify problem areas, variations and unnecessary activities. Corrective actions were recommended to deal with problem areas and an improved and revised Supplier Performance Monitoring and Improvement (SPMI Process is suggested. Conclusions: Every organization needs to use a proper combination and selection of quality tools, methodologies and techniques for implementing continuous quality improvement process. This framework will provide a guidance for anyone who wants to develop supplier performance measurement system in sports goods manufacturing industry and other small - medium enterprises.

  15. Industrial separation processes : fundamentals

    NARCIS (Netherlands)

    Haan, de A.B.; Bosch, Hans

    2013-01-01

    Separation processes on an industrial scale comprise well over half of the capital and operating costs. They are basic knowledge in every chemical engineering and process engineering study. This book provides comprehensive and fundamental knowledge of university teaching in this discipline,

  16. A process industry perspective. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, J. [Metsae-Serla Oyj (Finland)

    2000-07-01

    Process industries, whether they are base metals, chemicals, plastics or wood-processing, have certain common features that influence their potential to adapt to changing requirements: - The products are primarily business-to-business commodities. - The proportion of invested capital to turnover is high. - The operating life of equipment is long, 15-40 years, and the basic technology is selected when the equipment is designed. - In free competition an individual operator cannot acquire a dominating market share. Thus, competitiveness is determined by cost-effectiveness. - The preference for the mass production paradigm has increased the plant size so that every new investment project leads to an over-capacity situation at least for the continent in question. The above outlines the starting point for this article, which explores the common future of the process industry and energy. The article mainly focuses on Finland and Europe, with the time span of 5 to 15 years. It is sensible to study the future of the process industry primarily on the basis of various scenarios. However, we have not tried to create new scenario sets but have utilised the excellent material accumulated in recent years in this field. The applied sustainable development scenarios Jazz and Geo are in true conflict in almost all issues related to ecological studies. The process industry on the whole, not to mention individual companies, has relatively little influence on the decision of a specific economic region regarding the scheme it selects. The global trend appears to be leaning more towards the Jazz scenario even though the existing structures are strongly attracted to the Geo scenario. With the exception of some local operators, it appears that customers are not likely to present challenges regarding carbon dioxide to the process industry. As both equipment and phenomena have longterm influences, the importance of a sustainable energy strategy is emphasised at the level of both companies

  17. Improving industrial process control systems security

    CERN Document Server

    Epting, U; CERN. Geneva. TS Department

    2004-01-01

    System providers are today creating process control systems based on remote connectivity using internet technology, effectively exposing these systems to the same threats as corporate computers. It is becoming increasingly difficult and costly to patch/maintain the technical infrastructure monitoring and control systems to remove these vulnerabilities. A strategy including risk assessment, security policy issues, service level agreements between the IT department and the controls engineering groups must be defined. In addition an increased awareness of IT security in the controls system engineering domain is needed. As consequence of these new factors the control system architectures have to take into account security requirements, that often have an impact on both operational aspects as well as on the project and maintenance cost. Manufacturers of industrial control system equipment do however also propose progressively security related solutions that can be used for our active projects. The paper discusses ...

  18. Monitoring of the submerged arc welding process using current and voltage transducers

    International Nuclear Information System (INIS)

    Barrera, G.; Velez, M.; Espinosa, M.A.; Santos, O.; Barrera, E.; Gomez, G.

    1996-01-01

    Welding by fusion is one of the most used techniques to join materials in the manufacture industry. given the increase in applications of this welding process and the demand of more quality in the welding deposits, these welding processes are good candidates for the improvement of their instrumentation and control. Any improvement in the control technique will have a positive effect in the quality and productivity of the welding process. Some of the most significant variables in the submerged arc welding process are: current, voltage and torch speed. For the instrumentation of this research work, two transducers were designed, one for CD current monitoring and one for CD voltage monitoring of the welding machine. The design of both transducers includes an isolation amplifier. Graphical programming and the concept of virtual instrumentation were the main tools used for the design of the data acquisition system and the signal processing task. (Author) 9 refs

  19. Lyophilization: The process and industrial use

    Directory of Open Access Journals (Sweden)

    Pržić Dejan S.

    2004-01-01

    Full Text Available This article presents a general overview of lyophilization and discusses the underlying principles of the process through the basics of: formulation, freezing, primary drying and secondary drying. In this article lyophilization is defined as a stabilizing process in which the substance is first frozen and then the quantity of the solvent is reduced first by sublimation (primary drying and then by desorption (secondary drying to values that will no longer support biological growth or chemical reactions. Special mention was made of the industrial use of the process and emphasis was placed on the lyophilization of pharmaceutical products and food industry products. Lyophilization equipment, as well as the formulation of materials that can be lyophilized, are described in sufficient detail to give information on the restrictions and advantages of lyophlization. Processing economics and comparison with conventional drying methods are presented. A historical overview of the process and future developments presented from the industrial viewpoint give an insight on the previous application of lyophilization and the prospects of its broad industrial use.

  20. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  1. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  2. Radon in uranium mining industry and application of SSNTD in monitoring and dose evaluation

    International Nuclear Information System (INIS)

    Khan, A.H.

    2006-01-01

    Radon is present everywhere and accounts for a globally major share of natural radiation exposure of the population. Though it is present in most of the underground workings it is a source of concern in uranium mining and ore processing industry as well as in many other operations carried out in confined spaces below the ground, like railway tunnels and non-uranium underground mines. Many monitoring techniques are available for evaluation of radon and its short-lived progeny concentrations. Scintillation cell techniques, also called Lucas cell, is one of the earliest developed methods of radon monitoring still widely used in mines where appreciable concentrations of radon above about 40-50 Bq.m -3 are expected. For low concentration of radon as observed in the atmosphere, dwellings and other workplaces, the radon absorption in charcoal followed by gamma counting, two filter method and electrostatic techniques are available. Solid state nuclear track detectors (SSNTD) are now widely used for a variety of situations for monitoring of low level of radon over an extended period of time. It is now extensively used in radon monitoring in dwellings and also in radon dosimetry in mines. Radon daughters being the more important contributors to the internal radiation exposure are also being monitored using conventional techniques as well as SSNTD. Various monitoring techniques for radon and its progeny and the concentrations observed at different stages of uranium mining, ore processing and tailings management are discussed in this presentation. (author)

  3. Monitoring of metabolites and by-products in a down-scaled industrial lager beer fermentation

    OpenAIRE

    Sjöström, Fredrik

    2013-01-01

    The sugar composition of the wort and how these sugars are utilised by the yeast affects the organoleptic properties of the beer. To monitor the saccharides in the wort before inoculation and during fermentation is important in modern brewing industry. Reducing the duration of the brewing process is valuable and can be achieved by reducing the fermentation time by an increase in temperature. However, this must be done without changing the quality and characteristics of the end product, anothe...

  4. Process monitoring with optical fibers and harsh environment sensors

    International Nuclear Information System (INIS)

    Marcus, M.A.; Wang, A.

    1999-01-01

    This volume contains 35 papers presented at the symposium. Some of the topics covered are: sensors for the energy industry; sensors for materials evaluation and structural monitoring; sensors for engine industry; and other harsh environments sensors

  5. Greening Food Processing Industry in Vietnam: Putting Industrial Ecology to Work

    OpenAIRE

    Tran Thi My Dieu

    2003-01-01

    The significant contribution to Vietnam's gross domestic product over the years give evidence of the important role of food processing industry in the economic and industrial development of the country. This is even more relevant from now onwards, as it is Vietnam's development strategy to become one of the top agricultural countries in the world by the year 2010. However, it is not difficult to recognize that the rapid growth of food processing industry in Vietnam goes together with environm...

  6. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  7. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  8. Current status of process monitoring for IAEA safeguards

    International Nuclear Information System (INIS)

    Koroyasu, M.

    1987-06-01

    Based on literature survey, this report tries to answer some of the following questions on process monitoring for safeguards purposes of future large scale reprocessing plants: what is process monitoring, what are the basic elements of process monitoring, what kinds of process monitoring are there, what are the basic problems of process monitoring, what is the relationship between process monitoring and near-real-time materials accountancy, what are actual results of process monitoring tests and what should be studied in future. A brief description of Advanced Safeguards Approaches proposed by the four states (France, U.K., Japan and U.S.A.), the approach proposed by the U.S.A., the description of the process monitoring, the main part of the report published as a result of one of the U.S. Support Programmes for IAEA Safeguards and an article on process monitoring presented at an IAEA Symposium held in November 1986 are given in the annexes. 24 refs, 20 figs, tabs

  9. ECONOMIC ESSENCE OF MODERN INVESTMENT PROCESSES IN THE GRAIN PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Inna Kanashkina

    2015-11-01

    Full Text Available The subject of the research is theoretical and methodological bases of formation of effective investment in priorities feed processing industry in Ukraine. The object of research is the investment process in feed processing Ukrainian industry, the main direction and the way to increase the efficiency of the investment process in the industry. The aim is to develop an integrated approach to the study of the economic substance of investments to improve the methods to determine their effectiveness, the study of factors of investment environment, study methodology for determining business risk, development of proposals of the priority areas of investing in feed processing industry, the formation of effective investment strategies for its development in the conditions of market transformation. Methods. We used the following methods: dialectical, abstract logic, Economics and Statistics and the systemic-functional methods of knowledge of economic processes. The dialectical method has allowed the author to analyze the development of research in the last five years, identified reserves and propose ways for its further development. Abstract-logical method of waste classification of the factors influencing the efficiency of the investment process in the industry, the methodological approaches to the formation of the components of the conceptual apparatus studied category. Economic-statistical method used in the study and synthesis of trends and patterns of the dynamics of the industry at the present stage. Systemic-functional method allowed to generalize the theoretical and methodological foundations of development effectiveness feed processing industry. The study also used methods: a comparative analysis – for comparing actual data reporting and previous years; model approach – to determine the entrepreneurial risk in the enterprises of the industry; expert assessments and cost approaches to identify key trends and ways to improve the country

  10. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    2012-01-01

    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  11. Implementation of Video Monitoring In Aluminium Industry

    OpenAIRE

    Hedlund, Ann; Andersson, Ing-Marie; Rosén, Gunnar

    2015-01-01

    The aim was to evaluate results and experiences from development of new technology, a training program and implementation of strategies for the use of a video exposure monitoring method, PIMEX. Starting point of this study is an increased incidence of asthma among workers in the aluminium industry. Exposure peaks of fumes are supposed to play an important role. PIMEX makes it possible to link used work practice, use of control technology, and so forth to peaks. Nine companies participated in ...

  12. Heavy Water - Industrial Separation Processes

    International Nuclear Information System (INIS)

    Peculea, M.

    1984-01-01

    This monograph devoted to the heavy water production mainly presents the Romanian experience in the field which started in early sixties from the laboratory scale production and reached now the level of large scale industrial production at ROMAG-Drobeta, Romania. The book is structured in eleven chapters entitled: Overview, The main physical properties, Sources, Uses, Separation factor and equilibrium constant, Mathematical modelling of the separation process, Thermodynamical considerations on the isotope separation, Selection criteria for heavy water separation processes, Industrial installations for heavy water production, Prospects, Acknowledgements. 200 Figs., 90 Tabs., 135 Refs

  13. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    International Nuclear Information System (INIS)

    Timmermans, E.A.H.; Groote, F.P.J. de; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly fluctuating gas composition, a high gas temperature and the presence of fly ash and corrosive effluents. Since the setup is primarily intended for the analysis of combustion gases with extremely high concentrations of pollutants, not much effort has been made to achieve low detection limits. It was found that an inductively coupled argon plasma was too sensitive to molecular gas introduction. Therefore, a microwave induced plasma torch, compromising both the demands of a high durability and an effective evaporation and excitation of the analyte was used as excitation source. The analysis system has been installed at an industrial hazardous waste incinerator and successfully tested on combustion gases present above the incineration process. Abundant elements as zinc, lead and sodium could be easily monitored

  14. AUTOMATED PROCESS MONITORING: APPLYING PROVEN AUTOMATION TECHNIQUES TO INTERNATIONAL SAFEGUARDS NEEDS

    International Nuclear Information System (INIS)

    O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Devol, Timothy A.; Egorov, Oleg; Clements, John P.

    2008-01-01

    Identification and quantification of specific alpha- and beta-emitting radionuclides in complex liquid matrices is highly challenging, and is typically accomplished through laborious wet chemical sample preparation and separations followed by analysis using a variety of detection methodologies (e.g., liquid scintillation, gas proportional counting, alpha energy analysis, mass spectrometry). Analytical results may take days or weeks to report. Chains of custody and sample security measures may also complicate or slow the analytical process. When an industrial process-scale plant requires the monitoring of specific radionuclides as an indication of the composition of its feed stream or of plant performance, radiochemical measurements must be fast, accurate, and reliable. Scientists at Pacific Northwest National Laboratory have assembled a fully automated prototype Process Monitor instrument capable of a variety of tasks: automated sampling directly from a feed stream, sample digestion/analyte redox adjustment, chemical separations, radiochemical detection and data analysis/reporting. The system is compact, its components are fluidically inter-linked, and analytical results could be immediately transmitted to on- or off-site locations. The development of a rapid radiochemical Process Monitor for 99Tc in Hanford tank waste processing streams, capable of performing several measurements per hour, will be discussed in detail. More recently, the automated platform was modified to perform measurements of 90Sr in Hanford tank waste stimulant. The system exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs

  15. Process monitoring in high volume semiconductor production environment with in-fab TXRF

    International Nuclear Information System (INIS)

    Ghatak-Roy, A.R.; Hossain, T.Z.

    2000-01-01

    After its introduction in the 80's, TXRF has become an important tool for surface contamination analysis. This is particularly true for the semiconductor industries, where monitoring trace level contamination in ultra clean environment is absolutely necessary for successful device production with reasonable yield. In FAB 25 of the Advanced Micro Devices in Austin, we have installed two TXRF tools, which are model TXRF3750 manufactured by Rigaku. They contain rotating tungsten anodes with three beam capability for wide selection of elements. One of the beams (WM) is used for monitoring of low Z elements such as Na, Mg and Al. The standard output is 9 kW with 300 mA at 30 kV. The tool runs 24 hours a day, 7 days a week, except for maintenance and breakdowns. We have been using TXRF for in-fab monitoring of various tools and processes for trace contamination and some quantification of materials. This in-fab operation is important because it gives real time monitoring without the necessity of bringing the wafers out of the fab. Secondly, being in ultra clean fab environment, the risk of background contamination is minimized. Since TXRF measurement is fast and does not need any sample preparation, this works very well as production support tool. Several wafer fab technicians have been trained to use the tool for round the clock operation. We have successfully monitored tools and processes in our fab. One example is the monitoring of numerous sinks used in the cleaning of production wafers after various processes. Monitor wafers are run after sink cleaning and solvent changes and they are then analyzed for any contamination. Another example is the monitoring of tools that use Ferrofluidic seals so as to prevent any contamination from Fe and Cr. Other tools using TXRF include diffusion furnaces, etchers and plasma cleaning tools. We have also been monitoring processes such as ion implantation, metal deposition and rapid thermal annealing. In this presentation, we will

  16. An industrial radiation source for food processing

    International Nuclear Information System (INIS)

    Sadat, R.

    1986-01-01

    The scientific linacs realized by CGR MeV in France have been installed in several research centers, the medical accelerators of CGR MeV have been installed in radiotherapy centers all over the world, and the industrial linacs have been used for radiography in heavy industries. Based on the experience for 30 years, CGR MeV has realized a new industrial radiation source for food processing. CARIC is going to install a new machine of CGR MeV, CASSITRON, as the demand for radiation increased. This machine has been devised specially for industrial irradiation purpose. Its main features are security, simplicity and reliability, and it is easy to incorporate it into a production line. The use of CASSITRON for food industry, the ionizing effect on mechanically separated poultry meat, the capital and processing cost and others are explained. Only 10 % of medical disposable supplies is treated by ionizing energy in France. The irradiation for food decontamination, and that for industrial treatment are demanded. Therefore, CARIC is going to increase the capacity by installing a CASSITRON for sterilization. The capital and processing cost are shown. The start of operation is expected in March, 1986. At present, a CASSITRON is being installed in the SPI food processing factory, and starts operation in a few weeks. (Kako, I.)

  17. Environmental monitoring program for Itataia industrial complex before operational phase

    International Nuclear Information System (INIS)

    Condessa, M.L.M.B.

    1982-01-01

    This environmental monitoring program aims to characterize the environment in adjacent area of Itataia Industrial Complex. The places and frequencies of samples and measurements, as well as analysis and parameters to be measured in each type of samples are presented. (C.M.) [pt

  18. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  19. Automatically processed alpha-track radon monitor

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided

  20. Study of ozone gas formed in the industrial radiation process with cobalt-60 and its impact on the environment

    International Nuclear Information System (INIS)

    Uzueli, Daniel Henrique

    2013-01-01

    The radiation processing is present in various products such as foods, medical disposable, electrical cables, gems, among others. This process aims to improve the properties, sterilize or sanitize irradiated products. In industrial irradiators facilities, electromagnetic radiation (gamma and X-rays) or electrons before they interact with the products in processing, there are a layer of air. To interact with this air layer, it causes radiolytic effects on the molecules present in the ambient atmosphere, and the main interaction are with the oxygen molecules that have their bonds broken, separating them into two highly reactive atoms that recombine with the other molecule of oxygen to form ozone gas. In this work it was studied the formation, decay and dispersion of ozone in industrial gamma irradiators facilities that use cobalt-60 as a source of radiation. The monitoring of ozone concentration was performed by optical absorption method in a commercial monitor. (author)

  1. In-line near real time monitoring of fluid streams in separation processes for used nuclear fuel - 5146

    International Nuclear Information System (INIS)

    Nee, K.; Nilsson, M.

    2015-01-01

    Applying spectroscopic tools for chemical processes has been intensively studied in various industries owing to its rapid and non-destructive analysis for detecting chemical components and determine physical characteristic in a process stream. The general complexity of separation processes for used nuclear fuel, e.g., chemical speciation, temperature variations, and prominent process security and safety concerns, require a well-secured and robust monitoring system to provide precise information of the process streams at real time without interference. Multivariate analysis accompanied with spectral measurements is a powerful statistic technique that can be used to monitor this complex chemical system. In this work, chemometric models that respond to the chemical components in the fluid samples were calibrated and validated to establish an in-line near real time monitoring system. The models show good prediction accuracy using partial least square regression analysis on the spectral data obtained from UV/Vis/NIR spectroscopies. The models were tested on a solvent extraction process using a single stage centrifugal contactor in our laboratory to determine the performance of an in-line near real time monitoring system. (authors)

  2. Real time EM waves monitoring system for oil industry three phase flow measurement

    International Nuclear Information System (INIS)

    Al-Hajeri, S; Wylie, S R; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Monitoring fluid flow in a dynamic pipeline is a significant problem in the oil industry. In order to manage oil field wells efficiently, the oil industry requires accurate on line sensors to monitor the oil, gas, and water flow in the production pipelines. This paper describes a non-intrusive sensor that is based on an EM Waves cavity resonator. It determines and monitors the percentage volumes of each phase of three phase (oil, gas, and water) in the pipeline, using the resonant frequencies shifts that occur within an electromagnetic cavity resonator. A laboratory prototype version of the sensor system was constructed, and the experimental results were compared to the simulation results which were obtained by the use of High Frequency Structure Simulation (HFSS) software package.

  3. Alarm management for process control a best-practice guide for design, implementation, and use of industrial alarm systems

    CERN Document Server

    Rothenberg, Douglas H

    2014-01-01

    No modern industrial enterprise, particularly in such areas as chemical processing, can operate without a secure, and reliable, network of automated monitors and controls. And those operations need alarm systems to alert engineers and managers the moment anything goes wrong or needs attention. This book, by one of the world's leading experts on industrial alarm systems, will provide A to Z coverage of designing, implementing, and maintaining an effective alarm network.

  4. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Knag , Heeshin

    2017-01-01

    International audience; In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plat...

  5. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Heeshin Knag

    2016-01-01

    In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc were ...

  6. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  7. Comparison of Raman, NIR, and ATR FTIR spectroscopy as analytical tools for in-line monitoring of CO2 concentration in an amine gas treating process

    NARCIS (Netherlands)

    Kachko, A.; Ham, L.V. van der; Bardow, A.; Vlugt, T.J.H.; Goetheer, E.L.V.

    2016-01-01

    Chemical absorption of CO2 using aqueous amine-based solvents is one of the common approaches to control acidic gases emissions to the atmosphere. Improvement in the efficiency of industrial processes requires precise monitoring tools that fit with the specific application. Process monitoring using

  8. Hygienic-sanitary working practices and implementation of a Hazard Analysis and Critical Control Point (HACCP plan in lobster processing industries

    Directory of Open Access Journals (Sweden)

    Cristina Farias da Fonseca

    2013-03-01

    Full Text Available This study aimed to verify the hygienic-sanitary working practices and to create and implement a Hazard Analysis Critical Control Point (HACCP in two lobster processing industries in Pernambuco State, Brazil. The industries studied process frozen whole lobsters, frozen whole cooked lobsters, and frozen lobster tails for exportation. The application of the hygienic-sanitary checklist in the industries analyzed achieved conformity rates over 96% to the aspects evaluated. The use of the Hazard Analysis Critical Control Point (HACCP plan resulted in the detection of two critical control points (CCPs including the receiving and classification steps in the processing of frozen lobster and frozen lobster tails, and an additional critical control point (CCP was detected during the cooking step of processing of the whole frozen cooked lobster. The proper implementation of the Hazard Analysis Critical Control Point (HACCP plan in the lobster processing industries studied proved to be the safest and most cost-effective method to monitor each critical control point (CCP hazards.

  9. Radiation processing: a versatile technology for industry

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1996-01-01

    Soon after the discovery of x-ray in 1895 and radioactivity in 1896, it was recognized that ionizing radiation can modify the chemical, physical and/or biological properties of materials. However, it was only in the late 50's, when large radiation sources become available, has this unique property of radiation found industrial applications in radiation processing. Today, radiation processing has been used by industry in such diverse applications, such as radiation sterilization/decontamination of medical products, pharmaceuticals, cosmetics and their raw materials; radiation cross-linking of wire and cable insulation; production of heat shrinkable materials and polymer foam; and radiation curing of coatings, adhesives and inks on a wide variety of substrates. In addition to being a clean environment-friendly technology, radiation processing can also be used for the conservation of the environment by such processes as radiation treatment of flue gases to remove SO 2 and NO x and disinfection of sewage sludge. Because of the many advantages offered by radiation processing, industry is showing strong interest in the technology as evidenced by the growing number of industrial radiation facilities in many countries. (author)

  10. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    Science.gov (United States)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  11. New developments in French transient monitoring system: SYSFAC From the experiments to the industrial process

    Energy Technology Data Exchange (ETDEWEB)

    Balley, J. [Electricite de France, 69 - Villeurbanne (France). SEPTEN; Bertagnolio, D. [Electricite de France, 69 - Villeurbanne (France). SEPTEN; Faidy, C. [Electricite de France, 69 - Villeurbanne (France). SEPTEN; Kappler, F. [Electricite de France, 69 - Villeurbanne (France). SEPTEN; Kergoat, M. [Electricite de France, 69 - Villeurbanne (France). SEPTEN; L`Huby, Y. [Electricite de France, 69 - Villeurbanne (France). SEPTEN; Genette, P. [Electricite de France, 69 - Villeurbanne (France). SEPTEN; Savoldelli, D. [Electricite de France, Production-Transport DMAINT, 13 Esplanade Charles de Gaulle, 92060 La Defense (France); Fournier, I. [Electricite de France, Direction Etudes et Recherches REME, 25 allee privee, Carrefour Pleyel, 93206 St. Denis (France)

    1995-01-01

    After more than 15 years of experience with regulatory transient data collection, Electricite de France decided to design a new concept of fatigue monitoring system called SYSFAC. This new system is the result of seven years of successful experimentation with fatigue meters. This system will be connected to the on-site data acquisition system without any complementary instrumentation. The SYSFAC system has a modular structure: the mechanical transient module, the functional transient module, the fatigue meters module and the global damage computing module all have a high level of flexibility to be applied to various types of circuits. After the preliminary studies had been achieved, it was decided to undertake the industrial phase of the SYSFAC project. Specific codes on PC computers have been used to validate the basic concepts and the operator interface. Real-size coding will last one year and the first SYSFAC system will be delivered to the pilot power plant by the end of 1995. ((orig.)).

  12. New developments in French transient monitoring system: SYSFAC From the experiments to the industrial process

    International Nuclear Information System (INIS)

    Balley, J.; Fournier, I.

    1995-01-01

    After more than 15 years of experience with regulatory transient data collection, Electricite de France decided to design a new concept of fatigue monitoring system called SYSFAC. This new system is the result of seven years of successful experimentation with fatigue meters. This system will be connected to the on-site data acquisition system without any complementary instrumentation. The SYSFAC system has a modular structure: the mechanical transient module, the functional transient module, the fatigue meters module and the global damage computing module all have a high level of flexibility to be applied to various types of circuits. After the preliminary studies had been achieved, it was decided to undertake the industrial phase of the SYSFAC project. Specific codes on PC computers have been used to validate the basic concepts and the operator interface. Real-size coding will last one year and the first SYSFAC system will be delivered to the pilot power plant by the end of 1995. ((orig.))

  13. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  14. Engineering Process Monitoring for Control Room Operation

    CERN Document Server

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close collaboration of control room teams, exploitation personnel and process specialists. In this paper some principles for the engineering of monitoring information for control room operation are developed at the example of the exploitation of a particle accelerator at the European Laboratory for Nuclear Research (CERN).

  15. Enhancing probiotic stability in industrial processes

    Directory of Open Access Journals (Sweden)

    Miguel Gueimonde

    2012-06-01

    Full Text Available Background: Manufacture of probiotic products involves industrial processes that reduce the viability of the strains. This lost of viability constitutes an economic burden for manufacturers, compromising the efficacy of the product and preventing the inclusion of probiotics in many product categories. Different strategies have been used to improve probiotic stability during industrial processes. These include technological approaches, such as the modification of production parameters or the reformulation of products, as well as microbiological approaches focused on the strain intrinsic resistance. Among the later, both selection of natural strains with the desired properties and stress-adaptation of strains have been widely used. Conclusion: During recent years, the knowledge acquired on the molecular basis of stress-tolerance of probiotics has increased our understanding on their responses to industrial stresses. This knowledge on stress-response may nowadays be used for the selection of the best strains and industrial conditions in terms of probiotic stability in the final product.

  16. Plant-wide quantitative assessment of a process industry system's operating state based on color-spectrum

    Science.gov (United States)

    Kai, Sun; Jianmin, Gao; Zhiyong, Gao; Hongquan, Jiang; Xu, Gao

    2015-08-01

    This paper presents a general theoretical framework to assess the operating state of a process industry system quantitatively based on meshing the theory of scientific data visualization and digital image processing. First, a series of color-spectrum, which represent the operating state of the system, is formed by mapping the monitor data set to a group of digital color images. Second, the common feature of color-spectrum, which is named benchmark-color-spectrum, is extracted as a standard of the normal state. Third, the abnormal degree can be quantified by calculating the difference of the benchmark-color-spectrum with observed color-spectrum. At last, a plant-wide operating state of the system in a period of time can be shown by plotting quantitative abnormal degree. Two case is included to illustrate the proposed method and its appropriateness. One is a general process industry system simulator named Tennessee Eastman Process. Another is an air compressor group which belongs to a real chemical plant.

  17. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant

    DEFF Research Database (Denmark)

    Kjellerup, B. V.; Keiding, Kristian; Nielsen, Per Halkjær

    2001-01-01

    dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory......A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order...... to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge...

  18. Greening Food Processing Industry in Vietnam: Putting Industrial Ecology to Work

    NARCIS (Netherlands)

    Tran Thi My Dieu,

    2003-01-01

    The significant contribution to Vietnam's gross domestic product over the years give evidence of the important role of food processing industry in the economic and industrial development of the country. This is even more relevant from now onwards, as it is Vietnam's development strategy to become

  19. Fiber Bragg grating sensors in harsh environments: considerations and industrial monitoring applications

    Science.gov (United States)

    Méndez, Alexis

    2017-06-01

    Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.

  20. Engineering Process Monitoring for Control Room Operation

    OpenAIRE

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close coll...

  1. Development and Piloting of Sustainability Assessment Metrics for Arctic Process Industry in Finland—The Biorefinery Investment and Slag Processing Service Cases

    Directory of Open Access Journals (Sweden)

    Roope Husgafvel

    2017-09-01

    Full Text Available Regionally, there has been a lot of focus on the advancement of sustainable arctic industry and circular economy activities within process industry in the Finnish Lapland. In this study, collaboration between university and industry was established facilitated by regional development actors to develop and pilot test a sustainability assessment approach taking into account previous work in this field. The industry partners in this study were a biorefinery investment in the first case and a slag processing service in the second case. As a result of the joint efforts, novel sets of environmental and economic sustainability assessment indicators and associated sub-indicators were developed and the existing set of social indicators was updated. Moreover, environmental and social sustainability assessments were implemented in the biorefinery case accompanied by a separate evaluation of regional economic impacts. In the slag processing case, environmental, economic and social sustainability were assessed. The results of the sustainability assessments indicated very good level of overall performance in both cases. However, specific elements that contributed to lower level of performance included lack of specific sustainability management and reporting approaches and need for better performance in supply chain sustainability, monitoring of greenhouse gas emissions, life cycle thinking and circular economy training. The expected effects of the planned investment on the regional economy were very positive based on the results of the evaluation.

  2. Environmental monitoring in the gas industry of Russia

    International Nuclear Information System (INIS)

    Sedykh, A.D.; Dinkov, V.A.; Gritsenko, A.I.; Bosnyatsky, G.P.; Maksimov, V.M.

    1997-01-01

    The paper describes the basic principles and targets of production pollution monitoring (PPM) along with the analysis of structure, content and main functions of PPM relative to the experience of EEC and existing legislative and normative basis. The comparison, quantitative and qualitative analysis of pollutant emission at the Russian gas industry enterprises is given. Promising scientific and research targets the solution of which will promote improvement of ecological situation and will allow to meet international environmental agreements have been formulated. (au)

  3. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  4. Early Phase Process Evaluation: Industrial Practices

    Directory of Open Access Journals (Sweden)

    Zulfan Adi Putra

    2016-09-01

    Full Text Available Process route evaluation is a part of research and development (R&D works in an industrial chemical project life cycle. In this early phase, good process evaluation, including process synthesis and designs, provide guidance’s on the R&D project. The paper aimed to collect practical methods used in this early phase process route evaluation from author’s 10 years of industrial experiences.  The collected methods range from forward-backward process synthesis, functional process design, use of cost estimation, and applications of Monte Carlo simulation. Led by a good project management (e.g. via a stage-gate approach use of these methods have shown beneficial results. Some important results are strong arguments on whether or not the project will continue, as well as relevant technical and economic issues identified during this early phase process synthesis and design. Later on, these issues become guidance’s to the follow-up project, if it is continued.

  5. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  6. The industrial processing of unidirectional fiber prepregs

    Science.gov (United States)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  7. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  8. MIR-ATR sensor for process monitoring

    International Nuclear Information System (INIS)

    Geörg, Daniel; Schalk, Robert; Beuermann, Thomas; Methner, Frank-Jürgen

    2015-01-01

    A mid-infrared attenuated total reflectance (MIR-ATR) sensor has been developed for chemical reaction monitoring. The optical setup of the compact and low-priced sensor consists of an IR emitter as light source, a zinc selenide (ZnSe) ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The practical applicability was tested during esterification of ethanol and formic acid to ethyl formate and water as a model reaction with subsequent distillation. For reference analysis, a Fourier transform mid-infrared (FT-MIR) spectrometer with diamond ATR module was applied. On-line measurements using the MIR-ATR sensor and the FT-MIR spectrometer were performed in a bypass loop. The sensor was calibrated by multiple linear regression in order to link the measured absorbance in the four optical channels to the analyte concentrations. The analytical potential of the MIR-ATR sensor was demonstrated by simultaneous real-time monitoring of all four chemical substances involved in the esterification and distillation process. The temporal courses of the sensor signals are in accordance with the concentration values achieved by the commercial FT-MIR spectrometer. The standard error of prediction for ethanol, formic acid, ethyl formate, and water were 0.38 mol L   −  1 , 0.48 mol L   −  1 , 0.38 mol L   −  1 , and 1.12 mol L   −  1 , respectively. A procedure based on MIR spectra is presented to simulate the response characteristics of the sensor if the transmission ranges of the filters are varied. Using this tool analyte specific bandpass filters for a particular chemical reaction can be identified. By exchanging the optical filters, the sensor can be adapted to a wide range of processes in the chemical, pharmaceutical, and beverage industries. (paper)

  9. Process monitoring for reprocessing plant safeguards: a summary review

    International Nuclear Information System (INIS)

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed

  10. Interfacing industrial process control systems to LEP/LHC

    International Nuclear Information System (INIS)

    Rabany, M.

    1992-01-01

    Modern industrial process control systems have developed to meet the needs of industry to increase the production while decreasing the costs. Although particle accelerators designers have pioneered in control systems during the seventies, it has now become possible to them to profit of industrial solutions in substitution of, or in complement with the more traditional home made ones. Adapting and integrating such industrial systems to the accelerator control area will certainly benefit to the field in terms of finance, human resources and technical facilities offered off-the-shelf by the widely experienced industrial controls community; however this cannot be done without slightly affecting the overall accelerator control architecture. The paper briefly describes the industrial controls arena and takes example on an industrial process control system recently installed at CERN to discuss in detail the related choices and issues. (author)

  11. Industrial high pressure applications. Processes, equipment and safety

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, Rudolf (ed.) [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Thermische Verfahrenstechnik

    2012-07-01

    Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions. These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more. The most famous high pressure process is the so-called Haber-Bosch process used for fertilizers and which was awarded a Nobel prize. Following an introduction on historical development, the current state, and future trends, this timely and comprehensive publication goes on to describe different industrial processes, including methanol and other catalytic syntheses, polymerization and renewable energy processes, before covering safety and equipment issues. With its excellent choice of industrial contributions, this handbook offers high quality information not found elsewhere, making it invaluable reading for a broad and interdisciplinary audience.

  12. Process spectroscopy in microemulsions—setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process

    Science.gov (United States)

    Meyer, K.; Ruiken, J.-P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M.

    2017-03-01

    Reaction monitoring in disperse systems, such as emulsions, is of significant technical importance in various disciplines like biotechnological engineering, chemical industry, food science, and a growing number other technical fields. These systems pose several challenges when it comes to process analytics, such as heterogeneity of mixtures, changes in optical behavior, and low optical activity. Concerning this, online nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for process monitoring in complex reaction mixtures due to its unique direct comparison abilities, while at the same time being non-invasive and independent of optical properties of the sample. In this study the applicability of online-spectroscopic methods on the homogeneously catalyzed hydroformylation system of 1-dodecene to tridecanal is investigated, which is operated in a mini-plant scale at Technische Universität Berlin. The design of a laboratory setup for process-like calibration experiments is presented, including a 500 MHz online NMR spectrometer, a benchtop NMR device with 43 MHz proton frequency as well as two Raman probes and a flow cell assembly for an ultraviolet and visible light (UV/VIS) spectrometer. Results of high-resolution online NMR spectroscopy are shown and technical as well as process-specific problems observed during the measurements are discussed.

  13. Thermoexoemission detectors for monitoring radioactive contamination of industrial waste waters

    International Nuclear Information System (INIS)

    Obukhov, V.T.; Sobolev, I.A.; Khomchik, L.M.

    1987-01-01

    Detectors on base of BeO(Na) monocrystals with thermoemission to be used for monitoring radioactive contamination of industrial waste waters are suggested. The detectors advantages are sensitivity to α and low-ehergy β radiations, high mechanical strength and wide range of measurements. The main disadvantage is the necessity of working in red light

  14. Geographical information systems as a tool for monitoring tobacco industry advertising.

    Science.gov (United States)

    Vardavas, C I; Connolly, G N; Kafatos, A G

    2009-06-01

    Although the use of a geographical information systems (GIS) approach is usually applied to epidemiological disease outbreaks and environmental exposure mapping, it has significant potential as a tobacco control research tool in monitoring point-of-purchase (POP) tobacco advertising. An ecological study design approach was applied so as to primarily evaluate and interpret the spatial density and intensity of POP and tobacco industry advertisements within advertisements per POP (range 0-25) were noted, and 80% of them were below child height. The GIS protocol identified that kiosks, that were excepted from the Greek ban on tobacco advertising, in comparison to other POP, were found not only to be closer and visible from the school gates (44.1% vs 10.8%, padvertisements (8 (5) vs 5 (3), padvertising on a large population-based scale and implies its use as a standardised method for monitoring tobacco industry strategies and tobacco control efforts.

  15. NON-INVASIVE SPECTROSCOPIC ON-LINE METHODS TO MONITOR INDUSTRIAL PROCESSES

    DEFF Research Database (Denmark)

    Brooker, M. H.; Berg, Rolf W.

    2003-01-01

    and Raman spectroscopy to monitor discrete molecular species at concentrations on the 0.1% level or lower. A brief introduction to the art of modern vibrational spectroscopy is given, mainly by means of a list of important references, followed by a specific example (the liquid-liquid system CO2-water...

  16. Acid emissions monitoring needs in ceramic tile industry: challenges derived from new policy trends

    Science.gov (United States)

    Celades, Irina; Gomar, Salvador; Romero, Fernando; Chauhan, Amisha; Delpech, Bertrand; Jouhara, Hussam

    2017-11-01

    The emission of acid compounds during the manufacture of ceramic tiles is strongly related to the presence of precursors in the raw materials and/or fuels used, with some exceptions such as the production of thermal NOX. The stages with the potential to produce significant emissions of these compounds have been identified as the suspension spray drying and tile firing stages. The monitoring of emission levels of acid pollutants in these stages has turned in a great importance issue from a regulatory and industrial aspect. The DREAM project (https://www.spire2030.eu/dream) will tackle the regulation of acidic emissions focusing in the firing stage. The initial stages of the project have made it possible to identify the design requirements for the monitoring system. This will allow the control of acid pollutants emissions and other key parameters such as pressure, flow, temperature and humidity. One of the tasks developed has been the review and compilation of current emissions monitoring systems detailing technical specifications such as: position (in situ or extractive), measurement principle and frequency. The future policy trends in air pollution are encouraging the continuous monitoring across the European industry. The present document assesses the advantages regarding environmental impact control, highlighting the main challenges for the ceramic tile industry.

  17. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    Science.gov (United States)

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  18. Adaptive Soa Stack-Based Business Process Monitoring Platform

    Directory of Open Access Journals (Sweden)

    Przemysław Dadel

    2014-01-01

    Full Text Available Executable business processes that formally describe company activities are well placed in the SOA environment as they allow for declarative organization of high-level system logic.However, for both technical and non-technical users, to fully benet from that element of abstractionappropriate business process monitoring systems are required and existing solutions remain unsatisfactory.The paper discusses the problem of business process monitoring in the context of the service orientation paradigm in order to propose an architectural solution and provide implementation of a system for business process monitoring that alleviates the shortcomings of the existing solutions.Various platforms are investigated to obtain a broader view of the monitoring problem and to gather functional and non-functional requirements. These requirements constitute input forthe further analysis and the system design. The monitoring software is then implemented and evaluated according to the specied criteria.An extensible business process monitoring system was designed and built on top of OSGiMM - a dynamic, event-driven, congurable communications layer that provides real-time monitoring capabilities for various types of resources. The system was tested against the stated functional requirements and its implementation provides a starting point for the further work.It is concluded that providing a uniform business process monitoring solution that satises a wide range of users and business process platform vendors is a dicult endeavor. It is furthermore reasoned that only an extensible, open-source, monitoring platform built on top of a scalablecommunication core has a chance to address all the stated and future requirements.

  19. Monitoring and controlling the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B K; Angelidaki, I [The Technical Univ. of Denmark, Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1997-08-01

    Many modern large-scale biogas plants have been constructed recently, increasing the demand for proper monitoring and control of these large reactor systems. For monitoring the biogas process, an easy to measure and reliable indicator is required, which reflects the metabolic state and the activity of the bacterial populations in the reactor. In this paper, we discuss existing indicators as well as indicators under development which can potentially be used to monitor the state of the biogas process in a reactor. Furthermore, data are presented from two large scale thermophilic biogas plants, subjected to temperature changes and where the concentration of volatile fatty acids was monitored. The results clearly demonstrated that significant changes in the concentration of the individual VFA occurred although the biogas production was not significantly changed. Especially the concentrations of butyrate, isobutyrate and isovalerate showed significant changes. Future improvements of process control could therefore be based on monitoring of the concentration of specific VFA`s together with information about the bacterial populations in the reactor. The last information could be supplied by the use of modern molecular techniques. (au) 51 refs.

  20. Recent applications of Chemical Imaging to pharmaceutical process monitoring and quality control.

    Science.gov (United States)

    Gowen, A A; O'Donnell, C P; Cullen, P J; Bell, S E J

    2008-05-01

    Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutical industry, for both process monitoring and quality control in the many stages of drug production. This paper provides an overview of CI principles, instrumentation and analysis. Recent applications of Raman and NIR-CI to pharmaceutical quality and process control are presented; challenges facing CI implementation and likely future developments in the technology are also discussed.

  1. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology.

    Science.gov (United States)

    Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard

    2017-01-01

    On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

  2. Radiation in industrial processes

    International Nuclear Information System (INIS)

    1959-01-01

    The uses of ionizing radiation can be divided into two broad categories. First, it can be used as a tool of investigation, measurement and testing, and secondly, it can be a direct agent in inducing chemical processes. For example, radiation can help in the detecting and locating of malignant tumours, and it can be employed also for the destruction of those tumours. Again, it can reveal intricate processes of plant growth and, at the same time, can initiate certain processes which result in the growth of new varieties of plants. Similarly in industry, radiation is both a tool of detection, testing and measurement and an active agent for the initiation of useful chemical reactions. The initiation of chemical reactions usually requires larger and more powerful sources of radiation. Such radiation can be provided by substances like cobalt 60 and caesium 137 or by machines which accelerate nuclear particles to very high energies. Of the particle-accelerating machines, the most useful in this field are those which accelerate electrons to energies considerably higher than those possessed by the electrons (beta particles) emitted by radioactive substances. These high-energy radiations produce interesting reactions both in organic life and in materials for industry. Several of the papers presented at the Warsaw conference were devoted to the application of ionizing radiation to polymerization and other useful reactions in the manufacture and treatment of plastics. The polymerization of the ethylene series of hydro-carbons was discussed from various angles and the technical characteristics and requirements were described. It was pointed out by some experts that the cross-linking effect of radiation resulted in a superior product, opening the way to new applications of polyethylene. Irradiated polyethylene film has been sold for several years, and electrical wire has been made with irradiated polyethylene as the insulating jacket. Other reactions discussed included the cross

  3. ICPP [Idaho Chemical Processing Plant] environmental monitoring report, CY-1988

    International Nuclear Information System (INIS)

    Krivanek, K.R.

    1989-08-01

    Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Engineering (EE) Section of the Nuclear and Industrial Safety (N and IS) Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE. The Environmental Protection Agency (EPA) regulates all nonradiological waste resulting from the ICPP operations including all airborne, liquid, and solid waste. The EE subsection completed a Quality Assurance (QA) Plan for Environmental Monitoring activities during the third quarter of 1986. QA activities have resulted in the ICPP's implementation of the Environmental Protection Agency rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no approved methods for analyses existed for radionuclides, currently used methods were submitted for the EPA approval. 33 figs., 14 tabs

  4. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  5. On the value of information for Industry 4.0

    Science.gov (United States)

    Omenzetter, Piotr

    2018-03-01

    Industry 4.0, or the fourth industrial revolution, that blurs the boundaries between the physical and the digital, is underpinned by vast amounts of data collected by sensors that monitor processes and components of smart factories that continuously communicate amongst one another and with the network hubs via the internet of things. Yet, collection of those vast amounts of data, which are inherently imperfect and burdened with uncertainties and noise, entails costs including hardware and software, data storage, processing, interpretation and integration into the decision-making process to name just the few main expenditures. This paper discusses a framework for rationalizing the adoption of (big) data collection for Industry 4.0. The pre-posterior Bayesian decision analysis is used to that end and industrial process evolution with time is conceptualized as a stochastic observable and controllable dynamical system. The chief underlying motivation is to be able to use the collected data in such a way as to derive the most benefit from them by trading off successfully the management of risks pertinent to failure of the monitored processes and/or its components against the cost of data collection, processing and interpretation. This enables formulation of optimization problems for data collection, e.g. for selecting the monitoring system type, topology and/or time of deployment. An illustrative example utilizing monitoring of the operation of an assembly line and optimizing the topology of a monitoring system is provided to illustrate the theoretical concepts.

  6. Efficiency analysis of wood processing industry in China during 2006-2015

    Science.gov (United States)

    Zhang, Kun; Yuan, Baolong; Li, Yanxuan

    2018-03-01

    The wood processing industry is an important industry which affects the national economy and social development. The data envelopment analysis model (DEA) is a quantitative evaluation method for studying industrial efficiency. In this paper, the wood processing industry of 8 provinces in southern China is taken as the study object, and the efficiency of each province in 2006 to 2015 was measured and calculated with the DEA method, and the efficiency changes, technological changes and Malmquist index were analyzed dynamically. The empirical results show that there is a widening gap in the efficiency of wood processing industry of the 8 provinces, and the technological progress has shown a lag in the promotion of wood processing industry. According to the research conclusion, along with the situation of domestic and foreign wood processing industry development, the government must introduce relevant policies to strengthen the construction of the wood processing industry technology innovation policy system and the industrial coordinated development system.

  7. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    Science.gov (United States)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  8. The Cassava Processing Industry in Brazil: Traditional Techniques ...

    African Journals Online (AJOL)

    The paper considers the evolution of cassava-based industrial production, processing and marketing in Brazil, in light of the great technological diversification to be found in Brazil. It discusses the private role of the small- and medium-scale food and related processing enterprises in the food industry, as they employ ...

  9. Analyzing scheduling in the food-processing industry

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter

    2009-01-01

    Production scheduling has been widely studied in several research areas, resulting in a large number of methods, prescriptions, and approaches. However, the impact on scheduling practice seems relatively low. This is also the case in the food-processing industry, where industry......-specific characteristics induce specific and complex scheduling problems. Based on ideas about decomposition of the scheduling task and the production process, we develop an analysis methodology for scheduling problems in food processing. This combines an analysis of structural (technological) elements of the production...... process with an analysis of the tasks of the scheduler. This helps to understand, describe, and structure scheduling problems in food processing, and forms a basis for improving scheduling and applying methods developed in literature. It also helps in evaluating the organisational structures...

  10. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  11. Radiation processing for environmental-friendly industrial applications

    International Nuclear Information System (INIS)

    Majali, A.B.; Sabharwal, S.

    1997-01-01

    The Isotope Division of BARC is equipped with a 2-MeV electron beam (EB) accelerator and a 70,000 Ci Cobalt-60 source: these are mainly utilized to develop technologies of interest to our industries and needs. These include development of polyethylene 'O' rings having dimensional stability above the melting point, radiation degradation of PTFE and enhancement of colour in diamonds. The viscose rayon industry is an important industry in India. This industry faces stiff regulations from environmental pollution control agencies primarily due to the emission of toxic sulphur containing gases, and is in search of ways to reduce the pollution levels associated with the process. The irradiation of cellulose with ionizing radiation results in cellulose activation and reduction in the degree of polymerization (DP). There is a keen interest in utilizing radiation technology in viscose rayon production. We have utilized the 2-MeV electron beam accelerator for reducing the degree of polymerization (DP) of paper pulp. Laboratory scale tests have been carried out to standardize the conditions for processing of pulp having desired degree of polymerization. Our studies show that the use of irradiated pulp can significantly reduce the consumption of CS 2 and be beneficial in reducing pollution associated with the process. An electron-beam irradiation based process has been developed to convert the PTFE waste into a low molecular weight (1x10 4 -1x10 5 ) PTFE powder that can be easily processed into a fine micropowder having industrial demand. Even carbon or metal filled PTFE has been recycled using this process. The conventional method of crosslinking linear polymers by thermo-clinical method leads to the formation of homogeneously crosslinked materials which are extremely slow for industrial applications. Electron beam irradiation has been used to create inhomogeneous crosslinking of a temperature-sensitive polymer- poly(vinyl methyl ether)(PVME) so as to produce a fast response

  12. Production process stability - core assumption of INDUSTRY 4.0 concept

    Science.gov (United States)

    Chromjakova, F.; Bobak, R.; Hrusecka, D.

    2017-06-01

    Today’s industrial enterprises are confronted by implementation of INDUSTRY 4.0 concept with basic problem - stabilised manufacturing and supporting processes. Through this phenomenon of stabilisation, they will achieve positive digital management of both processes and continuously throughput. There is required structural stability of horizontal (business) and vertical (digitized) manufacturing processes, supported through digitalised technologies of INDUSTRY 4.0 concept. Results presented in this paper based on the research results and survey realised in more industrial companies. Following will described basic model for structural process stabilisation in manufacturing environment.

  13. Energy use and implications for efficiency strategies in global fluid-milk processing industry

    International Nuclear Information System (INIS)

    Xu Tengfang; Flapper, Joris

    2009-01-01

    The fluid-milk processing industry around the world processes approximately 60% of total raw milk production to create diverse fresh fluid-milk products. This paper reviews energy usage in existing global fluid-milk markets to identify baseline information that allows comparisons of energy performance of individual plants and systems. In this paper, we analyzed energy data compiled through extensive literature reviews on fluid-milk processing across a number of countries and regions. The study has found that the average final energy intensity of individual plants exhibited significant large variations, ranging from 0.2 to 12.6 MJ per kg fluid-milk product across various plants in different countries and regions. In addition, it is observed that while the majority of larger plants tended to exhibit higher energy efficiency, some exceptions existed for smaller plants with higher efficiency. These significant differences have indicated large potential energy-savings opportunities in the sector across many countries. Furthermore, this paper illustrates a positive correlation between implementing energy-monitoring programs and curbing the increasing trend in energy demand per equivalent fluid-milk product over time in the fluid-milk sector, and suggests that developing an energy-benchmarking framework, along with promulgating new policy options should be pursued for improving energy efficiency in global fluid-milk processing industry.

  14. The Ideal Criteria of Supplier Selection for SMEs Food Processing Industry

    OpenAIRE

    Ramlan Rohaizan; Engku Abu Bakar Engku Muhammad Nazri; Mahmud Fatimah; Ng Hooi Keng

    2016-01-01

    Selection of good supplier is important to determine the performance and profitability of SMEs food processing industry. The lack of managerial capability on supplier selection in SMEs food processing industry affects the competitiveness of SMEs food processing industry. This research aims to determine the ideal criteria of supplier for food processing industry using Analytical Hierarchy Process (AHP). The research was carried out in a quantitative method by distributing questionnaires to 50 ...

  15. Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring

    International Nuclear Information System (INIS)

    Madjid, Syahrun Nur; Idris, Nasrullah; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2011-01-01

    In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO 2 laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

  16. Development of Industrial Process Diagnosis and Measurement Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim, Jong Bum; Moon, Jin Ho

    2010-04-01

    Section 1. Industrial Gamma CT Technology for Process Diagnosis: The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section 2. Development of RI Hydraulic Detection Technology for Industrial Application: The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section 3. Development of RT-PAT System for Powder Process Diagnosis: The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  17. Development of industrial process diagnosis and measurement technology

    International Nuclear Information System (INIS)

    Jung, Sunghee; Kim, Jongbum; Moon, Jinho; Suh, Kyungsuk; Kim, Jongyun

    2012-04-01

    Section1. Industrial Gamma CT Technology for Process Diagnosis The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section2. Development of RI Hydraulic Detection Technology for Industrial Application The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section3. Development of RT-PAT System for Powder Process Diagnosis The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  18. First Industrial Tests of a Matrix Monitor Correction for the Differential Die-away Technique of Historical Waste Drums

    International Nuclear Information System (INIS)

    Antoni, Rodolphe; Passard, Christian; Perot, Bertrand; Batifol, Marc; Vandamme, Jean-Christophe; Grassi, Gabriele

    2015-01-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA NC La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (LMN) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor, namely a 3He proportional counter located inside the measurement cavity. After feasibility studies performed with LMN's PROMETHEE 6 laboratory measurement cell and with MCNPX simulations, this paper presents first experimental tests performed on the industrial ACC (hulls and nozzles compaction facility) measurement system. A calculation vs. experiment benchmark has been carried out by performing dedicated calibration measurements with a representative drum and 235 U samples. The comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)

  19. Asset monitoring in the upstream oil and gas industry : wireless, the fusion of industrial automation and business performance

    Energy Technology Data Exchange (ETDEWEB)

    Shuster, D. [IBM Wireless, IBM Global Services, Markham, ON (Canada)

    2004-07-01

    This keynote presentation addressed issues concerning the accurate management of assets and meeting business objectives with specific reference to new communications technologies in the oil and gas industry. An outline of various communications challenges specific to the oil and gas industry were reviewed, including: field technicians; inspections; predictive, preventive and corrective maintenance tasks; and the need for greater efficiency across large geographic areas. The concept of reporting critical data back to a central data repository to improve performance, cost management and regulatory programs was introduced. The benefits of remote monitoring and control in the petroleum industry were outlined. An overview of effective business approaches including initiatives and operating costs was presented. High impact transformation priorities in the oil and gas sector were also reviewed. A new business model was presented in which a differentiation was distinguished between process re-engineering and the more recent tenets of on-demand business. The deepening relationship of information technology with business was outlined in a business model, suggesting a trend towards modular business components that were easily defined and manipulated. Other significant benefits and ideas included: a demonstration of business opportunities through the creation of a real-time enterprise linked by separate systems; the use of information technology to extend business systems; and integrated, standards based business systems. A list of new options was presented, including sensor technology, new communications options and greater flexibility and reliability through the use of Information Technology architectures. A list of value propositions of upstream petroleum was given, including a chart with percentages of projected savings and efficiency increases. In addition, business advantages through new SCADA technologies and applications were presented, including scalability and new

  20. Industry characteristics management of innovative processes at the enterprises of light industry

    OpenAIRE

    Yusupov, Ulugbek

    2015-01-01

    This article considers the issues of innovative development and management of innovative processes in the knitting industry of Uzbekistan. Analyzed the main directions of innovative processes and provides recommendations for their management.

  1. The use of bio-monitoring to assess exposure in the electroplating industry.

    Science.gov (United States)

    Beattie, Helen; Keen, Chris; Coldwell, Matthew; Tan, Emma; Morton, Jackie; McAlinden, John; Smith, Paul

    2017-01-01

    Workers in the electroplating industry are potentially exposed to a range of hazardous substances including nickel and hexavalent chromium (chromium VI) compounds. These can cause serious health effects, including cancer, asthma and dermatitis. This research aimed to investigate whether repeat biological monitoring (BM) over time could drive sustainable improvements in exposure control in the industry. BM was performed on multiple occasions over 3 years, at 53 electroplating companies in Great Britain. Surface and dermal contamination was also measured, and controls were assessed. Air monitoring was undertaken on repeat visits where previous BM results were of concern. There were significant reductions in urinary nickel and chromium levels over the lifetime of this work in the subset of companies where initially, control deficiencies were more significant. Increased risk awareness following provision of direct feedback to individual workers and targeted advice to companies is likely to have contributed to these reductions. This study has shown that exposures to chromium VI and nickel in the electroplating industry occur via a combination of inhalation, dermal and ingestion routes. Surface contamination found in areas such as canteens highlights the potential for transferral from work areas, and the importance of a regular cleaning regime.

  2. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  3. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  4. Hygienic Design in the Food Processing Industry

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hjelm, M.

    2001-01-01

    Bacterial adhesion and biofilm formation are of major concern in food production and processing industry. In 1998 a Danish co-operation programme under the title Centre for Hygienic Design was funded to combine the skills of universities, research institutes and industry to focus on the following...

  5. Contributions to ultrasound monitoring of the process of milk curdling.

    Science.gov (United States)

    Jiménez, Antonio; Rufo, Montaña; Paniagua, Jesús M; Crespo, Abel T; Guerrero, M Patricia; Riballo, M José

    2017-04-01

    Ultrasound evaluation permits the state of milk being curdled to be determined quickly and cheaply, thus satisfying the demands faced by today's dairy product producers. This paper describes the non-invasive ultrasonic method of in situ monitoring the changing physical properties of milk during the renneting process. The basic objectives of the study were, on the one hand, to confirm the usefulness of conventional non-destructive ultrasonic testing (time-of-flight and attenuation of the ultrasound waves) in monitoring the process in the case of ewe's milk, and, on the other, to include other ultrasound parameters which have not previously been considered in studies on this topic, in particular, parameters provided by the Fast Fourier Transform technique. The experimental study was carried out in a dairy industry environment on four 52-l samples of raw milk in which were immersed 500kHz ultrasound transducers. Other physicochemical parameters of the raw milk (pH, dry matter, protein, Gerber fat test, and lactose) were measured, as also were the pH and temperature of the curdled samples simultaneously with the ultrasound tests. Another contribution of this study is the linear correlation analysis of the aforementioned ultrasound parameters and the physicochemical properties of the curdled milk. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    Science.gov (United States)

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  7. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  8. Design of a HACCP plan for the industrial process of vacuum-packed frozen surimi

    Directory of Open Access Journals (Sweden)

    Catarina Fernandes

    2014-05-01

    Full Text Available The Hazard Analysis and Critical Control Point (HACCP is a system that enables identification, assessment and control of hazards related with production, processing, distribution in order to get safe food. The aim of this study was to design a HACCP plan for implementing in a processing line of vacuum-packed frozen surimi. Surimi is made from fisheries byproducts that may have initial unattractive characteristics and whose industrial processing adds commercial value. Heterogeneous quality of raw products and the high complexity of the industrial flowchart may induce problems in the final sanitary profile of surimi. The methodology was based in the evaluation of the pre-requisite programs, risk evaluation of considered hazards, the application of principles of HACCP and the compliance with European regulations. A HACCP plan is proposed with the scope, the selection of HACCP team, product description and its intended use, the flow diagram of the process, hazard analysis and identification of Critical Control Points (CCP, monitoring system, correction actions and records. The potential hazards identified were: excess of chloride (chemical, remains of fishbone (physical and growth of human-related pathogens after defrosting (biological. The control measures of CCP are referred as control of time-temperature and pH in pre-wash and defrosting stages and visual inspection during depulping process.

  9. The Ideal Criteria of Supplier Selection for SMEs Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Ramlan Rohaizan

    2016-01-01

    Full Text Available Selection of good supplier is important to determine the performance and profitability of SMEs food processing industry. The lack of managerial capability on supplier selection in SMEs food processing industry affects the competitiveness of SMEs food processing industry. This research aims to determine the ideal criteria of supplier for food processing industry using Analytical Hierarchy Process (AHP. The research was carried out in a quantitative method by distributing questionnaires to 50 SMEs food processing industries. The collected data analysed using Expert Choice software to rank the supplier selection criteria. The result shows that criteria for supplier selection are ranked by cost, quality, service, delivery and management and organisation while purchase cost, audit result, defect analysis, transportation cost and fast responsiveness are the first five sub-criteria. The result of this research intends to improve managerial capabilities of SMEs food processing industry in supplier selection.

  10. Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories

    Directory of Open Access Journals (Sweden)

    S. Delepine-Lesoille

    2012-01-01

    Full Text Available Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes. Raman and Brillouin scatterings in optical fibers are efficient industrial methods to provide distributed temperature and strain measurements. Gamma radiation and hydrogen release from nuclear wastes can however affect the measurements. An industrial qualification process is successfully proposed and implemented. Induced measurement uncertainties and their physical origins are quantified. The optical fiber composition influence is assessed. Based on radiation-hard fibers and carbon-primary coatings, we showed that the proposed system can provide accurate temperature and strain measurements up to 0.5 MGy and 100% hydrogen concentration in the atmosphere, over 200 m distance range. The selected system was successfully implemented in the Andra underground laboratory, in one-to-one scale mockup of future cells, into concrete liners. We demonstrated the efficiency of simultaneous Raman and Brillouin scattering measurements to provide both strain and temperature distributed measurements. We showed that 1.3 μm working wavelength is in favor of hazardous environment monitoring.

  11. COMMUNICATION ETHICS: MONITORING AS A COMPLEMENT TO SELF-REGULATION IN THE PURSUIT OF TRANSPARENCY IN THE NEWS INDUSTRY

    OpenAIRE

    Feenstra, Ramon A.

    2014-01-01

    This paper reflects on the role of communication ethics in the search for solutions to some of the problems in the journalistic arena today. Specifically, the article first examines the importance of applying the principle of transparency in the news industry. It then analyses the potential complementary role that monitoring processes can play in consolidating this transparency in the mass media business model. The present article attempts to propose a communication ethics model grounded on d...

  12. Process Integration Analysis of an Industrial Hydrogen Production Process

    OpenAIRE

    Stolten, Detlef; Grube, Thomas; Tock, Laurence; Maréchal, François; Metzger, Christian; Arpentinier, Philippe

    2010-01-01

    The energy efficiency of an industrial hydrogen production process using steam methane reforming (SMR) combined with the water gas shift reaction (WGS) is analyzed using process integration techniques based on heat cascade calculation and pinch analysis with the aim of identifying potential measures to enhance the process performance. The challenge is to satisfy the high temperature heat demand of the SMR reaction by minimizing the consumption of natural gas to feed the combustion and to expl...

  13. Collection, transfer and processing of information in systems of monitoring of objects based on wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Sergievskiy Maxim

    2016-01-01

    Full Text Available Monitoring of the aircraft structures’ during the pre-fiight testing is a critical task of the aerospace industry. One of the most promising solutions, not yet widely applied, is continuous monitoring of aircraft structures using wireless sensor network technology. The brief summary of the proposed system is the following: special sensors send signals to the local motes (autonomous computing device equipped with a wireless transmitter. Information from motes is gathered by routers which then transfer the aggregated information to the datacenter. Applications of corporate network control and define flexible patterns for processing of the information received from sensors. This network structure allows to centralize data collection modes in the process of testing; implement continuous data collection at a defined frequency; process and display data in real-time.

  14. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Science.gov (United States)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  15. Harvesting Adaptation to Biodiversity Conservation in Sawmill Industry: Technology Innovation and Monitoring Program

    Directory of Open Access Journals (Sweden)

    Guillermo J. Martínez Pastur

    2007-09-01

    Full Text Available Social demands related to native forest ecosystems are based on an efficient management, with a balance between conservation and timber production. This paper describes the industry adaptation to a biodiversity program with an alternative regeneration method. The proposed method leaves 30% of the timber-quality forest as aggregated retention and 15 m² ha-1 basal area as dispersed retention. While many costs increased considerably, the incomes also may increase by applying new management strategies and technology innovation. A monitoring program was established in the harvested stands to evaluate the ecological functionality of the applied regeneration system (forest structure, climate change, regeneration dynamics, habitat quality and abiotic cycles. The implementation of an innovated technology and monitoring program in the forest and industry determined a balance between economic values and biodiversity conservation.

  16. Industrial process heat market assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  17. Industrial process heat market assessment

    International Nuclear Information System (INIS)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve

  18. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-01-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  19. Optimizing the availability of a buffered industrial process

    Science.gov (United States)

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  20. Fungal Morphology in Industrial Enzyme Production - Modelling and Monitoring

    DEFF Research Database (Denmark)

    Quintanilla, D.; Hagemann, T.; Hansen, K.

    2015-01-01

    Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance......, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms...

  1. Metallurgical engineering and inspection practices in the chemical process industries

    International Nuclear Information System (INIS)

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  2. 27 CFR 19.67 - Spirits produced in industrial processes.

    Science.gov (United States)

    2010-04-01

    ... industrial processes. 19.67 Section 19.67 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Administrative and Miscellaneous Provisions Activities Not Subject to This Part § 19.67 Spirits produced in industrial processes...

  3. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Directory of Open Access Journals (Sweden)

    Duc Nguyen Minh

    2017-01-01

    Full Text Available This work describes Live Monitor, the monitoring subsystem of SDDS – an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  4. FY-2010 Process Monitoring Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

    2011-01-01

    During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

  5. Near infrared spectroscopy based monitoring of extraction processes of raw material with the help of dynamic predictive modeling

    Science.gov (United States)

    Wang, Haixia; Suo, Tongchuan; Wu, Xiaolin; Zhang, Yue; Wang, Chunhua; Yu, Heshui; Li, Zheng

    2018-03-01

    The control of batch-to-batch quality variations remains a challenging task for pharmaceutical industries, e.g., traditional Chinese medicine (TCM) manufacturing. One difficult problem is to produce pharmaceutical products with consistent quality from raw material of large quality variations. In this paper, an integrated methodology combining the near infrared spectroscopy (NIRS) and dynamic predictive modeling is developed for the monitoring and control of the batch extraction process of licorice. With the spectra data in hand, the initial state of the process is firstly estimated with a state-space model to construct a process monitoring strategy for the early detection of variations induced by the initial process inputs such as raw materials. Secondly, the quality property of the end product is predicted at the mid-course during the extraction process with a partial least squares (PLS) model. The batch-end-time (BET) is then adjusted accordingly to minimize the quality variations. In conclusion, our study shows that with the help of the dynamic predictive modeling, NIRS can offer the past and future information of the process, which enables more accurate monitoring and control of process performance and product quality.

  6. Industrialization drive of radiation processing for economic growth in China

    International Nuclear Information System (INIS)

    Lu Yanxiao

    1996-12-01

    The transfer of research and development achievements of radiation processing to routine industrial applications in China is reviewed. While making a brief survey of historical background, the paper indicates the different roles that various domestic organizations played in the industrialization drive of radiation processing. Among them the Government's role is the most important one. In accordance with recent growth of the number of industrial radiation facilities (e.g. cobalt-60 irradiators and electron beam accelerators) and current application of radiation processing in main fields in different parts of the country, it can be said that a new radiation processing industry is shaping up in its developing stage to satisfy the growing requirements for economic booming in China. (16 refs.)

  7. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  8. The Sines industrial complex monitoring programme: A preliminary report.

    Science.gov (United States)

    Jones, M P; Catarino, F M; Sérgio, C; Bento-Pereira, F

    1981-06-01

    It is anticipated that the establishment of the industrial complex at Sines, Alentejo, Portugal, will have some impact on the environment. Details of the methods used in the monitoring programme are provided. Records of the epiphytic lichen vegetation in permanent quadrats have been made and changes shown in selected sites over a three year period are discussed. Material has been collected for analysis for heavy metals and the results discussed. There is considerable variation in replicates and in interspecies values. The problem of age and bio-accumulation is mentioned. Scanning electron microscopy has shown the accumulation of particulates, as yet unidentified, the quantity varying with increase in age and surface texture. A broadly based study of the local epiphytic flora is being carried out to record the present day diversity. There appears, as yet, to be no detectable influence of the industrial complex on the epiphytic flora of the permanent quadrats.

  9. Process monitoring for intelligent manufacturing processes - Methodology and application to Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas

    Process monitoring provides important information on the product, process and manufacturing system during part manufacturing. Such information can be used for process optimization and detection of undesired processing conditions to initiate timely actions for avoidance of defects, thereby improving...... quality assurance. This thesis is aimed at a systematic development of process monitoring solutions, constituting a key element of intelligent manufacturing systems towards zero defect manufacturing. A methodological approach of general applicability is presented in this concern.The approach consists...... of six consecutive steps for identification of product Vital Quality Characteristics (VQCs) and Key Process Variables (KPVs), selection and characterization of sensors, optimization of sensors placement, validation of the monitoring solutions, definition of the reference manufacturing performance...

  10. DEVELOPING THE ORGANIZATIONAL CONTROL STRUCTURE BY MONITORING THE TECHNOLOGICAL PROCESSES IN THE TEXTILE GARMENT INDUSTRY

    Directory of Open Access Journals (Sweden)

    OANA Ioan Pavel

    2017-08-01

    Full Text Available In order to improve quality, any activity performed in garment production enterprises, must adhere to the following principles: the technical documentation must be observed first, and also all resources necessary for the proper functioning of the production process; conformity check must be carried out to fulfill production goals in advance; the technical specifications and documentation must be implemented and for proper execution there must exist a control method, consisting in discovering defects and correct them. In the garment industry, the situation is more difficult because of the large number of features present in its complex products, and the problems that may arise must be estimated. Thus, for different activities in quality assurance, experiments have been carried out which show that even the measurement results can be affected by human error. The training of inspectors is important inspection requires a high level of judgment in specific cases, which can be acquired only by experience. In many inspection situations, judgment is essential. Therefore, garment manufacturers must boost inspections, in order to keep the technological process under control. This paper focuses on meeting certain objectives in establishing certain control structures for compliance of processes, by presenting a few criteria. After analyzing quality problems along the process flow, both in terms of the manufacturing process and product quality, we propose customized solutions by product type, to prevent and solve quality issues. This analysis of the control plan for the conformity of the technological processes will improve the production of garment manufacturers, from a technical as well as economical standpoint.

  11. MONITORING AND PROGNOSTICATING PROCESSES OF INVESTMENT IN AGRARIAN-AND-INDUSTRIAL COMPLEX OF UKRAINE

    OpenAIRE

    Stepanova I.

    2018-01-01

    Introduction. At present, Ukraine’s development depends on the agrarian-and-industrial sector as a sphere of priority to ensure the competitive ability of the national economy. The following growth of the agrarian-and-industrial complex demands accessible and considerable financing. The latest legislative changes created a great extent for investing climate in the country and a great probability of the moratorium cancellation to sell agricultural lands give grounds to observe and analyze the...

  12. Stability assessment of lycopene microemulsion prepared using tomato industrial waste against various processing conditions.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2017-11-01

    Green separation techniques are growing at a greater rate than solvent extraction as a result of the constant consumer drive to 'go natural'. Considering the increasing evidence of the health benefits of lycopene and massive tomato industrial waste, in the present study, lycopene was extracted from tomato industrial waste using microemulsion technique and its mean droplet size and size distribution was determined. Moreover, the effects of pasteurization, sterilization, freeze-thaw cycles and ultraviolet (UV) irradiation on the thermodynamic stability, turbidity and lycopene concentration of the lycopene microemulsion were monitored. Freeze-thaw cycles, pasteurization and short exposure to UV irradiation showed no or negligible influence on lycopene content and turbidity of the microemulsion. However, long exposure to UV (260 min) reduced the lycopene content and turbidity by 34% and 10%, respectively. HHST (higher-heat shorter-time) and sterilization also reduced lycopene content (25%) and increased turbidity (32%). The lycopene microemulsion showed satisfactory stability over a process where its monodispersity and nanosize could be of potential advantage to the food and related industries. Regarding the carcinogenicity of synthetic colourants, potential applications of the lycopene microemulsion include in soft drinks and minced meat, which would result in a better colour and well-documented health-promoting qualities. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Applicability of Agent-Based Technology for Acquisition, Monitoring and Process Control Systems at Real Time for Distributed Architectures

    International Nuclear Information System (INIS)

    Dorao, Carlos; Fontanini, H; Fernandez, R

    2000-01-01

    Modern industrial plants are characterized by their large size and higher complexity of the processes involved in their operations.The real time monitoring systems of theses plants must be used a distributed architecture.Due to the pressure of competitive markets, an efficient adaptability to changes must be present in the plants.Modifications in the plants due to changes in the lay-out, the introduction of newer supervision, control and monitoring technologies must not affect the integrity of the systems.The aim of this work is give an introduction to the agent-based technology and analyze it advantage for the development of a modern monitoring system

  14. First Industrial Tests of a Matrix Monitor Correction for the Differential Die-away Technique of Historical Waste Drums

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, Rodolphe; Passard, Christian; Perot, Bertrand [CEA Cadarache DEN/Nuclear Measurement Laboratory, 13108 Saint-Paul lez Durance (France); Batifol, Marc; Vandamme, Jean-Christophe [Nuclear Measurement Team, AREVA NC, La Hague plant F-50444 Beaumont-Hague (France); Grassi, Gabriele [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA NC La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (LMN) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor, namely a 3He proportional counter located inside the measurement cavity. After feasibility studies performed with LMN's PROMETHEE 6 laboratory measurement cell and with MCNPX simulations, this paper presents first experimental tests performed on the industrial ACC (hulls and nozzles compaction facility) measurement system. A calculation vs. experiment benchmark has been carried out by performing dedicated calibration measurements with a representative drum and {sup 235}U samples. The comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)

  15. From research to industry - the establishment of a radiation processing industry in South Africa

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Stevens, R.C.B.

    1983-01-01

    In the late sixties the South African Atomic Energy Board in pursuing its objectives to promote the peaceful application of nuclear energy in general, established a research group with the specific purpose of investigating and developing radiation processing as a new technique. During the early years it was realised that the economic and technological facets of establishing a new industry were equally important and, in addition to fundamental research, strong emphasis was placed on the necessity of marketing this new technology. Although the initial emphasis was put on gamma sterilization, and today still forms the backbone of the radiation processing industry, the promising fields of polymer modification and food irradiation hold a lot of promise in the radiation processing industry. Following ten years of successfully introducing and providing a radiation service, the South African Atomic Energy Board in 1980 decided to transfer its service to the private sector. These developments in South Africa are a good sample of how a small country, through initial government involvement, can acquire a sophisticated new private industry. (author)

  16. Advanced monitoring with complex stream processing

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Making sense of metrics and logs for service monitoring can be a complicated task. Valuable information is normally scattered across several streams of monitoring data, requiring aggregation, correlation and time-based analysis to promptly detect problems and failures. This presentations shows a solution which is used to support the advanced monitoring of the messaging services provided by the IT Department. It uses Esper, an open-source software product for Complex Event Processing (CEP), that analyses series of events for deriving conclusions from them.

  17. Marine pollution monitoring and coastal processes off Andhra Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    plants are some of them. ESSAR group is going to invest Rs.1000 crores to set up industries in this belt. In view of the above, regular monitoring of pollution concentration in the harbour and coastal waters is being done by NIO, RC, Visakhapatnam under...

  18. Industrial water and effluent management in the milk processing industry

    CSIR Research Space (South Africa)

    Funke, JW

    1970-01-01

    Full Text Available One of the most important commodities used in any food-processing industry is water which must be of the right quality. Water which comes into direct contact with milk or milk products must meet standards which are even stricter than those for a...

  19. Monitoring and analysis of air emissions based on condition models derived from process history

    Directory of Open Access Journals (Sweden)

    M. Liukkonen

    2016-12-01

    Full Text Available Evaluation of online information on operating conditions is necessary when reducing air emissions in energy plants. In this respect, automated monitoring and control are of primary concern, particularly in biomass combustion. As monitoring of emissions in power plants is ever more challenging because of low-grade fuels and fuel mixtures, new monitoring applications are needed to extract essential information from the large amount of measurement data. The management of emissions in energy boilers lacks economically efficient, fast, and competent computational systems that could support decision-making regarding the improvement of emission efficiency. In this paper, a novel emission monitoring platform based on the self-organizing map method is presented. The system is capable, not only of visualizing the prevailing status of the process and detecting problem situations (i.e. increased emission release rates, but also of analyzing these situations automatically and presenting factors potentially affecting them. The system is demonstrated using measurement data from an industrial circulating fluidized bed boiler fired by forest residue as the primary fuel and coal as the supporting fuel.

  20. Development of Electronic Nose and Near Infrared Spectroscopy Analysis Techniques to Monitor the Critical Time in SSF Process of Feed Protein

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2014-10-01

    Full Text Available In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS spectrometer. Firstly, principal component analysis (PCA and independent component analysis (ICA were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process.

  1. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Linares-Hernandez, Ivonne [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Barrera-Diaz, Carlos [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico)]. E-mail: cbarrera@uaemex.mx; Roa-Morales, Gabriela [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Bilyeu, Bryan [University of North Texas, Department of Materials Science and Engineering, PO Box 305310, Denton, TX 76203-5310 (United States); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico)

    2007-06-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m{sup -2} current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD{sub 5}) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  2. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    International Nuclear Information System (INIS)

    Linares-Hernandez, Ivonne; Barrera-Diaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Urena-Nunez, Fernando

    2007-01-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m -2 current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD 5 ) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  3. Dynamic optimisation of an industrial web process

    Directory of Open Access Journals (Sweden)

    M Soufian

    2008-09-01

    Full Text Available An industrial web process has been studied and it is shown that theunderlying physics of such processes governs by the Navier-Stokes partialdifferential equations with moving boundary conditions, which in turn have tobe determined by the solution of the thermodynamics equations. Thedevelopment of a two-dimensional continuous-discrete model structurebased on this study is presented. Other models are constructed based onthis model for better identification and optimisation purposes. Theparameters of the proposed models are then estimated using real dataobtained from the identification experiments with the process plant. Varioussimulation tests for validation are accompanied with the design, developmentand real-time industrial implementation of an optimal controller for dynamicoptimisation of this web process. It is shown that in comparison with thetraditional controller, the new controller resulted in a better performance, animprovement in film quality and saving in raw materials. This demonstrates theefficiency and validation of the developed models.

  4. Proceedings of the solar industrial process heat symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

  5. Canadian petroleum industry: 1988 monitoring report. First six months

    International Nuclear Information System (INIS)

    1988-01-01

    The Petroleum Monitoring Agency was established in 1980 to provide the federal government with comprehensive and objective information on and analysis of the financial performance of the petroleum industry in Canada. The Agency publishes a semi-annual and an annual report based on information received directly from all but the smallest oil and gas companies. Data published are mainly aggregate data derived from survey schedules prescribed by regulations. This report presents a summary and highlights of the activities of the first half of 1988. Information is presented on corporate mergers and acquisitions; financial performance by sector (upstream, downstream, foreign) and total operations as seen by net income and cash flow; sources and uses of funds; a comparative performance by the petroleum and other industries as seen by net income and capital expenditures; ownership and control trends; international flows of funds; capital structures; and data related to income taxes. New features added in this report include expansion of the table representing the financial performance and profit margins of the refining/marketing segment to incorporate net income as a component of the analysis; analysis of the industry's use of exploration and investment tax credits; and a chart showing Canadian crude oil acquisition costs vs petroleum product prices. 12 figs., 63 tabs

  6. Comprehensive Biological Monitoring to Assess Isocyanates and Solvents Exposure in the NSW Australia Motor Vehicle Repair Industry.

    Science.gov (United States)

    Hu, Jimmy; Cantrell, Phillip; Nand, Aklesh

    2017-10-01

    Urethane products that contain isocyanates are extensively used in the motor vehicle repair (MVR) industry and other industries such as furniture and cabinet-making as two-pack spray paints, clears, and adhesives. Attention has recently been refocussed on isocyanate-containing chemicals, particularly in paints. The spray painters in the MVR industry had a propensity to develop industrial asthma at a rate 80 times higher than the general public, which was previously reported in the UK. To track workers exposure to isocyanates, urine samples were collected from 196 spray painters who worked mainly in 78 MVR shops across 54 New South Wales (NSW) towns and suburbs. The biological monitoring also covered exposure testing to a wide variety of solvents including aromatic hydrocarbons, ketones, and alcohols. The main finding of the study was that 2.6% of the spray painters surveyed in the MVR industry in NSW that handled isocyanate-containing paints showed exposure to isocyanates; with 1.0% being moderately exposed, which is more than twice the current UK's Health and Safety Executive (HSE) Biological Monitoring Guidance Value (BMGV) of 1 µmol mol-1 creatinine. Potential exposures to toluene (a solvent often found in paint thinners) was monitored via hippuric acid (HA) urine levels and showed 2.6% of the spray painters surveyed to be over the US' American Conference of Government Industrial Hygienists (ACGIH) Biological Exposure Index (BEI) of 1010 mmol/mole creatinine for HA. The other solvents or their metabolites were all below their respective BEI; these comprised benzene, xylene, ethyl benzene, methyl ethyl ketone, acetone, methanol, and ethanol. These findings indicate that isocyanates and certain solvents exposure were occurring in the NSW Australia vehicle repair industry, albeit at lower levels than previous occupational biological monitoring studies that showed higher exposure levels, particularly for isocyanates. One reason for this could be the increasing use

  7. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  8. Fuzzy Control in the Process Industry

    DEFF Research Database (Denmark)

    Jantzen, Jan; Verbruggen, Henk; Østergaard, Jens-Jørgen

    1999-01-01

    Control problems in the process industry are dominated by non-linear and time-varying behaviour, many inner loops, and much interaction between the control loops. Fuzzy controllers have in some cases nevertheless mimicked the control actions of a human operator. Simple fuzzy controllers can...... be designed starting from PID controllers, and in more complex cases these can be used in connection with model-based predictive control. For high level control and supervisory control several simple controllers can be combined in a priority hierarchy such as the one developed in the cement industry...

  9. Cross-industry innovation processes strategic implications for telecommunication companies

    CERN Document Server

    Hahn, Tobias

    2015-01-01

    Based on multiple case study analysis, focusing on scalable service innovation, the present study provides a practical process model that shall serve telecommunication companies as a guideline while conducting strategic cross-industry innovation projects. The findings also pay attention to characteristics in cross-industry collaboration, organizational preconditions and strategic deliberations and postulate propositions for present theoretical innovation process models.

  10. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    International Nuclear Information System (INIS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-01-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance ( C 2 ) and resistance ( R 2 ) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process. (paper)

  11. Self-powered detector probes for electron and gamma-ray beam monitoring in high-power industrial accelerators

    International Nuclear Information System (INIS)

    Lone, M.A.

    1992-08-01

    A self-powered detector (SPD) is a simple passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPDs are used in nuclear reactors for monitoring neutron and gamma ray fields. Responses of various SPDs to electron and gamma ray beams from industrial accelerators were investigated with Monte Carlo simulations. By judicious choice of transmission filters, threshold SPD probes were investigated for on-line monitoring of the beam energy spectrum of the high-power IMPELA industrial electron accelerator. (Author) (14 figs, 16 refs.)

  12. The use of industrial type control and monitoring components for a large fusion experiment

    International Nuclear Information System (INIS)

    Hemming, O.N.; Manduchi, G.; Luchetta, A.; Schmidt, V.; Vitturi, S.

    1994-01-01

    RFX is one of the large nuclear fusion experiments within the framework of the co-ordinated nuclear fusion research programme of the European Community. During the control system design phase in 1986, the increase in power and flexibility of industrial type programmable controllers lead to the decision for a complete physical split of control, monitoring and data acquisition functions according to speed requirements, allowing the exploitation of the relative advantages of both CAMAC and programmable controllers. The 'slow' control and monitoring functions (for about 4000 digital and 200 analog I/O signals with scanning times of similar 1 second) have been implemented using a series of networked industrial PLCs and personal computers. This has allowed us to choose from a wide range of off-the-shelf hardware and software components for the plant interface and to utilize specialized expertise from the industrial field for the application software implementation. The paper gives the expectations and results gained from this design choice and how it has influenced the decisions for the evolution of the system over the next few years with the utilization of new industrial hardware components. Details are also given regarding the system integration (via the Ethernet network) with the VAX-based CAMAC frontend fast control and data-acquisition system. ((orig.))

  13. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  14. Processing of the WLCG monitoring data using NoSQL

    Science.gov (United States)

    Andreeva, J.; Beche, A.; Belov, S.; Dzhunov, I.; Kadochnikov, I.; Karavakis, E.; Saiz, P.; Schovancova, J.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid (WLCG) today includes more than 150 computing centres where more than 2 million jobs are being executed daily and petabytes of data are transferred between sites. Monitoring the computing activities of the LHC experiments, over such a huge heterogeneous infrastructure, is extremely demanding in terms of computation, performance and reliability. Furthermore, the generated monitoring flow is constantly increasing, which represents another challenge for the monitoring systems. While existing solutions are traditionally based on Oracle for data storage and processing, recent developments evaluate NoSQL for processing large-scale monitoring datasets. NoSQL databases are getting increasingly popular for processing datasets at the terabyte and petabyte scale using commodity hardware. In this contribution, the integration of NoSQL data processing in the Experiment Dashboard framework is described along with first experiences of using this technology for monitoring the LHC computing activities.

  15. Processing of the WLCG monitoring data using NoSQL

    International Nuclear Information System (INIS)

    Andreeva, J; Beche, A; Karavakis, E; Saiz, P; Tuckett, D; Belov, S; Kadochnikov, I; Schovancova, J; Dzhunov, I

    2014-01-01

    The Worldwide LHC Computing Grid (WLCG) today includes more than 150 computing centres where more than 2 million jobs are being executed daily and petabytes of data are transferred between sites. Monitoring the computing activities of the LHC experiments, over such a huge heterogeneous infrastructure, is extremely demanding in terms of computation, performance and reliability. Furthermore, the generated monitoring flow is constantly increasing, which represents another challenge for the monitoring systems. While existing solutions are traditionally based on Oracle for data storage and processing, recent developments evaluate NoSQL for processing large-scale monitoring datasets. NoSQL databases are getting increasingly popular for processing datasets at the terabyte and petabyte scale using commodity hardware. In this contribution, the integration of NoSQL data processing in the Experiment Dashboard framework is described along with first experiences of using this technology for monitoring the LHC computing activities.

  16. In-line monitoring and interpretation of an indomethacin anti-solvent crystallization process by near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Lee, Hea-Eun; Lee, Min-Jeong; Kim, Woo-Sik; Jeong, Myung-Yung; Cho, Young-Sang; Choi, Guang Jin

    2011-11-28

    PAT (process analytical technology) has been emphasized as one of key elements for the full implementation of QbD (quality-by-design) in the pharmaceutical area. NIRS (near-infrared spectroscopy) has been studied intensively as an in-line/on-line monitoring tool in chemical and biomedical industries. A precise and reliable monitoring of the particle characteristics during crystallization along with a suitable control strategy should be highly encouraged for the conformance to new quality system of pharmaceutical products. In this study, the anti-solvent crystallization process of indomethacin (IMC) was monitored using an in-line NIRS. IMC powders were produced via anti-solvent crystallization using two schemes; 'S-to-A' (solvent-to-antisolvent) and 'A-to-S' (antisolvent-to-solvent). In-line NIR spectra were analyzed by a PCA (principal component analysis) method. Although pure α-form IMC powder was resulted under A-to-S scheme, a mixture of the α-form and γ-form was produced for S-to-A case. By integrating the PCA results with off-line characterization (SEM, XRD, DSC) data, the crystallization process under each scheme was elucidated by three distinct consecutive steps. It was demonstrated that in-line NIRS, combined with PCA, can be very useful to monitor in real time and interpret the anti-solvent crystallization process with respect to the polymorphism and particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Toward industrialization: Supporting the manufacturing processes of superconducting cavities at DESY

    International Nuclear Information System (INIS)

    Buerger, J.; Dammann, J.A.; Hagge, L.; Iversen, J.; Matheisen, A.; Singer, W.

    2006-01-01

    Manufacturing high-gradient superconducting cavities for future accelerators requires detailed knowledge of the entire production process. This knowledge has to be transferred from the laboratories, which are developing the process, to industry in order to achieve reproducible results in the industrial production of large numbers of cavities. The paper introduces DESY's approach to process industrialization based on the use of an engineering data management system (EDMS)

  18. Experimental demonstration of microscopic process monitoring

    International Nuclear Information System (INIS)

    Hurt, R.D.; Hurrell, S.J.; Wachter, J.W.; Hebble, T.L.; Crawford, A.B.

    1982-01-01

    Microscopic process monitoring (MPM) is a material control strategy designed to use standard process control data to provide expanded safeguards protection of nuclear fuel cycle facilities. The MPM methodology identifies process events by recognizing significant patterns of changes in on-line measurements. The goals of MPM are to detect diversions of nuclear material and to provide information on process status useful to other facility safeguards operations

  19. Process querying : enabling business intelligence through query-based process analytics

    NARCIS (Netherlands)

    Polyvyanyy, A.; Ouyang, C.; Barros, A.; van der Aalst, W.M.P.

    2017-01-01

    The volume of process-related data is growing rapidly: more and more business operations are being supported and monitored by information systems. Industry 4.0 and the corresponding industrial Internet of Things are about to generate new waves of process-related data, next to the abundance of event

  20. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    DEFF Research Database (Denmark)

    Yang, Zhenyu

    2015-01-01

    An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the pot...... characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.......An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated...... is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis...

  1. Experiences in the monitoring of radiation workers in industry and hospitals in the Philippines

    International Nuclear Information System (INIS)

    Mateo, A.J.

    1976-08-01

    The task of monitoring of radiation doses among radiation workers employed either in industry and hospitals in the Philippines is presently being undertaken by the Philippine Atomic Energy Commission. These radiation monitoring devices cover not only radioactive materials or sources but also x-ray machines. The most common dosimetry used is the film badge. This paper presents some of the experiences gained in the use of the film badge and other dosimeters

  2. Improving industrial designers work process by involving user research

    DEFF Research Database (Denmark)

    Dai, Zheng; Ómarsson, Ólafur

    2011-01-01

    With changing times, new technologies and more opinionated consumers, the modern industrial designer has found himself in need of fresher and more up to date approaches in his daily work. In a fast moving industry, the designer needs to keep a thinking process of dynamic and subjective attitude...... will give the grounding for believing that the industrial designer needs to adopt user research methods to a level where he can still continue to work under the very nature of industrial design that has made it a successful practice for the last century. The combing of the approaches and attitude will help....... User research is part of user centered design (UCD). UCD has a reputation for subjective and reflective practice. In this paper there are two example cases. One is conducted by a classical industrial design process, and another is costing half of energy and time in user research. These examples...

  3. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, Brent [Innovative Solutions Unlimited, LLC

    2014-04-01

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  4. Developing and Managing University-Industry Research Collaborations through a Process Methodology/Industrial Sector Approach

    Science.gov (United States)

    Philbin, Simon P.

    2010-01-01

    A management framework has been successfully utilized at Imperial College London in the United Kingdom to improve the process for developing and managing university-industry research collaborations. The framework has been part of a systematic approach to increase the level of research contracts from industrial sources, to strengthen the…

  5. Landscape monitoring of post-industrial areas using LiDAR and GIS technology

    Directory of Open Access Journals (Sweden)

    Wężyk Piotr

    2015-06-01

    Full Text Available The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc. which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc. and type of soil that is deposited. Airborne laser scanning (ALS technology deliver point clouds (XYZ and derivatives as raster height models (DTM, DSM, nDSM=CHM which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc. The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc. or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.

  6. Capturing connectivity and causality in complex industrial processes

    CERN Document Server

    Yang, Fan; Shah, Sirish L; Chen, Tongwen

    2014-01-01

    This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways: ·      from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and ·      from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian ne...

  7. Logistic paradigm for industrial solid waste treatment processes

    OpenAIRE

    Janusz Grabara; Ioan Constantin Dima

    2014-01-01

    Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form...

  8. Industrial environmental monitoring in non nuclear industry which potential to generate TENORM

    International Nuclear Information System (INIS)

    Veronica Tuka

    2011-01-01

    Constitution of the Republic of Indonesia Year 1945 states that the environment is good and healthy life is a human rights and constitutional rights of every citizen of Indonesia. In Indonesia has many industrial and mining activities that produce Norm (Naturally occurring Radioactive Materials) and TENORM (technologically Enhanced Naturally occurring Radioactive Materials). TENORM is a natural radioactive material which due to human activity or process technology increases the potential exposure when compared to the initial state and the potential radiological impact either external or internal radiation exposure. BAPETEN must ensure that the activities undertaken by non-nuclear industry, especially in the handling of radioactive waste at Norm and TENORM which can lead to chronic exposure, carried out securely and safely, both for workers, public and the environment. (author)

  9. On the use of multi-agent systems for the monitoring of industrial systems

    Science.gov (United States)

    Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil

    2016-03-01

    The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.

  10. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  11. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  12. Local learning processes in Malaysian industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    Local learning processes are a vital part of any dynamic assimilation of transferred technology. The paper raises the question about the interaction between the training paradigms, which transnational corporations introduce in their subsidiaries in Malaysia and the specific basis for learning...... of Malaysian labour. Experiences from Malaysian industry indicate that local learning processes are shaped, among other things, by the concept of knowledge in a particular training programme, labour market structures, and learning cultures....

  13. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  14. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  15. In-situ acoustic signature monitoring in additive manufacturing processes

    Science.gov (United States)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  16. Verifiable process monitoring through enhanced data authentication

    International Nuclear Information System (INIS)

    Goncalves, Joao G.M.; Schwalbach, Peter; Schoeneman, Barry Dale; Ross, Troy D.; Baldwin, George Thomas

    2010-01-01

    To ensure the peaceful intent for production and processing of nuclear fuel, verifiable process monitoring of the fuel production cycle is required. As part of a U.S. Department of Energy (DOE)-EURATOM collaboration in the field of international nuclear safeguards, the DOE Sandia National Laboratories (SNL), the European Commission Joint Research Centre (JRC) and Directorate General-Energy (DG-ENER) developed and demonstrated a new concept in process monitoring, enabling the use of operator process information by branching a second, authenticated data stream to the Safeguards inspectorate. This information would be complementary to independent safeguards data, improving the understanding of the plant's operation. The concept is called the Enhanced Data Authentication System (EDAS). EDAS transparently captures, authenticates, and encrypts communication data that is transmitted between operator control computers and connected analytical equipment utilized in nuclear processes controls. The intent is to capture information as close to the sensor point as possible to assure the highest possible confidence in the branched data. Data must be collected transparently by the EDAS: Operator processes should not be altered or disrupted by the insertion of the EDAS as a monitoring system for safeguards. EDAS employs public key authentication providing 'jointly verifiable' data and private key encryption for confidentiality. Timestamps and data source are also added to the collected data for analysis. The core of the system hardware is in a security enclosure with both active and passive tamper indication. Further, the system has the ability to monitor seals or other security devices in close proximity. This paper will discuss the EDAS concept, recent technical developments, intended application philosophy and the planned future progression of this system.

  17. The use of computers for chemistry and corrosion monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Eber, K.

    1986-01-01

    Corrosion of steam generators in the nuclear power industry has caused increasingly expensive maintenance work during refueling outages. To assist in the control and monitoring of this problem, Northeast Utilities has developed computer programs for tracking steam generator water chemistry and steam generator eddy current inspection data. These programs have allowed detailed analytical studies to be performed which would have been extremely difficult without the use of computers. The paper discusses the capabilities and uses of a chemistry data management system. An example analysis of steam generator chemistry during plant startup is presented. The corrosion monitoring capabilities of several eddy current data analysis programs are also discussed. It is demonstrated how these programs allow a detailed analysis of the effects of a chemical cleaning operation to remove sludge from the steam generators. Applications of these analytical methods to other industries is also discussed

  18. Principles of development of the industry of technogenic waste processing

    Directory of Open Access Journals (Sweden)

    Maria A. Bayeva

    2014-01-01

    Full Text Available Objective to identify and substantiate the principles of development of the industry of technogenic waste processing. Methods systemic analysis and synthesis method of analogy. Results basing on the analysis of the Russian and foreign experience in the field of waste management and environmental protection the basic principles of development activities on technogenic waste processing are formulated the principle of legal regulation the principle of efficiency technologies the principle of ecological safety the principle of economic support. The importance of each principle is substantiated by the description of the situation in this area identifying the main problems and ways of their solution. Scientific novelty the fundamental principles of development of the industry of the industrial wastes processing are revealed the measures of state support are proposed. Practical value the presented theoretical conclusions and proposals are aimed primarily on theoretical and methodological substantiation and practical solutions to modern problems in the sphere of development of the industry of technogenic waste processing.

  19. Statistical data processing with automatic system for environmental radiation monitoring

    International Nuclear Information System (INIS)

    Zarkh, V.G.; Ostroglyadov, S.V.

    1986-01-01

    Practice of statistical data processing for radiation monitoring is exemplified, and some results obtained are presented. Experience in practical application of mathematical statistics methods for radiation monitoring data processing allowed to develop a concrete algorithm of statistical processing realized in M-6000 minicomputer. The suggested algorithm by its content is divided into 3 parts: parametrical data processing and hypotheses test, pair and multiple correlation analysis. Statistical processing programms are in a dialogue operation. The above algorithm was used to process observed data over radioactive waste disposal control region. Results of surface waters monitoring processing are presented

  20. Pre-Industry-Optimisation of the Laser Welding Process

    DEFF Research Database (Denmark)

    Gong, Hui

    This dissertation documents the investigations into on-line monitoring the CO2 laser welding process and optimising the process parameters for achieving high quality welds. The requirements for realisation of an on-line control system are, first of all, a clear understanding of the dynamic...... phenomena of the laser welding process including the behaviour of the keyhole and plume, and the correlation between the adjustable process parameters: laser power, welding speed, focal point position, gas parameters etc. and the characteristics describing the quality of the weld: seam depth and width......, porosity etc. Secondly, a reliable monitoring system for sensing the laser-induced plasma and plume emission and detecting weld defects and process parameter deviations from the optimum conditions. Finally, an efficient control system with a fast signal processor and a precise feed-back controller...

  1. Potential industrial market for process heat from nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, R.W.

    1976-07-01

    A specific segment of industrial process heat use has been examined in detail to identify individual plant locations throughout the United states where nuclear generated steam may be a viable alternative. Five major industries have been studied: paper, chemicals, petroleum, rubber, and primary metals. For these industries, representing 75 percent of the total industrial steam consumption, the individual plant locations within the U.S. using steam in large quantities have been located and characterized as to fuel requirements

  2. Specification process reengineering: concepts and experiences from Danish industry

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Riis, Jesper; Hvam, Lars

    2003-01-01

    This paper presents terminologies and concepts related to the IT automation of specification processes in companies manufacturing custom made products. Based on 11 cases from the Danish industry the most significant development trends are discussed.......This paper presents terminologies and concepts related to the IT automation of specification processes in companies manufacturing custom made products. Based on 11 cases from the Danish industry the most significant development trends are discussed....

  3. Global process industry initiatives to reduce major accident hazards

    Energy Technology Data Exchange (ETDEWEB)

    Pitblado, Robin [DNV Energy Houston, TX (United States). SHE Risk Management; Pontes, Jose [DNV Energy Rio de Janeiro, RJ (Brazil). Americas Region; Oliveira, Luiz [DNV Energy Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Since 2000, disasters at Texas City, Toulouse, Antwerp, Buncefield, P-36 and several near total loss events offshore in Norway have highlighted that major accident process safety is still a serious issue. Hopes that Process Safety Management or Safety Case regulations would solve these issues have not proven true. The Baker Panel recommended to BP several actions mainly around leadership, incentives, metrics, safety culture and more effective implementation of PSM systems. In Europe, an approach built around mechanical integrity and safety barriers, especially relating to technical safety systems, is being widely adopted. DNV has carried out a global survey of process industry initiatives, by interview and by literature review, for both upstream and downstream activities, to identify what the industry itself is planning to implement to enhance process safety in the next 5 - 10 years. This shows that an approach combining Baker Panel and EU barrier approaches and some nuclear industry real-time risk management approaches might be the best means to achieve a factor of 3-4 improvement in process safety. (author)

  4. LIKELIHOOD ESTIMATION OF PARAMETERS USING SIMULTANEOUSLY MONITORED PROCESSES

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2004-01-01

    The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time. The consi....... The considered example is a ship sailing with a given speed through a Gaussian wave field....

  5. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-01-01

    The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility

  6. Theoretical and practical investigation into sustainable metal joining process for the automotive industry

    International Nuclear Information System (INIS)

    Al-Jader, M A; Cullen, J D; Shaw, Andy; Al-Shamma'a, A I

    2011-01-01

    Currently there are about 4300 weld points on the average steel vehicle. Errors and problems due to tip damage and wear can cause great losses due to production line downtime. Current industrial monitoring systems check the quality of the nugget after processing 15 cars average once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. In this paper a simulation results using software package, SORPAS, will be presented to determined the sustainability factors in spot welding process including Voltage, Current, Force, Water cooling rates, Material thicknesses and usage. The experimental results of various spot welding processes will be investigated and reported. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. This paper also provides an overview of electrode current selection and its variance over the lifetime of the electrode tip, and describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.

  7. Fiber-optic sensor design for chemical process and environmental monitoring

    Science.gov (United States)

    Mahendran, R. S.; Wang, L.; Machavaram, V. R.; Pandita, S. D.; Chen, R.; Kukureka, S. N.; Fernando, G. F.

    2009-10-01

    "Curing" is a term that is used to describe the cross-linking reactions in a thermosetting resin system. Advanced fiber-reinforced composites are being used increasingly in a number of industrial sectors including aerospace, marine, sport, automotive and civil engineering. There is a general realization that the processing conditions that are used to manufacture the composite can have a major influence on its hot-wet mechanical properties. This paper is concerned with the design and demonstration of a number of sensor designs for in situ monitoring of the cross-linking reactions of a commercially available thermosetting resin system. Simple fixtures were constructed to enable a pair of cleaved optical fibers with a defined gap between the end-faces to be held in position. The resin system was introduced into this gap and the cure kinetics were followed by transmission infrared spectroscopy. A semi-empirical model was used to describe the cure process using the data obtained at different cure temperatures. The same sensor system was used to detect the ingress of moisture into the cured resin system.

  8. PLS-based memory control scheme for enhanced process monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-01-20

    Fault detection is important for safe operation of various modern engineering systems. Partial least square (PLS) has been widely used in monitoring highly correlated process variables. Conventional PLS-based methods, nevertheless, often fail to detect incipient faults. In this paper, we develop new PLS-based monitoring chart, combining PLS with multivariate memory control chart, the multivariate exponentially weighted moving average (MEWMA) monitoring chart. The MEWMA are sensitive to incipient faults in the process mean, which significantly improves the performance of PLS methods and widen their applicability in practice. Using simulated distillation column data, we demonstrate that the proposed PLS-based MEWMA control chart is more effective in detecting incipient fault in the mean of the multivariate process variables, and outperform the conventional PLS-based monitoring charts.

  9. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  10. Electron beam processing of materials-R and D and industrial utilization

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2005-01-01

    The early sixties witnessed the beginning of Electron Beam (EB) processing of materials using high-energy electrons and has emerged as a well established technology, presently being adapted by the industry. The process and the processed materials showed definite and distinct advantages/characteristics over the available conventional methods. Even though the commercial exploitation started initially in polymer modifications for better (and suitable) performance through polymerization, cross-linking, degradation and grafting, the processing fields are now diverged to sterilization of health care, food irradiation, controlled defects in semiconductor devices and semi and/or precious stones, waste water/flue gas treatment etc. The availability of electron accelerators that operate as per the requirement of the industrial needs, easy maintenance, expertise availability etc brought the EB processing industry into a multi dollar business world wide. In USA and Japan there are more than 1200 accelerators currently operative in automobile tire, wire and cable and heat shrinkable industry. Output beam powers exceeding 400 kW with electron energy ranging from few hundred keV up to 10 MeV are made available to the industry. In BARC EB processing started with the 2MeV/20 kW electron accelerator and suitable processing techniques have been developed for applications like polymer cross linking (heat resistant LDPE O-rings, wire and cable insulation), color enhancement in precious stones (diamonds) on industrial scale and polymer curing, grafting, degradation on R and D/pilot scale. The commercial success of the process enabled the private cable industry to set up accelerators at their factories. On research and development front, the accelerator is being utilized to develop new polymer blends for high temperature applications, for solid and liquid waste treatment, polypropylene grafting experiments for uranium extraction from sea water, surface curing etc. This paper gives

  11. Simplification of Process Integration Studies in Intermediate Size Industries

    DEFF Research Database (Denmark)

    Dalsgård, Henrik; Petersen, P. M.; Qvale, Einar Bjørn

    2002-01-01

    associated with a given process integration study in an intermediate size industry. This is based on the observation that the systems that eventually result from a process integration project and that are economically and operationally most interesting are also quite simple. Four steps that may be used......It can be argued that the largest potential for energy savings based on process integration is in the intermediate size industry. But this is also the industrial scale in which it is most difficult to make the introduction of energy saving measures economically interesting. The reasons......' and therefore lead to non-optimal economic solutions, which may be right. But the objective of the optimisation is not to reach the best economic solution, but to relatively quickly develop the design of a simple and operationally friendly network without losing too much energy saving potential. (C) 2002...

  12. Industrial burner and process efficiency program

    Science.gov (United States)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  13. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Mingzhong, Wang; Guogang, Huang [Pingdingshan Mining Bureau (China); Yunjia, Wang; Guogangli, [China Univ. of Mining and Technology, Xuzhou (China)

    1997-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  14. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mingzhong; Huang Guogang [Pingdingshan Mining Bureau (China); Wang Yunjia; Guogangli [China Univ. of Mining and Technology, Xuzhou (China)

    1996-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  15. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  16. Industrial Maturity of FR Fuel Cycle Processes and Technologies

    International Nuclear Information System (INIS)

    Bruezière, Jérôme

    2013-01-01

    FR fuel cycle processes and technologies have already been proven industrially for Oxide Fuel, and to a lesser extent for metal fuel. In addition, both used oxide fuel reprocessing and fresh oxide fuel manufacturing benefit from similar industrial experience currently deployed for LWR. Alternative fuel type will have to generate very significant benefit in reactor ( safety, cost, … ) to justify corresponding development and industrialization costs

  17. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  18. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    Science.gov (United States)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  19. Exergy analysis in industrial food processing

    NARCIS (Netherlands)

    Zisopoulos, F.K.

    2016-01-01

    The sustainable provision of food on a global scale in the near future is a very serious challenge. This thesis focuses on the assessment and design of sustainable industrial food production chains and processes by using the concept of exergy which is an objective metric based on the first and

  20. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  1. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2018-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  2. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2017-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  3. Process monitoring of fibre reinforced composites using optical fibre sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, G.F.; Degamber, B.

    2006-04-15

    The deployment of optical fibre based sensor systems for process monitoring of advanced fibre reinforced organic matrix composites is reviewed. The focus is on thermosetting resins and the various optical and spectroscopy-based techniques that can be used to monitor the processing of these materials. Following brief consideration of the manufacturing methods commonly used in the production of thermoset based composites, a discussion is presented on sensor systems that can be used to facilitate real-time chemical process monitoring. Although the focus is on thermosets, the techniques described can be adapted for chemical monitoring of organic species in general. (author)

  4. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  5. Demonstration of TEG-powered wireless autonomous transducer solution for condition monitoring in industrial environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziyang; Patrascu, Mihai; Su, Jiale; Vullers, Ruud J.M. [imec the Netherlands, Eindhoven (Netherlands)

    2011-07-01

    Imec/Holst Centre focuses on the development of wireless autonomous transducer solution, which is poised to bring about huge impact in the sectors of health care, machinery, transportation and energy, etc. In this paper, we first showcase a TEG-powered demonstration for condition monitoring in industrial environment. Composing of sensor-actuator, front-end interface, digital signal processing unit and radio, the developed wireless sensor node can monitor the changing operating condition, i.e. the loading on a rolling-element bearing, on a rotating shaft. The use of a specially designed TEG, working in tandem with an energy storage device, can significantly improve the energy autonomy of the condition monitoring system as a whole. The different components in the demonstration are presented. Subsequently, the experimental results of vibration signature analysis are exhibited. On one hand, the presented demonstration sheds light on the huge potential of thermoelectric energy harvesting to achieve energy autonomy. On the other hand, it also points to the aspects that are in need of further development, namely miniaturization and cost reduction of energy harvesters. Aimed at the delivery of cost-effective miniaturized thermoelectric harvesting devices, imec/Holst Centre has been tackling with the relevant challenges by resorting to, but not limited to, its expertise in micromachining. An update on the latest research results is subsequently given with regard to various micromachined thermoelectric devices, fully fledged wearable TEGs with custom designed package and thermoelectric material property optimization. (orig.)

  6. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as Pillars of Industry 4.0

    Directory of Open Access Journals (Sweden)

    Virginia Pilloni

    2018-03-01

    Full Text Available We are living in the era of the fourth industrial revolution, namely Industry 4.0. This paper presents the main aspects related to Industry 4.0, the technologies that will enable this revolution, and the main application domains that will be affected by it. The effects that the introduction of Internet of Things (IoT, Cyber-Physical Systems (CPS, crowdsensing, crowdsourcing, cloud computing and big data will have on industrial processes will be discussed. The main objectives will be represented by improvements in: production efficiency, quality and cost-effectiveness; workplace health and safety, as well as quality of working conditions; products’ quality and availability, according to mass customisation requirements. The paper will further discuss the common denominator of these enhancements, i.e., data collection and analysis. As data and information will be crucial for Industry 4.0, crowdsensing and crowdsourcing will introduce new advantages and challenges, which will make most of the industrial processes easier with respect to traditional technologies.

  8. [Food processing industry--the salt shock to the consumers].

    Science.gov (United States)

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  9. Multivariate process monitoring of EAFs

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, E.; Lennox, B.; Marjanovic, O.; Smith, K.

    2005-06-01

    Improved knowledge of the effect of scrap grades on the electric steelmaking process and optimised scrap loading practices increase the potential for process automation. As part of an ongoing programme, process data from four Scandinavian EAFs have been analysed, using the multivariate process monitoring approach, to develop predictive models for end point conditions such as chemical composition, yield and energy consumption. The models developed generally predict final Cr, Ni and Mo and tramp element contents well, but electrical energy consumption, yield and content of oxidisable and impurity elements (C, Si, Mn, P, S) are at present more difficult to predict. Potential scrap management applications of the prediction models are also presented. (author)

  10. Radioactive sealed sources production process for industrial radiography

    International Nuclear Information System (INIS)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S.

    2017-01-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  11. Radioactive sealed sources production process for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: hobeddaniel@gmail.com, E-mail: jrcamara@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  12. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  13. Cooking, industrial processing and caloric density of foods

    NARCIS (Netherlands)

    Pellegrini, Nicoletta; Fogliano, Vincenzo

    2017-01-01

    During human evolution, the development of a wide range of cooking processing techniques enabled humans to provide their social group with maximum benefits from limited food resources. Industrial processing and mass market distribution made available high food calorie density foods to the world

  14. The process matters: cyber security in industrial control systems

    NARCIS (Netherlands)

    Hadziosmanovic, D.

    2014-01-01

    An industrial control system (ICS) is a computer system that controls industrial processes such as power plants, water and gas distribution, food production, etc. Since cyber-attacks on an ICS may have devastating consequences on human lives and safety in general, the security of ICS is important.

  15. PCDD/F and WHO-PCB contamination in an industrialized area in Brazil. First results of atmospheric monitoring and the use of Tillandsia usneoides (L) as biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M. de S. [Dept. de Geoquimica, Univ. Federal Fluminense. Niteroi, RJ (Brazil); Waller, U.; Reifenhaeuser, W.; Koerner, W. [Bavarian Environmental Protection Agency, Augsburg (Germany); Torres, J.P.; Malm, O. [Inst. de Biofisica, CCS-UFRJ. Ilha do Fundao, RJ (Brazil)

    2004-09-15

    A major issue of concern in developing countries like Brazil is to conciliate increasing industrialization rates to secure health and environmental standards already required to promote the free market among countries. This was pointed out during the United Nations Conference on Environment and Development in Rio de Janeiro in 1992 (Agenda 21). There it became clear that Brazil needs to develop better methods and techniques for environmental monitoring in order to control pollution sources and promote sustainable development. Among dozens of different kinds of persistent organic pollutants, polychlorinated dibenzodioxins and dibenzofurans (PCDD/PCDF) and polychlorinated biphenyls (PCB) are a matter of great concern due to their persistence, bioaccumulation and toxicological properties. PCDD and PCDF are unwanted by-products from the combustion of organic material containing trace amounts of chlorine set free in both stationary thermal sources and diffuse fuel burning. They can also be present as unwanted by-products of various industrial and metallurgical processes and metal recycling and smelters. PCB are ubiquitous contaminants of the environment and can be produced during thermal processes. In spite of their high environmental persistence and relevance in human health concerns, legal aspects regarding maximum emission limits and control of these contaminants are absent in Brazil at present. Moreover, the absence of adequately equipped laboratories and human resources together with the high costs associated hampers the research and monitoring of these contaminants in Brazil. The present work is a first report of the monitoring of total deposition rates of PCDD/PCDF and PCB in Volta Redonda City, a highly industrialized area in Rio de Janeiro State. Simultaneously, the use of an endemic Bromeliad species, Tillandsia usneoides (L), an epiphytic bromeliad, as a possible bio-monitor for persistent organochlorine compounds was investigated.

  16. Use of process monitoring data to enhance material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Smith, B.W.

    1980-01-01

    A study was conducted for the Nuclear Regulatory Commission as part of a continuing program to estimate the effectiveness of using process monitoring data to enhance special nuclear material accounting in nuclear facilities. Two licensed fuel fabrication facilities with internal scrap recovery processes were examined. The loss detection sensitivity, timeliness, and localization capabilities of the process monitoring technique were evaluated for single and multiple (trickle) losses. 4 refs

  17. Electron-processing technology: A promising application for the viscose industry

    Science.gov (United States)

    Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.

    1998-06-01

    In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.

  18. Mathematical modeling of vibration processes in reinforced concrete structures for setting up crack initiation monitoring

    Science.gov (United States)

    Bykov, A. A.; Matveenko, B. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.

    2015-03-01

    The contemporary construction industry is based on the use of reinforced concrete structures, but emergency situations resulting in fracture can arise in their exploitation. In a majority of cases, reinforced concrete fracture is realized as the process of crack formation and development. As a rule, the appearance of the first cracks does not lead to the complete loss of the carrying capacity but is a fracture precursor. One method for ensuring the safe operation of building structures is based on crack initiation monitoring. A vibration method for the monitoring of reinforced concrete structures is justified in this paper. An example of a reinforced concrete beam is used to consider all stages related to the analysis of the behavior of natural frequencies in the development of a crack-shaped defect and the use of the obtained numerical results for the vibration test method. The efficiency of the method is illustrated by the results of modeling of the physical part of the method related to the analysis of the natural frequency evolution as a response to the impact action in the crack development process.

  19. Signal processing for solar array monitoring, fault detection, and optimization

    CERN Document Server

    Braun, Henry; Spanias, Andreas

    2012-01-01

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...

  20. Cadmium isotope fractionation of materials derived from various industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Martinková, Eva, E-mail: eva.cadkova@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Chrastný, Vladislav, E-mail: chrastny@fzp.czu.cz [Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 (Czech Republic); Francová, Michaela, E-mail: michaela.francova@fzp.czu.cz [Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 (Czech Republic); Šípková, Adéla, E-mail: adela.sipkova@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Čuřík, Jan, E-mail: jan.curik@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Myška, Oldřich, E-mail: oldrich.myska@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Mižič, Lukáš, E-mail: lukas.mizic@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic)

    2016-01-25

    Highlights: • All studied industrial processes were accompanied by Cd isotope fractionation. • ϵ{sup 114/110} Cd values of the waste materials were discernible from primary sources. • Technology in use plays an important role in Cd isotope fractionation. - Abstract: Our study represents ϵ{sup 114/110} Cd {sub NIST3108} values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ{sup 114/110} Cd{sub NIST3108} values of 1.0 ± 0.2, 0.2 ± 0.2, 1.3 ± 0.1, −2.3 ± 0.2 and −0.1 ± 0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ{sup 114/110} Cd {sub NIST3108} values. The heaviest ϵ{sup 114/110} Cd{sub NIST3108} value of 58.6 ± 0.9 was found for slag resulting from coal combustion, and the lightest ϵ{sup 114/110} Cd{sub NIST3108} value of −23 ± 2.5 was observed for waste material after Pb refinement. It is evident that ϵ{sup 114/110} Cd {sub NIST3108} values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products.

  1. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants.

    Science.gov (United States)

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-04-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity (∼1.2-fold higher) compared to tomato fruit whereas home processing of tomato fruit into sauce led to a decrease in these values. Untargeted LC-QTOF-MS analysis revealed 31 compounds in tomato that changed upon processing, of which 18 could be putatively identified. Naringenin chalcone is only detectable in the fruit, while naringenin is strongly increased in the sauces. Rutin content increased by 36% in the industrial processed sauce whereas decreased by 26% in the home processed sauce when compared to fruit. According to the results of an in vitro gastrointestinal digestion model, industrial processing may lead to enhanced bioaccessibility of antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Safety monitoring in process and control

    International Nuclear Information System (INIS)

    Esparza, V. Jr.; Sebo, D.E.

    1984-01-01

    Safety Functions provide a method of ensuring the safe operation of any large-scale processing plant. Successful implementation of safety functions requires continuous monitoring of safety function values and trends. Because the volume of information handled by a plant operator occassionally can become overwhelming, attention may be diverted from the primary concern of maintaining plant safety. With this in mind EG and G, Idaho developed various methods and techniques for use in a computerized Safety Function Monitoring System and tested the application of these techniques using a simulated nuclear power plant, the Loss-of-Fluid Test Facility (LOFT) at the Idaho National Engineering Laboratory (INEL). This paper presents the methods used in the development of a Safety Function Monitoring System

  3. Online quality monitoring of welding processes by means of plasma optical spectroscopy

    Science.gov (United States)

    Ferrara, Michele; Ancona, Antonio; Lugara, Pietro M.; Sibilano, Michele

    2000-02-01

    An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.

  4. A quality by design study applied to an industrial pharmaceutical fluid bed granulation.

    Science.gov (United States)

    Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens

    2012-06-01

    The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Fiber optic interferometry for industrial process monitoring and control applications

    Science.gov (United States)

    Marcus, Michael A.

    2002-02-01

    Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.

  6. Industrial influences on an accelerator control system

    International Nuclear Information System (INIS)

    Westervelt, R.

    1992-01-01

    Industrial applications of a control system package have extended from industrial research to process control. While the requirements of these applications have much in common with accelerator controls, there are always extensions, different emphases, and additional requirements. These often add to the applicability of the software in all fields and certainly keep the development team challenged. This paper discusses some of the influences that industrial applications such as power distribution monitoring, casting and rolling mills, and aircraft engine testing have on software originally designed for scientific research. We also discuss some of the differences in the software development process between development for in-house use and development for sales and industrial use. (Author) ref., fig

  7. Industrial irradiation processing of polymers. Status and prospects. Report

    International Nuclear Information System (INIS)

    2005-08-01

    At the close of the 20th century and now in the beginning of the 21st, several changes have taken place in the businesses marketing radiation source technologies used in industrial radiation processing. Such changes involved more than just transitions in ownership and product line extensions for proven equipment, but also the market successes of new accelerator technologies, the evolution of high intensity X ray processing and the ability of providers and users of isotope sources to cope with heightened security issues involving radioactive materials. Concurrent with this evolution in source technologies, there has been a modest increase in the acceptance of radiation processing for polymeric materials. At the same time, there has been a broadening of polymer options available to formulators and producers of irradiated products. Unfortunately, however, there have been no major market breakthroughs; no adoption of radiation processing on a large scale in some new industrial application. For example, the much proven and long hoped for use of radiation processing by the food industry remains at a very small scale. This is despite the fact that this technology has cleared most regulatory hurdles that call for efficacy and the maintenance of food quality. This brief paper describes some of these changes and outlines some current issues that remain to be addressed

  8. Information Security Monitoring Process Research in Russian Federation Banking System Organization

    Directory of Open Access Journals (Sweden)

    Anton Sergeevich Zaytsev

    2013-09-01

    Full Text Available In this article the author considers documents and scientific articles that should be used to configure monitoring and information security incident management process in an organization of banking system of Russia. Also key principles of monitoring configuration were marked up and a technique of monitoring configuration was proposed. Principles of monitoring system configuration were defined and a set of documents used to legitimate monitoring and information incident management process was considered.

  9. Development of Spectrophotometric Process Monitors for Aqueous Reprocessing Facilities

    International Nuclear Information System (INIS)

    Smith, N.; Krebs, J.; Hebden, A.

    2015-01-01

    The safeguards envelope of an aqueous reprocessing plant can be extended beyond traditional measures to include surveillance of the process chemistry itself. By observing the concentration of accountable species in solution directly, a measure of real time accountancy can be applied. Of equal importance, select information on the process chemistry can be determined that will allow the operator and inspectors to verify that the process is operating as intended. One of the process monitors that can be incorporated is molecular spectroscopy, such as UV-Visible absorption spectroscopy. Argonne National Laboratory has developed a process monitoring system that can be tailored to meet the specific chemistry requirements of a variety of processes. The Argonne Spectroscopic Process monitoring system (ASP) is composed of commercial-off-the-shelf (COTS) spectroscopic hardware, custom manufactured sample handling components (to meet end user requirements) and the custom Plutonium and Uranium Measurement and Acquisition System (PUMAS) software. Two versions of the system have been deployed at the Savannah River Site's H-Canyon facility, tailored for high and low concentration streams. (author)

  10. End-use matching for solar industrial process heat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  11. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  12. Development of Product Availability Monitoring System In Production Unit In Automotive Component Industry

    Science.gov (United States)

    Hartono, Rachmad; Raharno, Sri; Yuwana Martawirya, Yatna; Arthaya, Bagus

    2018-03-01

    This paper described a methodology to monitor the availability of products in a production unit in the automotive component industry. Automotive components made are automotive components made through sheet metal working. Raw material coming into production unit in the form of pieces of plates that have a certain size. Raw materials that come stored in the warehouse. Data of raw each material in the warehouse are recorded and stored in a data base system. The material will then undergo several production processes in the production unit. When the material is taken from the warehouse, material data are also recorded and stored in a data base. The data recorded are the amount of material, material type, and date when the material is out of the warehouse. The material coming out of the warehouse is labeled with information related to the production processes that the material must pass. Material out of the warehouse is a product will be made. The products have been completed, are stored in the warehouse products. When the product is entered into the product warehouse, product data is also recorded by scanning the barcode contained on the label. By recording the condition of the product at each stage of production, we can know the availability of the product in a production unit in the form of a raw material, the product being processed and the finished product.

  13. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  14. Radioisotope applications for troubleshooting and optimizing industrial processes

    International Nuclear Information System (INIS)

    2002-03-01

    This brochure is intended to present the state-of -the-art in techniques for gamma scanning and neutron backscattering for troubleshooting inspection of columns, vessels, pipes, and tanks in many industrial processing sectors. It aims to provide not only an extensive description of what can be achieved by the application of radioisotope sealed sources but also sound experience-based guidance on all aspects of designing, carrying out and interpreting the results of industrial applications. Though it is written primarily for radioisotope practitioners, the brochure is also intended to function as an ambassador for the technology by promoting its benefits to governments, to the general public and to industrial end-users

  15. Contributions to process monitoring by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rusak, David Alexander

    1998-12-01

    When a pulsed laser of sufficient energy and pulse duration is brought to a focus, multi-photon ionization creates free electrons in the focal volume. These electrons are accelerated in a process known as inverse Bremsstrahlung and cause collisional ionization of species in the focal volume. More charge carriers are produced and the process continues for the duration of the laser pulse. The manifestation of this process is a visible spark or plasma which typically lasts for tens of microseconds. This laser-induced plasma can serve as a source in an atomic emission experiment. Because the composition of the plasma is determined in large part by the environment in which it forms, elements in the laser target can be determined spectroscopically. The goal of a laser-induced breakdown spectroscopy (LIBS) experiment is to establish a relationship between the concentration of an element of interest in the target and the intensity of light emitted from the laser-induced plasma at a wavelength characteristic of that element. Because LIBS requires only optical access to the sample and can perform elemental determinations in solids, liquids, or gases with little sample preparation, there is interest in using it as an on-line technique for process monitoring in a number of industrial applications. However, before the technique becomes useful in industrial applications, many issues regarding instrumentation and data analysis need to be addressed in the lab. The first two chapters of this dissertation provide, respectively, the basics of the atomic emission experiment and a background of laser-induced breakdown spectroscopy. The next two chapters examine the effect of target water content on the laser-induced plasma and the use of LIBS for analysis of aqueous samples. Chapter 5 describes construction of a fiber optic LIBS probe and its use to study temporal electron number density evolution in plasmas formed on different metals. Chapter 6 is a study of excitation, vibrational

  16. A software tool for design of process monitoring and analysis systems

    DEFF Research Database (Denmark)

    Singh, Ravendra; Gernaey, Krist; Gani, Rafiqul

    2009-01-01

    A well designed process monitoring and analysis system is necessary to consistently achieve any predefined end product quality. Systematic computer aided methods and tools provide the means to design the necessary process monitoring and analysis systems and/or to validate any existing monitoring...... and analysis system. A software to achieve this has been developed. Two developed supporting tools for the design, a knowledge base (consisting of the process knowledge as well as the knowledge on measurement methods & tools) and a model library (consisting of the process operational models) have been extended...... rigorously and integrated with the user interface, which made the software more generic and applicable to a wide range of problems. The software for the design of a process monitoring and analysis system is presented and illustrated with a tablet manufacturing process example....

  17. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  18. Tool path strategy and cutting process monitoring in intelligent machining

    Science.gov (United States)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  19. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  20. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  1. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  2. Compliance monitoring in business processes: Functionalities, application, and tool-support.

    Science.gov (United States)

    Ly, Linh Thao; Maggi, Fabrizio Maria; Montali, Marco; Rinderle-Ma, Stefanie; van der Aalst, Wil M P

    2015-12-01

    In recent years, monitoring the compliance of business processes with relevant regulations, constraints, and rules during runtime has evolved as major concern in literature and practice. Monitoring not only refers to continuously observing possible compliance violations, but also includes the ability to provide fine-grained feedback and to predict possible compliance violations in the future. The body of literature on business process compliance is large and approaches specifically addressing process monitoring are hard to identify. Moreover, proper means for the systematic comparison of these approaches are missing. Hence, it is unclear which approaches are suitable for particular scenarios. The goal of this paper is to define a framework for Compliance Monitoring Functionalities (CMF) that enables the systematic comparison of existing and new approaches for monitoring compliance rules over business processes during runtime. To define the scope of the framework, at first, related areas are identified and discussed. The CMFs are harvested based on a systematic literature review and five selected case studies. The appropriateness of the selection of CMFs is demonstrated in two ways: (a) a systematic comparison with pattern-based compliance approaches and (b) a classification of existing compliance monitoring approaches using the CMFs. Moreover, the application of the CMFs is showcased using three existing tools that are applied to two realistic data sets. Overall, the CMF framework provides powerful means to position existing and future compliance monitoring approaches.

  3. Hierarchical Nanoceramics for Industrial Process Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  4. Optimizing the product-based availability of a buffered industrial process

    International Nuclear Information System (INIS)

    Hamada, Michael; Martz, Harry F.; Berg, Eric C.; Koehler, Arthur J.

    2006-01-01

    Many industrial processes for discrete consumable products consist of a series (or set) of sequential process operations (or subsystems) which are de-coupled by means of in-process storage buffers. Each subsystem of such a process contains one or more parallel coupled or uncoupled operating lanes. We describe the use of a discrete-event simulation model for determining the availability of such a process. We likewise define and use a genetic algorithm to determine process designs and operating rules that have high availability. A 65-variable example, consisting of four operating subsystems with at most four lanes per subsystem, is used to illustrate the method. The results for this and similar real-world applications indicate that, by applying this methodology, it is possible to design buffered industrial processes having high availability

  5. On-line control of the plasma spraying process by monitoring the temperature, velocity, and trajectory of in-flight particles

    International Nuclear Information System (INIS)

    Moreau, C.; Gougeon, P.; Lamontagne, M.; Lacasse, V.; Vaudreuil, G.; Cielo, P.

    1994-01-01

    This paper describes a new optical sensing device for on-line monitoring of the temperature, velocity and trajectory of in-flight particles during industrial coating production. Thermal radiation emitted by the in-flight particles is collected by a small and robust sensing head that can be attached to the plasma gun providing continuous monitoring of the spray process. The collected radiation is transmitted through optical fibers to a detection cabinet located away from the dusty environment around the operating plasma gun. On-line measurement of the particle velocity, temperature and trajectory can provide an efficient diagnostic tool to maintain optimum spraying conditions leading to a better reproducibility of the coating properties

  6. Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption.

    Science.gov (United States)

    Priyadarshini, Anushree; Rajauria, Gaurav; O'Donnell, Colm P; Tiwari, Brijesh K

    2018-06-04

    Innovative food processing technologies have been widely investigated in food processing research in recent years. These technologies offer key advantages for advancing the preservation and quality of conventional foods, for combatting the growing challenges posed by globalization, increased competitive pressures and diverse consumer demands. However, there is a need to increase the level of adoption of novel technologies to ensure the potential benefits of these technologies are exploited more by the food industry. This review outlines emerging thermal and non-thermal food processing technologies with regard to their mechanisms, applications and commercial aspects. The level of adoption of novel food processing technologies by the food industry is outlined and the factors that impact their industrial adoption are discussed. At an industry level, the technological capabilities of individual companies, their size, market share as well as their absorptive capacity impact adoption of a novel technology. Characteristics of the technology itself such as costs involved in its development and commercialization, associated risks and relative advantage, its level of complexity and compatibility influence the technology's adoption. The review concludes that a deep understanding of the development and application of a technology along with the factors influencing its acceptance are critical for its commercial adoption.

  7. Role of monitoring network in the control management of air quality. An industrial case history

    Energy Technology Data Exchange (ETDEWEB)

    Zerbo, G. [Catania Univ. (Italy). Inst. of Merceology; Fabiano, B.; Ferraiolo, A.; Solisio, C.; Ruaro, R.

    1995-12-31

    Air quality control by a system of monitoring station is indispensable for the environmental protection. Moreover, a monitoring network have not to be only a mere data collection a good air quality control is possible only if the network management allows to prevent unacceptable pollutants level. In other terms, elaboration and interpretation data are fundamental in order to make monitoring system really able for regulations of corrective measures as, for example, the reduction of local emissions. The case of monitoring network run from the Industrial Society CIPA of Siracusa (Italy) is discussed. The management of the data obtained from a continuous survey allows to keep pollutants level below the current limits set down by the Italian law. Furthermore, elaboration of the data allows useful evaluations about atmospheric dispersion phenomena. (author)

  8. Role of monitoring network in the control management of air quality. An industrial case history

    Energy Technology Data Exchange (ETDEWEB)

    Zerbo, G [Catania Univ. (Italy). Inst. of Merceology; Fabiano, B; Ferraiolo, A; Solisio, C; Ruaro, R

    1996-12-31

    Air quality control by a system of monitoring station is indispensable for the environmental protection. Moreover, a monitoring network have not to be only a mere data collection a good air quality control is possible only if the network management allows to prevent unacceptable pollutants level. In other terms, elaboration and interpretation data are fundamental in order to make monitoring system really able for regulations of corrective measures as, for example, the reduction of local emissions. The case of monitoring network run from the Industrial Society CIPA of Siracusa (Italy) is discussed. The management of the data obtained from a continuous survey allows to keep pollutants level below the current limits set down by the Italian law. Furthermore, elaboration of the data allows useful evaluations about atmospheric dispersion phenomena. (author)

  9. Industrial process heat case studies. [PROSYS/ECONMAT code

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  10. Significance of material analysis in industry

    International Nuclear Information System (INIS)

    Bourke, T.M.

    1999-01-01

    Full text: Most industries need to have laboratories to meet production, customer and statutory requirements. Failure to have such a service would result in production losses, material failures and customer complaints leading to expensive claims for damages. Laboratory functions are to monitor production processes, certify the end product and assist in trouble shooting production problems and material failures. This means that laboratories are an essential part of industry and need to have access to a wide range of instrumentation (XRF, XRD, AES, ICP, SEM, etc). Monitoring and reporting on the industries environmental licences for effluent and emissions is also the responsibility of the laboratory. Licence exceedance leads to heavy fines and continual exceedance would result in plant closure. The mining industry relies heavily on laboratories to certify that the material meets the customer specification. The large tonnages involved means that small errors in composition can result in losses amounting to many thousands of dollars. Copyright (1999) Australian X-ray Analytical Association Inc

  11. Conceptual Design of Industrial Process Displays

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Lind, Morten

    1999-01-01

    discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display......Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper...... by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad...

  12. Design and construction of a batch oven for investigation of industrial continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette; Risum, Jørgen; Adler-Nissen, Jens

    2013-01-01

    A new batch oven has been constructed to mimic industrial convection tunnel ovens for research and development of continuous baking processes. The process parameters (air flow, air temperature, air humidity, height of baking area and the baking band velocity) are therefore highly controllable...... and adjustable over a wide range of settings. It is possible to monitor the product weight and temperature continuously during baking. The simultaneous measuring of mass and a window allowing for visual (e.g., by video recording) control is unique for this experimental batch oven. Two validation steps have been...... carried out. The uniformity of heating in the oven was assessed by measurements of local heat transfer coefficients and confirmed by baking tests. The methods showed that the oven is able to heat and bake uniformly across the baking area. Hereafter, the oven was validated against a commercial 10-m tunnel...

  13. Dioxin monitoring in fats oils for the feed industry

    NARCIS (Netherlands)

    Asselt, van E.D.; Sterrenburg, P.

    2011-01-01

    The aim of the present project was to determine the most critical steps in the production of fats and oils. First, production processes of vegetables oils, animal fat, fish oil, biodiesel and fat blending were studied and experts from the industry as well as in-house dioxin experts were consulted to

  14. A practicable signal processing algorithm for industrial nuclear instrument

    International Nuclear Information System (INIS)

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  15. Ground truth data collection on mining industrial explosions registered by the International Monitoring System

    International Nuclear Information System (INIS)

    Ehl'tekov, A.Yu.; Gordon, V.P.; Firsov, V.A.; Chervyakov, V.B.

    2004-01-01

    The presentation is dedicated to organizational and technical issues connected with the task of Comprehensive Test-Ban-Treaty Organization timely notification on large chemical explosions including data on explosion location and time, on applied explosive substance quantity and type, and also on configuration and assumed purpose of explosion. Explosions registered by International Monitoring System are of special interest. Their data could be used for calibration of the monitoring system. Ground truth data collection and some explosions location results on Russia's mining enterprises were given. Ground truth data collection peculiarities according to mining industrial explosions were considered. (author)

  16. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    NARCIS (Netherlands)

    Timmermans, E.A.H.; de Groote, F.P.J.; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, van der J.J.A.M.

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly

  17. Heat transfer in condensation and evaporation. Application to industrial and environmental processes

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, C [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DRN-GRETh), 38 (France); Vidil, R [CEA/Saclay, Direction des Technologies Avancees (DTA), 38 - Grenoble (France)

    1999-07-01

    Eurotherm Seminar number 62 objective is to provide a European forum for the presentation and the discussion of recent researches on heat transfer in condensation and evaporation and recent developments relevant to evaporators, condensers technology for: industrial processes; air conditioning and refrigeration processes; environmental processes; food industry processes; cooling processes of electronic or mechanical devices. The following topics are to be addressed: fundamentals of phase with pure fluids and mixtures; enhanced surfaces for improved tubular or plate heat exchangers; advanced methods and software for condenser and evaporator simulation and design; innovative design and concept of heat exchangers. This 2-days Seminar will be interest to a large group of researches and engineers from universities, research centres and industry. (authors)

  18. Access Control for Monitoring System-Spanning Business Processes

    NARCIS (Netherlands)

    Bassil, S.; Reichert, M.U.; Bobrik, R.; Bauer, Th.

    2007-01-01

    Integrated process support is highly desirable in environ- ments where data related to a particular (business) process are scattered over distributed and heterogeneous information systems (IS). A process monitoring component is a much-needed module in order to provide an integrated view on all these

  19. Merging Agents and Cloud Services in Industrial Applications

    OpenAIRE

    Francisco P. Maturana; Juan L. Asenjo; Neethu S. Philip; Shweta Chatrola

    2014-01-01

    A novel idea to combine agent technology and cloud computing for monitoring a plant floor system is presented. Cloud infrastructure has been leveraged as the main mechanism for hosting the data and processing needs of a modern industrial information system. The cloud offers unlimited storage and data processing in a near real-time fashion. This paper presents a software-as-a-service (SaaS) architecture for augmenting industrial plant-floor reporting capabilities. This reporting capability has...

  20. Process and petroleum industry

    International Nuclear Information System (INIS)

    1998-01-01

    In comparison with many industries, the oil and gas industry is somewhat unique in that it has been operating in a global environment for many decades. The North Sea exploration and production industry is now entering a challenging era for business growth which is a mature region with smaller and smaller fields, more difficult to find and which require innovative development schemes. This presentation relates to information technology offering the exploration and production industry a unique set of business tools to improve performance and enable growth while reducing risk

  1. Process and petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    In comparison with many industries, the oil and gas industry is somewhat unique in that it has been operating in a global environment for many decades. The North Sea exploration and production industry is now entering a challenging era for business growth which is a mature region with smaller and smaller fields, more difficult to find and which require innovative development schemes. This presentation relates to information technology offering the exploration and production industry a unique set of business tools to improve performance and enable growth while reducing risk

  2. Application of learning techniques based on kernel methods for the fault diagnosis in industrial processes

    Directory of Open Access Journals (Sweden)

    Jose M. Bernal-de-Lázaro

    2016-05-01

    Full Text Available This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis systems (DDF based on historical data. Specifically this thesis provides: (1 new criteria for adjustment of the kernel methods used to select features with a high discriminative capacity for the fault diagnosis tasks, (2 a proposed approach process monitoring using statistical techniques multivariate that incorporates a reinforced information concerning to the dynamics of the Hotelling's T2 and SPE statistics, whose combination with kernel methods improves the detection of small-magnitude faults; (3 an robustness index to compare the diagnosis classifiers performance taking into account their insensitivity to possible noise and disturbance on historical data.

  3. Industrial application of ultrasound based in-line rheometry: Visualization of steady shear pipe flow of chocolate suspension in pre-crystallization process

    Science.gov (United States)

    Ouriev, Boris; Windhab, Erich; Braun, Peter; Zeng, Yuantong; Birkhofer, Beat

    2003-12-01

    In the present work an in-line ultrasonic method for investigation of the rheological flow behavior of concentrated suspensions was created. It is based on a nondestructive rheological measuring technique for pilot plant and industrial scale applications. Elsewhere the author discusses a tremendous need for in-line rheological characterization of highly concentrated suspensions exposed to pressure driven shear flow conditions. Most existing on-line methods are based on destructive macro actuators, which are not suitable for materials with sensitive to applied deformation structure. Since the process of our basic interest influences the structure of suspension it would be difficult to separate the effects of rheometric measurement and weakly pronounced structural changes arising from a fine adjustment of the process parameters. The magnitude of these effects is usually associated with the complex flow dynamics of structured liquids and is sensitive to density or temperature fluctuations around the moving rheometric actuator. Interpretation of the results of such measurements can be hindered by process parameter influences on liquid product structure. Therefore, the author introduces an in-line noninvasive rheometric method, which is implemented in a pre-crystallization process of chocolate suspension. Use of ultrasound velocity profile pressure difference (UVP-PD) technique enabled process monitoring of the chocolate pre-crystallization process. Influence of seeded crystals on Rheology of chocolate suspension was recorded and monitored on line. It was shown that even slight velocity pulsations in chocolate mainstream can strongly influence rheological properties besides influencing flow velocity profiles. Based on calculations of power law fit in raw velocity profiles and calculation of wall shear stress from pressure difference measurement, a viscosity function was calculated and monitored on line. On-line results were found to be in a good agreement with off

  4. European sites contaminated by residues from the ore extracting and processing industries

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2000-01-01

    Activities linked with the ore extraction and processing industries may lead to enhanced levels of naturally occurring radionuclides (NORs) in products, by-products and waste and at the installations and in the surroundings of the facility. In the framework of the EC-DGXI CARE project (Common Approach for REstoration of contaminated sites) nine important categories of industries were identified and discussions were summarized on the industrial processes and the levels of NORs in parent material, waste and by-products. The most contaminating industries are uranium mining and milling, metal mining and smelting and the phosphate industry. Radionuclide levels in products and/or waste products from the oil and gas extraction industry and of the rare earth, zirconium and ceramics industries may be particularly elevated, but waste streams are limited. The impact on the public from coal mining and power production from coal is commonly considered low. No typical values are available for contaminant levels in materials, buildings and surroundings of radium extraction and luminizing plants, nor for thorium extraction and processing plants. An attempt to give an overview of sites in Europe contaminated with NORs, with emphasis on past practices, was only partly successful since information was often limited or unavailable. The most prominent case of environmental contamination due to mining and processing activities (uranium, metal and coal mining) is in eastern Germany. (author)

  5. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.

    Science.gov (United States)

    Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2018-02-15

    The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. THEORETICAL AND PRACTICAL ASPECTS OF MONITORING OF REGION’S SOCIO-ECONOMIC DEVELOPMENT PROCESSES:

    Directory of Open Access Journals (Sweden)

    Valentyna Yakubiv

    2017-03-01

    Full Text Available The article defines the nature of socio-economic development processes monitoring in a region on the basis of systematization of scientific works on economics. The terms of monitoring introduction into the processes of socio-economic development of a region are defined. The difference between monitoring and standard statistic technology is explained. The fact that socio-economic processes monitoring is primarily directed at collection, examination and preparation of information for making and analyzing of economic decisions at different management levels is proved. The indicators by the direction “renewable energy and energy efficiency”, which are evaluated in the process of monitoring, are outlined. Major tasks of monitoring are defined and principles of its information basis forming are determined. Key words: decentralization, information basis, renewable energy, monitoring, region, development, socio-economic processes.

  7. Fundamentals of business process management

    NARCIS (Netherlands)

    Dumas, Marlon; La Rosa, Marcello; Mendling, Jan; Reijers, Hajo A.

    2018-01-01

    This textbook covers the entire Business Process Management (BPM) lifecycle, from process identification to process monitoring, covering along the way process modelling, analysis, redesign and automation. Concepts, methods and tools from business management, computer science and industrial

  8. Industrial yogurt manufacture: monitoring of fermentation process and improvement of final product quality.

    Science.gov (United States)

    Soukoulis, C; Panagiotidis, P; Koureli, R; Tzia, C

    2007-06-01

    Lactic acid fermentation during the production of skim milk and whole fat set-style yogurt was continuously monitored by measuring pH. The modified Gompertz model was successfully applied to describe the pH decline and viscosity development during the fermentation process. The viscosity and incubation time data were also fitted to linear models against ln(pH). The investigation of the yogurt quality improvement practices included 2 different heat treatments (80 degrees C for 30 min and 95 degrees C for 10 min), 3 milk protein fortifying agents (skim milk powder, whey powder, and milk protein concentrate) added at 2.0%, and 4 hydrocolloids (kappa-carrageenan, xanthan, guar gum, and pectin) added at 0.01% to whole fat and skim yogurts. Heat treatment significantly affected viscosity and acetaldehyde development without influencing incubation time and acidity. The addition of whey powder shortened the incubation time but had a detrimental effect on consistency, firmness, and overall acceptance of yogurts. On the other hand, addition of skim milk powder improved the textural quality and decreased the vulnerability of yogurts to syneresis. Anionic stabilizers (kappa-carrageenan and pectin) had a poor effect on the texture and palatability of yogurts. However, neutral gums (xanthan and guar gum) improved texture and prevented the wheying-off defect. Skim milk yogurts exhibited longer incubation times and higher viscosities, whereas they were rated higher during sensory evaluation than whole fat yogurts.

  9. FT-NIR: A Tool for Process Monitoring and More.

    Science.gov (United States)

    Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban

    2018-03-30

    With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.

  10. Automated full matrix capture for industrial processes

    Science.gov (United States)

    Brown, Roy H.; Pierce, S. Gareth; Collison, Ian; Dutton, Ben; Dziewierz, Jerzy; Jackson, Joseph; Lardner, Timothy; MacLeod, Charles; Morozov, Maxim

    2015-03-01

    Full matrix capture (FMC) ultrasound can be used to generate a permanent re-focusable record of data describing the geometry of a part; a valuable asset for an inspection process. FMC is a desirable acquisition mode for automated scanning of complex geometries, as it allows compensation for surface shape in post processing and application of the total focusing method. However, automating the delivery of such FMC inspection remains a significant challenge for real industrial processes due to the high data overhead associated with the ultrasonic acquisition. The benefits of NDE delivery using six-axis industrial robots are well versed when considering complex inspection geometries, but such an approach brings additional challenges to scanning speed and positional accuracy when combined with FMC inspection. This study outlines steps taken to optimize the scanning speed and data management of a process to scan the diffusion bonded membrane of a titanium test plate. A system combining a KUKA robotic arm and a reconfigurable FMC phased array controller is presented. The speed and data implications of different scanning methods are compared, and the impacts on data visualization quality are discussed with reference to this study. For the 0.5 m2 sample considered, typical acquisitions of 18 TB/m2 were measured for a triple back wall FMC acquisition, illustrating the challenge of combining high data throughput with acceptable scanning speeds.

  11. Development of industrial ion implantation and ion assisted coating processes: A perspective

    International Nuclear Information System (INIS)

    Legg, K.O.; Solnick-Legg, H.

    1989-01-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes. (orig.)

  12. Creative Industries: Development Processes Under Contemporary Conditions of Globalization

    Directory of Open Access Journals (Sweden)

    Valerija Kontrimienė

    2017-06-01

    Full Text Available The article deals with the processes of developing creative industries under conditions of a growth in the worldwide economy and globalization, discloses the role of the sector of creative industries and shows its place in the system of the modern global economy. The paper presents a comparative analysis of theories and theoretical approaches intended for the sector of creative industries and its development as well as defines regularities and specificities characteristic of the development of creative industries. Particular attention is shifted on the growth and development of creative industries considering the current challenges of globalization and on the most important specificities of the developing sector in the context of the challenges of economic globalization. The paper examines the trends reflecting the place of the sector of creative industries in the economy of the modern world, including the tendencies indicating changes in the export of the products created in this sector. The article considers the issues of developing creative industries and reveals priorities of future research.

  13. Lean planning in the semi-process industry, a case study

    NARCIS (Netherlands)

    Pool, Arnout; Wijngaard, Jacob; van der Zee, D.J.

    The lean approach is an idealizing improvement approach that has an enormous impact in the field of operations management. It started in the automotive industry and has since been widely applied in discrete manufacturing. However, extensions to the (semi-) process industry have been much slower.

  14. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    Science.gov (United States)

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  15. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy.

    Science.gov (United States)

    Alam, Md Anik; Shi, Zhenqi; Drennen, James K; Anderson, Carl A

    2017-06-30

    In-line monitoring of continuous powder flow is an integral part of the continuous manufacturing process of solid oral dosage forms in the pharmaceutical industry. Specifically, monitoring downstream from loss-in-weight (LIW) feeders and/or continuous mixers provides important data about the state of the process. Such measurements support control of the process and thereby enhance product quality. Near Infrared Spectroscopy (NIRS) is a potential PAT tool to monitor the homogeneity of a continuous powder flow stream in pharmaceutical manufacturing. However, the association of analytical results from NIR sampling of the powder stream and the homogeneity (content uniformity) of the resulting tablets provides several challenges; appropriate sampling strategies, adequately robust modeling techniques and poor sensitivities (for low dose APIs) are amongst them. Information from reflectance-based NIRS sampling is limited. The region of the powder bed that is interrogated is confined to the surface where the measurement is made. This potential bias in sampling may, in turn, limit the ability to predict the homogeneity of the finished dosage form. Further, changes to the processing parameters (e.g., rate of powder flow) often have a significant effect on the resulting data. Sample representation, interdependence between process parameters and their effects on powder flow behavior are critical factors for NIRS monitoring of continuous powder flow system. A transmission NIR method was developed as an alternative technique to monitor continuous powder flow and quantify API in the powder stream. Transmission NIRS was used to determine the thickness of the powder stream flowing from a loss-in-weight feeder. The thickness measurement of the powder stream provided an in-depth understanding about the effects of process parameters such as tube angles and powder flow rates on powder flow behaviors. This knowledge based approach helped to define an analytical design space that was

  16. Substitution of Organic Solvents in Selected Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas; Rasmussen, Pia Brunn

    1997-01-01

    Volatile organic solvents (VOC)are becoming increasingly unwanted in industrial processes. Substitution of VOC with non-volatile, low-toxic compounds is a possibility to reduce VOC-use. It has been successfully demonstrated, that organic solvents used in cleaning processes in sheet offset printing...

  17. Process instrument monitoring for SNM solution surveillance

    International Nuclear Information System (INIS)

    Armatys, C.M.; Johnson, C.E.; Wagner, E.P.

    1983-02-01

    A process monitoring computer system at the Idaho Chemical Processing Plant (ICPP) is being used to evaluate nuclear fuel reprocessing plant data for Safeguards surveillance capabilities. The computer system was installed to collect data from the existing plant instruments and to evaluate what safeguards assurances can be provided to complement conventional accountability and physical protection measures. Movements of solutions containing special nuclear material (SNM) can be observed, activities associated with accountancy measurements (mixing, sampling, and bulk measurement) can be confirmed, and long-term storage of SNM solutions can be monitored to ensure containment. Special precautions must be taken, both in system design and operation to ensure adequate coverage of essential measured parameters and interpretation of process data, which can be comprised by instrument malfunctions or failures, unreliable data collection, or process activities that deviate from readily identified procedures. Experience at ICPP and prior evaluations at the Tokai reprocessing plant show that the use of process data can provide assurances that accountability measurement procedures are followed and SNM solutions are properly contained and can help confirm that SNM controls are in effect within a facility

  18. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre-commissioning benchmarking. Gamma

  19. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Full text: Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre

  20. Levels-of-processing effect on internal source monitoring in schizophrenia.

    Science.gov (United States)

    Ragland, J Daniel; McCarthy, Erin; Bilker, Warren B; Brensinger, Colleen M; Valdez, Jeffrey; Kohler, Christian; Gur, Raquel E; Gur, Ruben C

    2006-05-01

    Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients' internal source-monitoring performance. Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a 'shallow' perceptual versus a 'deep' semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Providing a deep processing semantic encoding strategy significantly improved patients' recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reflect subtle problems in the relational binding of semantic information that are independent of strategic memory processes.

  1. Process monitoring using optical ultrasonic wave detection

    International Nuclear Information System (INIS)

    Telschow, K.L.; Walter, J.B.; Garcia, G.V.; Kunerth, D.C.

    1989-01-01

    Optical ultrasonic wave detection techniques are being developed for process monitoring. An important limitation on optical techniques is that the material surface, in materials processing applications, is usually not a specular reflector and in many cases is totally diffusely reflecting. This severely degrades the light collected by the detection optics, greatly reducing the intensity and randomly scattering the phase of the reflected light. A confocal Fabry-Perot interferometer, which is sensitive to the Doppler frequency shift resulting from the surface motion and not to the phase of the collected light, is well suited to detecting ultrasonic waves in diffusely reflecting materials. This paper describes the application of this detector to the real-time monitoring of the sintering of ceramic materials. 8 refs., 5 figs

  2. Market development directory for solar industrial process heat systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  3. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    Science.gov (United States)

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  4. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-03-01

    The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

  5. On-line process control monitoring system

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Van Hare, D.R.; Prather, W.S.

    1992-01-01

    This patent describes apparatus for monitoring at a plurality of locations within a system the concentration of at least one chemical substance involved in a chemical process. It comprises plurality of process cells; first means for carrying the light; second means for carrying the light; means for producing a spectrum from the light received by the second carrying means; multiplexing means for selecting one process cell of the plurality of process cells at a time so that the producing means can produce a process spectrum from the one cell of the process cells; a reference cell for producing a reference spectrum for comparison to the process spectrum; a standard cell for producing a standard spectrum for comparison to the process spectrum; and means for comparing the reference spectrum, the standard spectrum and the process spectrum and determining the concentration of the chemical substance in the process cell

  6. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  7. Conflict Monitoring in Dual Process Theories of Thinking

    Science.gov (United States)

    De Neys, Wim; Glumicic, Tamara

    2008-01-01

    Popular dual process theories have characterized human thinking as an interplay between an intuitive-heuristic and demanding-analytic reasoning process. Although monitoring the output of the two systems for conflict is crucial to avoid decision making errors there are some widely different views on the efficiency of the process. Kahneman…

  8. Data-Driven Assistance Functions for Industrial Automation Systems

    International Nuclear Information System (INIS)

    Windmann, Stefan; Niggemann, Oliver

    2015-01-01

    The increasing amount of data in industrial automation systems overburdens the user in process control and diagnosis tasks. One possibility to cope with these challenges consists of using smart assistance systems that automatically monitor and optimize processes. This article deals with aspects of data-driven assistance systems such as assistance functions, process models and data acquisition. The paper describes novel approaches for self-diagnosis and self-optimization, and shows how these assistance functions can be integrated in different industrial environments. The considered assistance functions are based on process models that are automatically learned from process data. Fault detection and isolation is based on the comparison of observations of the real system with predictions obtained by application of the process models. The process models are further employed for energy efficiency optimization of industrial processes. Experimental results are presented for fault detection and energy efficiency optimization of a drive system. (paper)

  9. Chemometrics-based process analytical technology (PAT) tools: applications and adaptation in pharmaceutical and biopharmaceutical industries.

    Science.gov (United States)

    Challa, Shruthi; Potumarthi, Ravichandra

    2013-01-01

    Process analytical technology (PAT) is used to monitor and control critical process parameters in raw materials and in-process products to maintain the critical quality attributes and build quality into the product. Process analytical technology can be successfully implemented in pharmaceutical and biopharmaceutical industries not only to impart quality into the products but also to prevent out-of-specifications and improve the productivity. PAT implementation eliminates the drawbacks of traditional methods which involves excessive sampling and facilitates rapid testing through direct sampling without any destruction of sample. However, to successfully adapt PAT tools into pharmaceutical and biopharmaceutical environment, thorough understanding of the process is needed along with mathematical and statistical tools to analyze large multidimensional spectral data generated by PAT tools. Chemometrics is a chemical discipline which incorporates both statistical and mathematical methods to obtain and analyze relevant information from PAT spectral tools. Applications of commonly used PAT tools in combination with appropriate chemometric method along with their advantages and working principle are discussed. Finally, systematic application of PAT tools in biopharmaceutical environment to control critical process parameters for achieving product quality is diagrammatically represented.

  10. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed.

    Science.gov (United States)

    Alshihabi, Firas; Vandamme, Thierry; Betz, Gabriele

    2013-02-01

    Fluidized bed granulation is a commonly used unit operation in the pharmaceutical industry. But still to obtain and control the desired granule size is challenging due to many process variables affecting the final product. Focused beam reflectance measurement (FBRM, Mettler-Toledo, Switzerland) is an increasingly popular particle growth analysis technique. FBRM tool was installed in two different locations inside a fluidized bed granulator (GPCG2, Glatt, Binzen) in order to monitor the granulation growth kinetics. An experimental design was created to study the effect of process variables using FBRM probe and comparing the results with the one's measured by sieve analysis. The probe location is of major importance to get smooth and robust curves. The excess feeding of binder solution might lead to agglomeration and thus to process collapse, however this phenomenon was clearly detected with FBRM method. On the other hand, the process variables at certain levels might affect the FBRM efficiency by blocking the probe window with sticky particles. A good correlation was obtained (R(2) = 0.95) between FBRM and sieve analysis mean particle size. The proposed in-line monitoring tool enables the operator to select appropriate process parameters and control the wet granulation process more efficiently.

  11. Modeling of an industrial drying process by artificial neural networks

    Directory of Open Access Journals (Sweden)

    E. Assidjo

    2008-09-01

    Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.

  12. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

    Directory of Open Access Journals (Sweden)

    A. Schütze

    2018-05-01

    Full Text Available Industrie 4.0 or the Industrial Internet of Things (IIoT are two terms for the current (revolution seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the production process are used to improve product quality, flexibility, and productivity. This would not be possible without smart sensors, which generate the data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of sensors has undergone distinctive stages culminating in today's smart sensors or Sensor 4.0. This paper briefly reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can be achieved with smart sensors and data evaluation, and discusses success requirements for future developments. In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two projects performed in our group.

  13. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process.

    Science.gov (United States)

    Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Du, Yang; Gerald, Rex E; Tang, Yan; Huang, Jie

    2017-11-22

    This paper presents an extrinsic Fabry-Perot interferometer-based optical fiber sensor (EFPI) for measuring three-dimensional (3D) displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate) during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

  14. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-11-01

    Full Text Available This paper presents an extrinsic Fabry–Perot interferometer-based optical fiber sensor (EFPI for measuring three-dimensional (3D displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

  15. Applications of sonochemistry in Russian food processing industry.

    Science.gov (United States)

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Geophysical methods for monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  17. Survey on alternative energy for industrial processes in Indonesia

    International Nuclear Information System (INIS)

    Masduki, B.; Sukarsono, R.; Wardaya; Suryawan, I.

    1997-01-01

    In consequence of the national industrial development, it is necessary to supply a lot of energy. This paper presented a discussion about the option of supplying nuclear processed heat as alternative energy sources for industry especially in Java island. The electrical energy requirement can be estimated rising. The stock and the requirement of energy in Indonesia is unbalance. If the oil production rate is constant, such as that of today, it can be estimated that the oil stock would be over in 20 years. The country is trying to difertify its source of energy and reduce its dependence on oil. High Temperature Reactor (HTR) produces electric and also heat at various temperature in the form of steam and gas. Heat processes from a high temperature reactor, could be used in industry for supplying heat for coal hidroforming, gasification of coal, metal annealing, petrochemical hydrogenation, distillation, purification of petrochemicals, evaporation, water heat, etc. (author). 8 refs, 1 fig., 5 tabs

  18. Sodium monitoring in commercially processed and restaurant foods.

    Science.gov (United States)

    Ahuja, Jaspreet K C; Pehrsson, Pamela R; Haytowitz, David B; Wasswa-Kintu, Shirley; Nickle, Melissa; Showell, Bethany; Thomas, Robin; Roseland, Janet; Williams, Juhi; Khan, Mona; Nguyen, Quynhanh; Hoy, Kathy; Martin, Carrie; Rhodes, Donna; Moshfegh, Alanna; Gillespie, Cathleen; Gunn, Janelle; Merritt, Robert; Cogswell, Mary

    2015-03-01

    Most sodium in the US diet comes from commercially processed and restaurant foods. Sodium reduction in these foods is key to several recent public health efforts. The objective was to provide an overview of a program led by the USDA, in partnership with other government agencies, to monitor sodium contents in commercially processed and restaurant foods in the United States. We also present comparisons of nutrients generated under the program to older data. We track ∼125 commercially processed and restaurant food items ("sentinel foods") annually using information from food manufacturers and periodically by nationwide sampling and laboratory analyses. In addition, we monitor >1100 other commercially processed and restaurant food items, termed "priority-2 foods" (P2Fs) biennially by using information from food manufacturers. These foods serve as indicators for assessing changes in the sodium content of commercially processed and restaurant foods in the United States. We sampled all sentinel foods nationwide and reviewed all P2Fs in 2010-2013 to determine baseline sodium concentrations. We updated sodium values for 73 sentinel foods and 551 P2Fs in the USDA's National Nutrient Database for Standard Reference (releases 23-26). Sodium values changed by at least 10% for 43 of the sentinel foods, which, for 31 foods, including commonly consumed foods such as bread, tomato catsup, and potato chips, the newer sodium values were lower. Changes in the concentrations of related nutrients (total and saturated fat, total sugar, potassium, or dietary fiber) that were recommended by the 2010 Dietary Guidelines for Americans for reduced or increased consumption accompanied sodium reduction. The results of sodium reduction efforts, based on resampling of the sentinel foods or re-review of P2Fs, will become available beginning in 2015. This monitoring program tracks sodium reduction efforts, improves food composition databases, and strengthens national nutrition monitoring. © 2015

  19. [Development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry].

    Science.gov (United States)

    Xiao, Yong-Qing; Li, Li; Liu, Ying; Ma, Yin-Lian; Yu, Ding-Rong

    2016-01-01

    To elucidate the key issues in the development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry Chinese herbal pieces industry. According to the author's accumulated experience over years and demand of the development of the Chinese herbal pieces industry, the key issues in the development and innovation on the Chinese herbal pieces industry were summarized. According to the author, the traditional Chinese medicine processing discipline shall focus on a application basis research. The development of this discipline should be closely related to the development of Chinese herbal pieces. The traditional Chinese medicine processing discipline can be improved and its results can be transformed only if this discipline were correlated with the Chinese herbal pieces industry, matched with the development of the Chinese herbal pieces industry, and solved the problems in the development on the Chinese herbal pieces industry. The development of traditional Chinese medicine processing discipline and the Chinese herbal pieces industry also requires scientific researchers to make constant innovations, realize the specialty of the researches, and innovate based on inheritance. Copyright© by the Chinese Pharmaceutical Association.

  20. Towards A Unified HFE Process For The Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo

    2012-07-01

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  1. International Outsourcing: a process approach to the apparel industry

    Directory of Open Access Journals (Sweden)

    Maria Rosario Alves Moreira

    2015-12-01

    Full Text Available Objective – The purpose of this paper is to build a framework for an international outsourcing process in the apparel industry that can serve to support managerial decisions and actions regarding outsourcing choices and implementation. Design/methodology/approach – We developed of a straightforward and flexible framework describing the main stages of the international outsourcing process and its main activities with application in the context of the apparel industry. A case study approach was adopted with primary data collected through in-depth interviews and secondary data aggregated from company reports and documents. Theoretical foundation – Some research gaps in the outsourcing literature and most specifically on the matter of international outsourcing were identified by Hatonen and Eriksson (2009 and Kakabadse and Kakabadse (2000, among others. Specifically, these authors claim that there is not enough research on developing and offering decision models, tools or guidelines to support managerial decisions with the appropriate empirical evidence. This study aims to address this gap. Findings – We found that the international outsourcing process can be described using the proposed framework. Apparel companies can use this framework to support and supervise international outsourcing processes. Practical implications – This study provides a simple model that can help companies in the apparel industry to enhance their outsourcing activities and operations, and also contributes to a broader academic understanding of the matter.

  2. Off-Policy Reinforcement Learning: Optimal Operational Control for Two-Time-Scale Industrial Processes.

    Science.gov (United States)

    Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu

    2017-12-01

    Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.

  3. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  4. Operational impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    2016-01-01

    The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...

  5. A Novel Application for Low Frequency Electrochemical Impedance Spectroscopy as an Online Process Monitoring Tool for Viable Cell Concentrations

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available New approaches in process monitoring during industrial fermentations are not only limited to classical pH, dO2 and offgas analysis, but use different in situ and online sensors based on different physical principles to determine biomass, product quality, lysis and far more. One of the very important approaches is the in situ accessibility of viable cell concentration (VCC. This knowledge provides increased efficiency in monitoring and controlling strategies during cultivations. Electrochemical impedance spectroscopy—EIS—is used to monitor biomass in a fermentation of E. coli BL21(DE3, producing a recombinant protein using a fed batch-based approach. Increases in the double layer capacitance (Cdl, determined at frequencies below 1 kHz, are proportional to the increase of biomass in the batch and fed batch phase, monitored in offline and online modes for different cultivations. A good correlation of Cdl with cell density is found and in order to get an appropriate verification of this method, different state-of-the-art biomass measurements are performed and compared. Since measurements in this frequency range are largely determined by the double layer region between the electrode and media, rather minor interferences with process parameters (aeration, stirring are to be expected. It is shown that impedance spectroscopy at low frequencies is a powerful tool for cultivation monitoring.

  6. Environmental radiological monitoring methods in TENORM facilities and its relevance

    International Nuclear Information System (INIS)

    Teng Iyu Lin; Ismail Bahari; Muhamad Samudi Yasir

    2011-01-01

    In Malaysia, mineral processing plant is one of the Naturally Occurring Radioactive Material (NORM) processing industries controlled by the Atomic Energy Licensing Board (AELB) through the enforcement of Atomic Energy Licensing Act 1984 (Act 304). The activities generated waste which is called as TENORM wastes. TENORM wastes are mainly found in thorium hydroxide from the processing of xenotime and monazite, and iron oxide and red gypsum from the processing of ilmenite. Other TENORM wastes are scales and sludge from the oil and gas industries, tin slag produced from the smelting of tin, and ilmenite, zircon, and monazite produced from the processing of tin tailing (amang). The environmental and radiological monitoring program is needed to ensure that the TENORM wastes did not caused any contamination to the environment. The wastes vary in the types of samples, parameters of analysis as well as the frequency of monitoring based on licenses conditions issued by the AELB. The main objective of this study is to assess the suitability of licenses condition and the monitoring program required in oil and gas, and mineral processing industries. Study was done by assessing the data submitted to the AELB in order to comply with the licensing requirement. This study had found out that there are a few of licenses conditions that need to be reviewed accordingly based on the processing activity. (Author)

  7. A cytogenetic bio-monitoring of industrial radiographers occupationally exposed to low levels of ionizing radiation by using CBMN assay

    International Nuclear Information System (INIS)

    Shakeri, Mahsa; Changizi, Vahid; Zakeri, Farideh; Rajabpour, Mohammad Reza; Farshidpour, Mohammad Reza

    2017-01-01

    Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. The average annual effective dose in industrial radiography is one of the highest among radiation workers. The aim of this study was to investigate the cytogenetic effects of ionizing radiation in the peripheral blood lymphocytes of 60 industrial radiographers and 40 non-exposed individuals as the control group by using cytokinesis-block micronucleus (CBMN) assay. Totally, the frequencies of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) were significantly higher in the industrial radiographers than in the controls (p = 0.000). The mean MN frequency per 1000 binucleated cells in the industrial radiographers with last 5-y radiation dose of >100 mSv was significantly higher than those with ≤100 mSv (34.81 ± 12.70 vs. 26.33 ± 7.940, p = 0.024). The effect of age was observed in the control group and subjects with the age of >30 y showed significantly higher MN frequency compared with the subjects with the age of ≤30 y (9.45 ± 3.710 vs. 6.81 ± 3.050, p = 0.02). No obvious trend of increased MN as a function of either duration of employment or age or smoking status was observed in the industrial radiographers. The results show the increased levels of cytogenetic damages in the industrial radiographers. Even the workers exposed to the permissible doses are subjected to elevated frequencies of DNA damages. These findings confirm the importance of cytogenetic bio-monitoring program beside physical dosimetry, surveying radiation safety of equipment and periodic training of workers for improvement of safety and radiation protection. (authors)

  8. On the potential and economic feasibility of solar industrial process-heat applications in selected Turkish industries

    International Nuclear Information System (INIS)

    Ozdogan, S.; Arikol, M.

    1992-01-01

    We discuss the potential and economic feasibility of solar, industrial process-heat applications in the Turkish food, textile and chemical industries. The study covers 18 sites and end-use temperatures up to 120 and 150 o C. A solar system composed of parabolic troughs without thermal storage is chosen. The system size investigated is 500 to 20,000m 2 . (author)

  9. Development of Information Support of the Automated System for Monitoring the State of the Gas Transportation System’s Industrial Safety

    Directory of Open Access Journals (Sweden)

    Ruslan Skrynkovskyy

    2017-08-01

    Full Text Available The purpose of the article is to developing the information security of the automated system for monitoring the state of industrial safety of the gas transportation system within the framework of the safety management system, which will enable timely and objective detection of adverse accident hazards (hazardous events and taking the necessary specific measures to eliminate them and operate the gas transport system safely. It is proved that the basis of the information provision of the automated system for monitoring the state of the industrial safety of the gas transmission system is a methodology that includes the following basic procedures: identifying hazards; qualitative and quantitative assessment of emergencies; establishing of unacceptable (unallowable risks and their introduction to the information base (register of unacceptable risks of objects of the gas transportation system; comprehensive assessment and certification of the state of industrial safety of objects of the gas transportation system; identification of effective, productive (efficient risk management measures. The prospect of further research in this area is the development and implementation of an automated system for monitoring the state of industrial safety of the objects of the gas transmission system based on the results of the research (of the submitted information provision.

  10. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  11. Practical use of ergonomics in industrial processes

    International Nuclear Information System (INIS)

    1976-01-01

    Six lectures deal with new developments in the application of ergonomic knowledge, in particular to nuclear technology. All contributions have in common the aspects of analysis and structure of man-machine-systems in which human operators have to process information and have to make decisions. Quoting a lot of examples from a variety of industrial sectors, the article discusses complexes of problems and ways of solving them concerning questions requiring the answer 'yes' or 'no', concerning the dialogue man-computer, the organization of central control mechanisms, the avoidance of human errors, influence of man on system safety, and the rational incorporation of ergonomics in system planning. This publication is meant to be a contribution to extend the knowledge on the organization of work from an ergonomic and engineer/psychological point of view. It is to show how the knowledge of the nature of man can be applied as a systems component in order to make industrial processes safer and more economical, and to entrust man with purposeful and satisfying tasks. (orig./LN) [de

  12. A proposed approach to systematically identify and monitor the corporate political activity of the food industry with respect to public health using publicly available information.

    Science.gov (United States)

    Mialon, M; Swinburn, B; Sacks, G

    2015-07-01

    Unhealthy diets represent one of the major risk factors for non-communicable diseases. There is currently a risk that the political influence of the food industry results in public health policies that do not adequately balance public and commercial interests. This paper aims to develop a framework for categorizing the corporate political activity of the food industry with respect to public health and proposes an approach to systematically identify and monitor it. The proposed framework includes six strategies used by the food industry to influence public health policies and outcomes: information and messaging; financial incentive; constituency building; legal; policy substitution; opposition fragmentation and destabilization. The corporate political activity of the food industry could be identified and monitored through publicly available data sourced from the industry itself, governments, the media and other sources. Steps for country-level monitoring include identification of key food industry actors and related sources of information, followed by systematic data collection and analysis of relevant documents, using the proposed framework as a basis for classification of results. The proposed monitoring approach should be pilot tested in different countries as part of efforts to increase the transparency and accountability of the food industry. This approach has the potential to help redress any imbalance of interests and thereby contribute to the prevention and control of non-communicable diseases. © 2015 World Obesity.

  13. A new tritium process monitor based on scintillating fibres

    International Nuclear Information System (INIS)

    Pacenti, P.; Edwards, R.A.H.; Monte, A. de; Campi, F.

    1998-01-01

    The main requirements for tritium monitoring in processes related with fusion fuel cycle are low tritium memory, fast response and accuracy, in decreasing order of importance. At present, in-line tritium monitoring in such tritium processing is done mostly using ionization chambers, which suffer a number of drawbacks: output and sensitivity depends on total gas pressure, composition and flow, etc., and have problems such as tritium memory and generally of saturation effect at high tritium concentrations. Solid scintillators can only work well with tritium if they offer a large surface area, because tritium is absorbed within the first microns of material. The present design uses entirely inorganic scintillator and construction materials, chosen to minimize tritium memory. The described on line and real time tritium detector presents some advantages in comparison with well established flow-through tritium process monitors, such as ionization chambers and thermal conductivity detectors. (authors)

  14. Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-07-01

    Full Text Available The installation and operation of continuous particulate emission monitors in industrial processes has become well developed and common practice in industrial stacks and ducts over the past 30 years, reflecting regulatory monitoring requirements. Continuous emissions monitoring equipment is installed not only for regulatory compliance, but also for the monitoring of plant performance, calculation of emissions inventories and compilation of environmental impact assessments. Particulate matter (PM entrained in flue gases is produced by the combustion of fuels or wastes. The size and quantity of particles released depends on the type of fuel and the design of the plant. The present work provides an overview of the main industrial emission sources, a description of the main types of monitoring systems offered by manufacturers and a comparative analysis of the currently available technologies for measuring dust releases to atmosphere.

  15. Methods of Complex Data Processing from Technical Means of Monitoring

    Directory of Open Access Journals (Sweden)

    Serhii Tymchuk

    2017-03-01

    Full Text Available The problem of processing the information from different types of monitoring equipment was examined. The use of generalized methods of information processing, based on the techniques of clustering combined territorial information sources for monitoring and the use of framing model of knowledge base for identification of monitoring objects was proposed as a possible solution of the problem. Clustering methods were formed on the basis of Lance-Williams hierarchical agglomerative procedure using the Ward metrics. Frame model of knowledge base was built using the tools of object-oriented modeling.

  16. Bioreactor process monitoring using an automated microfluidic platform for cell-based assays

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    We report on a novel microfluidic system designed to monitor in real-time the concentration of live and dead cells in industrial cell production. Custom-made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample-to-waste liquid management and image cytometry-based ...

  17. Industrial process gamma tomography. Final report of a coordinated research project 2003-2007

    International Nuclear Information System (INIS)

    2008-05-01

    Gamma computed tomography (CT) is complementary to radiotracer and gamma sealed source techniques largely used for analyzing industrial process units. Relevant target areas for gamma CT applications are generally known. Although the methodology is generic and applicable across broad industrial specimen and facilities, a number of specific items have been identified as the most appropriate target beneficiaries of these applications: distillation columns; packed beds; risers; fluidized beds and other multiphase processing units. These industrial process units present significant technical challenges to CT investigations in terms of the complexity of the multiphase flows that occur in them. In order to address these needs, the IAEA implemented a Coordinated Research Project (CRP) on Industrial Process Gamma Tomography with the overall objective of testing and validating CT techniques for diagnosing industrial multiphase processes. CT laboratories from Argentina, Brazil, Czech Republic, France, Republic of Korea, Malaysia, Norway, Poland, United Kingdom and the United States of America have participated. The specific objectives of the CRP were assessment of the tomographic methods, evaluation of them for investigation of multiphase engineering processes, and design of prototypes of simple CT systems for industrial processing, which can be transferred to other developing countries. The CRP has generated an active network, which also included other groups engaged in the CT field. The round robin test has played an important role in validation of techniques and software. This TECDOC is prepared based on the findings and achievements of the CRP. It is a comprehensive technical report containing valuable information, not readily available in any single publication elsewhere. The participants' reports and software developed by them are compiled in a CD-ROM and attached to the back cover. The guidelines and software packages described in this report can be used as an

  18. Legionella in industrial cooling towers: monitoring and control strategies.

    Science.gov (United States)

    Carducci, A; Verani, M; Battistini, R

    2010-01-01

    Legionella contamination of industrial cooling towers has been identified as the cause of sporadic cases and outbreaks of legionellosis among people living nearby. To evaluate and control Legionella contamination in industrial cooling tower water, microbiological monitoring was carried out to determine the effectiveness of the following different disinfection treatments: (i) continuous chlorine concentration of 0.01 ppm and monthly chlorine shock dosing (5 ppm) on a single cooling tower; (ii) continuous chlorine concentration of 0.4 ppm and monthly shock of biocide P3 FERROCID 8580 (BKG Water Solution) on seven towers. Legionella spp. and total bacterial count (TBC) were determined 3 days before and after each shock dose. Both strategies demonstrated that when chlorine was maintained at low levels, the Legionella count grew to levels above 10(4) CFU l(-1) while TBC still remained above 10(8 )CFU l(-1). Chlorine shock dosing was able to eliminate bacterial contamination, but only for 10-15 days. Biocide shock dosing was also insufficient to control the problem when the disinfectant concentration was administered at only one point in the plant and at the concentration of 30 ppm. On the other hand, when at a biocide concentration of 30 or 50 ppm was distributed throughout a number of points, depending on the plant hydrodynamics, Legionella counts decreased significantly and often remained below the warning limit. Moreover, the contamination of water entering the plant and the presence of sediment were also important factors for Legionella growth. For effective decontamination of outdoor industrial cooling towers, disinfectants should be distributed in a targeted way, taking into account the possible sources of contamination. The data of the research permitted to modify the procedure of disinfection for better reduce the water and aerosol contamination and consequently the exposure risk.

  19. Quantitative monitoring of the fluorination process by neutron counting

    International Nuclear Information System (INIS)

    Russo, P.A.; Appert, Q.D.; Biddle, R.S.; Kelley, T.A.; Martinez, M.M.; West, M.H.

    1993-01-01

    Plutonium metal is produced by reducing PuF 4 prepared from PuO 2 by fluorination. Both fluorination and reduction are batch processes at the Los Alamos Plutonium Facility. The conversion of plutonium oxide to fluoride greatly increases the neutron yield, a result of the high cross section for alpha-neutron (α,n) reactions on fluorine targets compared to the (more than 100 times) smaller α,n yield on oxygen targets. Because of the increase, total neutron counting can be used to monitor the conversion process. This monitoring ability can lead to an improved metal product, reduced scrap for recycle, waste reduction, minimized reagent usage, and reduce personnel radiation exposures. A new stirred-bed fluorination process has been developed simultaneously with a recent evaluation of an automated neutron-counting instrument for quantitative process monitoring. Neutrons are counted with polyethylene-moderated 3 He-gas proportional counters. Results include a calibration of the real-time neutron-count-rate indicator for the extent of fluorination using reference values obtained from destructive analysis of samples from the blended fluoroinated batch

  20. The Efficiency of Halal Processed Food Industry in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Ali Mohd Noor

    2016-06-01

    Full Text Available Efficiency is indispensable for an industry to ensure cost reduction and profit maximization. It also helps the industry to be competitive and remain in the market. In 2010, Malaysia aims to be the world halal hub. The hub should capture at least five percent of the world halal market with at least 10,000 exporting firms. However the hub failed due to the small number of firms efficiency that finally contribute to less number of firms export. Thus, this study aimed to measure the efficiency of halal processed food industry in Malaysia using Data Envelopment Analysis (DEA. Input variables used were local raw inputs, labour, and monetary assets of halal food industry in Malaysia. Meanwhile the output used was the total sales revenue of the halal industry in Malaysia. The study shows that very few indusries are efficient in each category led by meat, dairy, cordials and juices, marine products, food crops, and grains industry. Therefore, the government needs to emphasize on industry’s efficiency to be competitive and be the world halal hub in the future.

  1. DEVELOPMENT OF PERFORMANCE MODEL FOR QUALITY AND PROCESS IMPROVEMENT IN BUSINESS PROCESS SERVICE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Samson Oludapo

    2017-06-01

    Full Text Available When it comes to performance improvement process, literature abounds with lean, agile and lean-agile. Over the years, the implementation of the improvement processes of lean and agile had met with resounding success in the manufacturing, production, and construction industry. For this reason, there is an interest to develop a performance process for business process service industry incorporating the key aspect of lean and agile theory extracted from the extant literature. The researcher reviewed a total of 750 scholarly articles, grouped them according to the relationship to central theme - lean or agile, and thereafter uses factor analysis under principal component method to explain the relationship of the items. The result of this study showed that firms focusing on cost will minimize the investment of resources in business operations this, in turn, will lead to difficulties in responding to changing customer's requirements in terms of volume, delivery, and new product. The implication is that on the long run cost focus strategy negatively influence flexibility.

  2. Infinite-Dimensional Observer for Process Monitoring in Managed Pressure Drilling

    OpenAIRE

    Hasan, Agus Ismail

    2015-01-01

    Utilizing flow rate and pressure data in and out of the mud circulation loop provides a driller with real-time trends for the early detection of well-control problems that impact the drilling efficiency. This paper presents state estimation for infinite-dimensional systems used in the process monitoring of oil well drilling. The objective is to monitor the key process variables associated with process safety by designing a model-based nonlinear observer that directly utilizes the available in...

  3. Method and apparatus for monitoring plasma processing operations

    Science.gov (United States)

    Smith, Jr., Michael Lane; Ward, Pamela Denise Peardon; Stevenson, Joel O'Don

    2002-01-01

    The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber. Plasma health evaluations and process identification through optical emissions analysis are included in this aspect. Yet another aspect associated with the present invention relates in at least some manner to the endpoint of a plasma process (e.g., plasma recipe, plasma clean, conditioning wafer operation) or discrete/discernible portion thereof (e.g., a plasma step of a multiple step plasma recipe). Another aspect associated with the present invention relates to how one or more of the above-noted aspects may be implemented into a semiconductor fabrication facility, such as the distribution of wafers to a wafer production system. A final aspect of the present invention relates to a network a plurality of plasma monitoring systems, including with remote capabilities (i.e., outside of the clean room).

  4. Performance in wireless networks and industrial wireless networks on control processes in real time under industrial environments

    Directory of Open Access Journals (Sweden)

    Juan F. Monsalve-Posada

    2015-01-01

    Full Text Available The growing use of Ethernet networks on the industrial automation pyramid has led many companies to develop new devices to operate in requirements of this level, nowadays it is called Industrial Ethernet network, on the market there are various sensors and actuators to industrial scale equipped with this technology, many of these devices are very expensive. In this paper, the performance of two wireless networks is evaluated, the first network has conventional Ethernet devices, and the second network has Industrial Ethernet devices. For the process we vary four parameters such as distance, number of bytes, the signal to noise ratio, and the packet error rate, and then we measure delays and compare with metric statistics results, Box Plot graphs were used for the analysis. Finally, we conclude that under the parameters and conditions tested, wireless networks can serve as a communication system in control applications with allowable delays of up to 50 ms, in addition, the results show a better performance of Industrial Ethernet networks over conventional networks, with differences in the RTT of milliseconds. Therefore, it is recommended to establish what risk is for the process to control these delays to determine if the equipment conventional applies, since under certain features like humidity and temperature can operate properly for a considerable time and at lower cost than devices to Industrial Ethernet.

  5. Predictive business process monitoring with LSTM neural networks

    NARCIS (Netherlands)

    Tax, N.; Verenich, I.; La Rosa, M.; Dumas, M.; Pohl, Klaus; Dubois, Eric

    2017-01-01

    Predictive business process monitoring methods exploit logs of completed cases of a process in order to make predictions about running cases thereof. Existing methods in this space are tailor-made for specific prediction tasks. Moreover, their relative accuracy is highly sensitive to the dataset at

  6. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  7. Inventory of the possibilities to process biomass using the existing industrial infrastructure

    International Nuclear Information System (INIS)

    Van Aart, F.J.J.M.; Barkhuysen, K.

    1999-07-01

    In the Netherlands, the government has formulated objectives for stimulating the use of sustainable energy and reducing CO 2 emissions. The replacement of fossil fuels by biomass is a major cornerstone of this policy. This has already resulted in a number of study projects, experiments and, in some cases, implementation projects in the co-fuelling of biomass in pulverised coal- or gas-fired power stations. Since the total energy use in the Netherlands depends only in part on power stations, it is still the question whether the total potential for the application of biomass in the Netherlands is being utilised. In order to study this question, Novem commissioned KEMA to make an inventory of the possibilities of processing biomass in industry via the existing infrastructure. The most important umbrella organisations, interest groups, sector organisations and leading companies have been approached in order to obtain insight into the potential of using biomass, and the willingness to do so. The following sectors of industry were selected: foodstuffs and luxury foods, chemicals, building materials, basic metals, metal products, glass and the fodder drying industry. In the cement industry and in the fodder drying industry, there is interest and there exist possibilities for using biomass as an alternative to fossil fuels in the existing industrial processes. The recommendation is to study in greater detail the feasibility of using biomass in the fodder drying industry. In the other sectors of industry which were investigated, there appeared to be little opportunity to use biomass in industrial processes. 4 refs

  8. Electron beam application in industrial polymer processing - Review and outlook

    International Nuclear Information System (INIS)

    Gielenz, G.

    2001-01-01

    Full text: The various established industrial electron beam (EB) applications as related to polymers, their corresponding material and process fundamentals are discussed in this paper. The basics of nowadays most common irradiation processes, which are for continuous stranded products: Single Beam, Rotary Technique; Single Beam, Multiple Pass Technique; Dual Beam, Multiple Pass Technique; and Single Beam, Single (Multiple) Pass Technique by means of a conveyor belt or cart system for discontinuous goods are briefly addressed together with some typical examples for illustration. Some comments on the (dis)advantages and the future economic optimization potential which EB processing technologies could provide to the respective polymer processing industries are presented with respect to material, accelerator equipment and related product handling hardware. The future competitiveness of irradiation crosslinking technologies, which offer numerous advantages in comparison to conventional CV curing and silane crosslinking technologies, only can be maintained by increasing their economic attractiveness, which is: high processing speeds, high material throughput at low production costs and comparatively low capital investment of the hardware involved. Other, more sophisticated irradiation process proposals found in the literature and respective patent publications will be briefly presented, although all of which lack more or less practical evidence for industrial economic and reliable application. Finally, the authors vision of a more efficient, economical EB-process design, by combining quasi state of the art EB-equipment components with a novel beam deflection system to practically achieve a 'Dual Beam, Four Side Crossfiring Process' for continuous strand-products, will be presented. (author)

  9. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  10. Solutions for the food processing industry; Shokuhin seizogyo solution

    Energy Technology Data Exchange (ETDEWEB)

    Toda, T; Iwami, N [Fuji Electric Co. Ltd., Tokyo (Japan)

    1999-09-10

    To improve quality control and maintain stable operation, the food processing industry requires problem solutions in total, including not only processing and operation control divisions but also quality control, design and production technology, and maintenance divisions. This paper describes solutions for HACCP (hazard analysis critical control point) support, quality control, and maintenance, in order to improve the quality level, ensure traceability and realize stable processing operations. (author)

  11. Fluorescence monitoring of ultrasound degradation processes

    International Nuclear Information System (INIS)

    Hassoon, Salah; Bulatov, Valery; Yasman, Yakov; Schechter, Israel

    2004-01-01

    Ultrasound-based water treatment is often applied for degradation of stable organic pollutants, such as polycyclic aromatic hydrocarbons and halogenated compounds. Monitoring the degradation process, during the application of ultrasound radiation, is of considerable economical interest. In this work, the possibility of performing on-line spectral analysis during sonication was examined and it was found that direct absorption or fluorescence readings are misleading. Optical monitoring is strongly affected by the absorption and scattering of light by cavitation micro-bubbles and ultrasound induced particulates. A model was developed to account for these effects and to allow for on-line fluorescence analysis. The model takes into account the absorption and scattering coefficients of the micro-bubbles and particulates, as well as their time dependent concentration. The model parameters are found from independent measurements where the pollutants are added to already sonicated pure water. Then, the model is tested for predicting the actual fluorescence behavior during the sonication process. It has been shown that the model allows for recovery of the true degradation data, as obtained by off-line HPLC measurements

  12. Monitoring of hazardous metals in ruderal vegetation as evidence of industrial and anthropogenic emissions

    International Nuclear Information System (INIS)

    Jurani, M.; Chmielewska, E.; Husekova, Z.; Ursinyova, M.

    2010-01-01

    The major share of environmental pollution in Bratislava loaded area is the petrochemical industry, energy and transport. Aggregated emissions of pollutants according to published data are currently declining. The aim of our research is monitoring of heavy metals (Zn, Cu, Cr, As, Pb, Cd, Ni) in selected species of ruderal vegetation (family Asteraceae and Salicaceae) in the adjacent southeast area of Bratislava (air side of Slovnaft).

  13. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  14. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    Science.gov (United States)

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  15. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-05-01

    Full Text Available Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  16. Water in the Mendoza, Argentina, food processing industry: water requirements and reuse potential of industrial effluents in agriculture

    Directory of Open Access Journals (Sweden)

    Alicia Elena Duek

    2016-04-01

    Full Text Available This paper estimates the volume of water used by the Mendoza food processing industry considering different water efficiency scenarios. The potential for using food processing industry effluents for irrigation is also assessed. The methodology relies upon information collected from interviews with qualified informants from different organizations and food-processing plants in Mendoza selected from a targeted sample. Scenarios were developed using local and international secondary information sources. The results show that food processing plants in Mendoza use 19.65 hm3 of water per year; efficient water management practices would make it possible to reduce water use by 64%, i.e., to 7.11 hm3. At present, 70% of the water is used by the fruit and vegetable processing industry, 16% by wineries, 8% by mineral water bottling plants, and the remaining 6% by olive oil, beer and soft drink plants. The volume of effluents from the food processing plants in Mendoza has been estimated at 16.27 hm3 per year. Despite the seasonal variations of these effluents, and the high sodium concentration and electrical conductivity of some of them, it is possible to use them for irrigation purposes. However, because of these variables and their environmental impact, land treatment is required.

  17. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  18. On eco-efficient technologies to minimize industrial water consumption

    Science.gov (United States)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  19. Comparison of multivariate and univariate statistical process control and monitoring methods

    International Nuclear Information System (INIS)

    Leger, R.P.; Garland, WM.J.; Macgregor, J.F.

    1996-01-01

    Work in recent years has lead to the development of multivariate process monitoring schemes which use Principal Component Analysis (PCA). This research compares the performance of a univariate scheme and a multivariate PCA scheme used for monitoring a simple process with 11 measured variables. The multivariate PCA scheme was able to adequately represent the process using two principal components. This resulted in a PCA monitoring scheme which used two charts as opposed to 11 charts for the univariate scheme and therefore had distinct advantages in terms of both data representation, presentation, and fault diagnosis capabilities. (author)

  20. Industrial and agricultural process heat information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  1. Modern integrated environmental monitoring and processing systems for nuclear facilities

    International Nuclear Information System (INIS)

    Oprea, I.

    2000-01-01

    The continuous activity to survey and monitor releases and the current radiation levels in the vicinity of a nuclear object is essential for person and environment protection. Considering the vast amount of information and data needed to keep an updated overview of a situation both during the daily surveillance work and during accident situations, the need for an efficient monitoring and processing system is evident. The rapid development, both in computer technology and in telecommunications, the evolution of fast and accurate computer codes enabling the on-line calculations improve the quality of decision-making in complex situations and assure a high efficiency. The monitoring and processing systems are used both for environmental protection and for controlling nuclear power plant emergency and post-accident situations. Such a system can offer information to the radiation management systems in order to assess the consequences of nuclear accidents and to establish a basis for right decisions in civil defense. The integrated environmental monitoring systems have as main task to record, collect, process and transmit the radiation levels and weather data, incorporating a number of stationary or mobile radiation monitoring equipment, weather parameter measuring station, an information processing center and the communication network, all running under a real-time operating system.They provide the automatic data collection on-line and off-line, remote diagnostic, advanced presentation techniques, including a graphically oriented executive support, which has the ability to respond to an emergency by geographical representation of the hazard zones on the map. The systems are based on local intelligent measuring and transmission units, simultaneous processing and data presentation using a real-time operating system for personal computers and geographical information system (GIS). All information can be managed directly from the map by multilevel data retrieving and

  2. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  3. Diagnosis and Supervision of Industrial Gas Turbines

    OpenAIRE

    Larsson, Emil

    2012-01-01

    Monitoring of industrial gas turbines is of vital importance, since it gives valuable information for the customer about maintenance, performance, and process health. The performance of an industrial gas turbine degrades gradually due to factors such as environment air pollution, fuel content, and ageing to mention some of the degradation factors. The compressor in the gas turbine is especially vulnerable against contaminants in the air since these particles are stuck at the rotor and stator ...

  4. Solving process industry problems with specialty stainlesses

    International Nuclear Information System (INIS)

    Montrone, E.D.

    1977-01-01

    Substantial steel industry efforts have been devoted to improving the properties of stainless steels by changing the level of alloying elements. Rapid progress has produced materials to meet many of the diversified service conditions existing in process plants. The performance characteristics of seven stainless steels are compared. The emphasis is on steels which avoid the effects of corrosion. 4 figures, 3 tables

  5. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    Science.gov (United States)

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Developing industries in cooperative interaction: equilibrium and stability in processes with lag

    Directory of Open Access Journals (Sweden)

    Aleksandr Kirjanen

    2017-11-01

    Full Text Available A mathematical model of dynamic interaction between mining and processing industries is formalized and studied in the paper. The process of interaction is described by a system of two delay dierential equations. The criterion for asymptotic stability of nontrivial equilibrium point is obtained when both industries co-work steadily. The problem is reduced to nding stability criterion for quasi-polynomial of second order. Time intervals between deliveries of raw materials which make it possible to preserve stable interaction between the two industries are found.

  7. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    Science.gov (United States)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic

  8. Business process of reputation management of food industry enterprises

    OpenAIRE

    Derevianko Olena. H.

    2014-01-01

    The goal of the article is development of the methodical base of reputation management directed at formalisation of theoretical provisions and explanation how to organise reputation management at food industry enterprises. The article shows prospectiveness of use of the Business Process Management concept in reputation management. Using the diagram of the Reputation Management business process environment the article shows its key participants (suppliers and clients of the business process) a...

  9. Monitoring and reporting software for the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Okanovic, M. [Advanced Systems Integration Pty Ltd. (Australia)

    2001-08-01

    This paper explains the development and launch of MineSuite software, designed to facilitate report production in coal mines. Advanced Systems Integration (ASI) has developed a system that is generic to all mining operations. Mine personnel can define all processes, KPIs, equipment, delays, reports etc. that are vital in monitoring mining operations. Its capabilities have been realised in opencut, underground and preparation plants throughout Australia. Written in Java, MineSuite is a multi-user, multi-threaded, multi-tasking distributed application. 3 figs.

  10. A NEW PROCESS MODEL FOR EMBEDDED SYSTEMS CONTROL FOR TELECOM INDUSTRY

    OpenAIRE

    Sanjai Gupta; Mohammed Hussain

    2012-01-01

    This research deals with important issue for the embedded system in telecom industry. The rapid increase of a software and software based functionality brings various challenges for the telecom industry. As we all know for any given software product the most important thing is its cost, reliability, schedule and quality, these all can be achieve by following good software process models. And hence mostorganization and businesses put more emphasis on software processes by asking their software...

  11. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    International Nuclear Information System (INIS)

    Krichinsky, Alan M.; Bates, Bruce E.; Chesser, Joel B.; Koo, Sinsze; Whitaker, J. Michael

    2009-01-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F and W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F and W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F and W system description. Continuous monitoring components on the mock F and W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF 6 F and W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF 6 . The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under

  12. Ergonomic evaluation of cheese production process in dairy industries

    Directory of Open Access Journals (Sweden)

    Luciano Brito Rodrigues

    2008-07-01

    Full Text Available The present work consisted of an analysis of work conditions aspects in small dairy industries from southwest region of Bahia state. The study considered the analysis of environmental variables and the organization of the work in the production process of cheeses. The analysis was performed by means of observations in loco and measurement of the environmental variables related to noise, illumination and temperature. The main problems are related to posture and inadequate illumination. The parameters were evaluated according to the norms and legislation available in order to propose suggestions for the identified problems, objectifying the comfort and safety of workers and the consequent improvement of activities developed in these industries. Keywords: Ergonomics, Dairy industries, Environmental comfort.

  13. Industrial powder metallurgy processing for production of high field Nb3Sn

    International Nuclear Information System (INIS)

    Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.

    1988-01-01

    Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility

  14. Classification of working processes to facilitate occupational hazard coding on industrial trawlers

    DEFF Research Database (Denmark)

    Jensen, Olaf C; Stage, Søren; Noer, Preben

    2003-01-01

    BACKGROUND: Commercial fishing is an extremely dangerous economic activity. In order to more accurately describe the risks involved, a specific injury coding based on the working process was developed. METHOD: Observation on six different types of vessels was conducted and allowed a description...... and a classification of the principal working processes on all kinds of vessels and a detailed classification for industrial trawlers. In industrial trawling, fish are landed for processing purposes, for example, for the production of fish oil and fish meal. The classification was subsequently used to code...... the injuries reported to the Danish Maritime Authority over a 5-year period. RESULTS: On industrial trawlers, 374 of 394 (95%) injuries were captured by the classification. Setting out and hauling in the gear and nets were the processes with the most injuries and accounted for 58.9% of all injuries...

  15. Beryllium. Evaluation of beryllium hydroxide industrial processes. Pt. 3

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    This work continues the 'Beryllium' series. It is a historical review of different industrial processes of beryllium hydroxide obtention from beryllium ores. Flowsheats and operative parameters of five plants are provided. These plants (Degussa, Brush Beryllium Co., Beryllium Corp., Murex Ltd., SAPPI) were selected as representative samples of diverse commercial processes in different countries. (Author) [es

  16. Mini-channel heat exchangers for industrial distillation processes

    NARCIS (Netherlands)

    Van de Bor, D.M.

    2014-01-01

    In this thesis the technical and economic performance of compression-resorption heat pumps has been investigated. The main objective of this thesis was to improve the performance and reduce the investment costs of compression-resorption heat pumps applied in process industry. A model that is able to

  17. Monitoring Requirements Coverage Using Reconstructed Views : An Industrial Case Study

    NARCIS (Netherlands)

    Lormans, M.; Gross, H.; Van Deursen, A.; Van Solingen, R.; Stehouwer, A.

    2006-01-01

    Requirements views, such as coverage and status views, are an important asset for monitoring and managing software development. We have developed a method that automates the process for reconstructing these views, and built a tool, ReqAnalyst, to support this method. In this paper, we investigate to

  18. Imulation of polymer forming processes - addressing industrial needs

    International Nuclear Information System (INIS)

    Thibault, F.; DiRaddo, R.

    2011-01-01

    The objective of this paper is to present the development of simulation and design optimization capabilities, for polymer forming processes, in the context of addressing industrial needs. Accomplishments generated from close to twenty years of research in this field, at the National Research Council (NRC), are presented. Polymer forming processes such as extrusion blow moulding, stretch blow moulding and thermoforming have been the focus of the work, yet the research is extendable to similar polymer forming operations such as micro-blow moulding, sheet blow moulding and composites stamping. The research considers material models, process sequence integration and design optimization, derivative processes and 3D finite elements with multi-body contact.

  19. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    Science.gov (United States)

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  20. BRANDING PROCESS - FUNDAMENTAL PROCESS IN THE TEXTI LE INDUSTRY ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    PURCAREA Anca Alexandra

    2014-05-01

    Full Text Available More companies in textile industry organizations understand that in making a decision a key factor is the performance of organizational processes. Products are becoming more numerous and increasingly resemble each other.In this conditions the brand can make the difference in a highly competitive market. Both academic specialists and professionals believes that the brand has become an intangible capital of a company which ensures its long-term profitability. In a globalized economy brand break the barriers of space enabling the company to have a great vision, far beyond its reach. Methodology was based on a bibliographical research. The research has identified the major role that brands can play both for customers and manufacturers in the textile Industry organizations. In conclusion literature and experience has shown that large companies both brands operating in B2B markets and the B2C markets, have an increasingly higher for long-term competitive advantage.

  1. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    Science.gov (United States)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  2. EXPERT-ANALITICAL MONITORING OF LEARNING PROCESS QUALITY IN HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    T. M. Korotun

    2010-10-01

    Full Text Available The technological model is proposed for monitoring process of learning process quality in high school compliant with current European and home standards. The mathematical methods are elaborated for diverse activities as to learning process objects quality determination unified support. They self-consistently combine: automatic expert evaluation with Bayesian net and Value tree models; Delphi technique enhancement; best practices for education quality assessment. Quality estimates’ consistency index is introduced for their choice and acceptability analysis. Its permanent increasing over monitoring stages is guaranteed. The tools for these stages’ automatic support are described.

  3. Building an industry-wide occupational exposure database for respirable mineral dust - experiences from the IMA dust monitoring programme

    International Nuclear Information System (INIS)

    Houba, Remko; Jongen, Richard; Vlaanderen, Jelle; Kromhout, Hans

    2009-01-01

    Building an industry-wide database with exposure measurements of respirable mineral dust is a challenging operation. The Industrial Minerals Association (IMA-Europe) took the initiative to create an exposure database filled with data from a prospective and ongoing dust monitoring programme that was launched in 2000. More than 20 industrial mineral companies have been collecting exposure data following a common protocol since then. Recently in 2007 ArboUnie and IRAS evaluated the quality of the collected exposure data for data collected up to winter 2005/2006. The data evaluated was collected in 11 sampling campaigns by 24 companies at 84 different worksites and considered about 8,500 respirable dust measurements and 7,500 respirable crystalline silica. In the quality assurance exercise four criteria were used to evaluate the existing measurement data: personal exposure measurements, unique worker identity, sampling duration not longer than one shift and availability of a limit of detection. Review of existing exposure data in the IMA dust monitoring programme database showed that 58% of collected respirable dust measurements and 62% of collected respirable quartz could be regarded as 'good quality data' meeting the four criteria mentioned above. Only one third of the measurement data included repeated measurements (within a sampling campaign) that would allow advanced statistical analysis incorporating estimates of within- and between-worker variability in exposure to respirable mineral dust. This data came from 7 companies comprising measurements from 23 sites. Problematic data was collected in some specific countries and to a large extent this was due to local practices and legislation (e.g. allowing 40-h time weighted averages). It was concluded that the potential of this unique industry-wide exposure database is very high, but that considerable improvements can be made. At the end of 2006 relatively small but essential changes were made in the dust monitoring

  4. Real-time monitoring of clinical processes using complex event processing and transition systems.

    Science.gov (United States)

    Meinecke, Sebastian

    2014-01-01

    Dependencies between tasks in clinical processes are often complex and error-prone. Our aim is to describe a new approach for the automatic derivation of clinical events identified via the behaviour of IT systems using Complex Event Processing. Furthermore we map these events on transition systems to monitor crucial clinical processes in real-time for preventing and detecting erroneous situations.

  5. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  6. Potential for reuse of effluent from fish-processing industries

    Directory of Open Access Journals (Sweden)

    Luana Morena Rodrigues Vitor Dias Ferraciolli

    2017-09-01

    Full Text Available The most common problems in the fish processing industry relate to high water consumption and the generation of effluents with concentrated organic loads. Given that reuse can represent an alternative for sustainable development, this study sought to assess the potential for recycling effluents produced in a fish-processing plant. In order to do so, the final industrial effluent was analyzed using the American Public Health Association (APHA standard effluent-analysis method (2005. In addition, the study assessed treatments which produce effluents meeting the requirements prescribed by different countries' regulations for reuse and recycling. The results found that effluents with smaller organic loads, such as those from health barriers and monoblock washing, can be treated in order to remove nutrients and solids so that they can be subsequently reused. For effluents produced by the washing and gutting cylinders, it is recommended that large fragments of solid waste be removed beforehand. Effluents can in this way attain a quality compatible with industrial reuse. This study further highlights the possibility of treating effluents so as comply with drinking water standards. This would potentially allow them to be used within the actual fish-processing procedure; in such a case, a revision of standards and measures for controlling use should be considered to prevent microbiological damage to products and risks to handlers and final consumers.

  7. Public Consultation Processes in Greenland Regarding the Mining Industry

    Directory of Open Access Journals (Sweden)

    Maria Ackrén

    2016-05-01

    Full Text Available Since the Greenland Self-Government Act came into force in 2009, economic development and the right to utilize natural resources in Greenland lies in the hands of the Self-Government. Earlier efforts to establish this authority were made back in the 1970s, when discussions on Home Rule were first on the agenda. Mining industries are not a new activity in Greenland. During the Second World War, Greenlandic cryolite was used to produce aluminum for the North American aircraft industry. Other essential natural resources, such as gold and gemstones, have also received international interest over the years. Greenland's new development aim is to build up a large-scale mining industry. This article elucidates the form of public consultation processes followed in Greenland in connection with two large-scale mining projects and the different views various actors have regarding these events. How did the deliberative democratic process unfold in Greenland regarding these projects? Was the process followed an effective way to manage these kinds of projects? The article shows that two projects that received a lot of media attention: the 2005 iron ore mine project in Isukasia, and the 2001 TANBREEZ-project to extract rare earth elements, used highly different approaches when it comes to deliberative democracy. In the former case, a limited degree of deliberative democracy was used, while in the latter case, the opposite applies.

  8. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  9. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  10. Application of digital image processing to industrial radiography

    International Nuclear Information System (INIS)

    Bodson; Varcin; Crescenzo; Theulot

    1985-01-01

    Radiography is widely used for quality control of fabrication of large reactor components. Image processing methods are applied to industrial radiographs in order to help to take a decision as well as to reduce costs and delays for examination. Films, performed in representative operating conditions, are used to test results obtained with algorithms for the restauration of images and for the detection, characterisation of indications in order to determine the possibility of an automatic radiographs processing [fr

  11. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet.

    Science.gov (United States)

    Potyrailo, Radislav A

    2016-10-12

    Modern gas monitoring scenarios for medical diagnostics, environmental surveillance, industrial safety, and other applications demand new sensing capabilities. This Review provides analysis of development of new generation of gas sensors based on the multivariable response principles. Design criteria of these individual sensors involve a sensing material with multiresponse mechanisms to different gases and a multivariable transducer with independent outputs to recognize these different gas responses. These new sensors quantify individual components in mixtures, reject interferences, and offer more stable response over sensor arrays. Such performance is attractive when selectivity advantages of classic gas chromatography, ion mobility, and mass spectrometry instruments are canceled by requirements for no consumables, low power, low cost, and unobtrusive form factors for Internet of Things, Industrial Internet, and other applications. This Review is concluded with a perspective for future needs in fundamental and applied aspects of gas sensing and with the 2025 roadmap for ubiquitous gas monitoring.

  12. Customer-driven manufacturing in the food processing industry

    NARCIS (Netherlands)

    Donk, D.P. van

    2000-01-01

    Food processing industry copes with high logistical demands from its customers. This paper studies a company changing to more customer (order) driven manufacturing. In order to help decide which products should be made to order and which made to stock, a frame is developed and applied to find and

  13. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  14. Development of a method of absorbed dose on-line monitoring at product processing by scanned electron beam

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.; Shevchenko, V.A.; Tenishev, A.Eh.; Titov, D.V.; Uvarov, V.L.

    2016-01-01

    The conditions of the contact-free absorbed dose monitoring at industrial product processing by electron beam are investigated. The method is based on analysing the collected charge in a stack monitor (SM) mounted down-stream of irradiated object. Using computer simulation on the basis of a modified transport code PENELOPE-2008, it is shown that by placing a filter of low-energy electrons before SM it is possible to obtain the one-to-one correlation dependence between the monitor charge and absorbed energy of radiation in the processed object. At a certain surface density of the filter, this dependence takes on the form similar to linear. The possibility to use an air gap between the object and SM as such a filter has been demonstrated. For the conditions of radiation plant with an electron accelerator LU-10 of NSC KIPT, the optimum distance of the SM location has been established. For the practical range of the electron energy, beam scan width and surface density of the irradiated product, the constants of ''product absorbed energy-to- SM charge '' linear dependence have been determined. The capability to establish the average absorbed dose in the object moving trough the irradiation zone on the SM current is shown. The calculation data are in satisfactory agreement with the results of measurements.

  15. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coble, Jamie B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jordan, David V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcdonald, Luther W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Forrester, Joel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schwantes, Jon M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Unlu, Kenan [Pennsylvania State Univ., University Park, PA (United States); Landsberger, Sheldon [Univ. of Texas, Austin, TX (United States); Bender, Sarah [Pennsylvania State Univ., University Park, PA (United States); Dayman, Kenneth J. [Univ. of Texas, Austin, TX (United States); Reilly, Dallas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of “… (minimization of) the risks of nuclear proliferation and terrorism.” The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing “normal” process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicate changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.

  16. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

    2014-03-15

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

  17. Studies and research concerning BNFP: process monitoring and process surveillance demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    Kight, H R

    1979-11-01

    Computerized methods of monitoring process functions and alarming off-standard conditions were implemented and demonstrated during the FY 1979 Uranium Run. In addition, prototype applications of instruments for the purpose of tamper indication and surveillance were tested.

  18. First-principles mechanistic studies of ammonia-related industrial processes

    OpenAIRE

    Gómez Díaz, Jaime

    2011-01-01

    In this dissertation, the mechanisms that govern four essential industrial processes have been studied by means of Density Functional Theory (DFT). The processes are the following: Ostwald (HNO3 production), Degussa and Andrussow (HCN production) and MacArthurForrest (gold recovery). In these processes, ammonia is the main raw material or a precursor of it.The KohnSham equations that describe the model systems have been solved by means of VASP and GPAW using the RPBE functional. These package...

  19. APACS: Monitoring and diagnosis of complex processes

    International Nuclear Information System (INIS)

    Kramer, B.M.; Mylopoulos, J.; Cheng Wang

    1994-01-01

    This paper describes APACS - a new framework for a system that detects, predicts and identifies faults in industrial processes. The APACS frameworks provides a structure in which a heterogeneous set of programs can share a common view of the problem and a common model of the domain. (author). 17 refs, 2 figs

  20. Catalytic arylation methods from the academic lab to industrial processes

    CERN Document Server

    Burke, Anthony J

    2014-01-01

    This "hands-on" approach to the topic of arylation consolidates the body of key research over the last ten years (and up to around 2014) on various catalytic methods which involve an arylation process. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods. The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies using arylboron reagents. A cross-section of relevant tried-and-tested experimental protocols is included at the end of each chapter for putting into immediate practice, along with patent literature. Due to its emphasis on efficient, "green" methods and industrial applications of the products c...

  1. Process monitoring using a Quality and Technical Surveillance Program

    International Nuclear Information System (INIS)

    Rafferty, C.A.

    1995-01-01

    The purpose of process monitoring using a Quality and Technical Surveillance Program was to help ensure manufactured clad vents sets fully met technical and quality requirements established by the manufacturer and the customer, and that line and program management were immediately alerted if any aspect of the manufacturing activities drifted out of acceptable limits. The Quality and Technical Surveillance Program provided a planned, scheduled approach to monitor key processes and documentation illuminated potential problem areas early enough to permit timely corrective actions to reverse negative trends that, if left uncorrected, could have resulted in deficient hardware. Significant schedule and cost impacts were eliminated

  2. SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS

    Data.gov (United States)

    National Aeronautics and Space Administration — SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Biomass monitoring,...

  3. Designing scheduling concept and computer support in the food processing industries

    NARCIS (Netherlands)

    van Donk, DP; van Wezel, W; Gaalman, G; Bititci, US; Carrie, AS

    1998-01-01

    Food processing industries cope with a specific production process and a dynamic market. Scheduling the production process is thus important in being competitive. This paper proposes a hierarchical concept for structuring the scheduling and describes the (computer) support needed for this concept.

  4. Determination of aflatoxins in by-products of industrial processing of cocoa beans.

    Science.gov (United States)

    Copetti, Marina V; Iamanaka, Beatriz T; Pereira, José Luiz; Lemes, Daniel P; Nakano, Felipe; Taniwaki, Marta H

    2012-01-01

    This study has examined the occurrence of aflatoxins in 168 samples of different fractions obtained during the processing of cocoa in manufacturing plants (shell, nibs, mass, butter, cake and powder) using an optimised methodology for cocoa by-products. The method validation was based on selectivity, linearity, limit of detection and recovery. The method was shown to be adequate for use in quantifying the contamination of cocoa by aflatoxins B(1), B(2), G(1) and G(2). Furthermore, the method was easier to use than other methods available in the literature. For aflatoxin extraction from cocoa samples, a methanol-water solution was used, and then immunoaffinity columns were employed for clean-up before the determination by high-performance liquid chromatography. A survey demonstrated a widespread occurrence of aflatoxins in cocoa by-products, although in general the levels of aflatoxins present in the fractions from industrial processing of cocoa were low. A maximum aflatoxin contamination of 13.3 ng g(-1) was found in a nib sample. The lowest contamination levels were found in cocoa butter. Continued monitoring of aflatoxins in cocoa by-products is nevertheless necessary because these toxins have a high toxicity to humans and cocoa is widely consumed by children through cocoa-containing products, like candies.

  5. The consideration and practice of data processing of WBS-II portal β monitor

    International Nuclear Information System (INIS)

    Du Xiangyang; Dong Qiangmin; Zhang Yong; Han Shuping; Wang Xiaodong; Fan Liya; Rao Xianming

    2001-01-01

    The main aspects of background and human body measurement data processing of WBS-II Portal β Monitor were discussed. The theory analysis of setting high and low background-warning threshold in data processing was done. The relative reference values were partly provided to the local executives. The measurement 'blind zone' and the whole warning function of data processing were discussed. And the structure, the process of monitoring and the microcomputer's hard wares of WBS-II Portal β Monitor were simply introduced

  6. Online Monitoring of Temperature Using Wireless Module in a Rotating Drum-Applicable to Leather Industries

    Directory of Open Access Journals (Sweden)

    T. Narayani

    2015-07-01

    Full Text Available In order to ensure safe and efficient operation of unit processes, foremost requirement is accurate measurement of process variables, with which quality can be monitored and controlled. Understanding the necessity of online monitoring of process temperature in tanning/dyeing process, the article is focused on wireless measurement of physical parameters involved in wet processing of hides/ skins and monitoring through digital computer for further analysis. It’s a challenging task to measure and communicate the process information from a closed rotating drum. Wireless communication is proposed because of its enhanced security, superfast operating speed, and increased mobility. The physical parameters which are predominant in tanning process are temperature, pH, conductivity etc. of the process fluid. It is necessary to carryout dyeing at 65 0C for producing raw to wet blue process. As a first attempt, wireless module for temperature measurement has been developed. The module includes signal transmitter and receiver section. In the transmitter section, the temperature which is measured by an integrated sensor is converted into frequency signal and imposed on a radio frequency signal (career signal and get transmitted in air. On the other side, receiver section receives the radio frequency signal and converts that into electrical signals to interface with the digital computer for online monitoring. The module is able to receive and control temperature of tanning drum within a distance of 100 meters. Real time experiments on the fabricated model show interesting results for commercialization.

  7. On the structure of dynamic principal component analysis used in statistical process monitoring

    DEFF Research Database (Denmark)

    Vanhatalo, Erik; Kulahci, Murat; Bergquist, Bjarne

    2017-01-01

    When principal component analysis (PCA) is used for statistical process monitoring it relies on the assumption that data are time independent. However, industrial data will often exhibit serial correlation. Dynamic PCA (DPCA) has been suggested as a remedy for high-dimensional and time...... for determining the number of principal components to retain. The number of retained principal components is determined by visual inspection of the serial correlation in the squared prediction error statistic, Q (SPE), together with the cumulative explained variance of the model. The methods are illustrated using...... driven method to determine the maximum number of lags in DPCA with a foundation in multivariate time series analysis. The method is based on the behavior of the eigenvalues of the lagged autocorrelation and partial autocorrelation matrices. Given a specific lag structure we also propose a method...

  8. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    OpenAIRE

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2006-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine...

  9. A new method for wafer quality monitoring using semiconductor process big data

    Science.gov (United States)

    Sohn, Younghoon; Lee, Hyun; Yang, Yusin; Jun, Chungsam

    2017-03-01

    In this paper we proposed a new semiconductor quality monitoring methodology - Process Sensor Log Analysis (PSLA) - using process sensor data for the detection of wafer defectivity and quality monitoring. We developed exclusive key parameter selection algorithm and user friendly system which is able to handle large amount of big data very effectively. Several production wafers were selected and analyzed based on the risk analysis of process driven defects, for example alignment quality of process layers. Thickness of spin-coated material can be measured using PSLA without conventional metrology process. In addition, chip yield impact was verified by matching key parameter changes with electrical die sort (EDS) fail maps at the end of the production step. From this work, we were able to determine that process robustness and product yields could be improved by monitoring the key factors in the process big data.

  10. Preliminary tests of an infrared process monitor for polyethylene encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Wright, S.L.; Jones, R.W.; McClelland, J.F.; Kalb, P.D.

    1996-01-01

    Polyethylene encapsulation is a process that is being investigated for the solidification of radioactive nitrate salts at Brookhaven National Laboratory and Rocky Flats Plant. In the encapsulation process, radioactive-salt waste is mixed with polyethylene pellets, heated, and extruded as a molten stream. Upon cooling, the mixture solidifies to a monolithic waste form with excellent properties for long-term waste storage. This paper describes a novel method to monitor the composition of the salt/polymer stream as it exits the extruder. The monitor is based on a technique known as transient infrared spectroscopy (TIRS). The TIRS monitor is able to capture the real-time mid-infrared spectrum of the processed waste stream as it exits the extruder. The wealth of chemical information contained in a mid-infrared spectrum makes this technique very appealing for on-line monitoring and process control. Data from the monitor can be used to guide processing, minimize waste volume, and certify the composition of the final waste form

  11. Energy conservation and cost benefits in the dairy processing industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  12. Gas industry standards board: Legal considerations in the standard setting process

    Energy Technology Data Exchange (ETDEWEB)

    Mishkin, M.T.; Adelman, D.I.

    1994-01-01

    On December 23, 1993, the Federal Energy Regulatory Commission (FERC) issued Order 563, a Final Rule adopting the agreements of informal industry-wide working groups to standardize information relating to pipeline capacity release programs mandated under Order 636. Order 563 is noteworthy for its reliance upon the industry to develop consensus standards for Commission adoption. The industry's success in reaching agreements on key communication standards issues spawned recommendations from the working groups to continue the development and maintenance of industry-wide standards through a permanent Gas Industry Standards Board (GISB). This article examines legal issues bearing on GISB's potential role in the regulatory process. Specifically, this article addresses constitutional and statutory considerations relating to the FERC's authority to delegate certain responsibilities to a voluntary, industry sponsored and supported private body such as that taking shape within the gas industry.

  13. Online monitoring and control of the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Boe, K.

    2006-07-01

    The demand for online monitoring and control of biogas process is increasing, since better monitoring and control system can improve process stability and enhance process performance for better economy of the biogas plants. A number of parameters in both the liquid and the gas phase have been suggested as process indicators. These include gas production, pH, alkalinity, volatile fatty acids (VFA) and hydrogen. Of these, VFA is the most widely recognised as a direct, relevant measure of stability. The individual, rather than collective VFA concentrations are recognised as providing significantly more information for diagnosis. However, classic on-line measurement is based on filtration, which suffers from fouling, especially in particulate or slurry wastes. In this project, a new online VFA monitoring system has been developed using gas-phase VFA extraction to avoid sample filtration. The liquid sample is pumped into a sampling chamber, acidified, added with salt and heated to extract VFA into the gas phase before analysis by GC-FID. This allows easy application to manure. Sample and analysis time of the system varies from 25-40 min. depending on the washing duration. The sampling frequency is fast enough for the dynamic of a manure digester, which is in the range of several hours. This system has been validated over more than 6 months and had shown good agreement with offline VFA measurement. Response from this sensor was compared with other process parameters such as biogas production, pH and dissolved hydrogen during overload situations in a laboratory-scale digester, to investigate the suitability of each measure as a process indicator. VFA was most reliable for indicating process imbalance, and propionate was most persistent. However, when coupling the online VFA monitoring with a simple control for automatic controlling propionate level in a digester, it was found that propionate decreased so slow that the biogas production fluctuated. Therefore, it is more

  14. Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review

    Directory of Open Access Journals (Sweden)

    Sartaj Ahmad Bhat

    2017-10-01

    Full Text Available The main objective of this review was to summarize and present a comprehensive account of the cytotoxic, genotoxic and mutagenic potential of various industrial wastes/sludges using some well-known plant bioassays followed by their bioremediation using vermitechnology. Industries are the main origin of discharges of various types of chemical wastes and are the main causes of environmental degradation. The direct application of industrial sludges could also harm the local biota. The genotoxicity of industrial sludges is assessed using various plant bioassays (for example Allium cepa, Vicia faba and these bioassays are comparatively more sensitive and cost-effective compared to other in-vitro genotoxicity bioassays. In addition, the materials used for toxicity evaluation are easily available and are being routinely used for the monitoring of environmental pollution. In most studies, the increases in root length and mitotic index, as well as the decrease in chromosomal aberrations in post vermicomposted sludges/wastes indicate that earthworms have the ability to reduce the ecotoxicogenetic effects of sludges/wastes. Post vermicompost is considered an excellent material of a homogenous nature as it has reduced levels of contaminants and holds more nutrients over a longer time without affecting the environment. The biotransformation potential of earthworms and their ability to detoxify most of the heavy metals in industrial sludges is because of their strong metabolic system and the involvement of diverse intestinal microflora and chloragocytic cells that reduce toxic forms to nontoxic forms. This unique ability of earthworms confirms the effectiveness of vermitechnology in reducing the toxicity of industrial wastes. Keywords: Allium cepa, Earthworm, Industrial sludge, Toxicity, Vermicomposting

  15. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  16. Simulation and analysis of hot forging process for industrial locking gear elevators

    Science.gov (United States)

    Maarefdoust, M.; Kadkhodayan, M.

    2010-06-01

    In this paper hot forging process for industrial locking gear elevators is simulated and analyzed. An increase in demand of industrial locking gear elevators with better quality and lower price caused the machining process to be replaced by hot forging process. Production of industrial locking gear elevators by means of hot forging process is affected by many parameters such as billet temperature, geometry of die and geometry of pre-formatted billet. In this study the influences of billet temperature on effective plastic strain, radius of die corners on internal stress of billet and thickness of flash on required force of press are investigated by means of computer simulation. Three-dimensional modeling of initial material and die are performed by Solid Edge, while simulation and analysis of forging are performed by Super Forge. Based on the computer simulation the required dies are designed and the workpieces are formed. Comparison of simulation results with experimental data demonstrates great compatibility.

  17. Structural health monitoring and lifecycle-management for civil engineering constructions in power plants and industrial facilities; Zustandsueberwachung und Lebensdauermanagement von baulichen Einrichtungen in Kraftwerken und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, Dieter; Demmer, Martin; Pfister, Tobias [ZERNA Planen und Pruefen GmbH, Bochum (Germany)

    2013-09-01

    In contrast to other fields of engineering, structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities have to be developed yet. The necessity of this development immediately arises from the building regulations law with its extensive set of regulations as well as from economic constraints. Approaches and methods of structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities could be improved intensively during recent years. The paper focuses on practical examples that show the necessity of comprehensive and strategic structural health monitoring in conjunction with lifecycle management for civil engineering constructions in power plants and industrial facilities unambiguously und clear. (orig.)

  18. Derivative Process Model of Development Power in Industry: Empirical Research and Forecast for Chinese Software Industry and US Economy

    OpenAIRE

    Feng Dai; Bao- hua Sun; Jie Sun

    2004-01-01

    Based on concept and theory of Development Power [1], this paper analyzes the transferability and the diffusibility of industrial development power, points out that the chaos is the extreme of DP releasing and order is the highest degree of DP accumulating, puts forward A-C strength, the index of adjusting and controlling strength, and sets up the derivative process model for industrial development power on the Partial Distribution [2]-[4]. By the derivative process model, a kind of time seri...

  19. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  20. Simulated real-time process monitoring of a molten salt electrorefiner

    International Nuclear Information System (INIS)

    Rappleye, Devin; Simpson, Michael; Cumberland, Riley; McNelis, David; Yim, Man-Sung

    2014-01-01

    Highlights: • An alternative approach to safeguarding and monitoring pyroprocessing is proposed. • Possible signals to be used to monitor an electrorefiner are identified. • An inverse model was developed to determine deposition rates at the cathode. • The sensitivity of certain parameters in the inverse model are presented. - Abstract: An alternative approach to monitoring the pyrochemical process (pyroprocessing) for spent nuclear fuel treatment is proposed and examined. This approach relies on modeling and the real-time analysis of process readings. Using an electrorefiner model, named ERAD, cathode potential and cell current were identified as useful process readings. To provide a real-time analysis of these two process readings, an inverse model was developed based on fundamental electrochemical relations. The model was applied to the following operating modes: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. Using the cell current and cathode potential, the model predicted which species were depositing and their rates. The deposition rates predicted by the inverse model compared favorably to those calculated by ERAD